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Abstract: Soil compaction is a severe threat to agricultural productivity, as it can lead to yield losses
ranging from 5% to 40%. Quantification of the state of compaction can help farmers and land
managers to determine the optimal management to avoid these losses. Bulk density is often used as
an indicator for compaction. It is a costly and time-consuming measurement, making it less suitable
for farmers and land managers. Alternatively, measurements of penetration resistance can be used.
These measurements are cheaper and quicker but are prone to uncertainty due to the existence of a
wide array of thresholds. Classifications using either measurement may provide different outcomes
when used in the same location, as they approximate soil compaction using different mechanisms.
In this research, we assessed the level of agreement between soil compaction classifications using
bulk density and penetration resistance for an agricultural field in Flevoland, the Netherlands.
Additionally, we assessed the possible financial implications of misclassification. Balanced accuracy
results indicate that most thresholds from the literature show around 70% agreement between both
methods, with a maximum level of agreement of 76% at 1.8 and 1.9 MPa. The expected cost of
misclassification shows a dip between 1.0 and 3.0 MPa, with an effect of crop value on the shape of
the cost function. Although these results are specific to our study area, we believe they show that
there is a substantial effect of the choice of measurement on the outcome of soil compaction studies.

Keywords: soil structure; bulk density; penetration resistance; field measurements; confusion matrix;
misclassification costs

1. Introduction

Soil compaction is internationally recognised as a threat to agricultural soil quality
and productivity [1–3]. It is characterised by a reduction in pore space, increase in soil
strength and a disruption of pore continuity [4]. The process of compaction can occur
naturally during the ripening of the soil or through vertical movement of soil particles in
vertisols [5,6]. In agricultural soils, it is often created by the exertion of an external force on
the soil, which happens during the tillage or wheeling of the soil when the soil moisture
content is too high and by using heavy machinery [5,7]. The term “soil compaction” is
often also used to describe the state of soil degradation, rather than the process itself. Soil
compaction can lead to reductions in permeability, pore connectivity, water retention, root
growth and nutrient uptake [4,8–12]. Estimated yield losses due to compaction and its
effects can reach as high as 40% of the potential yield [13], with more conservative estimates
at 5% to 10% [14].
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For the Netherlands, studies have indicated that 43% of the Dutch subsoils may be
compacted below the annual plough layer [15], and large parts of the country are likely
susceptible and vulnerable to soil compaction [16]. This is partially a result of the inherent
properties of Dutch soils, many of which are naturally susceptible [16]. Additionally, the
machines used in the Netherlands have become heavier [17], and field operations more
often take place under less suitable conditions such as late autumn. This vulnerability
makes it crucial for farmers and other land managers to take action to prevent, alleviate or
remediate the negative effects of soil compaction.

Taking action requires insight into the current state of compaction in the soil on a scale
which is relevant to farmers, including the field and sub-field scales. A method to gain
this insight, which is also used in scientific research [4,18–21], is measuring the dry bulk
density of the soil (BDd). As soil compaction leads to the densification of the soil, it logically
results in an increase of BDd. The measured density can be compared to a threshold value
which is representative for the value above which the soil is considered “too compacted”.
Texture-specific BDd thresholds have been determined and are generally accepted in both
the scientific literature [15,22–24] and (inter)national quality standards [25,26].

Using BDd to find and classify soil compaction seems suitable in principle, but the
measurements and analysis are expensive and laborious. Sampling usually takes place in
an excavated soil pit, rather than directly from the surface. It can take considerable time
to take a core sample properly, as it needs to be extracted from the soil and cut to size
without disturbing the sample. Multiple samples are often needed per location, and the
analysis needs to occur in a laboratory [25,26]. This can become time-consuming and costly
if many locations need to be sampled to capture spatial variation. The Dutch national soil
information database (BIS) [27] does include measurements of BDd, but these data can be
outdated, and measurement locations are too sparse to provide field-specific information
which Dutch farmers and land managers may require.

Soil compaction can also be assessed using penetrologgers that measure the penetra-
tion resistance (PR) of the soil. This soil property is linked to the resistance plant roots
experience whilst growing through the soil [28,29]. It is a therefore a measure of soil
strength rather than the density. In compacted soils, the densely packed soil material makes
it more difficult for roots to penetrate into the soil due to the increase in soil strength. This
results in shallow root growth, raising the vulnerability to drought and decreasing the
effective depth over which nutrients are plant-available [4]. PR can be measured from the
soil surface using a hand-driven cone penetrologger, requiring neither soil excavation nor
laboratory analyses. It can be compared to threshold values from literature in order to
evaluate the state of compaction (Table 1). Above these thresholds, the measured PR is
linked to detrimental effects on plant growth.

Table 1. The use of soil penetration resistance thresholds in existing literature, along with any sources
cited in each study.

Threshold Value for Soil
Compaction Authors Cited Source

Using a single threshold

2.0 MPa

Agostini et al. [30] Gupta & Allmaras [31]

De Lima et al. [32] Da Silva et al. [33]

Fabrizzi et al. [34] Gupta & Allmaras [31];
Hamblin [35]

Fernández et al. [36] -

Hernandez-Ramirez et al. [37] Da Silva et al. [33]

Lapen et al. [38] Bengough & Mullins [28];
Greacen [39]
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Table 1. Cont.

Threshold Value for Soil
Compaction Authors Cited Source

Martins et al. [40] Barbosa et al. [41]; Otto et al.
[42]; Salem et al. [43]

Özgöz et al. [44] Zaman [45]

Tebebu et al. [46] Hamza & Anderson [47];
Taylor & Gardner [48]

Van Leeuwen et al. [49] -

Wilson et al. [50] Wilson et al. [51]

2.5 MPa Alvarez & Steinbach [52] -

3.0 MPa Coelho et al. [53] Taylor & Gardner [48]

4.2 MPa Stock et al. [54] -

Using a range of thresholds

1.5 MPa to 3.0 MPa Laboski et al. [55] Boone et al. [56]

2.0 MPa to 3.0 MPa
Çelik et al. [57] Bengough et al. [58]; De

Moraes Sá et al. [59]

Müller et al. [60] Bengough & Mullins [28]

Tekeste et al. [61] Bradfort [62]; Taylor &
Gardner [48]

Using PR as a measure of the state of soil compaction is not without challenges.
Measurements are sensitive to soil moisture conditions [63,64] and operator error [65],
besides bulk density and soil texture [66,67]. The measured PR typically decreases with an
increase in soil moisture content, meaning PR will be higher if the soil is dry and lower if it is
wet. Operator errors can occur if the device is not pushed straight into the soil at a constant
and moderate pace, resulting in improper depth assessment and unreliable measurements.

These challenges can be partly overcome by sampling under set conditions, taking
multiple measurements to average out irregularities, proper instructions for the surveyor or
using an automated hydraulic system [65]. However, the method remains sensitive to errors.
Table 1 shows a large number of studies in which PR was used to capture compaction,
using threshold values to determine the point where detrimental effects occur. Multiple
different thresholds exist in the range of 2.0 to 4.2 MPa, most of which were determined
for specific crops [48]. This is in contrast to the characterisation of compaction using BDd,
where a single crop-independent threshold is used after correction for clay content.

BDd and PR are two measurements that can both be used to characterise soil com-
paction, but they inherently measure different soil properties (i.e., density and soil strength,
respectively). Previous studies have shown that the correlation between these two mea-
surements is far from perfect [66–69], and they did not investigate the effects of using a
threshold value for classification. It is possible that a straightforward classification of the
state of soil compaction with BDd does not provide the same result as classification using
PR, leading to misclassifications. If farmers and land managers use these measurements
to support management choices and reduce the detrimental impact of soil compaction,
this can potentially result in a situation where management would be different if another
measurement tool were used. It is therefore crucial to determine both the level of agreement
between both methods and its (financial) implications when used in a straightforward
classification of the state of soil compaction.

Farmers and land managers will likely prefer the use of PR over BDd due to its sim-
plicity, ease-of-use and relatively low cost per measurement location. However, multiple
thresholds are proposed in the literature, and there are no clear guidelines on which thresh-
old is suitable in which situation (Table 1). This issue does not affect BDd classification
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as much, as only a single standardised threshold exists for each soil. It is therefore useful
to assess the performance of PR over a wide range of thresholds, compared to BDd clas-
sification. The objective of this research was to assess the level of agreement between the
classification of the state of soil compaction using BDd and PR, where BDd is used as the
reference. We used a case study in Flevoland, the Netherlands, to illustrate the level of
agreement between both methods in a realistic situation where either method could have
been used by the farmer. The aim was to provide a clear indication of the performance of
various PR thresholds, as these are the most likely measurements to be used by farmers
and land managers. We also aimed to illustrate the possible financial implications from
misclassification, if these measurements were to be used to steer management. Our research
also functions as a general reflection on the wide array of thresholds proposed in literature
and their effects when used in the field.

2. Methods and Materials
2.1. Study Area

Data for this study were collected on an agricultural field in the province of Flevoland,
the Netherlands (Figure 1). The region consists of a former seabed that was reclaimed in the
1940s and has since been in use mainly as agricultural land [70]. Crop rotations are based
around potatoes, sugar beets, onions and grains. Soils in Flevoland are relatively young
and consist mostly of fluvisols and cambisols, using the World Reference Base for Soil
Resources [71]. Topsoils in Flevoland range from loamy to clayey, with subsoils of sandy or
peaty materials. The topography is linked to its history as a former seabed, being mostly flat
with minor natural undulations due to a former coastal system of creeks and tidal channels.
The study area is located in the eastern parts of Flevoland, in the Noordoostpolder.Agronomy 2022, 12, x FOR PEER REVIEW 5 of 26 
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The study site is located at the edge of the town of Emmeloord. In 2017, the study site 
was used for a large public event on potato cultivation technologies. This event included 
demonstrations of, e.g., harvesting equipment, tractors, and other heavy machinery. 
These demonstrations were conducted under rainy conditions and in moist soils, showing 
visual compaction signs such as the deep rutting and smearing of the soil. Satellite images 
from 2018 showed within-field heterogeneity, visible as slowly drying wet spots within 
the field (Figure 2). In 2021, two years after field sampling for this study took place, some 
of these patterns were still visible (Figure 3). We selected this study site because of its 
expected heterogeneity in degree of compaction due the heavy compaction event in 2017. 

Figure 1. Location of the study area (red dashed line, top) and the 25 measurement locations (green
dots, top). The location of the province of Flevoland within The Netherlands is depicted using a
yellow outline (bottom left and right). The locations of the town of Emmeloord and our study area
are provided using a red circle (bottom right).
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The study site is located at the edge of the town of Emmeloord. In 2017, the study site
was used for a large public event on potato cultivation technologies. This event included
demonstrations of, e.g., harvesting equipment, tractors, and other heavy machinery. These
demonstrations were conducted under rainy conditions and in moist soils, showing visual
compaction signs such as the deep rutting and smearing of the soil. Satellite images from
2018 showed within-field heterogeneity, visible as slowly drying wet spots within the field
(Figure 2). In 2021, two years after field sampling for this study took place, some of these
patterns were still visible (Figure 3). We selected this study site because of its expected
heterogeneity in degree of compaction due the heavy compaction event in 2017.
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for two days if it rained, allowing the topsoil to dry out enough to avoid sampling errors. 
The farmer left the soil bare and unploughed before sampling. However, in some places, 
the topsoil was loosened to a depth of 20 cm using a shallow subsoiler. In order to avoid 
unwanted influence by this shallow loosening, samples were not taken in loosened soil. 
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2.2. Data Collection and Pre-Processing

Fieldwork for data collection took place in the autumn of 2018, after maize harvest
when the soil moisture was approximately at field capacity. The fieldwork was spread
over multiple weeks and was dependent on weather conditions. Sampling was suspended
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for two days if it rained, allowing the topsoil to dry out enough to avoid sampling errors.
The farmer left the soil bare and unploughed before sampling. However, in some places,
the topsoil was loosened to a depth of 20 cm using a shallow subsoiler. In order to avoid
unwanted influence by this shallow loosening, samples were not taken in loosened soil.
The local soil profiles consisted of a loamy topsoil of 30 to 50 cm deep, followed by a
subsoil of loamy sand (Figure 4). Visual and tactile observations indicated little vertical or
horizontal heterogeneity.
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Figure 4. An example of the soil profile found at the study location. It is comprised of approximately
30 cm of loamy topsoil, followed by sandy subsoil. The diagonal line in the topsoil is a shadow.

Data collection during fieldwork included measurements of BDd, volumetric soil
moisture and a general description of the soil texture at 5, 15, 25, 35, 45 and 55 cm depth.
PR measurements were also available from 0 until 80 cm depth, in increments of 1 cm.
These data were gathered at 50 sample locations, but only a subset of 83 samples from
25 locations was suitable for this research due to laboratory handling error-related data
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loss. This subset included only samples in the loamy topsoil, as previous experience in this
field showed that compaction was mostly present in this topsoil layer.

The original 50 sample locations were determined using the conditioned Latin hyper-
cube sample (cLHS) method as used by Minasny and McBratney [72]. Geophysical data
with a resolution of 1 m × 1 m from ground penetrating radar (GPR), electromagnetic
inductance (EMI) and gamma ray detection were used as covariates in this cLHS. Addi-
tionally, the study site was stratified into 50 equal areas using k-means [73]. These strata
were also added to the cLHS as a covariate, to allow for a geographic spread of the sample
locations. Due to the use of a subset as a result of data-loss, the data used in this research
can be considered a convenience sample based on data quality and availability rather than
a cLHS.

2.3. Penetration Resistance (PR)

PR measurements were conducted from the surface using a Penetrologger [74], a cone
penetrometer with data logging capabilities. In accordance with the field sampling protocol,
these measurements were taken before the soil around the sample location was disturbed
or trampled. This was done to avoid unwanted influence on the measurements.

PR was measured six times at each measurement location, allowing us to filter out
short-distance variation and reduce measurement uncertainty during data processing.
All measurements were taken within 1–2 m of the pit centre, where soil samples for
measurements of bulk density were collected (Figure 5). We used a cone with a surface
area of 1 cm2 and an angle of 60 degrees to measure to 80 cm depth. The penetration speed
was manually kept at approximately 2 cm s−1. The Penetrologger measured with a vertical
resolution of 1 cm and provided PR at a resolution of 0.01 MPa.
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Figure 5. Diagrams of the sample pit setup. (Left) top-down view. PR measurements were conducted
prior to digging at the red crosses. Bulk density cores are depicted by grey rectangles in the clean
side of the pit. (Right) side-view of the clean side. Bulk density samples (grey discs) were taken in
the centre of the pit face, with soil moisture measurements (blue boxes) at the sides.

2.4. Dry Bulk Density (BDd)

Soil pits with a surface area of 100 by 100 cm and a depth of 70 cm were excavated
(Figures 5 and 6). Although samples were not collected deeper than 55 cm, the extra
depth was required as manoeuvring space for sampling equipment. One side of the pit
was chosen as the “clean” side for soil sampling. We did not stand or lean on this side
of the pit to avoid unwanted compaction or disruption of the soil during the sampling
process. Samples for BDd were taken following Dutch guidelines [26], which are identical
to international guidelines [75]. We sampled the soil at 5, 15, 25, 35, 45 and 55 cm depth
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(Figure 5) using Kopecky cores with an internal volume of 100 cm3 and a diameter of
approximately 5 cm. These cores were taken horizontally in the clean side of the pit, using
a hammer to gently tap them into the soil. We took three cores at each depth in order to
reduce the effect of short-distance spatial variation.
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Figure 6. Flowchart of the analysis, including the confusion matrix, accuracy indicators and misclas-
sification cost. This workflow was repeated for all 44 candidate PR thresholds.

The undisturbed samples were capped to avoid losing soil, taken to the laboratory
and dried in an oven for 48 h at 105 ◦C following the international guidelines [26,75]. The
oven-dry samples were weighed using a scale with a resolution of 0.1 g. The arithmetic
mean of the triplets of soil samples was determined for each depth, providing the measured
BDd at 0.001 Mg m−3 resolution. As previously stated, only samples from the loamy topsoil
were used for further analysis in this research. The boundary between the topsoil and
subsoil was clearly visible in the field (Figure 4), and it was noted down which samples
were taken in the topsoil. This allowed for easy selection of topsoil samples for analysis.

2.5. Soil Moisture and Clay Content Estimation

Volumetric soil moisture content (θv) was measured three times at each sampling
depth (Figure 5), using a TDR-based W.E.T. sensor [76]. The arithmetic mean of these three
measurements was used to assess the soil moisture conditions at the time of sampling.
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We estimated the topsoil clay content for all samples using a single existing auger
location from the Dutch national database BIS [27]. These auger locations can be found
throughout the Netherlands and include a full soil profile description, including an esti-
mation of the clay content for all soil horizons. In our study, the BIS auger location was
approximately 600 m removed from the study site, and it was measured in 2017. This is at
a considerable distance from the study site, and it is not the most reliable estimate, as it
provides no data on short-distance variation. We decided to still use these data because
it is a realistic data source for farmers and other land managers, and the purpose of this
research is to evaluate the use of BDd and PR under realistic conditions. Taking samples for
laboratory soil texture analysis at every soil pit would almost certainly have provided more
reliable estimates for clay content. However, these detailed analyses would be unlikely to
occur in practice due to the high cost.

2.6. Data Pre-Processing

Data pre-processing for BDd samples and θv was done in Microsoft Excel. The arith-
metic mean was calculated for all 83 suitable topsoil samples, using the triplets of BDd
cores and θv measurements at each sampling depth. Soil moisture conditions are known to
have an effect on PR measurements, as moist soils have lower PR values than dry soils [77].
Samples that were taken in either too moist or dry conditions were therefore excluded
from the analysis in order to avoid unwanted effects on PR. We determined the mean
moisture content of all samples, which was roughly 24%. All samples and measurements
that were obtained at soil moisture levels under 19% or over 29% were excluded from
further analysis. Using this method, we removed 14 BDd and PR measurements, leaving a
total of 69 measurements for further analysis. The soil moisture data were approximately
normally distributed, and removed samples were located at both tails of this distribution.

All PR data were analysed using the R programming language [78]. The mean PR
profile from 0 to 80 cm in depth was calculated at each of the 25 sample locations, by taking
a measurement depth-based weighted average of the six local replica measurements. This
was done to reduce the effects of outliers and short-distance variation. This weighted mean
profile was calculated using local polynomial kernel smoothing, available in the R-Package
KernSmooth [79,80]. We used a Gaussian kernel with a bandwidth of 1.5. This value was
chosen to align the vertical support of the BDd sample cores with that of the averaged PR
measurements, as it meant that the Gaussian function had a width that roughly equalled the
soil core diameter (5 cm). This means that the pre-processed measurements of BDd and PR
are both representative for a 5 cm depth interval, centred around the measurement depth.

The BDd measurements were obtained at specific depths, divided over the 25 sample
locations. In order to match the correct PR value to each of the 69 BDd measurements,
we extracted the values at the corresponding depths from the averaged PR profiles. This
resulted in 69 paired BDd and PR measurements.

2.7. State of Soil Compaction Using BDd and PR

The main analysis involved a comparison of the state of soil compaction estimated from
the 69 paired BDd and PR measurements (Figure 6). Within this context, it was assumed
that the BDd measurements could function as the reference that best approximated the
“true” state of compaction.

Each measured BDd value was converted to a comprehensive classification with two
states: (1) compacted or (2) not compacted, using Equation (1) [25,26]. This equation uses
the clay content to provide a BDd threshold above which compaction is deemed harmful to
plants. We estimated the topsoil clay content at 20%, using the available BIS data [27]. After
applying Equation (1), the BDd threshold for soil compaction was set at 1.57 Mg m−3. Any
BDd values equal to or greater than 1.57 Mg m−3 were classified as compacted, whereas
samples below the threshold were considered not compacted.

Threshold BDd = 1.75 − 0.009 × percentage clay
[
Mg m−3

]
(1)
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Soil compaction was classified for PR using a similar approach, where all 69 measured
PR values were classified as either compacted or not compacted. Rather than using a single
threshold, as was done for BDd, multiple candidate thresholds were investigated in order
to determine their performance. All values from 0.0 MPa to 4.3 MPa, in increments of
0.1 MPa, were considered as candidates. The classification using PR was therefore run
44 times—once using each candidate threshold. We purposely chose to include more
candidates than given in the list of thresholds from the literature (Table 1) as this reduced
the risk of missing the true optimum. The upper limit of 4.3 MPa was chosen because it
was the highest PR value found in the dataset. It is theoretically possible to measure up to
roughly 8.0 MPa using a hand-driven Penetrologger, but such high values were not found
in the dataset.

2.8. Confusion Matrices

In order to determine the level of agreement between BDd and PR soil compaction
classifications, all paired classifications were compared to each other using BDd as the “true”
reference. As there are 44 different sets of classifications for the candidate PR thresholds,
the comparison to the reference BDd classification was done 44 times. The results were
summarised in 44 separate confusion matrices, which assigned measurement pairs to one
of four categories: (1) true positive, (2) true negative, (3) false positive and (4) false negative
(Figure 5). This method allows for a straightforward assessment of the performance of each
candidate PR threshold.

The first two “true” categories contain all pairs for which both methods are in agree-
ment, with true positives containing compacted pairs and true negatives containing not-
compacted pairs. In essence, this represents the instances for which PR provided the same
classification as BDd. The latter two “false” categories contain pairs for which PR did
not provide the same classification. The category of false positives corresponds to the
statistical type I error. This occurs when PR classification indicated soil compaction was
present, but the BDd reference states there is none. The false negatives correspond to the
type II error, where the PR classification wrongly concludes the opposite—that there is no
soil compaction.

2.9. Accuracy Metrics

The overall performance of each candidate PR threshold was also obtained from the
confusion matrices through the use of accuracy metrics. For this research, we calculated
the accuracy, sensitivity, specificity and balanced accuracy for all candidate PR thresholds
(defined in Table 2). This metric is also used under the assumption that BDd can be used as
a true reference. The accuracy provides a direct indication of the overall “correctness” of
PR as a measure to classify soil compaction, compared to the reference classification using
BDd. It is calculated by taking the ratio of true positives and true negatives to the total
number of sample pairs (Table 2).

The sensitivity and specificity provide more in-depth insights. They were calculated
using the corresponding formulas from Table 2. Within the context of this research, sen-
sitivity provides the success rate for correctly classifying compacted samples. In essence,
it determines how well PR performs at finding the soils which are compacted from all
measurement pairs. Specificity does the opposite, as it provides the success rate for samples
that are not compacted. The added benefit of calculating the sensitivity and specificity is
that it allows for an assessment of bias.

Although the accuracy is a straightforward metric, it is sensitive to data imbalance.
This is especially the case in datasets where one class or classification is more abundant
than another. We therefore also calculated the balanced accuracy, which is the arithmetic
mean of the sensitivity and specificity (Table 2). This metric is unaffected by data imbalance.
A more elaborate discussion on the use of accuracy metrics and their use given data balance
is given by Tharwat [81].
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Table 2. Accuracy measures used to evaluate the performance of PR thresholds. NTP = number of
cases of true positives, NTN = number of cases of true negatives, NFP = number of cases of false
positives and NFN = number of cases of false negatives.

Metric Formula Interpretation

Accuracy Acc = NTP+NTN
NTP+NTN+NFP+NFN

Ratio between number of
correctly classified samples

and total number of samples

Sensitivity Sens = NTP
NTP+NFN

Ratio of number of correctly
classified positive samples to

total number of positive
samples

Specificity Spec = NTN
NTN+NFP

Ratio of number of correctly
classified negative samples to

total number of negative
samples

Balanced accuracy BA =
Sens+Spec

2
Accuracy measure corrected
for imbalance in the dataset

2.10. Misclassification Costs: Formula

Expected misclassification costs were calculated in order to show the trends in financial
effects of misclassification, which could be directly experienced by farmers. These include
costs related to yield losses as a result of false negatives and tillage costs as a result of false
positives. The key concept of misclassification cost is that measurements such as PR are
used to inform choices regarding land management. Misclassification can then lead to
unnecessary costs that would not have occurred if the measurements were perfect.

The expected misclassification costs were determined under the previously used
assumption that BDd can be used as a reference of the true state of compaction. There were
three further main assumptions: (1) exceeding the BDd threshold always leads to yield
losses due to (over)compaction, (2) there are no yield losses due to soil compaction when
the BDd threshold is not exceeded, and (3) alleviating soil compaction has an associated
cost. Thus, the misclassification cost of a false negative is equal to the expected yield loss.
False positives result in unneeded alleviation, which results in associated costs without
yield gain.

A straightforward method was used to calculate the expected misclassification costs
for each candidate PR threshold value. The total expected cost was dependent on the
probability of misclassification and the expected cost per misclassification (Equation (2)).
The probabilities for false negatives (PFN) and false positives (PFP) were calculated from
the 44 confusion matrices by taking the ratios of false negatives and false positives to the
total number of sample pairs.

Expected misclass. cost = PFN × CostFN + PFP × CostFP

[
€ ha−1y−1

]
(2)

2.11. False Negative Costs

False negative costs (CostFN) were estimated from data on Dutch agricultural yields
and estimated percentual revenue loss due to soil compaction. Crop yields and prices
for seed potatoes, onions, sugar beets and wheat were obtained in the from the Dutch
BINternet-database [82]. From this, the mean national crop revenues (€ ha−1 y−1) over the
period from 2010 to 2019 were calculated (Table 3). The used crops were chosen because
they are prevalent in the region of the study area. Additionally, they cover a wide range of
revenues, allowing us to evaluate the trends for low, medium and high-value crops.
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Table 3. Estimated revenue and revenue loss for four crops that are commonly grown in the study
area (calculated using data from: Wageningen Economic Research [82]).

Crop
Revenue from Crop

(€ ha−1 y−1)
Mean over 2010–2019

Estimated Revenue Loss of 10%
in Case of Soil Compaction

(€ ha−1 y−1)

Seed potatoes 10.355 1036

Onions 6.744 674

Sugar beets 3.337 334

Wheat 1.641 164

The percentual yield loss was estimated from the literature. Yield losses can range from
of 5% to 40% [13,14], depending on the severity of the compaction. Therefore, we estimate
that a reasonable yield loss is 10%. This is high enough that farmers will experience effects
but low enough that it might not be evident without measurements. It also represents
a situation where soil compaction might already be present long-term and alleviation is
required. The false negative cost was therefore set at 10% of the mean crop revenue (Table 4).
The cost for yield loss was kept the same for all crops.

Table 4. Yearly false positive and false negative cost, per occurrence of a misclassification.

Crop Cost of a False Positive
(€ ha−1 y−1)

Cost of a False Negative
(€ ha−1 y−1)

Seed potatoes 380 1036

Onions 260 674

Sugar beets 146 334

Wheat 90 164

2.12. False Positive Costs

The costs for a false positive are mainly driven by the costs for alleviation. These
costs are difficult to assess accurately, as they depend on the type of alleviation and market
dynamics (e.g., cost of fuel, cost of labour, availability of machinery). We focused on the
general costs of subsoiling tillage, such as ripping and ploughing, as these are commonly
used in the Netherlands. For the Netherlands, we estimated the cost of subsoiling at
roughly 105 EUR/ha−1. This value is an average of the estimated costs for ripping and
ploughing from De Wolf et al. [83].

Although subsoiling tillage is meant to alleviate soil compaction and its effects, it also
leaves the loose soil vulnerable to re-compaction. Studies show that the positive effects
of subsoiling in compacted soils are negated after 2–2.5 years [84,85]. This means that it
is likely that subsoiling due to a false positive measurement will actually result in soil
compaction, provided the soil is used intensively. This re-emergence of soil compaction will
likely lead to the re-introduction of yield losses in the years following alleviation. A com-
mon approach is to subsoil periodically in order to alleviate re-emerging soil compaction.

The yearly estimated false positive costs were therefore calculated as a combination of
the subsoiling tillage costs and the yield losses due to the re-emergence of soil compaction.
We assumed that subsoiling would be required every three years, meaning the yearly costs
for the subsoiling itself amounted to 35 EUR/ha−1. For the re-emergence of soil compaction,
we assumed a linear trend over the course of three years up to the full 10% of yield loss
just before periodic subsoiling. This results in a mean expected yearly yield loss of 3.33%
as a result of “unnecessary subsoiling”. The total yearly false positive misclassification
cost therefore amounted to the subsoiling costs of 35 EUR/ha−1, plus a yearly yield loss of
3.33% of the potential mean crop revenue (Table 4). For example, for seed potatoes, this
amounts to 35 + 0.0333 × 10,355 = 380 EUR/ha−1 y−1.
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3. Results
3.1. Confusion Matrices

Figure 7 shows the results of the comparison between soil compaction classification
using PR and BDd. Whereas a confusion matrix is usually visualised using a table with
four quadrants, this figure represents all 44 confusion matrices using a stacked bar plot.
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The confusion matrices show a clear difference between different threshold values. At
low thresholds, the matrices are dominated by true positives and false negatives. There
is a slow decline of true positive cases from 0.4 MPa until 4.2 MPa and a corresponding
increase in false negatives. This implies soil compaction was present at PR values ranging
from 0.4 MPa to 4.2 MPa, following the comparison to the BDd measurements.

The true negative cases show a similar trend, as they increase in number between
0.5 MPa and 4.1 MPa. False positives decrease in number over this range. However, we
see that the rate of change is much higher between 0.5 MPa and 2.0 MPa. This implies that
a large proportion of the not-compacted samples have a PR value below 2.0 MPa, with a
smaller proportion having higher PR values.

Overall, these data show a logical pattern. As the PR threshold increases, more uncom-
pacted sites are correctly classified (true negatives) at the cost of an increase in misclassified
compacted sites (false negatives). There is some data imbalance at the extremes, with close
to 20% true positives at 0.0 MPa and over 80% true negatives at 4.3 MPa.

3.2. Accuracy Metrics

Accuracy metrics for all 44 confusion matrices are provided in Figures 7 and 8, and
the optima from these figures are summarised in Table 5. The maximum accuracy is 84.1%,
which occurs at 3.0 MPa. The accuracy is lowest at low PR thresholds and rises quickly
between 0.5 and 1.0 MPa. We see a continued increase from 1.0 to 2.6 MPa, albeit at a
slower rate. The peak at 3.0 MPa is part of a relative plateau in accuracy, showing similar
performance from 2.6 all the way to 4.3 MPa. At 4.3 MPa, the classification using PR
considers all samples to be not compacted.
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Table 5. Summary of the accuracy metrics from Figure 8, showing optima and the corresponding
(range of) PR threshold values.

Metric Optimum Value (%) Threshold at Which the
Optimum Is Reached (MPa)

Accuracy 84.1 3.0

Sensitivity 100 0.0–0.4

Specificity 100 4.3

Balanced accuracy 76.0 1.8–1.9

Sensitivity (at max. balanced accuracy) 76.9 1.8–1.9

Specificity (at max. balanced accuracy) 75.0 1.8–1.9

Sensitivity and specificity confirm the observations from the previous paragraph.
Sensitivity always decreaseswith higher PR thresholds, whereas specificity always increases.
Setting the threshold at zero classifies all samples as compacted, whereas a threshold at
4.3 MPa results in only not-compacted classifications. Sensitivity shows a jagged decrease
from 0.5 MPa up to 4.3 MPa, indicating that there are compacted samples in that range. This
jagged behaviour is likely due to the small sample size. Specificity rises quickly between
0.4 MPa and 1.0 MPa and continues to rise at a slower rate until 4.2 MPa.

The balanced accuracy provides the optimal point where trade-offs between sensitivity
and specificity result in the highest mean accuracy. In Figure 9, the balanced accuracy
shows a plateau roughly between 1.0 and 3.0 MPa at around 70% accuracy. The highest
balanced accuracy is found at 1.8 and 1.9 MPa, at 76.0%. Sensitivity and specificity are
at approximately similar levels, namely 76.9% and 75.0% respectively (Table 5). These
results show that there is a relatively wide range in which balanced accuracy is relatively
close to the optimum, although the ratio of sensitivity to specificity changes depends on
the threshold. The optimum at 1.8 and 1.9 MPa seems to be an unbiased optimum, since
both sensitivity and specificity are at similar levels. This is lower than the biased optimum
using the unbalanced accuracy. Figure 10 shows a scatter plot of the raw BDd and PR data,
classified according to the confusion matrix using the PR threshold of 1.9 MPa.
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3.3. Cost Functions

The expected misclassification costs for seed potatoes, onions, sugar beets and wheat
are given in Figure 11 and Table 6. These show that the expected misclassification cost is
highest for seed potatoes and lowest for wheat. This is a logical result, as seed potatoes are
the more valuable crop. All crops show the same general pattern, with the highest expected
misclassification cost at very low PR thresholds. Costs drop with increasing PR thresholds,
reaching a minimum at 1.8 and 1.9 MPa for seed potatoes and onions, and at 2.6 MPa for
sugar beets and wheat. When the threshold is increased further, the expected costs rise
again until the maximum measured PR is reached at 4.3 MPa.
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Figure 11. Misclassification cost for seed potatoes, onions, sugar beets and wheat, using all candidate
PR classifications. The arrows indicate the locations of the minimum misclassification cost for
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threshold values.

Table 6. Summary of misclassification costs from Figure 9, showing optima and values at
the extremes.

Crop Cost at 0.0 MPa
(€ ha−1 y−1)

Cost at 4.3 MPa
(€ ha−1 y−1)

Optimal Cost
(€ ha−1 y−1)

Threshold at
Optimal Cost

(MPa)

Seed potatoes 308 195 122 1.8–1.9

Onions 211 127 82 1.8–1.9

Sugar beets 118 63 44 2.6

Wheat 73 31 23 2.6

It is also visible that the cost function flattens for lower revenue crops such as wheat.
Where the seed potato cost function still shows a clear dip between 0.5 and 3.0 MPa, wheat
shows a relatively flat line from 1.0 MPa onwards. There is still an optimum at 2.6 MPa,
but the expected costs do not increase much when the PR threshold is increased again. We
also see that the cost near 0.0 MPa, where there are many false positives, is always higher
than towards 8.0 MPa, where false negatives dominate.

4. Discussion
4.1. Interpretation of Results

Using a confusion matrix and accuracy metrics can be a simple yet effective way to
evaluate the level of agreement between two measurement methods. When we look at the
accuracy results in Figure 8 and Table 5, we see a maximum attainable accuracy of 84.1%
at 3.0 MPa for the data set used in this study. There also appears to be a plateau of high
accuracy extending from roughly 2.5 to 4.3 MPa. The highest attainable accuracy at 3.0 MPa
would statistically result in misclassification in around only one out of every nine instances
if PR were used instead of BDd. This threshold also fits with the use of PR thresholds in a
number of other studies [53,55,57,60,61]. However, these results are misleading due to the
effects of data imbalance.
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The confusion matrices can be used to provide context for our accuracy results and to
illustrate the effects of data imbalance (Figure 7). Ideally, the accuracy of PR classification
is always high regardless of whether soil compaction is actually present or not. The
comparison to BDd can become unreliable if the accuracy is very high for one class (e.g.,
compacted) and low for another (e.g., not compacted). The results in Figure 7 show that
the plateau of high accuracy from 2.5 to 4.3 MPa is dominated by true negatives and false
negatives. True or false positives are virtually absent. In other words, nearly all datapoints
are uniformly classified as not compacted using PR, regardless of their BDd classification.

This uniform classification can be problematic and is the main reason for the mislead-
ing nature of the accuracy results. It stems from imbalance in the data themselves. Figure 10
shows that over 80% of samples are below the BDd threshold of 1.57 Mg m−3, meaning
there is very little soil compaction present in the dataset. In this situation, high accuracy
and a high level of agreement between BDd and PR classifications can be achieved simply
by labelling all PR samples as not compacted. This results in a dataset of PR classifications
that completely misses all samples that were in fact compacted, but these do not carry as
much weight since they only make up 20% of the total dataset. This is a cheap and easy
way to achieve over 80% accuracy for this specific study area, but it does not provide an
informative general assessment of the performance of PR.

The balanced accuracy (Figure 9) provides an estimation of the expected level of
agreement, which is more informative as it compensates for data imbalance. The optimum
of 76.0% at 1.8 and 1.9 MPa is unbiased, as the sensitivity and specificity are nearly equal to
each other. These optimal thresholds are very close to 2.0 MPa—the threshold value that
is most commonly used in literature [30,32,34,36–38,40,44,46,49,50]. We also see a plateau
from 1.0 to 3.0 MPa, where the balanced accuracy is around 70% and close to the optimum.
This suggests that deviating slightly from the true optimum does not result in a drastic
or quick decrease in balanced accuracy. It also suggests that using either BDd or PR will
statistically result in a difference in classification result in just under 3 out of every 10 cases,
which can improve to around 1 out of every 4 cases at the optimum.

Figure 9 indicates there is a clear trade-off between sensitivity and specificity. Lower
thresholds of PR tend to create better agreement with BDd classifications if locations are
compacted, but at the cost of worse agreement in those locations where compaction is absent.
Conversely, a higher PR threshold results in better agreement if there is no compaction and
worse agreement if there is compaction.

The results from our misclassification cost analysis are in line with those for balanced
accuracy, as the optima are located at 1.8, 1.9 and 2.6 MPa (Figure 11). In this analysis, the
lower value crops seem to favour a higher optimum PR threshold. The misclassification
cost curves also seem to flatten out with a lower crop value. This is likely a result of the
ratio between the false positive and false negative costs used in Equation (2). As crop value
decreases, the absolute expected yield loss as a result of a false negative also decreases.
This is only partly the case for false positive cost, as it always contains a base level of
35 EUR/ha−1 y−1 in subsoiling costs, which does not change. When the misclassification
costs converge to the same value, the potential gains of finding the optimal threshold
become less pronounced and the curve flattens.

From Figure 11, it quickly becomes evident that the expected misclassification cost of
setting the threshold very low (i.e., near 0.0 MPa) is much higher than that of setting it too
high (i.e., at 4.3 MPa). This is quite unintuitive when taking into account the misclassifica-
tion costs in Table 4, which show that the per occurrence cost of a false negative should
be more than twice as expensive compared to that of a false positive. Since the costs near
0.0 MPa are mostly due to false positives, one would expect the costs to actually be lower
compared to the costs at 4.3 MPa.

Looking at Equation (2), the cause for this must lie in the probabilities obtained from
the data. Apparently, the probability of having a false positive is sufficiently larger than
that of having a false negative. This is likely a result of the data imbalance shown in
Figure 10, which already showed that over 80% of the samples in the dataset lie below the
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1.57 Mg m3 BDd threshold. Since BDd is used as the “true” reference, this has an effect
on the probability of having soil compaction in the first place. There is a higher a priori
probability of “drawing” an uncompacted site simply because there are so many in the
dataset. On the other hand, the a priori probability for a compacted site is low because
there are so few. The expected costs near 0.0 MPa are so high because the probability of
having a misclassification is high, which overpowers the lower costs per occurrence. It is
therefore likely a very dataset and study site-specific phenomenon.

It is also possible to illustrate the effect on the farm-level using our results, as farmers
usually have multiple hectares of arable land. The average farm size in Flevoland is
50 ha [86]. If farmers and land managers use the PR threshold with the highest level of
agreement, they can get the lowest expected misclassification costs. These calculations
are indicative only, but they can show the potential effects of picking a suboptimal PR
threshold. For seed potatoes, the maximum potential yield is 518,000 EUR, and the optimal
expected misclassification costs are 6100 EUR. If PR is used in the least optimal way by
setting it close to 0.0 MPa, the misclassification costs could be as high as 15,400 EUR. This is
not a logical threshold to use, but it does show the potential for cost savings at the extremes.
A more logical example is the use of 1.5 MPa, 2.5 MPa or 3.0 MPa as a threshold, as these are
mentioned in scientific literature (Table 1). For a farmer in our study area, these thresholds
would result in costs of 6300 EUR, 6500 EUR and 7300 EUR, respectively. This implies
that a seed potato farmer in Flevoland can save 200 to 1200 EUR by using the optimal PR
threshold value. These savings will reduce with lower yield crops, of course.

4.2. Broader Perspective

Using either BDd or PR to approximate the level of soil compaction is not new, as
is evident from Table 1 and the literature cited in the introduction. Attempts have been
made to determine the relation of the measurements themselves to each other, with varying
results [66–69]. Our research did not aim to repeat these studies, focusing more on classifi-
cations rather than the numerical values of the measurements themselves. It also aimed to
acknowledge the fact that both methods are often used in isolation, where the outcome can
sometimes depend partially on the used method rather than the actual state of the soil.

It is cheaper and quicker to use a Penetrologger to measure the soil strength (PR)
and derive the state of soil compaction from that rather than measuring the density (BDd).
The results for our study show that in the most optimal scenario, nearly one in five
measurements is likely classified differently if PR is used instead of BDd. This can lead
to noticeable differences between results of both methods. Because PR is cheaper and
quicker, it can allow for more measurements to be conducted within the same time frame,
including duplicate measurements. This could allow farmers and other land managers
to have a better spread of measurements over fields, at the cost of having a proportion of
misclassifications compared to BDd. Therefore, there may be a trade-off between accuracy,
cost and practical usability.

PR is often used to approximate soil compaction, as is evident from Table 1. These
thresholds can be assessed within the context of the results from our study, as any of them
could be chosen by the owner of the field in our study area. As previously mentioned,
the optimum level of agreement that we found is very close to the most commonly used
PR threshold of 2.0 MPa (Table 1). We also see that nearly all of the studies from Table 1
use thresholds that are within our plateau of good agreement between PR and BDd, with
4.2 MPa by Stock et al. [54] being the only exception. This means that many of the thresholds
in literature would have resulted in a level of agreement that was very close to the optimum.
Interestingly, thresholds between 1.0 and 2.0 MPa would still have performed reasonably
well in our study area but were not found in the literature.

In this research, we used PR to make a classification into two categories: compacted
and not compacted. This is the most commonly used method in the literature, and it
matches the way in which BDd classifications are made. However, some studies also use a
non-binary system [55,57,60,61]. In such a system, there are also intermediate classes such
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as “lightly compacted” or “moderately compacted”. This is also the preferred method for
the use of PR in some Dutch studies [87], who consider the range of 2.0 MPa to 3.0 MPa
to be “somewhat compacted”. We were unable to directly assess this non-binary method,
as it was incompatible with the binary BDd classification. It is notable that this system of
intermediate classes does overlap with our plateau of high balanced accuracy (Figure 9).
We also think that using more than two classes might approximate the true state of the soil
better, as soil properties can also change gradually.

It is possible that using more than two classes may result in lower expected misclassifi-
cation costs, as it allows farmers to tailor their soil management more towards the gradual
nature of soil properties. This can mean doing only light remediation on lightly compacted
areas, such as less intensive tillage and using more deep-rooting crops. Disruptive and
expensive land management options are then only used on heavily compacted areas. This
may reduce the added management cost on light soil compaction and therefore also the
expected misclassification cost for those areas. The effect of this depends on the exact
difference in costs for soil management, an extensive investigation of which was beyond
the scope of this study. The results from this study are therefore representative for a situa-
tion in which “binary” land management takes place—either there is full alleviation, or
no alleviation.

Our analyses were done on the point measurement-level. However, farmers and other
land managers will realistically make management decisions for larger areas of land such
as individual fields. This requires a translation from point measurements to areas and
subsequently to management. The advent of precision and smart farming aims to facilitate
in this decision-making process, but technical and social hurdles still exist that inhibit its
full use [88,89]. This means that the gap between point measurements and management
policy for a field needs to be bridged by the farmers or land managers themselves. This
is often done based on experience, personal conviction, advice from experts, practical
considerations and many other factors [90]. Some farmers may also decide to specify
management for sections of a field, where others apply do not make this within-field
distinction. As a result, the way in which measurements are used is likely to be highly
personal and variable. The results presented in this study can therefore be used to provide
guidelines and insight for the measurements themselves but become more uncertain when
the spatial heterogeneity needs to be taken into account.

4.3. Limitations and Future Research

The results in this study were obtained at our study area in Flevoland, the Netherlands.
It must be stressed that these specific results are likely to be strongly tied to the conditions
in the study area. The concept of misclassification and associated costs is likely to also have
an effect in other locations, but the attainable level of agreement and relevant PR threshold
range may deviate from those found in this study. There is likely to be an influence of soil
texture, which can contribute to the location-specific nature of the relationship between
BDd and PR. This influence is hinted to in studies where pedotransfer functions are used
to describe the relationship between BDd and PR, which include clay or sand content
as a covariate [66,67]. Bengough and Mullins [28] also hint at a combined soil moisture
and texture effect. This is especially relevant taking into account the approach in this
study, where soil texture and clay content were estimated from a single auger site and both
horizontal and vertical heterogeneity were not taken into account. It is possible to include
data on soil texture heterogeneity and determine its effects on the BDd threshold. However,
doing so would introduce data that farmers and other land managers will not always have.
Using simplifications that are in line with common practices therefore strengthened the
practical usability of this research. Future research should be used to verify the results from
our study in similar soils. Studies on different soils can be used to determine the effect of
differences in soil texture on the level of agreement and relevant PR thresholds.

We also mentioned that data imbalance has an effect on the (general) accuracy and the
expected misclassification cost. Studies have shown that roughly half of the arable land in
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the Netherlands is at risk of being compacted and that this risk depends on soil type [16,91].
A follow-up study by Brus and Van den Akker [15] indicates that 43% of the country is
actually likely to be compacted, although the data density in Flevoland is low. Fields in
low-risk areas may have a strong data imbalance towards uncompacted sites, whereas
fields in high-risk areas might show a dominance of compacted sites. Due to the nature of
using a single case study, we could not explore the effects of all possible data compositions.

It is possible to hypothesize what the effects of data imbalance and composition may
be. We expect that the balanced accuracy is least affected, as it is designed to compensate for
imbalance. The general accuracy is sensitive to data imbalance, but its effects can easily be
assessed by comparing it to the balanced accuracy. We expect that the misclassification costs
are also strongly affected, as it tends to assign a higher expected cost to the more probable
class. It is possible to analyse these effects by artificially creating different data balances,
either through resampling of the data or modification of the cost function. Our small
dataset size prevented us from doing this analysis, as it would be too prone to overfitting.
The robustness of our methods and results can also be assessed by performing multiple
other case studies, which should naturally have different data balances, soil types and local
conditions. We recommend that these case-studies are done in future research.

Finally, a critical reflection on the underlying assumptions for the analysis is also
required. In order to determine the expected misclassification costs, we implicitly assumed
that the BDd thresholds are directly linked to yield loss and that these thresholds are
well-defined. Under that assumption, yield loss would always occur if the BDd were above
the calculated threshold and never if it were below the threshold. This is a very practical
assumption, but it is likely not fully true. The BDd threshold is sensitive to clay content,
meaning it depends on the accuracy of the soil texture estimation or measurement. Soil
compaction is also related to soil properties which are not captured in BDd, such as pore
connectivity and pore size distribution. It is a gradual phenomenon, meaning that soil
compaction and its negative effects do not instantly occur at a certain threshold. This
is not captured in a single threshold, as it assumes a clearly definable division between
classes. More research into the possibility of using a gradual system of thresholds is
therefore needed.

Similar assumptions were made for yield losses and crop value, for which we provide
set values from the literature. In reality, yield losses can vary from roughly 5% to 40%
depending on the level of soil compaction and the crops being grown [14]. Crop value
changes based on location, time and other market dynamics. These two factors can have an
effect on the misclassification function and may lead to a shift of the optima. We strongly
recommend research and an evaluation of the effects of these assumptions.

5. Conclusions

The analysis in this research shows that, in our study area, classifications of soil
compaction on the same soil using BDd and PR result in a maximum level of agreement of
76%. This effectively means that around one in every four classifications differs between
both methods. In a wider range of thresholds from 1.0 to 3.0 MPa, the level of agreement
lies around 70%. Most thresholds from the literature are found in this range and would
therefore have led to just under one misclassification in every three classifications, which is
very close to the optimum.

If the farmer or land manager in the study area for this research opts for measurements
using Penetrologgers instead of soil cores, they can expect between around one in four
or five of the performed measurements to provide a different classification. This is a
substantial number, which shows that choosing a measurement tool can have implications
for a soil survey and the subsequent management. The added advantage of being able to
conduct more measurements and add duplicate measurements was not investigated, but
may theoretically compensate slightly for the misclassification chance.

The effects of misclassification on the expected cost to a farmer show a clear relation
to the level of agreement, as the expected cost is lower in the range of 1.0 to 3.0 MPa. There
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is a clear effect of crop value on the cost function, showing that lower value crops such as
wheat and sugar beets are less sensitive to the exact PR threshold if the aim is to keep costs
low. Higher value crops such as potatoes and onions do show a clearer effect of deviations
in the threshold.

These results are sensitive to data imbalance and are therefore very study area-specific.
In order to create a more general overview of the level of agreement between BDd and
PR-based classifications of soil compaction, a larger number of study sites in a wider
range of soil types and compositions should be investigated. We also hypothesise that
there are many ways in which a farmer or land manager can improve the accuracy of
soil compaction classification using PR. This includes sampling to have sufficient data,
capturing the spatial soil compaction patterns and tailoring soil management to those
patterns and using additional information from observations and experience to evaluate
PR measurements.
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57. Çelik, İ.; Günal, H.; Acar, M.; Acir, N.; Bereket, Z.; Budak, M. Strategic tillage may sustain the benefits of long-term no-till in a
Vertisol under Mediterranean climate. Soil Tillage Res. 2019, 185, 17–28. [CrossRef]

58. Bengough, A.G.; Bransby, M.F.; Hans, J.; McKenna, S.J.; Roberts, T.J.; Valentine, T.A. Root responses to soil physical conditions;
growth dynamics from field to cell. J. Exp. Bot. 2005, 57, 437–447. [CrossRef]

59. De Moraes Sá, J.C.; Tivet, F.; Lal, R.; Briedis, C.; Hartman, D.C.; dos Santos, J.Z.; dos Santos, J.B. Long-term tillage systems impacts
on soil C dynamics, soil resilience and agronomic productivity of a Brazilian Oxisol. Soil Tillage Res. 2014, 136, 38–50. [CrossRef]

60. Müller, M.M.L.; Tormena, C.A.; Genú, A.M.; Kramer, L.F.M.; Michalovicz, L.; Caires, E.F. Structural Quality of a No-Tillage Red
Latosol 50 Months After Gypsum Aplication. Rev. Bras. Cienc. Solo 2012, 36, 1005–1013. [CrossRef]

61. Tekeste, M.; Habtzghi, D.H.; Stroosnijder, L. Soil strength assessment using threshold probability approach on soils from three
agro-ecological zones in Eritrea. Biosyst. Eng. 2007, 98, 470–478. [CrossRef]

62. Bradfort, J.M. Penetrability. In Methods of Soil Analysis-Part 1: Physical and Mineralogical Methods, 2nd ed.; Klute, A., Ed.; American
Society of Agronomy: Madison, WI, USA, 1986; pp. 463–478. [CrossRef]

http://doi.org/10.2136/sssaj2014.01.0005
http://doi.org/10.1016/j.still.2004.02.004
http://doi.org/10.1016/j.rsase.2021.100517
http://doi.org/10.1016/j.still.2019.104383
http://doi.org/10.1016/j.still.2011.10.005
http://doi.org/10.1016/j.geoderma.2014.08.014
http://doi.org/10.1501/Tarimbil_0000001194
http://doi.org/10.1002/ldr.2687
http://doi.org/10.1016/j.still.2004.08.009
http://doi.org/10.1097/00010694-196309000-00001
http://doi.org/10.1016/j.still.2017.11.012
http://doi.org/10.1016/j.geoderma.2012.05.021
http://doi.org/10.1016/j.still.2009.02.005
http://doi.org/10.1016/S0167-1987(00)00153-7
http://doi.org/10.1002/jpln.200625009
http://www.jstor.org/stable/42949872
http://doi.org/10.18174/njas.v34i2.16801
http://doi.org/10.1016/j.still.2018.08.015
http://doi.org/10.1093/jxb/erj003
http://doi.org/10.1016/j.still.2013.09.010
http://doi.org/10.1590/S0100-06832012000300030
http://doi.org/10.1016/j.biosystemseng.2007.09.004
http://doi.org/10.2136/sssabookser5.1.2ed.c19


Agronomy 2022, 12, 1669 24 of 25

63. Barik, K.; Aksakal, E.L.; Islam, K.R.; Sari, S.; Angin, I. Spatial variability in soil compaction properties associated with field traffic
operations. Catena 2014, 120, 122–133. [CrossRef]

64. Kumar, A.; Chen, Y.; Sadek, A.; Rahman, S. Soil cone index in relation to soil texture, moisture content, and bulk density for
no-tillage and conventional tillage. Agric. Eng. Int. CIGR J. 2012, 14, 26–37.

65. Carrara, M.; Castrignanò, A.; Comparetti, A.; Febo, P.; Orlando, S. Mapping of penetrometer resistance in relation to tractor traffic
using multivariate Geostatistics. Geoderma 2007, 142, 294–307. [CrossRef]

66. Perdok, U.D.; Kroesbergen, B.; Hoogmoed, W.B. Possibilities for modelling the effect of compression on mechanical and physical
properties of various Dutch soil types. Soil Tillage Res. 2002, 65, 61–75. [CrossRef]

67. Vaz, C.M.P.; Manieri, J.M.; de Maria, I.C.; Tuller, M. Modeling and correction of soil penetration resistance for varying soil water
content. Geoderma 2011, 166, 92–101. [CrossRef]

68. Da Silva, W.M.; Bianchini, A.; Da Cunha, C.A. Modeling and correction of soil penetration resistance for variations in soil moisture
and soil bulk density. J. Braz. Assoc. Agric. Eng. 2016, 36, 449–459. [CrossRef]

69. Hernanz, J.L.; Peixoto, H.; Cerisola, C.; Sánchez-Girón, V. An empirical model to predict soil bulk density profiles in field
conditions using penetration resistance, moisture content and soil depth. J. Terramech. 2000, 37, 167–184. [CrossRef]

70. Van den Biggelaar, D.F.A.M. New Land, Old History: Past Landscapes and Hominin Activity Covering the Last 220,000 Years in
Flevoland, The Netherlands [Vrije Universiteit Amsterdam]. 2017. Available online: https://research.vu.nl/en/publications/
new-land-old-history-past-landscapes-and-hominin-activity-coverin (accessed on 16 May 2022).

71. IUSS Working Group WRB. World Reference Base for Soil Resources 2014, Update 2015, International Soil Classification System for
Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports 2015, No. 106; FAO: Rome, Italy, 2015.

72. Minasny, B.; McBratney, A.B.A. conditioned Latin hypercube method for sampling in the presence of ancillary information.
Comput. Geosci. 2006, 32, 1378–1388. [CrossRef]

73. Walvoort, D.J.J.; Brus, D.J.; De Gruijter, J.J. An R package for spatial coverage sampling and random sampling from compact
geographical strata by k means. Comput. Geosci. 2010, 36, 1261–1267. [CrossRef]

74. Royal Eijkelkamp. Penetrologger—User Manual, (41 pp.). 2021. Available online: https://www.eijkelkamp.com/download.php?
file=M0615SAe_Penetrologger_bd1b.pdf (accessed on 27 July 2021).

75. Soil Survey Staff. Kellogg Soil Survey Laboratory Methods Manual. Soil Survey Investigations Report No. 42, Version 5.0.
2014. Available online: https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ref/?cid=nrcs142p2_054247 (accessed on
12 July 2021).

76. Royal Eijkelkamp, Delta-T Devices Ltd. User Manual for the WET Sensor. 2018, p. 42. Available online: https://www.eijkelkamp.
com/download.php?file=M1933e_Wet_sensor_b18b.pdf (accessed on 27 July 2021).

77. Mome Filho, E.A.; Da Silva, A.P.; Figueiredo, G.C.; Gimenes, F.H.S.; Vitti, A.C. Compared performance of penetrometers and
effect of soil water content on penetration resistance measurements. Rev. Bras. Ciência Solo 2014, 38, 744–754. [CrossRef]

78. R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. 2021. Available
online: https://www.r-project.org/ (accessed on 12 November 2021).

79. Wand, M.P.; Jones, M.C. Kernel Smoothing; CRC Press: Boca Raton, FL, USA, 1995; ISBN 0-412-55270-1.
80. Wand, M.P.; Jones, M.C. KernSmooth: Functions for Kernel Smoothing (and Density Estimation). R-Package Version 2.23-20. 2021.

Available online: https://cran.r-project.org/web/packages/KernSmooth/index.html (accessed on 27 July 2021).
81. Tharwat, A. Classification assessment methods. Appl. Comput. Inform. 2021, 17, 168–192. [CrossRef]
82. Wageningen Economic Research. BINternet Database. 2022. Available online: https://www.agrofoodportal.com/Binternet.aspx?

ID=20&Lang=1 (accessed on 3 August 2021).
83. De Wolf, P.; Dawson, A.; Klompe, K. Kosten En Baten Van Bodemmaatregelen: Grondbewerking, Organische Stofaanvoer En Tagetes Patula

Als Aaltjesvanggewas; Cost and Benefit of Soil Management: Tillage, Supply of Organic Matter, and Tagetes Patula as Nematode
Cover Crop; Report 2019, WPR-819; Wageningen Research, Wageningen Plant Research: Wageningen, The Netherlands, 2019.
[CrossRef]

84. Botta, G.F.; Jorajuria, D.; Balbuena, R.; Ressia, M.; Ferrero, C.; Rosatto, H.; Tourn, M. Deep tillage and traffic effects on subsoil
compaction and sunflower (Helianthus annus L.) yields. Soil Tillage Res. 2006, 91, 164–172. [CrossRef]

85. Drewry, J.J.A.; Paton, R.J.A.; Monaghan, R.M.A. Soil compaction and recovery cycle on a Southland dairy farm: Implications for
soil monitoring. Aust. J. Soil Res. 2004, 42, 851–856. [CrossRef]

86. CBS Statistics Netherlands. Aantal Boerderijen in Flevoland Daalt Minder Snel dan Elders [Number of Farms Decreasing More
Slowly in Flevoland than Elsewhere]. Available online: https://www.cbs.nl/nl-nl/nieuws/2015/53/aantalboerderijen-in-
flevoland-daalt-minder-snel-dan-elders (accessed on 10 November 2021).

87. Tol-Leenders, D.; Knotters, M.; De Groot, W.; Gerritsen, P.; Reijneveld, A.; Van Egmond, F.; Wösten, H.; Kuikman, P. Koolstofvoor-
raad in de Bodem van Nederland (1998–2018): CC-NL; Carbon Stock in the Soil of the Netherlands (1998–2018): CC-NL; Report 2974;
Wageningen Environmental Research: Wageningen, The Netherlands, 2018. [CrossRef]

88. Klerkx, L.; Jakku, E.; Labarthe, P. A review of social science on digital agriculture, smart farming and agriculture 4.0: New
contributions and a future research agenda. NJAS—Wagening J. Life Sci. 2019, 90–91, 100315. [CrossRef]

89. Wolfert, S.; Ge, L.; Verdouw, C.; Bogaardt, M.J. Big Data in Smart Farming—A review. Agric. Syst. 2017, 153, 69–80. [CrossRef]

http://doi.org/10.1016/j.catena.2014.04.013
http://doi.org/10.1016/j.geoderma.2007.08.020
http://doi.org/10.1016/S0167-1987(01)00277-X
http://doi.org/10.1016/j.geoderma.2011.07.016
http://doi.org/10.1590/1809-4430-Eng.Agric.v36n3p449-459/2016
http://doi.org/10.1016/S0022-4898(99)00020-8
https://research.vu.nl/en/publications/new-land-old-history-past-landscapes-and-hominin-activity-coverin
https://research.vu.nl/en/publications/new-land-old-history-past-landscapes-and-hominin-activity-coverin
http://doi.org/10.1016/j.cageo.2005.12.009
http://doi.org/10.1016/j.cageo.2010.04.005
https://www.eijkelkamp.com/download.php?file=M0615SAe_Penetrologger_bd1b.pdf
https://www.eijkelkamp.com/download.php?file=M0615SAe_Penetrologger_bd1b.pdf
https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ref/?cid=nrcs142p2_054247
https://www.eijkelkamp.com/download.php?file=M1933e_Wet_sensor_b18b.pdf
https://www.eijkelkamp.com/download.php?file=M1933e_Wet_sensor_b18b.pdf
http://doi.org/10.1590/S0100-06832014000300006
https://www.r-project.org/
https://cran.r-project.org/web/packages/KernSmooth/index.html
http://doi.org/10.1016/j.aci.2018.08.003
https://www.agrofoodportal.com/Binternet.aspx?ID=20&Lang=1
https://www.agrofoodportal.com/Binternet.aspx?ID=20&Lang=1
http://doi.org/10.18174/511834
http://doi.org/10.1016/j.still.2005.12.011
http://doi.org/10.1071/SR03169
https://www.cbs.nl/nl-nl/nieuws/2015/53/aantalboerderijen-in-flevoland-daalt-minder-snel-dan-elders
https://www.cbs.nl/nl-nl/nieuws/2015/53/aantalboerderijen-in-flevoland-daalt-minder-snel-dan-elders
http://doi.org/10.18174/509781
http://doi.org/10.1016/j.njas.2019.100315
http://doi.org/10.1016/j.agsy.2017.01.023


Agronomy 2022, 12, 1669 25 of 25

90. Daydé, C.; Couture, S.; Garcia, F.; Martin-Clouaire, R. Investigating operational decision-making in agriculture. In Proceedings
of the 7th Congress on Environmental Modelling and Software (IEMSS 2014), San Diego, CA, USA, 15–19 June 2014; Available
online: https://hal.inrae.fr/hal-02739614/document (accessed on 16 May 2022).

91. Van den Akker, J.J.H.; De Vries, F.; Vermeulen, G.D.; Hack-ten Broeke, M.J.D.; Schouten, T. Risico op Ondergrondverdichting in Het
Landelijk Gebied in Kaart; Map of the Risk of Subsoil Compaction in the Rural Areas; Alterra-report 2409; Alterra: Wageningen,
The Netherlands, 2013; Available online: https://research.wur.nl/en/publications/risico-op-ondergrondverdichting-in-het-
landelijk-gebied-kaart (accessed on 28 June 2018).

https://hal.inrae.fr/hal-02739614/document
https://research.wur.nl/en/publications/risico-op-ondergrondverdichting-in-het-landelijk-gebied-kaart
https://research.wur.nl/en/publications/risico-op-ondergrondverdichting-in-het-landelijk-gebied-kaart

	Introduction 
	Methods and Materials 
	Study Area 
	Data Collection and Pre-Processing 
	Penetration Resistance (PR) 
	Dry Bulk Density (BDd) 
	Soil Moisture and Clay Content Estimation 
	Data Pre-Processing 
	State of Soil Compaction Using BDd and PR 
	Confusion Matrices 
	Accuracy Metrics 
	Misclassification Costs: Formula 
	False Negative Costs 
	False Positive Costs 

	Results 
	Confusion Matrices 
	Accuracy Metrics 
	Cost Functions 

	Discussion 
	Interpretation of Results 
	Broader Perspective 
	Limitations and Future Research 

	Conclusions 
	References

