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ABSTRACT

More brick-and-mortar retailers open an online channel to increase sales. Often, they use the store to
fulfil online orders and to receive returned products. The uncertain product returns however complicate
the replenishment decision of a retailer. The inventory also has to be rationed over the offline and online
sales channels. We therefore integrate the rationing and ordering decisions of an omni-channel retailer
in a Markov Decision Process (MDP) that maximises the retailer’s profit. Contrary to previous studies, we
explicitly model multi-period sales-dependent returns, which is more realistic and leads to higher profit
and service levels. With Value Iteration (VI) an exact solution can only be computed for relatively small-
scale instances. For solving large-scale instances, we constructed a Deep Reinforcement Learning (DRL)
algorithm. The different methods are compared in an extensive numerical study of small-scale instances
to gain insights. The results show that the running time of VI increases exponentially in the problem size,
while the running time of DRL is high but scales well. DRL has a low optimality gap but the performance
drops when there is a higher level of uncertainty or if the profit trade-off between different actions
is minimal. Our approach of modelling multi-period sales-dependent product returns outperforms other
methods. Furthermore, based on large-scale instances, we find that increasing online returns lowers the
profit and the service level in the offline channel. However, longer return windows do not influence the

retailer’s profit.

© 2022 The Author(s). Published by Elsevier B.V.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

1. Introduction

The retail sector is changing drastically with the rise of on-
line shopping. As customers are shopping more online, traditional
brick-and-mortar stores are also changing their business strategy
by opening online shopping channels. This integration of offline
and online shopping channels is referred to as omni-channel retail-
ing (Verhoef et al., 2015). Omni-channel retailing provides the cus-
tomer a uniform shopping experience, in which goods can be in-
spected, bought, and returned through all available shopping chan-
nels. However, customers that order products online are only able
to physically inspect their goods after delivery. Therefore, products
that are displayed online might not satisfy customer expectations
or are bought impulsively, online ordered products are often re-
turned (Abdulla et al., 2019).

The return flow of online ordered products has become a sig-
nificant issue for many retailers. For instance, an online fashion re-
tailer reported return percentages between 13% and 45% (de Leeuw
et al., 2016). As the returned products are often resalable they
should be accounted for in inventory management (Radhi & Zhang,
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2019). Due to the uncertainty in the quantity and timing of re-
turned products, retailers might end up with an excessive stock
if they do not consider the return flow (Bernon et al., 2016; Xu
& Jackson, 2019). Even though retailers sometimes try to reduce
returns (e.g., through stricter return windows or return fees), in
many cases retailers are providing increasingly lenient return poli-
cies to increase customer satisfaction. Therefore, retailers need to
adapt their inventory management to the growing return flow as
the handling of returned products is important to reduce inventory
related cost.

Customers often prefer the ability to return an online purchase
in-store. Brick-and-mortar store returns are free of charge for cus-
tomers and do not require repackaging, whereas via mail the cus-
tomer has to deal with packaging and often has to pay a shipping
fee. Additionally, the customer can get a direct replacement in the
store or immediate refund (Wollenburg et al., 2018). It can also
be more profitable for retailers to encourage customers to return
products to the store instead of shipping via mail (Nageswaran
et al,, 2020). With using the brick-and-mortar store for returns
they can steer the customer towards exchanging their product or
towards buying another product (Tarn et al., 2003). Furthermore,
the retailer can use the brick-and-mortar store to inspect returns,
thus not accepting invalid or unwanted returns (de Leeuw et al.,
2016). Due to such gatekeeping, returns are processed faster, which
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is important to sustain the value of the product as they can quickly
be added back to the store inventory (Hiibner et al., 2015). Allow-
ing returns from online sales to be returned in-store is referred to
as cross-channel returns (Radhi & Zhang, 2019). However, the re-
tailer needs to account for these returns in their ordering decision
as not accounting for the returns could result in unbalanced inven-
tory positions and significant revenue loss (Chen & Bell, 2012; Hu
et al., 2019).

The role of the store for an omni-channel retailer has becom-
ing increasingly important, where the store can operate as a ful-
filment centre for online orders, a pick-up point, a place to handle
returns, or an information channel (Hiibner et al., 2022; Mou et al.,
2018). Shipping online ordered products from stores is referred to
as a ship-from-store strategy (Agatz et al., 2008). The strategy has
several advantages and disadvantages for the retailer. Advantages
are for instance lower inventory levels, higher turnover rates, and
shorter delivery distances (Bayram & Cesaret, 2021; Jalilipour Al-
ishah et al., 2015), and examples of disadvantages are negative in-
store customer experiences due to store personnel picking orders
and inaccurate inventory positions. To mitigate these negative side-
effects managerial studies suggest to reserve part of the brick-and-
mortar store inventory for the online demand (ENC, 2016; Hobkirk,
2015). This reservation of part of the inventory is referred to as ra-
tioning the inventory across the shopping channels.

By rationing an inventory across channels, a trade-off is made.
Storing products in the offline channel is more costly due to ex-
pensive shelve space in the store. However, online channels typ-
ically have a reduced profit per product due to the cost of on-
line fulfilment and the probability of a product being returned. Lit-
tle research has been conducted on the trade-off a retailer has to
make between the offline and online channel in the context of us-
ing the store assets for the online channel. In this paper, we there-
fore study how a retailer can utilise their brick-and-mortar store to
handle the online fulfilment as well as the potential returns. The
objective of this study is to identify an optimal replenishment and
rationing policy for an omni-channel retailer taking into account
the return flow of the online ordered products.

The integration of returns in the ordering and rationing decision
complicates the studied problem, as predictions for returns have to
be considered in modelling the decision problem. Clearly, returns
will depend on historical sales. However, keeping track of historical
sales can easily make modelling approaches intractable. Therefore,
historical sales data is often approximated by aggregating detailed
historical sales data, so the information can still be used in some
way to make better decisions. If retailers would not take into ac-
count potential returns at all, they would end up with excessive
stock. Additionally, retailers can choose to manage their inventory
such that the potential returns from the online sales channel are
considered in setting ordering and rationing policies. For instance,
the rationing decision can be used to reserve products for future
in-store customers who are more profitable when inventory posi-
tions and outstanding orders are low.

This research contributes to the literature on omni-channel re-
tailing by showing how returns affect the retailer’s profit and in-
ventory management. More specifically, we first provide a model
that explicitly considers multi-period sales-dependent returns in
the inventory management of an omni-channel retailer, based on
a Markov Decision Process (MDP) formulation. Second, as the MDP
might become too large to solve large-scale instances with value
iteration (VI) to obtain an exact solution, we demonstrate how
Deep Reinforcement Learning (DRL) can be used to solve the prob-
lem and obtain an approximated solution. Third, we compare the
multi-period sales-dependent return MDP with other methods of
modelling returns to gain insight in the importance of incorporat-
ing historical sales in decision-making. Fourth, based on our nu-
merical results, we provide managerial insights on how an omni-
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channel retailer should cope with returns, as well as general in-
sights on the use of DRL in the context of retail operations inven-
tory management.

The remainder of this paper is structured as follows.
Section 2 presents related research on return strategies for omni-
channel settings and inventory management. In Section 3, we fur-
ther outline the decision problem and formulate it as a MDP.
Section 4 presents the implementation of the DRL algorithm to the
studied problem. In Section 5, the performance of the DRL policy
compared to the optimal solution is investigated for a wide range
of instances on different performance measures. Additionally, the
importance of including historical sales data for decision-making is
investigated by comparing it with other methods of modelling re-
turns. In Section 6 we derive managerial insights from large-scale
instances. Section 7 concludes the research and discusses future re-
search opportunities.

2. Literature review

Our work is related to the literature on omni-channel retail-
ing as well as the literature on inventory management with return
flows. Below, we briefly address related work on omni-channel re-
tailing, with a focus on returns in an omni-channel context and
the role of the store in omni-channel retailing. This is followed by
a discussion of the literature on different methods for modelling
return flows in inventory management.

2.1. Omni-channel retailing

The study of return management in an omni-channel context is
an understudied problem (Bernon et al., 2016; Muir et al., 2019;
Xu & Jackson, 2019). Hiibner et al. (2022) also mention that the
current body of literature does not close the gap between inven-
tory management and returns in an omnichannel context. How-
ever, for retailers, return management is becoming increasingly im-
portant, especially due to the increase in the return flow originat-
ing from online orders. Retailers offer lenient return policies to re-
lieve customer shopping risk and increase demand. However, dif-
ferent return policies have different effects. Generous return poli-
cies increase demand, whereas longer return windows and ex-
change leniency influence return percentages (Janakiraman et al.,
2016). Ketzenberg et al. (2020) mention that lenient return poli-
cies have resulted in customers exploiting the retailers policies.

The current body of literature on return management mostly
focuses on retailers operating with a single online sales channel.
For an overview of this literature, we refer to the recent compre-
hensive review by Abdulla et al. (2019). Most modelling research
around returns is about return policies, and often only focuses on
single-period return windows. Abdulla et al. (2019) also conclude
that significant opportunities for future research lies in analysing
how operational decisions regarding returns can be made to im-
prove retailers performance.

The strategic side of handling returns by brick-and-mortar
stores has been extensively studied, where the focus is often on
whether stores should be used for handling returns or not (e.g.
Gao et al,, 2022; Jin et al., 2020; Mandal et al., 2021). However,
the operational side of handling the returned products in-store
has only been studied to a limited extent (Hiibner et al., 2016;
Mena et al., 2016). Here, one of the main issues is the re-balancing
of inventory (Bernon et al., 2016). Muir et al. (2019) and Radhi
& Zhang (2019) investigate how same- and cross-channel returns
influence order policies, and conclude that leveraging brick-and-
mortar stores for returns improves service levels as returned prod-
ucts can be resold quicker. Dijkstra et al. (2019) investigate how to
re-balance the cross-channel returns across the physical stores or
online fulfilment center of the retailer.
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2.2. Inventory management with return flows

Modelling product return flows is complicated by the interac-
tion between inventories, sales, and returns. Return flows depend
on historic sales, while current sales is limited by the inventory,
which is in turn influenced by the returns. In the literature, we
find two different ways to model product returns: (i) product re-
turns are independent of demand, (ii) and product returns are de-
pendent on demand.

By assuming that returns are independent of demand, return
flows can be modelled as exogenous flows. Fleischmann et al.
(2002) and Feinberg & Lewis (2005) mention that in such cases,
the problem comes down to a variant of an inventory model with
positive or negative net demand. However, Kiesmiiller & Van der
Laan (2001) show that neglecting the dependency between de-
mand and return results in poor performance of inventory policies.
Yet, Zerhouni et al. (2013) mention that ignoring the dependency
between demand and return increased costs only minimal in their
study, which can be attributed to the long return window they
considered, damping the effect of demand fluctuations. The study
setting is based on de Brito & Dekker (2003), who also mention
that long return windows is an assumption that does not hold for
most retail settings. Cases in which the return time is long, such as
certain remanufacturing systems can neglect the dependency with-
out much impact on performance (Fleischmann & Minner, 2004),
due to the damping effect mentioned above.

Fleischmann & Kuik (2003) discuss that modelling returns de-
pendent on demand is difficult, as such dependence spans across
multiple periods. Therefore, early work on returns is focused on
modelling the dependency only within the same period or across
one period, as this reduces the complexity (DeCroix, 2006). How-
ever, such an assumption is often too harsh as approximating re-
turns within at most one period results in sub-optimal policies
(Benedito & Corominas, 2013). Having the returns span across mul-
tiple periods increases the modelling complexity significantly as
it grows with the quantity of products sold and the number of
periods considered for the return window. Benedito & Corominas
(2013) consider a remanufacturing system in which the products
are always returned, either when their lifetime has exceeded or are
broken down during their lifetime. They do include a dependency
across multiple periods and show that finding the optimal policy
for a small example is computationally feasible, but for longer re-
turn windows they propose an approximated MDP where returns
are independent of sales. Ambilkar et al. (2022) recently also em-
phasised that an interesting research direction is using machine
learning techniques to solve the intractable return management
problem.

2.3. Contribution

We conclude from the literature that modelling multi-period
sales-dependent return flows is difficult. The complexity of mod-
elling approaches typically grows exponentially with the length of
the return window and the number of products sold in that win-
dow and thus easily becomes intractable. However, including this
dependency of returns with sales is important to ensure optimal
policies. Largely due to this complexity, the influence of returns
on managing inventories for an omni-channel retailer is an under-
studied subject. Whereas most previous literature focuses on the
strategic decision of whether or not to handle returns in-store, we
specifically aim to study the impact of handling returns on oper-
ational decision making. We contribute to the existing literature
by studying the inventory management of an omni-channel retailer
that uses their store inventory to fulfil both offline and online de-
mand. The products ordered online have a probability of being re-
turned within a given return window, spanning over multiple sell-
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ing periods. To reduce model complexity, and still capture some of
the temporal dynamics, we introduce a modelling approach to ad-
dress the complexity of return dependence across multiple periods.

3. Markov decision process

We study the setting of an omni-channel retailer with a phys-
ical store and an online channel. The retailer has two decisions to
be made: an ordering decision and a rationing decision. We con-
sider a setting in which a period consists of T sub-periods. We
assume the retailer places an order at the beginning of a period,
which is replenished after ¢ sub-periods. This could for instance re-
flect a weekly (T = 7) ordering decision with a delivery after two
days (¢ = 2). This ordering decision g occurs at the beginning of
the first sub-period. Additionally, at the beginning of each sub-
period, a rationing decision a for the two channels is made, de-
ciding on the inventory levels that are reserved for each channel.
These inventories are used to fulfil the demand of the channels,
and no substitution between channels takes place. When a cus-
tomer faces a stock-out in their preferred channel, the demand is
assumed to be lost which is a common assumption in retail en-
vironments. The customer has a limited return window in which
they can return the product. Throughout the sub-periods, products
that were sold in previous periods in the online channel can be
returned.

At the end of each sub-period, the remaining inventories of
the two channels, together with the products returned during that
sub-period, are used for fulfilment the next day. The retailer keeps
track of the products sold in the online channel, as these can lead
to returns. We assume that products sold through the offline chan-
nel are not returned, as product returns are mostly a characteristic
of online sales.

3.1. Modelling approach

The problem described above can be formulated as an MDP. As
the problem consists of decisions and state transitions on different
time intervals, we formulate it as a Hierarchical Markov Decision
Process as described in Kristensen (1988). Describing the studied
problem as a hierarchical MDP allows for convenient notation as
action spaces and state transitions will not be dependent on the
sub-period. The hierarchy of decisions in the MDP is illustrated in
Fig. 1. At level I of the MDP the replenishment decision is made,
and at level II of the MDP the rationing decision is made in each
sub-period. The selling process and possible returns are also in-
cluded in level II for each sub-period.

The objective of the MDP is to maximise profit, consisting of
the sales revenue and the different costs. These costs include hold-
ing and handling costs for the individual channels, online fulfil-
ment costs, costs of handling returns, and costs of the product. In
an omni-channel setting, the price of the product is equal in both
channels. We keep track of the number of products sold online
each sub-period however, aggregate them on the time scale of level
I to reduce complexity. As the retailer has a maximum time win-
dow for customer to return their products, we only keep track of
products that are sold within M periods. Furthermore, we assume
that products are not returned within the period the product is
sold as customers do not instantly return a product after delivery.

At level I of the MDP, the state S consists of the inventory po-
sition I and the quantity of unreturned products sold in the on-
line channel up to M periods ago R= (R, ..., Ry), together form-
ing the state S = (I, R). We use the bold notation to indicate it as
a vector. At this level, the replenishment decision q is made. At
level 1I of the MDP, the state s consists of the inventory position I,
the number of products sold in the online channel so far this sub-
period Ry, unreturned products from the previous periods R, the
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Fig. 1. Visualisation of the states and actions in one period.

outstanding replenishment order Q, and the sub-period t. At this
level, the rationing decision a is made each sub-period, where a is
the number of products stored in the offline channel. At the begin-
ning of the first sub-period the information of the state at level I
is used to construct the state at level II: s = (I, Ro, R, Q, t). The in-
ventory state I and R are identical from the state at level I. For the
first sub-period R is set to zero, and Q is set to the replenishment
decision of level I g. For all subsequent sub-periods, the number of
online products sold in the previous sub-periods is added to Rg.
When the replenishment occurs at sub-period t = ¢, the out-
standing order quantity is set to zero for the rest of the period, i.e.
s=(I,Rg,R,Q =0,t =¢). At the end of all sub-periods, the total
online sales of the period is given by R/, and the remaining num-
ber of unreturned products sold in the channel m periods ago by
R;,. This state information of level II is passed back to level I to
form the state S’ = (I”,R”). Where I” is thus the closing inventory

of the period, and R” is the sold products in the online channel
that are not returned, as these are from the previous period they
are given as Rf =R, R) =R}..... R/, =R}, ;.

The uncertainty in the MDP comes from both the demand and
the product returns. The demand is modelled according to a dis-
crete distribution, with P,(d;) indicating the probability that de-
mand of channel i is d; with i € {1 = offline, 2 = online} and d; €
{0,1,...,D;}. D; indicates the maximum possible demand of the
channel. The returns are modelled according to M Binomial dis-
tributions given as B(r) with parameters p and Ry, where p is
the probability a single product is returned, and Ry, is the pool of
returnable items, which is the total sales of m periods ago that
has not been returned yet. As we only assume products are re-
turned that are sold between 1 and M periods ago, m € M with
M ={1,2,...,M}. We assume that the return probability is inde-
pendent of the period in which the product is sold. If there would
be a reason to model these probabilities differently, o could be
made dependent on m as the binomial distributions of unreturned
products sold in period m are independent.

3.2. Model

3.2.1. State space

The state space of the inventory state at level I is given by
IeT with T={0,1,..., (T+¢)-Y;Di+M-T-Dy}. The inventory
state is limited by the maximum expected demand and the re-
turns of the last M periods. We assume the retailer will never
order more than the maximum expected demand over the pe-
riod plus lead time. However, products sold online over the last
M periods ago could theoretically all be returned and added to
the inventory. The maximum inventory level is therefore given by
(T+¢)->;Di+M-T-D,. The state space of the unreturned prod-
uct sold m periods ago is limited by the maximum amount of ex-
pected online sales in a period: Re R with R ={0,1,...,T-D;}.

The state space of the inventory at level II is equal to the
state space at level I, I € Z. The state space of the order quan-

tity is limited by the maximum expected demand of the re-
view period minus the inventory position: Q € Q(I) with 9(I) =
{0,1,...,T->;D; —I}. The state space of the sold product m peri-
ods ago is equal to that at level I, R € R.

The state space of the products sold in the current period is
dependent on the sub-period, as it is limited by the maximum
amount of expected online sales per sub-period: Ry € P(t) with
P(t) € {0,1 t-Dy}.

.....

3.2.2. Action and action space

At level I of the MDP, the order quantity q is determined at the
beginning of the period, and is limited by the order quantity state:
ge Q) ={0.1.....T-¥;D; I},

At level II of the MDP, a rationing decision a is made every sub-
period t. This rationing decision decides how many products are
stored in the channels. The action space of the rationing decision is
dependent on the current inventory position: a € A(I) with A(I) =
{0,1,...,I}. The rationing decision is made at the beginning of the
sub-period and is not revised throughout the sub-period.

.....

3.2.3. State transitions

At level I of the MDP the state transitions every period, while
at level II of the MDP the state transitions every sub-period. At
level II of the MDP the state transition from s= (I, Ry, R, Q,t) to
s’ = (I'. Ry, R',Q’,t +1) occurs. The transition of the inventory I to
I' is dependent on the demand, rationing decision, returns, replen-
ishment, and the sub-period:

M
I'=@-d)" +(I-a)-d))" + ) rm+8(t=10)-Q (1)

m=1

where x* = max(0, x) and §(x) denotes the Kronecker delta, which
gives the value 1 if x = True, otherwise 0. The first term of the
equation refers to the demand satisfied in the offline channel, in
which the inventory level is a and the demand occurring dy. The
second term refers to the demand satisfied in the online channel,
in which the inventory level is I —a and the demand occurring
d,. The third term of the equation refers to the returned products,
which is the sum of the products returned that are sold between
1 and M periods ago. The last term refers to the replenishment,
which occurs at t = ¢, which is at the beginning of sub-period ¢.

The transition of the number of products sold online in the cur-
rent period Ry to Rj is dependent on the number of product sold
online the previous sub-period and the products sold online in the
current sub-period:

Ry = Ry + min (d, I — a) (2)

where the product sold online in the current sub-period are added
to those where already sold in the subsequent sub-period. The
transition of unreturned products m periods ago, R to the next
state, Ry, is dependent on the quantity of products being returned
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m. Only unreturned products sold more than 1 period ago can be
returned, with a maximum of M periods.

R,=Rn—Tm VmeM (3)

The transition of the replenishment quantity Q to Q' depends
on the sub-period. If the replenishment has yet to occur, Q remains
constant, otherwise it is set to zero:

Q,:{Q ifr<e @

0 otherwise.

Vn(s) =
d;=0d,=0m= 1rm_0

At level I of the MDP the state only transitions at the end of the
period, where the information of the state at level Il is obtained to
form the new state of level I: §' = I”,R”). I” is the closing inven-
tory of the period, which is obtained after the last inventory state
transition of level II of the MDP when t = T.

The state transition of the number of unreturned products for
level I is obtained after the last state transition of Ry and R from
level II of the MDP when t = T. As we keep track of the periods ago
a products was sold and the period has ended, unreturned prod-
ucts that were returned m — 1 periods ago are now m periods old.
Unreturned products older than M periods are not eligible to be
returned anymore, thus we do not keep track of these items.

R; = R;n—l Yme M (5)

3.2.4. Expected immediate reward

The goal of the MDP is to maximise its profit, which consists of
the revenue, and several costs. The expected immediate reward at
level I of the MDP only consists of the ordering cost and is given
as follows:

ER(S.q) =—-q-¢p (6)

In which ¢; is the procurement cost of the product. The ex-
pected immediate reward per sub-period at level II of the MDP
consists of revenue sold from selling products, online fulfilment
cost, holding costs and handling costs of returns:

p<d2d~P1(d)+dZa-P1(d)> (71)
ERy(s,a) = { T(P—a){ 2 d- Pz(d)+d§a(l—a> &(d)) (72)
—(cm 'ﬂ+§lhz (I'-a)) (7.3)
—(p+or) ;1 Rn-p (7.4)

The first term (7.1) of the expected immediate reward consists
of the revenue of the offline channel given price p. The same sales
price is applied for the online channel, however, a shipment cost
of ¢y is incurred as seen in the second term (7.2). As customers
are expecting free shipping, the retailer has to incur the cost. The
third term (7.3) is the holding cost of the offline and online chan-
nel, c,; and ¢y, per product respectively. The last term (7.4) is the
cost from expected returns of M periods ago, p + ¢, is the handling
cost of a return plus the price of the product, as customer receive
full return payment.
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3.3. Bellman equation and value iteration

The objective of the MDP is to find the optimal policy that
maximises the long-term discounted profit. The expected future
discounted profit when following an optimal policy over n con-
secutive sub-periods when starting in state s is defined as vy(s).
To obtain the optimal policy by value iteration one starts setting
Vo(s) =0 for all states s. Next, one computes for all s:v;(s) =
mf()l() {ERy (s, a)}, and continues by computing v, v3, etc. using the
ae

recursive Bellman equation in equation (8).

mQa(x {ER[(S q) + max {ERH(S a)
+v Z Zz Z Z P (d])Pz(dz)B(rm)-vn1(5’)}} ifnmod T=0 (8)

max {ER”(S a)+y Z ZZ Z Z Py (d1)P2(d2)B(Tm) - Va1 (s )} otherwise.

acA() d;=0d,=0 m=1 1 =0

Here, y is the discount factor that is included to ensure a fair
comparison between VI and the solution technique of DRL, which
requires discounting of future rewards. The first equation in (8),
where n is a multiple of T, relates to the ordering and rationing
decision, which both happen at the beginning of the period con-
secutively. The second equation relates to the other time periods,
in which only the rationing decision is involved.

Let n be the iteration counter. The Markov process is unichain
and aperiodic at level I, and unichain but periodic at level II with
period T. Hence the difference v, — v,,_1 converges for all states to
the same value, as n moves to infinity. A discounting factor y is
included for a fair comparison with DRL, which requires discount-
ing for stabler training as future rewards might be uncorrelated
in DRL. For y < 1, the difference v, — v,,_r converges to zero, as
n tends to infinity. If ||vy; — v,_7| is smaller than ¢(1 —y)/y, the
value iteration stops (we specify ¢ = 0.1). For details on the speed
and conditions for convergence we refer to Puterman (1994). As
at level II the problem is periodic with period T, one full iteration
consists of T sub-periods.

The (nearly) optimal strategy for the two levels of the MDP can
be obtained from the results of the value matrices. First the op-
timal replenishment policy g*(s) at t =1 for level I is found by:

q*(s) = argmax

ER(s, q) + max { ERy (s, a)
geQ(l) acA(D)

Dy D, M Ry

+Y ) D> Y Pi(d)P(d2)B(rm) - Va1 (5) (9)

d;=0d,=0m=1r,=0

Second, the optimal rationing decision a*(s) for all states in t =
1,..., T for level II is found by:

a*(s) = argmax { ERy (s, a)
acA(l)

Dy D, M Rn

+Y D DY Y Pi(dDPa(d2)B(rm) Ve () ¢ (10)

d1=0d,=0m=1rn=0
4. Implementation of deep reinforcement learning algorithm:
proximal policy optimisation

For small-scale settings the Bellman equations can be solved to
optimality within reasonable computation time and RAM usage.
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However, for large-scale settings, the action and state space be-
comes increasingly large resulting in infeasible computational time
or memory limitations. DRL is considered to be useful to circum-
vent the curse of dimensionality, as it can be used to develop near-
optimal solutions that could not be obtained using conventional
approaches (Boute et al., 2022). In DRL, many different algorithms
are used. They all follow the general structure of an agent inter-
acting with an environment and collecting experience to find the
best policy. This policy is found by using the collected experience
to train an approximation of the state values and policy, in which
the approximations often take the form of a neural network.

Actor-critic methods are reinforcement learning algorithms in
which both policy gradient and value estimation are applied. The
actor and the critic are the two interrelated components making
up the method. The critic provides an estimation of the expected
future discounted profit, which is used by the actor to apply gra-
dient descent on the policy. Asynchronous Advantage Actor-Critic
(A3C) is a well-known actor-critic method that has proven to per-
form well for various inventory management problems (Gijsbrechts
et al., 2022). However, the A3C algorithm has the disadvantage of
needing a lot of training data and extensive parameter tuning. In
order for the actor to converge, it needs to have an almost infinite
amount of training data. Recently, Vanvuchelen et al. (2020) have
shown that another actor-critic method called Proximal Policy Op-
timisation (PPO) also performs well in an inventory management
setting and that it is less sensitive to the disadvantages of A3C.
PPO is praised for its sample efficiency and ease of implementa-
tion (Schulman et al., 2017).

The PPO algorithm trains the actor and the critic, which are
both represented by a neural network. The input of these neural
networks is the state of the system. The output for the actor is
the action and the output for the critic is an estimation of the ex-
pected future discounted profits for the input state. As the hier-
archical MDP discussed in this paper has two levels, we use two
actor-critic sets and four neural networks in this paper. The ad-
vantage of having a separate actor-critic set for each action is that
it decreases the complexity of training the actor neural network.
This could improve training, as the neural networks only have to
approximate one action. The architecture of the neural networks is
identical for all four networks, except for the output layer.

The neural networks consists of two fully connected layers with
width 256, all with a tanh activation function and a bias. The
tanh activation function has the advantage of non-linearity and has
been proven to be better at quickly finding local (or global) min-
ima as the derivatives can be large (LeCun et al.,, 2012). The four
neural networks have different applications, and therefore the pa-
rameters of the neural network, which are the weights and bias,
are different. The parameters of the actor and critic neural network
are given by 6, and ¢ respectively, where the level of the MDP is
given by h € {1 =level I, 2 = level II}.

For the actor, the last layer is a softmax activation function,
which provides a probability distribution over the action space de-
noted by 7 (-|S,0) with S being the input state. Therefore, the size
of the last layer is equal to the action space of the level. From the
actor we can get the best action by taking the action with highest
probability. For the critic, the size of the last layer is one, as the
output is the estimation of the expected future profit for state S is
denoted by V (S, ¢).

4.1. PPO algorithm

To update the neural networks, the PPO algorithm needs to col-
lect information about the environment. This is performed by sam-
pling the studied problem and storing the visited states, actions,
and related profits during the sampling. Fig. 2 visualises the imple-
mentation of the PPO algorithm with the sampling, updating of the
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neural network, and the evaluation of the policy found. We sam-
ple for B periods and thus T - B sub-periods, and store the visited
states, taken actions, and received profits. As our MDP has two lev-
els, the storing of the training data differs and we store them sep-
arately. The algorithm starts with initialising the neural network
parameters randomly and setting the training iteration counter (k)
to one.

4.2. Sampling

The sampling is started by drawing a random state S;, setting
the sub-period t = 1, and setting the sample points K and k to one.
The state Sk is used in the actor and critic of level I to get the or-
dering action qx and expected future profit V (Sg, ¢;). The ordering
action g is obtained by randomly sampling from the probability
distribution of the ordering action space, qx ~ 7 (-|Sk, 61). The or-
dering action is put into environment level [ to get the state s,
which is used by the actor and critic of level II. Additionally, from
environment level I we collect the profit Ex when taking action
gx when in state S, this information combined with V (Sk, ¢1) is
stored in the training data of level I. From the actor and critic of
level II a rationing action is drawn from the probability distribu-
tion a; ~ 7 (-|sk, 62) and expected future profit V (s;, ¢,) is gained,
where the rationing action is put in environment level II to get
the reward ey, which together with the state and action is stored
in training data of level II. The demand and returns that occur in
the environment level II are randomly drawn from their respective
distributions. Furthermore, the next state s, is collected from en-
vironment level II. This next state is used as input for the neural
network of level II if the sub-period has not ended yet, which is
determined by t < T, else this state is used as input for the neural
network of level 1. Every time a sample is drawn from environment
level II, both the sample point k and sub-period t are increased by
one. When the sub-period has ended, the state s, is used to con-
struct state Sk, 1, t is set to one indicating we are at the beginning
of the period again, and the sample point K is increased by one.
When K = B and k =T - B the sampling is done and the neural net-
works are updated.

4.3. Update neural networks

First, with the collected training data the advantage and dis-
counted profit are calculated. Secondly, the training data, advan-
tage, and discounted profit are shuffled and split into n mini-
batches to calculate the average loss over each mini-batch. Each
mini-batch consecutively updates the neural networks once. For
each mini-batch the loss is minimised by updating the neural net-
works parameters 6, and ¢y, to ; and ¢;. The procedure of calcu-
lating the loss and how the parameters of the neural network are
updated with respective to the loss is given in Appendix A.

The process of splitting the training data, advantage, and dis-
counted profit and updating the neural networks is called an
epoch. As we are using the collected training data, advantage, and
discounted profits multiple times to update the neural networks
a total of u epochs are performed. In addition, in every epoch
the training data is shuffled, to create new configuration of mini-
batches in each epoch. This ensures that the updates of the neural
networks are not over-fitted to the training data. Thus, the param-
eters of the neural networks are updated 7 -u times, were each
sample point in the training data is used u times.

4.4. Evaluation
Once the neural networks are trained u epochs, the training

iteration counter « is updated by one. After updating the neural
networks for xmax iterations, where each training iteration consists
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Fig. 2. PPO algorithm flow diagram.

of B periods, the resulting policy is evaluated. We follow a sim-
ilar procedure as Vanvuchelen et al. (2020). The policy is simu-
lated for 1,000,000 periods considering a small warm-up period.
During the sampling the action to be taken is randomly drawn
from the output of the actor, which is a probability distribu-
tion over the actions, whereas in the evaluation we take the ac-
tion with the highest probability as this is considered to be the
best found action for the given state. Thus for the ordering ac-
tion we take g = argmax (7 (-|S,0;)) and for the rationing action
a = argmax (1 (-, 6;)).

To measure the performance, the average profit per period from
the simulation is used. If the average profit per period of the best
resulting policy has not changed more than 0.5% over three consec-
utive policy evaluations, we assume the algorithm has converged
to its final policy. A maximum of 30 policy evaluations are con-
sidered, if the maximum is reached the best performing policy is
assumed to be the final policy.

4.5. Implementation

4.5.1. Parameters

To implement the PPO algorithm, several parameters and in-
put data need to be defined. The tuning of reinforcement learn-
ing parameters can be computational costly (Gijsbrechts et al.,
2022), thus we started from the settings of related work such as
Vanvuchelen et al. (2020). We did however adapt some of the pa-
rameters to our problem setting, and performed some experiments
to improve the performance of our PPO algorithm. This was done
by tuning the parameters and investigating the results for a test
case. We evaluated different neural network architectures, sample
periods, amount of mini-batches, learning rate, entropy regularisa-

Table 1
Parameter values used in the implementa-
tion of the PPO algorithm.

Hyperparameters Value
Depth of NN 2
Width of NN 256
Activation function TanH
Sample periods (B) 512
Amount of mini-batches () 4
Number of epochs () 10
Training iterations (kKmax) 1000
Learning rate («) 104
Entropy regularisation (Sg) 10>
Clipping parameter (€) 0.2
Huber loss constant (§) 5

tion, and the Huber loss constant. Table 1 describes the parameters
used.

Our model has relatively large demand fluctuations during the
period compared to related work, a larger sampling period is used
to reduce uncertainty in the update of the network. Furthermore,
the width of the neural network is increased, as our action space
is relatively large and should not exceed the width of the neural
network. The initial bias and weights of the neural network are
sampled from a Normal distribution with mean 0 and standard de-
viation 0.5. Therefore the initial policy is a random policy.

4.5.2. Scaling of states and input data

By normalising the input data of the neural network it is ex-
pected to converge quicker to the training data (LeCun et al., 2012).
The input of the neural network, which is the state, is therefore
scaled so that the minimum value of the state is -5 and the largest
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value of the state is 5. Additionally, the economic parameters are
scaled from O to 1.

4.5.3. Action masking

As described in Section 3.2.2, the action space is limited by the
current state for the replenishment and rationing action. To ensure
the PPO algorithm does not consider invalid actions, we apply ac-
tion masking using the method of Huang & Ontafién (2020). This
method sets the output of invalid actions in the actor neural net-
work before the softmax activation layer to a small negative value
(in our case —1078), so that after the softmax activation layer the
probability of choosing these actions becomes negligible. An addi-
tional advantage of action masking is that by masking the action
space, the PPO algorithm can learn faster as it quickly learns to
disregard the invalid actions.

5. Computational complexity and performance

As mentioned in Section 4, only small-scale instances can nor-
mally be solved with the Bellman equation. To compare the com-
putational complexity and performance of PPO with VI, we develop
a range of small-scale instances, consisting of a base test case and
various alterations. The data set used is based on recent literature
studying similar omnichannel retail settings with a few alterations
to reduce the size of the problem (Bayram & Cesaret, 2021; Dijk-
stra et al., 2019; Goedhart et al., 2022; Li et al., 2015; Ovezmyradov
& Kurata, 2019). Additionally, we investigate the effect of modelling
the returns multi-period and sales-dependent by comparing it with
two other methods that approximate the return flow.

5.1. Base test case and alterations

For the base test case, we assume average demand of the indi-
vidual channels is assumed to be Poisson distributed with w; =3
and u, = 1. As one needs a finite support, the distribution is right
truncated at a cumulative probability of 99%, preserving the mean
value using the approach by Cohen (1954) is used. Thus the maxi-
mum demand in a sub-period is D; = 8 and D, = 4.

We assume a period consists of 7 sub-periods (T = 7), to reflect
a weekly ordering decision. Replenishment orders are placed on
Monday (t = 1) with lead time ¢ = 2, thus delivered on Wednesday
(t = 3). Here both events occur at the beginning of the sub-period.

The probability of a product being returned is pp = 0.4 in a re-
turn window M = 2 periods (Dijkstra et al., 2019). The probabil-
ity of a product being returned in a sub-period is p=1- (1 -
pp)V/TM) — 0.036. Similar to the demand distribution, we truncate
the return distribution at a cumulative return probability of 99%.
Additionally, we reshape the binomial distribution according to the
approach of Johnson et al. (2005) to preserve the mean value. Al-
though a binomial distribution has a natural maximum value, we
truncate the return distribution to reduce the size of the problem.

The economic parameters are based on literature studying sim-
ilar settings (Bayram & Cesaret, 2021; Li et al., 2015; Ovezmyradov
& Kurata, 2019). We set the price of the product at p =100 and
the cost of the product cp = 30. The handling cost incurred for sat-
isfying an online order is set at ¢, = 5. The holding cost of the of-
fline and online channel are c,; = 1 and ¢, = 0.5, respectively. The
handling cost of a returned product is ¢, = 5. The discount factor
is y = 0.99, similarly as in Vanvuchelen et al. (2020).

The different instances are created by varying specific subsets of
parameters. Table 2 presents the values for the specific parameters.
The parameter values for the base case are listed in bold.

The different instances in which w, = F(p) represent scenar-
ios in which the online return percentages vary, but the net online
sales remains constant. These instances are created to investigate
how the uncertainty of returns influence the profitability of the
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Table 2

Parameter values for small-scale instances, where the
base case is given in bold.

Parameters Value

M 1,2,3

M2 1.F(p)

v, 1/ Q). VTl
Pp 0.2,0.3,04
M 1,2

cr 0,5,10

Cp 30, 50, 70
Ch1 0.1,0.2,1

Cho 0.05,0.1,0.5
Y4 1,2,3

retailer, without it being influenced by the net online sales. The
online demand is calculated as follows:
us(1—p5)

(1-p)

Here, p3 and pj are the online demand and return percentage
of the base test case. Other instances are created by halving the co-
efficient of variation (CV;). For alternative values of CV;, the demand
distribution is fitted to u; and CV; using the procedure described
in Adan et al. (1995). All demand distributions are reshaped as
right-truncated distributions (Cohen, 1954; Johnson et al., 2005;
Louchard & Ward, 2015; Shah, 1966), truncating at a probability
of 99% of the cumulative distribution function. In the remainder of
this paper, if a instance does not specify a certain parameter value,
it will be equal to their base test case setting.

F(p) = (11)

5.2. Value iteration vs proximal policy optimisation

The results presented in this section were obtained by imple-
menting VI in Python version 3.7.2. For the neural network mod-
els of the PPO algorithm TensorFlow 2.3.0 was used. The model
was run on a Personal Computer with Intel Xeon W-2133 CPU @
3.60gigahertz and 32 GB of RAM.

Table 3 presents the required computational time, RAM usage,
and optimality gap for both algorithms, as well as the total amount
of states in the system. The RAM usage is mainly dependent on
the size of the value matrix (as this changes due to the order-
ing state becoming zero after replenishment, it is expressed as the
maximum RAM usage during an iteration). The optimality gap is
the difference in profit between the optimal solution derived via
VI and the policy found by the PPO algorithm. The profit for the
policy found by VI and PPO is obtained by simulating the result-
ing policies of both algorithms for 1,000,000 periods with a small
warm-up period.

From Table 3, it is observed that the demand, coefficient of vari-
ation, returns, and lead time increase the state space exponentially.
Especially for the return percentages the curse of dimensionality
is clear, as an increase of 10% in return percentages doubles the
amount of states in the model. For some return percentages, a sim-
ilar amount of states can be seen. This is due to the truncation of
the distribution function for the number of returns in a sub-period,
as the truncation then happens at the same value. Increasing the
lead time increases the number of sub-periods the ordering state
is included in the state space and the maximum order quantity,
therefore increasing the amount of states significantly.

It is observed that for the small-scale instances the CPU time of
VI is much lower compared to the PPO algorithm. The CPU time of
VI grows exponentially with the number of states and state transi-
tions, the CPU time of the PPO algorithm is less sensitive to the
dimensionality of the instance. VI solves the problem iteratively
backwards via the Bellman equation, where for each possible state,
the action and related probability distribution on the next states is



JID: EOR

J. Goedhart, R. Haijema and R. Akkerman

Table 3
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Computational complexity and performance for VI and the PPO algorithm for the small-scale instances.

Instance States (in millions)  CPU time (hours) = RAM (MB) Optimality gap (%)
MDP PPO MDP PPO
n1 =3,y =1° 205.8 17.87 85.7 4283.1 6.1 -1.64
n1=2,1p=1 153.6 1219  104.2 31700 54 -2.20
mi=1puy=1 108.8 7.61 146.6° 2219.5 4.7 -2.73
Vi =1/ 205.8 17.87 85.7 4283.1 6.1 -1.64
vy =1/Qy1t7) 1303 6.04 1418 26745 5.1 -1.72
WV, =1/212) 59.3 0.55 1423 12758 5.0 -1.84
Vi =1/ i) 33.7 024 1420 709.1 39 -1.33
pp=0.2 43.8 12.72  128.8 5219 53 -2.12
pp=03 107.1 17.48 1003 17462 5.7 -2.29
pp =042 205.8 17.87 85.7 4283.1 6.1 -1.64
pp =05 431.8 3024  145.8° 87774 6.5 -2.20
pp=0.6 431.8 31.93  146.1° 87774 6.5 -2.03
pp=0.2, 1y =F(pp) 18.8 12,72 1233 4404 5.0 -2.12
pp=0.3, 12 =F(pp) 80.3 17.48  149.2° 17412 5.7 -2.29
pp =04,y =F(pp)* 2058 17.87 85.7 4283.1 6.1 -1.64
pp=0.5 2 =F(pp) 431.8 3024 1233 87774 5.0 -2.20
pp=0.6, 2 =F(pp) 903.4 3193 1233 181319 5.0 -2.03
M=1 10.5 0.85  147.0° 1496 5.7 -2.33
M=2° 205.8 17.87 85.7 4283.1 6.1 -1.64
¢ =0 205.8 22.63  145.6" 4283.1 6.1 -2.11
¢ =52 205.8 17.87 85.7 4283.1 6.1 -1.64
¢ =10 205.8 22.78  148.6° 4283.1 6.1 —2.44
cp =307 205.8 17.87 85.7 4283.1 6.1 -1.64
cp =50 205.8 23.41 144.4° 4283.1 6.1 -2.04
=70 205.8 2433 1264 4283.1 6.1 -0.89
¢y = 0.1, ¢y = 0.05 205.8 2396  125.0 4283.1 6.1 -1.97
cp1 =0.2,¢c, =0.1 205.8 2440 1269 4283.1 6.1 -0.81
¢ =1,¢p =052 205.8 17.87 85.7 4283.1 6.1 -1.64
=1 63.3 330 1359 33257 54 -2.40
(=20 205.8 17.87 85.7 4283.1 6.1 -1.64
=3 493.3 58.63  137.9 5360.8 6.9 -2.34
Average 214.9 1839 1269 42513 5.6 -1.95

@ Base test case with (1 =3, u, =1,V =1//ft;, pp =04, M=2,¢,=5,¢, =30, ¢y =1,¢p =05, = 2.
b Instances in which the policy did not converge within 30 iterations.

calculated and used to update the state value. Therefore, the CPU
time of VI does not solely depend on the number of states but also
on the number of state transitions and the action space resulting
in larger computational time.

The PPO algorithm is less sensitive to the dimensionality of the
problem as it approximates the state values and actions by a neu-
ral network. The results of the simulation are used to update the
neural network, which generalises across similar states. As the PPO
algorithm does not need to visit each state to solve the problem,
the CPU time does not increase with the number of states. How-
ever, as the PPO algorithm is less effective in finding the optimal
action for each state compared to VI, the computational time is
often larger. The PPO algorithm uses simulation and random ini-
tial weights of the neural network, varying the computational time
used for training per instance. Furthermore, the visited states, re-
wards, and actions are randomly simulated, influencing the train-
ing as this information is used to update the neural network.

From Table 3 it can be concluded that the RAM usage of the
MDP increases with the size of the instance. The RAM usage of
the MDP is less sensitive to the demand and lead time, as these
increase the size of the value matrix to a limited extent. The RAM
usage is more sensitive to the return distribution, as this influences
the state space of multiple states. The RAM usage of the PPO algo-
rithm is less sensitive to parameter values as the only information
it needs to store are the parameters of the neural network and the
samples of the simulation. These are less dependent of the size of
the problem.

From Table 3 it can be observed that the largest optimality gap
is found for the instance of uq =1, up, = 1. Here, the PPO algo-
rithm yields 2.73% less profit than the optimal solution. The PPO
algorithm performs best for the instance of cy; = 0.2,¢,, =0.1, in
which the profit gap is —0.81%.

When looking at the underlying cost and how the found pol-
icy of the PPO algorithm differs from the optimal policy (see also
Table B.1 in Appendix B and Table C.1 in Appendix C), it is ob-
served that instances in which the PPO algorithm has difficulty
in finding the optimal policy is when around the optimal solu-
tion the profit difference is minimal. Finding the optimal action is
then difficult as performing non-optimal minimally influences the
profit. This is observed as the rationing decision at high inventory
level differs the most between the two policies. At a high inven-
tory level the rationing decision has less influence on the profit as
there is no competition between the channels for products. There-
fore, at high inventory levels the rationing decision is more focused
on cost minimisation. Additionally, when the action state space is
large the PPO algorithm has more decisions to evaluate, increas-
ing the difficulty of finding the optimal action. Consequently, at
low inventory levels, the PPO algorithm can more easily identify
the optimal rationing decision as the action space is limited by the
inventory level and the channels compete for products, thus the
rationing decision also influences the profit more.

For the instances with decreasing demands, we notice that the
optimality gap is growing. A similar trend can be observed for
increasing coefficients of variation in demand. This suggests that
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Table 4
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Computational complexity and performance for the different modelling approaches.

CPU time (hours)

RAM usage (MB) Optimality gap (%)

Instance MultiR  Agg. R Ind.R  MultiR Agg. R Ind. R Agg. R Ind. R

n1 =3,y =1°% 17.87 1.82 0.23 4283.1 199.7 53.0 -1.03 —-8.88
n1=2,uy =1 12.19 1.13 0.37 3170.0 1241 31.0 -1.57 —14.87
=1y =1 7.61 0.58 0.85 2219.5 69.6 15.9 -3.04 3344
V= 1/(J10)* 17.87 1.82 0.23 4283.1 199.7 53.0 —-1.03 —8.88
W =1/Q2mr) 6.04 0.61 0.20 2674.5 94.5 26.6 -1.11 —15.56
Vy =1/(2/m2) 0.55 0.72 0.17 1275.8 127.3 222 -0.97 -3.23
CVi =1/21%) 0.24 0.31 0.13 709.1 57.4 10.7 -1.04 —-6.38
pp=0.2 12.72 0.49 0.17 521.9 73.7 421 —-0.03 -2.99
pp=03 17.48 1.31 0.20 1746.2 129.2 421 -0.88 —-5.00
pp = 0.4 17.87 1.82 0.23 4283.1 199.7 53.0 —-1.03 —8.88
pp=05 30.24 2.64 0.33 8777.4 464.6 70.7 -0.78 -19.27
pp =06 31.93 2.71 0.52 87774 613.1 78.2 -0.37 -36.93
pp=0.2, 43 =F(pp) 2.59 0.40 0.15 440.4 40.5 12.8 -0.17 -3.12
pp=0.3, 12 =F(pp) 17.74 1.25 0.20 1741.2 105.5 38.0 -0.74 -6.79
pp =04,y =F(pp)* 17.87 1.82 0.23 4283.1 199.7 53.0 -1.03 —-8.88
pp=0.5, 1 =F(pp) 28.70 3.11 0.30 8777.4 464.6 70.7 —1.00 -17.07
pp=0.6, Ly =F(pp) 83.63 5.40 0.78 18131.9 992.8 148.5 -0.73 —57.78
ow=1 0.85 0.50 0.23 149.5 73.7 27.3 —1.40 -10.73
Pw =22 17.87 1.82 0.23 4283.1 199.7 53.0 -1.03 —-8.88
¢ =0 22.63 1.55 0.23 4283.1 199.7 53.0 -0.76 -8.83
¢ =5 17.87 1.82 0.23 4283.1 199.7 53.0 -1.03 —8.88
¢ =10 22.78 1.61 0.23 4283.1 199.7 53.0 -1.39 -8.97
cp =30° 17.87 1.82 0.23 4283.1 199.7 53.0 -1.03 —8.88
cp =50 23.41 2.19 0.25 4283.1 199.7 53.0 -1.78 —14.55
cp =70 24.33 1.96 0.25 4283.1 199.7 53.0 —2.51 -29.22
¢y = 0.1, cpp = 0.05 24.40 1.83 0.23 4283.1 199.7 53.0 —0.80 —5.69
ey =0.2,cp=0.1 23.96 1.86 0.23 4283.1 199.7 53.0 -0.83 —6.24
¢ =1,¢p=0.5% 17.87 1.82 0.23 4283.1 199.7 53.0 -1.03 —-8.88
=1 3.30 0.82 0.22 3325.7 152.2 376 —-0.97 -7.20
(=2 17.87 1.82 0.23 4283.1 199.7 53.0 -1.03 -8.88
=3 58.63 3.59 0.27 5360.8 253.6 71.0 -1.04  -12.40
Average 20.60 1.67 0.29 425132 227.58 48.54  -1.08 -14.57

2 Base test case with: pq =3,y =1,Vi=1/J/1i, pp =04 M=2,¢,=5,¢,=30,cy =2,¢pp =1, £ =2.

having a higher dispersion of the demand distribution negatively
influences the training of the PPO algorithm. With a higher coeffi-
cient of variation, the rewards that the PPO algorithm experiences
during sampling are more dispersed as this is partly driven by de-
mand. To better distinguish good actions from bad actions, more
training data is needed to mitigate the influence of the larger dis-
persed demand distribution.

Overall, the PPO algorithm shows good performance, with a
profit optimality gap of around —2.0%. The advantage of the PPO
algorithm is that it is not influenced much by the dimensions of
the studied problem, as CPU time and RAM usage are relatively
stable. The PPO algorithm does however experience difficulties in
finding the optimal policy when the uncertainty increases. Further-
more, the rewards influence the training, as these influence the
trade-off the PPO algorithm makes between different actions. As
the training of a reinforcement learning algorithm is influenced by
the received rewards, and one can manipulate them to find better
policies, this is often referred to as reward shaping in the rein-
forcement learning literature.

5.3. Modelling returns

Current literature mentions several methods to model returns.
In this paper, we explicitly model the returns as multi-period and
sales-dependent (which we refer to as Multi R in Table 4). To in-
vestigate how much influence this approach has on the retailer’s
inventory management, we compare it with two existing modelling
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approaches: (1) sales-independent returns (Ind. R) and (2) sales-
aggregated returns (Agg. R).

Modelling the returns independent of sales, as we do in Ind. R,
results in returns being an exogenous flow, similar to having a neg-
ative demand (see e.g. Feinberg & Lewis, 2005). We approximate
the return flow as a negative demand with a Binomial distribution
with p as the probability a single product is returned, and average
online sales over the return window (u, -M-T) as the pool of re-
turnable items. With regards to our MDP, the states Ry and R are
not relevant anymore when approximating the returns as indepen-
dent of sales and are therefore omitted.

For the approach of Agg. R, we model the returns by aggregat-
ing the state R into a single state R and omit Ry. The state R now
approximates the total online sales in the past M periods. How-
ever, as the expiration date of whether a products can be returned
is not included in the state it needs to be approximated. We there-
fore define the state transition of R to R’ as follows:
R'=(R—r—h+min(dy.]—a))* (12)
Here, r represents the number of products being returned (deter-
mined by a Binomial distribution with p as the probability a sin-
gle product is returned), R is the pool of returnable items, h is the
approximated online sales that cannot be returned anymore, and
the last term is the online sales of the current sub-period. We ap-
proximate h using a Poisson distribution with an average value of
M2 - (1 —pp) as this the number of products that on average are
not returned.



JID: EOR
J. Goedhart, R. Haijema and R. Akkerman
Table 5

Parameter values for large-scale instances,
where the base case is given in bold.

Parameters Value

™ 2,4,6

M2 2,4,6,F(pp)
Pp 0.3,04,0.5,0.6
M 2,3,4,5

1 1,2,3,4

We reformulate the MDP for both methods of modelling returns
and use VI to obtain the policies. Similar to Section 5.2, we com-
pare the different methods of modelling returns on the optimal-
ity gap, the required computational time, and the RAM usage. The
profit is calculated by simulation the resulting policies in the MDP
with the multi-period sales-dependent returns to investigate the
optimality gap. The results are presented in Table 4.

The advantage of modelling the returns independent from de-
mand (or past sales) is clearly seen in the CPU time. Modelling the
returns based on an aggregated number seems to be more influ-
enced by the increased state spaces, but the CPU time still remains
low compared to the original MDP. Similar trends can be observed
for the RAM usage. It can be concluded that there is a clear trade-
off: exact modelling results in a better performing policy at the
cost of computational complexity.

From Table 4, it is observed that the sales-aggregated return
method shows a low optimality gap, between —3.04% and —0.03%.
When online sales become more dominant a larger optimality gap
is observed and with lower return percentages the optimality gap
decreases. The sales-independent return method shows larger op-
timality gaps, as high as —60%. Here, the optimality gap increases
when the returns are becoming more dominant, such as in scenar-
ios with larger shares of online sales or higher return percentages.
Additionally, for both methods the optimality gap increases with
higher cost of the product.

Overall, the approach of aggregating the sales still shows rela-
tively good performance, as the optimality gap is lower compared
to the policies found by the PPO algorithm. Both methods show
good performance and have the potential to be used for large-scale
instances. We further elaborate on the performance of the aggre-
gated approach and the PPO algorithm for large-scale instances in
the next section.

6. Large-scale instances

In many settings in the literature and in practice, demand vol-
umes, lead times, return windows, and return percentages are
larger than in the small-scale settings discussed above. In such set-
tings, the state space of the MDP gets too large to obtain an ex-
act solution. For instance, for the presented large-scale base case,
the amount of states would be just over one billion, with a RAM
usage of around 16 GB, and an estimated CPU time of 300 hours
if solved with VI. Therefore, we use the PPO algorithm with the
multi-period sales-dependent returns and the MDP in which the
sales are aggregated to solve and analyse large-scale instances.
From these large-scale instances relevant managerial insights can
be derived as they better reflect current practices. The cost param-
eters and coefficient of variation of the small-scale instances are
also used for the large-scale instances, but parameters that influ-
ence the state space of the MDP are increased. In Table 5 the dif-
ferent parameter values for the large-scale instances are presented.

We evaluate the different instances on different performance
indicators related to profit and service level. We focus on instances
in which demand, return percentages and windows, and lead time
are altered as these instances give us insight in how uncertainty
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influences omni-channel retailer’s performance. We investigate the
profit and the alpha service level, which is an important perfor-
mance indicator that tells us the fraction of time one ends a day
ends with products still in stock. Most important is the cycle ser-
vice level (i.e. the alpha service level just before replenishment).
Table 6 gives the profit and cycle service level for our large-scale
instances. These results were obtained by simulating the policy
found by the PPO algorithm and from VI of the sales-aggregated
return MDP with the same procedure as described in Section 5.2.

For almost all the small-scale instances presented in Section 5,
the policy resulting from the sales-aggregated return MDP showed
a lower optimality gap than the policy of the PPO algorithm.
Table 6 shows that for large-scale instances, however, the policy of
the PPO algorithm has a higher profit than the policy of the sales-
aggregated return MDP. The cycle service level is higher for the
policy of the PPO algorithm across almost all instances and chan-
nels, indicating that more demand is fulfilled.

From Table 6 it is also observed that if the average demand
shifts from the offline channel to the online channel, the profit
decreases. This is mostly the result of the increase in return cost
and lower net sales: if more products are ordered online, the re-
turn flow will be higher. Although the profit decreases with more
online sales, the policies found differ on the cycle service level.
Both policies have higher cycle service level for the offline chan-
nel when offline sales decrease. However, where the policy of the
PPO algorithm decreases the service level for the online channel
with higher online sales, the policy of the sales-aggregated return
MDP increases their service level. Overall, the policy of the PPO al-
gorithm has a higher service level across all instances.

The return percentage negatively influences the profit, as more
products are returned the retailer has higher return costs. Although
the retailer orders less products in instances with higher return
percentages, the cycle service level is one of the highest for in-
stances with the highest return percentage. As the retailer has less
influence on their inventory position, they might have excessive
stock before replenishment arrives. For the instances in which the
net online sales remains constant, an opposite trend is observed
for the online channel. As the return percentage and online de-
mand increases, the cycle service level decreases except for the of-
fline channel with the policy found by the sales-aggregated return
MDP. The profit decreases more in these instances, due to higher
return flow, thus the retailer orders less. The retailer prefers to
store products in the online channel as the holding cost is lower
and make them available later during the sub-period for the of-
fline channel if needed. However, as the return flow is too high,
storing them in the online channel becomes less profitable as they
might be sold to online customers. Therefore, the retailer orders
less products for all channels and will face a stock-out more fre-
quently. For the policy found by the sales-aggregated return MDP
this also happens, however the rationing action differs where more
products are stored in the offline channel with increasing online
sales.

When investigating longer return windows it is observed that
the profit is not much influenced. Although the inventory cost is
slightly increased, they are negligible indicating that the return
window has little effect on the profit for the retailer. However, the
return window does influence the cycle service level. When the
return window is increased, the cycle service level also increases.
When the return window is increased, the probability of a prod-
uct being returned in a sub-period is decreased. Therefore, the re-
turn distribution becomes less uncertain thus the retailer has more
control on their inventory levels. Therefore they can better satisfy
demand without ending up with excessive or little stock and thus
improve their service level without high costs.

With an increase in lead time the profit does not change much,
and for the policy of the sales-aggregated return MDP the cycle
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Table 6

Profit and cycle service level for large-scale instances.
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Profit Cycle service level
Offline Online
Instance PPO Agg. R PPO Agg. R PPO Agg. R
n1 =6, uy =2° 3130.28 3061.15 0982  0.969 0950 0.806
n1 =41, =4 266231 259645 0987 0.986 0945 0.832
n1=2,,=6 2226.48 213120 0990 0.986 0936  0.845
pp =03 324145 317067 0979 0.970 0945  0.852
pp =047 3130.28 3061.15 0982  0.969 0950 0.806
pp=0.5 3033.68 2967.38 0988  0.970 0.955  0.800
pp =06 293470 287755 0993 0974 0958  0.825
pp =03, 2 =F(pp) 3102.50 3081.22 0978  0.967 0945  0.833
pp =041, =F(pp)* 313028 3061.15 0.982  0.969 0950 0.806
pp=0.5, 12 =F(pp) 3081.73 303853 0982 0973 0945  0.796
pp=0.6, uy =F(pp) 3026.83 300443 0977  0.980 0.903  0.812
Pw =22 3130.28 3061.15 0982  0.969 0950 0.806
pw=3 313432 3048.15 0986  0.968 0952  0.829
pw=4 3136.88 304226 0.968  0.965 0959  0.850
pw=>5 3138.79 303063 0991 0.966 0964 0.856
I=1 3137.64 3065.18 0981 0.969 0953  0.806
[=22 3130.28 3061.15 0982  0.969 0950 0.806
=3 3127.76 305887 0963  0.968 0946  0.800
=4 311290 305585 0944 0.968 0.907  0.797
Average 301522 294864 0979 0972 0.944  0.823

3 Base test case with: w1 =6, uy =2, (Vi =1/Jf;, p=04, M=2, ¢. =5, ¢, =30,

cm=1,cp=051=2.

service level remains constant. However, for the policy found by
the PPO algorithm the cycle service level does decrease. The policy
found by the PPO algorithm has more difficulty with the uncer-
tainty of demand during the lead time resulting in higher chance
of a stock-out. However, it appears the cycle service level has little
effect on the profit.

From Table 6 it can be concluded that the policy of the PPO
algorithm outperforms the policy of the sales-aggregated return
MDP for large-scale instances on both profit and cycle service level.
Furthermore, a higher online demand and return flow negatively
influences the profit. The cycle service level of the offline channel
increases with higher return percentage, unless the online demand
also increases as the retailer compensates for the decrease in profit
margins by ordering less products thus negatively influencing the
offline channel. However, the retailer can compensate for the lower
inventory by preferring the offline channel via the rationing action.
Furthermore, a longer return window or lead time has limited in-
fluence on the profit but does influence the cycle service level.

7. Discussion and conclusion

Omni-channel retailers are experiencing an increase in returns
originating from the growth of online sales. This return flow is be-
coming a significant issue for their inventory management because
the uncertainty of whether a product is being returned can result
in excessive stock. Also, several studies suggest to use the store for
the fulfilment of online orders and the handling of returns. This
has the advantage of leveraging the assets of the offline channel
for the online channel.

In this paper, we therefore study the problem of a retailer
who replenishes and rations their store inventory across an of-
fline and online channel, as well as integrates returns in managing
their inventory. The retailer has to make a trade-off between serv-
ing in-store and online customers, where the online sales might
lead to returns. This paper contributes to the academic literature
by providing a model for the inventory management of an omni-
channel retailer with multi-period sales-dependent returns. In con-
trast to previous work, our model considers the returns dependent
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on sales over multiple periods. The resulting MDP can be solved
with value iteration for small-scale instances resulting in exact so-
lutions. However, the complexity of the model grows for larger de-
mands and longer return windows and becomes unsolvable. There-
fore, we investigate alternative solution methods such as DRL and
approximating the returns.

As a DRL algorithm, PPO is used, as it has been proven to per-
form well in inventory management settings. The PPO algorithm
is able to provide solutions within reasonable optimality gaps. Al-
though VI shows a much lower running time for small instances,
it increases exponential in the problem size. The PPO algorithm
shows a high computation time for small instances but scales
much better to larger problems. The PPO algorithm leaves an op-
timality gap of about 2.0% for all small-scale instances. Instances
in which there is a higher level of uncertainty negatively influence
the training of the PPO algorithm. Furthermore, the PPO algorithm
has trouble finding the optimal action when the profit trade-off is
minimal between the optimal and non-optimal actions. We con-
clude that the PPO algorithm is useful in environment with rela-
tively low uncertainty and when the cost differences around the
optimal solution are not too small.

When investigating different methods to model and approxi-
mate the return flow it was found that modelling the returns in-
dependently from historical sales showed a high optimality gap,
increasing with larger return flows. Furthermore, aggregating his-
torical sales in one state outperforms the PPO algorithm for small-
scale instances (with an optimality gap of around 1.0%). Approxi-
mating the returns into one state has the advantage of lower CPU
time and RAM usage, and in situations with relatively low return
flows, the near-optimal results suggest that the existing models
might be useful for implementations in practice.

As the multi-period sales-dependent returns MDP cannot be
solved with VI for more realistic retail settings, we use PPO and
VI on the MDP formulated with sales-aggregated returns to in-
vestigate how return and demand uncertainty influence the omni-
channel retailer’s profit and service level. For large-scale instances,
the PPO algorithm outperforms the policy found with VI of the
sales-aggregated return MDP, therefore the PPO algorithm is pre-
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ferred for finding a policy when faced with larger demand vol-
umes. The results indicate that if customers shift from the offline
to the online channel it has a negative impact on the profit for the
retailer. As online demand increases, the online returns increase
which negatively influence the retailer profit as it requires more
handling. If the online returns are becoming too large it will also
negatively influence the service level of the offline channel, as the
retailer will order less products for both channels due to the low
profitability per product sold online unless the retailer compensate
it with their rationing strategy. Furthermore, although a longer re-
turn window does not affect the profit per product sold, it does
increase the service level of both channels, therefore a longer re-
turn window might be more preferable as long as it does not result
in higher return percentages.

This paper investigates how returns influence the profitability
of an omni-channel retailer who uses their store for the fulfil-
ment of online demand and returns of online products. Although
the model captures most typical characteristics of omni-channel
retailers, several potentially relevant factors were not taken into
account, and could be directions for further research. First, we only
investigate the perspective of a single store. In a multi-store con-
text, additional research could also include which stores are al-
lowed to fulfil online demand and handle online returns. Second,
further development of DRL algorithms for inventory problems is
relevant. Although the context of our studied problem does not
require discounting of future rewards, the PPO algorithm needs
it for stable training and convergence. Having the discount factor
too close to one results in unstable training, therefore an inter-
esting research direction would be in the development of stable
undiscounted DRL algorithms. The PPO algorithm develops a well-
performing policy in our study, it has difficulties learning in some
instances. Several research directions can be identified to improve
the training of the PPO algorithm. Transfer learning (in which the
policy found of one instance is used for the learning of similar in-
stances) might be useful in reducing training time. Also, reward
shaping might be used to provide better feedback on which actions
are preferred. Furthermore, behaviour cloning, in which the PPO
algorithm is pre-trained with an expert policy such as a simple
heuristic, might be useful. Further reductions in CPU time could
also be achieved by parallelisation of the sampling of training data.

Appendix A. Loss function of PPO

Below we describe the procedure of calculating the loss for
each set of samples in a mini-batch. The loss is used to update
the parameters of the actor and critic neural network. The set of
samples in a mini-batch for level I is denoted by K; and for level
Il by Ky, where £; ={0,1,...,B/n} and K, ={0,1,....T-B/n}. A
sample point at level I is denoted by K and at level II by k.

Al. Advantage and discounted profit

The advantage and discounted profit are calculated for each
sample in the mini-batch. The advantage is an indication of how
well the chosen action performs compared with the expected cost.
We use this information to update our neural networks. In this pa-
per, we use the generalised advantage estimator approach, as de-
scribed in Vanvuchelen et al. (2020). The advantage of sample K of
level I is calculated as follows:

Gk = Ux =V (Sk. ¢1) (A1)

Here, Gi is the advantage of sample K of level I and Uk is the
discounted profit for sample K (defined below). The advantage of
sample k of level II is calculated as follows:

8= U —V(Sk. ¢2) (A.2)
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Here, g, is the advantage of sample k of level II and uy is the
discounted profit for sample k (defined below). The discounted
profit of sample K of level I is calculated as follow:

B
Uc=Y ¥y E+yP V(S5 1)
i=K

(A3)

The discounted profit is an estimation of the future profit the
retailer can expect to receive at it current state. This estimation
is derived from the profit obtained through the sampling, and
the value of the actor of the last state. The discount factor (y)
is needed to ensure the training of the PPO algorithm is stable
and leads to convergence (Wiering, 2004). The discounted profit
of sample k of level II is calculated similarly:

T-B
we=Y v e+ yTPr Vst ¢2) (A4)

i=k
A2. Training the neural networks

With the collected training data, advantage, and discounted
profit of the sampling, the gradient of the loss function with re-
spect to the weights and bias of the neural networks can be cal-
culated. The loss function is a predictor for the error of the neural
network. By updating the weights and bias in the direction of the
gradient of the loss with a step size, the loss can be minimised.

To train the neural network, three different type of loss func-
tions are used, two for the actor network and one for the critic
network. The loss functions of the actor network consist of the pol-
icy loss and an entropy loss. The policy loss trains the actor neural
network so that actions that give high expected profit are preferred
above actions with lower expected profits, while the entropy loss
tries to encourage exploration of new actions. The policy loss for a
shuffled mini-batch of level I is defined as follows:

T Sk, 0!
Policy loss levell = — " min < (axIS. 07)

ker, 7 (qk|Sk. 61)
[ 7 (aklSk. 07)
cip| ————=%,1-€,14+€¢ |-G
p<7T(QK|51<,91) «

7 (ak15c.91) is the ratio of the probability of choosing or-
' 7 (qxSk.01)
dering action qg in state Sy with the new neural network param-
eters 0 and the current parameters of the neural network 6;. The
policy loss formula uses a clipping formula to limit the loss func-
tion, where clip(X, Xin. Xmax) ensures that x is between the range
of Xpin and Xmax, otherwise the value is clipped to the range edges.
The clipping parameter € determines the value of the range edges.
The policy loss for a shuffled mini-batch of level II is defined as

follows:
n(ak|sk, 92,)
T (@ls, 62) °F

K>

(A.5)

Here

Policy loss level Il = — > " min

kel
[ 7 (axls. 65)
clip] —————*£,1-€¢,14+€¢]-
p(”(ak|5k792) 8

The entropy loss for a shuffled mini-batch of level I is defined
as follows:

Entropy loss level 1= ¢ " 7 (-[Sk, 0f) - log 7 (-|Sk. 67)

Kek;

(A6)

(A7)

If 77(-|Sk.0;) is evenly distributed, thus each action has the
same probability, the entropy will be largely negative. A determin-
istic policy, where one action has a high probability compared to
others, results in the entropy loss to be closer to zero. The entropy
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regularisation term S determines how much emphasis is placed
on the entropy in the loss when combined with the policy loss.
By minimising the entropy, the probability distribution of actions
is more evenly distributed. During sampling this encourages the
algorithm to explore new actions, preventing the policy from con-
verging to a bad-performing local optimal. The entropy loss for a
shuffled mini-batch of level II is defined as follows:

Entropy loss level Il = B " 7 (-|sk. 03) - log 7 (-|sy. 63)
keky

(A.8)

For the critic network a value loss function is used, which is
based on the difference between the future discounted profit and
the output of the value function approximation. Here the Huber
loss is used as it is less sensitive towards outliers as opposed to
the mean squared error loss (Huber, 1964). Due to potentially large
demand fluctuations, such outliers in profit are quite likely to ocur
in our problem setting, and the use of the Huber loss therefore
is less influenced by these outliers. The Huber loss is defined as
follows:

1,2
_ )X
1= (¥ 1)

Where § is the Huber loss constant. The value loss for a shuffled

mini-batch of level I is defined as follows:

Value loss level 1= > L(V(Sk. #}) — Ux)
KeKky

for |x] <&

otherwise. (A.9)

(A.10)

The value loss for a shuffled mini-batch of level II is defined as
follows:
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From the three different losses the total average loss of a mini-
batch is calculated as follow:
Average loss level |
_Value loss level [+ Policy loss level I+ Entropy loss level I
B B/n

(A12)

Average loss level I
__ Value loss level Il + Policy loss level Il 4- Entropy loss level II
B T-B/n

(A13)

Minimising the average loss via updating 6’ and ¢’ will result
in the neural networks fitting to the given training data. The neural
network parameters are iteratively updated using a stochastic gra-
dient descent with the ADAM optimiser, as this optimiser is less
sensitive to parameter tuning and is overall considered to be the
current best practice (Kingma & Ba, 2014). The optimiser uses the
average loss of minibatch j for actor and critic network of level h
to calculate the gradient of the weights and bias with respect to
the average loss and perform an update step with a learning rate
of a. A low learning rate results in slow convergence to a good
policy, while a high learning rate might results in overshooting a
good policy.

Appendix B. Optimality gap

, . . . . B
Value loss level I = Z L(V (5k7 ¢2) _ “k) (A11) Thfa 0pt1ma1¥ty. gap of t.he PPO algorithm for different small
keks scale instances is included in Table B1.
Table B1
Optimality gap of the PPO algorithm for different instances.
Profit Revenue Costs

Instance MDP PPO Gap (%) Gap (%) Inventory gap (%) Ordering gap (%) Fulfillment gap (%) Return gap (%)
Hn1=3puy=1°7 1575.15 1549.76 -1.64 0.17 21.60 0.18 —0.02 0.04
H1=2,py=1 1111.99 1088.10 -2.20 0.07 28.03 0.13 -0.20 -0.29
=1y =1 653.91 636.55 -2.73 0.37 28.07 0.30 0.53 0.62
vV, =1/ 0 1575.15 1549.76 -1.64 0.17 21.60 0.18 —0.02 0.04
vy =1/2V3) 161612  1588.86  —1.72 0.02 24.80 0.01 0.04 0.05
Vy = 1/2v1) 1583.14 1554.56 —-1.84 -0.07 22.68 0.03 —1.00 -1.00
Vv =1/Q ) 1626.19 1604.78 -1.33 —0.02 20.72 —0.02 0.06 0.06
pp=02 1676.88 1642.04 212 —0.06 26.41 0.01 -1.22 —-1.40
pp=03 1626.03 1589.67 -2.29 -0.19 22.69 -0.13 —0.83 —0.93
pp =047 1575.15 1549.76 -1.64 0.17 21.60 0.18 —0.02 0.04
pp=05 1526.03 1493.15 —2.20 0.03 26.53 0.05 —0.12 —0.12
pp =06 1476.48 1447.05 -2.03 0.25 23.45 0.12 0.96 0.98
pp =02, uy =F(pp) 1590.26 1555.65 —2.22 0.07 26.79 0.14 —-1.42 -1.52
pp =03, 1y =F(pp) 1587.48 1557.07 -1.95 —0.02 2334 0.04 -0.78 -0.78
pp =04, 1y =F(pp)? 1575.15 1549.76 —1.64 0.17 21.60 0.18 -0.02 0.04
pp =05, 1y =F(pp) 1558.63 1528.31 -1.98 0.17 23.23 0.08 0.62 0.68
pp =06, uy =F(pp) 1540.07 1500.50 —2.64 0.97 3212 0.66 2.24 221
M=1 1576.78 1539.90 —2.40 0.08 26.83 0.07 0.32 0.18
M=2? 1575.15 1549.76 -1.64 0.17 21.60 0.18 —0.02 0.04
=0 1588.93 1556.06 211 0.10 24.74 0.08 0.28 0
=57 1575.15 1549.76 -1.64 0.17 21.60 0.18 —0.02 0.04
=10 1561.88 1524.68 —2.44 0.57 31.97 0.53 0.81 0.90
cp =307 1575.15 1549.76 -1.64 0.17 21.60 0.18 —0.02 0.04
cp =150 1078.26 1056.67 -2.04 0.88 24.97 0.82 1.47 1.44
cp=70 582.58 577.41 -0.89 3.67 22.76 3.06 9.30 9.41
¢p1 =0.1,¢cpp = 0.05 1680.98 1667.44 —0.81 —0.02 55.71 0.05 —0.56 —0.61
1 =02,¢p=0.1 1558.63 1528.31 -1.98 0.17 23.23 0.08 0.62 0.68
cpy =1.cpp =057 1575.15 1549.76 -1.64 0.17 21.60 0.18 —0.02 0.04
I=1 1576.78 1539.90 —-2.40 0.08 26.83 0.07 0.32 0.18
1=2° 1575.15 1549.76 -1.64 0.17 21.60 0.18 —0.02 0.04
1=3 1573.36 1537.44 —2.34 0.40 29.45 0.42 0.25 0.23
Average 1464.53 1432.82 —2.27 -0.44 23.09 -0.38 -1.09 -1.07

2 Base test case with: py =3,y =1,CV; =1//li, pp=04,M=2,¢,=5,¢,=30,¢cpy =1,y =0.5,1 = 2.
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Table C1
Weighted NRMSE of actions by PPO.
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Weighted NRMSE

Ordering  Rationing
Instance Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Average
mr=3,u,=1° 0.08 0.29 0.21 5.99 0.44 0.52 0.53 0.31 1.18
n1=2,1=1 0.11 0.29 0.20 2.40 0.60 0.99 0.75 0.41 0.80
ni=1pu;=1 0.20 0.29 0.30 3.53 1.51 0.91 0.59 0.55 1.09
Vi =1/ 0.08 0.29 0.21 5.99 0.44 0.52 0.53 0.31 1.18
Vi =1/(2+/3) 0.09 0.61 0.41 7.05 6.26 0.48 0.64 1.02 235
WV =1/2¥1) 0.07 0.51 0.21 4.30 1.80 0.54 0.82 0.59 1.25
Vi =1/Qy) 0.11 0.51 0.33 3.69 2.33 2.90 0.33 0.46 1.51
pp=02 0.10 0.39 0.29 6.97 3.39 1.21 1.16 0.60 2.00
pp=03 0.09 0.23 0.19 4.02 2.79 0.61 0.65 0.41 1.27
pp =042 0.08 0.29 0.21 5.99 0.44 0.52 0.53 0.31 1.18
pp =05 0.00 0.25 0.18 6.21 0.72 0.76 0.58 0.63 1.33
pp =06 0.00 0.35 0.26 3.92 0.72 0.69 0.45 0.40 0.97
pp =02, 12 =F(pp) 0.09 0.42 0.30 6.49 2.35 0.62 0.84 0.46 1.64
pp=0.3, 12 =F(pp) 0.15 0.23 0.13 4.57 3.07 0.72 0.78 0.44 1.42
pp =04, uy =F(pp)? 0.08 0.29 0.21 5.99 0.44 0.52 0.53 0.31 1.18
pp=0.5 1z =F(pp) 0.14 0.35 0.35 4.26 0.50 0.38 0.31 0.23 0.91
pp=0.6, 2 =F(pp) 0.14 0.17 0.24 9.88 0.94 0.72 0.50 0.16 1.80
M=1 0.18 0.30 0.23 7.77 2.22 0.71 0.79 0.69 0.00
M =2° 0.08 0.29 0.21 5.99 0.44 0.52 0.53 0.31 1.185
=0 0.00 0.21 0.21 5.93 3.47 0.68 0.94 0.49 1.70
¢ =57 0.08 0.29 0.21 5.99 0.44 0.52 0.53 0.31 1.185
¢ =10 0.11 0.27 0.21 7.06 0.58 0.83 1.02 0.64 1.52
cp =30° 0.08 0.29 0.21 5.99 0.44 0.52 0.53 0.31 1.185
cp =50 0.10 0.18 0.21 3.28 0.48 0.69 0.50 0.43 0.82
=70 0.12 0.15 0.13 2.52 0.35 0.28 0.18 0.29 0.56
¢ =0.1,¢p, =0.05 0.22 0.46 0.53 4.46 0.67 1.07 1.51 1.04 1.39
¢ =0.2,¢p =0.1 0.31 0.68 0.22 20.33 1.37 1.37 1.38 1.09 3.78
i =1,¢p =052 0.08 0.29 0.21 5.99 0.44 0.52 0.53 0.31 1.185
0.00 0.43 6.20 7.10 1.10 0.72 0.35 0.40 2.33
=27 0.08 0.29 0.21 5.99 0.44 0.52 0.53 0.31 1.185
1=3 0.00 0.30 0.23 7.77 222 0.71 0.79 0.69 1.82
Average of all instances 133 0.54 0.54 6.23 2.42 1.07 0.91 0.76 1.71

2 Base test case with: w1 =3, 2 =1,CV; =1//li, pp =04, M=2,¢, =5,¢p =30,¢cpy =1, =0.5,1 = 2.

Appendix C. Goodness of fit

To evaluate how much the policy found by the PPO algorithm
resembles the optimal policy, the weighted Normalised Root Mean
Square Error (NRMSE) is used. The NRMSE is a common metric for
comparison of DRL algorithms (e.g. Chi et al., 2010; Rocchetta et al.,
2019; Xie et al., 2019). We simulate the heuristics for J periods
where the set of periods is given by 7 = {0, 1,...,]J} and calculate
the weighted NRMSE as follows:

1
3 Zoes (- )

max(7*) — min(r*)
jeg jeg

Weighted NRMSE = (C1)

Here, Ty is the optimal action to be taken in simulation period

j and 7; is the action chosen by the PPO algorithm policy found in

the same period. Normalisation of the RMSE is performed by divid-

ing the metric with the maximum and minimum value of the opti-

mal policy, for cases where max(;r¥) — min(;r¥) = O the term is set
jeg 7 jeg

to 1. For the ordering action the simulation period J = 1.000.000
periods and for the rationing action / =T - 1.000.000 sub-periods.
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