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a b s t r a c t 

More brick-and-mortar retailers open an online channel to increase sales. Often, they use the store to 

fulfil online orders and to receive returned products. The uncertain product returns however complicate 

the replenishment decision of a retailer. The inventory also has to be rationed over the offline and online 

sales channels. We therefore integrate the rationing and ordering decisions of an omni-channel retailer 

in a Markov Decision Process (MDP) that maximises the retailer’s profit. Contrary to previous studies, we 

explicitly model multi-period sales-dependent returns, which is more realistic and leads to higher profit 

and service levels. With Value Iteration (VI) an exact solution can only be computed for relatively small- 

scale instances. For solving large-scale instances, we constructed a Deep Reinforcement Learning (DRL) 

algorithm. The different methods are compared in an extensive numerical study of small-scale instances 

to gain insights. The results show that the running time of VI increases exponentially in the problem size, 

while the running time of DRL is high but scales well. DRL has a low optimality gap but the performance 

drops when there is a higher level of uncertainty or if the profit trade-off between different actions 

is minimal. Our approach of modelling multi-period sales-dependent product returns outperforms other 

methods. Furthermore, based on large-scale instances, we find that increasing online returns lowers the 

profit and the service level in the offline channel. However, longer return windows do not influence the 

retailer’s profit. 

© 2022 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

The retail sector is changing drastically with the rise of on- 

ine shopping. As customers are shopping more online, traditional 

rick-and-mortar stores are also changing their business strategy 

y opening online shopping channels. This integration of offline 

nd online shopping channels is referred to as omni-channel retail- 

ng ( Verhoef et al., 2015 ). Omni-channel retailing provides the cus- 

omer a uniform shopping experience, in which goods can be in- 

pected, bought, and returned through all available shopping chan- 

els. However, customers that order products online are only able 

o physically inspect their goods after delivery. Therefore, products 

hat are displayed online might not satisfy customer expectations 

r are bought impulsively, online ordered products are often re- 

urned ( Abdulla et al., 2019 ). 

The return flow of online ordered products has become a sig- 

ificant issue for many retailers. For instance, an online fashion re- 

ailer reported return percentages between 13% and 45% ( de Leeuw 

t al., 2016 ). As the returned products are often resalable they 

hould be accounted for in inventory management ( Radhi & Zhang, 
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European Journal of Operational Research, https://doi.org/10.1016/j.ejor.
019 ). Due to the uncertainty in the quantity and timing of re- 

urned products, retailers might end up with an excessive stock 

f they do not consider the return flow ( Bernon et al., 2016; Xu 

 Jackson, 2019 ). Even though retailers sometimes try to reduce 

eturns (e.g., through stricter return windows or return fees), in 

any cases retailers are providing increasingly lenient return poli- 

ies to increase customer satisfaction. Therefore, retailers need to 

dapt their inventory management to the growing return flow as 

he handling of returned products is important to reduce inventory 

elated cost. 

Customers often prefer the ability to return an online purchase 

n-store. Brick-and-mortar store returns are free of charge for cus- 

omers and do not require repackaging, whereas via mail the cus- 

omer has to deal with packaging and often has to pay a shipping 

ee. Additionally, the customer can get a direct replacement in the 

tore or immediate refund ( Wollenburg et al., 2018 ). It can also 

e more profitable for retailers to encourage customers to return 

roducts to the store instead of shipping via mail ( Nageswaran 

t al., 2020 ). With using the brick-and-mortar store for returns 

hey can steer the customer towards exchanging their product or 

owards buying another product ( Tarn et al., 2003 ). Furthermore, 

he retailer can use the brick-and-mortar store to inspect returns, 

hus not accepting invalid or unwanted returns ( de Leeuw et al., 

016 ). Due to such gatekeeping, returns are processed faster, which 
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s important to sustain the value of the product as they can quickly 

e added back to the store inventory ( Hübner et al., 2015 ). Allow-

ng returns from online sales to be returned in-store is referred to 

s cross-channel returns ( Radhi & Zhang, 2019 ). However, the re- 

ailer needs to account for these returns in their ordering decision 

s not accounting for the returns could result in unbalanced inven- 

ory positions and significant revenue loss ( Chen & Bell, 2012; Hu 

t al., 2019 ). 

The role of the store for an omni-channel retailer has becom- 

ng increasingly important, where the store can operate as a ful- 

lment centre for online orders, a pick-up point, a place to handle 

eturns, or an information channel ( Hübner et al., 2022; Mou et al., 

018 ). Shipping online ordered products from stores is referred to 

s a ship-from-store strategy ( Agatz et al., 2008 ). The strategy has 

everal advantages and disadvantages for the retailer. Advantages 

re for instance lower inventory levels, higher turnover rates, and 

horter delivery distances ( Bayram & Cesaret, 2021; Jalilipour Al- 

shah et al., 2015 ), and examples of disadvantages are negative in- 

tore customer experiences due to store personnel picking orders 

nd inaccurate inventory positions. To mitigate these negative side- 

ffects managerial studies suggest to reserve part of the brick-and- 

ortar store inventory for the online demand ( ENC, 2016; Hobkirk, 

015 ). This reservation of part of the inventory is referred to as ra- 

ioning the inventory across the shopping channels. 

By rationing an inventory across channels, a trade-off is made. 

toring products in the offline channel is more costly due to ex- 

ensive shelve space in the store. However, online channels typ- 

cally have a reduced profit per product due to the cost of on- 

ine fulfilment and the probability of a product being returned. Lit- 

le research has been conducted on the trade-off a retailer has to 

ake between the offline and online channel in the context of us- 

ng the store assets for the online channel. In this paper, we there- 

ore study how a retailer can utilise their brick-and-mortar store to 

andle the online fulfilment as well as the potential returns. The 

bjective of this study is to identify an optimal replenishment and 

ationing policy for an omni-channel retailer taking into account 

he return flow of the online ordered products. 

The integration of returns in the ordering and rationing decision 

omplicates the studied problem, as predictions for returns have to 

e considered in modelling the decision problem. Clearly, returns 

ill depend on historical sales. However, keeping track of historical 

ales can easily make modelling approaches intractable. Therefore, 

istorical sales data is often approximated by aggregating detailed 

istorical sales data, so the information can still be used in some 

ay to make better decisions. If retailers would not take into ac- 

ount potential returns at all, they would end up with excessive 

tock. Additionally, retailers can choose to manage their inventory 

uch that the potential returns from the online sales channel are 

onsidered in setting ordering and rationing policies. For instance, 

he rationing decision can be used to reserve products for future 

n-store customers who are more profitable when inventory posi- 

ions and outstanding orders are low. 

This research contributes to the literature on omni-channel re- 

ailing by showing how returns affect the retailer’s profit and in- 

entory management. More specifically, we first provide a model 

hat explicitly considers multi-period sales-dependent returns in 

he inventory management of an omni-channel retailer, based on 

 Markov Decision Process (MDP) formulation. Second, as the MDP 

ight become too large to solve large-scale instances with value 

teration (VI) to obtain an exact solution, we demonstrate how 

eep Reinforcement Learning (DRL) can be used to solve the prob- 

em and obtain an approximated solution. Third, we compare the 

ulti-period sales-dependent return MDP with other methods of 

odelling returns to gain insight in the importance of incorporat- 

ng historical sales in decision-making. Fourth, based on our nu- 

erical results, we provide managerial insights on how an omni- 
2 
hannel retailer should cope with returns, as well as general in- 

ights on the use of DRL in the context of retail operations inven- 

ory management. 

The remainder of this paper is structured as follows. 

ection 2 presents related research on return strategies for omni- 

hannel settings and inventory management. In Section 3 , we fur- 

her outline the decision problem and formulate it as a MDP. 

ection 4 presents the implementation of the DRL algorithm to the 

tudied problem. In Section 5 , the performance of the DRL policy 

ompared to the optimal solution is investigated for a wide range 

f instances on different performance measures. Additionally, the 

mportance of including historical sales data for decision-making is 

nvestigated by comparing it with other methods of modelling re- 

urns. In Section 6 we derive managerial insights from large-scale 

nstances. Section 7 concludes the research and discusses future re- 

earch opportunities. 

. Literature review 

Our work is related to the literature on omni-channel retail- 

ng as well as the literature on inventory management with return 

ows. Below, we briefly address related work on omni-channel re- 

ailing, with a focus on returns in an omni-channel context and 

he role of the store in omni-channel retailing. This is followed by 

 discussion of the literature on different methods for modelling 

eturn flows in inventory management. 

.1. Omni-channel retailing 

The study of return management in an omni-channel context is 

n understudied problem ( Bernon et al., 2016; Muir et al., 2019; 

u & Jackson, 2019 ). Hübner et al. (2022) also mention that the 

urrent body of literature does not close the gap between inven- 

ory management and returns in an omnichannel context. How- 

ver, for retailers, return management is becoming increasingly im- 

ortant, especially due to the increase in the return flow originat- 

ng from online orders. Retailers offer lenient return policies to re- 

ieve customer shopping risk and increase demand. However, dif- 

erent return policies have different effects. Generous return poli- 

ies increase demand, whereas longer return windows and ex- 

hange leniency influence return percentages ( Janakiraman et al., 

016 ). Ketzenberg et al. (2020) mention that lenient return poli- 

ies have resulted in customers exploiting the retailers policies. 

The current body of literature on return management mostly 

ocuses on retailers operating with a single online sales channel. 

or an overview of this literature, we refer to the recent compre- 

ensive review by Abdulla et al. (2019) . Most modelling research 

round returns is about return policies, and often only focuses on 

ingle-period return windows. Abdulla et al. (2019) also conclude 

hat significant opportunities for future research lies in analysing 

ow operational decisions regarding returns can be made to im- 

rove retailers performance. 

The strategic side of handling returns by brick-and-mortar 

tores has been extensively studied, where the focus is often on 

hether stores should be used for handling returns or not (e.g. 

ao et al., 2022; Jin et al., 2020; Mandal et al., 2021 ). However,

he operational side of handling the returned products in-store 

as only been studied to a limited extent ( Hübner et al., 2016; 

ena et al., 2016 ). Here, one of the main issues is the re-balancing

f inventory ( Bernon et al., 2016 ). Muir et al. (2019) and Radhi

 Zhang (2019) investigate how same- and cross-channel returns 

nfluence order policies, and conclude that leveraging brick-and- 

ortar stores for returns improves service levels as returned prod- 

cts can be resold quicker. Dijkstra et al. (2019) investigate how to 

e-balance the cross-channel returns across the physical stores or 

nline fulfilment center of the retailer. 
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.2. Inventory management with return flows 

Modelling product return flows is complicated by the interac- 

ion between inventories, sales, and returns. Return flows depend 

n historic sales, while current sales is limited by the inventory, 

hich is in turn influenced by the returns. In the literature, we 

nd two different ways to model product returns: (i) product re- 

urns are independent of demand, (ii) and product returns are de- 

endent on demand. 

By assuming that returns are independent of demand, return 

ows can be modelled as exogenous flows. Fleischmann et al. 

2002) and Feinberg & Lewis (2005) mention that in such cases, 

he problem comes down to a variant of an inventory model with 

ositive or negative net demand. However, Kiesmüller & Van der 

aan (2001) show that neglecting the dependency between de- 

and and return results in poor performance of inventory policies. 

et, Zerhouni et al. (2013) mention that ignoring the dependency 

etween demand and return increased costs only minimal in their 

tudy, which can be attributed to the long return window they 

onsidered, damping the effect of demand fluctuations. The study 

etting is based on de Brito & Dekker (2003) , who also mention 

hat long return windows is an assumption that does not hold for 

ost retail settings. Cases in which the return time is long, such as 

ertain remanufacturing systems can neglect the dependency with- 

ut much impact on performance ( Fleischmann & Minner, 2004 ), 

ue to the damping effect mentioned above. 

Fleischmann & Kuik (2003) discuss that modelling returns de- 

endent on demand is difficult, as such dependence spans across 

ultiple periods. Therefore, early work on returns is focused on 

odelling the dependency only within the same period or across 

ne period, as this reduces the complexity ( DeCroix, 2006 ). How- 

ver, such an assumption is often too harsh as approximating re- 

urns within at most one period results in sub-optimal policies 

 Benedito & Corominas, 2013 ). Having the returns span across mul- 

iple periods increases the modelling complexity significantly as 

t grows with the quantity of products sold and the number of 

eriods considered for the return window. Benedito & Corominas 

2013) consider a remanufacturing system in which the products 

re always returned, either when their lifetime has exceeded or are 

roken down during their lifetime. They do include a dependency 

cross multiple periods and show that finding the optimal policy 

or a small example is computationally feasible, but for longer re- 

urn windows they propose an approximated MDP where returns 

re independent of sales. Ambilkar et al. (2022) recently also em- 

hasised that an interesting research direction is using machine 

earning techniques to solve the intractable return management 

roblem. 

.3. Contribution 

We conclude from the literature that modelling multi-period 

ales-dependent return flows is difficult. The complexity of mod- 

lling approaches typically grows exponentially with the length of 

he return window and the number of products sold in that win- 

ow and thus easily becomes intractable. However, including this 

ependency of returns with sales is important to ensure optimal 

olicies. Largely due to this complexity, the influence of returns 

n managing inventories for an omni-channel retailer is an under- 

tudied subject. Whereas most previous literature focuses on the 

trategic decision of whether or not to handle returns in-store, we 

pecifically aim to study the impact of handling returns on oper- 

tional decision making. We contribute to the existing literature 

y studying the inventory management of an omni-channel retailer 

hat uses their store inventory to fulfil both offline and online de- 

and. The products ordered online have a probability of being re- 

urned within a given return window, spanning over multiple sell- 
3 
ng periods. To reduce model complexity, and still capture some of 

he temporal dynamics, we introduce a modelling approach to ad- 

ress the complexity of return dependence across multiple periods. 

. Markov decision process 

We study the setting of an omni-channel retailer with a phys- 

cal store and an online channel. The retailer has two decisions to 

e made: an ordering decision and a rationing decision. We con- 

ider a setting in which a period consists of T sub-periods. We 

ssume the retailer places an order at the beginning of a period, 

hich is replenished after � sub-periods. This could for instance re- 

ect a weekly ( T = 7 ) ordering decision with a delivery after two

ays ( � = 2 ). This ordering decision q occurs at the beginning of

he first sub-period. Additionally, at the beginning of each sub- 

eriod, a rationing decision a for the two channels is made, de- 

iding on the inventory levels that are reserved for each channel. 

hese inventories are used to fulfil the demand of the channels, 

nd no substitution between channels takes place. When a cus- 

omer faces a stock-out in their preferred channel, the demand is 

ssumed to be lost which is a common assumption in retail en- 

ironments. The customer has a limited return window in which 

hey can return the product. Throughout the sub-periods, products 

hat were sold in previous periods in the online channel can be 

eturned. 

At the end of each sub-period, the remaining inventories of 

he two channels, together with the products returned during that 

ub-period, are used for fulfilment the next day. The retailer keeps 

rack of the products sold in the online channel, as these can lead 

o returns. We assume that products sold through the offline chan- 

el are not returned, as product returns are mostly a characteristic 

f online sales. 

.1. Modelling approach 

The problem described above can be formulated as an MDP. As 

he problem consists of decisions and state transitions on different 

ime intervals, we formulate it as a Hierarchical Markov Decision 

rocess as described in Kristensen (1988) . Describing the studied 

roblem as a hierarchical MDP allows for convenient notation as 

ction spaces and state transitions will not be dependent on the 

ub-period. The hierarchy of decisions in the MDP is illustrated in 

ig. 1 . At level I of the MDP the replenishment decision is made, 

nd at level II of the MDP the rationing decision is made in each 

ub-period. The selling process and possible returns are also in- 

luded in level II for each sub-period. 

The objective of the MDP is to maximise profit, consisting of 

he sales revenue and the different costs. These costs include hold- 

ng and handling costs for the individual channels, online fulfil- 

ent costs, costs of handling returns, and costs of the product. In 

n omni-channel setting, the price of the product is equal in both 

hannels. We keep track of the number of products sold online 

ach sub-period however, aggregate them on the time scale of level 

 to reduce complexity. As the retailer has a maximum time win- 

ow for customer to return their products, we only keep track of 

roducts that are sold within M periods. Furthermore, we assume 

hat products are not returned within the period the product is 

old as customers do not instantly return a product after delivery. 

At level I of the MDP, the state S consists of the inventory po- 

ition I and the quantity of unreturned products sold in the on- 

ine channel up to M periods ago R = ( R 1 , . . . , R M 

) , together form- 

ng the state S = ( I, R ) . We use the bold notation to indicate it as

 vector. At this level, the replenishment decision q is made. At 

evel II of the MDP, the state s consists of the inventory position I,

he number of products sold in the online channel so far this sub- 

eriod R , unreturned products from the previous periods R , the 
0 
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Fig. 1. Visualisation of the states and actions in one period. 
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utstanding replenishment order Q , and the sub-period t . At this 

evel, the rationing decision a is made each sub-period, where a is 

he number of products stored in the offline channel. At the begin- 

ing of the first sub-period the information of the state at level I 

s used to construct the state at level II: s = ( I, R 0 , R , Q, t ) . The in-

entory state I and R are identical from the state at level I. For the 

rst sub-period R 0 is set to zero, and Q is set to the replenishment 

ecision of level I q . For all subsequent sub-periods, the number of 

nline products sold in the previous sub-periods is added to R 0 . 

When the replenishment occurs at sub-period t = � , the out- 

tanding order quantity is set to zero for the rest of the period, i.e. 

 = ( I, R 0 , R , Q = 0 , t = � ) . At the end of all sub-periods, the total 

nline sales of the period is given by R ′ 0 , and the remaining num-

er of unreturned products sold in the channel m periods ago by 

 

′ 
m 

. This state information of level II is passed back to level I to

orm the state S ′ = 

(
I ′′ , R 

′′ ). Where I ′′ is thus the closing inventory 

f the period, and R 

′′ is the sold products in the online channel 

hat are not returned, as these are from the previous period they 

re given as R ′′ 
1 

= R ′ 
0 
, R ′′ 

2 
= R ′ 

1 
, . . . , R ′′ 

M 

= R ′ 
M−1 

. 

The uncertainty in the MDP comes from both the demand and 

he product returns. The demand is modelled according to a dis- 

rete distribution, with P i ( d i ) indicating the probability that de- 

and of channel i is d i with i ∈ { 1 = offline , 2 = online } and d i ∈
 

0 , 1 , . . . , D i } . D i indicates the maximum possible demand of the 

hannel. The returns are modelled according to M Binomial dis- 

ributions given as B ( r m 

) with parameters ρ and R m 

, where ρ is 

he probability a single product is returned, and R m 

is the pool of 

eturnable items, which is the total sales of m periods ago that 

as not been returned yet. As we only assume products are re- 

urned that are sold between 1 and M periods ago, m ∈ M with 

 = { 1 , 2 , . . . , M} . We assume that the return probability is inde-

endent of the period in which the product is sold. If there would 

e a reason to model these probabilities differently, ρ could be 

ade dependent on m as the binomial distributions of unreturned 

roducts sold in period m are independent. 

.2. Model 

.2.1. State space 

The state space of the inventory state at level I is given by 

 ∈ I with I = { 0 , 1 , . . . , (T + � ) · ∑ 

i D i + M · T · D 2 } . The inventory

tate is limited by the maximum expected demand and the re- 

urns of the last M periods. We assume the retailer will never 

rder more than the maximum expected demand over the pe- 

iod plus lead time. However, products sold online over the last 

periods ago could theoretically all be returned and added to 

he inventory. The maximum inventory level is therefore given by 

 

T + � ) · ∑ 

i D i + M · T · D 2 . The state space of the unreturned prod- 

ct sold m periods ago is limited by the maximum amount of ex- 

ected online sales in a period: R ∈ R with R = { 0 , 1 , . . . , T · D 2 } . 
The state space of the inventory at level II is equal to the 

tate space at level I, I ∈ I . The state space of the order quan-
4 
ity is limited by the maximum expected demand of the re- 

iew period minus the inventory position: Q ∈ Q (I) with Q (I) =
 

0 , 1 , . . . , T · ∑ 

i D i − I } . The state space of the sold product m peri- 

ds ago is equal to that at level I, R ∈ R . 

The state space of the products sold in the current period is 

ependent on the sub-period, as it is limited by the maximum 

mount of expected online sales per sub-period: R 0 ∈ P(t) with 

(t) ∈ { 0 , 1 , . . . , t · D 2 } . 

.2.2. Action and action space 

At level I of the MDP, the order quantity q is determined at the 

eginning of the period, and is limited by the order quantity state: 

 ∈ Q ( I ) = { 0 , 1 , . . . , T · ∑ 

i D i − I } . 
At level II of the MDP, a rationing decision a is made every sub- 

eriod t . This rationing decision decides how many products are 

tored in the channels. The action space of the rationing decision is 

ependent on the current inventory position: a ∈ A (I ) with A ( I ) =
 

0 , 1 , . . . , I } . The rationing decision is made at the beginning of the 

ub-period and is not revised throughout the sub-period. 

.2.3. State transitions 

At level I of the MDP the state transitions every period, while 

t level II of the MDP the state transitions every sub-period. At 

evel II of the MDP the state transition from s = ( I, R 0 , R , Q, t ) to 

 

′ = (I ′ , R ′ 0 , R 

′ , Q 

′ , t + 1) occurs. The transition of the inventory I to

 

′ is dependent on the demand, rationing decision, returns, replen- 

shment, and the sub-period: 

 

′ = ( a − d 1 ) 
+ + ( ( I − a ) − d 2 ) 

+ + 

M ∑ 

m =1 

r m 

+ δ( t = � ) · Q (1) 

here x + = max (0 , x ) and δ(x ) denotes the Kronecker delta, which

ives the value 1 if x = True , otherwise 0. The first term of the

quation refers to the demand satisfied in the offline channel, in 

hich the inventory level is a and the demand occurring d 1 . The 

econd term refers to the demand satisfied in the online channel, 

n which the inventory level is I − a and the demand occurring 

 2 . The third term of the equation refers to the returned products, 

hich is the sum of the products returned that are sold between 

 and M periods ago. The last term refers to the replenishment, 

hich occurs at t = � , which is at the beginning of sub-period � . 

The transition of the number of products sold online in the cur- 

ent period R 0 to R ′ 0 is dependent on the number of product sold 

nline the previous sub-period and the products sold online in the 

urrent sub-period: 

 

′ 
0 = R 0 + min ( d 2 , I − a ) (2) 

here the product sold online in the current sub-period are added 

o those where already sold in the subsequent sub-period. The 

ransition of unreturned products m periods ago, R m 

to the next 

tate, R ′ m 

is dependent on the quantity of products being returned 
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. Only unreturned products sold more than 1 period ago can be 

eturned, with a maximum of M periods. 

 

′ 
m 

= R m 

− r m 

∀ m ∈ M (3) 

The transition of the replenishment quantity Q to Q 

′ depends 

n the sub-period. If the replenishment has yet to occur, Q remains 

onstant, otherwise it is set to zero: 

 

′ = 

{
Q if t < � 

0 otherwise. 
(4) 

At level I of the MDP the state only transitions at the end of the

eriod, where the information of the state at level II is obtained to 

orm the new state of level I: S ′ = 

(
I ′′ , R 

′′ ). I ′′ is the closing inven-

ory of the period, which is obtained after the last inventory state 

ransition of level II of the MDP when t = T . 

The state transition of the number of unreturned products for 

evel I is obtained after the last state transition of R 0 and R from 

evel II of the MDP when t = T . As we keep track of the periods ago

 products was sold and the period has ended, unreturned prod- 

cts that were returned m − 1 periods ago are now m periods old. 

nreturned products older than M periods are not eligible to be 

eturned anymore, thus we do not keep track of these items. 

 

′′ 
m 

= R 

′ 
m −1 ∀ m ∈ M (5) 

.2.4. Expected immediate reward 

The goal of the MDP is to maximise its profit, which consists of 

he revenue, and several costs. The expected immediate reward at 

evel I of the MDP only consists of the ordering cost and is given

s follows: 

 R I ( S, q ) = −q · c p (6) 

In which c p is the procurement cost of the product. The ex- 

ected immediate reward per sub-period at level II of the MDP 

onsists of revenue sold from selling products, online fulfilment 

ost, holding costs and handling costs of returns: 

 R II (s, a ) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

p 

(∑ 

d<a 

d · P 1 (d) + 

∑ 

d≥a 

a · P 1 (d) 

)
(7.1) 

+ ( p − c u ) 

( ∑ 

d<I−a 

d · P 2 (d) + 

∑ 

d≥I−a 

(I − a ) · P 2 (d) 

)
(7.2) 

−( c h 1 · a + c h 2 · ( I − a ) ) (7.3) 

−( p + c r ) 
M ∑ 

m =1 

R m 

· ρ (7.4) 

The first term (7.1) of the expected immediate reward consists 

f the revenue of the offline channel given price p. The same sales 

rice is applied for the online channel, however, a shipment cost 

f c u is incurred as seen in the second term (7.2). As customers 

re expecting free shipping, the retailer has to incur the cost. The 

hird term (7.3) is the holding cost of the offline and online chan- 

el, c h 1 and c h 2 per product respectively. The last term (7.4) is the 

ost from expected returns of M periods ago, p + c r is the handling 

ost of a return plus the price of the product, as customer receive 

ull return payment. 

v n (s ) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

max 
q ∈Q (I) 

{
E R I (s, q ) + max 

a ∈A (I) 

{
E

+ γ
D 1 ∑ 

d 1 =0 

D 2 ∑ 

d 2 =0 

M ∑ 

m =1 

R m ∑ 

r m =0 

P

max 
a ∈A (I) 

{
E R II (s, a ) + γ

D 1 ∑ 

d 1 =0 d
5

.3. Bellman equation and value iteration 

The objective of the MDP is to find the optimal policy that 

aximises the long-term discounted profit. The expected future 

iscounted profit when following an optimal policy over n con- 

ecutive sub-periods when starting in state s is defined as v n (s ) . 

o obtain the optimal policy by value iteration one starts setting 

 0 (s ) = 0 for all states s . Next, one computes for all s : v 1 (s ) =
max 
 ∈A (I) 

{ E R II (s, a ) } , and continues by computing v 2 , v 3 , etc. using the 

ecursive Bellman equation in equation (8) . 

s, a ) 

) P 2 ( d 2 ) B ( r m 

) · v n −1 

(
s ′ 
)}}

if n mod T = 0 

 

 

 =1 

R m ∑ 

r m =0 

P 1 ( d 1 ) P 2 ( d 2 ) B ( r m 

) · v n −1 

(
s ′ 
)}

otherwise. 

(8) 

Here, γ is the discount factor that is included to ensure a fair 

omparison between VI and the solution technique of DRL, which 

equires discounting of future rewards. The first equation in (8) , 

here n is a multiple of T , relates to the ordering and rationing

ecision, which both happen at the beginning of the period con- 

ecutively. The second equation relates to the other time periods, 

n which only the rationing decision is involved. 

Let n be the iteration counter. The Markov process is unichain 

nd aperiodic at level I, and unichain but periodic at level II with 

eriod T . Hence the difference v n − v n −T converges for all states to 

he same value, as n moves to infinity. A discounting factor γ is 

ncluded for a fair comparison with DRL, which requires discount- 

ng for stabler training as future rewards might be uncorrelated 

n DRL. For γ < 1 , the difference v n − v n −T converges to zero, as 

 tends to infinity. If ‖ v n − v n −T ‖ is smaller than ε(1 − γ ) /γ , the

alue iteration stops (we specify ε = 0 . 1 ). For details on the speed

nd conditions for convergence we refer to Puterman (1994) . As 

t level II the problem is periodic with period T , one full iteration 

onsists of T sub-periods. 

The (nearly) optimal strategy for the two levels of the MDP can 

e obtained from the results of the value matrices. First the op- 

imal replenishment policy q ∗(s ) at t = 1 for level I is found by:

 

∗(s ) = arg max 
q ∈Q (I) 

{ 

E R I (s, q ) + max 
a ∈A (I) 

{ 

E R II (s, a ) 

+ γ
D 1 ∑ 

d 1 =0 

D 2 ∑ 

d 2 =0 

M ∑ 

m =1 

R m ∑ 

r m =0 

P 1 ( d 1 ) P 2 ( d 2 ) B ( r m 

) · v n −1 

(
s ′ 
)} } 

(9) 

Second, the optimal rationing decision a ∗(s ) for all states in t =
 , . . . , T for level II is found by: 

 

∗(s ) = arg max 
a ∈A (I) 

{ 

E R II (s, a ) 

+ γ
D 1 ∑ 

d 1 =0 

D 2 ∑ 

d 2 =0 

M ∑ 

m =1 

R m ∑ 

r m =0 

P 1 ( d 1 ) P 2 ( d 2 ) B ( r m 

) · v n −1 

(
s ′ 
)} 

(10) 

. Implementation of deep reinforcement learning algorithm: 

roximal policy optimisation 

For small-scale settings the Bellman equations can be solved to 

ptimality within reasonable computation time and RAM usage. 
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owever, for large-scale settings, the action and state space be- 

omes increasingly large resulting in infeasible computational time 

r memory limitations. DRL is considered to be useful to circum- 

ent the curse of dimensionality, as it can be used to develop near- 

ptimal solutions that could not be obtained using conventional 

pproaches ( Boute et al., 2022 ). In DRL, many different algorithms 

re used. They all follow the general structure of an agent inter- 

cting with an environment and collecting experience to find the 

est policy. This policy is found by using the collected experience 

o train an approximation of the state values and policy, in which 

he approximations often take the form of a neural network. 

Actor-critic methods are reinforcement learning algorithms in 

hich both policy gradient and value estimation are applied. The 

ctor and the critic are the two interrelated components making 

p the method. The critic provides an estimation of the expected 

uture discounted profit, which is used by the actor to apply gra- 

ient descent on the policy. Asynchronous Advantage Actor-Critic 

A3C) is a well-known actor-critic method that has proven to per- 

orm well for various inventory management problems ( Gijsbrechts 

t al., 2022 ). However, the A3C algorithm has the disadvantage of 

eeding a lot of training data and extensive parameter tuning. In 

rder for the actor to converge, it needs to have an almost infinite 

mount of training data. Recently, Vanvuchelen et al. (2020) have 

hown that another actor-critic method called Proximal Policy Op- 

imisation (PPO) also performs well in an inventory management 

etting and that it is less sensitive to the disadvantages of A3C. 

PO is praised for its sample efficiency and ease of implementa- 

ion ( Schulman et al., 2017 ). 

The PPO algorithm trains the actor and the critic, which are 

oth represented by a neural network. The input of these neural 

etworks is the state of the system. The output for the actor is 

he action and the output for the critic is an estimation of the ex- 

ected future discounted profits for the input state. As the hier- 

rchical MDP discussed in this paper has two levels, we use two 

ctor-critic sets and four neural networks in this paper. The ad- 

antage of having a separate actor-critic set for each action is that 

t decreases the complexity of training the actor neural network. 

his could improve training, as the neural networks only have to 

pproximate one action. The architecture of the neural networks is 

dentical for all four networks, except for the output layer. 

The neural networks consists of two fully connected layers with 

idth 256, all with a tanh activation function and a bias. The 

anh activation function has the advantage of non-linearity and has 

een proven to be better at quickly finding local (or global) min- 

ma as the derivatives can be large ( LeCun et al., 2012 ). The four

eural networks have different applications, and therefore the pa- 

ameters of the neural network, which are the weights and bias, 

re different. The parameters of the actor and critic neural network 

re given by θh and φh respectively, where the level of the MDP is 

iven by h ∈ { 1 = level I , 2 = level II } . 
For the actor, the last layer is a softmax activation function, 

hich provides a probability distribution over the action space de- 

oted by π( ·| S, θ ) with S being the input state. Therefore, the size 

f the last layer is equal to the action space of the level. From the

ctor we can get the best action by taking the action with highest 

robability. For the critic, the size of the last layer is one, as the 

utput is the estimation of the expected future profit for state S is 

enoted by V ( S, φ) . 

.1. PPO algorithm 

To update the neural networks, the PPO algorithm needs to col- 

ect information about the environment. This is performed by sam- 

ling the studied problem and storing the visited states, actions, 

nd related profits during the sampling. Fig. 2 visualises the imple- 

entation of the PPO algorithm with the sampling, updating of the 
6 
eural network, and the evaluation of the policy found. We sam- 

le for B periods and thus T · B sub-periods, and store the visited 

tates, taken actions, and received profits. As our MDP has two lev- 

ls, the storing of the training data differs and we store them sep- 

rately. The algorithm starts with initialising the neural network 

arameters randomly and setting the training iteration counter ( κ) 

o one. 

.2. Sampling 

The sampling is started by drawing a random state S 1 , setting 

he sub-period t = 1 , and setting the sample points K and k to one.

he state S K is used in the actor and critic of level I to get the or-

ering action q K and expected future profit V ( S K , φ1 ) . The ordering 

ction q K is obtained by randomly sampling from the probability 

istribution of the ordering action space, q K ∼ π( ·| S K , θ1 ) . The or- 

ering action is put into environment level I to get the state s k ,

hich is used by the actor and critic of level II. Additionally, from 

nvironment level I we collect the profit E K when taking action 

 K when in state S k , this information combined with V ( S K , φ1 ) is 

tored in the training data of level I. From the actor and critic of 

evel II a rationing action is drawn from the probability distribu- 

ion a k ∼ π( ·| s k , θ2 ) and expected future profit V ( s k , φ2 ) is gained, 

here the rationing action is put in environment level II to get 

he reward e k , which together with the state and action is stored 

n training data of level II. The demand and returns that occur in 

he environment level II are randomly drawn from their respective 

istributions. Furthermore, the next state s k +1 is collected from en- 

ironment level II. This next state is used as input for the neural 

etwork of level II if the sub-period has not ended yet, which is 

etermined by t ≤ T , else this state is used as input for the neural

etwork of level I. Every time a sample is drawn from environment 

evel II, both the sample point k and sub-period t are increased by 

ne. When the sub-period has ended, the state s k is used to con- 

truct state S K+1 , t is set to one indicating we are at the beginning

f the period again, and the sample point K is increased by one. 

hen K = B and k = T · B the sampling is done and the neural net-

orks are updated. 

.3. Update neural networks 

First, with the collected training data the advantage and dis- 

ounted profit are calculated. Secondly, the training data, advan- 

age, and discounted profit are shuffled and split into η mini- 

atches to calculate the average loss over each mini-batch. Each 

ini-batch consecutively updates the neural networks once. For 

ach mini-batch the loss is minimised by updating the neural net- 

orks parameters θh and φh to θ ′ 
h 

and φ′ 
h 
. The procedure of calcu- 

ating the loss and how the parameters of the neural network are 

pdated with respective to the loss is given in Appendix A . 

The process of splitting the training data, advantage, and dis- 

ounted profit and updating the neural networks is called an 

poch. As we are using the collected training data, advantage, and 

iscounted profits multiple times to update the neural networks 

 total of u epochs are performed. In addition, in every epoch 

he training data is shuffled, to create new configuration of mini- 

atches in each epoch. This ensures that the updates of the neural 

etworks are not over-fitted to the training data. Thus, the param- 

ters of the neural networks are updated η · u times, were each 

ample point in the training data is used u times. 

.4. Evaluation 

Once the neural networks are trained u epochs, the training 

teration counter κ is updated by one. After updating the neural 

etworks for κmax iterations, where each training iteration consists 
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Fig. 2. PPO algorithm flow diagram. 
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Table 1 

Parameter values used in the implementa- 

tion of the PPO algorithm. 

Hyperparameters Value 

Depth of NN 2 

Width of NN 256 

Activation function TanH 

Sample periods ( B ) 512 

Amount of mini-batches ( η) 4 

Number of epochs ( μ) 10 

Training iterations ( κmax ) 1000 

Learning rate ( α) 10 −4 

Entropy regularisation ( βE ) 10 −5 

Clipping parameter ( ε) 0.2 

Huber loss constant ( δ) 5 

t

u

p

t

t

i

n

s

v

4

p  

T

s

f B periods, the resulting policy is evaluated. We follow a sim- 

lar procedure as Vanvuchelen et al. (2020) . The policy is simu- 

ated for 1,0 0 0,0 0 0 periods considering a small warm-up period. 

uring the sampling the action to be taken is randomly drawn 

rom the output of the actor, which is a probability distribu- 

ion over the actions, whereas in the evaluation we take the ac- 

ion with the highest probability as this is considered to be the 

est found action for the given state. Thus for the ordering ac- 

ion we take q = arg max ( π( ·| S, θ1 ) ) and for the rationing action 

 = arg max ( π( ·| s, θ2 ) ) . 

To measure the performance, the average profit per period from 

he simulation is used. If the average profit per period of the best 

esulting policy has not changed more than 0.5% over three consec- 

tive policy evaluations, we assume the algorithm has converged 

o its final policy. A maximum of 30 policy evaluations are con- 

idered, if the maximum is reached the best performing policy is 

ssumed to be the final policy. 

.5. Implementation 

.5.1. Parameters 

To implement the PPO algorithm, several parameters and in- 

ut data need to be defined. The tuning of reinforcement learn- 

ng parameters can be computational costly ( Gijsbrechts et al., 

022 ), thus we started from the settings of related work such as 

anvuchelen et al. (2020) . We did however adapt some of the pa- 

ameters to our problem setting, and performed some experiments 

o improve the performance of our PPO algorithm. This was done 

y tuning the parameters and investigating the results for a test 

ase. We evaluated different neural network architectures, sample 

eriods, amount of mini-batches, learning rate, entropy regularisa- 
7 
ion, and the Huber loss constant. Table 1 describes the parameters 

sed. 

Our model has relatively large demand fluctuations during the 

eriod compared to related work, a larger sampling period is used 

o reduce uncertainty in the update of the network. Furthermore, 

he width of the neural network is increased, as our action space 

s relatively large and should not exceed the width of the neural 

etwork. The initial bias and weights of the neural network are 

ampled from a Normal distribution with mean 0 and standard de- 

iation 0.5. Therefore the initial policy is a random policy. 

.5.2. Scaling of states and input data 

By normalising the input data of the neural network it is ex- 

ected to converge quicker to the training data ( LeCun et al., 2012 ).

he input of the neural network, which is the state, is therefore 

caled so that the minimum value of the state is -5 and the largest 
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Table 2 

Parameter values for small-scale instances, where the 

base case is given in bold. 

Parameters Value 

μ1 1 , 2 , 3 

μ2 1 , F (ρ) 

CV i 1 / (2 
√ 

μi ) , 
√ 

1 /μi 

ρp 0 . 2 , 0 . 3 , 0 . 4 

M 1 , 2 

c r 0 , 5 , 10 

c p 30 , 50 , 70 

c h 1 0 . 1 , 0 . 2 , 1 

c h 2 0 . 05 , 0 . 1 , 0 . 5 

� 1 , 2 , 3 

r

o

F
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alue of the state is 5. Additionally, the economic parameters are 

caled from 0 to 1. 

.5.3. Action masking 

As described in Section 3.2.2 , the action space is limited by the 

urrent state for the replenishment and rationing action. To ensure 

he PPO algorithm does not consider invalid actions, we apply ac- 

ion masking using the method of Huang & Ontañón (2020) . This 

ethod sets the output of invalid actions in the actor neural net- 

ork before the softmax activation layer to a small negative value 

in our case −10 −8 ), so that after the softmax activation layer the 

robability of choosing these actions becomes negligible. An addi- 

ional advantage of action masking is that by masking the action 

pace, the PPO algorithm can learn faster as it quickly learns to 

isregard the invalid actions. 

. Computational complexity and performance 

As mentioned in Section 4 , only small-scale instances can nor- 

ally be solved with the Bellman equation. To compare the com- 

utational complexity and performance of PPO with VI, we develop 

 range of small-scale instances, consisting of a base test case and 

arious alterations. The data set used is based on recent literature 

tudying similar omnichannel retail settings with a few alterations 

o reduce the size of the problem ( Bayram & Cesaret, 2021; Dijk- 

tra et al., 2019; Goedhart et al., 2022; Li et al., 2015; Ovezmyradov 

 Kurata, 2019 ). Additionally, we investigate the effect of modelling 

he returns multi-period and sales-dependent by comparing it with 

wo other methods that approximate the return flow. 

.1. Base test case and alterations 

For the base test case, we assume average demand of the indi- 

idual channels is assumed to be Poisson distributed with μ1 = 3 

nd μ2 = 1 . As one needs a finite support, the distribution is right 

runcated at a cumulative probability of 99%, preserving the mean 

alue using the approach by Cohen (1954) is used. Thus the maxi- 

um demand in a sub-period is D 1 = 8 and D 2 = 4 . 

We assume a period consists of 7 sub-periods ( T = 7 ), to reflect

 weekly ordering decision. Replenishment orders are placed on 

onday ( t = 1 ) with lead time � = 2 , thus delivered on Wednesday

 t = 3 ). Here both events occur at the beginning of the sub-period.

The probability of a product being returned is ρp = 0 . 4 in a re-

urn window M = 2 periods ( Dijkstra et al., 2019 ). The probabil-

ty of a product being returned in a sub-period is ρ = 1 − (1 −
p ) 

1 / (T ·M) = 0 . 036 . Similar to the demand distribution, we truncate 

he return distribution at a cumulative return probability of 99%. 

dditionally, we reshape the binomial distribution according to the 

pproach of Johnson et al. (2005) to preserve the mean value. Al- 

hough a binomial distribution has a natural maximum value, we 

runcate the return distribution to reduce the size of the problem. 

The economic parameters are based on literature studying sim- 

lar settings ( Bayram & Cesaret, 2021; Li et al., 2015; Ovezmyradov 

 Kurata, 2019 ). We set the price of the product at p = 100 and

he cost of the product c p = 30 . The handling cost incurred for sat-

sfying an online order is set at c u = 5 . The holding cost of the of-

ine and online channel are c h 1 = 1 and c h 2 = 0 . 5 , respectively. The

andling cost of a returned product is c r = 5 . The discount factor

s γ = 0 . 99 , similarly as in Vanvuchelen et al. (2020) . 

The different instances are created by varying specific subsets of 

arameters. Table 2 presents the values for the specific parameters. 

he parameter values for the base case are listed in bold. 

The different instances in which μ2 = F (ρ) represent scenar- 

os in which the online return percentages vary, but the net online 

ales remains constant. These instances are created to investigate 

ow the uncertainty of returns influence the profitability of the 
8 
etailer, without it being influenced by the net online sales. The 

nline demand is calculated as follows: 

 (ρ) = 

μ∗
2 (1 − ρ∗

p ) 

( 1 − ρ) 
(11) 

Here, μ∗
2 

and ρ∗
p are the online demand and return percentage 

f the base test case. Other instances are created by halving the co- 

fficient of variation ( CV i ). For alternative values of CV i , the demand

istribution is fitted to μi and CV i using the procedure described 

n Adan et al. (1995) . All demand distributions are reshaped as 

ight-truncated distributions ( Cohen, 1954; Johnson et al., 2005; 

ouchard & Ward, 2015; Shah, 1966 ), truncating at a probability 

f 99% of the cumulative distribution function. In the remainder of 

his paper, if a instance does not specify a certain parameter value, 

t will be equal to their base test case setting. 

.2. Value iteration vs proximal policy optimisation 

The results presented in this section were obtained by imple- 

enting VI in Python version 3.7.2. For the neural network mod- 

ls of the PPO algorithm TensorFlow 2.3.0 was used. The model 

as run on a Personal Computer with Intel Xeon W-2133 CPU @ 

.60 gigahertz and 32 GB of RAM. 

Table 3 presents the required computational time, RAM usage, 

nd optimality gap for both algorithms, as well as the total amount 

f states in the system. The RAM usage is mainly dependent on 

he size of the value matrix (as this changes due to the order- 

ng state becoming zero after replenishment, it is expressed as the 

aximum RAM usage during an iteration). The optimality gap is 

he difference in profit between the optimal solution derived via 

I and the policy found by the PPO algorithm. The profit for the 

olicy found by VI and PPO is obtained by simulating the result- 

ng policies of both algorithms for 1,0 0 0,0 0 0 periods with a small

arm-up period. 

From Table 3 , it is observed that the demand, coefficient of vari- 

tion, returns, and lead time increase the state space exponentially. 

specially for the return percentages the curse of dimensionality 

s clear, as an increase of 10% in return percentages doubles the 

mount of states in the model. For some return percentages, a sim- 

lar amount of states can be seen. This is due to the truncation of 

he distribution function for the number of returns in a sub-period, 

s the truncation then happens at the same value. Increasing the 

ead time increases the number of sub-periods the ordering state 

s included in the state space and the maximum order quantity, 

herefore increasing the amount of states significantly. 

It is observed that for the small-scale instances the CPU time of 

I is much lower compared to the PPO algorithm. The CPU time of 

I grows exponentially with the number of states and state transi- 

ions, the CPU time of the PPO algorithm is less sensitive to the 

imensionality of the instance. VI solves the problem iteratively 

ackwards via the Bellman equation, where for each possible state, 

he action and related probability distribution on the next states is 
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Table 3 

Computational complexity and performance for VI and the PPO algorithm for the small-scale instances. 

Instance States (in millions) CPU time (hours) RAM (MB) Optimality gap (%) 

MDP PPO MDP PPO 

μ1 = 3 , μ2 = 1 a 205 .8 17 .87 85 .7 4283 .1 6 .1 −1 .64 

μ1 = 2 , μ2 = 1 153 .6 12 .19 104 .2 3170 .0 5 .4 −2 .20 

μ1 = 1 , μ2 = 1 108 .8 7 .61 146 .6 b 2219 .5 4 .7 −2 .73 

CV i = 1 / 
√ 

μi 
a 205 .8 17 .87 85 .7 4283 .1 6 .1 −1 .64 

CV 1 = 1 / (2 
√ 

μ1 ) 130 .3 6 .04 141 .8 2674 .5 5 .1 −1 .72 

CV 2 = 1 / (2 
√ 

μ2 ) 59 .3 0 .55 142 .3 1275 .8 5 .0 −1 .84 

CV i = 1 / (2 
√ 

μi ) 33 .7 0 .24 142 .0 709 .1 3 .9 −1 .33 

ρp = 0 . 2 43 .8 12 .72 128 .8 521 .9 5 .3 −2 .12 

ρp = 0 . 3 107 .1 17 .48 100 .3 1746 .2 5 .7 −2 .29 

ρp = 0 . 4 a 205 .8 17 .87 85 .7 4283 .1 6 .1 −1 .64 

ρp = 0 . 5 431 .8 30 .24 145 .8 b 8777 .4 6 .5 −2 .20 

ρp = 0 . 6 431 .8 31 .93 146 .1 b 8777 .4 6 .5 −2 .03 

ρp = 0 . 2 , μ2 = F (ρp ) 18 .8 12 .72 123 .3 440 .4 5 .0 −2 .12 

ρp = 0 . 3 , μ2 = F (ρp ) 80 .3 17 .48 149 .2 b 1741 .2 5 .7 −2 .29 

ρp = 0 . 4 , μ2 = F (ρp ) a 205 .8 17 .87 85 .7 4283 .1 6 .1 −1 .64 

ρp = 0 . 5 , μ2 = F (ρp ) 431 .8 30 .24 123 .3 8777 .4 5 .0 −2 .20 

ρp = 0 . 6 , μ2 = F (ρp ) 903 .4 31 .93 123 .3 18131 .9 5 .0 −2 .03 

M = 1 10 .5 0 .85 147 .0 b 149 .6 5 .7 −2 .33 

M = 2 a 205 .8 17 .87 85 .7 4283 .1 6 .1 −1 .64 

c r = 0 205 .8 22 .63 145 .6 b 4283 .1 6 .1 −2 .11 

c r = 5 a 205 .8 17 .87 85 .7 4283 .1 6 .1 −1 .64 

c r = 10 205 .8 22 .78 148 .6 b 4283 .1 6 .1 −2 .44 

c p = 30 a 205 .8 17 .87 85 .7 4283 .1 6 .1 −1 .64 

c p = 50 205 .8 23 .41 144 .4 b 4283 .1 6 .1 −2 .04 

c p = 70 205 .8 24 .33 126 .4 4283 .1 6 .1 −0 .89 

c h 1 = 0 . 1 , c h 2 = 0 . 05 205 .8 23 .96 125 .0 4283 .1 6 .1 −1 .97 

c h 1 = 0 . 2 , c h 2 = 0 . 1 205 .8 24 .40 126 .9 4283 .1 6 .1 −0 .81 

c h 1 = 1 , c h 2 = 0 . 5 a 205 .8 17 .87 85 .7 4283 .1 6 .1 −1 .64 

� = 1 63 .3 3 .30 135 .9 3325 .7 5 .4 −2 .40 

� = 2 a 205 .8 17 .87 85 .7 4283 .1 6 .1 −1 .64 

� = 3 493 .3 58 .63 137 .9 5360 .8 6 .9 −2 .34 

Average 214 .9 18 .39 126 .9 4251 .3 5 .6 −1 .95 

a Base test case with μ1 = 3 , μ2 = 1 , CV i = 1 / 
√ 

μi , ρp = 0 . 4 , M = 2 , c r = 5 , c p = 30 , c h 1 = 1 , c h 2 = 0 . 5 , � = 2 . 
b Instances in which the policy did not converge within 30 iterations. 
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alculated and used to update the state value. Therefore, the CPU 

ime of VI does not solely depend on the number of states but also 

n the number of state transitions and the action space resulting 

n larger computational time. 

The PPO algorithm is less sensitive to the dimensionality of the 

roblem as it approximates the state values and actions by a neu- 

al network. The results of the simulation are used to update the 

eural network, which generalises across similar states. As the PPO 

lgorithm does not need to visit each state to solve the problem, 

he CPU time does not increase with the number of states. How- 

ver, as the PPO algorithm is less effective in finding the optimal 

ction for each state compared to VI, the computational time is 

ften larger. The PPO algorithm uses simulation and random ini- 

ial weights of the neural network, varying the computational time 

sed for training per instance. Furthermore, the visited states, re- 

ards, and actions are randomly simulated, influencing the train- 

ng as this information is used to update the neural network. 

From Table 3 it can be concluded that the RAM usage of the 

DP increases with the size of the instance. The RAM usage of 

he MDP is less sensitive to the demand and lead time, as these 

ncrease the size of the value matrix to a limited extent. The RAM 

sage is more sensitive to the return distribution, as this influences 

he state space of multiple states. The RAM usage of the PPO algo- 

ithm is less sensitive to parameter values as the only information 

t needs to store are the parameters of the neural network and the 

amples of the simulation. These are less dependent of the size of 

he problem. 
9 
From Table 3 it can be observed that the largest optimality gap 

s found for the instance of μ1 = 1 , μ2 = 1 . Here, the PPO algo-

ithm yields 2.73% less profit than the optimal solution. The PPO 

lgorithm performs best for the instance of c h 1 = 0 . 2 , c h 2 = 0 . 1 , in

hich the profit gap is −0 . 81% . 

When looking at the underlying cost and how the found pol- 

cy of the PPO algorithm differs from the optimal policy (see also 

able B.1 in Appendix B and Table C.1 in Appendix C ), it is ob-

erved that instances in which the PPO algorithm has difficulty 

n finding the optimal policy is when around the optimal solu- 

ion the profit difference is minimal. Finding the optimal action is 

hen difficult as performing non-optimal minimally influences the 

rofit. This is observed as the rationing decision at high inventory 

evel differs the most between the two policies. At a high inven- 

ory level the rationing decision has less influence on the profit as 

here is no competition between the channels for products. There- 

ore, at high inventory levels the rationing decision is more focused 

n cost minimisation. Additionally, when the action state space is 

arge the PPO algorithm has more decisions to evaluate, increas- 

ng the difficulty of finding the optimal action. Consequently, at 

ow inventory levels, the PPO algorithm can more easily identify 

he optimal rationing decision as the action space is limited by the 

nventory level and the channels compete for products, thus the 

ationing decision also influences the profit more. 

For the instances with decreasing demands, we notice that the 

ptimality gap is growing. A similar trend can be observed for 

ncreasing coefficients of variation in demand. This suggests that 
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Table 4 

Computational complexity and performance for the different modelling approaches. 

CPU time (hours) RAM usage (MB) Optimality gap (%) 

Instance Multi R Agg. R Ind. R Multi R Agg. R Ind. R Agg. R Ind. R 

μ1 = 3 , μ2 = 1 a 17 .87 1 .82 0 .23 4283 .1 199 .7 53 .0 −1 .03 −8 .88 

μ1 = 2 , μ2 = 1 12 .19 1 .13 0 .37 3170 .0 124 .1 31 .0 −1 .57 −14 .87 

μ1 = 1 , μ2 = 1 7 .61 0 .58 0 .85 2219 .5 69 .6 15 .9 −3 .04 −33 .44 

CV i = 1 / ( 
√ 

μi ) 
a 17 .87 1 .82 0 .23 4283 .1 199 .7 53 .0 −1 .03 −8 .88 

CV 1 = 1 / (2 
√ 

μ1 ) 6 .04 0 .61 0 .20 2674 .5 94 .5 26 .6 −1 .11 −15 .56 

CV 2 = 1 / (2 
√ 

μ2 ) 0 .55 0 .72 0 .17 1275 .8 127 .3 22 .2 −0 .97 −3 .23 

CV i = 1 / (2 
√ 

μi ) 0 .24 0 .31 0 .13 709 .1 57 .4 10 .7 −1 .04 −6 .38 

ρp = 0 . 2 12 .72 0 .49 0 .17 521 .9 73 .7 42 .1 −0 .03 −2 .99 

ρp = 0 . 3 17 .48 1 .31 0 .20 1746 .2 129 .2 42 .1 −0 .88 −5 .00 

ρp = 0 . 4 a 17 .87 1 .82 0 .23 4283 .1 199 .7 53 .0 −1 .03 −8 .88 

ρp = 0 . 5 30 .24 2 .64 0 .33 8777 .4 464 .6 70 .7 −0 .78 −19 .27 

ρp = 0 . 6 31 .93 2 .71 0 .52 8777 .4 613 .1 78 .2 −0 .37 −36 .93 

ρp = 0 . 2 , μ2 = F (ρp ) 2 .59 0 .40 0 .15 440 .4 40 .5 12 .8 −0 .17 −3 .12 

ρp = 0 . 3 , μ2 = F (ρp ) 17 .74 1 .25 0 .20 1741 .2 105 .5 38 .0 −0 .74 −6 .79 

ρp = 0 . 4 , μ2 = F (ρp ) a 17 .87 1 .82 0 .23 4283 .1 199 .7 53 .0 −1 .03 −8 .88 

ρp = 0 . 5 , μ2 = F (ρp ) 28 .70 3 .11 0 .30 8777 .4 464 .6 70 .7 −1 .00 −17 .07 

ρp = 0 . 6 , μ2 = F (ρp ) 83 .63 5 .40 0 .78 18131 .9 992 .8 148 .5 −0 .73 −57 .78 

ρw = 1 0 .85 0 .50 0 .23 149 .5 73 .7 27 .3 −1 .40 −10 .73 

ρw = 2 a 17 .87 1 .82 0 .23 4283 .1 199 .7 53 .0 −1 .03 −8 .88 

c r = 0 22 .63 1 .55 0 .23 4283 .1 199 .7 53 .0 −0 .76 −8 .83 

c r = 5 a 17 .87 1 .82 0 .23 4283 .1 199 .7 53 .0 −1 .03 −8 .88 

c r = 10 22 .78 1 .61 0 .23 4283 .1 199 .7 53 .0 −1 .39 −8 .97 

c p = 30 a 17 .87 1 .82 0 .23 4283 .1 199 .7 53 .0 −1 .03 −8 .88 

c p = 50 23 .41 2 .19 0 .25 4283 .1 199 .7 53 .0 −1 .78 −14 .55 

c p = 70 24 .33 1 .96 0 .25 4283 .1 199 .7 53 .0 −2 .51 −29 .22 

c h 1 = 0 . 1 , c h 2 = 0 . 05 24 .40 1 .83 0 .23 4283 .1 199 .7 53 .0 −0 .80 −5 .69 

c h 1 = 0 . 2 , c h 2 = 0 . 1 23 .96 1 .86 0 .23 4283 .1 199 .7 53 .0 −0 .83 −6 .24 

c h 1 = 1 , c h 2 = 0 . 5 a 17 .87 1 .82 0 .23 4283 .1 199 .7 53 .0 −1 .03 −8 .88 

� = 1 3 .30 0 .82 0 .22 3325 .7 152 .2 37 .6 −0 .97 −7 .20 

� = 2 a 17 .87 1 .82 0 .23 4283 .1 199 .7 53 .0 −1 .03 −8 .88 

� = 3 58 .63 3 .59 0 .27 5360 .8 253 .6 71 .0 −1 .04 −12 .40 

Average 20 .60 1 .67 0 .29 4251 .32 227 .58 48 .54 −1 .08 −14 .57 

a Base test case with: μ1 = 3 , μ2 = 1 , CV i = 1 / 
√ 

μi , ρp = 0 . 4 , M = 2 , c r = 5 , c p = 30 , c h 1 = 2 , c h 2 = 1 , � = 2 . 
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aving a higher dispersion of the demand distribution negatively 

nfluences the training of the PPO algorithm. With a higher coeffi- 

ient of variation, the rewards that the PPO algorithm experiences 

uring sampling are more dispersed as this is partly driven by de- 

and. To better distinguish good actions from bad actions, more 

raining data is needed to mitigate the influence of the larger dis- 

ersed demand distribution. 

Overall, the PPO algorithm shows good performance, with a 

rofit optimality gap of around −2 . 0% . The advantage of the PPO 

lgorithm is that it is not influenced much by the dimensions of 

he studied problem, as CPU time and RAM usage are relatively 

table. The PPO algorithm does however experience difficulties in 

nding the optimal policy when the uncertainty increases. Further- 

ore, the rewards influence the training, as these influence the 

rade-off the PPO algorithm makes between different actions. As 

he training of a reinforcement learning algorithm is influenced by 

he received rewards, and one can manipulate them to find better 

olicies, this is often referred to as reward shaping in the rein- 

orcement learning literature. 

.3. Modelling returns 

Current literature mentions several methods to model returns. 

n this paper, we explicitly model the returns as multi-period and 

ales-dependent (which we refer to as Multi R in Table 4 ). To in-

estigate how much influence this approach has on the retailer’s 

nventory management, we compare it with two existing modelling 
10 
pproaches: (1) sales-independent returns (Ind. R) and (2) sales- 

ggregated returns (Agg. R). 

Modelling the returns independent of sales, as we do in Ind. R, 

esults in returns being an exogenous flow, similar to having a neg- 

tive demand (see e.g. Feinberg & Lewis, 2005 ). We approximate 

he return flow as a negative demand with a Binomial distribution 

ith ρ as the probability a single product is returned, and average 

nline sales over the return window ( μ2 · M · T ) as the pool of re- 

urnable items. With regards to our MDP, the states R 0 and R are 

ot relevant anymore when approximating the returns as indepen- 

ent of sales and are therefore omitted. 

For the approach of Agg. R, we model the returns by aggregat- 

ng the state R into a single state R and omit R 0 . The state R now

pproximates the total online sales in the past M periods. How- 

ver, as the expiration date of whether a products can be returned 

s not included in the state it needs to be approximated. We there- 

ore define the state transition of R to R ′ as follows: 

 

′ = ( R − r − h + min (d 2 , I − a ) ) 
+ 

(12) 

ere, r represents the number of products being returned (deter- 

ined by a Binomial distribution with ρ as the probability a sin- 

le product is returned), R is the pool of returnable items, h is the

pproximated online sales that cannot be returned anymore, and 

he last term is the online sales of the current sub-period. We ap- 

roximate h using a Poisson distribution with an average value of 

2 · (1 − ρp ) as this the number of products that on average are 

ot returned. 
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Table 5 

Parameter values for large-scale instances, 

where the base case is given in bold. 

Parameters Value 

μ1 2 , 4 , 6 

μ2 2 , 4 , 6 , F (ρp ) 

ρp 0 . 3 , 0 . 4 , 0 . 5 , 0 . 6 

M 2 , 3 , 4 , 5 

� 1 , 2 , 3 , 4 
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We reformulate the MDP for both methods of modelling returns 

nd use VI to obtain the policies. Similar to Section 5.2 , we com-

are the different methods of modelling returns on the optimal- 

ty gap, the required computational time, and the RAM usage. The 

rofit is calculated by simulation the resulting policies in the MDP 

ith the multi-period sales-dependent returns to investigate the 

ptimality gap. The results are presented in Table 4 . 

The advantage of modelling the returns independent from de- 

and (or past sales) is clearly seen in the CPU time. Modelling the 

eturns based on an aggregated number seems to be more influ- 

nced by the increased state spaces, but the CPU time still remains 

ow compared to the original MDP. Similar trends can be observed 

or the RAM usage. It can be concluded that there is a clear trade- 

ff: exact modelling results in a better performing policy at the 

ost of computational complexity. 

From Table 4 , it is observed that the sales-aggregated return 

ethod shows a low optimality gap, between −3 . 04% and −0 . 03% .

hen online sales become more dominant a larger optimality gap 

s observed and with lower return percentages the optimality gap 

ecreases. The sales-independent return method shows larger op- 

imality gaps, as high as −60% . Here, the optimality gap increases 

hen the returns are becoming more dominant, such as in scenar- 

os with larger shares of online sales or higher return percentages. 

dditionally, for both methods the optimality gap increases with 

igher cost of the product. 

Overall, the approach of aggregating the sales still shows rela- 

ively good performance, as the optimality gap is lower compared 

o the policies found by the PPO algorithm. Both methods show 

ood performance and have the potential to be used for large-scale 

nstances. We further elaborate on the performance of the aggre- 

ated approach and the PPO algorithm for large-scale instances in 

he next section. 

. Large-scale instances 

In many settings in the literature and in practice, demand vol- 

mes, lead times, return windows, and return percentages are 

arger than in the small-scale settings discussed above. In such set- 

ings, the state space of the MDP gets too large to obtain an ex- 

ct solution. For instance, for the presented large-scale base case, 

he amount of states would be just over one billion, with a RAM 

sage of around 16 GB, and an estimated CPU time of 300 hours 

f solved with VI. Therefore, we use the PPO algorithm with the 

ulti-period sales-dependent returns and the MDP in which the 

ales are aggregated to solve and analyse large-scale instances. 

rom these large-scale instances relevant managerial insights can 

e derived as they better reflect current practices. The cost param- 

ters and coefficient of variation of the small-scale instances are 

lso used for the large-scale instances, but parameters that influ- 

nce the state space of the MDP are increased. In Table 5 the dif-

erent parameter values for the large-scale instances are presented. 

We evaluate the different instances on different performance 

ndicators related to profit and service level. We focus on instances 

n which demand, return percentages and windows, and lead time 

re altered as these instances give us insight in how uncertainty 
11 
nfluences omni-channel retailer’s performance. We investigate the 

rofit and the alpha service level, which is an important perfor- 

ance indicator that tells us the fraction of time one ends a day 

nds with products still in stock. Most important is the cycle ser- 

ice level (i.e. the alpha service level just before replenishment). 

able 6 gives the profit and cycle service level for our large-scale 

nstances. These results were obtained by simulating the policy 

ound by the PPO algorithm and from VI of the sales-aggregated 

eturn MDP with the same procedure as described in Section 5.2 . 

For almost all the small-scale instances presented in Section 5 , 

he policy resulting from the sales-aggregated return MDP showed 

 lower optimality gap than the policy of the PPO algorithm. 

able 6 shows that for large-scale instances, however, the policy of 

he PPO algorithm has a higher profit than the policy of the sales- 

ggregated return MDP. The cycle service level is higher for the 

olicy of the PPO algorithm across almost all instances and chan- 

els, indicating that more demand is fulfilled. 

From Table 6 it is also observed that if the average demand 

hifts from the offline channel to the online channel, the profit 

ecreases. This is mostly the result of the increase in return cost 

nd lower net sales: if more products are ordered online, the re- 

urn flow will be higher. Although the profit decreases with more 

nline sales, the policies found differ on the cycle service level. 

oth policies have higher cycle service level for the offline chan- 

el when offline sales decrease. However, where the policy of the 

PO algorithm decreases the service level for the online channel 

ith higher online sales, the policy of the sales-aggregated return 

DP increases their service level. Overall, the policy of the PPO al- 

orithm has a higher service level across all instances. 

The return percentage negatively influences the profit, as more 

roducts are returned the retailer has higher return costs. Although 

he retailer orders less products in instances with higher return 

ercentages, the cycle service level is one of the highest for in- 

tances with the highest return percentage. As the retailer has less 

nfluence on their inventory position, they might have excessive 

tock before replenishment arrives. For the instances in which the 

et online sales remains constant, an opposite trend is observed 

or the online channel. As the return percentage and online de- 

and increases, the cycle service level decreases except for the of- 

ine channel with the policy found by the sales-aggregated return 

DP. The profit decreases more in these instances, due to higher 

eturn flow, thus the retailer orders less. The retailer prefers to 

tore products in the online channel as the holding cost is lower 

nd make them available later during the sub-period for the of- 

ine channel if needed. However, as the return flow is too high, 

toring them in the online channel becomes less profitable as they 

ight be sold to online customers. Therefore, the retailer orders 

ess products for all channels and will face a stock-out more fre- 

uently. For the policy found by the sales-aggregated return MDP 

his also happens, however the rationing action differs where more 

roducts are stored in the offline channel with increasing online 

ales. 

When investigating longer return windows it is observed that 

he profit is not much influenced. Although the inventory cost is 

lightly increased, they are negligible indicating that the return 

indow has little effect on the profit for the retailer. However, the 

eturn window does influence the cycle service level. When the 

eturn window is increased, the cycle service level also increases. 

hen the return window is increased, the probability of a prod- 

ct being returned in a sub-period is decreased. Therefore, the re- 

urn distribution becomes less uncertain thus the retailer has more 

ontrol on their inventory levels. Therefore they can better satisfy 

emand without ending up with excessive or little stock and thus 

mprove their service level without high costs. 

With an increase in lead time the profit does not change much, 

nd for the policy of the sales-aggregated return MDP the cycle 
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Table 6 

Profit and cycle service level for large-scale instances. 

Profit Cycle service level 

Offline Online 

Instance PPO Agg. R PPO Agg. R PPO Agg. R 

μ1 = 6 , μ2 = 2 a 3130.28 3061.15 0.982 0.969 0.950 0.806 

μ1 = 4 , μ2 = 4 2662.31 2596.45 0.987 0.986 0.945 0.832 

μ1 = 2 , μ2 = 6 2226.48 2131.20 0.990 0.986 0.936 0.845 

ρp = 0 . 3 3241.45 3170.67 0.979 0.970 0.945 0.852 

ρp = 0 . 4 a 3130.28 3061.15 0.982 0.969 0.950 0.806 

ρp = 0 . 5 3033.68 2967.38 0.988 0.970 0.955 0.800 

ρp = 0 . 6 2934.70 2877.55 0.993 0.974 0.958 0.825 

ρp = 0 . 3 , μ2 = F (ρp ) 3102.50 3081.22 0.978 0.967 0.945 0.833 

ρp = 0 . 4 , μ2 = F (ρp ) a 3130.28 3061.15 0.982 0.969 0.950 0.806 

ρp = 0 . 5 , μ2 = F (ρp ) 3081.73 3038.53 0.982 0.973 0.945 0.796 

ρp = 0 . 6 , μ2 = F (ρp ) 3026.83 3004.43 0.977 0.980 0.903 0.812 

ρw = 2 a 3130.28 3061.15 0.982 0.969 0.950 0.806 

ρw = 3 3134.32 3048.15 0.986 0.968 0.952 0.829 

ρw = 4 3136.88 3042.26 0.968 0.965 0.959 0.850 

ρw = 5 3138.79 3030.63 0.991 0.966 0.964 0.856 

l = 1 3137.64 3065.18 0.981 0.969 0.953 0.806 

l = 2 a 3130.28 3061.15 0.982 0.969 0.950 0.806 

l = 3 3127.76 3058.87 0.963 0.968 0.946 0.800 

l = 4 3112.90 3055.85 0.944 0.968 0.907 0.797 

Average 3015.22 2948.64 0.979 0.972 0.944 0.823 

a Base test case with: μ1 = 6 , μ2 = 2 , CV i = 1 / 
√ 

μi , ρ = 0 . 4 , M = 2 , c r = 5 , c p = 30 , 

c h 1 = 1 , c h 2 = 0 . 5 , l = 2 . 
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ervice level remains constant. However, for the policy found by 

he PPO algorithm the cycle service level does decrease. The policy 

ound by the PPO algorithm has more difficulty with the uncer- 

ainty of demand during the lead time resulting in higher chance 

f a stock-out. However, it appears the cycle service level has little 

ffect on the profit. 

From Table 6 it can be concluded that the policy of the PPO 

lgorithm outperforms the policy of the sales-aggregated return 

DP for large-scale instances on both profit and cycle service level. 

urthermore, a higher online demand and return flow negatively 

nfluences the profit. The cycle service level of the offline channel 

ncreases with higher return percentage, unless the online demand 

lso increases as the retailer compensates for the decrease in profit 

argins by ordering less products thus negatively influencing the 

ffline channel. However, the retailer can compensate for the lower 

nventory by preferring the offline channel via the rationing action. 

urthermore, a longer return window or lead time has limited in- 

uence on the profit but does influence the cycle service level. 

. Discussion and conclusion 

Omni-channel retailers are experiencing an increase in returns 

riginating from the growth of online sales. This return flow is be- 

oming a significant issue for their inventory management because 

he uncertainty of whether a product is being returned can result 

n excessive stock. Also, several studies suggest to use the store for 

he fulfilment of online orders and the handling of returns. This 

as the advantage of leveraging the assets of the offline channel 

or the online channel. 

In this paper, we therefore study the problem of a retailer 

ho replenishes and rations their store inventory across an of- 

ine and online channel, as well as integrates returns in managing 

heir inventory. The retailer has to make a trade-off between serv- 

ng in-store and online customers, where the online sales might 

ead to returns. This paper contributes to the academic literature 

y providing a model for the inventory management of an omni- 

hannel retailer with multi-period sales-dependent returns. In con- 

rast to previous work, our model considers the returns dependent 
12 
n sales over multiple periods. The resulting MDP can be solved 

ith value iteration for small-scale instances resulting in exact so- 

utions. However, the complexity of the model grows for larger de- 

ands and longer return windows and becomes unsolvable. There- 

ore, we investigate alternative solution methods such as DRL and 

pproximating the returns. 

As a DRL algorithm, PPO is used, as it has been proven to per- 

orm well in inventory management settings. The PPO algorithm 

s able to provide solutions within reasonable optimality gaps. Al- 

hough VI shows a much lower running time for small instances, 

t increases exponential in the problem size. The PPO algorithm 

hows a high computation time for small instances but scales 

uch better to larger problems. The PPO algorithm leaves an op- 

imality gap of about 2.0% for all small-scale instances. Instances 

n which there is a higher level of uncertainty negatively influence 

he training of the PPO algorithm. Furthermore, the PPO algorithm 

as trouble finding the optimal action when the profit trade-off is 

inimal between the optimal and non-optimal actions. We con- 

lude that the PPO algorithm is useful in environment with rela- 

ively low uncertainty and when the cost differences around the 

ptimal solution are not too small. 

When investigating different methods to model and approxi- 

ate the return flow it was found that modelling the returns in- 

ependently from historical sales showed a high optimality gap, 

ncreasing with larger return flows. Furthermore, aggregating his- 

orical sales in one state outperforms the PPO algorithm for small- 

cale instances (with an optimality gap of around 1.0%). Approxi- 

ating the returns into one state has the advantage of lower CPU 

ime and RAM usage, and in situations with relatively low return 

ows, the near-optimal results suggest that the existing models 

ight be useful for implementations in practice. 

As the multi-period sales-dependent returns MDP cannot be 

olved with VI for more realistic retail settings, we use PPO and 

I on the MDP formulated with sales-aggregated returns to in- 

estigate how return and demand uncertainty influence the omni- 

hannel retailer’s profit and service level. For large-scale instances, 

he PPO algorithm outperforms the policy found with VI of the 

ales-aggregated return MDP, therefore the PPO algorithm is pre- 
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erred for finding a policy when faced with larger demand vol- 

mes. The results indicate that if customers shift from the offline 

o the online channel it has a negative impact on the profit for the 

etailer. As online demand increases, the online returns increase 

hich negatively influence the retailer profit as it requires more 

andling. If the online returns are becoming too large it will also 

egatively influence the service level of the offline channel, as the 

etailer will order less products for both channels due to the low 

rofitability per product sold online unless the retailer compensate 

t with their rationing strategy. Furthermore, although a longer re- 

urn window does not affect the profit per product sold, it does 

ncrease the service level of both channels, therefore a longer re- 

urn window might be more preferable as long as it does not result 

n higher return percentages. 

This paper investigates how returns influence the profitability 

f an omni-channel retailer who uses their store for the fulfil- 

ent of online demand and returns of online products. Although 

he model captures most typical characteristics of omni-channel 

etailers, several potentially relevant factors were not taken into 

ccount, and could be directions for further research. First, we only 

nvestigate the perspective of a single store. In a multi-store con- 

ext, additional research could also include which stores are al- 

owed to fulfil online demand and handle online returns. Second, 

urther development of DRL algorithms for inventory problems is 

elevant. Although the context of our studied problem does not 

equire discounting of future rewards, the PPO algorithm needs 

t for stable training and convergence. Having the discount factor 

oo close to one results in unstable training, therefore an inter- 

sting research direction would be in the development of stable 

ndiscounted DRL algorithms. The PPO algorithm develops a well- 

erforming policy in our study, it has difficulties learning in some 

nstances. Several research directions can be identified to improve 

he training of the PPO algorithm. Transfer learning (in which the 

olicy found of one instance is used for the learning of similar in- 

tances) might be useful in reducing training time. Also, reward 

haping might be used to provide better feedback on which actions 

re preferred. Furthermore, behaviour cloning, in which the PPO 

lgorithm is pre-trained with an expert policy such as a simple 

euristic, might be useful. Further reductions in CPU time could 

lso be achieved by parallelisation of the sampling of training data. 

ppendix A. Loss function of PPO 

Below we describe the procedure of calculating the loss for 

ach set of samples in a mini-batch. The loss is used to update 

he parameters of the actor and critic neural network. The set of 

amples in a mini-batch for level I is denoted by K 1 and for level

I by K 2 , where K 1 = { 0 , 1 , . . . , B/η} and K 2 = { 0 , 1 , . . . , T · B/η} . A

ample point at level I is denoted by K and at level II by k . 

1. Advantage and discounted profit 

The advantage and discounted profit are calculated for each 

ample in the mini-batch. The advantage is an indication of how 

ell the chosen action performs compared with the expected cost. 

e use this information to update our neural networks. In this pa- 

er, we use the generalised advantage estimator approach, as de- 

cribed in Vanvuchelen et al. (2020) . The advantage of sample K of 

evel I is calculated as follows: 

 K = U K − V ( S K , φ1 ) (A.1) 

Here, G K is the advantage of sample K of level I and U K is the

iscounted profit for sample K (defined below). The advantage of 

ample k of level II is calculated as follows: 

 k = u k − V ( s k , φ2 ) (A.2) 

o

13 
Here, g k is the advantage of sample k of level II and u k is the

iscounted profit for sample k (defined below). The discounted 

rofit of sample K of level I is calculated as follow: 

 K = 

B ∑ 

i = K 
γ i −K · E i + γ B −K · V ( S B , φ1 ) (A.3) 

The discounted profit is an estimation of the future profit the 

etailer can expect to receive at it current state. This estimation 

s derived from the profit obtained through the sampling, and 

he value of the actor of the last state. The discount factor ( γ )

s needed to ensure the training of the PPO algorithm is stable 

nd leads to convergence ( Wiering, 2004 ). The discounted profit 

f sample k of level II is calculated similarly: 

 k = 

T ·B ∑ 

i = k 
γ i −k · e i + γ T ·B −k · V ( s T ·B , φ2 ) (A.4) 

2. Training the neural networks 

With the collected training data, advantage, and discounted 

rofit of the sampling, the gradient of the loss function with re- 

pect to the weights and bias of the neural networks can be cal- 

ulated. The loss function is a predictor for the error of the neural 

etwork. By updating the weights and bias in the direction of the 

radient of the loss with a step size, the loss can be minimised. 

To train the neural network, three different type of loss func- 

ions are used, two for the actor network and one for the critic 

etwork. The loss functions of the actor network consist of the pol- 

cy loss and an entropy loss. The policy loss trains the actor neural 

etwork so that actions that give high expected profit are preferred 

bove actions with lower expected profits, while the entropy loss 

ries to encourage exploration of new actions. The policy loss for a 

huffled mini-batch of level I is defined as follows: 

olicy loss level 1 = −
∑ 

K∈K 1 
min 

( 

π
(
q K | S K , θ ′ 

1 

)
π( q K | S K , θ1 ) 

· G K , 

clip 

( 

π
(
q K | S K , θ ′ 

1 

)
π( q K | S K , θ1 ) 

, 1 − ε, 1 + ε

) 

· G K 

) 

(A.5) 

Here, 
π( q K | S K ,θ ′ 

1 ) 
π( q K | S K ,θ1 ) 

is the ratio of the probability of choosing or- 

ering action q K in state S K with the new neural network param- 

ters θ ′ 
1 and the current parameters of the neural network θ1 . The 

olicy loss formula uses a clipping formula to limit the loss func- 

ion, where clip ( x, x min , x max ) ensures that x is between the range 

f x min and x max , otherwise the value is clipped to the range edges.

he clipping parameter ε determines the value of the range edges. 

The policy loss for a shuffled mini-batch of level II is defined as 

ollows: 

olicy loss level II = −
∑ 

k ∈K 2 
min 

( 

π
(
a k | s k , θ ′ 

2 

)
π( a k | s k , θ2 ) 

· g k , 

clip 

( 

π
(
a k | s k , θ ′ 

2 

)
π( a k | s k , θ2 ) 

, 1 − ε, 1 + ε

) 

· g k 

) 

(A.6) 

The entropy loss for a shuffled mini-batch of level I is defined 

s follows: 

ntropy loss level I = βE 

∑ 

K∈K 1 
π

(
·| S K , θ ′ 

1 

)
· log π

(
·| S K , θ ′ 

1 

)
(A.7) 

If π(·| S K , θ ′ 
1 
) is evenly distributed, thus each action has the 

ame probability, the entropy will be largely negative. A determin- 

stic policy, where one action has a high probability compared to 

thers, results in the entropy loss to be closer to zero. The entropy 
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scale instances is included in Table B1. 
egularisation term βE determines how much emphasis is placed 

n the entropy in the loss when combined with the policy loss. 

y minimising the entropy, the probability distribution of actions 

s more evenly distributed. During sampling this encourages the 

lgorithm to explore new actions, preventing the policy from con- 

erging to a bad-performing local optimal. The entropy loss for a 

huffled mini-batch of level II is defined as follows: 

ntropy loss level II = βE 

∑ 

k ∈K 2 
π

(
·| s k , θ ′ 

2 

)
· log π

(
·| s k , θ ′ 

2 

)
(A.8) 

For the critic network a value loss function is used, which is 

ased on the difference between the future discounted profit and 

he output of the value function approximation. Here the Huber 

oss is used as it is less sensitive towards outliers as opposed to 

he mean squared error loss ( Huber, 1964 ). Due to potentially large 

emand fluctuations, such outliers in profit are quite likely to ocur 

n our problem setting, and the use of the Huber loss therefore 

s less influenced by these outliers. The Huber loss is defined as 

ollows: 

 (x ) = 

{
1 
2 

x 2 for | x | ≤ δ

δ
(| x | − 1 

2 
δ
)

otherwise . 
(A.9) 

Where δ is the Huber loss constant. The value loss for a shuffled 

ini-batch of level I is defined as follows: 

alue loss level I = 

∑ 

K∈K 1 
L 
(
V 

(
S K , φ

′ 
1 

)
− U K 

)
(A.10) 

The value loss for a shuffled mini-batch of level II is defined as 

ollows: 

alue loss level II = 

∑ 

k ∈K 2 
L 
(
V 

(
s k , φ

′ 
2 

)
− u k 

)
(A.11) 
Table B1 

Optimality gap of the PPO algorithm for different instances. 

Profit Revenue Costs 

Instance MDP PPO Gap (%) Gap (%) Invent

μ1 = 3 ,μ2 = 1 a 1575 .15 1549 .76 −1 .64 0 .17 21 .60 

μ1 = 2 ,μ2 = 1 1111 .99 1088 .10 −2 .20 0 .07 28 .03 

μ1 = 1 ,μ2 = 1 653 .91 636 .55 −2 .73 0 .37 28 .07 

CV i = 1 / 
√ 

μi 
a 1575 .15 1549 .76 −1 .64 0 .17 21 .60 

CV 1 = 1 / (2 
√ 

3 ) 1616 .12 1588 .86 −1 .72 0 .02 24 .80 

CV 2 = 1 / (2 
√ 

1 ) 1583 .14 1554 .56 −1 .84 −0 .07 22 .68 

CV i = 1 / (2 
√ 

μi ) 1626 .19 1604 .78 −1 .33 −0 .02 20 .72 

ρp = 0 . 2 1676 .88 1642 .04 −2 .12 −0 .06 26 .41 

ρp = 0 . 3 1626 .03 1589 .67 −2 .29 −0 .19 22 .69 

ρp = 0 . 4 a 1575 .15 1549 .76 −1 .64 0 .17 21 .60 

ρp = 0 . 5 1526 .03 1493 .15 −2 .20 0 .03 26 .53 

ρp = 0 . 6 1476 .48 1447 .05 −2 .03 0 .25 23 .45 

ρp = 0 . 2 ,μ2 = F (ρp ) 1590 .26 1555 .65 −2 .22 0 .07 26 .79 

ρp = 0 . 3 ,μ2 = F (ρp ) 1587 .48 1557 .07 −1 .95 −0 .02 23 .34 

ρp = 0 . 4 ,μ2 = F (ρp ) a 1575 .15 1549 .76 −1 .64 0 .17 21 .60 

ρp = 0 . 5 ,μ2 = F (ρp ) 1558 .63 1528 .31 −1 .98 0 .17 23 .23 

ρp = 0 . 6 ,μ2 = F (ρp ) 1540 .07 1500 .50 −2 .64 0 .97 32 .12 

M = 1 1576 .78 1539 .90 −2 .40 0 .08 26 .83 

M = 2 a 1575 .15 1549 .76 −1 .64 0 .17 21 .60 

c r = 0 1588 .93 1556 .06 −2 .11 0 .10 24 .74 

c r = 5 a 1575 .15 1549 .76 −1 .64 0 .17 21 .60 

c r = 10 1561 .88 1524 .68 −2 .44 0 .57 31 .97 

c p = 30 a 1575 .15 1549 .76 −1 .64 0 .17 21 .60 

c p = 50 1078 .26 1056 .67 −2 .04 0 .88 24 .97 

c p = 70 582 .58 577 .41 −0 .89 3 .67 22 .76 

c h 1 = 0 . 1 , c h 2 = 0 . 05 1680 .98 1667 .44 −0 .81 −0 .02 55 .71 

c h 1 = 0 . 2 , c h 2 = 0 . 1 1558 .63 1528 .31 −1 .98 0 .17 23 .23 

c h 1 = 1 , c h 2 = 0 . 5 a 1575 .15 1549 .76 −1 .64 0 .17 21 .60 

l = 1 1576 .78 1539 .90 −2 .40 0 .08 26 .83 

l = 2 a 1575 .15 1549 .76 −1 .64 0 .17 21 .60 

l = 3 1573 .36 1537 .44 −2 .34 0 .40 29 .45 

Average 1464 .53 1432 .82 −2 .27 −0 .44 23 .09 

a Base test case with: μ1 = 3 , μ2 = 1 , CV i = 1 / 
√ 

μi , ρp = 0 . 4 , M = 2 , c r = 5 , c

14 
From the three different losses the total average loss of a mini- 

atch is calculated as follow: 

verage loss level I 

= 

Value loss level I + Policy loss level I + Entropy loss level I 

B/η

(A.12) 

verage loss level II 

= 

Value loss level II + Policy loss level II + Entropy loss level II 

T · B/η

(A.13) 

Minimising the average loss via updating θ ′ and φ′ will result 

n the neural networks fitting to the given training data. The neural 

etwork parameters are iteratively updated using a stochastic gra- 

ient descent with the ADAM optimiser, as this optimiser is less 

ensitive to parameter tuning and is overall considered to be the 

urrent best practice ( Kingma & Ba, 2014 ). The optimiser uses the 

verage loss of minibatch j for actor and critic network of level h 

o calculate the gradient of the weights and bias with respect to 

he average loss and perform an update step with a learning rate 

f α. A low learning rate results in slow convergence to a good 

olicy, while a high learning rate might results in overshooting a 

ood policy. 

ppendix B. Optimality gap 

The optimality gap of the PPO algorithm for different small- 
ory gap (%) Ordering gap (%) Fulfillment gap (%) Return gap (%) 

0 .18 −0 .02 0 .04 

0 .13 −0 .20 −0 .29 

0 .30 0 .53 0 .62 

0 .18 −0 .02 0 .04 

0 .01 0 .04 0 .05 

0 .03 −1 .00 −1 .00 

−0 .02 0 .06 0 .06 

0 .01 −1 .22 −1 .40 

−0 .13 −0 .83 −0 .93 

0 .18 −0 .02 0 .04 

0 .05 −0 .12 −0 .12 

0 .12 0 .96 0 .98 

0 .14 −1 .42 −1 .52 

0 .04 −0 .78 −0 .78 

0 .18 −0 .02 0 .04 

0 .08 0 .62 0 .68 

0 .66 2 .24 2 .21 

0 .07 0 .32 0 .18 

0 .18 −0 .02 0 .04 

0 .08 0 .28 0 

0 .18 −0 .02 0 .04 

0 .53 0 .81 0 .90 

0 .18 −0 .02 0 .04 

0 .82 1 .47 1 .44 

3 .06 9 .30 9 .41 

0 .05 −0 .56 −0 .61 

0 .08 0 .62 0 .68 

0 .18 −0 .02 0 .04 

0 .07 0 .32 0 .18 

0 .18 −0 .02 0 .04 

0 .42 0 .25 0 .23 

−0 .38 −1 .09 −1 .07 

 p = 30 , c h 1 = 1 , c h 2 = 0 . 5 , l = 2 . 
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Table C1 

Weighted NRMSE of actions by PPO. 

Weighted NRMSE 

Ordering Rationing 

Instance Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Average 

μ1 = 3 , μ2 = 1 a 0.08 0.29 0.21 5.99 0.44 0.52 0.53 0.31 1.18 

μ1 = 2 , μ2 = 1 0.11 0.29 0.20 2.40 0.60 0.99 0.75 0.41 0.80 

μ1 = 1 , μ2 = 1 0.20 0.29 0.30 3.53 1.51 0.91 0.59 0.55 1.09 

CV i = 1 / 
√ 

μi 
a 0.08 0.29 0.21 5.99 0.44 0.52 0.53 0.31 1.18 

CV 1 = 1 / (2 
√ 

3 ) 0.09 0.61 0.41 7.05 6.26 0.48 0.64 1.02 2.35 

CV 2 = 1 / (2 
√ 

1 ) 0.07 0.51 0.21 4.30 1.80 0.54 0.82 0.59 1.25 

CV i = 1 / (2 
√ 

μi ) 0.11 0.51 0.33 3.69 2.33 2.90 0.33 0.46 1.51 

ρp = 0 . 2 0.10 0.39 0.29 6.97 3.39 1.21 1.16 0.60 2.00 

ρp = 0 . 3 0.09 0.23 0.19 4.02 2.79 0.61 0.65 0.41 1.27 

ρp = 0 . 4 a 0.08 0.29 0.21 5.99 0.44 0.52 0.53 0.31 1.18 

ρp = 0 . 5 0.00 0.25 0.18 6.21 0.72 0.76 0.58 0.63 1.33 

ρp = 0 . 6 0.00 0.35 0.26 3.92 0.72 0.69 0.45 0.40 0.97 

ρp = 0 . 2 , μ2 = F (ρp ) 0.09 0.42 0.30 6.49 2.35 0.62 0.84 0.46 1.64 

ρp = 0 . 3 , μ2 = F (ρp ) 0.15 0.23 0.13 4.57 3.07 0.72 0.78 0.44 1.42 

ρp = 0 . 4 , μ2 = F (ρp ) a 0.08 0.29 0.21 5.99 0.44 0.52 0.53 0.31 1.18 

ρp = 0 . 5 , μ2 = F (ρp ) 0.14 0.35 0.35 4.26 0.50 0.38 0.31 0.23 0.91 

ρp = 0 . 6 , μ2 = F (ρp ) 0.14 0.17 0.24 9.88 0.94 0.72 0.50 0.16 1.80 

M = 1 0.18 0.30 0.23 7.77 2.22 0.71 0.79 0.69 0.00 

M = 2 a 0.08 0.29 0.21 5.99 0.44 0.52 0.53 0.31 1.185 

c r = 0 0.00 0.21 0.21 5.93 3.47 0.68 0.94 0.49 1.70 

c r = 5 a 0.08 0.29 0.21 5.99 0.44 0.52 0.53 0.31 1.185 

c r = 10 0.11 0.27 0.21 7.06 0.58 0.83 1.02 0.64 1.52 

c p = 30 a 0.08 0.29 0.21 5.99 0.44 0.52 0.53 0.31 1.185 

c p = 50 0.10 0.18 0.21 3.28 0.48 0.69 0.50 0.43 0.82 

c p = 70 0.12 0.15 0.13 2.52 0.35 0.28 0.18 0.29 0.56 

c h 1 = 0 . 1 , c h 2 = 0 . 05 0.22 0.46 0.53 4.46 0.67 1.07 1.51 1.04 1.39 

c h 1 = 0 . 2 , c h 2 = 0 . 1 0.31 0.68 0.22 20.33 1.37 1.37 1.38 1.09 3.78 

c h 1 = 1 , c h 2 = 0 . 5 a 0.08 0.29 0.21 5.99 0.44 0.52 0.53 0.31 1.185 

l = 1 0.00 0.43 6.20 7.10 1.10 0.72 0.35 0.40 2.33 

l = 2 a 0.08 0.29 0.21 5.99 0.44 0.52 0.53 0.31 1.185 

l = 3 0.00 0.30 0.23 7.77 2.22 0.71 0.79 0.69 1.82 

Average of all instances 1.33 0.54 0.54 6.23 2.42 1.07 0.91 0.76 1.71 

a Base test case with: μ1 = 3 , μ2 = 1 , CV i = 1 / 
√ 

μi , ρp = 0 . 4 , M = 2 , c r = 5 , c p = 30 , c h 1 = 1 , c h 2 = 0 . 5 , l = 2 . 
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ppendix C. Goodness of fit 

To evaluate how much the policy found by the PPO algorithm 

esembles the optimal policy, the weighted Normalised Root Mean 

quare Error (NRMSE) is used. The NRMSE is a common metric for 

omparison of DRL algorithms (e.g. Chi et al., 2010; Rocchetta et al., 

019; Xie et al., 2019 ). We simulate the heuristics for J periods 

here the set of periods is given by J = { 0 , 1 , . . . , J} and calculate

he weighted NRMSE as follows: 

eighted NRMSE = 

√ 

1 

J 

∑ 

j∈J 
(
π ∗

j 
− π j 

)2 

max 
j∈J 

(π ∗
j 
) − min 

j∈J 
(π ∗

j 
) 

(C.1) 

Here, π ∗
j 

is the optimal action to be taken in simulation period 

j and π j is the action chosen by the PPO algorithm policy found in 

he same period. Normalisation of the RMSE is performed by divid- 

ng the metric with the maximum and minimum value of the opti- 

al policy, for cases where max 
j∈J 

(π ∗
j 
) − min 

j∈J 
(π ∗

j 
) = 0 the term is set 

o 1. For the ordering action the simulation period J = 1 . 0 0 0 . 0 0 0

eriods and for the rationing action J = T · 1 . 0 0 0 . 0 0 0 sub-periods. 
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