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Abstract
The European Bioeconomy Strategy aims to facilitate the transition from a take–
make–dispose fossil economy into one fostering circular bio-based value chains 
linking sustainable land use with cutting-edge products. Optimized designs, im-
plementation and monitoring rely on continuous interactions between policymak-
ers and modellers who run multiple scenarios for environmentally, economically 
and socially desirable futures. This paper leverages a multi-layered framework 
that cross-references 39 policies and 32 models to assess how they address the five 
principle objectives of the Bioeconomy Strategy in terms of accompanying sectors, 
value chains and multi-dimensional indicators. The framework identifies gaps in 
bioeconomy knowledge both in policy and modelling. Overall, the analysis found 
little mention of the wide range of bio-based products, technologies and processes, 
bio-refineries, waste and land conservation. Bio-based product policies can be sim-
ulated only in a limited number of models, compared, for example, to the wide 
range of modelling capacities that can model bioenergy. Additionally, in both pol-
icy and modelling realms, integration of market and biophysical drivers within the 
full scope of the value chain is scarce. Multidisciplinary studies combining multiple 
models perform best in this respect by integrating a more comprehensive range of 
relevant policies, bioeconomy drivers and indicators. Findings point to a more sig-
nificant issue in policy-modelling information exchange, and this paper discusses 
the challenges and opportunities for future improvements in this collaboration.

K E Y W O R D S

bio-based products, bio-based value chains, bioeconomy, biorefineries, European Bioeconomy 
Strategy, modelling, models, policy, value chains

1   |   INTRODUCTION

Natural resources crucial to the survival of people and 
keystone species have been extracted in a ‘take–make–
dispose’ development model. At the same time, global 

atmospheric greenhouse gas (GHG) emissions have not 
stopped increasing since humans began measuring them. 
Based on a socially and environmentally responsible vi-
sion of prosperity, the European Bioeconomy Strategy 
seeks to address these challenges by revitalizing land 
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and connecting a suite of sectors to produce and convert 
biological resources into innovative products. The bio-
economy represents a building block within the circular 
economy, which pairs sustainability with innovation to 
ensure future economic growth (Stegmann et al.,  2020). 
The Bioeconomy Strategy forms part of the Circular 
Economy Action Plan, a central tenet of the Green Deal 
(European Commission, 2019).

The bioeconomy encompasses all sectors and systems 
relying on biological resources (e.g. plants, animals, mi-
croorganisms and derived biomass, including organic 
waste), their functions and principles. It interlinks land 
use (e.g. agriculture or forestry) and ecosystem services 
with all the economic and industrial sectors that process 
biological resources to produce food, feed, bio-based prod-
ucts, energy and services (European Commission, 2018a) 
circularly and sustainably.

The five societal objectives of the European Bioeconomy 
Strategy (Table 1) govern its updated action plan and con-
sist of scaling-up bio-based sectors, deploying bioeconomy 
at the local level, and measuring ecological boundaries. 
The Strategy has set multi-term and spatially explicit 
2030 targets to achieve these objectives, including cut-
ting food waste by 50%, achieving land degradation neu-
trality, rolling-out bioenergy as a sustainable competitive 
energy source and deploying over 300 new biorefineries 
(European Commission, 2018a).

A suite of models and policies exists to support the 
implementation of these goals. Models can steer future 
policy support to optimize the performance of bioecon-
omy value chains (Panoutsou & Singh, 2020) and inform 
both biophysical and market factors (Keegan et al., 2013; 
Philippidis et al.,  2018) or competitive priorities that 
can accelerate future deployment (Panoutsou, Singh, 
et al., 2020). Models are integral to policymaking and can 
help produce legally binding numbers for government 
budgets (Kolkman, 2020). As such, model experts have the 
opportunity to integrate policymaking priorities when for-
mulating findings, while policymakers can benefit from 
having a rudimentary understanding of modelling tools 
when interpreting outcomes. Indeed, at the European 
Commission, Acs et al.  (2019) reveal that reliance on 
models used within ‘evidence-based’ integrated quantita-
tive impact assessments has been gathering pace. The EU 
Commission's Knowledge Centre for Bioeconomy (KCB) 
produces forward-looking analysis employing modelling 
scenarios that integrate a sustainable, resource-efficient 
bioeconomy with climate change issues and sustainable 
development goals (Verkerk et al., 2021). Existing model-
ling capacities help justify large funding programmes such 
as Horizon Europe (European Commission, 2020a) for bio-
economy research and innovation activities and influence 
the creation of public and private partnerships such as 

those enacted by the Standing Committee on Agricultural 
Research (Soini et al., 2018). Multi-stakeholder workshops 
are held annually in Brussels hosted by the Directorate-
General for Agriculture and Rural Development (DG 
AGRI), where new agro-food baselines and model results 
are discussed (European Commission, 2020b).

The five core objectives of the European Bioeconomy 
Strategy mirror the sustainable development goals 
(SDGs) and target several dimensions of sustainabil-
ity and growth. Policies and models can equally tar-
get environmental, economic and social dimensions 
of sustainability (Wang et al.,  2016). Meanwhile, the 
Bioeconomy Strategy entails collaboration and in-
tegration to produce robust, cross-sectoral evidence 
(European Commission,  2018a). However, decision-
makers have limited guidance on which model(s) to 
select for policy planning (Allen et al.,  2016). When 
linking the Bioeconomy Strategy with the SDGs, Ronzon 
and Sanjuán  (2020) found that increasing agricultural 
production, industrial use of biomass, economic growth 
and domestic material consumption all at once proves 
challenging. Wesseler  (2022) highlight the multiple 
policy targets within the EU Farm to Fork strategy and 
derived complexity in producing modelling impact stud-
ies. Decision-makers can pose the following question: 
are modelling capacities that simulate available policies 
and policies that shape the narrative and societal priori-
ties for models sufficient in informing the cross-cutting 
objectives of the Bioeconomy Strategy?

This paper aims to evaluate how a selective mix of 
current modelling capacities and policies address the 

T A B L E  1   The five objectives of the European Bioeconomy 
Strategy

Objective I: Ensuring food and nutrition security: by turning 
organic waste and food discards into valuable and safe 
bio-based products, deploying small-scale biorefineries and 
fostering revenue sources for rural workers.

Objective II: Managing natural resources sustainably: by 
restoring and enhancing ecosystem functions to increase food 
and water security while improving capacity to monitor and 
forecast the status of natural resources.

Objective III: Reducing dependence on non-renewable, 
unsustainable resources: by rolling-out bio-based products 
through innovative industrial bio-based processes and circular 
value chains.

Objective IV: Mitigating and adapting to climate change 
mitigation: by reducing greenhouse gas emissions, promoting 
resource efficiency within primary production practices and 
enhancing ecosystem climate resiliency.

Objective V: Strengthening European competitiveness and 
creating jobs: by deploying technologies and fostering 
commercial opportunities for bio-based products, including 
economic development in remote or peripheral areas.
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five objectives of the European Bioeconomy Strategy 
both separately and jointly. The first section lists bioeco-
nomy objectives, sectors, value chain stages and indica-
tors as the basis for the classification assessment of this 
paper. Appendices  A–C include a comprehensive ag-
gregation, definition and sourcing of this classification. 
Overall, the analysis uses the value chain approach to 
frame key challenges, competitive advantages and disad-
vantages of bioeconomy deployment across all stages—
from the use of natural resources to produce feedstock 
and further conversion to bio-based products used by 
consumers (Panoutsou, Singh, et al., 2020; Sevigné-Itoiz 
et al.,  2021). The second section assesses the capacity 
of models and policies independently from one another 
to understand the extent to which they address the five 
core objectives facing the bioeconomy. Model and policy 
reviews capitalize on original work, the Horizon 2020 
Biomonitor Project (https://biomo​nitor.eu/) and previ-
ous work from the authors (Singh et al., 2021). The third 
section carries out the same exercise; however, this time 
looking at policy representation within models and as-
sessing their capacity to respond to the five Bioeconomy 
Strategy objectives. Figure 1 illustrates the methodolog-
ical framework.

The proposed framework seeks to shed light on the 
adequacy of current policy designs and modelling ca-
pacities in addressing the five objectives of the European 
Bioeconomy Strategy, as well as bioeconomy sectors, 
value chain representation and indicators as defined 
here. It equally assesses whether the bioeconomy can be 
analysed through a single one-size-fits-all model specifi-
cation and the quality of policy representation available 
in the current modelling capacity to inform the aims of 
the Bioeconomy Strategy. Furthermore, it evaluates the 
degree to which models and policies adequately integrate 
ecological or biophysical dimensions with socioeconomic 
and economic considerations. Finally, it seeks to identify 

gaps between policymaking and modelling and discuss 
how each respective camp can better coordinate data ac-
quisition, priorities and harmonized methodologies for 
bioeconomy needs.

2   |   MATERIALS AND METHODS

2.1  |  Bioeconomy sectors, value chain 
stages and indicators

Bioeconomy sectors stem both from an aggregation of 
NACE (Statistical Classification of Economic Activities 
in the European Community) sectors (Cingiz et al., 2021; 
Kardung et al., 2021; Lier et al., 2018; Ronzon et al., 2017), 
including agriculture, forestry, energy, bio-based indus-
tries, and two cross-sectoral areas of the bioeconomy: 
waste and environment. Verkerk et al.  (2021) find that 
existing models do not appropriately capture the aquacul-
ture and fishing sector (idem for textiles, pharmaceuticals, 
plastics and chemicals). Their recommendation is to link 
these models to broader sectors, an approach followed by 
this paper. The waste sector defines bio-waste as a prod-
uct linkable to the agricultural sector (primary waste), 
industries (secondary waste) or retail/consumer (tertiary 
waste). The environment comprises biophysical dynam-
ics such as land, soil, water, biodiversity and atmospheric 
resources. It is an area where the Member States can legis-
late and adopt legally binding acts (Official Journal of the 
European Union, 2012).

Bioeconomy value chain stages (Figure  2) begin with 
land use, which involves land productivity, direct and in-
direct displacement of other land-based activities and soil 
quality. The second stage is biomass production, which 
includes crop establishment and management, harvest-
ing, pre-treatment, storage and transport. Sustainability 
measures centre on avoiding the disruption of food 

F I G U R E  1   Methodological approach.
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production, natural capital or carbon sinks. Valorization 
of biomass depends on innovations at the cultivation level 
and rural capital growth (Panoutsou, 2017), as well as the 
emergence of new feedstock such as bio-waste, residues 
and discards (European Commission, 2018a). The fol-
lowing stage is biomass conversion into bio-based prod-
ucts and includes biochemical, thermochemical, physical 
or chemical depolymerization pathways. The relation of 
this stage to the previous and next rests in its ability to 
handle mixed volumes of feedstocks, optimize synergies 
for the valorization of residues and co-products and reli-
ably produce high-quality products (Panoutsou, Arrekul, 
et al.,  2020). Finally, end-use products must comply or 
compete with existing infrastructure, standards and dis-
tribution channels. Their value is driven by consumer be-
haviour and perception (McCollum et al., 2017; Wesseler 
& von Braun, 2017).

Individual indicators can track the performance of 
multiple facets of the bioeconomy. Internationally rec-
ognized and scientifically robust with tangible metrics, 
indicators can appropriately monitor and evaluate the 
progress and impact of bioproducts (Bracco et al., 2019). 
Kardung and Drabik (2021) analysed 41 indicators for 
the circular bioeconomy. In this paper, indicators re-
main at a broad level (see Appendix C for quantitative 
and qualitative indicator definitions): for instance, 
instead of ‘employment rate of recent graduates’, we 
use ‘full-time employment’. This approach facilitates 
the cross-referencing exercise (i.e. comparing the inci-
dence of an indicator between model A and model B) 
and copes with the limited capacity of available indica-
tors in models or policies relevant to the bioeconomy. 
The international projects Biomass Policies (Pelkmans 
et al.,  2014) and MAGIC (Panoutsou et al.,  2018), as 
well as a Food and Agriculture Organization report 
(Bracco et al., 2019), provide a basis for the selection of 
indicators in this study (Table 2). They provide compa-
rable measures of sustainability and performance and 
follow the ‘triple bottom line’, namely environmental 
integrity, economic resilience and social well-being 
(Elkington, 1998), in addition to a technical dimension 
measuring natural resource availability, technology 
level and energy needs.

2.2  |  Relevant models and policies

First, we selected 39 bioeconomy policies based on a review 
of over 90 policies (Singh et al., 2021). The selection filtered 
out cross-cutting and strategic policies without precise, 
measurable interventions. The selection aggregated poli-
cies into 13 groupings according to their overall scope (see 
Tables 3 and 4) and reviewed their relevance to bioecon-
omy objectives, sectors, value chain stages and indicators.

Second, models were selected and aggregated based on 
an original review complemented by the one conducted 
by the BioMonitor Project (Panoutsou, van Leeuwen, 
et al.,  2020; Varacca et al.,  2020). From the selected 32 
models, we grouped 21 into seven congruent ‘umbrella’ 
groupings based on analogous objectives and drivers. The 
remaining 11 models are standalone, generating 18 model 
groupings (see Tables 3 and 4). Their relevance to respec-
tive bioeconomy objectives, sectors, value chain stages 
and indicators is reviewed (Appendices D and F include 
a complete list of models and policies and Appendix  E 
contains the original review of indicators from model-
ling scenarios). The indicators review is supported by re-
cent ongoing research (Kardung et al., 2019; Panoutsou, 
Arrekul, et al., 2020) and individual modelling scenarios.

Third, the relevance of policies and models for inform-
ing the European Bioeconomy is determined. Models can 
simulate the effects of policy interventions by comparing 
the same output under a situation in which that policy is 
absent from shaping an evidence base for policymakers 
(Pinter et al., 2004). A cross-referencing framework is used 
to screen which policies can be used in specific models 
and which model-based knowledge is relevant for poli-
cies. Policy outcomes are compared with model inputs, as-
sumptions and built-in parameters, while model technical 
documentation and case study literature are reviewed. The 
framework also compares how each policy and model as-
signs bioeconomy objectives, sectors and value chain stage.

Where some models are relevant for policymaking 
in one specific sector, other models can inform on the 
broader impacts of a policy, including on other bioecon-
omy sectors and value chain stages not directly targeted 
by such policies. For instance, sustainable forestry policies 
do not cover the agricultural sector. However, models with 

F I G U R E  2   Bioeconomy value chain stages.
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built-in data and functions for both sectors can simulate 
the impact of such policies on agriculture.

3   |   GAP ANALYSIS AND RESULTS

This section seeks to shed light on whether current policy 
designs and modelling capacity adequately address the 
five objectives of the European Bioeconomy Strategy and 
their representations of sectors, value chains and indica-
tors. Adequacy of policies and models is first analysed 
separately (Sections  3.1 and 3.2, respectively), then de-
termined by the level of policy representation currently 
available in modelling capacities (Section 3.3).

3.1  |  Bioeconomy policies

The policy review builds on Singh et al. (2021), who inter-
preted the adequacy of available regulatory or financial 

policies responding to bioeconomy aims. The study ana-
lysed policies for their relevance to biomass, bioprocessing 
and bio-based product groups for each value chain stage 
and activity and the main issues they regulate based on 
their scope, objectives and instruments. Most of the 39 
European policy interventions reviewed (listed in Tables 3 
and 4) that were found relevant to the bioeconomy centre 
around environmental sustainability and climate issues as 
most target biophysical drivers. Among bioeconomy objec-
tives, sectors and value chain stages, there is fair coverage 
for each. However, objective I (food security and waste val-
uation) and the waste sector have limited representation.

The Farm to Fork Strategy appears in some studies as 
central to the bioeconomy (Trigo et al.,  2021). However, 
this paper is structured around the strict definition of the 
Bioeconomy Strategy objectives, whereby objective I states 
the need for tangential, wider or complementary efforts 
to traditional food systems and economies, namely or-
ganic waste as bio-based products, biorefineries and rural 
incomes.

T A B L E  2   Model indicators paired with bioeconomy objectives (roman numerals and corresponding colour codes from Table 1 are 
repeated)

Dimension Indicator
Availability in 
models

European bioeconomy strategy 
objectives

Technical Land, biomass or water availability 12 I II

Technology level 5 I III V

Energy need 2 III IV

Conversion capacity 3 III V

Environmental Land use 12 I II IV

Nutrient levels 6 I II

Life cycle GHG 12 IV

Carbon stocks 7 II IV

Inputs 7 I II III

Harvest and litter 4 I II V

Pollutants 5 I II III IV

Water use 8 I II

Ecosystem services and productivity 5 II IV

Economic Biomass production 14 I II III IV V

Energy supply carrier production 10 III IV V

Costs and return 12 I III V

Import and export 7 I III V

GDP 4 I III V

Price 9 I III V

Social Demand/consumption 11 I III V

Farm income 4 I III V

Employment 5 I III V

Welfare 4 I V

Abbreviation: GDP, gross domestic product.
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The Common Agricultural Policy (CAP) is included 
in this review as it captures the broader socioeconomic 
context and underlying land use and ecological driv-
ers (Ehrmann,  2010; Helming & Tabeau,  2018; Leclère 
et al., 2014; Malek & Verburg, 2018; Rosegrant et al., 2014; 
Wąs et al., 2014) and impacts objective I directly.

Although the land use indicator is broadly used across 
policy areas, for instance, in sustainable agriculture pol-
icies (Louhichi et al.,  2017), marginal land designations 
(Banja et al., 2019; Panoutsou & Singh, 2020) are not ex-
plicitly mentioned. Marginal lands can serve a crucial 
role in harbouring innovative non-food crops that do not 
disturb food systems or conservation areas (Panoutsou 
et al., 2018). Additionally, there is a lack of supporting pol-
icies for mobilizing biomass feedstock from waste sources.

There is little policy support for optimizing complex 
conversion processes that convert biological materials 
of varying content (including bio-waste) into bio-based 
products. For instance, lignocellulosic feedstock types 
are suitable for thermal or biochemical conversion based 
on a specific established set of chemical characteris-
tics (Hoefnagels & Germer, 2018). Finally, regarding the 
end-use stage, policy interventions targeting the distri-
bution and standardization of the vast, available range 
of bio-based products and services remain limited (Singh 
et al., 2021).

These gaps are repeated within available modelling ca-
pacity (reviewed in the next section).

While policies may address each value chain stage, 
they often lack value chain integration. For instance, there 
is a strong focus on reducing emissions (decarbonization) 
at specific stages, yet no mechanism integrating innova-
tion across the value chain and how this may, in turn, im-
pact sustainability goals. This is illustrated, for instance, 
by the Medium Combustion Plant Directive (European 
Union, 2015).

3.2  |  Bioeconomy models

Among models reviewed for this study, 4 are top-
down economic models, and 13 are bottom-up eco-
nomic models. Economic models include the following: 
‘top-down’ economy-wide (input–output, CGE, and 
macro-econometric models), ‘bottom-up’ (sector- or 
product-specific partial equilibrium, optimization simu-
lation models and life cycle assessment) and hybrid. 
Additionally, 10 are environmental models specializing in 
spatial land coverage and dynamic vegetation, and 5 are in-
tegrated assessment models, which provide environmen-
tal, economic and social impact policy analyses. At first 
glance, there appears to be modelling capacity informing 
on all bioeconomy objectives. However, analysing models 

at the level of their output indicators (Table 2) provides a 
more detailed view.

Regarding bioeconomy sectors, most of the models 
are capable of simulating agricultural and environmental 
dynamics (three-quarters of models), followed by energy 
and forestry (two-thirds of models), and lastly, the bio-
based industries and waste sectors (less than one-fourth 
of models). Concerning value chain stages, most models 
can represent the first two stages, with 16 of the total 18 
model groupings in the selected sample capturing land 
use and 17 capturing biomass production. Meanwhile, 11 
capture the end-use stage, while only 7 capture the con-
version stage.

Table  2 links model output indicators across differ-
ent dimensions to the five objectives of the Bioeconomy 
Strategy. Figure 3 shows which indicators and objectives 
individual model groupings can target. The models appear 
to have a strong capacity to inform objective I (through 
food availability and security indicators), followed by ob-
jectives III and V, and finally, with the least capacity, ob-
jectives II and IV.

Table  2 highlights the inherent cross-dimensional 
nature of indicators and their medium to high distribu-
tion within models. As such, there is potential to han-
dle trade-offs or promote synergies across sustainability 
and performance dimensions. However, Figure  3 shows 
a much more varied (and limited) picture of model-
ling capacity in this respect. The economic MESSAGE/
TIMES/MARKAL model grouping lacks indicators that 
inform environmental factors for objective II. In con-
trast, BIOSAMs and BeWhere, two models that explicitly 
simulate bioeconomy growth, have limited capacities to 
inform objectives II and IV. This fact mirrors the lack of 
policy harmonization of economic and sustainability di-
mensions. Some models such as EPIC or MITERRA are 
strictly environmental and restricted to the first two stages 
of the value chain (land use and biomass production) and 
exclude energy and bio-industrial sectoral considerations. 
However, cross-dimensional synergies exist; for exam-
ple, a study determined the productivity and global mar-
ket impacts of land-based dynamics such as soil health 
(Sartori et al., 2019). Integrated assessment models (such 
as MAGNET or GLOBIOM) can combine economic, en-
vironmental and technical indicators and thus capture a 
broader range of objectives.

In the bioeconomy, performance indicators aim to 
appropriately monitor and evaluate the progress and 
impact of bioproducts and the different dimensions of 
their development (Bracco et al., 2019). Wąs et al. (2014) 
measure welfare changes for agricultural price changes, 
including the impact of ecologically restorative mea-
sures (e.g. permanent grassland or crop diversification) 
with the CAPRI model, addressing objectives I, II and 
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V. However, at a more refined level, bioeconomy prod-
ucts do not feature, which is seen in other studies as 
well addressing objective I (Gocht et al.,  2011; Rutten 
et al.,  2013; Salamon et al.,  2017). Similarly, Helming 
and Tabeau (2018) ambitiously address four bioeconomy 
objectives with both CAPRI and MAGNET by looking at 
the impacts of agricultural labour subsidies on employ-
ment, emissions, agricultural production, sectoral value 
and welfare. However, there is no explicit distinction 
between mineral and bio-based sectors, nor accounting 
of carbon in bio-based materials, which act as funda-
mental measures of objectives III and IV, respectively 
(O'Brien et al., 2017). However, GHG metrics are more 
widely available and, at times, linked to costs (Moiseyev 
et al.,  2014). They are the standard for measuring cli-
mate change mitigation (IPCC, 2015).

Regarding impacts on natural resources, Rosegrant 
et al. (2014) employ soil fertility management measures 
such as no-till effects (absence of ploughing, use of 
cover crops and crop rotation) with IMPACT. However, 
the impact on ecosystem resilience or groundwater is 
not measured. The handful of models that do contain 
land inputs and ecosystem dynamic output indicators—
InVEST, PRISM-ELM, EPIC and GLOBIOM—combine 
these with innovative biomass practices (Daly et al., 2018; 
Deppermann et al.,  2019; Izaurralde et al., 2012; Lee 
et al.,  2018), yet exclude market growth factors. This 
last study addresses four objectives with GLOBIOM, as-
sessing the impacts of a carbon tax, expansion of pro-
tected areas, technological progress, reduction of waste 
and bioenergy on land use, emissions and biodiversity 
(Deppermann et al., 2019). At a metric level, land use (in 
hectares) interprets impacts on biodiversity. While this 

is a crucial impact indicator at a policy level (Louhichi 
et al.,  2017), indicators for the spatial distribution of 
species occurrence, abundance and change over time 
are missing.

Moreover, spatially explicit ecosystem (Maes et al., 2018) 
and biodiversity footprint (Moran & Kanemoto, 2017) in-
dicators are scarce among models. Additionally, there is no 
measurement of set-aside (conservation) land in economic 
terms. Diaoglou et al. (2015) employ IMAGE to measure 
land use and economic implications of residues used as 
feedstock for bioenergy production, addressing four bio-
economy objectives and lacking objective IV for climate 
change mitigation potential. Thus, analysing modelling 
capacity at the indicator (metric) level provides a clearer 
picture of the challenges in working cross-dimensionally 
to address several or all bioeconomy objectives. The anal-
ysis of indicators continues in the next section and looks 
at how modelling capacities integrate policy mechanisms.

3.3  |  Combined bioeconomy models and  
policies

3.3.1  |  Knowledge produced by policies 
simulated in models

Policies and models relevant to each other (Tables 3 and 4) 
are assessed jointly to determine what knowledge around 
the bioeconomy they can generate and whether gaps 
stressed in Sections 3.1 and 3.2 are resolved or unchanged. 
Aside from expected incompatibility between models tar-
geting the first two stages of the value chain (land use and 
biomass production) and policies targeting the latter two 

F I G U R E  3   Indicators available for each model grouping and the bioeconomy objectives they inform.
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stages (conversion and end use), overall, there is substan-
tial alignment and relevance between models and poli-
cies, and thus significant potential to combine modelling 
and policymaking efforts to inform on the bioeconomy 
objectives.

Policies that target land use, biomass production or 
all value chain stages at once (e.g. water regulation) 
have more modelling support than those targeting the 
conversion and end-use stages. In line with the findings 
of the preceding sections, gaps in the intermediary steps 
of the bio-based value chain and well-defined end prod-
ucts remain. Indeed, sustainable bio-based product pol-
icies and their economic potential can be simulated in 
only a limited number of models (BIOSAMs, MESSAGE/
TIMES/MARKAL and MAGNET/MIRAGE/GTAP). The 
opposite is true for the representation of conservation, 
sustainable agriculture, bioenergy uptake and land use 
change policies, for which more robust modelling capac-
ities exist.

In Figure  4, coverage of bioeconomy objectives from 
both models and policies is determined based on:

•	 alignment of policies with objectives (e.g. conservation 
designation policies impact objective II),

•	 alignment of models and objectives and
•	 Tables 3 and 4 pairing of models and policies based on 

their relevance.

Findings indicate that models can simulate policies 
predominantly to inform objectives II and IV (environ-
ment and emissions), followed by III and V (alternatives 
to fossil fuels and economic growth), and finally, I (food 
security). Four policy areas can be integrated into model-
ling to inform objective I, including sustainable agricul-
ture, land use change, soil quality and waste regulation. 
The coverage of objectives by modelling capacities for spe-
cific policy goals varies substantially.

Models have limited capacity in incorporating land 
conservation policies, soil protection, industrial decarbon-
ization, bio-based product certification, vehicle emission 
reduction or waste and water regulation to uncover new 
fossil-free bio-based value chains (objective III) and fos-
ter economic growth (objective V). Exceptions include the 
MARKAL model, which can perform a cost- and emission-
optimization pathways for biochemicals and deploy-
ment of biomass conversion technologies (Tsiropoulos 
et al., 2018). Additionally, Choi et al. (2019) study the im-
pacts of bioeconomy growth (notably waste and perennial 
biomass crops for producing bioenergy and biomaterials/
chemicals) on agricultural markets, prices, emissions and 
direct land use change. This is one of few studies incorpo-
rating waste processing and valorization, as policy mech-
anisms available to models fail to consider waste streams 

as valuable sources of feedstock mobilization (Singh 
et al., 2021). Finally, Figure 4 shows that objective I is not 
well targeted, as models only simulate a limited number 
of policies employing indicators of waste or residues, bio-
refinery entities and rural income.

On objective III, few studies integrate both traditional 
and bioeconomy-based pathways. Philippidis et al. (2018) 
analyse EU bioeconomy challenges in harmonizing emis-
sions reduction and economic growth by integrating a 
GTAP database in MAGNET to disaggregate and differ-
entiate sources of biomass supply, conversion pathways 
and bio-products with traditional pathways. This study 
enhanced the modelling architecture. Models can com-
bine different modules, for instance, adding a code for 
biophysical or environmental considerations to an eco-
nomic model, such as MAGNET (Woltjer & Kuiper, 2014). 
They can also be calibrated with output from others in the 
form of exogenous constraints or conditions or expanded 
with additional products, sectors, policies and regions. 
Implications of such structural flexibility are further ex-
plored in the discussion.

Within the knowledge capacity generated by models 
incorporating and informing policies, the agricultural, 
forestry, and energy sectors, environmental dynamics, 
and the two first stages of the value chain—land use and 
biomass production—are most targeted (Figures 5 and 6). 
Some knowledge is available for the end-use stage and, to 
a lesser extent, the conversion stage. Indeed, more studies 
are needed to incorporate conversion technology matu-
rity, learning curves and capital investment costs (Karka, 
Petersson, et al., 2020; Wesseler & von Braun, 2017). The 
concept of a value chain as a driver of economic trans-
formation remains under-utilized and misunderstood, 
especially concerning the intermediary steps, as mod-
els implicitly assume that primary producers directly 
supply consumers through complete and competitive 
markets (Barrett et al.,  2020). Moreover, the absence of 
bio-refineries in the scenario literature as technological 
or commercial entities demonstrates the underdevel-
oped nature of the bio-based industry sector in models 
and policies. Bio-refineries are central to bioeconomy 
growth by converting biomass into a spectrum of market-
able products and energy (De Jong et al., 2012; Pleissner 
et al., 2016). In one exception, Leduc et al. (2012) address 
objectives III, IV and V by employing the model BeWhere 
to compare combined heat-and-power and biofuel con-
version technologies for a set of carbon costs and biofuel 
support policies.

Commonly available indicators in models simulating 
policies (full table available in Appendix  G) include re-
source availability (e.g. amount of growing stock), land 
use change, economic performance (e.g. energy supply 
carriers or costs and return) and market factors (e.g. price). 
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Models and policies can, therefore, jointly deliver infor-
mation on the bioeconomy at a metric level. Additionally, 
cross-dimensional knowledge can be generated, for in-
stance, conservation, soil, water or waste regulation pol-
icies being measured in economic competitiveness terms 
or land use change being used in energy efficiency poli-
cies. However, gaps and challenges raised by the previous 
section  (3.2) also exist here: bio-based product metrics, 
ecosystem and land input indicators suffer from poor 
representation.

Only seven individual models can integrate bio-based 
product policies and measure their environmental or eco-
nomic impacts: BIOSAMs, MESSAGE, TIMES, MARKAL, 
MAGNET, MIRAGE and GTAP. Agricultural, biophysical 
and climactic impacts, in the form of crop subsidies for 
bioplastics and associated global real gross domestic prod-
uct change as well as global land use change emissions, are 
studied through GTAP (Escobar et al., 2018) and bio-fuels, 
bio-chemicals and bio-electricity through a combination 
of these models (Philippidis et al., 2018). However, in one 

F I G U R E  4   Number of models relevant to policies and how both address bioeconomy objectives.
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study employing TIMES, biochemical demand and produc-
tion are determined exogenously (Choi et al., 2019). Lastly, 
results underline the capacity of models to analyse policies 
within a broader context: they can simulate a policy and 
compare its impact on other bioeconomy sectors and value 
chains beyond those targeted by the policy in question.

Available bioeconomy models can integrate poli-
cies that target energy or bio-based industry with addi-
tional land, soil and forestry dynamics (Deppermann 
et al.,  2019). Conversely, impacts of agriculture and for-
estry policies can be integrated with downstream stages of 
the value chain (conversion and end use) and the energy 

and bio-based industry sectors. Diaoglou et al.  (2015) 
compare scenarios of agriculture and forestry production 
to determine long-term, global supply curve projections of 
the available residue potential for renewable energy.

3.3.2  |  Knowledge produced by 
agriculture and bioenergy policies simulated 
in models

This section continues the analysis using the same frame-
work and focusing on two policy areas—sustainable 

F I G U R E  5   Number of models relevant to policy groups (colour coded) and their combined coverage of bioeconomy sectors. Red 
asterisks denote a policy area that falls outside of the scope of the sector but that can still be simulated through modelling capacities 
integrating both the policy area and sector. In the case of the environment area, all reviewed policies are relevant to its scope.
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agriculture, defined here by the CAP (European 
Commission, 2018b), and bioenergy uptake, defined by the 
Renewable Energy Directive (European Union, 2018) and 
the 2030 Framework for Climate and Energy (European 
Union,  2014). The analysis informs how modelling sce-
nario studies integrate them to inform the bioeconomy 
objectives. These policy areas generate the most model-
ling studies of all policies reviewed and are relevant for 
most European Bioeconomy Strategy objectives.

The literature shows that while studies can handle 
multiple policy areas at once, including conservation des-
ignation, land use change mitigation and bioenergy man-
dates (Deppermann et al., 2019; Van Vuuren et al., 2010), 
only a few comprise the majority of bioeconomy objectives 
at once (Table  5). Moreover, these usually combine and 
link different modelling approaches, which raises a ques-
tion of technical complexity in accurately handling mul-
tiple modelling frameworks and assumptions (Böttcher 
et al., 2012; Popp et al., 2014). Leclère et al. (2014) com-
bine GLOBIOM and EPIC to study the impact of land, in-
frastructural and labour changes in agricultural systems 
on climate change mitigation, and Popp et al. (2014) com-
pound GCAM, IMAGE, REMIND and MAgPIE to eval-
uate direct land and economic competition of bioenergy 
with other energy technology options for GHG mitigation.

Among studies employing the models reviewed in this 
paper that incorporate sustainable agriculture policies, ob-
jective III (reducing dependence on fossil fuel sources) was 
explicitly addressed once (Helming & Tabeau, 2018). On 

the other hand, CAPRI can integrate agriculture with con-
servation designation (Wąs et al., 2014), IMPACT can pair 
it with soil quality improvements (Rosegrant et al., 2014) 
and CLUMondo can do so with water regulation (Malek 
& Verburg,  2018). Thus, circularity principles and tech-
nologies tied to bio-based processes are scarce, while the 
interaction between agricultural activities and natural 
resources is supported by modelling capacity. Although 
studies incorporate land use and biomass production in-
novations (Diaoglou et al.,  2015; Rosegrant et al.,  2014), 
they do not explicitly link these with ecosystem indicators 
such as soil organic matter or farmland bird index used 
in the Common Monitoring and Evaluation Framework 
of the CAP 2014–2020 (European Commission,  2015). 
Additionally, while some scenario projections aim to in-
form future agriculture policies beyond 2020 (Verburg 
& Overmars,  2009), none currently employ multi-
dimensional indicators relevant to the whole bio-based 
value chain as outlined in the future CAP of 2021–2027 
(van Doorslaer et al., 2019), such as soil carbon, renewable 
energy and cascading biomass.

Regarding studies analysing bioenergy uptake policies, 
models are well-equipped to produce cross-value chain 
analyses of bioenergy policies and inform on multiple ob-
jectives. EFI-GTM simulates both the cost of forest-based 
feedstock and the price of biofuels as critical drivers for 
allocating biomass between different renewable energy 
sources (Kallio et al.,  2018). Although bioenergy uptake 
policies do not directly relate to the objective I (food 

T A B L E  5   Modelling studies incorporating agriculture and bioenergy policies and the bioeconomy objectives these target (detailed table 
available in Appendix H)

Policy area
Number of modelling 
studies incorporating policy

Bioeconomy 
objectives targeted References

Sustainable agriculture [Common Agricultural 
Policy, European Commission (2018b)]

1 I and V Salamon et al. (2017)

4 I, II and V Ehrmann (2010)
Rosegrant et al. (2014)
Wąs et al. (2014)
Malek and Verburg (2018)

1 I, II, IV and V Leclère et al. (2014)

1 I, III, IV and V Helming and Tabeau (2018)

Bioenergy uptake [Renewable Energy Directive 
(European Union, 2018) and the 2030 
Framework for Climate and Energy (European 
Union, 2014)]

3 III, IV and V Leduc et al. (2012)
Moiseyev et al. (2014)
Smeets et al. (2014)

2 I, II, III and IV Valin et al. (2015)
Deppermann et al. (2019)

3 I, II, III and V van Vuuren et al. (2010)
Blanco et al. (2012)
Diaoglou et al. (2015)

2 I, III, IV and V Philippidis et al. (2018)
Choi et al. (2019)

1 I, II, III, IV and V Popp et al. (2014)
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security), several models broaden the scope of such pol-
icies to integrate economic, environmental and socioeco-
nomic trade-offs between bioenergy production and the 
agricultural sector (Barreiro-Hurle et al., 2021; Beckman 
et al.,  2020; Choi et al.,  2019; Deppermann et al.,  2019; 
Diaoglou et al., 2015; Valin et al., 2015).

Although the Farm to Fork strategy was not included 
in this framework, a bioeconomy knowledge base can 
benefit from the research, industry and policy nexus 
around sustainable food production. The use of the CAP 
in this paper to assess the quality of available bioeconomy 
knowledge shows (a) that researchers and policymakers 
are confronted with the issue of complex multi-model 
frameworks to address the multiple dimensions of the 
bioeconomy and that (b) bioeconomy products and ser-
vices are largely absent. Nevertheless, modelling studies 
have insights on how to reduce production footprints 
and address socioeconomic challenges (Barreiro-Hurle 
et al., 2021; Beckman et al., 2020; Wesseler, 2022) and can 
foster synergies between food and bioeconomy systems. 
For instance, the bioeconomy produces biochemicals that 
can help drive out the use of chemical pesticides (a key 
quantitative Farm to Fork strategy target). Equally, an 
effective bioeconomy would attribute value to products 
created from waste streams, which could address another 
Farm to Fork strategy target of reducing per capita food 
waste. Finally, advances in ecological restoration tech-
niques in farm systems contributing to thriving biodiver-
sity (Wesseler, 2022) can generate transferable lessons for 
sustainability measures within non-food crop (bioecon-
omy) systems.

4   |   DISCUSSION

The knowledge made available by current modelling 
capacities integrating policy measures to inform how 
to implement the European Bioeconomy Strategy is as-
sessed through an analytical framework employing 
bioeconomy objectives, sectors, value chain stages and 
indicators. Among policies themselves, economic com-
petition and sustainability dimensions, as well as value 
chain stages, are often kept apart. Concerning models, 
cross-dimensional and cross-value chain studies do exist. 
However, they often demand complex multi-model re-
search. Given the similarities in gaps between models and 
policies (Sections 3.1 and 3.2) and shared relevance in the 
targeted scope of the bioeconomy (Tables 3 and 4), a criti-
cal question arises on how both communities can help 
each other address these gaps.

Bio-based and waste products and processes (distinct 
from traditional food products) have a marginal presence 
within available policies and models, especially compared 

to bioenergy. This does not reflect the state of play within 
the industry (Beims et al.,  2019; Markedal et al.,  2017; 
Mohan et al.,  2019), though international waste trade 
requires further development as a renewable source of 
energy (Junginger et al.,  2019). Briassoulis et al.  (2021) 
propose various modelling metrics for mechanical recy-
clability. Policies regulating bio-based products require 
more harmonized standardization at a European level 
and investment support (Singh et al., 2021) compared to 
established energy-focused legislation, metrics and re-
sources (Mai-Moulin et al., 2017). Technological growth 
factors relating to the conversion stage (e.g. whether a 
biorefinery is at a demonstration or commercial stage), 
which serves as a fundamental capital asset in the pro-
duction of bio-based products, are given scant attention. 
While broad policy frameworks such as the European 
Green Deal support biorefineries and technology valo-
rization pathways, they still lack actionable policies re-
lated to conversion logistics (Singh et al., 2021). Models 
producing knowledge on new value chains and their 
market growth (Objectives III and V) more often target 
traditional policy areas (bioenergy, land-use, agriculture, 
forestry, energy efficiency) than other areas such as con-
servation, water and waste, bio-based industries or indus-
trial decarbonization.

Ecosystem and biodiversity footprint indicators are 
scarce, especially tied to value chain operations or market 
productivity. Current dominant policy frameworks, such 
as the Renewable Energy Directive, do not include de-
tailed guidance on tree retention, endemic species protec-
tion or specially designated land (Mai-Moulin et al., 2021). 
Conversely, model indicators that should reflect endog-
enous bioeconomy change through biodiversity, the 
circularity of biomass, consumer demand and technolog-
ical maturation (Pyka et al., 2022) are primarily nascent 
(Christensen & Panoutsou,  2022). Species distribution 
modelling, which uses geographical space data, suffers 
from a lack of harmonized standards (Araújo et al., 2019). 
Given the widespread use of conservation designation and 
land use, models and policies can benefit from additional 
biodiversity data layering. Comprehensive biodiversity 
conservation plans such as the Biodiversity Strategy for 
2030 and the Green Deal require better integration with 
socioeconomic sectors (Hermoso et al., 2022).

While there are opportunities to leverage modelling 
tools and generate broader knowledge on the impact of a 
single policy or even a package of policy measures, findings 
indicate there is no single, one-size-fits-all model specifica-
tion addressing all five bioeconomy objectives. Bioeconomy 
research is witnessing the development of larger and more 
complex models spanning many disciplines (Allen, 2016; 
Pyka et al., 2022). Indeed, results indicate that studies most 
successfully informing multiple bioeconomy objectives are 
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typically characterized using multiple modelling frame-
works and types. As such, the model and policy collabo-
ration process to address such complexity is in question. 
Partly institutional and partly technical obstacles remain 
that may hamper model-based intelligence on the effi-
ciency of policies targeting the Bioeconomy Strategy. These 
include barriers to entry for modelling expertise and inclu-
sive approaches in high-level cross-government reports, 
data availability and lags, and the relatively slow uptake of 
interdisciplinary modelling efforts.

High-level reports produced by cross-governmental 
networks and large scientific consortia routinely integrate 
modelling insights. For example, the OECD used IMAGE 
in its global Environmental Outlook study (Allen, 2016), 
while the JRC employs MAGNET to address multi-
sustainability nexus issues (M'Barek et al.,  2019). While 
these models and CAPRI enjoy a high degree of usage 
within such consortia (Thiel,  2009), barriers exist for 
policymakers to diversify or improve the use of model-
ling tools. Improving research capacity and removing in-
stitutional barriers can improve the contribution of the 
bioeconomy to 11 SDGs (Trigo et al.,  2021). Barriers in-
clude fast-moving and high-pressure policy environments 
(Kolkman, 2020). Long-term relationships are needed to 
create coalitions for change (Cairney & Oliver, 2017), yet 
lead model developers often switch roles and leave gaps in 
expertise and knowledge (Jansson et al., 2020).

Additionally, governing bioeconomy research bodies 
are resource intensive (Fritsche et al., 2020). These include 
the Nova Institute (Piotrowski et al.,  2018) and the JRC 
(Ronzon et al., 2017). The latter coordinates the KCB, which 
handles risk assessment studies for ecosystem services 
and biodiversity (indicators that were found to be lacking) 
and global and long-term sustainable biomass potential, 
supply and demand (European Commission,  2018a). 
Expert groups such as the one recently launched by the 
European Commission to improve global food system 
governance (European Commission,  2021) can be ex-
tended to or reproduced for the bioeconomy. Over 3000 
employees lead the JRC research capacity with a budget 
of nearly 400 million EUR (Triollet et al., 2019), which un-
derlines the challenge of smaller, more specialized mod-
elling and policymaking to access high-level reporting. 
Model entry costs, such as the level of capacity training 
required or licence restrictions, also add to funding chal-
lenges. According to the Horizon 2020 SUPREMA project 
findings, creating governing legal entities (e.g. MAGNET 
operates with a formalized consortium agreement) and 
data-sharing schemes can help overcome high costs and 
coordination efforts associated with data updating and 
modelling management (Jansson et al., 2020). CAPRI and 
AGMEMOD models could benefit from these practices in 
addition to their open code access and expansive developer 

and market expert networks. These latter two characteris-
tics could also benefit MAGNET and GLOBIOM.

Furthermore, funding barriers and time lags lead to 
data gaps. Collecting new data for new products, such 
as processing residues from biorefineries or manufactur-
ing chemical products, is long and expensive (Kardung 
et al., 2019). Official statistics cannot keep pace with ‘cur-
rent’ modelling needs. The continuous emergence of new 
technologies within bio-industrial and energy sectors fall 
under the radar of the minimum requirements for the 
approval of new products or industrial classifications in 
official statistical databases. One example is the case of 
categorizing marginal land types (Humalisto, 2015). Bio-
based shares from parent NACE industry classifications 
are usually inferred through methodologies that add a 
burden of integration and peer-review consensus.

Moreover, in cases where microdata accounts are de-
veloped through statistical office questionnaires, data 
confidentiality issues often prevent public access. While 
specialist market reports provided by commercial enter-
prises are undoubtedly a valuable source of data, these 
expensive pay-per-view options remain inconsistent with 
the knowledge-sharing networks of modellers. Publicly 
funded bodies have the opportunity to address data chal-
lenges through the organization of workshops, technical 
assessments and bilateral consultations between model-
ling experts, member state representatives from national 
statistical offices and high-level policy groups (Böttcher 
et al., 2012). Initially under the auspices of the JRC and 
the KCB of the European Commission, a platform was 
launched granting public access to data sources to mon-
itor the bioeconomy (M'Barek et al.,  2014). Through 
partnerships with established expert groups (e.g. Nova 
Institute, Biomass Technology Group) and via subse-
quent ‘in-house’ data developments, this platform grants 
access to (inter alia): time-series datasets of bioeconomy 
indicators (e.g. Ronzon et al., 2020), balances of biomass 
flows (Gurría et al., 2017), macroeconomic member state 
accounts including bio-based activities and commodities 
(Mainar & Philippidis, 2018) and recently, a report on bio-
chemical sectors (Spekreijse et al., 2021).

Lastly, harmonizing interdisciplinary concepts and 
multi-scale considerations can become a slow and itera-
tive process (Van Delden et al., 2011). As such, dedicated, 
collaborative platforms exist to address that challenge. 
The LUISA Territorial Modelling Platform links macro-
economic and biophysical components to evaluate the ter-
ritorial impact of policies effectively connecting CAPRI, 
CBM, GFTM and EU-TIMES (Ronzon et al.,  2017). 
Similarly, the JRC Integrated Modelling Platform for 
Agroeconomic Commodity and Policy Analysis (iMAP) 
combines AGMEMOD, CAPRI and AGLINK to generate 
spatially explicit market intelligence. This effort required 
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joint coordination between modelling teams and na-
tional market experts (Salamon et al., 2017). Additionally, 
the Sustainability Impact Assessment Tool combines 
EFISCEN, CAPRI, Dyna-CLUE and other macro-
econometric models to simulate trade-offs among differ-
ent sectors through 80 economic, climatic and biodiversity 
and biophysical indicators (Sieber et al., 2013). One study 
combines MAGNET with a soil erosion model (RUSLE) 
to measure the impact of soil erosion on the global econ-
omy owing to land productivity loss (Sartori et al., 2019). 
Modellers and policymakers alike should leverage such 
cross-cutting approaches and tools and learn by their 
example to pursue the realization of the bioeconomy ob-
jectives. Initiatives like The Knowledge Management for 
Policy under the JRC can build expertise in handling such 
complex methodologies by supporting training for experts 
combining research, policymaking, management and 
communication (Topp et al., 2018).

5   |   CONCLUSION

This paper evaluates whether current policy and modelling 
capacities are adequately addressing the five objectives of 
the European Bioeconomy Strategy. In detail, the analysis 
presented here discusses how efficient the information ex-
change and collaboration of models and policy planning 
are in terms of integrating bioeconomy sectors (Kardung 
et al., 2021; Lier et al., 2018; Ronzon et al., 2017), value 
chains (Lokesh et al.,  2018; Panoutsou & Singh,  2020) 
and indicators (Bracco et al., 2019; Kardung et al., 2021; 
O'Brien et al.,  2017). It posits whether single, one-size-
fits-all model specifications exist for these purposes and 
whether policies or models adequately combine biophysi-
cal with social and economic considerations. The level 
of policy representation currently available in modelling 
capacities to inform the Bioeconomy Strategy is tested 
across these hypotheses.

While many models and policies were found relevant 
to each other in terms of generating bioeconomy-relevant 
knowledge, significant gaps exist:

Policies tend to keep economic competitiveness and 
sustainability dimensions, as well as value chain stages, 
apart.

There are limited policy mechanisms and modelling 
frameworks covering both the market uptake and sustain-
ability of bio-based products, technologies and processes 
(including biorefineries). Their distinction from traditional 
sectors (agriculture, forestry and energy) remains fuzzy.

Ecosystem and biodiversity footprint indicators are 
equally scarce and usually unrelated to value chain opera-
tions or market valuation.

These shortcomings are mirrored in assessments 
of policies under the Farm to Fork Strategy, where im-
pacts on biodiversity and biotechnology advances are 
poorly understood or considered (Galanakis et al., 2022; 
Wesseler, 2022).

As models are not designed in an ideological silo 
(Kolkman, 2020), and policies that impact market func-
tions are not created in a vacuum (Smith et al., 2021), 
optimizing knowledge exchange between the model-
ling and policymaking arenas remains a crucial way 
forward. Workshops facilitated by large public organi-
zations can increase openness and transparency and 
build upon previous bioenergy and biofuels frame-
works to target biochemical and biomaterial sectors 
(Junginger et al.,  2019). They can also integrate tradi-
tional industries to accelerate an economic transition. 
Karka, Papadokonstantakis, et al.  (2020) highlight the 
temporary but essential role that fossil fuel infrastruc-
ture plays in supporting the roll-out of advanced biofuel 
production facilities by reducing initial start-up risks. 
To ensure technological progress, traditional industries 
should be subject to the same stringent science-based 
criteria as nascent ones (Smith et al.,  2021). Jander 
and Grundmann  (2019) suggest hybrid modelling ap-
proaches that distinguish demand and resource flows 
between fossil- and bio-based products and sectors. 
Concerning socioeconomic change, policies and mod-
elling literature lack skillset specifications for bioecon-
omy jobs (Clube, 2022) and social impacts of innovative 
technologies (Rafiaani et al., 2018), especially concern-
ing rural areas and actors (Ronzon & M'Barek, 2018). A 
concerted effort is thus required to encourage the align-
ment of modellers and policymakers in setting clear pri-
orities and funding goals.
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