
R E V I EW

Embracing nanotechnology for selenium application
in aquafeeds

Hala Saber Khalil1,2,3 | Sahya Maulu4 | Marc Verdegem1 |

Mohsen Abdel-Tawwab5

1Wageningen Institute of Animal Sciences,

Aquaculture and Fisheries Group, Wageningen

University and Research, Wageningen,

The Netherlands

2Africa Aquaculture Research and Training

Center, WorldFish, Abbassa, Egypt

3Aquaculture Division, National Institute of

Oceanography and Fisheries (NIOF), Cairo,

Egypt

4Research & Development Division, Centre for

Innovative Approach Zambia (CIAZ), Lusaka,

Zambia

5Department of Fish Biology and Ecology,

Central Laboratory for Aquaculture Research,

Agriculture Research Center, Abbassa, Egypt

Correspondence

Hala Saber Khalil and Marc Verdegem,

Wageningen University and Research,

Wageningen, The Netherlands.

Email: halasaber2011@yahoo.com and

marc.verdegem@wur.nl

Funding information

This work was carried out as the basis of the

CGIAR Research Program (Trust Fund) on Fish

Agri-Food Systems (FISH), which was directed

by the WorldFish Center. Additional funding

was provided by Wageningen University

through a Post-Doctoral fellowship.

Abstract

Selenium (Se) is an important micronutrient that has been used in aquafeeds for the

normal growth, welfare and health of aquatic animals. Through nanotechnology, Se

can be converted into nanoparticles that are more bioavailable, utilized and absorbed

by aquatic animals. However, this is still a new and emerging area of research in

aquafeeds. This paper aims to review the effect of Se and Se nanoparticles (Se-NPs)

application in aquafeeds on aquatic animals. Specifically, different compounds of Se,

requirement levels by different species, effects on animal growth, physiology, antioxi-

dant capacity and immune response have been highlighted. The review shows that

the application of Se in aquafeeds could improve the growth performance, physiol-

ogy, antioxidant enzymes, immunity and disease resistance in aquatic animals. How-

ever, the effectiveness could be highly influenced by the source of Se, aquaculture

species and administration quantity. Through nanotechnology, the utilization and

absorption of Se could be improved while reducing its toxicity. Therefore, Se-NPs

present an efficient way to utilize nutrients in aquafeeds. Important gaps, however,

exist in the current knowledge, particularly with regard to the response of shrimps

and crustaceans to dietary supplementation of Se and Se-NPs as most of the existing

studies have focused on fish species. Also, some species of economic importance

and life stages have not been investigated, which hinders the embracement of

nanotechnology in aquafeeds production.
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aquaculture, dietary supplementation, growth performance, immune response, micronutrient,
selenium nanoparticles

1 | INTRODUCTION

The global population is projected to continue expanding and will reach

approximately nine billion people by the year 2050.1,2 This is expected

to put extra pressure on the food production sector as it responds to

the growing demand. Aquaculture, being the fastest-growing food

production sector, has continued to make significant contributions to

food and nutrition security globally.3 However, the sustainability of the

sector is threatened by rising feed costs as conventional feed ingredi-

ents become less available and more expensive. Therefore, efforts have

been made toward improving the digestibility and utilization of existing

ingredients to achieve the blue economy goals.4
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The application of nanotechnology is an emerging but very prom-

ising technological advancement in the aquaculture industry. In partic-

ular, the application of nanoparticles and emulsion-based systems

have been reported in the production of aquafeeds,5–7 disease control

and prevention,8,9 and water purification.10,11 In aquaculture, nano-

particle technology can considerably help to raise the utilization effi-

ciency of aquaculture inputs, including medicines, vaccines, pelleted

feed and even gene delivery.12,13 Nevertheless, nanomaterial's parti-

cle sizes can increase the mobility, bioavailability and effectiveness of

other compounds when compared to bulk materials.14–16 Many

researchers studied the valuable effects of these nano-sized feed addi-

tives as they have been shown to improve Nile tilapia, Oreochromis

niloticus, growth performance, feed utilization, immunology and carcass

characteristics.5,14,15,17 Similar effects were reported for Asian sea bass,

Lates calcarifer,18 rainbow trout, Oncorhynchus mykiss,19 African catfish,

Clarias gariepinus,20 silver carp, Hypophthalmichthys molitrix16 and thinlip

grey mullet, Liza ramada.21

The application of micronutrient nanoparticles in aquaculture

occurs through one of two modes: dietary supplementation or intro-

duction into the culture environment.22 The chemical structure and

size of nutritional supplements determine their effectiveness within

the aquatic animal.23 Very small nanoparticles (NPs) have new and

special characteristics24 and stay in the bloodstream for a long time,

increasing their bioavailability.25 Dietary supplementation of the

nano-forms of some elements such as Se, copper and iron and feed

supplements such as chitosan, cinnamon and sodium butyrate has

shown a huge potential for improving the aquaculture production

efficiency.15,17,26–28

In aquatic animals, selenium (Se) is a vital microelement with both

nutritional and toxicological properties.29–32 It is commonly dispersed

in freshwater (0.2–10 μg L�1) and seawater (approximately 0.09 μg

L�1).33 Se can also be found in organic complexes in food ingredients,

mainly selenomethionine, selenocystine and selenocysteine.34,35

Among the traditional fish feed ingredients, fish meal and marine by-

products are the greatest sources of Se.30,36 However, the inorganic

form of Se passes fast in the fish guts and is reported to have low bio-

availability and digestibility compared with the organic compounds

such as selenomethionine.37 Therefore, the organic form of Se has

previously been recommended to be the major form for Se supple-

mentation in animal diets.30

Recently, the application of Se nanoparticles (Se-NPs), also

referred to as ‘nano-selenium’, in aquafeeds has received consider-

able interest owing to their ready bioavailability and properties of

defence against oxidation in aquatic animals.38 The use of Se-NPs in

aquafeeds has been extensively researched, with recorded benefits

including increasing growth performance, nutrient absorption, antioxi-

dant efficiency, immune response and disease resistance.39–41 How-

ever, their application in fish diets is believed to have a narrow range

of intake as their higher concentrations could be toxic,42,43 while their

deficiency could have adverse effects on fish health by causing tissues

damage and weakening the physiological functions.44 Furthermore,

their safety in food fish is still debatable as a very limited number of

studies have investigated their safe levels for administration to fish. In

a recent study by Abdolahpur-Monikh, Arenas-Lago, Porcal, Grillo,

Zhang, Guo, Vijver and JGM Peijnenburg,45 some nanomaterials of Se

were detected in the brain of Zebrafish (Danio rerio) fed 120 nm of

Se/kg diet. The authors further observed that no residues were

detected in the fish body when 60 nm of Se/kg diet was used. They

suggested that an appropriate dietary supplementation dose of

Se-NPs level is necessary to produce safe products for consumption.

Despite the numerous and potential benefits of Se-NPs in aqua-

culture, their application could be hindered by the insufficient insight

into dose–response effects on fish quality and consumer safety. The

latter are linked to differences in species and life stages of fish, rearing

conditions and feed manufacturing, among others. The present review

paper aims to explore the application of Se-NPs in aquafeeds with a

special focus on their effect on growth performance, welfare and

immune response of fish.

2 | COMPOUNDS OF Se USED IN
AQUAFEEDS

The primary sources of Se are sedimentary rocks and the soils

where it is immobilized.46 Se broadly occurs as either inorganic or

organic chemical compounds. Inorganic compounds of Se include sele-

nite (Se4+), selenide (Se2�) and selenate (Se6+). Organic compounds

include selenomethionine (SeMet), selenoyeast, selenocysteine

(SeCys) and methylselenocysteine.47 However, SeCys derived from

animal tissues and SeMet derived from plants, algae, yeast and bacte-

ria are the most suitable sources of Se required for the synthesis of

selenoproteins (SePs). Furthermore, SeCys and SeMet occur naturally

in selenium-conjugated amino acids that are extremely bioavailable

and regarded as the best Se sources to supplement in the diet.

Organic compounds of Se have been shown to offer better results in

terms of growth and antioxidant protection, compared with inorganic

forms.48 In the muscle tissues of juvenile grouper (Epinephelus

malabaricus), organic Se supplemented diets showed greater growth

efficiency and Se retention than inorganic Se supplemented diets.49 In

Atlantic salmon (Salmo salar) fed diets containing either fish meal,

sodium selenite, DL-selenomethionine or selenocystine, the glutathi-

one peroxidase (GSH-PX) ratio was almost two times higher in the fish

fed selenite or selenocyctine than in those given either fish meal or

SeMet,37 showing that SeMet is absorbed more rapidly than other Se

products.

Se is identified in the functional groups of a variety of proteins as

selenomethionine. In zebrafish (D. rerio), a total of 18 selenoproteins

have been identified, including three that do not have known

orthologs in mammals.50 One primary feature of Se is as an element

of the selenoproteins glutathione peroxidase (GPx) isoenzymes, which

shield lipid components and molecules at both extracellular and intra-

cellular rates against oxidative stress.51 The increase in hepatic or

serum GPx activity is consequent to the rise in the dose of organic Se

in feeds because Se is a part of the GPx enzyme composition.52 This

enzyme uses reduced glutathione to catalyse the response indispens-

able to convert hydrogen peroxide and fatty acid hydroperoxide into
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water and fatty acid alcohols, that way for protecting cells from oxida-

tive stress. The GPx efficiency correlates with the supplementary sele-

nium level in the diet or the selenium concentration of the fish

flesh.53–55

2.1 | Se application in aquafeeds

Compared to fishmeal, plant-based diets usually have a poor

composition of micronutrients required for the normal growth of

aquatic animals.56 Therefore, replacing fishmeal with plant-based diets

should pay attention to minerals composition. In a study by Domí-

nguez, Sarmiento, Sehnine, Castro, Robaina, Fontanillas, Prabhu and

Izquierdo,56 supplementation of minerals including Zinc, Manganese

and Se in plant-based diets significantly improved the growth perfor-

mance in gilthead sea bream (Sparus aurata). Like other minerals, Se is

required by aquatic animals for normal physiological functions.

Figure 1 provides a graphical summary of the positive effects of

supplementing Se and Se nanoparticles in aquafeeds. The role of Se in

the physiological functions and health status of aquatic animals, par-

ticularly fish, has been extensively studied.

2.1.1 | Effects on the growth and physiology of
aquatic animals

Like other minerals, Se is required by aquatic animals for normal phys-

iological functions. For example, Jaramillo, Peng and Gatlin Iii57

reported that Se plays a significant role in cells growth, bone structure

and mineralization. Numerous studies have studied the effect of Se

on growth and physiological functions, and the findings have been

summarized in Table 1. Aquatic animal growth and physiology are

important indicators considered when judging the suitability of feed

ingredients in aquaculture. As an important micronutrient in

aquafeeds, Se plays an important role in promoting the normal growth

and physiology of aquatic animals.82,83 According to Jaramillo, Peng

and Gatlin Iii,57 Se promotes cells growth, bone structure and mineral-

ization. Regardless of the aquaculture species, numerous studies have

F IGURE 1 Modes through which selenium and nano-selenium impact on aquatic animal growth performance and health status. IGF-1,
insulin-like growth factor 1; GH, growth hormone; FW, final weight; WG, weight gain; SGR, specific growth rate; FCR, feed conversion ratio;
RBCs, red blood cells; Hb, haemoglobin; Hct, haematocrit; LZY, lysozyme; AMPK, adenosine monophosphate activated protein kinase; PPARα,
peroxisome proliferator-activated receptor α; CPT1, carnitine palmitoyltransferase I; ATGL, adipose triglyceride lipase; LPL, lipoprotein lipase;
GSH, glutathione; MDA, malondialdehyde; CAT, catalase; SOD, superoxide dismutase; TNF-α, tumour necrosis factor alpha; IL-1β, interleukin
1 beta; HSP70, heat shock protein 70.
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TABLE 1 Application of selenium in aquafeeds

Aquaculture species Fish weight (g)

Administration

period Inclusion level Effects References

Nile tilapia

(Oreochromis

niloticus)

17.5 ± 7.5 g 90 days 2 mg/kg Enhanced growth and activities of the

digestive enzymes

39,58

36.51 ± 10.88 g 42 days 0.86–1.22 mg/kg Improved antioxidant capacity with

negatively affecting the growth,

biochemical and haematological

parameters

59

17.5 ± 7.5 g 90 days 2 mg/kg Improved growth and promote better

physiological performance without

altering haematological parameters

60

3.00 ± 0.01 g 56 days 0.75 mg/kg Improved growth performance and

antioxidant capability of the fish

61

Meagre (Argyrosomus

regius)

3.20 ± 0.17 g 63 days 3.98 mg/kg Improved growth performance, antioxidant

balance and innate immune

status

34

3.20 ± 0.17 g 63 days 4 mg/kg Enhanced growth rates, nutrients utilization,

kidney and liver histology and the

economic efficiency

30

Pacific white shrimp

(Penaeus vannamei)

1.5 ± 0.5 g 30 days 0.3 mg/kg Improved growth and survival after

challenge with the Taura syndrome virus

62

Barramundi (Lates

calcarifer)

5.20 ± 0.18 g 60 days 2–3 mg/kg The fish fed high plant protein components

had considerably higher glutathione

peroxidase (GPx) activity, haematocrit, Se

accumulation and muscle tissue integrity

63

White shrimp

(Litopenaeus

vannamei)

Unclear 56 days 0.15 mg/kg each Could improve growth and immunity of the

shrimp

64

Gilthead sea bream

(Sparus aurata)

6.2 ± 0.04 g 63 days 0.2 mg/kg Growth, hepatic morphology maintenance

and better protection against acute and

chronic stress are all benefits

65

12.6 ± 1.4 g 42 days 0.94 mg Se/kg Improved growth performance 66

Common carp (Cyprinus

carpio L.)

7.5 ± 0.23 g 120 days 0.12–0.15 mg/kg Promote growth and survival of the fish 67

Grass carp

(Ctenopharyngodon

idella)

226.48 ± 0.68 g 80 days 0.56–0.59 mg/kg Improved activities of glutathione

peroxidase (GPx) and reactive oxygen

species (ROS) content in the head kidney,

spleen and skin.

68

Japanese abalone

(Haliotis discus

hannai)

1.57 ± 0.01 g 100 days 0.15–0.30 mg/kg Improved growth, antioxidation, immunity

and gene expressions related to

selenoproteins

69

Coho Salmon

(Oncorhynchus

kisutch)

0.38 ± 0.01 g 84 days 0.39–0.43 mg/kg Enhanced specific growth rate (SGR),

hepatic superoxide dismutase (SOD),

catalase (CAT) and glutathione peroxidase

(GPx) while decreasing the hepatic

malondialdehyde (MDA) content

70

Rainbow trout

(Oncorhynchus

mykiss)

�75 g 70 days 4 mg/kg Improved the fish response to viral

pathogen-associated molecular pattern

(PAMP) stimulation.

71

144.87 ± 1.71 g 70 days 2–4 mg/kg Improved flesh quality associated with the

inhibited protein degradation in fish

muscle.

72

144.87 ± 1.71 g 70 days 2–6 mg/kg Increased growth performance and up-

regulation of selenoproteins genes in the

muscle tissues

73
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shown that an appropriate amount of Se is important for the promo-

tion of cell growth and cell functioning. The mechanism through

which dietary Se promotes cell growth in aquatic animals was recently

revealed by Wang, Zhang, Wu, Liu, Zhang and Yin.73 In this study, the

authors observed a positive correlation between growth performance

and the expression of selenoproteins genes in fish. It is believed that

during metabolism, selenomethionine, which is the main component

of organic Se, is stored as selenoprotein which plays a role in protein

synthesis and cellular growth.55,84,85 Besides, Iqbal, Atique, Mahboob,

Haider, Iqbal, Al-Ghanim, Al-Misned, Ahmed and Mughal39 found that

an appropriate supplementation level of Se in the diet of Nile tilapia

could enhance the fish's digestive enzymes. Therefore, the enhance-

ment of digestive enzymes promotes the digestion, absorption and

metabolism of nutrients in the feed. Se is also thought to elevate thy-

roid hormone, which regulates growth and survival by controlling

metabolism.86 Furthermore, a study by Penglase, Nordgreen, Van der

Meeren, Olsvik, Sæle, Sweetman, Baeverfjord, Helland and Hamre87

revealed that dietary Se supplementation in cod (Gadus morhua) larvae

enhanced the mRNA expression and activity of GPx isoenzymes that

protect lipid components, indicating that higher supplementation of

Se levels could protect aquatic animals against lipid oxidation and oxi-

dation stress products. The conversion of Se to selenoprotein during

metabolism is important for regulating the redox balance since numer-

ous selenoproteins have oxidoreductase activity.88 The protection of

polyunsaturated fatty acids (PUFAs) against oxidation by Se may also

be responsible for promoting the growth and development of aquatic

animals.89 However, a study by Penglase, Nordgreen, Van der

Meeren, Olsvik, Sæle, Sweetman, Baeverfjord, Helland and Hamre87

revealed that feeding cod larvae with Se-supplemented rotifers led to

a higher incidence of vertebral deformities. This may have been cau-

sed by a change in the ionic form of skeletal mineralization, or by the

antioxidant selenoenzymes.90

The effects of Se on the haematology of aquatic animals are

somewhat still conflicting, but, in general, no adverse effects have

been reported in aquatic species. For example, no adverse effects

were reported in Nile tilapia,59,60 while beneficial effects were

reported in barramundi.63 Accumulation of Se in tissues, such as the

liver, swim bladder and muscles of aquatic animals, has been reported

after dietary administration.77,80,91 However, the level of Se accumu-

lation in a given tissue depends largely on the level of administration

in the diet. Besides, an appropriate level of Se administration could

improve the flesh quality by inhibiting protein degradation in muscle

tissues.72,76,92 Many studies have also reported the beneficial effects

of Se on the antioxidant capacity of aquatic animals.34,59,63,69 Further-

more, Penglase,87 reported that dietary Se supplementation could pre-

vent the cell against lipopolysaccharide and oxidative stress. In some

studies, Se could inhibit protein degradation in the fish muscles, and

this has been associated with improved flesh quality.72,76 Wang,

Wang, Zhang, Li, Yin, Xu and Zhang,74 reported that dietary Se could

accelerate postprandial protein synthesis, which then improves

TABLE 1 (Continued)

Aquaculture species Fish weight (g)

Administration

period Inclusion level Effects References

12.68 ± 2.06 g 42 days 4 mg/kg Improved growth rate and protein

deposition in the fish muscle by

accelerating postprandial protein

synthesis.

74

91 mg 84 days 0.50 mg/kg Sustained the antioxidant status of the fish

without significantly affecting the growth

performance of the fish.

75

Blunt snout bream

(Megalobrama

amblycephala)

68.61 ± 0.98 g 56 days 0.20 mg/kg Increased growth performance, antioxidant

activities and enhanced meat quality of

the fish

76

Grouper (Epinephelus

malabaricus)

24.45 ± 0.73 g 56 days 0.90–0.98 mg/kg Enhanced growth, meat quality and muscle

Se retention of the fish

77

Crucian carp (Carassius

auratus gibelio)

14.5 ± 0.49 g 30 days 0.50 mg/kg Not significant effect on growth

performance but glutathione peroxidase

(GSH-Px) activities increased.

78

Cobia, (Rachycentron

canadum)

6.27 ± 0.03 g 70 days 0.81 mg/kg Improved survival, specific growth rate

(SGR), feed efficiency and Se

concentrations in the whole body of the

fish

79

Chu's croaker (Nibea

coibor)

Unclear 56 days 0.74 mg/kg Improved weight gain, antioxidative enzyme

activities/expression and tissue Se

accumulation

80

Wuchang bream

(Megalobrama

amblycephala)

55.90 ± 2.60 g 60 days 0.50 mg/kg Could effectively improve the growth

performance and resistance against

nitrite in the fish

81
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protein deposition in fish muscles. This is achieved by up-regulating

the expression of selenoproteins-related genes in the muscles.73

Therefore, Se could enhance protein synthesis in fish muscles.

2.1.2 | Effect on immunity and disease resistance of
aquatic animals

The effect and pathways of dietary Se on the immune response of

aquatic animals are summarized in Figure 2. Furthermore, Table 1 also,

highlights some studies that have investigated the effect of dietary

supplementation of Se on immunity and disease resistance of aquatic

animals. The effect of Se on immunity and disease resistance has been

investigated in several aquaculture species. In Meagre (Argyrosomus

regius), supplementation of Se in the diets improved the innate

immune response parameters, including immunoglobulin, lysozyme

(LZM), myeloperoxidase, air change per hour at 50 Pa (ACH50), and

respiratory burst activity.34 In rainbow trout, dietary supplementation

of Se could increase the expression of principal mediators of the ant-

iviral defences, such as Interferon-gamma (IFN-γ) and downstream

molecules involved in cell-mediated haematopoiesis and immune

response.71 In the abalone (Haliotis discus hannai), activities of non-

specific immune-related enzymes, such as alkaline phosphatase (AKP),

acid phosphatase (ACP) and LZM, were significantly improved by Se

inclusion in the diets.69 Although the mechanism through which Se

enhances non-specific immune parameters in fish is not very clear,

Biller-Takahashi93 believes that Se promotes the production of antiox-

idant compounds that boost the production of cellular and humoral

compounds in the immune system. Le and Fotedar94 however,

suggested that Se enhances the immune response of fish by promot-

ing lymphocyte protein synthesis, which in turn increases the activity

of immune cells. In Pacific white shrimp (Penaeus vannamei), supple-

mentation of Se in diets enhanced the shrimp's immunity,64 and

supplementing Se in the diets could promote survival after a challenge

by Taura Syndrome Virus (TSV),62 hence affecting the innate immune

response.34

2.1.3 | Selenium requirement in aquaculture

The dietary Se requirement by different aquaculture species has been

investigated with limited studies determining optimum levels. In fish,

F IGURE 2 Schematic figure for the role of selenium and Se nanoparticles in immune responses of aquatic animals
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the minimum Se requirement varies with the source/form ingested, its

availability in diets, polyunsaturated fatty acids (PUFAs), and vitamin E

contents in the feed, as well as Se concentrations.95 According to

Watanabe, Kiron and Satoh,96 fish generally require a 0.05–1.0 mg Se/kg

diet. For example, the optimum dietary Se requirement was determined

at 0.94 mg/kg for gilthead sea bream (S. aurata) fingerlings,66 0.7 mg/kg

for grouper (E. malabaricus),55 0.96 mg/kg for the juvenile blunt snout

bream (Megalobrama amblycephala),97 0.25 mg/kg diet for channel catfish

(Ictalurus punctatus),54 0.1–0.15 mg/kg for the Atlantic salmon (S. salar)98

and at 0.15–0.38 mg/kg for juvenile rainbow trout.53 In hybrid tilapia, the

optimum dietary supplementation of Se could improve the fish's red

blood cells (RBCs) count and haematocrit percentage (Hct %).99 In rain-

bow trout, dietary supplementation of Se at 0.15–0.38 mg/kg improved

the growth and maximal plasma glutathione peroxidase,53 while, in chan-

nel catfish, these parameters were improved by a 0.25 mg Se/kg diet.54

Furthermore, rainbow trout juveniles fed a 0.06 mg Se/kg diet did not

show deficiency and toxic symptoms.100 At this level, the antioxidant

capacity and anti-inflammatory ability of the fish were significantly

enhanced. In juvenile grass carp (Ctenopharyngodon idella), the dietary Se

requirement was found at 0.558–0.588 mg/kg diet.68 However, require-

ment levels higher than 1.0 mg/kg have been reported in several species.

The Se requirement for juvenile abalone Haliotis discus hannaiwas deter-

mined at 1.408 mg/kg,101 5–8 mg/kg for coho salmon (Oncorhynchus

kisutch),102 2.06 mg/kg for Nile tilapia juveniles,103 3.67 mg/kg for the

African catfish104 and 5.56 mg/kg for yellowtail kingfish (Seriola

lalandi).105 Furthermore, although Se levels in the marine environment

are lower than in freshwater, there are no clear dietary Se requirements

between marine and freshwater species. For example, the dietary Se

requirement was determined at 0.8 mg/kg for cobia (Rachycentron

canadum),79 and juvenile largemouth bass (Micropterus salmoide).106

Therefore, the differences in requirement levels between aquaculture

species may be influenced by the source of Se, administration period, and

experimental conditions.103 Se from organic sources is usually more avail-

able to the aquatic organism comparedwith inorganic sources.57,107

For fish exposed to rotifers in the culture facilities, it is important

to note that Se content is considerably low (0.08–0.09 mg/kg dry

weight (d.w.)) compared with that required by fish (0.5–0.3 mg/kg d.

w.; NRC33) and copepod (3–5 mg/kg d.w.), and may contain insuffi-

cient Se to meet larvae requirements.108 Therefore, Se could be one

of the trace elements with a higher potential of being deficient in roti-

fers. Enrichment of rotifers with sodium selenite proved to increase

survival in Atlantic cod larvae, but no differences were observed in

their growth compared with the control group.109

2.1.4 | Se and the aquatic pollutants

The dietary Se could mitigate the toxicity of heavy metals via forming

Se–metal protein and selenide–metal complexes with subsequent

redistribution.110–112 In this regard, Abdel-Tawwab, Mousa and

Abbass104 fed African catfish, C. gariepinus, with an initial weight

(68.7 ± 2.3 g) with diets (30% crude protein) containing 0.0, 0.1, 0.3

or 0.5 g organic Se/kg diet. After 12 weeks, the fish of each treatment

were further exposed to waterborne copper (Cu) at a dose of 2.27 mg

Cu/L for 7 days. They found that the physiological measurements of

fish subjected to a 0.3 g organic Se/kg feed. They found that after

absorption in the liver, insoluble Cu–Se may be formed in the liver

and excreted with the bile.112 In another study, Abdel-Tawwab and

Wafeek113 evaluated the resistance of Nile tilapia fed with diets sup-

plemented with organic Se and exposed to waterborne cadmium

(Cd) toxicity. However, fish were fed with 0.0 (control) and 0.5 g

organic Se/kg diet and exposed to either (0.0, 1.116 or 2.232 mg

Cd/L) for 6 weeks. They concluded that supplementation of organic

selenium reduces the deleterious impacts of cadmium in water on fish,

thus improving growth performance, survival and nutrient use effi-

ciency. Lin and Shiau,114 evaluated the impacts of dietary supplemen-

tation of 0, 0.8 or 1.6 mg Se/kg of grouper, E. malabaricus, fed 20 mg

Cu/kg for 8 weeks on the oxidative stress. They showed that 1.6 mg

Se/kg decreased Cu stress and enhanced the immune system of

the fish.

2.1.5 | Se deficiency

Deficiency of dietary Se has been reported to cause oxidative stress in

organs,100,107 reduced growth,115 and survival107 in several fish species.

Growth depression has been reported in rainbow trout53 and the channel

catfish54 fed Se-deficient diets. However, it is important to note that Se

impoverishment did not make a pathological effect on the aquatic animal.

Both vitamin E and Sewere needed to avoidmuscular dystrophy in Atlan-

tic salmon98 and exudative diathesis in rainbow trout.116 Through Se defi-

ciency, the activity of glutathione peroxidase in fish serum and liver

decreased.54 In tilapia, Se deficiency in the diets reduced the RBCs count

andHt value.117 Recent findings, however, show that Se deficiency could

also cause inflammation in the head kidney118 and impair the immune

response.68 In rainbow trout, deficiency in Se (0.017 mg/kg diet)

enhances hepatica glutathione transferase activity, plasma pyruvate

kinase activity, erythrocyte fragility and glutathione reduction in the kid-

ney.107 In juvenile grass carp, dietary Se deficiency caused oxidative dam-

age, down-regulating the mRNA expression of antioxidant capacity

related genes via the Kelch-like-ECH-associated protein 1a (Keap1a)/NF-

E2-related factor 2 (Nrf2) signalling pathway while partially aggravating

apoptosis by up-regulating the p38MAPK/FasL/caspase-8 signalling and

JNK/(BAX, Bcl-2,Mcl-1b, IAP)/(Apaf1, caspase-9) signalling.68

2.1.6 | Se toxicity

Despite the beneficial effects of Se supplementation in aquafeeds, exces-

sive inclusion levels could have toxic effects. Excessive use of Se can have

negative consequences for vertebrates' skeletal muscles growth.33 The

variation in seleniumdemand and its toxicity is probably due to the rule of

selenium absorption in the intestinal tract.119 The major toxicity effects

of Se include poor growth, reduced feed efficiency and low fish survival.

Other adverse effects are observedwhen the selenium content in aquatic

animal feed is slightly above the requirement, including oxidative stress,
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cytotoxicity and genotoxicity.120,121 Rainbow trout reared on high Se

diets (10mg/kg diet), and also showed renal calcinosis.122 Yellowtail king-

fish juveniles fed diets containing at least 20.9 mg/kg diet exhibited

reduced feed intake, histopathological changes in the liver and spleen as

well as a reduction inHt value and hepatosomatic index.94 Toxicity due to

high Se levels was observed at dietary inclusion rates of 13 and 15 mg/kg

for rainbow trout53 and channel catfish,54 respectively. In razorback

sucker (Xyrauchen texanus) larvae, dietary Se concentrations above

4.6 mg/kg diet reduced survival.123 In Atlantic salmon, higher Se levels

(at least 15 mg/kg diet) resulted in oxidative stress and altered lipid

metabolism for both organic and inorganic Se.124 Also, excessive levels of

Se in the diets have been associated with other morphological alterations

including kidney hydropic degeneration in green sturgeon (Acipenser

medirostris)125 and hepatic hydropic degeneration in the gilthead sea

bream66 and common carp.126 Furthermore, in the white sturgeon

(Acipenser transmontanus), excessive Se in the diet resulted in cellular vac-

uolar degeneration and necrosis of the liver.127 The mechanism through

which selenium at higher levels negatively impacts on fish is not clear.

However, a recent study by Bao, Li, He and Ren128 reported the emer-

gence of seleniumnanovirus (SeNVs) in the abdomen and tail of the fresh-

water Oryzias melastigma, and the marine rosy bitterling (Rhodeus

ocellatus), after exposure to selenite, leading to their death. The authors

observed similar results in plants, particularly in the roots and leaves of

corn (Zea mays), while chronic toxicity was observed in the Coast tea tree

(Leptospermum laevigatum).128 Therefore, the toxicity of selenium to fish

at higher exposure levels could be due to the development of SeNVs,

although this requires further investigation in aquatic animals.

Different fish species have different susceptibility to Se toxicity.

Se toxicity even varies between closely related species. The ability to

accumulate Se varies between species and life stages. For example,

when rainbow trout were subjected to elevated Se levels in the envi-

ronment, they experienced a higher percentage of larval deformity

than brook trout (Salvelinus fontinalis) or cutthroat trout (Oncorhynchus

clarkia).129 Gatlin III and Wilson54 found that rainbow trout exposed

to 130 μg Se/l or more had an increased incidence of deformities,

reduced growth, skin lesions and bulbous anus. The vulnerability of

species to Se stress is strongly linked with their feed environment or

other evolutionary, metabolic responses that, in particular, make even

related species react differently.130 Differences in oxidative enzymes,

intestinal supply and differential aggregation rates are all biochemical

processes that may be responsible for the susceptibility discrepancy.

Se elimination, for instance, improved in fathead minnows (Pimephales

promelas) fed higher levels of Se, implying that Se might induce

enzyme-based Se elimination.131

3 | SELENIUM NANOPARTICLES (Se-NPs)
APPLICATION IN AQUAFEEDS

In aquaculture, the application of nanotechnology has shown a great

potential for improving the efficiency and sustainability of the aqua-

culture industry.28 Whereas Se has a narrow range of intake in aquatic

animals due to toxicity, Se-NPs allow a better control of toxicity,88

and might considerably improve the culture of aquatic animals. There

is a growing consensus that the application of nanotechnology in

aquaculture could enable the development of more sustainable

aquafeeds.132 However, there are also important areas that require

further investigation to realize the full potential and gain a better

understanding of the limitations of its application. Particularly, the

application of Se-NPs in aquafeeds has attracted significant research

interest in recent years, mainly because of their positive effects on

fish growth and welfare. Table 2 presents a summary of some key

findings on the use of Se-NPs in aquafeeds.

Nanotechnology has enabled the transformation of nutrients to

their nano-form (size range: 1–100 nm) making Se better digestible

and easier absorbed and assimilated.156–158 This could be an impor-

tant step toward the efficient utilization of raw materials that are

becoming more limited as the global population continues to expand.

Besides, the use of nanoparticles in aquaculture feeds could minimize

the sector's impact on the environment, which promotes sustainable

development. Also, the nanoform of Se is reported to be less toxic

compared with selenomethionine, which easily accumulates in fish

tissues.40,159

In general, however, Se and its nanoparticles have common char-

acteristics and properties. El-Ramady, Faizy, Abdalla, Taha, Domokos-

Szabolcsy, Fari, Elsakhawy, Omara, Shalaby and Bayoumi160 have pro-

vided a more detailed review of Se and its nanoparticles, focusing on

their differences and similarities, as well as their role in animal nutri-

tion. Their important differences lie mainly in their physical, chemical

and biological properties, which might be the major reason accounting

for the differences in their effectiveness when supplemented in

aquatic animal diets. For example, selenium nanoparticles are reported

to be more soluble in water than ‘natural’ or ‘organic’ Se.160

3.1 | The role of Se-NPs in aquaculture

Numerous research studies have provided the impact of dietary sup-

plementation of Se and Se-NPs in aquaculture. A general summary of

the findings on the immune response from existing studies is pres-

ented in Figure 2. Compared to the bulk Se, the nano form of Se has

shown superior benefits in aquaculture. For example, Saffari,

Keyvanshokooh, Zakeri, Johari and Pasha-Zanoosi146 reported signifi-

cantly enhanced growth performance and antioxidant status in com-

mon carp (Cyprinus carpio) fed with diets containing Se-NPs compared

with those fed with diets containing organic (selenomethionine,

SeMet) and inorganic (sodium selenite, Na2SeO3) forms of Se. The

authors also found that the fish fed with Se-NPs and organic selenium

supplemented diets had a higher accumulation of Se in fish muscles

indicating that the smaller Se particles are absorbed by the fish. In

crucian carp (Carassius carassius), Zhou, Wang, Gu and Li159 observed

that the fish fed with diets supplemented with Se-NPs and those fed

diets supplemented with selenomethionine did not have a significant

difference in terms of growth performance and antioxidant status

although the difference with the control group was significant in both

dietary Se supplements. Emerging studies suggest that supplementing
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Se-NPs in plant-based diets could enhance feed utilization that would,

otherwise not be achieved. In common carp, supplementation of Se-

NPs in sunflower meal-based diets significantly enhanced the feed

conversion ratio and nutrients digestibility.147 Therefore, nanotech-

nology could promote the utilization of plant ingredients in aquafeeds,

which is an important step toward reducing the environmental impact

of aquaculture.

The inclusion of Se-NPs in aquafeeds has been shown to improve

feed efficiency and growth performance, antioxidant capacity, immu-

nity and resistance against pathogens in several species.44,91,126,138

Specifically, dietary supplementation of Se-NPs significantly improved

the final weight and relative final weight in gibel carp (Carassius

auratus gibelio). In common carp, the optimum level for Se-NPs sup-

plementation in a sunflower-based diet was established at a 2 mg/kg

diet as it yielded the best growth performance.147 In juvenile mahseer

(Tor putitora), the best physiological and biochemical results were

obtained in the fish fed diets containing 0.68 mg Se/kg diet.150 In

common carp juveniles, dietary supplementation of Se-NPs could sig-

nificantly enhance the growth and feed utilization, the intestine mor-

phology, serum biochemical parameters and immune status of the

fish.161 Grass carp fed with high-fat Se-NPs supplemented diets could

regulate lipid metabolism via the adenosine monophosphate-activated

protein kinase (AMPK) signalling.162 However, the contribution of die-

tary Se-NPs in fish subjected to high stocking density conditions is still

unclear. For example, no significant effect was observed in rainbow

trout fed with Se-NPs supplemented diets under high fish density.151

Recently, Dawood et al.163 reviewed the role of Se-NPs as a natural

antioxidant and regulator of metabolism in aquaculture. The authors

showed that Se-NPs could play a key role in enhancing antioxidation

in fish. Numerous other studies have also positively reported the

effect of Se-NPs in various species, including Asian Seabass,152 red

sea bream,164 Nile tilapia,165–167 European Seabass,133,168 rainbow

trout,169 Goldfish (Carassius auratus),170 Crucian carp,159 Rohu fish

(Labeo rohita)171 and Common carp.126,146

Unlike Se, limited information is available on the dietary require-

ment of Se-NPs of many fish species. In Table 3, a summary of the

requirement levels of Se-NPs by different aquaculture species is pres-

ented. The optimal levels appear to be different between fishmeal-

based and plant-based diets. This is because fishmeal usually contains

higher amounts of Se compared with plant ingredients.66 The require-

ment by most fish species of economic importance is still unknown

which requires further investigations. Besides, like Se, dietary Se-NPs

requirement by different species is likely to vary across species and

life stages although the trend is not yet clear. For example, the dietary

Se-NPs requirement of Nile tilapia with an average weight of

33 ± 0.29 g was estimated at 0.7 mg Se/kg diet,138 while that of the

fish weighing 15.73 ± 0.05 g was estimated at 1 mg Se/kg diet,141

suggesting that the older fish required higher levels compared with

the younger ones within species. There is a need to critically investi-

gate how the Se-NPs requirement of the same fish species could vary

at different life stages. However, like Se, dietary Se-NPs at too high or

too low levels could reduce growth, and feed use efficiency,147,153

and affect antioxidant capacity,148,157 blood health status,126 and

immune response in fish.139 These results, therefore, indicate the

importance of utilizing correct levels of Se-NPs in fish diets to obtain

optimal results. In Nile tilapia, dietary supplementation of Se-NPs at

2 mg/kg significantly improved immune system response of disease

resistance to Aeromonas sobria.140

3.2 | Synergistic effects of Se-NPs

The synergistic effect of Se-NPs has been reported when supplemented

in fish diets together with other feed supplements. The synergy between

Se and other micronutrients has been reported in aquaculture. For exam-

ple, Se and Vitamin Emight work synergistically in fish organs to produce

a powerful antioxidant protective mechanism.172 Se is linked to vitamin

E's functioning through GPx activation.52 Besides, the presence of vita-

min E in diets could have a compensatory effect against Se deficiency,173

which enables fish to protect themselves against reactive oxygen species

(ROS) by accumulating antioxidants.30,87 In Nile tilapia, the combined

supplementation of Se-NPs and zinc oxide improved growth perfor-

mance, blood biochemical parameters and the fish's intestine

histomorphology.174 Combined dietary supplementation of Se-NPs and

Vitamin E significantly enhanced the growth performance, intestinal

integrity, blood health, antioxidant capacity and immune-related genes

expression inNile tilapia.40 However, the blood biochemical composition

was not significantly affected in common carp.175 The combined supple-

mentation of Se-NPs and vitamin C improved the growth rates, intestinal

morphology, and health status in Nile tilapia,142 and in mahseer fish

(T. putitora).150 In striped catfish (Pangasianodon hypophthalmus), Kumar,

Gupta, Chandan, Bhushan, Singh, Kumar, Kumar, Wakchaure and

Singh176 reported significantly enhanced growth performance, antioxi-

dant capacity, resistance against temperature stress and arsenic pollution

when the fish were fed diets supplemented with Se-NPs and riboflavin.

In addition, when combining Se-NPs and Zinc (Zn) in fish diets, growth

performance, blood health and intestinal histomorphology in Nile tilapia

improved.167 Ayoub, Tohamy, Salama and Mohamed140 reported the

synergistic effect of Se-NPs and Citrullus colocynthis extract, which

included significantly enhanced immunity, antioxidant status and disease

resistance against A. sobria in cultured Nile tilapia. These results suggest

that Se-NPsmay enhance the effectiveness and application of other feed

ingredients in aquaculture.

3.3 | Selenium nanoparticles on the immune
response of fish

Immune parameters are affected by diet, environmental conditions and

pathogens. Numerous studies with Se-NPs supplemented diets

showed improvements in haematological parameters,144,163,177,178

reported improvements to include elimination of anaemia, increased

oxygen levels in the blood, protection of red blood cells against free

oxygen radicals, reduction of cell hemolysis and degeneration due to its

antioxidant properties.82,126 In addition, changes in serum properties

can signal liver damage and necrosis in fish.34,179
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Se-NPs protect the liver and other organs by increasing aspartate

aminotransferase, alanine transaminase, and alkaline phosphatase

activity, improving stress resistance in fish.168,180 Lysozyme activity is

a non-specific immune activity with bacteriolytic effects via neutro-

phils and macrophages in response to any pathogenic contamination

and is affected by Se-NPs dietary levels.138,169,181,182

The Se-NPs remove ROS, prevent peroxidation in cell mem-

branes, and catalyse the conversion of superoxide free radicals to

hydrogen peroxide and molecular oxygen.183,184 It has been reported

that Se-NPs increase the glutathione peroxidase (GPx), Superoxide

dismutase, and catalase activity and decrease malondialdehyde activ-

ity in fish species.163–165,185

The effects of Se-NPs' concentration were an important factor in

immune response status for fish species are given in Table 2.

3.4 | Effect on gut health

Studies investigating the effect of Se-NPs on gut health in fish are still

limited. The fish gut plays a critical role in feeding, digestive/

absorptive processes, metabolism and immune responses.186–188 In

Nile tilapia, Ghaniem, Nassef, Zaineldin, Bakr and Hegazi144 showed

that Se-NPs could be more effective at enhancing growth

performance and gut health in fish compared with inorganic and

organic selenium. A recent study by reference 137 presented a new

perspective on the effect of Se-NPs on gut health in fish. In this study,

the authors investigated the effect Se-NPs on the intestinal micro-

biota of the Chinese tongue sole (Cynoglossus semilaevis). Despite a

low overall diversity, Jia, Chen, Zhao, He and Zhang137 observed that

dietary inclusion of Se-NPs at 2.4 mg/kg could enhance the intestinal

microbial community structure, besides the improved growth perfor-

mance in the fish. Liu et al. Liu, Yu, Li, Wang, Liu, Zhang, Zhang, Qi

and Ji135 showed that Se-NPs inclusion in the diets of grass carp

(C. idella) at 0.6 mg/kg could alleviate intestinal damage caused by

high-fat diets (HFD), thereby maintaining the intestinal integrity.

Furthermore, the expression of tight junction-related genes (such as

ZO-1, claudin-3 and occluding), anti-oxidization (such as GPx4a and

GPx4b), as well as the protein of ZO-1 depressed by HFD, was sig-

nificantly up-regulated. However, the expressions of genes related

to the inflammation, including inflammatory cytokines (IL-8, IL-1β,

IFN-γ, TNF-α and IL-6), signalling molecules (TLR4, p38 MAPK and

NF-κB p65), and protein expression of NF-κB p65 and TNF-α that

had been induced by HFD were significantly suppressed in the fish.

Liu et al.135 further observed that the intestinal microbial commu-

nity imbalance in the fish caused by HFD was normalized by Se-

NPs. Therefore, existing studies so far show that Se-NPs could be

TABLE 3 Dietary requirement of selenium nanoparticles (Se-NPs) of different fish species

Fish species Se-NP characteristics Fish weight (g)

Optimal

requirement Determinant used References

European seabass

(Dicentrarchus labrax)

60 ± 20 nm 20.53 ± 0.10 g 0.5–1 mg/kg Growth, hematobiochemical

parameters, antioxidant capacity

state and immune-related genes

are all factors to consider

133

Nile tilapia (Oreochromis

niloticus)

30–45 nm 33 ± 0.29 g 0.7 mg/kg Antioxidant status, immune

response and disease resistance

against Streptococcus iniae

138

70 nm 15.73 ± 0.05 g 1 mg/kg Nutrition physiology, immunity,

antioxidant activity and disease

resistance against Aeromonas

hydrophila

139

80 nm 15.73 ± 0.0 g 1 mg/kg growth, selenium regulation and

expression of immune-regulated

selenoproteins

141

Lactic acid bacteria-

produced Se-NPs

spheres (LAB-Se:

100–500 nm)

14.03 ± 0.04 g 1–2 mg/kg Growth, oxidative status and

immune-related gene expression

142

Common carp (Cyprinus

carpio L.)

30–45 nm 10 g 1 mg/kg Growth and antioxidant defence

system

126

Grass carp

(Ctenopharyngodon idella)

Unclear 8.07 ± 0.04 g 0.3–0.6 mg/kg Survival and hepatopancreas health

status

147

Red sea bream (Pagrus

major)

38.7 nm 4.04 ± 0.02 g 1 mg/kg Growth, nutrient digestibility, blood

health and the innate immune

system are all factors to consider

148

38.7 nm 4.04 ± 0.02 g 1–2 mg/kg Overall health status 148

Mahseer (Tor putitora) fish Unclear 2.27 ± 0.01 g 0.68 mg/kg Physio-biochemical health aspects 150
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an important regulator of gut health in fish. However, there is a

need for further investigation.

4 | CONCLUSION

Selenium is an important micronutrient required by aquatic animals

for normal growth and physiological functions. It has shown important

beneficial effects, including improved growth and feed utilization,

nutrients absorption, blood health, intestinal morphology, antioxidant

capacity, immunity, and resistance against pathogens and environ-

mental pollutants. However, the required levels in the diets depend

on the aquaculture species in question, and any deviation from the

required range yields adverse effects. Through nanotechnology, the

beneficial effects of Se can be enhanced by converting it to its nano-

form (Se-NPs), which are better utilized by the animals and have a

wider intake range. Besides, Se-NPs are well absorbed by aquatic ani-

mals, allowing them to meet dietary requirements in aquafeeds using

low inclusion levels. Therefore, further research on supplementation

of Se-NPs in aquaculture diets might quickly result in major improve-

ments in fish performance, environmental sustainability and disease

control throughout the aquaculture industry.

Unfortunately, studies that have investigated the impacts of Se

supplementation and its nanoparticles in aquaculture are biased

toward fish species, with little attention being given to other species

groups, for example, crustaceans. Even for existing studies on fish,

only a few species of economic importance have been studied with a

bias toward juveniles. For Se-NPs supplemented feed, this is quite

expected as this is novel research. Going forward, researchers should

look at all life stages of both fish and crustaceans for the most impor-

tant aquaculture species, in local and international markets alike. This

should also involve the application of molecular tools to gain in-depth

knowledge of the regulatory pathways through which Se-NPs

improve the antioxidant capacity and immunity of aquatic animals.

This would provide important information for the commercialization

of nanotechnology applications in the aquaculture industry.
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