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tioned cases in multiple response scenarios. In the multiblock case, the

erence of the user. For multiway scenarios, the method can be multiway mode
order independent, depending on the preference of the user. The proposed
SKCovSel algorithm generalises the recent speed improvements from faster
CovSel to all mentioned data block cases. It also reformulates the multiway
case to do proper deflation and rank one slab selections. Particularly, for
modelling of multiblock data sets, the SKCovSel follows the “winner takes all”
strategy of the stepwise response-oriented sequential alternation modelling. In
the case of multiway data, the SKCovSel strategy considers multiway loading
weights after decomposition of a high-dimensional squared covariance matrix
to select features across different modes. The algorithmic steps of the methods
are presented, and cases of modelling different data types such as single block,
multiblock, multiway multiblock, modes selection for multiway data and mul-
tiple responses modelling are shown. The method incorporates all popular
covariates selection algorithms existing in the chemometric literature.
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1 | INTRODUCTION

In the domain of analytical sciences and chemometrics, multivariate data sets are widely acquired and analysed.'”
Furthermore, multivariate data in numerous cases such as measurements with spectroscopic techniques usually result
in highly collinear predictors.*® In the domain of chemometrics, latent space-based approaches such as principal
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component analysis (PCA)’ and partial least squares (PLS)*° are popular for deriving robust latent variable subspaces
from originally highly multivariate measurement data.

PCA is typically the preferred choice when information about response variables is either not available or for some
reason chosen to be ignored. In the presence of one or more response variables, PLS represents the dominant approach
for latent space modelling in the analytical chemistry and chemometric domains.'®'! Both PCA and PLS represent
bilinear models that include a set of scores (the latent variables) and a corresponding set of loading vectors describing
how the latent variables relate to the original multivariate measurements and vice versa. The scores and loadings are
essential for both data visualisation purposes and predictive model building.

Apart from the latent space modelling for data visualisation and predictive modelling, one of the main aims behind
data modelling in the domain of analytical chemistry and chemometrics is to achieve insights into the key features pre-
sent in the data.'>'® The identification of key features can serve a wide range of purposes, for example, improving
insights about the system, improving model accuracy, improving model robustness and discovery of low-cost selective
sensors such as multi-spectral sensing systems.'*'*?° In the domain of chemometrics and analytical chemistry, a wide
range of methods are available for performing feature selection in multivariate scenarios, which can be classified as
wrapper, filter and embedded methods.'*'*'°

Most of the feature selection methods in chemometrics literature® involve post-processing of the regression coeffi-
cients obtained with PLS decomposition. One can assume that it is highly important for such methods that a proper
optimisation of the PLS model is performed at first-hand. However, one family of embedded methods that outperforms
other feature selection methods based on the simplicity of operation and direct alignment with the subspace modelling
approach PLS is the covariates selection (CovSel) approach.'” The CovSel family of methods (Figure 1) does not fit in
the framework of feature selection methods that are based on post-processing of PLS regression coefficients as CovSel is
a hybrid method where feature selection and modelling goes together.

The covariates selection is a Gram-Schmidt (GS) process,** similar to the classical PLS modelling where at each step
in the covariance maximisation, the associated weight vector is chosen as a (sparse) standard basis vector in the direc-
tion of the variable of maximum covariance with the response(s). Subsequently, just like in the NIPALS PLS
algorithm,9 the data matrix is deflated, and the process continues for extracting the desired number of variables
according to minimisation of the (residual) covariance with the response(s). When considered as a GS process, the
CovSel (like PLS) can be extended to handle multi-block®* and multiway problems.** It should be noted that extensions
of the CovSel idea to multiblock'®**> and multiway*® data scenarios are already addressed in the literature.

To supply a summary, Figure 2 presents all data scenarios where extensions of the CovSel modelling can be per-
formed such as the selection in case of two-way data, multiway data and multiblock data. In the current state of the art,
different covariate selection approaches are available as distinct methods that seems to miss a unified mathematical for-
mulation to be considered as a unified tool suitable for all major types of data sets. An extended algorithm covering all
the mentioned versions should be of considerable interest to the practical user and contribute to evolving applications
of the CovSel approach not only in chemometrics but also making it being considered as a valuable methodology within
other domains of empirical modelling.

In the covariate selection methods, the variable selection is a stepwise process much like the selection of
latent variables (the scores) in PLS. Hence, the CovSel version for multiblock data allows for selecting a variable from
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FIGURE 1 Swiss knife covariates selection algorithm spanning various covariates selection methods.
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FIGURE 2 A summary of data set scenarios where covariate selection can be deployed to select highly co-varying features. The red lines
depict the selected features, which can be columns of a matrix or slices of higher order arrays

any block in each step. This corresponds to the fundamental stepwise idea in the recent multiblock method known as
response-oriented sequential alternation (ROSA),?® where PLS-like latent variables (scores) are calculated for each indi-
vidual data block and compared for selection in terms of how well they fit the response variable(s). The idea of the
ROSA approach is also attractive for establishing a unified CovSel algorithm much similar to the algorithm of the
unified PLS method called the Swiss Knife PLS (SKPLS).*’ This method is designed to cover all major PLS modelling
scenarios. Furthermore, the re-orthogonalisation step speeding up both the PLS and the ROSA have also been used to
obtain the fast covariates selection (fCovSel),”’” (by avoiding deflations of the predictor data matrix). In combination,
these methods (the PLS, the ROSA and the fCovSel) together with the response oriented covariates selection (ROCS)*
and SKPLS pave the way for a unified covariates selection algorithm.

The present study aims at developing and testing a unified covariates selection algorithm called Swiss knife
covariates selection (SKCovSel) capable of selecting covariates in a wide range of measurement data scenarios such as a
single two-way data block, two-way multiblock data, multiway data, multiway multiblock data (including covariate
selection along different modes of the multiway data blocks) and for covariate selection for all of these scenarios in the
case of multiple responses. In the case of multiblock data, the algorithm allows the user to choose whether to use scale
independent and data block order independent calculations. For multiway scenarios, the algorithm can be specified to
operate multiway mode order independently, according to the preference of the user.

The algorithmic steps of the method are presented below, and modelling with the different data types such as
single block, multiblock, multiway multiblock, modes selection for multiway data and multiple responses modelling
are demonstrated in a case study. The main point to be highlighted is that the proposed SKCovSel algorithm includes
the model building capabilities of the various covariates selection algorithms known in the chemometric literature
(Figure 1).

2 | SWISS KNIFE COVARIATES SELECTION ALGORITHM

The proposed swiss knife covariates selection (SKCovSel) algorithm can be considered as an extension of the recent and
fast fCovSel®” approach to faster covariate selection with multiblock and multiway data. Particularly for modelling of
multiblock data sets, the SKCovSel follows the “winner takes all” strategy of the stepwise ROSA algorithm.?® In the case
of multiway data, the SKCovSel strategy considers multiway loading weights after decomposition of a high-dimensional
covariance matrix (by using SVD or PARAFAC) to select features across different modes. In the following, all matrices
and higher-order arrays are denoted with bold italics uppercase letters such as X. All vectors are denoted with bold
italics lowercase letters such as w.

Define Y (N x K) as the response matrix, B as the number of (centred) data blocks X;,X>, ..., X and let A be the
desired number of features to be extracted. Note that data blocks can be of any dimensionality; two-way or multiway,
and they are assumed to be mean centred along the sample mode. In unfolded form (each sample being vectorised) the
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blocks will have dimensions (N x Jp). The responses Y are also assumed to be mean centred. The tensor notation, B, is

associated with the tensor dot product exemplified in Liland et al.*

Algorithm for Swiss Knife Covariates Selection (SKCovSel)

for a=1:A - loop over A components
for b=1:B - loop over B blocks
Cp = Z(&'SY;C)2 - sum of squared covariances (folded block X},)
k
if S(b) ==1 - select single variable (combination), where S(b) indicates the feature dimension
(ms, p) = (arg)maxj, (vec(Cp)) - maximum value and its position
ty = Xp|:, 50 - select candidate score (unfolded block Xj,)
ifa > 1;t, = t, — TT't;end - orthogonalise on previous scores
tp = tp/norm(t;) - normalise score
rp = cancor(ty, Y) - canonical correlation to responses
wy = {0}, wy(sp) =1 - candidate loading weights
else - select a slice
if #dim(b) == 3 - three-way block
w1, wy = SVD(Cp, 1) - one component SVD
else - multi-way block
W1, Wa, ... = PARAFAC(Cy, 1) - one component PARAFAC
end - end inner conditional handling
form=1:M - loop over M modes
(M by Smp) = (arg)max; (W) - maximum value and its position
Wb = {0}, Wi p(sp) =1 - candidate loading weights
gy = XpWi . Wiy e Wy - candidate scores (one mode with selection)

ifa>1Lit,,=tnp— TTttmﬁb; end - orthogonalise on previous scores

tim,b = tomp/n0Orm(t, 5) - normalise score
T'm,b = cancor(ty, », Y) - canonical correlation to responses
end - end mode loop
end - end outer conditional handling
Vg = Argmay, (rm.p) - winning mode
ty =t - winning mode score
Wy = Wy, - winning mode loading weight
Ty = Ty, b - winning mode correlation
Py = &ttb - winning mode loadings
end - end block loop
Vg = argmax(rp) - winning block
T(:,a)y, = ty, - winning block score
W(:,a),, =w,, - winning block loading weights
P(:,a)y, = P, - winning block loadings
Q(:,a)y, = Y'T(:,a).,, - winning block Y loadings
Y <Y -T(,a),,Q(:,a), -'Y deflation
end - end component loop
R=WPW)! - projections for score predictions
B = cumsum(RQY) - regression coefficients

B,=Y-XB - mean compensation
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* Calculation of projection for score predictions (R) assumes winning loadings and loading weights stacked with
matrices of zeros for the loosing blocks.

3 | COMMENTS ON THE SKCOVSEL ALGORITHM

The SKCovSel algorithm provides a set of selected variables/features useful for data visualisation purposes and predic-
tive classification and regression model building including cross-validation to decide the model complexity in terms of
the number of selected variables/features. As the method can handle multiway datasets, the selected features can be of
any type ranging from a vector to multiway features with n-1 modes for n-way data. Furthermore, in the MATLAB
implementation of the algorithm (codes to be added at https://github.com/puneetmishra2), the user can also define the
restriction of modes for multiway data in which the features are selected. In the case of a three-way array, the selected
feature can either be a single variable or a rank one latent variable of a 2-D slab/slice defined by some variable along a
particular mode. It should be noted that such slices may be selected repeatedly to produce additional latent variables.

We would like to stress that the foremost novelty of the SKCovSel algorithm is that it covers all the major cases of
covariates selection approaches in the scientific literature. In the case of a single two-way data block, the algorithm will
provide exactly the same solution as the standard covariates selection method'” (just faster as we take advantage of the
computationally more efficient steps in the fCovSel algorithm?”). For problems including multiple two-way type data
blocks, that is, a multiblock dataset without any predefined block order, the computationally efficient SKCovSel algo-
rithm will provide exactly the same solution as the ROCS.* If the user sets the predefined order of blocks from which
features need to be selected, the algorithm will provide a computationally efficient solution consistent with the sequen-
tial orthogonalised covariates selection (SO-CovSel)."® Furthermore, when the data set is multiway the algorithm will
efficiently provide a solution of the N-CovSel*® problem computationally consistent with the other CovSel-versions. In
the MATLAB implementation available online, all the major cases of covariates selection are covered by the SKCovSel
algorithm.

Note: For the selection of higher order features from multiway data, the strategy implemented in the SKCovSel
leads to a solution that is slightly different from the solution provided by earlier N-CovSel algorithms. For example, in
the earlier strategy, the squared covariance estimation for higher order features is performed for one feature at a time,
hence, requiring a loop for the complete estimate in a particular mode. As a second step, the variable carrying the maxi-
mum squared covariance is selected. The last step of the earlier N-CovSel algorithm removes the information of the
selected feature by a deflation step in the feature modes. To assure the implementation of a Gram-Schmidt process pro-
ducing orthogonal features, however, the deflation/orthogonalization operations should always be conducted in the
sample mode of both for X and Y. This is assured by (1) unfolding the feature modes, (2) pre-multiplying by (I - S),
where I is the identity and S is the desired rank one N x N projection matrix, and (3) refolding the result. These opera-
tions do not seem to be implemented correctly in the earliest version of the N-CovSel.*®

In the corrected strategy, we estimate the squared covariance directly for all features by unfolding the multiway data
before estimating diag(X'YY’X). Then, we reshape the squared covariances to have the same dimensions as the feature
modes of the multiway array. Finally we perform a one factor SVD or PARAFAC depending on the number of modes
of the squared covariance matrix. The results of the SVD or PARAFAC decomposition are the normalised loading
weights for each mode that can be used directly for selecting features along different modes by finding the variable car-
rying maximum absolute loading weight. Once the variable is selected, the corresponding loading weights are used to
estimate the scores.

The estimated scores can be used directly to deflate the responses. Furthermore, the re-orthogonalization approach
of the SKCovSel algorithm does not require deflations of the predictor matrix which makes the algorithm faster in the
fashion of fCovSel. In summary, the new strategy for solving the N-CovSel problem conducts the selection of higher
order features in a non-deflating algorithm to obtain a unified and consistent SKCovSel framework. It should also be
noted that the computational efficiency of the new non-deflating N-CovSel is considerably better than the original N-
CovSel algorithm'”~'** conducting deflations in the multiway data structure.

The current CovSel approaches are in general sensitive to outliers similar to PLS modelling. This is because the first
step of CovSel is the estimation of the covariance, which is estimated as X'Y; hence, the presence of outlying samples in
the data can influence the covariance estimation and the selection of the features. Currently, the ideal approach is to do
some form of outlier removal before the CovSel analysis such that the estimation of covariance is minimally influenced
by the outlying samples, thus, allowing to have robust selection of features.
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To show the unified SKCovSel for covariate selection a milk data sets was used. The milk dataset is a perfect example of
multiblock multiway multiple response data set, hence suitable to show all the capabilities of the SKCovSel method.
The milk data set has spectral, protein and fat measurements performed on 296 milk samples.*! Three portable spectral
sensors were used to collected spectral data on milk samples: NIRONE 1.4 (1100 to 1400 nm), NIRONE 2.0 (1550 to
1950 nm) and NIRONE 2.5 (2000 to 2450 nm) from Spectral Engines (Helsinki, Finland). All measurements were per-
formed in transmission mode except for the NIRONE 2.0, for which more measurements of the same samples were per-
formed in reflectance mode. Due to the extra measurement in the reflection mode, the data from NIRONE 2.0 can be
considered as 3-way data (samples x spectral variable x measurement mode). More information on the data set and
reference protein and fat analysis protocol can be obtained in the earlier study.’’ Data are summarised in Table 1. Data
were partitioned into calibration (60%) and test (40%) set to show the capability of the extracted features and the regres-
sion coefficients to predict the multiple responses in the milk. All data analyses were carried out in MATLAB.*?

In the following part of the manuscript, the capability of the SKCovSel will be shown for selecting covariates for sin-
gle two-way and multiway type data blocks, jointly for multiblock two-way and multiway data blocks and covering sin-
gle and multiple response cases. Please note all analyses presented are performed using the SKCovSel codes provided in
GitHub, verifying that the supplied code is fully functional.

5 | RESULTS

5.1 | SKCovSel for two-way type data for single and multiple responses

In the case of two-way type data, the SKCovSel performs the standard CovSel variable selection. As an example, the
SKCovSel analysis was carried out on a two-way dataset (NIRONE 2.0) to select wavelengths that are predictive of fat

content and jointly fat and protein content. The results for calibration and test set as a function of features extracted are
shown in Figures 3 (for predicting only fat) and in 4 (for jointly predicting fat and protein content). The explained

TABLE 1 A summary of near-infrared milk data set

NIRONE 1.4 NIRONE 2.0 NIRONE 2.5 Protein Fats
Spectral range (nm) 1100-1350 1550-1950 2000-2450 @ @
Data shape 296 x 126 296 x 201 x 2 296 x 226 296 x 1 296 x 1
Reference range a a a 3.90 + 0.41 4.71 + 1.10

“Spectral data are associated with a “Spectral range (nm),” while reference measurements are associated with a “Reference range.”

0.98 0.7

Calibration
Test

0.96

0.94
0.92
09Ff

RMSE

0.88 1
0.86

0.84

0.82

0.8

5 10 15 20 25 30 5 10 15 20 25 30
Features extracted Features extracted

FIGURE 3 Swiss knife covariates selection (SKCovSel) analysis for analysing two-way data to predict fat content. (A) Correlation
coefficients between predicted and actual values for the models based on selected features, and (B) root-mean-squared error (RMSE)
estimated with predicted and actual values for the models based on selected features
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FIGURE 4 Swiss knife covariates selection (SKCovSel) analysis for analysing two-way data to predict fat and protein content.
(A) Correlation coefficients between predicted and actual values, and (B) root-mean-squared error (RMSE) estimated with predicted and
actual values

TABLE 2 A summary of features selected by SKCovSel and the CovSel algorithm published in earlier studies'®

SKCovSel CovSel

Fat prediction 1696, 1728, 1844, 1554, 1774, 1872, 1944, 1696, 1728, 1844, 1554, 1774, 1872, 1944,
1652, 1716, 1818 1652, 1716, 1818

Fat and protein prediction 1696, 1728, 1844, 1554, 1654, 1942, 1774 1696, 1728, 1844, 1554, 1654, 1942, 1774

variance in the responses reached >95% with only 10 features. For both the cases, the correlation coefficient (r) at first
increased and later stabilised. Similarly, the root-mean-squared error (RMSE) at first decreased then stabilised showing
that most of the learning happened in the initial features extracted. That is normal as the features selected by CovSel
carry decreasing amount of covariance; hence, most of the covariance is limited to the initial features. We also com-
pared the features selected for the two-way data with the codes for CovSel available in an earlier study'® and found that
both algorithms led to the selection of the same features and in exactly the same order (Table 2). Note that the selected
features (Table 2) for protein and fat content are also chemically relevant as most of the features correspond to over-
tones of OH, CH and NH bonds,” present in abundance in macro-molecules such as fat and protein.

5.2 | SKCovSel for single block multiway type data

The SKCovSel approach for multiway data performs an N-CovSel type analysis. For multiway data, the method allows
to select features in different modes. For example, for a three-way array (I x J x K), the features can be either a 1-D col-
umn selected as (J,K), or the slices for second and third modes. Note that the (J,K) type feature is exactly the same as
selecting the feature on the unfolded multiway data. To show the capability of SKCovSel, the features were selected for
jointly explaining the fat and protein contents in milk. The feature selection in all three cases (Figures 5-7) showed
increasing correlation coefficients and decreasing RMSE as a function of number of features selected. A summary of
the features is further presented in Table 3. The selected features of type (J,K), for example, the first selected feature
(1696,1) is a feature corresponding to 1696 nm for data measured in reflection mode. The second selected feature
(1666, 2) indicated a feature corresponding to 1666 nm for data measured in transmission mode. For mode 2, the feature
selected, for example, 1696 indicates 1696 nm measured in both transmission and reflection mode. For mode 3, the fea-
ture selected, for example 1, indicates a feature selection of the whole reflection mode of spectral data measured in the
spectral range of 1550-1950 nm. In Table 3, it can be noted that for mode 3, the same feature was selected multiple
times. This is since for multi-dimensional features, the SKCovSel method extracts rank one covariates each time.
Although, the features are repeatedly selected, the information learned is always complementary.

Note that in the presented case the multiway data was a 3D array, hence, either columns (1D) or slices (2D) can be
extracted as the features for that scenario. However, in general, the SKCovSel algorithm can select from 1D to (n — 1)D
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FIGURE 5 Selection of features in mode 1 for multiway data to jointly predict fat and protein. (A) Correlation coefficients between
predicted and actual values, and (B) root-mean-squared error (RMSE) estimated with predicted and actual values
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FIGURE 6 Selection of features in mode 2 for multiway data to jointly predict fat and protein. (A) Correlation coefficients between
predicted and actual values, and (B) root-mean-squared error (RMSE) estimated with predicted and actual values
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FIGURE 7 Selection of features in mode 3 for multiway data to jointly predict fat and protein. (A) Correlation coefficient between
predicted and actual values, and (B) root-mean-squared error (RMSE) estimated with predicted and actual values

type features for a nD multiway array, where n is the number of modes of the multiway array. Application of the
SKCovSel algorithm with 4D data will allow for either selecting 1D type features or 3D type features. However, for 4D
data, features can be of 1D, 2D and 3D type. The selection of 2D type features for 4D type data is also possible, however,
will require slight modification to the algorithm. The key idea behind selecting feature of dimensions between 1D and
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TABLE 3 A summary of features selected for multiway data in different modes

Modes Selected features
(2,3) (1696,1), (1666,2), (1550,1), (1842,1), (1724,1), (1654,1)
2 1696, 1660, 1550, 1842, 1724, 1654
3 1,2,1,1,1,1,1,1,2,1,1, 2,1
3 3 100
——ROCS
>
25 25 g 9
2 2 8 . g 8o
M 2 3
8 8 £ 75
o o =
1.5 (A) 1.5 (B) 5 70
65
1 1 60
0 5 10 15 0 5 10 15 0 5 10 15
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FIGURE 8 Multiblock multiway feature selection with SKCovSel. The analysis is also known as response-oriented covariates selection
(ROCS)* when block order is not defined and sequential orthogonalised covariates selection (SO-CovSel) when block order is defined.”
(A) Block order of variable selection for ROCS, (B) block order of variable selection for So-CovSel and (C) explained variance in response

TABLE 4 A summary of features selected for multiblock multiway data

Method First block Second block Third block
ROCS 1296, 1350 (1666,2), (1722,1), (1608,1), 2110, 2298, 2180, 2128,
(1838,1), (1844,2) 2244, 2196, 2290
SO-CovSel 1296, 1210, 1100, (1648,1), (1728,1), (1852,1), 2218, 2334, 2106,
1350, 1144 (1550,1), (1694,1) 2220, 2204

(n—1)D is to use jointly loading weights from multiple modes. For example, for selecting 3D features from 4D data, the
user needs to perform the selection using the loading of any one mode, while for selecting a 2D feature from a 4D data,
the user needs to perform the selection in loadings from two modes, and for selecting 1D features from 4D data, the
user needs to perform the selection using the loading's of all the three modes.

5.3 | SKCovSel for multiblock multiway type data

In the presence of multiblock data sets, the method generates the solution obtained with ROCS or SO-CovSel,
depending on if the block order is fixed. To show this, the three-block milk data set was processed with SKCovSel to
extract the features without defining block order (Figure 8A). A total of 15 features were extracted (Table 4). Note that
the second block of the milk data set is a multiway array; hence, the analysis presents multiblock multiway analysis. In
the presence of no defined block order, the method selected two features from the first block, five features from the sec-
ond block and then later eight features from the third block, that is, multiway array (Figure 8A). When the sequential
block order is defined for SKCovSel (five features from each block sequentially), then the model performed a sequential
variable selection as can be noted in the order of blocks selected in Figure 8B. Note that it is out of the scope of this
work to find out which multiblock variable selection approach (SO-CovSel or ROCS) is better as that topic is already
covered in an earlier article®>; however, both the ROCS and SO-CovSel performed well in explaining the response by
fusing information from different data blocks (Figure 8C).

The SKCovSel approach is a fast approach for selecting features for single block, multiblock and multiway data
analysis. For example, time recording for executing the SKCovSel for selecting 30 features for single block, multiblock
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FIGURE 9 Time requirements for single block, multiblock and multiway Swiss knife covariates selection (SKCovSel) analysis
performed on the milk data set

and multiway milk data sets showed that it took less than 0.02 s for modelling all data scenarios. Note that the analysis
presented in Figure 9 was using a computer with processor of 2.3-GHz 8-Core Intel Core i9 with 16-GB 2667-MHz
DDR4 RAM. The time required for executing on a two way data block was the shortest due to the fact that there were
fewer variables. The time execution for a multiway block was larger than the two way block due to having more vari-
ables. Finally, the time requirement for executing on a multiblock was the largest because the multiblock data set was
both the two way and multiway in individual blocks.

6 | CONCLUSIONS

We developed and tested a new unified covariates selection algorithm called Swiss knife covariates selection
(SKCovSel). With the test on wide data of types such as two-way, multiway and multiblock, the selection of the
covariates was shown for both single and multiple responses. The SKCovSel technique is a single algorithm which
covers all major types of covariates selection algorithms such as CovSel, fCovSel, ROCS, SO-CovSel and N-CovSel. Fur-
thermore, the method supplies regression coefficient for the selected features such that selection and predictive model-
ling can be performed simultaneously. Just like the non-deflating fCovSel approach, the SKCovSel also does not require
any deflation of the predictor matrices, hence, can be considered as a faster approach to perform all types of covariates
selection analyses.
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