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A B S T R A C T   

The egalitarian allocation of agricultural land and small operational farm sizes in rural China raise questions 
about the implications for overall productivity given that there exists potentially large heterogeneity in farm- 
level productivities. This paper examines to what extent land and capital are misallocated in a region in the 
North China Plain that is characterized by small and relatively equally distributed farm sizes. Using a survey data 
set collected from wheat-maize double-cropping farms, we find that the dispersion in farm-level total factor 
productivities is small, and the quantified gains in aggregate agricultural output (productivity) by reallocating 
factors from less productive to more productive farms are moderate compared to the findings in the previous 
literature. The estimated output (productivity) gains range from 7% for within-village reallocation to 10% for 
between-village reallocation in the region. We argue that these findings are largely explained by the high-level 
use of hired machinery services among smallholders in the region.   

1. Introduction 

The success of agricultural development in China since the 1980s and 
the associated major achievements in rural poverty reduction, structural 
transformation, and overall economic development have been largely 
attributed to the growth in aggregate agricultural productivity (Cao and 
Birchenall, 2013; Ivanic and Martin, 2018; Ligon and Sadoulet, 2018). 
However, some recent studies find that the rate of growth of agricultural 
productivity (i.e., total factor productivity or TFP) has declined in recent 
years (e.g., Gong, 2018; Sheng et al., 2020). These findings cast doubt on 
China’s potential to remain self-sufficient in food in the near future. The 
sluggish performance of agricultural productivity growth calls for rele-
vant public policies to refuel the growth engine. 

One approach that has been stressed in the recent productivity 
growth literature is to foster productivity gains through reallocating 
production factors toward more productive units (see reviews in Bar-
telsman and Doms, 2000; Tybout, 2000; Syverson, 2011; Restuccia and 

Rogerson, 2013, 2017). This recent strand of literature emphasizes the 
role of (between-firm) resource allocation efficiency across heteroge-
neous production units in stimulating aggregate TFP growth, instead of 
asking the traditional question why individual firms in an economy are 
less productive than their counterparts in another economy (Restuccia 
and Rogerson, 2013). Such efficiencies in resource allocation can be 
particularly relevant for the agricultural sector in developing countries 
where factor markets are often distorted by institutional arrangements 
that neglect differences in factor productivities between farms. Theo-
retically, efficient resource allocation between farms requires the mar-
ginal product of that resource to be equated across all farms, i.e., more 
resources are used by the more productive farms. In the case of China, 
agricultural land is collectively owned by villages and land use rights are 
allocated among villagers on an egalitarian basis. As a result, observed 
operational farm sizes tend to be very small and show little variation 
within villages. This may imply there exist large inefficiencies in allo-
cating resources (i.e., resource misallocation) across farms in China for 
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two reasons: first, equal land distribution contributes to land misallo-
cation between farms because farms are usually heterogeneous in their 
land productivities; and second, small farm sizes may contribute to 
capital misallocation between farms because small farms face relatively 
large barriers to capital markets (Adamopoulos et al., 2020). 

Recent empirical evidence at the national level for China supports 
these implications. Adamopoulos et al. (2020), Gai et al. (2020), Zhao 
(2020) and Chari et al. (2021) find that productive factors such as land 
and capital are significantly misallocated across farms in China; the 
estimated gains in aggregate agricultural productivity that could have 
been obtained from efficient factor reallocation amount to 136% for the 
period 2004–2013. Although these studies answered different important 
questions for different time periods, their findings and policy sugges-
tions were mostly retrospective and may not fit the current situation of 
agricultural production in China. Moreover, and interestingly, all these 
studies are based on the same nationally representative household-level 
panel data set that was collected through the National Fixed Point 
Survey (see Benjamin et al., 2005 for a description), while evidence from 
alternative data sets is still missing. For these reasons, we identify-two 
major gaps that still exist in the current literature. 

First, in measuring capital input, the available literature has mostly 
neglected hired machinery services (also referred to as mechanization 
outsourcing) among smallholders in China, mainly because it is only a 
recent trend (see Yang et al., 2013; Wang et al., 2016a; Wang et al., 
2016b; Sheng et al., 2017; Zhang et al., 2017). Its implications on 
resource allocation and aggregate productivity are still unknown. Intu-
itively, the shift from relatively labor-intensive production toward the 
extensive use of hired machinery services in agriculture enables credit- 
constrained smallholders to reallocate agricultural labor to more pro-
ductive activities, and thereby reduces the extent of capital and labor 
misallocation. In addition, the availability of hired machinery services 
can affect the demand for agricultural land on farms and generate an 
equilibrium distribution (or allocation) of farm sizes that is different 
from what the literature suggests. Therefore, ignoring this machinery 
services cost may lead to severe mismeasurement in capital input, and 
the estimated magnitudes of factor misallocation and productivity gains 
can be misleading for policy implications. 

Second, in addition to studies at the national level, research on factor 
misallocation and its implications for productivity gains at the regional 
level is needed as well. One reason is that different regions within a 
country can have different levels of factor misallocation (see, for 
example, Zhu et al., 2011 for China; Ayerst et al., 2020 for Vietnam), and 
policy implications based on studies using nationwide data may have 
limited relevance in a large country like China that prefers gradual 
policy experiments on a narrower spatial scale (see Rozelle and Swin-
nen, 2004 and the references therein). Regional analysis may also 
deliver more accurate estimates of farm-level productivities by reducing 
the complexities involved in estimating national-level production 
functions. For example, to construct comparable farm-level pro-
ductivities, the standard approach in the literature using nationwide 
data involves aggregating the production of multiple crops to the farm 
level and setting equal output elasticities in the production function for 
all farms. This method is applied even though the farms are in different 
agroclimatic zones and use fundamentally different cropping systems 
that are likely to be characterised by significantly different factor output 
elasticities. 

Based on these considerations, this paper aims to assess to what 
extent productive factors (land and capital) are misallocated in a rela-
tively small region in China, characterized by a relatively equal distri-
bution of land among smallholders and an increased use of hired 
machinery services in crop production. In particular, we exploit a 
household-level survey data set collected from four counties in Hebei 
Province, China. These counties are located within the North China 
Plain, a major agricultural production region of the country that is 
relatively homogeneous in terms of agro-environmental conditions. A 
large majority of farmers in the study area grow winter wheat and 

summer maize in a simple wheat-maize double-cropping system, as is 
the case throughout most areas of the North China Plain. Operational 
farm sizes in the region are usually extremely small; our data set in-
dicates that approximately 93% of surveyed farming households operate 
a farm size less than one hectare in 2017. Given this situation, the 
conventional wisdom may lead one to conclude that there is large factor 
misallocation across farms of the region. Nonetheless, we also observe 
that approximately 90% of surveyed farming households use hired 
machinery services, especially in production activities such as land 
preparation, seeding and harvesting (see more in Sections 3 and 4). 

We construct a quantitative framework that links micro-level pro-
ductivities of heterogeneous farms to macro-level outcomes to assess the 
extent of factor misallocation in our study area (Adamopoulos and 
Restuccia, 2014; Restuccia and Santaeulàlia-Llopis, 2017; Adamopoulos 
et al., 2020; Ayerst et al., 2020; Chen et al., 2020). We use a non- 
parametric approach to estimate the distribution of farm-level TFPs 
for a set of farms specializing in wheat-maize double-cropping, con-
trolling for potentially confounding factors such as farm-level irrigation 
conditions, soil quality and village fixed effects. We find that the 
measured dispersions in the distribution of farm-level productivities are 
small, implying that the misallocation of land and capital may be small 
as well under the current distribution of farm sizes. A quantification of 
the potential gains in aggregate agricultural output and productivity 
from efficient land and capital reallocations within the region confirms 
that factor misallocation is indeed moderate: the estimated output 
(productivity) gains in the region range from approximately 7% for 
within-village reallocation to 10% for between-village reallocation. 

Although a direct comparison of our findings with those in the 
literature should be cautious due to differences of data coverage in space 
and time, our study robustly suggests that even if the operational farm 
sizes are extremely small, factor misallocation may not be as severe as 
the literature has indicated (e.g., in Adamopoulos et al., 2020; Gai et al., 
2020; Chari et al., 2021). We argue that the major contribution to this 
lower-than-expected factor misallocation comes from the active use of 
hired machinery services among smallholders. Our finding may have 
important implications for public policies involving land and agricul-
tural productivities not only in the local region and the larger North 
China Plain that shares similar production patterns, but also in other 
developing countries where smallholder production and factor misal-
location persist. 

The rest of the paper is structured as follows. Section 2 specifies a 
quantitative framework that explains how factor misallocation can be 
assessed. We describe the study area and survey data set in Sections 3 
and 4, respectively. Section 5 estimates and discusses the potential 
misallocation of land and capital for the surveyed households in the 
study area. We draw conclusions and lay out the policy implications in 
Section 6. 

2. Quantitative framework 

In this section, we set up a quantitative framework to assess to what 
extent productive factors are misallocated across farms. Following the 
approach proposed by, for instance, Restuccia and Santaeulàlia-Llopis 
(2017) and Adamopoulos et al. (2020), we consider a rural economy 
that is endowed with a total amount of agricultural land L, farming 
capital K, and a finite number of farms M indexed by i. A farm is a 
production unit that is managed by an operator who uses farming skills 
and production factors that are under his or her control to produce 
agricultural goods. Farm operators are assumed to be heterogeneous in 
their ability si in managing their farms. Farm-level production function 
features a ‘span of control’ (see Lucas, 1978) that is characterized by 
constant returns to scale for production technology and diminishing 
returns to scale for managerial skill: 

yi = s1− γ
i

(
lα
i k1− α

i

)γ (1) 
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where yi is the output of farm i; li is land input, and ki is capital input. 
The parameter α captures the relative importance of land input in the 
production process; γ < 1 is the parameter of ‘span-of-control’ that 
governs the returns to scale at farm level. For reasons of simplicity, Eq. 
(1) abstracts away from labor input differences across farms. We return 
to this abstraction and discuss its validity in Section 5.1. 

We assume that a social planner of the rural economy decides how to 
allocate land and capital across farms to maximize aggregate output Y =
∑

iyi, given farm-level production technologies in Eq. (1) and total 
resource endowments of the economy 

∑
ili = L and 

∑
iki = K. Con-

strained optimization leads to a unique scheme of efficient allocations of 
land and capital across farms as follows: 

le
i =

si
∑M

i=1si
L; ke

i =
si

∑M
i=1si

K; (2)  

where the superscript e represents the efficient allocation of each input. 
Eq. (2) implies that, in the static equilibrium, the social planner allocates 
land and capital according to farms’ relative farming abilities (si/

∑M
i=1si) 

in the economy, and the more productive farms will be allocated more 
resources. Under this allocation scheme, the distributions of factor in-
puts across farms will be non-degenerating because the most productive 
farm does not possess all resources. This feature is inherently embedded 
in the assumption that the farm-level production function exhibits 
diminishing returns to scale in managerial skills, i.e., the ‘span-of-con-
trol’ parameter γ < 1. Adamopoulos and Restuccia (2014) emphasize 
that these theoretically derived equilibrium distributions are consistent 
with the observed distributions of agricultural land and capital use in the 
real world, where farms that are heterogeneous in their farming ability 
coexist in the same production system. In general, Eq. (2) indicates that 
the cross-farm distribution of land and capital should be strongly posi-
tively correlated with the distribution of farm-level productivities, and 
any deviation between the two distributions would suggest the potential 
existence of factor misallocation. 

To quantify the impact of non-zero factor misallocation on aggregate 
agricultural output, we first substitute Eq. (2) into Y =

∑
iyi to derive the 

aggregate production function under efficient resource allocation. This 
gives, 

Ye = TFPe⋅M1− γ ( LαK1− α)γ (3)  

where Ye is the aggregate output level under efficient factor allocation; 
TFPe= (S)1− γ measures aggregate productivity in the economy, and S =

M− 1∑M
i=1si is the average farming ability of the M farms. The potential 

gain in aggregate output can then be quantified by comparing this 
efficient aggregate output to the actual aggregate output. If the factors 
are misallocated, the output gain is positive. Given that total resource 
endowments L and K and the total number of farms M in the economy 
are assumed to be fixed, the potential gain in output is also the potential 
gain in aggregate productivity. In the following sections, we apply this 
quantitative framework to farm-level data collected from a region in the 
North China Plain. 

3. Background of the study area 

Our study area consists of four adjacent counties — Feixiang, Jize, 
Quzhou and Qiu — in Handan Prefecture, Hebei Province, China (see 
Fig. 1 for county locations). The official data from Handan Bureau of 
Statistics (HBS, 2018) showed that, by the end of 2017, the area had a 
total population of 1.34 million, of which 55% were rural residents, 12 
percentage points higher than the rest of regions within the prefecture. 
The per capita gross domestic product (GDP) in the area was 30,395 
yuan (about 4,500 US dollars, in current value), 15% lower than the 
prefecture average, and only about half of the national average. The 
GDP of primary industry represented approximately 17% of the total 
GDP within the area, twice that of the remaining area in the prefecture 
and of the whole country. In the local agricultural sector, wheat and 
maize are the two most important crops, with 74% of all sown area 
devoted to them in 2017. 

Most farms in the area grow a double-crop rotation between winter 
wheat and summer maize. The former is usually produced from early 
October to early June in the following year, while the latter is produced 
from mid-June to late September. This wheat-maize double-cropping 
system is also the main farming system in the North China Plain, a major 
agricultural production region that is known as the “bread basket” of 
China and extends across provinces including Hebei, Henan, Shandong, 

Fig. 1. Location of the study area in Handan Prefecture, Hebei Province, China.  
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Jiangsu, and Anhui; these provinces together produced more than 79% 
of total wheat output and 30% of total maize output for China in 2017 
(NBS, 2018). 

The agro-environmental characteristics of local crop production are 
relatively homogeneous. For example, the entire area is located within a 
fluvial plain, with minimal change in elevation (usually between 30 and 
50 m) and land slope; annual average temperatures in 2016 and 2017 of 
these four counties are around 14 ~ 15 ℃. Rainfall, however, shows 
much variation. In 2016, it ranged from 545 mm in Feixiang to 804 mm 
in Jize, while in 2017 it amounted to 284 mm and 355 mm, respectively, 
for these two counties (HBS, 2017, 2018). Historical average precipi-
tation in this area is only around 500 mm per year, with most of the 
rainfall concentrated in the summer. Therefore, crop production, 
particularly during the winter wheat growing season, is heavily reliant 
on irrigation, using either surface water or ground water. 

Although the area is relatively flat and physically suitable for large 
scale agricultural production, most farms are extremely small. The 
average operational farm sizes in 2017 in these four counties varied 
between 5.8 and 9.5 mu (or equivalently 0.39 and 0.63 ha for 1 mu = 1/ 
15 ha; HBS, 2018). In recent years, labor-demanding activities such as 
land preparation, seeding, and harvesting are increasingly carried out by 
machines, while other activities such as fertilization, pesticide spraying, 
and irrigation are mainly done by hand, facilitated by small agricultural 
tools such as electric sprayers and water pumps (Liu et al., 2020). Ma-
chinery used on small farms is largely outsourced from specialised ma-
chinery services providers, usually local third-party machine owners (e. 
g., other farms or farm cooperatives). Large farms may hire machinery 
services from outside the area or rely on their own machinery. 

The relatively homogenous agro-ecological environment, predomi-
nance of the wheat-maize double-cropping system, very small farm 
sizes, and the extensive use of hired machinery services make the study 
region well-suited for reaching the aim of our study. In fact, given that 

wheat-maize double-cropping is the main cropping system in a large 
part of the North China Plain, and that smallholder farming with 
increased use of machinery services characterises those regions as well, 
our findings are likely to be relevant for a much larger region. 

4. Data 

The farm-level data that we used for this research was collected 
through a field survey in February 2018. The survey was designed and 
carried out under the umbrella of a larger research project that studies 
farm size enlargement and its implications. In sampling, we first selected 
28 townships out of 33 in four counties; five townships were excluded 
because one was mainly composed of minority ethnic population and 
the other four were county centres and were less involved in agricultural 
production. We then divided the selected townships into three groups 
based on the number of villages they contained, that is, townships with 
1–10 villages, townships with 11–20 villages, and townships with more 
than 20 villages. In the first group, two villages were randomly selected 
from each township, while 4 and 6 villages were selected similarly from 
each township in the second and third groups, respectively (see Liu 
et al., 2020). Using information collected during pre-survey field trips, 
villages that specialized in cash crops such as vegetables, cotton and 
grapes were excluded (see Qian et al., 2020). This procedure gave us 135 
villages with wheat-maize production as the dominating cropping sys-
tem. In the last step, approximately 16 households were randomly 
selected within each sampled village for face-to-face interviews. 

We effectively surveyed 2,121 households. Out of these, 1,955 
households produced wheat, 1,947 households produced maize, and 
1,920 households produced both crops in the 2016/17 season. As our 
study focuses on the static factor allocation among existing farms, we 
first dropped 89 households that did not cultivate land in that season. 
We then also dropped 112 households that did not produce either wheat, 
or maize, or both, and 128 households that reported different (non-zero) 
sown areas for wheat and for maize. We focused our analysis on wheat- 
maize double-cropping farmers, because including the production of 
other agricultural products (e.g., vegetables and cotton) can lead to 
reduced accuracy in measuring farm-level productivities as these crops 
are usually grown using significantly different production technologies. 
The survey therefore did not collect input–output information for other 
crops than wheat and maize. The resulting sample includes 1,788 
households that mostly specialize in wheat-maize double-cropping.1 For 
them, we have not only detailed quantitative information on crop- 
specific input and output quantities and prices, but also qualitative in-
formation on farm-specific soil types and irrigation conditions. 

The average operational farm size (defined as the land area con-
tracted from village collectives plus net rented land area) in the 
remaining sample equals 9.6 mu, while the median operational farm size 
is only 7.0 mu. Table 1 shows that approximately 56% of the households 
have a farm size ≤ 7.5 mu, almost 93% operate a farm size ≤ 15 mu, and 
approximately 1% of the farms have a size greater than 30 mu. On 
average, the households in the sample use more than 88% of their 
operational land area for wheat-maize double-cropping. This share is 
highest for relatively small farms. 

Most farms in the sample use their own land contracted from village 
collectives to produce wheat and maize. Land rentals are relatively 
uncommon among the interviewed households; only 12.7% of the full 
sample of 2,121 households reported land rent-in and 15.2% reported 

Table 1 
Sample distribution of operational farm sizes and wheat-maize double-cropping 
land shares (N = 1,788).  

Operational farm size 
range 

Number 
of farms 

Percentage Average land share used for 
wheat-maize double- 
cropping 

≤ 7.5 mu (0.5 ha) 1,010 56.49% 92.65% 
7.5–15 mu (0.5–1 ha) 649 36.30% 85.26% 
15–30 mu (1–2 ha) 110 6.19% 74.72% 
30+ mu (2+ ha) 19 1.06% 52.49% 
Total 1,788 100% N/A 

Source: Authors’ own calculations. 
Notes: For the whole sample (N = 1,788), average operational farm size is 9.6 
mu and median farm size is 7.0 mu. The average land share devoted to wheat- 
maize double-cropping is 88.4%. 

Table 2 
Share of households that use machines in wheat and maize production stages (N 
= 1,788).  

Production stages Wheat Maize 

Hired 
machine 

Own 
machine 

Hired 
machine 

Own 
machine 

Land preparation  89.03%  5.93% 90.27% 4.31% 
Seeding  92.17%  5.20% 
Fertilization  6.94%  1.51% 10.46% 1.06% 
Agrochemicals 

spraying  
0.50%  7.33% 0.73% 12.53% 

Irrigation  8.61%  45.97% 8.78% 44.02% 
Harvesting  92.84%  4.36% 80.59% 3.30% 

Source: Authors’ own calculations. 
Notes: In maize production, land preparation and seeding are preformed 
simultaneously with machine, and we use a single value for both production 
stages. 

1 This number of households comes from dropping another four wheat-maize 
double-cropping households due to negative value added (see Section 5 and 
Appendix A for details). 

M. Chen et al.                                                                                                                                                                                                                                   



Food Policy 112 (2022) 102350

5

land rent-out in 2017.2 As a comparison, the percentage of rural 
households reporting land rent-out for the whole country equalled 30% 
in 2016 (MOA, 2017). 

Hired machinery services are very common especially in the pro-
duction stages of land preparation, seeding, and harvesting (see 
Table 2). For both wheat and maize production, approximately 90% of 
households used hired machinery services in these stages. In other ac-
tivities, including fertilization, agrochemicals spraying, and irrigation, 
labor and own machinery are more commonly used. The relatively high 
percentages of own machinery use in irrigation, about 45% in both 
wheat and maize production, are mainly due to the inclusion of water 
pumps that many local households possess, even though their value may 
be negligible in capital formation. In all stages of production, family 
labor is the dominant form of labor input; it accounts for approximately 
96% of the total labor input in wheat and maize production. 

5. Empirical application 

To apply the quantitative framework in Section 2 to data, we 
construct farm-level total factor productivity (TFP) residually from farm 
i’s production function in Eq. (1): 

TFPi ≡ s1− γ
i =

yi
(
lα
i k1− α

i
)γ (4) 

This definition of TFP relates only to the farming ability si and can be 
interpreted as a physical productivity, the measure of which, in the first 
place, requires data of real outputs and inputs that do not reflect price 
effects (Foster et al., 2008; Hsieh and Klenow, 2009), and in the second 
place and particularly for agricultural production, should not be 
confounded by observed and unobserved farm-level heterogeneities 
such as transitory shocks and land quality (Restuccia and Santaeulàlia- 
Llopis, 2017; Adamopoulos et al., 2020; Gollin and Udry, 2021). 

5.1. Measuring farm-level productivity and productivity dispersions 

We use the data set described in Section 4 to construct farm-level 
output yi, land input li and capital input ki in Eq. (4). In particular, 
farm output is measured by “real” value-added that subtracts “real” costs 
of intermediate inputs from the “real” gross output of wheat and maize. 
Land input is measured by the operational land size devoted to wheat- 
maize double-cropping, rather than the double-counted sown areas for 
wheat and maize. For this reason, it is necessary to exclude farms that 
reported different sown areas for wheat and maize production.3 A key 
difference between this study and the previous literature (e.g., Adamo-
poulos et al., 2020) is the measure of capital input: we rely heavily on 
the cost of hired machinery services to measure capital input, while also 
adding in the imputed cost of using own machine and small agricultural 
tools. In Appendix A, we describe in detail the methods of variable 
construction. 

It is important to note that the specification of the production 
function in Eq. (1) (and therefore also the farm-level TFP in Eq. (4)) 
implicitly assumes that labor input is the same across farms, while in the 
data set farms differ in their labor inputs. Following the convention in 
the literature (e.g., Restuccia and Santaeulàlia-Llopis, 2017; Adamo-
poulos et al., 2020; Chen et al., 2020), we normalize yi, li and ki and 

express them in unit labor input. Such a construction implies that we 
ignore the potential misallocation of labor across farms, and therefore 
the estimated misallocation could be conservative if labor misallocation 
were huge. Fortunately, this ignorance might be justified given that 
farming activities in our study area were done mostly by family labor 
(accounts for 96% of total labor input, see Section 4) that cannot be 
effectively reallocated across farms in practice (see Chen et al., 2020). 

Measuring farm-level TFPs also requires information on the param-
eters α and γ, which are related to factor output elasticities. While there 
are several approaches to measure them, we follow the convention in the 
literature of between-farm factor misallocation and directly compute 
them from the available data.4 The capital income share for each farm is 
computed as the ratio of the capital input to farm output. We take the 
median value as the measured capital income share, which gives 
(1 − α)γ = 0.205. Computing the land income share requires farm-level 
cost estimates of land input. The data set contains only limited infor-
mation on land rental prices due to the relatively small number of land 
rental transactions (see Section 4), and therefore, we use the average 
land rental price published by the Handan municipal government one 
month before our field survey, which was 417.4 yuan per mu/year 
(HMDRC, 2018). We apply this common price to all operated land 
(rented and contracted) and compute the land income share for each 
farm as the ratio of land input cost to farm output. The measured land 
income share is obtained, again, by taking the median of these farm- 
specific ratios, which implies αγ = 0.318. Given these estimated 
values, we derive γ = 0.523, which implies a labor income share of 
1 − γ = 0.477. In general, our estimated factor income shares, which are 
0.205, 0.318 and 0.477, respectively, for capital, land and labor, are 
virtually similar to those used in Adamopoulos et al. (2020) for China 
(0.18, 0.36, 0.46 respectively). However, they are very different from 
that Restuccia and Santaeulàlia-Llopis (2017) used to study Malawian 
agriculture (0.36, 0.18 and 0.46, respectively). In Table B.1 of Appendix 
B, we show that our main findings in the following sections are generally 
very robust to these alternative calibrations of factor income shares. 

The above information allows us to compute farm-level TFPs using 
Eq. (4). But such a measure may still be confounded by differences 
among farms in land quality, weather shocks and other unobserved 
heterogeneities. For example, if a farm had a higher quality of land and 
experienced a positive weather shock, then we probably overestimate its 
farm-level TFP. To address this concern, we follow Adamopoulos et al. 
(2020) and further estimate the physical component of farm-level pro-
ductivity by regressing (without a constant) the foregoing log farm-level 
TFPs on a set of potentially confounding factors. In particular, we 
include farm-level irrigation condition, soil type (as an indicator of soil 
quality), and village-level fixed effects, and specify the model as follows: 

lnTFPiv = β1 × irrigationiv + β2 × soil typeiv +
∑

v
δv × villagev + ∊iv (5) 

The variable “irrigationiv” represents the irrigation condition of farm i 
in village v, as assessed by the farmer. It ranges from 1 (worst) to 5 
(best). “soil typeiv” is categorical in that it measures three types of soil, i. 
e., sandy, clay, and loam. The variable “villagev” represents village fixed 
effects. The parameters to be estimated are β1, β2, and δv, and ∊iv is the 
error term. Farm-level irrigation condition is included because local 
crop production relies heavily on irrigation, and better irrigation con-
dition also copes better with weather risk (see more discussions in 
Section 3). Farm-specific soil quality is usually also an important factor 
that affects farm productivity; it is included in the model despite the 

2 We conducted the field survey right after the Chinese lunar new year, when 
most family members were at home, to avoid large replacements in random 
sampling. But households with contracted land in the study area who rented out 
their land and have permanently migrated to urban areas could not be inter-
viewed. As a result, the land rent-out percentage in our sample may be slightly 
underestimated.  

3 Table B.4 in Appendix B reports the results that are obtained when farms 
that reported different (non-zero) sown areas for wheat and maize production 
are also included. 

4 In addition to the non-parametric approach that we adopt here, these pa-
rameters can also be obtained by estimating an average production function 
using ordinary least squares or other methods if the endogeneity issue of input 
choices is well taken care of (see Syverson, 2011), or by estimating a stochastic 
frontier production function if within-farm efficiency levels are a major concern 
(see Coelli et al., 2005). 
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study area is relatively homogeneous in agro-environment (see also in 
Section 3). In Table B.2 of Appendix B, we show that dropping this 
variable does not significantly affect our measured dispersions of farm 
level TFPs. Due to data limitations, we do not include farm-level or 
village-level land quality information in the estimation. Nevertheless, 
there are two reasons that may justify the exclusion of land quality in our 
study area. First, the local area is a fluvial plain with minimal variations 
in key land quality components such as elevation, slope, terrain, and 
erosion (see details in Section 3). Second, land quality differences are 
generally taken into account by village leaders when determining the 
allocation of farmland use rights based on the principle of equality to 
households in their villages (Qu et al., 1995). Village fixed effects are 

included to account for other unobserved village-specific effects such as 
external technology interventions;5 they are also inclusive of township- 
or county-specific effects. We use the regression residual from Eq. (5) to 
measure the (log) physical productivity at the farm level, which is, 

̂lnTFPiv = lnTFPiv − β̂1 × irrigationiv − β̂2 × soil typeiv −
∑

v
δ̂v × villagev

(6) 

Columns (1) and (2) in Table 3 summarize several dispersion mea-
sures of this log farm-level TFPs. In column (1), which is based on a full 
sample of 1,788 observations, the standard deviation of the estimated 
farm-level TFPs (in log terms) is 0.57. The log TFP difference between 
the 75th and 25th percentiles (p75-p25) is 0.56, implying that farms at 
the 75th percentile aree0.56 = 1.75 times more productive than farms at 
the 25th percentile in the distribution. The log differences between other 
paired percentiles range from 1.14 to 2.55. In column (2), we trimmed 
16 extreme outliers from the distribution.6 As expected, the standard 
deviation and the log TFP difference between the 99th and 1st percentile 

Table 3 
Dispersions of farm-level TFPs.   

(1) 
This study 
(Full sample) 

(2) 
This study 
(16 extreme values excluded) 

(3) 
Adamopoulos et al. (2020) 

(4) 
Restuccia and Santaeulàlia-Llopis (2017) 

(5) 
Ayerst et al. (2020) 

Country China China China Malawi Vietnam 
Data coverage Regional Regional National National National 
Data period 2016/2017 2016/2017 1993–2002 2010/11 2012–2016 
Std. Dev. 0.57 0.44 0.35 1.19 0.58 
p75-p25 0.56 0.56 1.48 1.15 — 
p90-p10 1.14 1.12 2.18 2.38 — 
p95-p5 1.47 1.43 — — 1.88 
p99-p1 2.55 2.06 — — 2.74 
N 1,788 1,772 6,000+ 7,157 2,087 

Notes: All dispersion measures are in logarithmic terms. “Std. Dev.” is the standard deviation. “p75-p25” is the difference between 75th and 25th percentiles in the 
distribution of log TFPs. A similar definition applies to other dispersion measures in the table. In column (2), we trimmed 16 extreme values (see footnote 6 for 
definition). 
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Fig. 2. Land and capital allocation across farms with different productivities.  

Table 4 
Aggregate output (productivity) gains from resource reallocation within and 
across villages.   

Gains 

Eliminating land and capital misallocation across households: 
within villages  7.03% 
within and across villages  9.87% 

Source: Author’s own calculations. 
Notes: Gains are based on the trimmed sample of 1,772 farms. 

5 Some villages in our sample are selected by the so-called Science & Tech-
nology Backyard program as pilot sites for production experiments. See Li et al. 
(2020).  

6 We define extreme outlier as a value that is either larger than 
p75+3 × (p75 − p25) or smaller than p25 − 3× (p75 − p25), where p75 and p25 
are respectively the 75th percentile and the 25th percentile of the log TFP 
distribution. The trimming involves two farms from the lower tail and 14 farms 
from the upper tail. Interestingly, the latter all comes from one single village in 
Quzhou County. 
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farms reduced significantly after deleting these extreme values, while 
the other dispersion measures are fairly robust. 

To illustrate the consequences of estimating farm productivities for a 
relatively homogenous region, we compare the magnitudes of the 
regional productivity dispersions obtained in our study (columns (1) and 
(2) in Table 3) with the productivity dispersion measures obtained by 
Adamopoulos et al. (2020) for farms in China during the period of 
1993–2002 and by Restuccia and Santaeulàlia-Llopis (2017) for farms in 
Malawi in the 2010/2011 season (columns (3) and (4) in Table 3). As 
can be seen from the table, the values of the dispersion measures in those 
two nationwide studies are more than twice the values that we obtained 
for our study region. Our measured dispersions are closer to those found 
by Ayerst et al. (2020) for China’s neighbouring country Vietnam during 
2012–2016 (column (5) in Table 3), which has a system of rural land 

allocation in the north that resembles the Chinese system. Note that, 
however, direct comparison with others should be done with caution, as 
the estimated gaps may be driven by differences in data coverage in time 
and space, and by the inclusion of machinery services in the capital 
measure in our study. We discuss this important issue in Section 5.3. 

5.2. Factor misallocation and aggregate productivity gains 

Based on the distribution of estimated farm-level TFPs, we empiri-
cally assess to what extent factors are misallocated in our study area 
with the two approaches suggested in Section 2. We first visually 
contrast the distribution of observed factor inputs to the distribution of 
measured farm-level TFPs, and then we quantify the static gains in 
aggregate output (or productivity) from efficient resource allocation. 

To start, note that Eq. (2) implies that, under efficient allocation, 
factor inputs should be strongly positively correlated with the measured 
farm-level TFPs. If, however, the cross-farm correlation between the 
observed factor input (land or capital) and the measured farm-level 
productivity is small, then there may exist factor misallocation. The 
extent of misallocation is larger when the correlation coefficient is 
smaller. Fig. 2 shows that there is a virtually significant positive rela-
tionship between the distributions of log land inputs (or log capital in-
puts) and log farm-level TFPs (both are measured per labor day). When 
these are put in numbers, the correlation coefficients are 0.52 and 0.43 
in the left and right panels, respectively. By contrast, Restuccia and 
Santaeulàlia-Llopis (2017) find for Malawi that these correlation co-
efficients are equal to 0.05 and − 0.01, respectively; their findings imply 
little correlation and therefore strong misallocation in land and capital 
in that country. Adamopoulos et al. (2020) find similar evidence for 
China that land and capital are severely misallocated across the country. 
They even find a more negative correlation, as is evident in their visu-
alized graphs, between capital input and farm productivity, implying a 
much more severe capital misallocation in China. 

An additional (indirect) measure of resource misallocation can be 
obtained by quantifying aggregate output gain from efficient resource 
allocation. Intuitively, if the extent of factor misallocation is small, the 
static gains in aggregate output or productivity obtained from efficient 
resource allocation will also be small. We use the aggregate production 
function specified in Eq. (3) and measure the gain as the percentage 
change between efficient aggregate output level to the actual aggregate 
output level (see, for example, Restuccia and Santaeulàlia-Llopis, 2017; 
Chen et al., 2020): 

AggregateGains =
Ye − Ya

Ya =
Ye

∑
iya

i
− 1 (7)  

where Ye denotes the efficient aggregate output level when factors are 
efficiently allocated across farms according to Eq. (2); Ya is the actual 
aggregate output level observed in the data set. To make them compa-
rable, we use the measured physical productivity to compute both Ye 

and Ya. Note that, since total resource endowments and the number of 
existing farms are assumed fixed in the economy, the percentage gain in 
aggregate output in Eq. (7) also implies the percentage gain in aggregate 
productivity. 

Table 4 presents the results from two hypothetical efficient resource 
reallocation experiments: one is to reallocate within villages, and the 
other is to reallocate within and across villages. The estimated gain in 
aggregate output (productivity) from efficient reallocation of land and 
capital within villages equals 7.03%, while that from reallocation within 
and across villages equals 9.87%. The magnitudes of both gains confirm 
our findings in Fig. 2. They are much smaller than the gains estimated by 
other studies for China. For example, in Adamopoulos et al. (2020), the 
estimated gains equal to 24.4% for within-village reallocation and 
53.2% for within- and between-villages reallocation. Chari et al. (2021) 
focus on the period between 2003 and 2010 and perform an exercise 
similar to Adamopoulos et al. (2020) and find that if all misallocation of 

Table B1 
Farm-level TFP dispersions, correlation coefficients, and gains in aggregate 
output (productivity) with alternative factor income shares.   

(1) 
This 
study 

(2) 
Income shares 
from 
Adamopoulos et al. 
(2020) 

(3) 
Income shares from 
Restuccia and 
Santaeulàlia-Llopis 
(2017) 

Factor income shares 
Capital income 

share 
0.205 0.18 0.36 

Land income share 0.318 0.36 0.18 
Farm-level TFP dispersions 
Std. Dev. 0.44 0.43 0.42 
p75-p25 0.56 0.54 0.54 
p90-p10 1.12 1.11 1.07 
p95-p5 1.43 1.43 1.42 
p99-p1 2.06 2.06 1.98 
Correlation coefficients 
Corr (log land 

input, log TFP) 
0.52 0.51 0.52 

Corr (log capital 
input, log TFP) 

0.43 0.42 0.39 

Eliminating land and capital misallocation across households 
within villages 7.03% 7.44% 7.67% 
within and across 

villages 
9.87% 10.37% 10.60% 

N 1,772 1,772 1,772 

Notes: All dispersion measures are in logarithmic terms. “Std. Dev.” is the 
standard deviation, and “p75-p25” is the difference between 75th and 25th 
percentiles in the distribution of log TFPs. Similar definition applies to other 
dispersion measures in the table. In all columns, extreme values (see footnote 6 
for definition) were dropped. 

Table B2 
Dispersions of farm-level TFPs by excluding farm-level soil types in estimation.   

(1) 
Soil type is excluded from Eq. 
(5) 
(Full sample) 

(2) 
Soil type is excluded from Eq. 
(5) 
(15 extreme values excluded) 

Country China China 
Data 

coverage 
Regional Regional 

Data period 2016/2017 2016/2017 
Std. Dev. 0.59 0.43 
p75-p25 0.56 0.56 
p90-p10 1.10 1.10 
p95-p5 1.41 1.39 
p99-p1 2.51 2.01 
N 1,788 1,773 

Notes: All dispersion measures are in logarithmic terms. “Std. Dev.” is the 
standard deviation. “p75-p25” is the difference between 75th and 25th per-
centiles in the distribution of log TFPs. A similar definition applies to other 
dispersion measures in the table. In column (2), we trimmed 15 extreme values 
(see footnote 6 in the main text for definition). 
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land were eliminated, aggregate output in China during that period of 
time would increase by 73%. Again, we note that comparison across 
these studies should be cautious and may be even misleading given the 
differences in data coverage, time range, variable measurements, and 
other relevant issues. What we would like to stress from our findings is 
that even though the local operational farm sizes are extremely small 
and the land rental market is mostly inactive, the estimated output and 
productivity gains from factor reallocation are much lower than one 
would expect from the literature. 

5.3. Discussion 

What might explain these moderate gains in aggregate production? 
One explanation is the fact that our survey was conducted in a relatively 
small region with farms expected to be less heterogeneous in their 
productivities than in the case with nationwide analyses (that charac-
terize most of the previous literature). However, this cannot be tested 
without a data set that directly extends our study area to a larger area. 
Another explanation is the role played by quasi-fixed inputs, particularly 
land and physical capital, in the region. In this subsection, we focus on 
this latter explanation, starting with a discussion of the local land rental 
market, and subsequently focusing on the market for hired machinery 
services. 

In the land market, when major market imperfections exist, transfers 
of agricultural land from less productive farms to more productive farms 
will be limited, and result in wedges in marginal products of land across 
farms (Adamopoulos and Restuccia, 2014; Chen et al., 2020; Le, 2020). 
In China, land ownership in rural areas rests with the village collective. 
Although there is no land sales market, the land rental market has been 
growing quickly over the past 20 years; the ratio of transferred land area 
to total contracted land area increased from less than 3% in 1997 to 
about 35% in 2016 (Brandt et al., 2002; MOA, 2017). However, land 
rental transactions are less common in our study area, despite the fact 
that operational farm sizes are extremely small (see Section 4). Based on 
findings from the recent literature, these characteristics likely lead to 
conclusions that local land is severely misallocated and government 
efforts to promote land consolidation through land transfers among 
existing farms in the region can be highly rewarding. However, our 
analyses show that, reallocating land further from less to more pro-
ductive farms provides a limited contribution to increased aggregate 

Table B3 
Farm-level TFP dispersions and aggregate output (productivity) gains with alternative formations of capital input.   

(1) 
Own machine cost = hired machinery cost 
(per unit land, results in the main text) 

(2) 
Own machine cost = 150% of hired 
machinery cost (per unit land) 

(3) 
Own machine cost = 50% of hired 
machinery cost (per unit land) 

(4) 
Excluding households not 
using machines 

Factor income shares 
Capital income 

share 
0.205 0.213 0.196 0.207 

Land income share 0.318 0.318 0.318 0.318 
Labor income share 0.477 0.469 0.486 0.475 
Farm-level TFP dispersions 
Std. Dev. 0.44 0.44 0.44 0.44 
p75-p25 0.56 0.55 0.56 0.56 
p90-p10 1.12 1.11 1.13 1.13 
p95-p5 1.43 1.44 1.45 1.45 
p99-p1 2.06 2.07 2.09 2.09 
Correlation coefficients 
Corr (log land 

input, log TFP) 
0.52 0.52 0.52 0.52 

Corr (log capital 
input, log TFP) 

0.43 0.41 0.44 0.43 

Eliminating land and capital misallocation across households 
within villages 7.03% 7.34% 6.97% 7.12% 
within and across 

villages 
9.87% 10.34% 9.75% 10.06% 

N 1,772 1,772 1,772 1,730 

Notes: All dispersion measures are in logarithmic terms. “Std. Dev.” is the standard deviation, and “p75-p25” is the difference between 75th and 25th percentiles in the 
distribution of log TFPs. Similar definition applies to other dispersion measures in the table. In all columns, extreme values (see footnote 6 for definition) were dropped. 

Table B4 
Farm-level TFP dispersions and aggregate output (productivity) gains with 
extended sample.   

(1) 
Excluding 128 households that 
reported different sown areas 
for wheat and maize (Results in 
the main text) 

(2) 
Including 128 households that 
reported different sown areas 
for wheat and maize 

Factor income shares 
Capital 

income 
share 

0.205 0.204 

Land income 
share 

0.318 0.319 

Labor income 
share 

0.477 0.477 

Farm-level TFP dispersions 
Std. Dev. 0.44 0.44 
p75-p25 0.56 0.56 
p90-p10 1.12 1.12 
p95-p5 1.43 1.43 
p99-p1 2.06 2.08 
Correlation coefficients 
Corr (log land 

input, log 
TFP) 

0.52 0.53 

Corr (log 
capital 
input, log 
TFP) 

0.43 0.43 

Eliminating land and capital misallocation across households 
within 

villages 
7.03% 6.84% 

within and 
across 
villages 

9.87% 9.55% 

N 1,772 1,900 

Notes: All dispersion measures are in logarithmic terms. “Std. Dev.” is the 
standard deviation, and “p75-p25” is the difference between 75th and 25th 
percentiles in the distribution of log TFPs. Similar definition applies to other 
dispersion measures in the table. In all columns, extreme values (see footnote 6 
for definition) were dropped. 
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agricultural output and productivity in the region; the estimated gains 
presented in Table 4 provide upper limits for eliminating both land and 
capital misallocation, and therefore gains from only land reallocation 
are likely to be even lower. 

If land rental transactions do not explain the relatively efficient 
allocation of land in our study area, then what else might explain it? 
Note that Eq. (2) implies that, under efficient resource allocation, one of 
the necessary conditions of efficient resource allocation is to equate 
capital-land ratios across farms to a constant K/L. Intuitively, two types 
of adjustment make such equalization possible: by land rentals in the 
land market or by machinery services in the capital market. When the 
land market is not functioning well to reduce distortions to capital-land 
ratios, the emergence of a capital rental market can facilitate this 
equalization (Ray, 1998, Chapter 11). Using hired machinery services 
may reduce misallocation of land by allowing smallholders to flexibly 
adjust their capital input to a given quantity of land.7 It may also 
facilitate the convergence of productivities among farms of different 
sizes by diffusing the frontier production technologies typically used on 
larger farms, or other machinery services providers, to smallholders. 

However, one must note that, the equalization of capital-land ratios 
across farms is not a sufficient condition for efficient resource allocation. 
To test to what extent the estimated low-level of factor misallocation is 
due to the inclusion of hired machinery services in capital measure, two 
empirical approaches can be explored: First, one may completely ignore 
hired machinery services in crop production and simply replace the flow 
cost measure of capital input in our study with the traditional measure of 
capital stock owned by farms, using current or perpetual inventory 
methods. Second, one may still take hired machinery services into ac-
count, but by considering it as an intermediate input and, therefore, 
subtract it from farm-level gross output. Then capital input in the right- 
hand side of Eq. (1) is measured by the flow cost of capital services 
generated from the measured capital stock. These updated measures of 
variables can then be applied to re-estimate factor income shares and 
farm-level TFPs, and to evaluate the extent of factor misallocation by 
following the same procedures as in Section 5.1 and 5.2. However, due 
to data limitations on capital stock measures,8 we leave this important 
question for future studies. 

6. Conclusion and policy implication 

In this paper, we explored a farm-level data set collected in the North 
China Plain and found that land and capital are only moderately mis-
allocated across the surveyed wheat-maize double-cropping farms. This 
might be counterintuitive, given the small and relatively equally 
distributed farm sizes in the study area. Our finding suggests that 
improving local agricultural output and productivity through resource 

reallocation, though possibly effective, has only moderate impact. We 
explain this finding from the fact that local farms are relatively homo-
geneous in their productivities due to the use of hired machinery ser-
vices by most farmers. 

This finding can have important policy implications. Land market 
imperfections can lead to significant losses in aggregate agricultural 
output, and thereby contribute to food insecurity. Reallocating land to 
the most productive farmers as a way to stimulate total agricultural 
output often faces great social and political challenges, as farmland may 
also play an important risk-reducing role by providing food security and 
social safety nets to smallholders. Our finding indicates that fostering 
efficiencies in the allocation of productive factors such as capital, can be 
a suitable alternative if land reforms are costly and land rental markets 
are underdeveloped. In particular, we showed that promoting the use of 
hired machinery services among smallholders contributes to the equal-
ization of capital-land ratios, and thereby reduces the extent of factor 
misallocation and improves aggregate agricultural output and produc-
tivity. In this way, both the access to and the availability of food can be 
promoted, as is the case with the smallholders living in the study area in 
the North China Plain – also known as the ‘bread basket’ of China – 
examined for this study. 

Our finding may be considered as an echo of the recent discussions in 
Fuglie et al. (2019) that agricultural land may not be as misallocated as 
the literature has suggested in developing regions, and the emergence of 
smallholder-friendly new technologies (e.g., minitractors combined 
with leasing market) has made small plots farming highly productive; 
countries with equitable land allocation are found to be associated with 
higher land productivities (Vollrath, 2007). It is consistent with Schultz’ 
(1964) proposition that smallholder farmers are poor but efficient, and 
they rationally respond to innovations (see also in Blank, 2008). More-
over, it can also be consistent with the recent findings in Cusolito and 
Maloney (2018), who analysed firm-level manufacturing data in six 
countries (Chile, China, Columbia, Ethiopia, India, and Malaysia), and 
showed that the main engine for aggregate productivity growth in the 
manufacturing industry is still technological progress; for China, the 
contribution of improved firm performance (within-component) ex-
plains approximately 60% of overall productivity growth in the 
manufacturing sector while that of improved factor allocation across 
firms (between-component) and firm entry and exit, respectively, ac-
counts for about 20%. 

Our study is not free of limitations. We particularly discuss two of 
them here. First, to accurately measure farm-level TFPs, we have mainly 
focused on wheat-maize double-cropping farms in the sample. However, 
these farms may also use part of their land to grow other crops or leave 
the land fallow. The survey did not collect information on those other 
land uses. The impact of excluding those land uses is likely to be small 
because on average more than 88% of operational farmland was used for 
wheat-maize double-cropping in the sample (see Section 4). Future 
studies may check the robustness of our findings by including also other 
farm activities in the analysis. Focusing on wheat-maize double-crop-
ping also means that we excluded farms that did not produce wheat and/ 
or maize, or that reported different (non-zero) sown areas for wheat and 
maize. The results presented in Table B4 in Appendix B show that 
including the 128 farms with different (non-zero) sown areas gives very 
similar results. But the impact of excluding the 112 farms that did not 
produce wheat and/or maize is unknown. 

Second, a key assumption in estimating the productivity gains is that 
total resource endowments, i.e., land, capital, and the number of farms, 
remain fixed. For a regional study of static resource allocation, this can 
be problematic to the extent that resources are also being reallocated 
across regions. For agricultural land, this seems to be a reasonable 
assumption, since agricultural land is usually rented in and out within 
the same village and occasionally within the same region due to 
administrative restrictions, cultural differences, and other factors. Ma-
chinery services are often provided locally but can also be provided by 
third parties from outside the region (Yang et al., 2013; Zhang et al., 

7 However, on the other hand, Chari et al. (2021) find that land reform (or 
efficient reallocation of land) does not significantly increase the input intensity 
of capital at household level, measured either by the total value of farm-owned 
agricultural assets (capital stock) or by the costs of operating the machinery, in 
terms of oil, fuel use, etc. 

8 Our data set only recorded the current values of several agricultural ma-
chines (including tractors, land ploughing and seed-sowing machines, crop 
management, irrigation and harvesting machines, and others) at the household 
level by asking the farmers to evaluate how much money they could earn if they 
sold the machines on the market. Other than these, the survey did not collect 
information of fixed assets such as grain storage facilities, means of trans-
portation or machinery housing. However, our field experience indicates that 
very few households possess these fixed assets. Three possible reasons may 
explain this phenomenon: First, crop outputs are usually sold immediately after 
harvesting with buyers providing means of transportation and no need for 
farmers to store output. Second, 73% of the interviewed households reported no 
possession of agricultural machines, and hence did not need machinery hous-
ing. Third, the value of agricultural tools is usually small and many households 
chose not to value and report them during the survey. 
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2017). The assumption of fixed total capital endowment in the region 
may no longer hold when the share of machinery services coming from 
outside the region is non-negligible. Our data set contains no informa-
tion about the sources of hired machinery services. Further research may 
explore to what extent this assumption is violated, and if so, its conse-
quences for the main conclusions that we obtain in this study. The static 
nature of the current study also implies that the assumption of fixed 
capital and labor endowment no longer holds when a dynamic angle is 
adopted in which external capital and relatively efficient producers 
(such as agribusiness firms) can enter the agricultural sector while less 
productive farms exit. In such a process, a well-functioning land rental 
market that secures land tenure rights may be more important than the 
mass adoption of hired machinery services as the former may signifi-
cantly encourage farm entry and exit through cross-sectoral resource 
reallocation and incentivize long-term agricultural investments.9 We 
leave this for future research. 
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Appendix A. Measurement of farm-level output and inputs 

Real value-added 

The data set contains farm-specific information on wheat and maize 
output quantities (in kg) and farm-gate prices (in yuan/kg). Price in-
formation is missing for some farms and crops as no market transactions 
occurred in the 2016/17 season. We imputed these missing prices by 
calculating the average of the observed prices received by interviewed 
households living within the same village. For wheat, 106 missing prices 
out of 1,955 households (or 5.42%) are replaced; and for maize, it in-
volves 64 missing prices out of 1,947 households (or 3.29%). 

We use the output and price information to compute “real” gross 
output for each farm. To do so, the standard approach in the literature is 
to use crop-specific common prices (e.g., sample mean or median) to 
value output quantities, such that monetary values can better reflect 
“real” or physical variations in outputs (see, for example, Restuccia and 
Santaeulàlia-Llopis, 2017; Adomopoulos et al., 2020; Chen et al., 2020). 
In this paper, we do not adjust for common prices for wheat and maize 
output. The reason for this choice is that the price variations observed in 
our data set largely reflect differences in output qualities, such as 

product moisture degree, the share of foreign materials and unsound 
kernels, and maize cobs vs kernels. Moreover, cross-farm price variation 
is unlikely confounded by differences in, for instance, market powers or 
speculative opportunities given that the survey was held among small-
holders living in a relatively small and homogenous region.10 

We measured farm-level “real” cost of intermediate inputs, that is, 
seeds, fertilizers, and agrochemicals (pesticides/herbicides), by aggre-
gating crop-specific costs of each input to the farm level. The survey only 
asked about the crop-specific total cost for each intermediate input used, 
primarily because its qualities (sometimes also quantities) are difficult 
to measure in practice, while market prices may vary significantly for 
products with different qualities. For example, different types of com-
pound fertilizer are used in our study area, but farmers can hardly recall 
the fertilizer type that they bought.11 The problem is most eminent for 
agrochemicals, due to the great diversity of products that are used and 
their prices. In addition, a narrowly defined study area can help reduce 
the possibility that cost variations are due to market conditions. 

“Real” value-added is calculated by subtracting total intermediate 
inputs cost from the gross output value. This resulted in four negative 
values, which we dropped. Though negative values are allowed in the 
construction of Eq. (4), dropping them would simplify our data analyses 
and follow-up interpretation, and would not seriously affect our results 
and conclusions, as the number of negative values are small. As a result, 
1,788 households were used for the analysis. 

Land and labor 

The land area is measured by the cropland area planted with wheat 
or maize in the 2016/2017 season. It is the operational land size used for 
wheat-maize double-cropping, rather than the double-counted sown 
areas for wheat and maize. The input of labor in the data set is recorded 
in terms of labor days. This distinguishes between family labor 
(including labor used for supervision) and hired labor for each crop in 
six production stages: land preparation, seeds sowing, fertilization, ag-
rochemicals spraying, irrigation, and harvesting. To compute total labor 
input, we aggregated labor inputs over the two labor types, six pro-
duction stages, and two crops. 

Capital 

Capital input is measured by total expenditures on hired machinery 
services plus the imputed flow costs of using own machines and small 
agricultural tools. The data set contains detailed information on the cost 
of hired machinery services per unit of land. We assume that the vari-
ation in these costs reflects real cost differences due to farm location, 
land fragmentation, and other physical differences in production. For 
farmers using own machinery, we use the within-village average rental 
rate of hired machinery services as a proxy of the flow cost of the use of 
own machinery per unit land. There are a few households in the sample 
that did not use machines at all in wheat and maize production, and 

9 For the former, however, Chari et al. (2021) and Wang et al. (2020) find 
that farm entry and exit have little effect on aggregate agricultural productivity 
improvement in China. 

10 Observed output price variations in our data set are also unlikely signifi-
cantly influenced by price seasonality. Although there were nine months be-
tween wheat harvest and our survey time (June 2017-February 2018), official 
data indicates that wheat price during that period only increased by less than 
6% from 2.47 yuan/kg to 2.61 yuan/kg. Maize price in the five months between 
its harvest and our survey time (October 2017-Februray 2018) was also quite 
stable and increased by approximately 3% from 1.9 yuan/kg to 1.96 yuan/kg 
(see NBS-DRS, 2019).  
11 For fertilizer type, we mean the total and separate percentages of nutrients 

component (nitrogen, phosphate, potassium) in the compound fertilizer. For 
example, one type of compound fertilizer may contain 45% of total nutrients, 
with N, P, and K respectively accounting for 15%, 15%, and 15%, while another 
type of compound fertilizer may still contain 45% of total nutrients, but with N, 
P, and K respectively accounting for 20%, 15%, and 10%. These two are usually 
priced differently and should be taken as different fertilizer types. 

M. Chen et al.                                                                                                                                                                                                                                   



Food Policy 112 (2022) 102350

11

hence may use small agricultural tools. For these households, we use the 
average of the lowest 10% values in the sample distribution of hired 
machinery services costs per unit land as a proxy of the flow cost of using 
small agricultural tools. Its value equals 89 yuan/mu. Using alternative 
proxies of the flow cost of the use of own machinery or dropping farms 
not using any machines does not significantly change our main results 
(see Table B3 in Appendix B). 

Appendix B. Robustness checks 

Alternative factor income shares 

We test if our TFP dispersion measures and the subsequent assess-
ment of factor misallocation are sensitive to alternative factor income 
shares. Column (1) of Table B1 replicates our results in the main text, 
with capital and land income shares equal to 0.205 and 0.318, respec-
tively (see column (2) in Table 3). As a comparison, in column (2), we 
alternatively use the income shares 0.18 and 0.36, respectively, for 
capital and land. These numbers are estimated by Adamopoulos et al. 
(2020) for the period 1993–2002 in China and are quite close to our own 
estimates. In column (3) of Table B1, the income shares we use are 0.36 
and 0.18, respectively, for capital and land. These shares were adopted 
by Restuccia and Santaeulàlia-Llopis (2017) to study Malawian agri-
culture. What Table B1 reflects is that, in either case, our measured TFP 
dispersions and measured factor misallocations are not sensitive to these 
alternative calibrations of factor income shares. 

Excluding soil quality 

Usually, farm-specific soil quality affects farm productivity. In the 
main text, we include it in the model despite our study area is relatively 
homogeneous in agro-environment (see Section 3). Here we drop it and 
re-estimated Eqs. (5) and (6) to check the robustness of our measured 
dispersions of farm level TFPs in Table 3. The estimation results are 
presented below in Table B.2. These dispersion measures are virtually 
very similar to those we have obtained in columns (1) and (2) in Table 3, 
indicating that excluding soil type from Eq. (5) indeed does not signif-
icantly change our findings. 

Alternative formations of capital input 

In the main analysis, we use the within-village average rental rate of 
hired machinery services per unit land as a proxy of the flow cost of own 
machines per unit land; we also use the average of the lowest 10% values 
in the sample distribution of hired machinery services costs per unit land 
as a proxy of the flow cost of using small agricultural tools for farmers 
not using machines (see Appendix A). In this part, we perform a set of 
sensitivity analyses to check if our main results are sensitive to these 
specific formations of capital input. First, we set the flow cost of using 
own machinery per unit land to be equivalent to 150% and 50%, 
respectively, of the within-village average rental rate of hired machinery 
services. Second, we exclude farms not using any hired or own ma-
chines. The resulting TFP dispersions and productivity gains are re-
ported in Table B3. Compared to the main results presented in column 
(1), we find that using alternative measures of own machinery input 
(columns (2) and (3)) or dropping farms that do not use machines from 
the sample (column (4)) has a very minor impact on the main results. 

Extending sample size 

In this part we test if our TFP dispersion measures and the subsequent 
assessment of factor misallocation are sensitive to the inclusion of 128 
households that reported different (non-zero) sown areas for wheat and 
maize production. The results are reported in Table B4. Again, column 
(1) of Table B4 replicates our results in the main text, i.e., without the 
128 households. In column (2), the 128 households are included, and the 

estimates are obtained by loosely measuring land input as the average 
sown area of wheat and maize on each farm (this operation is much less 
reliable for the 112 households that did not produce either wheat, or 
maize, or both). A comparison between these two columns indicates that 
inclusion or exclusion of these 128 households give virtually very similar 
results. 
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