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Microbial cell factories have long been expected to become 
a key platform for the bioconversion of sustainable sub-
strates into valuable products. The field of metabolic engi-

neering emerged in the early 1990s1 with the promising potential 
to revolutionize production processes in the chemical, fuel, pharma 
and food industries. In the past three decades, substantial techno-
logical advancements in DNA synthesis and assembly technologies2, 
next-generation DNA sequencing3, as well as genome engineering 
techniques4–6 have greatly expanded the toolkit available to meta-
bolic engineers. A vast amount of fundamental and applied research 
has been performed in the field, including the engineering of sub-
strate utilization pathways for a range of cheap, sustainable feed-
stocks as well as of biosynthetic pathways for a broad spectrum of 
valuable natural and non-natural products7,8. These efforts have led 
to an impressive collection of proof-of-principle pathways and engi-
neered strains9. Despite these success stories, however, bioproduc-
tion of commodity chemicals by metabolically engineered strains 
has only been realized so far to a limited extent at an industrial scale, 
primarily due to the unsatisfactory performance of many biopro-
duction processes that limits their economic feasibility10.

A recent review of the industrial production of bio-based com-
modity chemicals and fuels identified approximately 30 different 
bio-based chemicals that are produced or are planned to be pro-
duced at commercial scale, which is a tiny number of compounds 
relative to the vast product portfolio of the petrochemical indus-
try9. Similarly, the market share of bio-based chemical production 
(<US$10 billion in 2020)11 is dwarfed by classical chemistry-based 
production (US$5.7 trillion per year)12.

The current bio-based market is primarily based on glucose as a 
substrate, which raises important sustainability concerns for future 
scale-up, as the production of glucose depends heavily on scarce 
agricultural resources and competes with food production11,13. So 
far, there are only a handful of bio-based industrial processes that 
are fed with more sustainable feedstocks such as lignocellulosic 
(residual) biomass, syngas (H2/CO waste gas stream from some 

industries) or feedstocks generated with renewable electrical power, 
such as H2 or reduced one-carbon molecules (for example, metha-
nol and formate)14–16.

To truly realize the promise of bio-based production, major 
challenges need to be tackled to allow the development of sustain-
able and economically viable bioprocesses. At the strain level, this 
includes strategies to realize efficient assimilation of sustainable and 
cheap substrates, as well as to increase the performance in terms 
of production titres, rates and yields. In addition, undesired effects 
related to scale-up from laboratory cultivation to large bioreactors 
need to be evaluated and addressed.

A major complication in generating well-performing next- 
generation cell factories is the complexity of cellular metabolic  
networks. Hence, a desired strategy towards improving production 
would be the simultaneous optimization of multiple metabolic bot-
tlenecks and fluxes at a system level10,17–19. A valuable approach for 
system-level engineering is adaptive laboratory evolution (ALE)20, 
for example to optimize substrate utilization, growth-coupled pro-
duction and product tolerance. However, because ALE is typically 
based on random mutagenesis, the number of possible mutations 
is immense and only a small fraction of those will be beneficial. 
Hence, a powerful selection strategy is needed (that is, typically, 
selection for enhanced growth rates) and, as a result, ALE can often 
not be harnessed to optimize growth-competitive production. Even 
when it is possible to couple production to growth, the emergence 
of escape mutants that uncouple this connection may be a prob-
lem21. Moreover, phenotypic improvements of metabolic networks 
are often multifactorial problems requiring multiple epistatic muta-
tions, which have a lower probability of occurring together and 
sometimes may even be unable to emerge due to evolutionary paths 
with local optima.

A promising alternative or complementary approach to ALE is 
provided by (semi)-rational, system-level engineering. In recent 
years, several genetic engineering techniques have been developed 
that allow for highly effective, directed, system-level engineering. 
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Advanced tools have been established, especially for the genetic 
engineering of the bacterial and eukaryotic model production 
organisms, respectively Escherichia coli and Saccharomyces cerevi-
siae, but also in several other less-studied hosts. The application of 
targeted system-level engineering can lead to many combinations 
of mutations to be tested; hence, these approaches require effec-
tive selection methods or screening strategies to identify variants 
with improved phenotypes. In this Review we discuss advances and 
emerging possibilities in system-level targeted metabolic engineer-
ing, including in silico target design strategies, high-throughput 
genome engineering techniques, as well as suitable screening and 
selection approaches.

Target prediction for systems metabolic engineering
Genetic targets for editing should be chosen carefully to limit 
the size of mutant libraries and make optimal use of the available 
screening capacity. The main difficulty in targeted metabolic engi-
neering approaches is the requirement for prior knowledge about 
the metabolic network of the production organism as well as regula-
tion of this network. However, increased understanding of cellular 
metabolic networks and in silico tools, such as metabolic modelling 
or machine learning, can support rational target selection.

Types of target gene
Metabolic engineering projects generally start with a pathway 
design for a product or substrate of interest, often designed or ana-
lysed with the help of in silico tools22. Subsequently, native and/or 
heterologous genes encoding the enzymes in the designed pathway 
are overexpressed either from plasmids or from the host chromo-
some. The latter approach is often preferred, as genomically inte-
grated genes and modifications are more stable and avoid the use 
of antibiotics for plasmid selection. However, the mere introduc-
tion and overexpression of the pathway genes commonly results 
only in proof-of-principle, low-level productivities. Also, for sus-
tainable substrate utilization pathways, full growth on these sub-
strates can rarely be realized after initial pathway introduction 
attempts. Improving cell factories towards industrial performance 
usually requires extensive and iterative optimization of the flux in 
the pathway of interest and throughout the native metabolic net-
work. Production performance can be optimized by preventing 
by-product formation and by adjusting metabolic bottlenecks, 
which involves targeting of coding and/or non-coding DNA regions 
so as to tune the performance of some key players, such as enzymes, 
transporters and transcriptional regulators. Targets can be modi-
fied via a range of intervention strategies, such as expression-level 
tuning, gene knockouts, as well as protein engineering strategies, in 
which (some) amino-acid residues are changed.

Generally, genes encoding the enzymes directly involved in the 
pathway of interest (for example, substrate assimilation or product 
biosynthesis) provide a straightforward starting point for targeting. 
In addition, native host genes may be identified as suitable targets 
by rationally inspecting the host metabolic network for pathways 
or regulatory mechanisms that can (directly or indirectly) impact 
strain performance. For example, metabolites can be converted by 
multiple, competing enzymes, often towards biosynthetic routes 
required for cellular growth or towards undesired by-products. 
The competing enzymes at branching points in a network are key 
targets for metabolic engineers. Traditionally, these targets are 
often knocked out in a time-consuming, iterative, trial-and-error 
process. In a more advanced system-level metabolic engineer-
ing approach, these targets are deleted simultaneously in different 
combinations. Alternatively, rather than knocking out these genes, 
more refined knockdown strategies allow for tuning enzyme levels 
and can potentially lead to an improved balance of production and 
growth. In addition to enzymes at branching points, targets include  
enzymes involved in biosynthesis or regeneration of cofactors that 

are important for cell factory performance, as well as transporters of 
relevant molecules (for example, substrates to be taken up from the 
medium or products to be excreted).

Another class of useful targets for system-level engineering com-
prises transcription factors. These regulators can control sets of 
genes at varying levels, ranging from specific regulators that control 
the expression of one or a few genes to global regulators that control 
the expression of dozens of genes. Early system-wide approaches 
to globally reprogram cells included the introduction of random 
mutations in subunits of the RNA polymerase complexes in E. coli 
or S. cerevisiae23,24. Such global regulators can change the expres-
sion patterns of many genes, but changes are hard to predict ratio-
nally, and require powerful screening or selection strategies. Still, 
targeting such regulators can be a useful approach, especially when 
it is poorly understood which specific genes should be targeted for 
a certain phenotype of interest, as is, for example, often the case 
for increasing host tolerance to toxic substrate compounds or prod-
ucts. Recent studies have targeted several dozens of transcriptional 
regulators in E. coli in parallel, trying to increase the tolerance to 
substances such as furfural, a toxic compound in lignocellulosic 
feedstocks, and styrene, a versatile but toxic monomer for bio-based 
plastics. In both studies, mutants of E. coli transcriptional regulators 
were identified that increase the tolerance level and hence increase 
productivities25,26.

Despite the demonstrated successful examples of mutating tran-
scriptional regulators, the complex regulatory effects of these targets  
may not necessarily lead to optimal outcomes. Mutations in (global) 
regulators may cause both beneficial and adverse alterations in 
expression at the same time, leading to unwanted trade-offs in cell 
factory optimization. Improved understanding of regulatory net-
works could help to identify promising, more specific regulators. 
However, metabolic models accounting for regulation have only 
started emerging for a limited number of model organisms, such as 
E. coli and S. cerevisiae27,28.

in silico tools for target selection
The selection of targets is regularly done in a manual fashion based 
on metabolic and regulatory knowledge of the host organism, 
often including targets identified in previous engineering attempts. 
However, there has been a steady increase in the use of in silico 
modelling tools in the metabolic engineering field, which certainly 
may contribute to target selection.

The two most popular in silico modelling approaches for meta-
bolic engineering are stoichiometric (or constraint-based) models 
and kinetic (or dynamic) models29. Stoichiometric models only 
require information on the reaction stoichiometry, and possibly 
some reaction constraints like upper or lower bounds of metabo-
lite (in)fluxes, and reaction directionality29,30. A commonly applied 
type of stoichiometric modelling is flux balance analysis (FBA), 
in which linear programming is used to find flux distribution 
solutions within constraints for a given objective (for example, 
maximum growth or maximum productivity)31. FBA is generally 
performed using genome-scale metabolic models, which contain all 
stoichiometric reactions assumed to take place within a host based 
on enzymes annotated in the genome. As of now, these metabolic 
models have been constructed for many relevant microorganisms. 
To aid in target selection for metabolic engineering, some dedicated 
in silico tools based on FBA have been created. Generally, these 
tools predict sets of gene knockouts that are expected to increase 
the flux towards the desired product. Examples include OptKnock32 
or Minimal Cut Set (MCS) analysis33. Such tools can be used to limit 
the set of genetic knockout targets to be tested34.

However, stoichiometric modelling generally does not consider 
factors like kinetics and regulation, so it often does not lead to 
the desired full performance. Furthermore, recent progress in the 
development of genetic tools allows for more subtle intervention 
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strategies than the creation of gene knockouts. For some microbial 
species, genetic tools are now available to modulate the expression 
strengths of multiple genes simultaneously, allowing for upregula-
tion or downregulation of enzyme levels, which consequently may 
influence related fluxes. FBA-based tools can be used to some extent 
to predict such interventions. Ideally, however, models incorpo-
rating kinetics are used to identify potential targets for adjusting 
enzyme levels. A range of kinetic models have been proposed for 
metabolic engineering, but they mostly require reliable experimen-
tally determined parameters of enzymatic kinetics35,36. The poor 
availability of such data is a major limitation in the application of 
these models.

To solve this problem, kinetic modelling approaches have been 
developed that do not rely on exact kinetic parameters. For example, 
ensemble modelling for robustness analysis (EMRA) uses a range 
of kinetic parameters to estimate which enzymatic reactions are 
crucial for the activity of an engineered pathway37. Such an EMRA 
framework has been applied to rationally predict some enzymes 
in the E. coli metabolic network that may need to be modulated to 
realize growth on methanol, via the non-native ribulose monophos-
phate (RuMP) pathway. Targeting of some of the enzymes predicted 
by this framework recently led to the long-awaited breakthrough 
of E. coli growing on the alternative substrate methanol as sole car-
bon and energy source via the RuMP cycle38. As suggested by the 
model, two reactions in glycolysis draining a key metabolite of the 
RuMP pathway (fructose 6-phosphate) were down-tuned by replac-
ing them with slower enzymatic counterparts. However, these two 
interventions were insufficient to achieve full growth on methanol 
as the sole carbon and energy source. Only after several rounds 
of ALE was the full methylotrophic growth phenotype achieved; 
this included several more mutations, including mutations in the 
central carbon metabolism (for example, in the tricarboxylic acid 
cycle) that were not predicted by EMRA. Hence, to increase the suc-
cess of rational metabolic engineering, additional complementary 
approaches besides metabolic models are important to help in pre-
dicting targets.

Other promising in silico tools include data-driven statistical 
and machine learning approaches, which generally use data from 
previous engineering iterations to inform the next round of engi-
neering. One statistical type of method is the design of experiments 
(DoE), which designs a limited set of combinations to be tested 

in a first iteration, which can be effective in disentangling factors 
that are key to focus on in next iterations. A technical challenge of 
this approach is that only specific combinations of target variations 
should be gene rated, which is often not possible with the combi-
natorial genome engineering techniques, which generally vary the 
different targets independently. Still, the DoE approach has shown 
its power in the efficient optimization of heterologous pathways  
for which specific combinatorial libraries were cloned in vitro on 
plasmids and then tested in a microbial host39–41.

Furthermore, machine learning algorithms can be used for target 
predictions based on data from previous iterations. Machine learn-
ing requires data for training, for example, productivities linked to 
mutant sequences of targets from previously engineered strains. 
Generally, machine learning will rely on an initial engineering itera-
tion round with a wide set of selected targets and variants, which in 
next iterations can be narrowed down for further optimization. Only 
a few examples exist so far of the application of machine learning to 
metabolic engineering42–44. The potential of this approach for meta-
bolic engineering is extensively reviewed elsewhere45–47. Although 
a potential drawback of machine learning is the requirement for 
extensive experimental data to train the model, it also holds prom-
ise for limiting the number of variants that need to be generated and 
screened in iterative rounds of system-wide engineering. Recently it 
was also demonstrated that machine learning can be used to address 
the lack of data for enzyme kinetic parameters, for example, by pre-
dicting enzyme turnover rates48. By using this approach, more accu-
rate metabolic models could be generated for S. cerevisiae.

Genetic sequence targets and modification strategies
After the selection of target genes for modification, a next step is to 
identify regions of these genes to edit. The most frequent targets for 
editing include promoters, untranslated regions, ribosome binding 
sites (RBSs) or coding sequences (Fig. 1).

The promoter sequence is a key region with which to control 
expression levels, as it can regulate transcription initiation rates in 
both prokaryotic and eukaryotic cell factories. However, despite 
extensive studies, it is still poorly understood how natural pro-
moter sequences control transcription levels. Only recently have 
some models been developed for predicting promoter strength in 
E. coli49,50. So far, promoter strength modulation in metabolic engi-
neering is mostly performed using small libraries of well-known 
promoters with characterized strengths. However, a drawback of 
this approach is that the insertion of complete synthetic promot-
ers in the genome requires larger sequence modifications (typically 
>30 bases), which are often challenging to realize with the avail-
able high-throughput genome-engineering techniques. An early 
example of genome-wide promoter replacement for metabolic engi-
neering was demonstrated for the production of the dye compound 
indigo by E. coli51. Recently, several fundamental studies on pro-
moter activities have shown that, by randomly mutating promoter 
regions, a wide, yet unpredictable range of expression strengths can 
be reached in, for example, E. coli52. Hence, making small random 
mutations in an existing promoter region can be an alternative 
method for system-wide promoter engineering, supported by tools 
such as the recombineering-based diversification tool DIvERGE53, 
of which more details will be provided below. However, the 
trial-and-error nature of such a randomized promoter engineering 
approach requires efficient screening or selection of many variants.

Another key region for controlling protein production levels 
comprises the untranslated regions (UTRs) of messenger RNA 
(mRNA), especially the 5′UTR. This region plays crucial roles in 
the stability and degradation of mRNAs54, and can typically cause 
variations in the enzyme levels as mRNA is translated into protein 
(for example, enzymes). In addition, in prokaryotes, the 5′UTR 
contains the RBS, which is responsible for recruiting ribosomes  
to initiate translation. For many bacterial species there is a fair  

RBS
• Fully degenerate RBS
• Characterized RBS libraries 
• RBS libraries based on models

RBS

5′UTR
• UTR design tools
• Standardized UTR
 libraries

Other regulatory 
sequences
• Random mutagenesis
• Knockout

Promoter
• Random promoter mutagenesis
• Characterized promoter libraries
• Promoter libraries based on models

Coding sequence editing
• Synonomous codon mutations for
 expression tuning
• Preliminary stop codon insertion
 for knockouts
• (Selected) amino-acid mutations
 for changed functionality

Coding sequenceTFBS Promoter

Fig. 1 | Target sites for gene (expression) editing and available 
modification strategies. Potential target sites for genetic modifications 
to modify expression levels include the transcription factor binding site 
(TFBS), the promoter, the 5′UTR, the RBS (only in prokaryotes) and the 
coding sequence (CDS). These different genomic sections can be adjusted 
through different modification strategies, each with specific levels of 
predictability and impact.
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understanding of how RBS sequences determine translation ini-
tiation strength. The initiation rate is, amongst other factors, 
determined by base-pairing between six to eight bases of the RBS 
sequence in the mRNA and the 3′ end of the prokaryotic 16S rRNA, 
as well as by the accessibility of the RBS within a folded mRNA 
structure55.

Some metabolic engineering efforts rely on libraries of previ-
ously characterized RBS sequences56 or on large libraries of degen-
erate sequences covering the RBS and/or the first few codons of 
the coding sequence57. However, it must be noted that even short, 
degenerate RBS sequences of six bases already lead to a large library 
of 46 = 4,096 variants for one gene. To reduce library sizes, computer 
algorithms such as RBS Calculator58 can be used. This algorithm is 
based on a biophysical model that can be used to predict the strength 
of an RBS sequence, allowing for the design of smaller degenerate 
libraries, typically of a dozen RBS variants that should cover a wide 
expression range59,60. As an alternative to RBS design based on bio-
physical models, high-throughput experimental RBS characteriza-
tion data can be used to train models to predict RBS activity, as was 
recently demonstrated for E. coli61,62. Overall, the relatively strong 
predictive power for RBS strengths, as well as the requirement 
for only a few mutations within a short sequence window, makes 
them an excellent target for efficient, genome-wide optimization of  
expression strengths in bacteria. RBS engineering also allows for 
independently varying the expression levels of individual genes that 
are encoded together in one bacterial operon under the control of a 
single promoter.

By contrast, in eukaryotic cell factories such as yeast, genes 
are generally transcribed individually, and no RBS motif is pres-
ent. Usually, the eukaryotic ribosome binds at the capped 5′ end 
of a transcript, then scans along until it encounters the start codon 
within the Kozak sequence to initiate translation63. Especially for 
yeast, predictive tools and standardized 5′UTR libraries are emerg-
ing based on secondary mRNA structures, the Kozak sequence 
motif and other internal regulatory elements controlling translation 
initiation. These advances can facilitate targeted system-wide tun-
ing of expression in eukaryotes with 5′UTR libraries64.

Another prominent target for modification is the protein coding  
sequence (CDS). The CDS can also be targeted for expression  
tuning by editing the codon usage of a gene (for example, codon 
optimization or codon harmonization). Several algorithms for 
codon optimizing are available65, but editing the entire length 
of genes is often not practical, and also mostly not required for a 
system-wide approach. Targeting a shorter sequence like the pro-
moter, the RBS or the influential start of the CDS can therefore be 
more attainable in system-wide genome engineering66.

Apart from tuning expression levels, the CDS can be mutated to 
alter the amino-acid sequence of the encoded protein, for example 
to modulate enzyme properties such as catalytic rates or substrate 
or co-factor specificities. CDS sequences are often optimized via 
directed evolution strategies through mutagenesis of the (complete 
or partial) CDS, combined with screening or selection for desired 
enzyme properties. Directed evolution has, for example, enabled 
new-to-nature enzyme activities, such as the enzymatic formation of 
carbon–silicon bonds67. However, the variant space of all amino-acid 
substitutions (that is, 19 amino acids per position) in a single protein 
is astronomical. Hence, the system-level simultaneous engineering 
of proteins requires a strict selection of specific amino-acid residues, 
which are ideally mutated to only one or a few alternatives to find a 
compromise between minimizing the number of variants and cov-
ering potentially relevant residues. Available data on protein struc-
tures or previous characterizations or directed evolution studies  
on a specific protein can be used to limit the number of targets. 
Such an approach can also be used for the targeting of regulators. 
For example, targeted amino-acid modifications covering mul-
tiple regulator proteins have been performed in high-throughput  

metabolic engineering efforts to improve substrate or product toler-
ance. In one study, tolerance to hydrolysates from pretreated ligno-
cellulosic biomass was engineered in E. coli25. The tolerance to acetate 
and furfural in the hydrolysate was improved by editing several key 
amino acids (mostly DNA-binding residues) of 28 genes, mostly 
regulators. This approach has already led to library sizes of >40,000 
possible mutants, emphasizing the challenge of co-optimizing  
multiple CDS sequences in parallel. In another study, tolerance 
to the product styrene was improved through a similar approach, 
in which 54 regulators and transcription factors were edited, with 
>80,000 mutations tested in parallel26. Genome editing in both these 
studies was achieved through iterative CRISPR-Enabled Trackable 
genome Engineering (iCREATE), which will be described in more 
detail below.

Available and developing genome editing tools
Recent advances in DNA-editing techniques launched a new era in 
which precise genetic manipulation has become more efficient and 
feasible across entire genomes in an increasing number of micro-
bial species. This transformation was primarily made possible by 
the development of recombination-mediated genetic engineering 
(recombineering)6 and CRISPR-Cas-based genome editing4. In 
recent years, a range of genetic tools have been developed based 
on these two approaches, leading to several tools suitable for 
high-throughput genome editing for metabolic engineering (Fig. 2  
and Table 1). Of general importance for system-wide metabolic 
engineering is the targeting of multiple targets in a population in 
parallel. In addition, it is important that multiple targeted edits can 
be combined within a single cell, which we refer to as multiplexing. 
Note that parallel targeting of multiple single edits in a population 
can also be referred to as multiplexing, but we will not use this term 
for that goal in this Review. Several modern genome editing tools 
allow for multiplexing by allowing for simultaneous targeting of two 
or more loci during one editing round in a single cell. Alternatively, 
multiplexing is achieved by performing iterative editing rounds 
(typically short rounds of a few days), by which multiple mutations 
can be accumulated in a single cell over time. A key parameter for 
both parallel and multiplex genome editing is the editing efficiency. 
This efficiency is usually defined as the percentage of edited cells 
harbouring a defined type of edit within the total population after 
one editing round.

Genome-wide editing based on recombineering tools
Recombineering is one of the most powerful tools that has been 
added to the systems metabolic engineering toolbox in recent 
decades, although currently it is available only for a few bacterial 
hosts. Recombineering harnesses the activity of single-stranded 
DNA annealing proteins (SSAPs), originating from bacteriophages, 
to anneal an exogenous DNA template to its partially complemen-
tary genomic or plasmid target and thus integrate modifications68. 
Recombineering with double-stranded (ds) DNA templates is a use-
ful method for the insertion of large DNA fragments, up to hun-
dreds of kilobases, which require only short homology flanks (~50 
bases), into specific target sites in the genome. This method is rou-
tinely used in E. coli for making knockouts and insertions of genes, 
complete pathways and even entire chromosomal segments69,70, and 
has substantially accelerated metabolic engineering projects in E. 
coli during the past two decades. However, dsDNA recombineering 
is generally not suitable for paralllel and multiplex genome editing 
due to the low frequency of edited cells (0.01–0.001%) in the popu-
lation after recombineering71.

In recent years, recombineering based on single-stranded DNA 
(ssDNA) templates has developed into a transformative tool for 
systems metabolic engineering, by enabling parallel and multiplex 
editing in multiple bacterial species6,72,73. ssDNA recombineer-
ing is typically performed with DNA oligos of 90 bases, with 1–30 
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mismatching bases located in the middle of the oligo6,72. Bacterial 
cells in which SSAPs have been expressed (for example, by pORT-
MAGE plasmids73) are electroporated with these oligos to allow for 
incorporation of mutations during DNA replication (Fig. 3a). The 
electroporation with these oligos can be repeated in iterative cycles 
to accumulate mutations in individual cells. This type of iterative, 
ssDNA recombineering is commonly referred to as multiplex auto-
mated genome engineering (MAGE6). In practice, this technique 
does not necessarily require automation and can also be performed 
manually with standard molecular laboratory equipment.

One of the earliest demonstrated applications of MAGE was the 
simultaneous, rational targeting of 24 genes (native and non-native) 
involved in the biosynthesis of the molecule lycopene in E. coli.  
This allowed the generation of a few strains with fivefold-improved 
lycopene production within three days57. More recent demon-
strations of ssDNA recombineering with larger libraries of oligos  
have allowed for the targeting of thousands of targets, for exam-
ple, targeting promoters and RBSs of all protein-encoding genes  
in E. coli74.

Recent screening efforts identified SSAPs that also allow ssDNA 
recombineering in other bacterial hosts besides E. coli. SSAP and 
recombineering protocols based on single plasmids carrying all 
required recombineering machinery have been established for sev-
eral popular metabolic engineering hosts, such as Pseudomonas 
putida75 and Corynebacterium glutamicum76. However, the best edit-
ing efficiencies in the latter two hosts so far are 1–5%. Efficiencies 

of >10%, enabling efficient parallel and multiplex engineering, 
have already been demonstrated for some other industrial hosts, 
such as the lactic-acid bacteria Lactococcus lactis and Lactobacillus 
reuteri77,78, as well as the emerging bioproduction host Citrobacter 
freundii79. In E. coli, efficiencies of up to 50% have been reached 
using the best-performing SSAP (CspRecT79) for single-base muta-
tions in one round. This ultrahigh-efficiency recombineering pro-
vides opportunities to integrate many targeted mutations after just 
a few rounds of recombineering6. Efficient ssDNA recombineering 
will probably be expanded to more, relevant bacterial hosts through 
further large screens of SSAPs combined with improved mecha-
nistic understanding of SSAPs and their interactions with the host 
genetic machinery77,78.

A downside of MAGE is that the editable region is typically 
below ~30 bases51,57,79, which may limit the ability to discover ben-
eficial genotypes for longer window targets, such as larger pro-
moter regions or a complete or partial coding sequence. This can 
be resolved by tiling such a region with multiple MAGE oligos.  
However, when tackling such larger regions, the number of potential  
mutations can be rather high. Therefore, the ssDNA recombineer-
ing variant DIvERGE (directed evolution with random genomic 
mutations) can be employed (Fig. 3b)53. DIvERGE employs a set 
of soft-randomized oligos to introduce tunable levels of muta-
tions covering a target region. Soft-randomized oligos are custom 
oligo mixes that contain a percentage of degeneracy for specific 
user-defined bases (for example, at a given native base A, 94% of 
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Fig. 2 | editing ranges of different multiplex engineering tools. Different target types and number of target genes result in different ranges of possible 
mutant numbers, which can be achieved by different types of genome editing techniques. The y axis gives the number of genetic variants that 
approximately need to be generated per gene (or operon for prokaryotic promoters) for different target types. The x axis indicates the range of numbers 
of genes (or operons in the case of targeting prokaryotic promoters) that need to be targeted to perform metabolic engineering at different scales. The 
potential size of a strain library containing all possible combinations of mutations for a certain engineering scenario can be determined by the number of 
variants per target to the power of the number of target genes/operons. For example, by simultaneously targeting the RBSs of five genes with RBS libraries 
of ten RBS variants each, 105 combinations are possible. Coloured boxes indicate the typical coverage that can be provided in this space by specific genetic 
tools that are discussed in the text and in Table 1. The space covered by each tool is an approximation based on their currently demonstrated (maximum) 
potential in referenced metabolic engineering studies. Faded-gradient boxes indicate the expected potential of some tools based on demonstrated 
potential in non-metabolic engineering applications. Additionally, note that most tools can cover a specific mutational space in a population, so full 
mutational space is not feasible in a single cell. DIvERGE, directed evolution with random genomic mutations; MAGE, multiplex genome engineering; 
eMAGE, eukaryotic MAGE; dsDNA recomb., double-stranded DNA recombineering; CRISPR, clustered regularly interspaced palindromic repeats;  
CRISPR HDR, CRISPR (assisted) homology-directed repair; CRISPRi, CRISPR interference; aa, amino acid; RBS, ribosome binding site.

NATure CATAlYSiS | www.nature.com/natcatal

http://www.nature.com/natcatal


Review ARticle NaTuRe CaTalySiS

Table 1 | Summary of key genome engineering tools for targeted, system-wide metabolic engineering

Name Target type(s) Template and other key features Demonstrated 
multiplexability  
(−, +/−, +)a

Demonstrated hosts 
relevant for metabolic 
engineering

refs.

Recombineering MAGE Insertions and 
substitutions <30 bp, 
deletions <30 bp.

90-nt-long ssDNA oligos, requires 
organism-specific SSAP.

+ (i)
+/− (s)

E. coli, P. putida,  
C. glutamicum, L. lactis,  
L. reuteri, C. freundii,  
S. enterica, K. pneumonia,  
C. crescentus, L. rhamnosus, 
M. smegmatis

57,73,78,79, 
134,143–145

eMAGE Insertions and 
substitutions <30 bp, 
deletions <100 bp. Targets 
within ~20 kb from a 
co-selectable marker.

90-nt-long ssDNA oligos, requires 
organism-specific SSAP.

+ (i)
+ (s)

S. cerevisiae 81

DIvERGE Mainly substitutions, 
covering multi- 
kilobasepair regions  
via tiling.

90-nt-long soft randomized  
oligos with partially degenerate 
bases, requires functional SSAP.

+/− (s)
+ (i)

E. coli, S. enterica, C. freundii, 
K. pneumoniae

53,80

CRISPR-Cas 
combined with 
recombination

Cas9/Cas12a +  
yeast HR

Gene knockouts, gene 
insertions.

Linear dsDNA of 40 bp–1 kb. +/− (s) For example,  
S. cerevisiae, K. lactis,  
A. nidulans, Y. lypolytica, 
K. phaffi

86,87

MAGIC Deletions of 28 bp, as 
well as downregulations 
(CRISPRi) and 
upregulations (CRISPRa).

CRISPR array oligos cloned into 
plasmid libraries, integrated with 
CRISPRi and CRISPRa.

+ (i)
+/− (s)

S. cerevisiae 89

ReScribe/ 
CRAM/  
CRMAGE

Insertions, substitutions 
and deletions ~6–20 bp.

90-nt-long ssDNA oligos +  
CRISPR array cloned into plasmid.

+ (i)
+/− (s)

E. coli, P. putida 90,91,93

(i)CREATE Insertions, substitutions 
and deletions <35 bp.

Synthetic oligo (max 200 nt) 
cloned into plasmid libraries 
(including gRNA + repair 
template). Allows for trackability 
of edits after one round. Can be 
iterated (iCREATE).

+ (i) E. coli 25,26,96,97

MAGESTIC Substitutions of 3–6 bp 
(synonymous codons).

Cloned oligo (170 nt) into plasmid 
libraries (including gRNA and 
barcode).

– S. cerevisiae 98

CRISPR-Cas editing Base editing Substitutions (C to T/G/A, 
or A to G) for 5–7 bp.

No template, deaminase fused to 
dead Cas9.

+ (s) For example, E. coli,  
P. putida, C. glutamicum,  
B. subitilis, C. beijerinckii,  
R. sphaeroides,  
Streptomyces sp.

99,100,102, 
104,105

Prime editing Insertions ≤33 bp, 
deletions ≤97 bp, 
substitutions ≤2 bp.

Template integrated in gRNA 
(pegRNA), reverse transcriptase 
fused to nickase Cas9.

+/− (s) E. coli 101,106

Control of 
transcription/
translation levels

CRISPRi Promoters and 
coding sequences for 
down-tuning/knockout, 
1–14 genes.

gRNA(s) expressed from plasmid 
(for multiplex in arrays) together 
with a dead Cas variant.

+ (s) For example, E. coli,  
S. cerevisiae, C. glutamicum, 
Synechocystis PCC6803,  
B. subtilis, Y. lipolytica,  
C. ljungdahlii

34,86,107, 
108,146

CRISPRa Promoters for 
upregulation, 1–5 genes.

gRNA(s) expressed from plasmid 
(for multiplex in arrays) together 
with a dead Cas variant.

+ (s) For example, E. coli,  
K. oxytoca, Y. lipolytica,  
S. cerevisiae, B. subtilis

86,113,114

RNAi/RAGE Transcribed regions for 
knockdown (UTRs, coding 
regions), 1–3 genes in 
one cell.

Library of mRNA template 
reverse-transcribed into DNA and 
inserted into plasmidlibrary.

+ (s) S. cerevisiae 109

sRNA Transcribed regions  
for knockdown (UTRs,  
start coding regions),  
1–3 genes in one cell.

Synthetic short sequences  
(20–120 bp) to act as antisense 
RNA expressed from plasmids.

+ (s) For example, E. coli,  
C. acetobutylicum,  
C. glutamicum, P. putida,  
B. subtilis, Synechocysistis

110,111,147

a+ indicates the tool allows for multiplex targeting of many targets in single cell, +/− for a limited number of targets and − does not allow for multiplexing by respectively (i) = iterative, (s) = simultaneous 
targeting protocols.
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the oligo populations encodes wild-type A, 2% T, 2% C, 2% G). 
These oligos can tile the target’s entire length, thereby maintain-
ing the necessary homology for efficient integration and introduc-
ing a large range of distributed mutations (Fig. 3b). The DIvERGE 
approach has been utilized for studying mutations throughout anti-
biotic resistance genes, and for optimizing promoters and 5′UTRs 
for a synthetic (plasmid-based) regulatory circuit in P. putida53,80. 
DIvERGE could become a strong tool, for example to optimize the 
promoter regions or coding regions of enzymes. It is especially use-
ful for cases for which no specific set of target mutations can be 
designed, and hence random mutagenesis of one or more specific 
regions in the genome is required.

Although the mechanism on which ssDNA recombineering is 
based only works in bacterial hosts, similar oligo-based multiplex 

genome engineering tools are under development for eukaryotes, 
such as S. cerevisiae81,82. Eukaryotic multiplex genome engineering 
(eMAGE) using oligos has been developed for this yeast species by 
temporally disabling DNA repair and slowing down replication81. 
To increase editing efficiencies, a selectable marker gene was intro-
duced in a region near the targeted genes, and the design of oligos 
was optimized to achieve ultrahigh editing efficiencies of up to 90% 
(ref. 83). However, a major limitation of eMAGE that is hamper-
ing genome-wide optimization is that efficient multiplex editing is 
only possible for a region covering ~20 kb in the proximity of the 
selectable marker,. Still, eMAGE allowed for the multiplex editing  
and optimization of a heterologous beta-carotene biosynthetic path-
way in S. cerevisiae, for which all genes were co-localized in close 
proximity to a selectable marker81.
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Fig. 3 | Single-stranded DNA recombineering allows for efficient multiplex genome engineering. a, MAGE allows for simultaneous editing of many 
targets in E. coli and some other bacteria by the introduction of mutagenic ssDNA oligonucleotides (left), which are incorporated at their genomic target 
sites during DNA replication (middle). Efficient integration of the oligonucleotides requires expression of suitable SSAPs. After a single round, a diversified 
population is generated (right), in which more mutations can be accumulated per cell by iterative rounds of MAGE. b, DIvERGE is a variant of ssDNA 
recombineering, which incorporates mutagenic soft-randomized oligos (that is, low percentage of degeneracy for each individual nucleotide-position) 
into the target region to increase the incidence of random mutagenesis at the site where the oligos anneal. Tiling of soft-randomized oligos can be used to 
cover a larger target site, such as coding sequences. Oligo integration results in a population with genetic diversity at the target site. Iterations can be used 
to combine multiple mutations in a single cell.
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CriSPr-Cas-aided genome editing combined with 
recombination
The programmable Cas nucleases derived from the natural, bacterial 
CRISPR-Cas defence systems have led to a revolution in the genome 
editing field in the past decade. A diverse range of CRISPR-Cas 
nuclease-based tools have been developed for genome engineer-
ing in both prokaryotic and eukaryotic cells, leading to many pos-
sible applications, including the optimization of next-generation 
cell factories4,84,85. DNA-targeting CRISPR-Cas nucleases such as 
Cas9 and Cas12a are very effective in many cell types to gener-
ate targeted, double-stranded breaks. After delivery (usually by 
expression from a plasmid), these nucleases are targeted to selected 
genome sequences by guide RNAs (gRNAs), which contain a vari-
able sequence of ~20 nucleotides that can base-pair with a comple-
mentary target sequence. However, target sites need to be adjacent 
to a protospacer adjacent motif (PAM) sequence, such as the typical 
5′-NGG PAM-motif for Cas9 or 5′-TTTV for Cas12a.

After the Cas nuclease generates a double-strand break in the  
DNA, in some organisms the break can be repaired by non- 
homologous end joining (NHEJ). NHEJ typically leads to random 
insertions or deletions (indels), which can, for instance, knock out 
genes by creating frame shifts, or to disrupt regulatory sequences.

However, to generate specific edits, the use of Cas nucleases 
should be combined with the homology-directed repair (HDR) sys-
tem (Fig. 4a). In such cases, an exogenous ssDNA or dsDNA repair 
template should be supplied together with the Cas/gRNA complex. 
The repair fragment contains the desired edits between flanking 
regions that are homologous to the genomic target site, allowing for 
integration through homologous recombination by a HDR system. 
This recombination modifies the genomic target sequence, thus pre-
venting subsequent recognition and cleavage by the Cas nuclease,  
and leading to the survival of cells with edited genomes.

Cas-based multiplexing requires highly efficient homologous 
recombination, which is not present naturally in many industrial 
hosts, including most bacteria. However, the most widely used 
industrial yeast species, S. cerevisiae, natively harbours highly effi-
cient homologous recombination activity that can well support 
high-throughput genome editing. In S. cerevisiae, several studies  
have achieved five to ten edits in one editing round86,87,88. In addi-
tion to making multiple edits simultaneously in a single cell, the 
efficient homologous recombination combined with Cas9 has 
allowed for parallel modification of many targets in S. cerevisiae. 
Such approaches have been demonstrated in S. cerevisiae to generate 
diverse large libraries with 104 to 105 different targets, and by itera-
tion of such workflows many mutations can be accumulated in a 
single strain. An example of this was the iterative, CRISPR-mediated 
modification of >105 targets in S. cerevisiae (MAGIC approach) to 
increase its tolerance to furfural, an inhibitor found in pretreated 
lignocellulosic substrates89.

However, in most other organisms, including typical bacterial cell 
factories, the native homologous recombination machinery is not  
efficient enough to allow for efficient repair during simultaneous,  
multiplex CRISPR-Cas genome editing. Still, by combining 
CRISPR-Cas counter-selection with recombineering in bacteria,  
the apparent editing efficiency can be increased up to 100%. Cas9  
nucleases and ssDNA recombineering (MAGE) were integrated to  
more efficiently target multiple shorter regions in E. coli in several  
CRISPR-assisted MAGE approaches, including CRAM90 and  
CRMAGE91. Using CRMAGE, editing efficiencies of up to 98% 
have been achieved in a single round of recombineering-and- 
CRISPR-selection. By applying only a few cycles of CRISPR-assisted 
MAGE, the production of riboflavin in E. coli was enhanced via 
multiplex RBS engineering92. Integration of CRISPR and recom-
bineering in more species is expected to improve high-throughput 
genome editing in several other promising cell factories in the near 
future, as recently demonstrated for P. putida93.

To introduce larger mutations (≫30 bp) dsDNA recombineering 
is generally used, but this results in very low frequencies of edited 
cells. This necessitates the use of either a selectable (antibiotic)  
marker or extensive screening of many cells, which prohibits fast 
and efficient high-throughput editing. However, by combining 
dsDNA recombineering with CRISPR-Cas in E. coli, multiple large 
edits (up to three), without the need for selectable markers, can be 
made relatively efficiently94,95. This can speed up rational metabolic 
engineering of larger targets in E. coli, and possibly also in other 
hosts that are amenable for recombineering.

The trackability of genomic edits is another challenge during  
multiplex genome editing of many targets in parallel. When many 
sites are targeted throughout the genome, tracing of the edits 
generally requires relatively costly whole-genome sequencing or  
laborious screening polymerase chain reactions (PCRs). This 
has been tackled in the CRISPR-assisted recombineering plat-
form CREATE (CRISPR-Enabled Trackable genome Engineering;  
Fig. 4e)96. CREATE is based on libraries of plasmids, encoding both 
the gRNA and the (short) dsDNA repair template, which can be 
synthesized as libraries of oligos, which are cloned into the plas-
mid. After one round of editing, the plasmids that created the muta-
tion are still in the mutant strains, and their unique gRNA + repair 
template sequences can serve as a barcode to easily identify the tar-
get mutation in well-performing cells after screening or selection. 
The CREATE platform, and the use of it in iterative cycles (iCRE-
ATE), has been demonstrated to be very powerful for the parallel,  
genome-wide editing of >105 mutations in multiple metabolic 
engineering projects in E. coli, including, for example, the earlier 
mentioned tolerance to furfural in lignocellulosic substrate and 
the toxic product styrene25,26,97. A similar trackable, CRISPR-based 
editing strategy, called MAGESTIC, was also recently developed for  
S. cerevisiae98.

Genome editing by CriSPr-Cas without recombination
A general challenge for all Cas-nuclease methods based on the  
generation of dsDNA breaks is the need for their efficient repair 
through efficient homologous recombination or recombineering. 
Such efficient repair is often not available or easy to implement 
in many metabolic engineering hosts. Recent developments in 
CRISPR-based base editing99,100 and prime editing101 circumvent the 
limitations of dsDNA break formation, while allowing for inherit-
able genomic edits. Base editing relies on fusing a nuclease-deficient 
non-cleaving ‘dead’ Cas9 (dCas9) to an accessory enzyme that 
chemically alters DNA to introduce the desired change (Fig. 4c). 
For example, fusing the cytidine deaminase PmCDA1 to dCas9 
leads to efficient C-to-T mutagenesis at the target site102. In addition 
to C-to-T cytosine base editors (CBEs), A-to-G adenine base edi-
tors (ABEs) have been developed, thus enabling several nucleotide 
substitutions. However, this tool only allows substitution in short 
windows—and no deletions or insertions88,103.

Recently, CBE base editing was used to diversify RBS sequences 
in the two metabolic engineering workhorses Corynebacterium 
glutamicum and Bacillus subtilis using the BETTER (Base Editor- 
Targeted and Template-free Expression Regulation) protocol104. 
In this approach, a synthetic starter RBS (containing a stretch of 
eight Gs) preceded by a PAM-sequence was integrated in front of 
each target gene. This preparative, multiple integration step was 
not efficiently multiplexed, making this approach rather labori-
ous. Nonetheless, the CBE editor could efficiently target all these 
synthetic RBSs simultaneously, diversifying them by converting Gs 
to As, leading to diverse translation initiation strengths. Another 
recently developed base editing protocol for P. putida allowed  
for multiplexing of knockouts and modifications for system meta-
bolic engineering105.

A very recently developed CRISPR-tool is prime editing, which 
allows for more versatile, precision genome editing for all types of 
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nucleotide substitutions as well as short deletions and insertions, 
encompassing larger editing windows of >30 bp (ref. 103). Prime  
editors were generated by fusing an engineered Cas9 nickase 
(nCas9), capable of introducing a single-strand break in dsDNA, 
to a reverse transcriptase (Fig. 4d). Prime editing works through 

reverse transcription (RNA to ssDNA) of a desired edit into the 
genome at the nicked target site, using a modified prime editing 
RNA (pegRNA) as repair template. The pegRNA contains both the 
guide sequence complementary to the target site, the reverse tran-
scriptase template carrying the mutation of interest, as well as a 
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Fig. 4 | CriSPr-Cas based genetic tools. a, CRISPR-Cas genome editing based on double-stranded break generation by a gRNA-guided Cas nuclease. 
For example the CRISPR-Cas nuclease Cas9 targeting can facilitate genome editing in two ways. First, induction of a dsDNA break can trigger HDR with 
a repair template, leading to insertion or deletion of a custom sequence. Alternatively, homologous recombination (HR) with the template can occur 
spontaneously, before Cas-induced double-stranded breaks happen, and hence allow for the counter-selection of non-edited cells in a population.  
b, CRISPRi is based on a non-cleaving dead Cas (dCas) variant, which binds upstream or within the gene of interest (GOI) and blocks transcription.  
c, Base editors consist of dCas fused to a DNA-editing protein like cytidine deaminase. The gRNA guides dCas and cytidine deaminase to a selected target 
site where the latter induces SNPs in the displaced strand, after which a mismatch repair system can also adjust the other strand. d, Prime editing uses a 
nickase Cas (nCas) variant fused to a reverse transcriptase (RT) to first induce a single-stranded nick in the displaced strand. A custom sequence is then 
reverse-transcribed into the cleavage site, using the prime editing guide RNA (pegRNA) as a repair template. e, iCREATE uses massively parallel DNA 
synthesis to construct a large library of plasmid-encoded CREATE cassettes carrying a gRNA and repair template with mutation of interest (MOI) for a 
large variety of targets. This cassette library is introduced in a parental strain expressing Cas9 to construct a large strain library in which individual cells 
carry a single plasmid from the library, which results in editing of a single target or cell death by CRISPR-Cas counter-selection. The resulting diversified 
strain library can be screened or selected for the desired phenotype, and enrichment of MOIs can be determined by sequencing the CREATE cassettes.
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short primer binding site where reverse transcription starts. Prime 
editing has already been performed successfully in a few eukary-
otic and prokaryotic organisms103,106. Recently, prime editing has 
been performed in E. coli, resulting in single-base deletions at 40% 
efficiency. This study also described simultaneous editing of two 
single base targets, but the multiplex editing efficiency was below 
1%. With further development to improve editing efficiencies,  
this emerging tool may hold promise for genome-wide metabolic 
engineering in a broad range of organisms106.

Tools for multiplexed gene expression control without 
editing
There are also a suite of multiplex tools that do not lead to edits 
at the genome level, but rather modify expression at the transcrip-
tion or translation level. This includes the relatively well-established 
CRISPR interference (CRISPRi) tools (Fig. 4b). CRISPRi harnesses 
catalytically impaired dead Cas variants (for example, dCas9 or 
dCas12a), which remain capable of sequence-specific DNA-binding. 
They can be targeted to several specific promoter or coding regions 
on the DNA in a cell in parallel to repress transcription by block-
ing the RNA polymerase complex. This technique has already 
found some applications in multiplex, rational metabolic engineer-
ing of up to ten targets simultaneously86,107, and a recent metabolic 
engineering study in P. putida successfully targeted 14 rationally 
selected genes simultaneously for knockdown34. CRISPRi seems a 
potentially powerful technique, but the design and control of guide 
expression to finely tune transcription rates remains challeng-
ing108. The CRISPRi technique does not lead to inheritable genome 
edits, which can be beneficial as it allows for temporary control, for 
example, in either the growth or production phase. However, as a 
potential disadvantage, it can also be escaped relatively easily, for 
example, by a single mutation inactivating the dCas variant.

Other knockdown strategies, such as RNA interference (RNAi), 
have some of the same benefits and drawbacks as CRISPRi. RNAi 
is based on the silencing of mRNA translation by the binding of 
a complementary RNA. RNAi-assisted genome evolution (RAGE) 
has been used to identify targets for engineering improved 
acetic-acid tolerance in S. cerevisiae. RAGE employs an RNA library 
constructed from a fragmented host genome for iterative rounds 
of RNAi, combined with high-throughput screening or selec-
tion109. However, because targets are randomly generated, RAGE is 
more suitable for identifying targets than for rational engineering. 
Alternatively, rationally designed synthetic small regulatory RNAs 
(sRNAs) have, for instance, been used for targeted knockdown of 
genes involved in the tyrosine pathway in E. coli to improve tyrosine 
titres110. sRNAs have been demonstrated to work in multiple bacte-
rial species, but so far the number of targets tackled simultaneously 
in one cell has mostly been limited to two111.

As an alternative to gene knockdown, a less developed, but 
promising technique based on dCas to activate gene expression is 
CRISPR activation (CRISPRa). In this case, dCas is fused to tran-
scription activation domains to recruit them to specific promoters 
in the genome and stimulate recruitment of the RNA polymerase, 
hence activating transcription of the downstream gene(s)86. This has 
been successfully developed in several hosts, including E. coli and 
recently P. putida112,113.

Screening and selection strategies
As more powerful high-throughput genome editing tools have 
become available, larger diversified strain libraries can be con-
structed, and equally powerful high-throughput screening or  
selection strategies are needed to identify desired phenotypes.

Traditional screening methods (Fig. 5a) rely on the isolation and 
culturing of individual strains and quantification of a product mol-
ecule by analytical techniques such as spectroscopy, high-pressure 
liquid chromatography (HPLC) and gas chromatography–mass 

spectrometry (GC-MS)114. Technological advances have vastly 
increased the throughput of these methods via automation and 
massive parallelization of sample processing, and miniaturization 
of the culture scale115,116.

Spectrophotometric assays are commonly used as high- 
throughput screening approaches for measuring product titres in 
microtitre plates. Automated colony-picking and sample-processing 
systems have enabled high-throughput microtitre plate assays of 
up to ~3,000 colonies per hour117. Some products can be detected 
with ultraviolet–visible (UV–vis) spectrometry (such as β-carotene, 
lycopene and apigenin), but unfortunately this technique suffers 
from poor specificity and limited sensitivity115. Some products 
have intrinsic fluorescence (for example, riboflavin, thiamine, 
pyridoxine) that can be detected with high sensitivity and speci-
ficity by fluorescence spectrometry118. However, most products 
of interest cannot be detected directly by colorimetric or fluores-
cent spectrometry, as most products of interest are not sufficiently 
spectroscopically active119. Mass spectrometry (MS) does not have 
this requirement, and is a versatile and widely applied screening 
method for quantifying product titres because of its high selectiv-
ity, sensitivity and ability to detect a wide range of compounds120. 
Ultrahigh-throughput MS platforms have been established that 
reduce preparation times and enable the measurement of multiple 
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Fig. 5 | Scales of different screening and selection strategies. a, Traditional 
screening assays involve individual strain isolation, cultivation and 
analysis (for example, spectroscopy, HPLC and (GC-)MS) and are limited 
to throughputs of ~104–105 variants per day when using a commercially 
available automated colony-picking machine and high-throughput analytics 
equipment. b, Reporter-coupled screening through fluorescence-activated 
single cell or droplet sorting does not require isolated strains cultivation 
and can reach up to 107–109 cells per day using a commercially available 
cell-sorting device. P, product molecule; R, fluorescent reporter protein.  
c, Growth or reporter-coupled selection requires continuous cultivation 
over a longer period and is highly dependent on the growth rate advantage 
of a selectable trait. Therefore, it is difficult to quantify as a daily 
throughput, but can ultimately be used for massive populations (>109).
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samples per second. These include acoustic ejection mass spec-
trometry (AEMS)121 and acoustic mist ionization MS (AMI-MS)122. 
However, despite these technological advances, high-throughput 
MS remains limited by the throughput of microtitre plate-based 
culturing and sample processing.

Single-cell-sorting methods have eliminated the need for  
indivi dual strain cultivation by directly analysing single cells from 
a diversified population. Active-cell-sorting technologies use prin-
ciples of flow cytometry to separate, detect and analyse individual 
cells and subsequently sort them based on various characteristics 
(for example, fluorescence, size and shape) using electric, magnetic,  
acoustic or optical forces to displace the cells123. Modern fluorescence- 
activated cell sorting (FACS) techniques allow for an extremely 
high-throughput of up to 50,000 cells per second123. A limitation 
of FACS is that it cannot be used to select high-producing cells 
when products are excreted, as is often the case in cell factories. 
Droplet-based microfluidics sorting provides a solution to this 
problem by compartmentalizing the individual cells in aqueous 
droplets emulsified in oil119,124, but sorting rates are substantially 
lower than for FACS, with ~200 droplets per second125. For example, 
fluorescence-activated droplet sorting (FADS) was recently applied 
to enhance pyruvic-acid production by Candida glabrata126. Because 
pyruvic acid is not inherently fluorescent, a pH-sensitive fluorescent 
protein (pHluorin) was used to link pyruvic-acid levels secreted  
by the cells to a fluorescent signal. This illustrates an important 
challenge of flow cytometry and FACS/FADS: most products  
cannot be directly detected by fluorescent signals or cell morpho-
logical properties.

To circumvent issues with products that are not detectable by 
high-throughput analytics like FACS, biosensors can be used to 
couple the presence of the product to the expression of an easily 
detectable reporter (Fig. 5b). There are many mechanisms for prod-
uct–reporter coupling, including transcription factor-based biosen-
sors, nucleic acid-based biosensors and fluorescent detector proteins 
that gain fluorescence upon binding of the product116,127–129. Diverse 
biosensors have been used successfully for the detection of a variety 
of metabolites in E. coli, such as deoxyviolacein130, malonyl-CoA131 
and mevalonate132 biosensors. However, suitable biosensors are not 
available for every desired product, and the construction of specific 
biosensors has proven highly challenging. For further reading on 
other biosensors we recommend a comprehensive review114.

An advantageous versatility of biosensors is that, besides linking 
product formation to the expression of a fluorescent or colorimetric 
reporter gene, they can also be used in combination with a selectable 
marker such as antibiotic resistance133. Selection of strains based on 
the expression of a selectable marker can form a higher-throughput 
alternative to screening, while also removing the need for expen-
sive detection and sorting devices. A challenge of biosensor-coupled 
selection is the high selective pressure for false-positive ‘cheater 
mutants’, as mutations can occur that decouple expression of the 
selectable marker gene from the product formation133. Successful 
use of a selectable marker coupled to biosensors has been demon-
strated for the high-throughput optimization of naringenin and 
glucaric acid production in E. coli (using MAGE). To cope with the 
escaper issue, this work coupled the biosensor to both a negative 
and a positive selection marker, which were alternately selected for 
in iterations, eliminating the escapers134.

In specific cases, metabolic engineering goals can be directly 
aligned with an improved growth phenotype without the assis-
tance of a biosensor (Fig. 5c). For example, selection can provide 
a higher-throughput alternative to screening when high tolerance 
to a toxic substrate, product or intermediate metabolite is required, 
because improved tolerance will confer improved fitness in the 
presence of the toxin. In addition, in cases where the engineered 
pathway leads to production of an essential metabolite, auxo trophy 
can be artificially created by knockout of alternative pathways,  

creating a growth-coupling between the engineered pathway and  
the production of these metabolites. This approach is especially use-
ful for engineering substrate assimilation pathways135. Several engi-
neering efforts for introducing heterologous substrate utilization 
have used such growth-coupled approaches, such as the engineering 
of one-carbon assimilation pathways. However, so far, these studies 
have most relied on low-throughput rational engineering of a few 
targets within the pathway, combined with ALE to optimize host 
metabolism38,136,137. Still, some studies have already shown the power 
of growth selection for relatively small sets of MAGE-generated, tar-
geted mutations in substrate utilization pathways136,138.

Another promising application of engineered auxotrophy is in 
Syntrophic Co-culture Amplification of a Production phenotype 
(SnoCAP)139. This elegant screening strategy is based on co-culture 
of the producer strain with a sensor strain, where both are 
co-dependent on an excreted metabolite from the other strain. The 
producer strain excretes the product of interest ‘A’, but is auxotro-
phic for essential metabolite ‘B’, and the sensor strain has the inverse 
phenotype (that is, auxotrophy for product ‘A’ but excretes metabo-
lite ‘B’). By skewing the required ratio of producer to sensor strain 
towards the latter, this approach allows screening for higher product 
titres than an individual cell requires to fullfill the flux demand for 
its own auxotrophy.

Conclusions and outlook
To realize the true promise of sustainable production by microor-
ganisms, large improvements in both native and engineered meta-
bolic networks are required at a system-wide scale. This will require 
(semi-) rational selection of a large number of diverse gene targets 
for optimization. In well-known metabolic engineering hosts, such 
as E. coli and S. cerevisiae, these targets may be identified based on an 
impressive amount of previously gained knowledge on their meta-
bolic networks and their regulation. However, for other less-studied 
and emerging hosts for industrial production, acquiring such 
detailed knowledge will be time-consuming and costly. Still, genom-
ics and other omics techniques, as well as metabolic modelling and 
machine learning, can probably provide suitable, semi-rational sets 
of potentially relevant targets without excessive effort. We believe 
that the semi-rational selection of targets in many cases will be more 
effective for strain improvement than only using the random ALE 
approach, as is now often used for genome-wide strain optimization.

Yet, to tackle a larger set of semi-rationally selected targets, effi-
cient high-throughput genome editing tools are crucial. Fortunately, 
the current development of recombineering and CRISPR-Cas 
genome editing techniques allows for genetic engineering of a 
growing number of model and non-model (micro)organisms. The 
rapid emergence of CRISPR-tools in a broad range of bacterial and 
eukaryotic hosts is encouraging. However, classic CRISPR-Cas tools 
based on dsDNA cleavage are often not efficient enough for gen-
erating multiple edits simultaneously or even in iterative cycles. So 
far, in bacteria, highly efficient multiplex genome editing based on 
CRISPR-Cas nucleases is only well-established in E. coli, in which 
CRISPR-Cas is combined with recombineering. In some industri-
ally relevant yeast species such as S. cerevisiae, CRISPR-Cas editing 
seems efficient enough for high-throughput iterative genome edit-
ing, as in this species native homologous recombination can be har-
nessed to efficiently incorporate DNA repair templates. However, 
for many other bacterial and eukaryotic hosts, CRISPR-Cas edit-
ing systems that make double-stranded breaks are not effective 
for high-throughput editing without establishing complementary, 
efficient recombineering systems. Encouragingly, recent screening 
expeditions to identify efficient phage SSAPs for recombineering 
in several bacteria have been successful6. Such efforts can probably  
identify SSAPs for efficient recombineering above 10% editing 
efficiency, to allow efficient genome editing via recombineering in  
more hosts of interest. In addition, further development of 
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CRISPR-Cas editing systems will allow tighter control of DNA 
cleavage activity and allow for more effective application as a pow-
erful counter-selection tool in more hosts140.

Alternatively, there are promising, emerging CRISPR-Cas tools 
that do not rely on dsDNA breaks and recombineering, but rather 
employ dead or nickase variants of the CRISPR-Cas nucleases. This 
includes CRISPR interference, base editing and emerging prime 
editing techniques, which do not require external DNA templates 
and should be explored more for multiplex editing in diverse hosts 
relevant for metabolic engineering.

Within the next decade, we expect that metabolic engineers will 
gradually gain greater freedom to choose a desired host for pro-
duction, and rapidly apply the available genetic tools for efficient, 
genome-wide engineering. In addition, high-throughput strain 
engineering will benefit from the automation of iterative, genome 
engineering techniques, for example in emerging biofoundries in 
industry and academia141,142.

Another factor that should be carefully considered when per-
forming genome-wide strain optimization is the availability of 
high-throughput screening or selection strategies to identify desired 
phenotypes. Matching the number of mutants to be generated with 
the number that can be screened or selected is important to con-
sider in the design phase of a system-wide metabolic engineering 
project.

Successful integration of the (semi-)rational selection of tar-
gets, high-throughput genome editing, and screening or selection 
approaches discussed in this Review provides a strong foundation 
towards directed, system-wide metabolic engineering. These devel-
opments seem crucial to move the boundaries of metabolic engineer-
ing towards economically feasible performance indicators, as well as 
to implement non-natural biosynthesis for products that could not 
be made by biology before. Overall, we anticipate that the develop-
ments discussed here could contribute to a revolution in the sustain-
able production of desired products by next-generation cell factories.
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