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A B S T R A C T   

Plastic pollution in the natural environment is causing increasing concern at both the local and global scale. Understanding the dispersion of plastic through the 
environment is of key importance for the effective implementation of preventive measures and cleanup strategies. Over the past few years, various models have been 
developed to estimate the transport of plastics in rivers, using limited plastic observations in river systems. However, there is a large discrepancy between the amount 
of plastic being modelled to leave the river systems, and the amount of plastic that has been found in the seas and oceans. Here, we investigate one of the possible 
causes of this mismatch by performing an extensive uncertainty analysis of the riverine plastic export estimates. We examine the uncertainty from the homogeni
sation of observations, model parameter uncertainty, and underlying assumptions in models. To this end, we use the to-date most complete time-series of macro
plastic observations (macroplastics have been found to contain most of the plastic mass transported by rivers), coming from three European rivers. The results show 
that model structure and parameter uncertainty causes up to four orders of magnitude, while the homogenisation of plastic observations introduces an additional 
three orders of magnitude uncertainty in the estimates. Additionally, most global models assume that variations in the plastic flux are primarily driven by river 
discharge. However, we show that correlations between river discharge (and other environmental drivers) and the plastic flux are never above 0.5, and strongly vary 
between catchments. Overall, we conclude that the yearly plastic load in rivers remains poorly constrained.   

1. Introduction 

Plastic pollution in rivers increasingly causes environmental concern 
at both local and global scale. It has been found to negatively impact 
ecosystems, increase flood risk by blocking hydraulic infrastructure, and 
cause damage to the human livelihoods in the vicinity of polluted rivers 
(Van Emmerik and Schwarz, 2020). In addition, plastic emissions from 
rivers into the sea are assumed to be a major component of marine 
plastic pollution (Lebreton et al., 2017; Schmidt et al., 2017). However, 
there is currently a stark mismatch between the amount of plastic esti
mated to enter the ocean (Jambeck et al., 2015; Lebreton et al., 2017; 
Schmidt et al., 2017) and the amount of plastic observed in the open 
ocean (Weiss et al., 2021). Understanding the sources, sinks and trans
port mechanisms of plastic pollution is of key importance in both 
designing effective monitoring strategies (Vriend et al., 2020b), and 
developing pollution mitigation and cleanup campaigns (Lebreton et al., 

2017). 
Most of the currently available observations of plastic in rivers are 

isolated short-term measurements, taken at a single location in the river 
system (Van Calcar and Van Emmerik, 2019). Recently, observational 
campaigns have begun to sample rivers more extensively in space and 
time (e.g. Kiessling et al., 2019; Schirinzi et al., 2020; Van Emmerik 
et al., 2020). This has led to the first consistent and continuous riverine 
plastic transport datasets, spanning up to one year of repeated mea
surements (González-Fernández et al., 2021). Although these data 
sources have proven to be valuable in creating data driven hypotheses 
on the modes of transport of plastic pollution (Roebroek et al., 2021a), 
they do not provide enough detail to fully describe annual plastic mass 
fluxes in individual rivers, and to estimate the total amount of plastic 
entering into the oceans each year. To answer such questions different 
modelling approaches have been proposed, ranging from simple 
extrapolation models (e.g. Castro-Jiménez et al., 2019), to regression 
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models (e.g. Schmidt et al., 2017) and more complex probabilistic 
modelling approaches (Meijer et al., 2021). 

Observing and modelling riverine plastic fluxes are currently asso
ciated with large uncertainties. As riverine plastic research is still an 
emerging field, measurement techniques differ substantially between 
observational campaigns, making the resulting data very hard to 
compare and combine to constrain model parameterisation. Current 
observations have a relatively coarse spatial and temporal resolution 
(González-Fernández et al., 2021), and current studies sample only a 
specific subset of the total riverine plastic flux. Often, observations focus 
only on floating plastic items larger than 2.5 cm when visually counting 
the floating objects for a given river stretch, or cover only part of the 
river width (e.g. Schöneich-Argent et al., 2020) and depth when taking 
samples or making observations (e.g. Broere et al., 2021). Furthermore, 
the output of the riverine plastic models is usually given in tonnes per 
year, but most observations are reported in the number of plastic items 
per unit of time or plastic item concentrations in water samples (Van 
Calcar and Van Emmerik, 2019; González-Fernández et al., 2021). Using 
observations to constrain models hence requires unit conversions that 
introduce additional uncertainty. Finally, statistical models contain 
several types of uncertainty by themselves, including parameter un
certainties and model structure uncertainty (represented in model per
formance). These various sources of uncertainty are not disentangled in 
most riverine plastic modelling studies and often not discussed in detail, 
which severely limits interpretability and study comparability, and risks 
misinformed policy decisions and mitigation action. 

Here we discuss four modelling strategies that have been used to 
describe the yearly plastic flux in rivers. Two of these models were used 
to extrapolate isolated plastic flux observations within an individual 
river to a yearly flux, while the other two models were used to create a 
global estimate of the total amount of plastics reaching the oceans. To 
explore the uncertainties associated with the different modelling stra
tegies, we use time-series of riverine floating macroplastic observations 
(macroplastics describe most of the plastic mass in rivers (Mai et al., 
2020)) in three rivers (Rhône, France, and Llobregat and Besós, Spain). 
These time-series are in size comparable to the datasets used for the 
global modelling studies (Lebreton et al., 2017; Mai et al., 2020). Using 
these time-series we set up models for each river individually, to sys
tematically describe the uncertainties in the modelling of the riverine 
plastic flux, assessing the transport mechanisms hypotheses underpin
ning the modelling strategies, and evaluate the potential uncertainty in 
the reported global numbers. 

1.1. Current modelling approaches 

The four riverine plastic transport modelling approaches discussed in 
this study are of increasing complexity: the first category is a temporal 
extrapolation approach, category two and three are regression models, 
with an increasing complexity of input data, and the fourth category is 
the most complex, probabilistic modelling approach. The models and 
their data requirements are presented in Table S1 and are discussed in 
the paragraphs below. 

M1. Temporal extrapolation 
A common approach to estimate the annual plastic flux leaving a 

catchment is to directly extrapolate the plastic flux observations in a 
single catchment over time. This strategy has for example been used by 
González-Fernández et al. (2021) to estimate annual litter flux in indi
vidual European rivers. The advantage of this approach lies in its 
simplicity; no additional data are required to obtain an estimate, and no 
assumptions regarding relations between e.g. the plastic flux and envi
ronmental variables have to be made. The quality of the estimate thus 
depends on how well the sample distribution matches the unknown 
yearly plastic flux distribution. As most plastic is expected to be mobi
lised and transported under extreme conditions, and hence the plastic 
flux is likely not normally distributed (Roebroek et al., 2021b), a large 

number of samples is needed to accurately capture the true mean of the 
flux distribution. 

M2. Linear regression with environmental drivers 
The second model category represents linear regression models 

which link plastic observations to environmental transport mechanisms, 
such as discharge, wind, and precipitation driven surface runoff 
(Schirinzi et al., 2020; Meijer et al., 2021). Developing a linear regres
sion model for a particular river requires plastic load observations and 
matching hydro-meteorological observations. Such linear regression 
models have been applied in various studies (e.g. Wong et al., 2020). The 
advantage of regression models is that they connect the plastic flux to 
the physical transport mechanisms, thus allowing to predict the plastic 
mass flux in absence of plastic observations as long as observations of 
the environmental transport mechanisms are available. The prediction 
accuracy depends on the quality of the relationship between the plastic 
flux and the transport mechanisms. Additionally, the relationship be
tween the hydrometeorological drivers and the plastic flux is not 
necessarily linear (Lebreton et al., 2017). In particular, using these re
gressions to predict the plastic flux during extreme hydrometeorological 
events is unlikely to perform well because extreme events (e.g. storms 
and floods) transport plastic through additional pathways such as 
through sewage overflows and mobilisation from floodplains (Cas
tro-Jiménez et al., 2019; Roebroek et al., 2021a, b). Lastly, temporal 
regression models using environmental drivers alone attempt to explain 
the temporal variability in plastic transport exclusively with natural 
transport mechanisms, while temporal patterns of human littering and 
litter redistribution are ignored. 

M3. Exponential regression with environmental drivers 
To estimate the plastic flux in catchments with no observations, es

timates of the integrated mismanaged plastic waste within catchments 
(plastic waste not entering an adequate waste management system) are 
included in regression models. In doing so, catchments with high 
discharge and high levels of mismanaged pollution are attributed the 
highest plastic flux in rivers. In the literature this method has been 
applied to obtain the first global estimates of the riverine plastic flux 
entering the oceans, such as Lebreton et al. (2017), Schmidt et al. 
(2017), and Mai et al. (2020). These methods allow estimates about the 
plastic flux in rivers for which no observational estimate is available. 
Additionally, including information on anthropogenic littering should 
result in a more realistic model. However, mismanaged plastic waste 
estimates are highly uncertain (Jambeck et al., 2015; Ryberg et al., 
2019; Lau et al., 2020; Edelson et al., 2021), introducing additional 
uncertainty to the model. Also, as with the previously described model 
categories, the model relies on the assumption that the relation between 
discharge and litter flux holds for discharges that have not been 
observed. Under extreme discharge events this assumption does likely 
not hold. 

M4. Spatial probabilistic modelling 
The last modelling strategy is spatially probabilistic modelling, 

proposed by Meijer et al. (2021). It uses estimates of land-based plastic 
pollution similarly to the spatiotemporal regression models (but 
spatially discrete). In this case, rather than deriving statistical re
lationships between terrestrial plastic pollution, hydrometeorology and 
the riverine plastic flux, the model uses spatially resolved probabilities 
to estimate the fraction of terrestrial plastic waste that contributes to the 
plastic flux leaving the catchment. These probability maps are not based 
on empirical evidence, as the transport probabilities of plastic over land 
are currently not understood or quantified. Instead, the probabilities are 
statistically estimated based on the distance to the river network and 
land-use type. The advantage of this approach is that it takes the 
topography and vegetation cover into account, thus similar catchments 
with different land-use and different distances between plastic hotspots 
and the river channel do not yield the same final plastic flux. A limitation 
of this approach is that the temporal variability in plastic flux is 
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attributed solely to natural processes, as no data are available on the 
temporal variability in littering and mismanaged waste input. Addi
tionally, this modelling framework includes a much larger number of 
parameters than in the modelling approaches described above. As the 
current number of observations of the plastic flux are limited, con
straining these models may currently be impossible. 

2. Methodology 

2.1. Data 

As plastic observation data, we used data collected through visual 
observations within the RIMMEL (Riverine and Marine floating macro
litter Monitoring and Modelling of Environmental Loading) project from 
the European Commission-Joint Research Center (EC-JRC) 
(González-Fernández and Hanke, 2017). Visual observations were done 
from bridges and recorded through a dedicated mobile app. For each 
observation, all floating litter items within a defined observation track 
width were counted for a given duration. Items were tallied per specific 
category, based on the European Marine Strategy Framework Directive 
(MSFD) Master List of Categories of Litter Items (MSFD Technical Sub
group on Marine Litter, 2013). The minimum detectable item size de
pends on e.g. observation height, turbidity of the water, sun glare, and 
waves, and therefore only macrolitter items bigger than 2.5 cm were 
considered. Thanks to its simplicity, the visual counting method is 
nowadays widely used for continental and global assessments of 
(floating) litter assessments (e.g. Van Calcar and Van Emmerik, 2019; 
González-Fernández and Hanke, 2017). Long-term observations how
ever are still scarce, and therefore our study is limited to the three 
one-year datasets for the Rhône, Besos and Llobregat rivers (see 
Table S1). To compare the data of the different studies, they were 
standardized by converting them to hourly values, covering the full river 
width (if not sampled, linearly extrapolated). The observations are dis
played against discharge in Fig. 1. 

To convert the floating litter time series to mass transport we used 
two datasets that quantified the mass of sampled floating litter items in 
the Rhine river, Netherlands (Vriend et al., 2020a), and the Saigon river, 
Vietnam (van Emmerik et al., 2019). The Rhine dataset includes 508 
analysed floating litter items collected from a litter trap in the Lekhaven, 
Rotterdam. The Saigon dataset includes 3057 analysed floating litter 
items sampled using a 1 m by 0.5 m net, deployed from the Thu Thiem 
bridge in Ho Chi Minh City. In both studies, the mass, size and polymer 
category of the collected items were determined. For our analysis, only 
the items larger than 2.5 cm were used (n = 452 for the Rhine, n = 2123 

for the Saigon), as this represents the smallest visually observable size 
reported in RIMMEL (González-Fernández and Hanke, 2017). 

Subsequently, we used hydrometeorological data to set up the 
various models. We used daily mean river discharge and wind speed, 
and daily total precipitation data from measurements stations closest to 
the litter observational sites. All data have been retrieved through the 
respective sources referred to in the original studies, see references in 
Table S2. 

Some of the models depend on the input of land-based plastic waste. 
We used the global MPW estimates from Lebreton and Andrady (2019). 
This dataset uses country-level waste management data and 
high-resolution data of population and gross domestic product to esti
mate MPW globally at 1 km resolution. We determined the total annual 
MPW leaked into the river basins using the HydroSHEDS catchment 
database (Lehner et al., 2008). This database includes a Digital Elevation 
Model derived river networks and delineated catchments. As land-cover 
data we use a global dataset at the same resolution as MPW (Tuanmu 
and Jetz, 2014). For each grid cell, the fractional contribution of each of 
the 17 land-cover classes is given as a percentage. 

2.2. Statistical analysis 

Riverine plastic transport estimates approximate the full annual 
plastic flux of a river by sampling the plastic load of a subcomponent of 
the total flux (e.g. visually counting floating macroplastics over a section 
of the river width, or measuring the microplastic density in a water 
sample) and extrapolate these discrete observations of plastic items to a 
continuous plastic mass flux. In this study we quantify the uncertainty 
introduced by the item-to-mass conversion and the parameter uncer
tainty in the above identified models. To model the plastic flux from 
observed floating items, a linear extrapolation over the river width (if 
not sampled) is performed and in all models a component for depth 
extrapolation is included. The uncertainty introduced by this width and 
depth conversion is not analysed in our study (due to the lack of suffi
cient data) but reviewed in the discussion section. The uncertainty an
alyses are centered around bootstrapping the model fitting, by 
resampling the plastic observation data. The mathematical derivation of 
the uncertainty analyses can be found in the supplement (extended 
methods section). 

Fig. 1. Plastic flux observations and their corresponding river discharge for the Rhône, Besós and Llobregat rivers. Note the difference in scales on the x-axis.  
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3. Results 

3.1. Observational uncertainty 

We used observations from the Rhine and Saigon rivers to constrain 
the error introduced by converting items to mass. Fig. 2 shows how the 
uncertainty in conversion is dependent on the sample size. In general, 
larger samples are associated with lower uncertainty. However, even 
with 250 samples the item-to-mass conversion error is still substantial. 
With sample sizes of the magnitude as found in the Llobregat, Besós and 
Rhône rivers, this conversion is subject to a possible 2 to 3 orders of 
magnitude of uncertainty when assuming an item-mass distribution 
comparable to the Rhine and Saigon rivers. 

3.2. Model uncertainty 

M1. Temporal extrapolation 
The only non-parametric method for modelling the riverine plastic 

flux is extrapolating the observations over time. The results of the 1000 
times bootstrapping analysis (see Fig. S1) show uncertainty that is 
proportional to the variance in the original data (see Fig. 1), with the 
Rhône showing the largest spread in predictions, while the Besós has a 
very low spread. Altogether, the predictions show 1 to 2 orders of 
magnitude lower spread than caused by the item-to-mass conversion, 
but remain significant. 

M2. Linear regression with environmental drivers 
Linear regression models that predict the plastic flux based on hy

drometeorological fluxes are widely used. The underlying hypothesis is 
that the hydrometeorological fluxes (precipitation, wind speed and 
discharge) are the main drivers of plastic propagating through the river 

system. As the effect of all these environmental drivers is likely not 
instantaneous, we include lags between the environmental driver and 
the plastic flux in our analysis. Fig. 3 shows the correlations between 
precipitation, wind speed and discharge and the plastic flux observation 
for different time lags. For the time lags we use aggregates of the envi
ronmental drivers, sum for precipitation and average for discharge and 
wind speed (see Methods). 

The three rivers differ strongly in terms of the correlations between 
the plastic flux and the environmental drivers. Precipitation is positively 
correlated with the plastic flux for all time lags in the Llobregat and 
Rhône, but negatively correlated in the Besós river. The time lag 
resulting in the highest correlation is 8–9 days for Llobregat and Rhône 
but 25 days for the Besós. Correlation between discharge and plastic 
observations is positive (or approximately zero) for all rivers and all time 
lags, but never higher than 0.5. Interestingly, the correlation coefficient 
for the Rhône and Llobregat rivers decrease with increasing time lag, 
while the Besós river displays a peak at around a 7-day lag. The wind 
speed - plastic flux correlations show a more peaky pattern, with 
maximum correlation values observed between 20 and 30 days for the 
Rhône and Besós rivers, while the Llobregat displays a decreasing cor
relation trend, with the highest value observed without time lag. 

Using the optimal lag times for the hydrometeorological fluxes 
defined above, the model is next applied on the bootstrapped data. 
Plastic observations in the Rhône river can be predicted with adjusted- 
R2 of around 0.3, in the Llobregat river around 0.45 and plastic in the 
Besós is predicted with an adjusted-R2 value of over 0.6 for all tested 
combinations of environmental drivers (see Fig. S2). Only the Besós 
model shows an increased R2 with increased model complexity, while 
the Rhône model even decreases in performance when including more 
than discharge alone. In general, including a time-lag in the model does 
not seem to increase model performance. The distributions caused by 

Fig. 2. Uncertainty in item-to-mass conversion. Esti
mated plastic mass as a function of sample size for the 
Saigon and Rhine rivers. The horizontal lines display 
the mean mass of all items in the two datasets (2123 
and 452 items for Saigon and Rhine, respectively), 
which would be used as the item-mass conversion 
factor. The colored area above and below these lines 
display the area between the 1st and 99th percentile 
confidence interval from a bootstrap analysis. The 
uncertainty range (99th percentile divided by the 1st 
percentile) from mass conversion for the Rhône, Llo
bregat and Besós is 24, 34 and 151, respectively, 
when assuming a similar item-mass distribution to the 
Rhine. The vertical lines depict the average number of 
items found in the Rhône Llobregat and Besós rivers 
per monitoring session.   
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bootstrapping the training data are very large for both the Rhône and 
Llobregat, ranging from just under 0.2 to close to 1 (see Fig. S2), indi
cating a very high dependence of performance on the input data, which 
in general indicates a model structure poorly fitting the system. The 
distribution of the Besós models is much smaller, which can be explained 
by the very low variance in the input data. Fitting three parameters on 
very homogeneous data likely results in an overfitted model, making it 
hard to interpret the high R2 values. 

The predicted average hourly plastic flux shows largely the same 
patterns as those of the adjusted-R2: including further parameters in 
addition to discharge does not change the distribution of the predictions 
for the Rhône and Llobregat, while the Besós sees a reduced variance in 
the predictions (and interestingly a slight increase of the mean predicted 

plastic flux) (see Fig. S3). In all models and all catchments, including 
precipitation without lag-time substantially increases model output 
uncertainty. In comparison to temporal extrapolation of the data, the 
range and variance of the model predictions slightly decrease for the 
Rhône river, stay roughly equal for the Llobregat and increase for the 
Besós. 

M3. Exponential regression with environmental drivers 
The plastic flux - discharge relation has been used to model the global 

plastic output into the ocean for all catchments (Lebreton et al., 2017; 
Schmidt et al., 2017; Mai et al., 2020). This method uses plastic waste 
estimates within the catchment in combination with discharge to derive 
the plastic flux. In our uncertainty and performance analysis, the waste 
component of the model is abstracted away in the model parameters as it 

Fig. 3. Pearson correlation between floating macroplastic observations and hydrometeorological fluxes under different time-lags. The vertical lines depict the 
highest absolute correlation values per river-flux pair. 

Fig. 4. (A) distribution of the R2 values corresponding to the exponential regression (with environmental drivers) models linking non-linear discharge to the plastic 
flux, (B) distribution of averaged hourly predictions from the exponential regression models (from the whole year of predictions) and (C) distribution of the 
exponential parameter of the exponential regression model configurations for the different rivers. The black lines describe the modelling results on the original data. 
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is constant within the individual catchments. This approach is used to 
focus on the uncertainty of the model structure, instead of the combined 
uncertainty of waste estimates and model parameters. 

The model performance of the exponential regression with environ
mental drivers model (adjusted-R2) is displayed in Fig. 4A. Average 
performance in comparison with temporal regression is approximately 
equal for the Rhône river, while being substantially lower for both the 
Llobregat and Besós. The distribution of adjusted-R2 values of the Rhône 
models does not show the bimodality present in temporal regression, but 
the range increases to fill the whole domain. Again, this indicates a 
model structure that is very dependent on input data, raising the ques
tion how well the model structure represents the system. The Besós river 
has especially low adjusted-R2 values. This is due to the model structure 
and the very low variance in the plastic flux observations. The model 
shows that the gradient over the discharge is almost zero, with the 
intersect describing the data (see following paragraphs). This results in a 
very low adjusted-R2. 

The averaged hourly plastic flux predictions of the bootstrapped 
models are displayed in Fig. 4B. Interestingly, the model predictions for 
both the Rhône and Llobregat rivers are substantially lower than both 

temporal extrapolation and linear regression. For the Besós, exponential 
regression models show very similar results to temporal extrapolation 
models, again due to the fact that the model structure is almost exclu
sively determined by the intercept, which lies very close to the mean of 
the data. Fig. 4C shows the exponential parameter of the model con
figurations. As described above, the Besós river has an exponent very 
close to zero, which eliminates discharge effect on the result. Llobregat 
has an exponent of slightly above 1, making it very similar to the linear 
regression models described in the previous section. The increased 
performance and lower variance in the results can be attributed to the 
inclusion of an intercept in the model, which seems to help to explain the 
data. The Rhône river shows a much higher exponent, but the variance 
in the bootstrapped model in this parameter shows that the data poorly 
constraints the model. 

The (globally constant) exponent in the models discussed in Mai 
et al. (2020) and Lebreton et al. (2017) lies slightly above 1, which 
seems to fit the Llobregat catchment. Calculating the global riverine 
plastic emissions following Lebreton et al. (2017), but replacing their 
fitted exponent (1.52) with the range of exponents found here (from 
− 0.23 to 2.17), the global emissions would lie between 0.06 and 68 

Fig. 5. Probability maps of mobilisation (P(M)), reaching the river network (P(R)) and reaching the river mouth (P(O)) for optimal parameters and parameters plus/ 
minus one standard deviation. The plots represent the catchment of the Rhône river. 
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million tonnes per year (4 orders of magnitude difference). In contrast, 
Lebreton et al. (2017) reported that emissions lie between 1.15 and 2.15 
million tonnes per year. It is likely that some rivers have higher and 
others lower exponents, possibly reducing this large range of possible 
values. 

Nonetheless, considering only the Yangtze, the river with highest 
emissions reported by Lebreton et al. (2017), the range of possible ex
ponents leads to possible emission from the Yangtze between 3 tonnes 
and 32 million tonnes (23 times bigger than the global emissions esti
mates by Lebreton et al. (2017)). Similar uncertainties are to be expected 
in all exponential models. 

M4. Spatial probabilistic modelling 
Spatial probability modelling links information on land-based plastic 

waste and data on hydrometeorological fluxes to derive spatially explicit 
maps of plastic reaching the river mouth. After parameter optimization, 
maps of the probability of plastic mobilisation and annual average maps 
of the probabilities of plastic reaching the river network and reaching 
the river mouth are drawn. In contrast to the bootstrapped performance 
analysis done for the other model categories, here we analyse the point 
estimate and the uncertainty intervals of the probabilities resulting from 
the parameter optimization. By generating the probability maps for the 
parameter combinations and parameter combinations shifted by their 
standard deviation it can be analysed how well the available data con
straints the model configuration. 

The probability maps are presented in Fig. 5, with the middle row 
showing the optimal parameter values, while the first and last row are 
created by subtracting and adding one standard deviation to the pa
rameters, respectively, and rerunning the model. The maps show that at 
the distance of one standard deviation from the optimal parameters, 
both the probability of mobilisation P(M) and the probability of reach
ing the river mouth P(O) range from 0 to 100 percent, irrespective of 
location. This parameter range demonstrates that, with the currently 
available data, models of this complexity cannot be constrained. Inter
estingly, the probability of reaching the river network (P(R)) is 
approximately zero everywhere, except for the pixels containing the 
river network (representing a distance of at most 1 km), where the 
values are 1. This remains the case for both the optimum parameters as 
well as for the parameter shifted by their standard deviation. Although 
no concluding evidence, these results indicate that the footprint of river 
plastic lies very close to the river channel. 

4. Discussion 

Here, we conducted the first comparison of riverine plastic flux 
models, quantifying their robustness and comparing their underlying 
assumptions. We use three of the most extensive observational datasets 
for floating macroplastics in single rivers available to date. These 
datasets contain as many macroplastic observations per river (Rhône n 
= 16, Llobregat n = 50, Besós n = 36) as the total number of observa
tions that informed the global models of Lebreton et al. (2017) (mac
roplastics n = 6, total plastic n = 30), Schmidt et al. (2017) 
(macroplastics n = 35, total plastic n = 45) and Mai et al. (2020) 
(macroplastics n = 2, total plastics n = 80). We focused on macroplastics 
in this study, because in the most recent data compilations, macro
plastics constitute more than 90 percent of total mass flux (Mai et al., 
2020). 

4.1. Uncertainty from observations 

A substantial source of uncertainty revealed in our analysis results 
from the conversion of visual plastic item observations to the complete 
riverine plastic flux in mass. 

We find an average item-to-mass conversion factor between 5 and 10 
g per item (depending on the reference dataset), using the largest 
observational datasets of sampled riverine macroplastic items. The 

uncertainty in the conversion factor depends on the number of items 
found per observational round. It can reach three orders of magnitude if 
less than ten items are observed (Fig. 2). More than half of the obser
vations of the rivers studied here fall below this threshold (Rhône =
63%, Llobregat = 55%, Besós = 63%). Note that the conversion factors 
for macroplastics used in e.g. Lebreton et al. (2017) and Mai et al. (2020) 
are much lower, corresponding to the difference in sizes included in the 
analysis (this analysis focuses on items above 2.5 cm, while Lebreton 
and Mai include everything above 0.5 cm). Including this range to the 
analysis, however, would only increase the distance between minimum 
and maximum mass per item. Further uncertainty is caused by the 
extrapolation of these observations over the whole river width (if not 
sampled, such as in the Rhône) and river depth. Currently data avail
ability is too limited to characterise this uncertainty further, but some 
initial findings indicate that they are not constant over time (Haberstroh 
et al., 2021). 

4.2. Uncertainties from model structure 

The second component of uncertainty quantified in this study is the 
uncertainty of model parameters. This reaches up to an order of 
magnitude for M1, M2 and M3. The model with the lowest prediction 
uncertainty depended on the selected catchment, with M2.1 being the 
most suitable for the Rhône, both M1.1 and M3.1 for the Besós, while for 
Llobregat all three models showed roughly equal results. However, the 
adjusted-R2 values show a very large distribution (in the worst case 
almost covering the entire 0–1 range) for both M2 and M3 (cannot be 
calculated for M1) for the Rhône and Llobregat. This indicates that the 
predicted values are extremely dependent on the bootstrap, and the 
model setup shows very low robustness. All models seem to be working 
quite well for the Besós river, including M1, which can be explained by 
the comparatively low variance in the data (Fig. 1). M3, the model setup 
used for the global modelling studies, surprisingly never outperformed 
M2. Additionally, M3 generates an exponential parameter ranging from 
− 0.23 to 2.17. Inserting this exponent into the model implemented in 
Lebreton et al. (2017) leads to global plastic emission estimates ranging 
between 0.06 and 68 million tonnes per year, a difference of four order 
of magnitude (a much larger range than reported by Lebreton et al. 
(2017). 

Our analysis of the last modelling strategy, the spatial probabilistic 
modelling, clearly displays the current limits of modelling. The standard 
deviations of the fitted model parameters are so large that the system is 
undetermined. With the currently available data it is not possible to 
constrain spatial probabilistic models and also more complex model 
setups (e.g. model describing fluxes between different compartments, 
retention and sinks). 

4.3. Uncertainty from environmental drivers of plastic transport 

Except for simple temporal extrapolation, all models explicitly use 
environmental drivers (in particular river discharge) as predictors of 
plastic transport. However, we show that the correlation between the 
plastic flux and river discharge, precipitation and wind speed is 
comparatively low, with values below 0.5 in all river basins and under a 
range of time lags (Fig. 3). We hence conclude that river discharge, 
precipitation and wind speed are poor predictors of plastic transport, at 
least in the rivers that we analysed. Models using these environmental 
drivers might not even outperform simple temporal extrapolation 
models. 

Additionally, our results suggest that only a small area around the 
river network (about a 1 km zone) contributes to the riverine plastic flux 
(Fig. 5). These results depend on terrestrial mismanaged plastic esti
mates, which may be significantly too high (Mai et al., 2020). Lower 
levels of terrestrial pollution would allow for further plastic transport 
over land within the models. However, if terrestrial plastic transport is 
indeed limited to very few kilometers, global regression models that 
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consider the plastic pollution within the entire catchment are using a 
predictor that may be irrelevant for riverine plastic pollution. The 
amount, time and location of plastic entering the river potentially con
stitutes the biggest source of uncertainty in riverine plastic modelling, 
but is not quantifiable with the currently available data. 

4.4. Uncertainties in the connection between river discharge and plastic 
flux 

Despite the uncertainties discussed above, global modelling studies 
(e.g. Lebreton et al., 2017; Roebroek et al., 2021b; Mai et al., 2020; 
Schmidt et al., 2017) have unanimously found correlations between 
environmental pollution estimates, the average discharge of a river and 
isolated plastic flux observations. The accepted paradigm is that rivers 
with high discharge and flowing through catchments with high levels of 
pollution also carry a large amount of plastic items. Some studies 
additionally assume a temporal correlation between the discharge and 
the plastic flux. However, we show here that river discharge in and by 
itself does not necessarily predict the riverine plastic flux very well (see 
for example the Besós in Fig. 1) and temporal correlations between 
discharge and plastic flux are low in all rivers analysed (see Fig. 3). We 
therefore conclude that the driver of temporal variations in the plastic 
flux within rivers is currently not understood (and likely differs strongly 
between catchments), and we advise against using discharge to deduce 
the seasonality of plastic flux within a river. 

We acknowledge however that a correlation between plastic flux and 
discharge likely exists under extreme conditions. Obvious examples are 
when rivers temporarily dry up or emerge from the riverbed under flood 
conditions. 

In terms of correlations between the annually averaged discharge of 
a river and the plastic flux, our results have only limited explanatory 
power as we only analyse three rivers. However, within those three 
rivers there is little connection between the average discharge and the 
plastic flux, the Rhone (average discharge 1093 m3s-1, average 37 plastic 
items) carries a similar amount of plastic items as the Besós (average 
discharge 3 m3s-1, average 10 plastic items, Fig. 1). 

The correlations between plastic flux, environmental pollution esti
mates and discharge found in global studies are mostly based on 
microplastic observations which have been converted to macro- or total 
plastic mass estimates (for example, the Lebreton et al. (2017) study and 
the Mai et al. (2020) studies include only six and two macroplastic ob
servations, respectively). As discussed above, these conversions are 
highly uncertain and the correlations presented in these global model
ling studies may simply be unreliable. Another possible explanation may 
be that the amount of plastic a river carries is mainly determined by the 
environmental pollution level within the catchment. Lebreton et al. 
(2017), Schmidt et al. (2017) and Mai et al. (2020) use national statistics 
on the public waste management system and population density within 
the river catchment to estimate the environmental pollution levels. 
However, a recent comparison of global terrestrial plastic pollution es
timates (Edelson et al., 2021) clearly show that environmental pollution 
levels are currently not well understood, either. Together, this urges for 
both improved monitoring and modelling approaches. The monitoring 
would benefit from being extended to the terrestrial domain to improve 
the accuracy of the environmental plastic pollution estimates within the 
catchment, as well as from increases in frequency and spatial coverage. 
The modelling could improve by taking advantage of such an increase in 
data and data diversity to not only capture the natural forces of redis
tribution but also (some of) the human components of plastic waste 
generation and (re)distribution in the environment. 

5. Conclusion 

In this study we present the first analysis to quantify uncertainties 
and assess the assumptions underlying riverine plastic emission esti
mates. We show that among the quantifiable sources of uncertainty, 

model parameter uncertainty and uncertainty of the conversion between 
the number of macroplastic items to mass contributes the most to the 
overall uncertainty, respectively showing four and three orders of 
magnitude of difference between highest and lowest estimates. 

Furthermore, most existing models attempt to predict variations in 
plastic flux with river discharge, precipitation and wind speed alone. 
Our results, however, show that correlations between these drivers and 
the plastic flux are never above 0.5, and strongly depend on the catch
ment. Overall, we conclude that the relation between pollution, envi
ronmental conditions and riverine plastic transport is very complex and 
only beginning to be understood. The current modelling approaches 
heavily rely on simple relationships between the river plastic flux and 
discharge, which currently cannot resolve the complexity of these sys
tems accurately. 
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Farré, M., Barceló, D., 2020. Riverine anthropogenic litter load to the Mediterranean 
Sea near the metropolitan area of Barcelona, Spain. Sci. Total Environ. 714, 136807 
https://doi.org/10.1016/j.scitotenv.2020.136807. 

Schmidt, C., Krauth, T., Wagner, S., 2017. Export of plastic debris by rivers into the sea. 
Environ. Sci. Technol. 51, 12246–12253. https://doi.org/10.1021/acs.est.7b02368. 

Schöneich-Argent, R.I., Dau, K., Freund, H., 2020. Wasting the North Sea? – a field-based 
assessment of anthropogenic macrolitter loads and emission rates of three German 
tributaries. Environ. Pollut. 263, 114367 https://doi.org/10.1016/j. 
envpol.2020.114367. 

Tuanmu, M.-N., Jetz, W., 2014. A global 1-km consensus land-cover product for 
biodiversity and ecosystem modelling. Global Ecol. Biogeogr. 23, 1031–1045. 
https://doi.org/10.1111/geb.12182. 

Van Calcar, C.J., Van Emmerik, T.H.M., 2019. Abundance of plastic debris across 
European and Asian rivers. Environ. Res. Lett. 14, 124051 https://doi.org/10.1088/ 
1748-9326/ab5468. 

Van Emmerik, T., Schwarz, A., 2020. Plastic debris in rivers. WIREs Water 7, e1398. 
https://doi.org/10.1002/wat2.1398. 

Van Emmerik, T., Roebroek, C., Winter, W. de, Vriend, P., Boonstra, M., Hougee, M., 
2020. Riverbank macrolitter in the Dutch rhine–meuse delta. Environ. Res. Lett. 15 
https://doi.org/10.1088/1748-9326/abb2c6, 104087.  

van Emmerik, T., Strady, E., Kieu-Le, T.-C., Nguyen, L., Gratiot, N., 2019. Seasonality of 
riverine macroplastic transport. Sci. Rep. 9, 13549 https://doi.org/10.1038/s41598- 
019-50096-1. 

Vriend, P., Van Calcar, C., Kooi, M., Landman, H., Pikaar, R., Van Emmerik, T., 2020a. 
Rapid assessment of floating macroplastic transport in the rhine. Front. Mar. Sci. 7 
https://doi.org/10.3389/fmars.2020.00010. 

Vriend, P., Roebroek, C.T.J., Van Emmerik, T., 2020b. Same but different: a framework 
to design and compare riverbank plastic monitoring strategies. Front. Water 2. 
https://doi.org/10.3389/frwa.2020.563791. 

Weiss, L., Ludwig, W., Heussner, S., Canals, M., Ghiglione, J.-F., Estournel, C., 
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