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Dynamic metabolic interactions and trophic roles of human gut
microbes identified using a minimal microbiome exhibiting
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Microbe–microbe interactions in the human gut are influenced by host-derived glycans and diet. The high complexity of the gut
microbiome poses a major challenge for unraveling the metabolic interactions and trophic roles of key microbes. Synthetic minimal
microbiomes provide a pragmatic approach to investigate their ecology including metabolic interactions. Here, we rationally
designed a synthetic microbiome termed Mucin and Diet based Minimal Microbiome (MDb-MM) by taking into account known
physiological features of 16 key bacteria. We combined 16S rRNA gene-based composition analysis, metabolite measurements and
metatranscriptomics to investigate community dynamics, stability, inter-species metabolic interactions and their trophic roles. The
16 species co-existed in the in vitro gut ecosystems containing a mixture of complex substrates representing dietary fibers and
mucin. The triplicate MDb-MM’s followed the Taylor’s power law and exhibited strikingly similar ecological and metabolic patterns.
The MDb-MM exhibited resistance and resilience to temporal perturbations as evidenced by the abundance and metabolic end
products. Microbe-specific temporal dynamics in transcriptional niche overlap and trophic interaction network explained the
observed co-existence in a competitive minimal microbiome. Overall, the present study provides crucial insights into the co-
existence, metabolic niches and trophic roles of key intestinal microbes in a highly dynamic and competitive in vitro ecosystem.

The ISME Journal (2022) 16:2144–2159; https://doi.org/10.1038/s41396-022-01255-2

INTRODUCTION
The complexity of interactions within the human gut microbiome
contributes to providing health benefits to its host. However, the
same complexity presents a major challenge for deciphering
metabolic and ecological interactions between the intestinal
microbes. Understanding these complex interactions, at both
community and individual taxa level, is crucial for the develop-
ment of effective microbiome modulation strategies [1–3]. The
human intestinal tract includes several hundred species mainly
belonging to the phyla Actinobacteria, Bacteroidetes, Firmicutes,
Verrucomicrobia, Proteobacteria and others [4]. Recently, synthetic
microbial communities assembled from host-derived strains have
received considerable attention for understanding ecological and
metabolic features of the microbiome [5–7]. Synthetic microbial
communities of the human intestine can be studied under
controlled conditions in vitro [8–13]. In vitro intestinal models
allow for stable and controllable conditions as well as frequent
sampling of the microbial community that may not be possible
with animal models for technical and ethical reasons [14, 15].
Combining in vitro intestinal models with defined microbial
communities holds potential for understanding community
assembly and structure, compositional and functional dynamics
in time and plasticity of microbial interactions.

Studies employing in vitro intestinal models till date have applied
either batch, continuous single or semi-continuous or multistage
fermentation models [16–20]. An important aspect of the host-
associated microbiome is the dietary intake of the host that often
follows circadian rhythms and can give rise to stages of excess
carbon and energy source and periodic carbon starvation. Both of
these aspects may have a profound influence on the compositional
and functional dynamics of the microbial community. In fact,
previous in vitro studies have revealed that nutrient periodicities
can affect microbial community dynamics and physiological
functionality [21, 22]. Nutrient periodicity is an important factor
that may lead to selection of well adapted taxa, affect
microbe–microbe interactions and microbe–environment interac-
tions as well as provide an opportunity for invading species to
successfully establish in a community [21–24]. In the human
intestinal tract, two major sources of carbon and energy are dietary
and host-derived polysaccharides (mainly secreted mucin) that all
have a strong deterministic effect on the microbiome [25–27]. The
diet can be highly variable on sub-daily time scales posing a major
selective pressure on the gut microbiome [28]. Dietary sources,
especially complex fiber-derived polysaccharides that reach the
colon in a virtually unmodified way, lead to the creation of diverse
niches that can support a higher diversity of microbes [29].
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In addition, the periodicity and variability in supply of dietary
fibers can give rise to dynamic regimes of niche availability
consequently affecting interactions between the diet responsive
microbes. On the contrary, mucin is a stable source of carbon and
energy within a host and is shown to promote stability of the gut
microbiome [30]. Therefore, both diet andmucin play amajor role in
supporting diverse microbial communities and give rise to complex
microbe–microbe interactions.
To understand microbe–microbe interactions within a complex

community, it is important to create a community that exhibits
ecophysiological properties similar to natural ecosystems [20].
Community-level ecological properties such as resistance and
resilience to perturbations, presence of competitors for nutrients
as well as mutualists that support metabolic co-operation can
be designed in a synthetic minimal microbiome [7]. Here,
we sought to investigate microbe–microbe interactions in a
synthetic minimal gut microbiome over a period of 20 days under
controlled conditions. To explore temporal ecophysiological
interactions, the community was assembled in triplicate

bioreactors with constant supply of mucin and pulse of the main
dietary Diet origin Substrates (DoS) viz. pectin, resistant starch,
inulin and xylan. The experiment was designed with various
perturbations to test for aspects such as vacant niche occupation
by introducing a noncore strain, Blautia hydrogenotrophica,
increased dietary intake by doubling the concentration of DoS,
loss of a key metabolite that is required for growth of specific
bacteria by removal of exogenous acetate (coinciding with
replenishing of feed medium), diet starvation by subjecting the
community to periods of elongated fasting i.e., no addition of DoS
for >24 h and increase in substrate feeding rate (Fig. 1). Over a 20-
day operation of the artificial gut system, we sampled the three
bioreactors at 61 time points each (~3 samples/day) and tested
the impact of aforementioned events on the dynamics of MDb-
MM composition, structure and function. The integrative analysis
of temporal measurements of metabolites, 16S rRNA gene
amplicons and metatranscriptomes allowed us to unravel com-
munity dynamics and metabolic interactions using a synthetic
minimal microbiome.

Days 1 20

Batch operation
0 h – 24 h

Mucin + Acetate
Pectin, Xylan, Inulin,

Starch

15 species
~Equal densities

Continuous operation
Day 2 – Day 20

Feed
Mucin + Acetate

2

Sample at ~9:00 am
and then pulse with

DoS

Sample at ~12:00
pm and then pulse

with DoS

Sample at ~6:00 pm
and then pulse with

DoS

General 24 h sampling cycle

Overnight Sample

DoS Pulse Sample

B. hydrogenotrophica
addition (Day 7; 152 h)

Day 10

2X DoS Pulse (220 h & 224 h)

Day 12

Feed Change
Mucin without Acetate

Day 16 Day 17

Elongated fasting sampling and then
DoS pulse (365 h & 390 h, 408 h)

Day 18

DoS Pulse
once/day

Day 19

Double dilution
rate (20 ml/h)

DoS Pulse

Design Principles Investigations
Multi-species assemblage

• Fifteen core gut bacteria, one non-core gut bacteria

Functional redundancy

• Multiple species with similar functional roles
Interactions driven by diet and host derived substrates:

• Competition and co-operation
• Energy flow via inter-species metabolic interactions

• Species introduction
• Nutritional pertubations

Compositional analysis
• Community dynamics
• Vacant niche occupation
• Stability properties

Metabolite and transcriptional analysis
• Community-level behavior

• Functional output (e.g. butyrate, propionate.)
• Transcriptionally active metabolism

• Species-specific behavior
• Niche overlap using species-specific gene expression
• Trophic level metabolic interactions

Species-specific metabolism

Experimental set-up Integrated analysis

Perturbation

•

Fig. 1 MDb-MM design principles, experiment setup and investigations. Key aspects that were considered when designing the MDb-MM
included building a multi-species minimal microbiome with functional redundancy and trophic interactions and potential vacant niches to
test niche occupation. The experimental setup included pulse feeding the bioreactors with Diet origin Substrates (DoS) and introducing
perturbations like the addition of new species, increase dietary intake (2X DoS pulse), removal of key metabolite and nutrient starvation.
Details about the sampling time points for composition, metabolites and metatranscriptome are depicted in Supplementary Fig. S2.
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RESULTS
Design of the synthetic Mucin and Diet based Minimal
Microbiome (MDb-MM)
We sought to assemble a minimal microbiome that consists of
bacterial strains relevant to the human colonic microbiome and
mimics key ecological and metabolic properties (Fig. 1). Therefore,
the selection of strains was rationally guided by ecophysiological
aspects, such as high prevalence (>50%) and minimum abun-
dances threshold of 0.001% in human colonic microbiota, ability
to degrade mucin or common multiple dietary polysaccharides
that reach the colon in a virtually unmodified form (pectin, xylan,
starch and inulin) and their breakdown products. We screened
1155 human gut metagenomes from the curated Metagenomic
database and obtained a list of 64 core species (Supplementary
Table S1). Majority of these species belonged to Firmicutes
(35 species) and Bacteroidetes (25 species). Actinobacteria,
Proteobacteria and Verrucomicrobia were represented by five,
three and one species respectively. We chose representative
strains from Firmicutes, Bacteroidetes, Actinobacteria and Verru-
comicrobia. Bilophila and Escherichia were the two most prevalent
genera within Proteobacteria, and we excluded these in this
study, because of their low contribution to the overall composition
in the human gut metagenomes analysed in this study. Among
the core microbiota phyla, Proteobacteria comprised the lowest
fraction (1.04%) of the total counts, compared to Firmicutes
(46.6%), Bacteroidetes (43.9%), Actinobacteria (6.8%), and Verru-
comicrobia (1.4%).
During selection of the candidate strains, we considered

competition for growth substrates, known metabolic cross feeding
on lactate and 1,2-propanediol (1,2-PD) and the ability to produce
lactate or common short chain fatty acids (SCFAs) such as formate,
acetate, propionate and butyrate. The details of the representative
strains, their known growth substrates and fermentation end
products relevant to the current study are given in Table 1.

Assembly, co-existence and ecological properties of MDb-MM
We assembled a MDb-MM consisting of 15 strains representing
the core microbiota under batch conditions with both mucin and
DoS (Supplementary Table S1 and Supplementary Fig. S2). At 24 h,
continuous feed was introduced with mucin and acetate (since
some of the strains require it for growth), while DoS were
introduced as pulsed feeding thrice daily for the majority of the
time points. The species abundance in the MDb-MM was tracked
by sequencing of 16S rRNA gene amplicons, and total copies of
16S rRNA genes of the community were quantified using qPCR at
61 time points (Supplementary Fig. S2). The initial 15 species were
detected in the three bioreactors for the entire 20-day operation
(Fig. 2A). To test vacant niche occupation, the 16th species, B.
hydrogenotrophica was added at 152 h. At 264 h, the abundance of
B. hydrogenotrophica was below the amplicon sequencing
detection limit. The DoS pulse events resulted in a significant
increase in total biomass (optical density; O.D600) but this was not
captured with total 16S rRNA gene qPCR (Supplementary Fig. S3).
No differences in community evenness and number of species
contributing to 90% of the total community abundances were
detected after DoS pulse events (Supplementary Fig. S4). A steady
increase in butyrate, acetate and propionate concentration was
observed until the point of removal of acetate from fresh growth
media (Fig. 2B). Lactate, succinate, and formate were detected in
relatively low concentrations (Supplementary Fig. S5). Formate
concentration declined after the removal of exogenous acetate
from feed. After 300 h, lactate was not detected in the three
bioreactors.
In the first 148 h, before the introduction of disturbances, only

propionate was produced in significantly higher concentrations in
overnight samples (Wilcoxon test, p < 0.001, Supplementary
Fig. S6A). The propionate concentration was also significantly
higher after addition of B. hydrogenotrophica (Wilcoxon test,

p < 0.001, Supplementary Fig. S6B). However, after the influx of
exogenous acetate was stopped, the concentrations of acetate
and butyrate were significantly lower in overnight samples
(Wilcoxon test, p < 0.0001) compared to DoS samples, while
propionate production was not significantly affected (Supplemen-
tary Fig. S6B). These results demonstrate that the successful
assembly of the MDb-MM was achieved in the three bioreactors
with presence of the 16 species. The major fermentation end
products of MDb-MM were acetate, propionate and butyrate for a
period of 460 h. Overall, based on optical densities and metabolite
profiles, the MDb-MM was observed to be responsive to DoS pulse
feeding as noticed by increase in total biomass (optical density; O.
D600), and B. hydrogenotrophica was able to stably colonize the
MDb-MM when introduced into the community after 152 h.

Temporal dynamics of MDb-MM community
The MDb-MM showed changes in community structure over time
with similar compositions between triplicate bioreactors (Fig. 3A).
Recent studies on longitudinal human microbiome data have
revealed a linear relationship between log(variance) and log
(mean), i.e., species with higher mean abundances tend to also
exhibit higher variance in population densities [61–63]. This
property is known as the Taylor’s power law [64]. We evaluated
whether the MDb-MM assembled in the three bioreactors showed
similar time-dependent behavior observed in human gut micro-
biome [64, 65]. The MDb-MM in the three bioreactors exhibited a
linear relationship between log variance and log mean abundance
with a slope of 1.45, 1.37, and 1.36 for bioreactor A, B, and C,
respectively (Fig. 3B–D). In all three bioreactors, the two most
abundant species Bacteroides xylanisolvens and Akkermansia
muciniphila exhibited highest variance while C. aerofaciens had
lowest variance and was least abundant.
Evenness of species abundances can influence functional

stability of microbial communities [66]. We used the Gini
coefficient as a measure of evenness, which has values between
0 to 1. Here, 1 indicates a highly uneven community composition
[67]. The mean Gini coefficient for the starting MDb-MM at 0 h was
0.62 (±0.01). At the end of the experiment at 460 h, the Gini
coefficient for MDb-MM was 0.6, 0.63, 0.62 for bioreactor A, B, and
C respectively. The overall mean (± standard deviation) for
inequality in MDb-MM was 0.70 ± 0.05, 0.71 ± 0.04, and 0.71 ±
0.05 for bioreactor A, B, and C respectively during the entire
experiment.
The long-term divergence of the MDb-MM in all the three

bioreactors followed similar trends over time (Fig. 3F). The MDb-
MM showed higher deviation from the starting composition
during the first phase of the experiment before feed change
followed by relatively stable dissimilarities after feed change.
Convergence of the three MDb-MM showed similar patterns
(Supplementary Fig. S7A). The correlation between community
distances and lagged time intervals further supported directional
change which was similar in the three bioreactors (Supplementary
Fig. S7B). Next, we carried out mean rank shift analysis to identify
events when drastic changes occurred in the species ranks (order
of relative abundance) within the community. During the initial
phase (up to ~100 h) there was a progressive decline in mean rank
shift (MRS), but introduction of B. hydrogenotrophica caused large
fluctuations as did the change of feed with removal of acetate in
all three bioreactors (Fig. 3G). The compositional dynamics was
highly similar between the three bioreactors (Pearson’s correla-
tion; A and B, r= 0.93; A and C, r= 0.92; and B and C, r= 0.95).
These data support highly coherent community-level features of
the MDb-MM between the three bioreactors.

Temporal stability properties of MDb-MM
The observations thus far indicated that the MDb-MM was
responsive to the pulse feeding events and perturbation events
i.e., addition of B. hydrogenotrophica and removal acetate.

S.A. Shetty et al.

2146

The ISME Journal (2022) 16:2144 – 2159



Ta
bl
e
1.

G
en

er
al

m
et
ab

o
lic

fe
at
u
re
s
o
f
sp
ec
ie
s
fo
r
w
h
ic
h
d
ep

ic
te
d
st
ra
in
s
w
er
e
u
se
d
fo
r
M
D
b
-M

M
.

Sp
ec
ie
s

St
ra
in

us
ed

/s
ou

rc
e

K
n
ow

n
su
b
st
ra
te
s

M
et
ab

ol
it
e

p
ro
d
uc

ti
on

a
R
ef
er
en

ce
s

A
kk
er
m
an

si
a
m
uc
in
ip
hi
la

M
u
cT
/A
TC

C
B
A
A
-8
35

M
u
ci
n
,N

-a
ce
ty
lg
lu
co

sa
m
in
e,

N
-
ac
et
yl
g
al
ac
to
sa
m
in
e,

fu
co

se
A
,P
,L

,1
,2
-P
D

[1
2,

31
]

Ba
ct
er
oi
de
s
ov
at
us

H
M
P
st
ra
in

3_
8_

47
FA

A
St
ar
ch

,x
yl
an

,i
n
u
lin

A
,P
,L

,1
,2
-P
D

[3
2–

35
]

Ba
ct
er
oi
de
s
xy
la
ni
so
lv
en
s

H
M
P
st
ra
in

2_
1_

22
Pe

ct
in
,
st
ar
ch

,x
yl
an

A
,P
,L

[3
6]

A
na

er
ob

ut
yr
ic
um

so
eh
ng

en
ii

L2
-7
/D

SM
17

63
0

Su
g
ar
s,
D
L-
la
ct
at
e,

1,
2-
PD

B,
P,
F,
C
O
2
,H

2
[3
7–

39
]

Co
pr
oc
oc
cu
s
ca
tu
s

A
TC

C
27

76
1

Fr
u
ct
o
se
,m

an
n
it
o
l,
g
lu
co

se
,
m
an

n
o
se
,l
ac
ta
te

B,
P,
A
,S

,H
2

[4
0,

41
]

Fl
av
on

ifr
ac
to
r
pl
au

tii
H
M
P
st
ra
in

7_
1_

58
FA

A
G
lu
co

se
,m

al
to
se
,x

yl
o
se
,l
ys
in
e

L,
B,

P
[4
2]

Eu
ba

ct
er
iu
m

si
re
au

m
D
SM

15
70

2
St
ar
ch

,g
lu
co

se
,m

al
to
se

A
,E

,L
,B

,S
[4
3,

44
]

A
ga

th
ob

ac
te
r
re
ct
al
is

D
SM

17
62

9
St
ar
ch

,g
lu
co

se
,l
ac
to
se
,x

yl
o
se
,c
el
lo
b
io
se
,l
-a
ra
b
in
o
se
,t
re
h
al
o
se
,s
o
rb
it
o
l,

N
-a
ce
ty
lg
lu
co

sa
m
in
e

B,
A
,H

2
,L

[4
5–

47
]

Ro
se
bu

ria
in
te
st
in
al
is

D
SM

14
61

0
St
ar
ch

,g
lu
co

se
,x

yl
o
se
,x

yl
an

,
ar
ab

in
o
se

B,
F,
L

[4
8,

49
]

Fa
ec
al
ib
ac
te
riu

m
pr
au

sn
itz
ii

A
2-
16

5
Pe

ct
in
,
in
u
lin

,f
ru
ct
o
se
,g

lu
co

se
B,

A
,H

2
,
L

[5
0,

51
]

Su
bd

ol
ig
ra
nu

lu
m

va
ria

bi
le

D
SM

15
17

6
N
-a
ce
ty
l-g

lu
co

sa
m
in
e,

N
-a
ce
ty
l-m

an
n
o
sa
m
in
e,

ce
llo

b
io
se
,d

ex
tr
in
,
fr
u
ct
o
se
,f
u
co

se
,

g
al
ac
to
se
,g

al
ac
tu
ro
n
ic

ac
id
,α

-g
lu
co

se
,α

-la
ct
o
se
,m

al
to
se
,m

al
to
tr
io
se
,M

an
n
o
se
,m

el
ib
io
se
,

rh
am

n
o
se
,s
al
ic
in
,s
u
cr
o
se

B,
L,

A
,S

[5
2]

Ru
m
in
oc
oc
cu
s
br
om

ii
A
TC

C
27

25
5

St
ar
ch

,g
lu
co

se
,f
ru
ct
o
se
,g

al
ac
to
se

A
,F
,P
,L

,E
[5
3,

54
]

Bl
au

tia
ob

eu
m

D
SM

25
23

8
A
ra
b
in
o
se
,c
el
lo
b
io
se
,l
ac
to
se
,m

an
n
o
se
,m

al
to
se
,r
af
fi
n
o
se
,x

yl
o
se
,L

-f
u
co

se
A
,1

,2
-P
D
,P

[5
5,

56
]

Co
lli
ns
el
la

ae
ro
fa
ci
en
s

D
SM

39
79

St
ar
ch

,m
al
to
se
,
g
lu
co

se
,s
u
cr
o
se

E,
H
2
,A

,L
;F

[5
7]

Bi
fi
do

ab
ct
er
iu
m

ad
ol
es
ce
nt
is

L2
-3
2

In
u
lin

,s
ta
rc
h
,l
ac
to
se
,g

lu
co

se
,x

yl
o
se
,s
o
rb
it
o
l,
ce
llo

b
io
se
,m

al
to
se

F,
A
,L

[4
6,

58
,5

9]

Bl
au

tia
hy
dr
og

en
ot
ro
ph

ic
a

D
SM

10
50

7
C
el
lo
b
io
se
,l
ac
to
se
,m

an
n
o
se
,r
af
fi
n
o
se
,g

lu
co

se
,H

2
/C
O
2
,
H
2
/f
o
rm

at
e

A
,L

[5
6,

60
]

A
A
ce
ta
te
,B

B
u
ty
ra
te
,P

Pr
o
p
io
n
at
e,

L
La
ct
at
e,

F
Fo

rm
at
e,

E
Et
h
an

o
l,
1,
2-
PD

1,
2-
Pr
o
p
an

ed
io
l,
S
Su

cc
in
at
e.

a S
C
FA

p
ro
d
u
ct
io
n
va
ri
es

d
ep

en
d
in
g
o
n
g
ro
w
th

su
b
st
ra
te
s.

S.A. Shetty et al.

2147

The ISME Journal (2022) 16:2144 – 2159



However, it was unclear if the MDb-MM possesses ecological
stability i.e., does the MDb-MM exhibit resistance and resilience to
perturbations. To investigate this, we tested the following stability
properties of MDb-MM in the three bioreactors [68]: (a) resistance
(RS) as the ability of MDb-MM to resist change after perturbations;
(b) displacement speed (DS) as the pace at which MDb-MM is
displaced upon perturbations; (c) resilience (RL) as the ability of
MDb-MM to return to the reference state after a perturbation
event, (d) elasticity (E) as the pace at which MDb-MM recovers
after displacement due to a perturbation event. The MDb-MM in
all three bioreactors exhibited resistance to the change of feed
that no longer contained acetate, as for the majority of the time it
was observed within the reference state boundary (Fig. 4A, B). In
instances where it crossed the reference state boundary, the MDb-
MM in all three bioreactors returned to the reference state
community (Fig. 4A).
Among the three bioreactors, MDb-MM in C had highest

displacement (DS= 0.021) compared to A (DS= 0.004) and B
(DS= 0.005), that is deviation from the reference boundary. MDb-
MM in bioreactor C also showed highest resilience (RL= 0.282)
compared to A (RL= 0.194) and B (RL= 0.154). The larger
displacement and resilience values for MDb-MM in bioreactor C
suggests the high resilience of MDb-MM and its ability to return to
its reference state even after showing the highest deviation in
composition [68]. Similar patterns were observed when subse-
quent perturbation events of elongated fasting and increasing

substrate feeding rate from 10 to 20ml/h were included in the
stability analysis (Supplementary Fig. S8A, B). However, the
recovery to the reference community state after doubling
the substrate feeding rate was on/near the boundary (dashed
line, Supplementary Fig. S8A, B) of the reference community state
at the end of the experiment.

Community-level transcriptional activity
For a subset of the time points, we performed metatranscriptome
sequencing. We analysed the transcriptional response at two
levels, KEGG orthologs (KOs) as well as gut metabolic modules
(GMMs), the latter of which take into account the combination of
KOs that are part of specific metabolic modules relevant to the
human gut microbiome [69]. The community-level functional
divergence using relative abundances of taxa, GMMs and KOs
showed similar divergence over time and was linked to changes in
the community structure over time (Fig. 5A, Supplementary
Fig. S9). Temporal variation in MDb-MM community composition
correlated significantly with transcriptional response at both
GMM (MantelAmplicon vs. GMM r= 0.40, p= 0.001) and KO level
(MantelAmplicon vs. KEGG r= 0.35, p= 0.001) (Fig. 5A–C). The
KEGG and GMM profiles showed good agreement in
capturing the temporal variation in MDb-MM gene expression
(MantelKEGG vs. GMM r= 0.87, p= 0.001). Next, to identify
community-level transcriptional response to nutrient periodicity,
we compared GMM expression at specific time points (Fig. 5D–F).
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GMMs linked to carbohydrate degradation were upregulated in
the DoS, while mucin and amino-acid degradation were
upregulated in overnight samples (Fig. 5D–F). The butyrate
production related module “Acetyl-Co-A pathway” was signifi-
cantly upregulated in the DoS samples (52 and 248 h) in absence
of B. hydrogenotrophica when exogenous acetate was provided,
and after removal of acetate (248 and 264 h) (Fig. 5D–F). In
accordance with HPLC data, we observed significantly higher
amounts of transcripts encoding enzymes involved in propionate
production in overnight samples (48 h) before addition of B.
hydrogenotrophica (Fig. 5A). After removal of exogenous acetate,
there was a significant upregulation of the GMM for formate
conversion and homoacetogenesis (264 h), which coincided with
an increase in formate concentration observed in metabolite
analysis (Fig. 5F and Supplementary Fig. S5).

Dynamic niche overlap among MDb-MM species
In order to better understand the co-existence of 16 species in the
three bioreactors we investigated species-specific metabolic traits.
By design, the MDb-MM had multiple species capable of carrying
out similar functions—for example, B. ovatus, R. bromii, E. siraeum,
and A. rectalis can degrade starch (Table 1). Moreover, none of the
MDb-MM species were competitively excluded from the system
suggesting potential niche partitioning because multiple sub-
strates were available in our system. Therefore, we quantified
niche overlap between species in MDb-MM and investigated if
there is temporal changes in pairwise species behaviors. We
started by calculating the pairwise niche overlap between each of

the species at each of the time points for which we had obtained
metatranscriptomes. Metabolic module expression was used as
quantitative traits for calculating the niche-overlap indices. We
used only those GMM traits which are involved in either
degradation or consumption of substrates and end-product
metabolites (Supplementary Table S2). In this case, a lower niche
overlap between species would suggest higher niche segregation
and vice versa.
All species demonstrated temporal variation in niche overlap

with other species in MDb-MM, highlighting the dynamic nature
of inter-species interactions in the MDb-MM (Fig. 6). Comparison
of pairwise distributions of niche-overlap values revealed that the
complex substrate degraders, B. xylanisolvens, A. muciniphila, A.
rectalis, B. adolescentis, S. variabile, F. prausnitzii, and R. bromii
showed comparatively higher niche overlap (>0.75) with each
other (Supplementary Fig. S10). C. catus, A. soehngenii and E.
siraeum often had the lowest niche overlap with the other strains
in the community. For some of the time points, A. rectalis had low
number of transcripts for several of the GMM traits and we were
unable to measure pairwise niche overlaps. We then compared
the overall expression of GMM traits for all species at different
time points and observed niche segregation based on transcrip-
tional responses of metabolic pathways consistently in the three
bioreactors (Fig. 7A). The two Bacteroides species exhibited low
niche segregation and C. aerofaciens and the two Blautia species
were closely located on the two-dimensional ordination plot. C.
catus, A. soehngenii and F. plautii had distinct transcriptional
patterns. These data suggest that the observed co-existence likely
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resulted from each species occupying a specific metabolic niche
and that inter-species cross-feeding supported non-complex
substrate degraders forming a trophic interaction network.

Trophic guilds and niches of MDb-MM species
The metabolic flow and biomass distribution within the gut is
largely driven by bacteria with specialized molecular machineries
capable of degrading complex carbon sources [70] The action of
polysaccharide degraders (primary consumers) results in niche
construction that may be dependent on the source substrate as
well as their metabolic pathways. Consequently, this leads to
formation of a hierarchal organization within the community into
trophic levels [70]. Here, based on metatranscriptomic species-
level assignment of transcriptional expression of GMMs, we
broadly classified them into four trophic guilds similar to those
reported previously from computational simulations [70] (see
Fig. 7B and methods). Transcriptional contribution of species to
each of the trophic guilds revealed the inter-species connected-
ness of resource utilization.
Ranking of MDb-MM strains based on the relative proportions

of their GMM expression within each trophic guild revealed
temporally changing trophic roles (Supplementary Fig. 11). This

suggested that trophic roles are dynamic in MDb-MM. In
addition, these observations also suggested that transcriptional
expression of individual species for each of the trophic level can
be variable. Furthermore, to investigate whether the trophic role
is associated with abundance of species in the community we
compared the relative abundance of species and its ranking
within a trophic guild. We observed that bacteria that are
dominant in trophic guild 1 had higher abundances while those
dominating trophic guilds 3 or 4 had lower relative abundances
in the MDb-MM (Supplementary Fig. 12). This suggests that the
species dominating trophic guild 1 are usually present in higher
abundances in microbiomes.
The two most abundant species in MDb-MM (Figs. 1D, 5A), A.

muciniphila and B. xylanisolvens, contributed to two trophic guilds:
degradation of complex substrates i.e., trophic guild 1 and
degradation of simpler carbohydrates i.e., trophic guild 2 (Fig. 7).
Known starch degraders, R. bromii, B. ovatus, C. aerofaciens, E.
siraeum, and A. rectalis showed transcriptional segregation across
the trophic guild 1 and 2 axis. S. variabile, B. adolescentis and R.
bromii dominated trophic guild 1 and showed metabolic activity
for arabinoxylan, fructan and starch degradation, respectively
(Supplementary Fig. S13).
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The action of species occupying trophic guild 1 can give rise to
extracellular mono- and di-saccharides that can be utilized by
species that lack specialized molecular machineries for polysac-
charide degradation. In our system, breakdown of mucin, pectin,
inulin, starch and xylan could result in simple mono- and di-
saccharides such as fucose, galactose, galacturonate, fructose,
maltose or xylose as major simple carbohydrates. Within trophic
guild 2, fucose transport and degradation genes were identified to
be transcribed in A. muciniphila and B. obeum (Supplementary
Fig. S14). In addition, transcription of galactose metabolism genes
was predominantly detected in A. muciniphila, B. ovatus and B.
xylanisolvens. Galacturonate is the main component in pectin, and
F. prausnitzii and to some extent B. ovatus and B. xylanisolvens
were found to express genes involved in its degradation
(Supplementary Fig. S14).
We classified consumption of fermentation end products such

as acetate, lactate, 1,2-PD and formate as trophic guild 3. These
are mostly major end products of carbohydrate fermentation,
while utilization of H2 and CO2, inorganic by-products of
acidogenesis, are classified here as trophic guild 4. Specialist
trophic guilds could be assigned to A. soehngenii, B. hydrogeno-
trophica, and C. catus as their transcriptional activity was largely
contributing to trophic guild 3 (Fig. 7 and Supplementary Fig. S15).
F. plautii showed variation across trophic guild 2 and 3. In our

experimental setup, acetate was exogenously supplied until 248 h
to the MDb-MM and then removed from the feed. Expression of
modules for acetate to acetyl Co-A via I and II (acetate kinase
pTKA) was observed in A. soehngenii, F. prausnitzii, B. obeum, B.
hydrogenotrophica, and F. plautii (Supplementary Fig. S15). A.
soehngenii and F. prausnitzii are known to have improved growth
in the presence of acetate, which would explain the activity for
consuming acetate [50, 71]. Cross-feeding of lactate resulting from
the metabolism of polysaccharide degraders such as Bifidobacter-
ium and Lactobacillus by butyrate producers in the human gut is
well known [71, 72]. Here, we detected very low amounts of
lactate in the metabolite analysis which resembles the situation in
fecal samples where lactate is hardly detected [71]. This can be
explained by the significant transcriptional activity for lactate
consumption primarily via the lctABCDE pathway (Supplementary
Fig. S14). A. soehngenii showed high transcriptional activity for
utilization of lactate plus acetate, which further confirms our
previous observation of this being a specialized niche for this
organism [20, 73]. C. catus demonstrated activity for lactate
consumption but is known only to consume the L-form of lactate,
while A. soehngenii can use both the D- and L-forms of lactate [74].
Fucose fermentation results in production of 1,2-PD, which is
another well-known cross-feeding metabolite [37, 72]. While we
did not detect any 1,2-PD, there was higher transcriptional activity
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for utilization of 1,2-PD in A. soehngenii compared to B. obeum,
which also produces propionate (Supplementary Fig. S10) [16, 41].
Transcriptional activity for autotrophic growth on H2 and CO2

using formate dehydrogenase and formate-tetrahydrofolate ligase
was observed in B. hydrogenotrophica. Other than CO2 and H2, we
observed active processes for dissimilatory nitrate and sulphate
metabolism within guild 4. Among the two Bacteroides species, B.
xylanisolvens was the dominant species in the MDb-MM and had
higher contribution to trophic guild 4, which was observed to be
linked to higher expression of the nitrate reduction module.
Dissimilatory nitrate reduction to ammonium may be an
advantageous strategy for higher growth rate in competitive
ecosystems. In summary, the 16 species in the MDb-MM co-
existed by occupying and interacting at different trophic levels to
form a complex web of inter-species interactions.

DISCUSSION
Due to technological and practical limitations, deciphering the
community dynamics and microbe–microbe interactions is
challenging using fecal or other intestinal samples derived from
human. Here, we investigated microbe–microbe and
microbe–environment interactions at species and community
level within a highly controlled setting, using a defined micro-
biome that we subjected to detailed compositional, transcriptional
and metabolic analysis. The three most important aspects of this
study are (i) assembly of a human minimal microbiome that

exhibits ecologically relevant interactions, (ii) the experimental
setup which included nutrient periodicity and (iii) a set of specific
biotic and abiotic perturbations that allowed to address the
resilience of the system. All of these aspects are crucial for better
understanding the interactions dynamics within human intestinal
microbial communities [5, 7]. Our rational selection was largely
driven by understanding of the anaerobic physiology of key
human gut microbes. Knowledge of microbial physiology was
complemented by considering ecological aspects at the
community-level such as assembly, co-existence, competition for
resources and cross-feeding. This enabled us to first demonstrate
the applicability of ecological concepts, e.g., Taylor’s law,
community turnover, divergence, resistance and resilience, and
then to investigate the species-level metabolic interactions using
metatranscriptomics [2, 9, 75–79]. The MDb-MM exhibited
significant correlation with respect to dynamics of composition,
metabolic output and transcriptional response in replicate
bioreactors. This supported previous observations in synthetic
microbiomes that a common pool of species shows similar/
reproducible assembly and community-level dynamics under
similar growth condition and exposure to similar perturbation
events [80–82]. This is equivalent to the classical enrichment
experiments where the emergent community assembly can be
driven by selecting for specific bacteria or consortia with specific
substrates and/or environmental factors such as high salt, pH or
temperature [83]. Future research is warranted to test whether a
different combination of species than the one used here, would
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result in similar community-level behaviors under identical
perturbations [24, 81]. Additionally, modeling of synthetic micro-
biota based on complementary wet lab experiments can further
increase our understanding of interactions and dependencies in
the intestine [80, 84, 85]. Nonetheless, we demonstrated how
ecophysiology guided design of synthetic minimal microbiomes
combined with metatranscriptomics is a promising avenue to
investigate core concepts in ecology and unravel potential
metabolic interactions.
At individual taxa level, we observed highly variable composi-

tional and functional responses. This could be attributed to
potential technical variation in measurements and/or determinis-
tic chaos [86, 87]. At community-level the behavior can be rather
deterministic as observed with similar divergence, mean rank shift
and inequality in triplicate MDb-MMs when subjected to similar

external perturbations [81, 88, 89]. It is, however, important to
note that our system was highly controlled with only one event of
immigration (addition of B. hydrogenotrophica) and stochastic
processes such as dispersal limitation not being enforced in our
experimental setup [90]. Nevertheless, our observation of deter-
ministic assembly of MDb-MM has some implications for
designing microbiome modulation strategies, where achieving
community-level stability in both composition and function may
be crucial. Examples are resistance to invasion or enhanced
butyrate production, which can be achieved by targeting
ecosystem level properties using appropriate prebiotics
[1, 91, 92]. These prebiotics may not necessarily target a specific
species but a group of species whose fundamental niche allows
for “insurance” to absorb the impact of daily stochastic and
destabilizing forces [79, 93].

Fig. 7 Transcriptional niche segregation and trophic guilds within the MDb-MM. A A Principal Component Analysis (PCA) based on GMM
trait expression used in trophic guild analysis. The abundances were Hellinger transformed before calculating the Canberra distances. Multiple
circles for each species are different time points. The species labels are positioned around the centroids for that particular species.
B Schematic for organization of metabolic roles into trophic guilds. Trophic guild 1 is for polysaccharide and mucin degradation, trophic guild
2 consists of mono-di-saccharides trophic guild 3 consists of consumption of fermentation ends/by-products and trophic guild 4 consists of
those consuming inorganic substrates for growth. C Ternary plot indicates the trophic status of the minimal microbiome strains at different
time points. For every strain at a given time point, we summed its expression and calculated the relative expression for each trophic guild. The
proximity of the symbols to the apex of the triangle is proportional to the averaged potential contribution of each strain to trophic guilds. The
trophic guild 4 is not shown in this figure. The ranking of species within each trophic guild is provided in Supplementary Fig. S11.
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The investigation of species-specific transcriptional responses
revealed that the core gut microbes used in this study have highly
evolved metabolic strategies which could explain their co-
existence with other seemingly competitive core species. The
co-existence is likely due to the ability of these core gut microbes
to dynamically regulate the transcriptional response for utilizing
specific carbon and energy sources that are vacant [29, 78]. This
allows individual species to occupy the niches that become
available over time either, due to external (inflow of diet) or
changing metabolic behavior of competitor species. For instance,
we observed, at transcriptional level, changing patterns of
polysaccharide utilization among the species that are part of the
first trophic guild where no single species dominated transcrip-
tional contributions for the entire duration of the experiment.
These observations provide support for the role of “functional
insurance” as result of the presence of competitive species in
maintaining community composition, structure and functional
stability.
Another aspect of host-associated microbial communities is the

immigration of new species which can have an impact on the
overall community [94, 95]. By introducing B. hydrogenotrophica in
the established minimal microbiome, we demonstrated a widely
appreciated role of vacant niches in supporting survival of
immigrating species [29, 96]. Despite its fundamental niche being
diverse including the ability to utilize several simple carbohydrates
that were available, B. hydrogenotrophica likely utilized H2/CO2

and/or formate as observed with active expression of the formate
conversion module [56]. When we removed exogenous acetate,
butyrate production declined, and this can be attributed to the
fact that acetate is one of the key metabolites for its production.
Importantly, after removal of exogenous acetate, B. hydrogeno-
trophica showed high expression of modules linked to homo-
acetogenesis thus highlighting its contribution to acetate
production. This could have aided in stabilizing the community
because butyrogenic species such as A. soehngenii, F. prausnitzii
and R. intestinalis require acetate for improved growth. This
highlights the potential for cyclic interactions where end products
of lower trophic guilds can help species occupying higher trophic
guilds. Overall, these data provide support for a specialized niche
of B. hydrogenotrophica that includes inorganic substrates and/or
formate [8, 11, 78]. B. hydrogenotrophica can be considered a key
species, which can potentially support production of butyrate. For
instance, enhancing butyrate production via prebiotics can lead to
significant amounts of gases and therefore recycling these into
acetate by autotrophic acetogens such as B. hydrogenotrophica
can further support butyrate production in a trophic network with
butyrate producers [71].
The flow of energy in biological ecosystems is widely described

via trophic structures where energy flows from one level to
another [70, 97]. The so-called keystone species are usually
defined for taxa at higher trophic levels [54, 98]. Our analysis
highlights the difficulties in assigning strict hierarchy based on
single and specific trophic roles for individual taxa, especially
because the breakdown of complex substrates results in simpler
substrates, which the primary degrader can also utilize. Further-
more, the temporal differences we observed in dominance of each
bacterium within the trophic guilds indicates that functional roles
of bacteria can vary over time within a community. We observed
certain taxa with a prominent role within specific trophic guilds.
For instance, A. soehngenii and C. catus were predominantly part
of the trophic guild level 3 which involves consuming fermenta-
tion end products, lactate and 1,2-PD. This observation further
supports our previous findings that A. soehngenii occupies an
energetically challenging niche, i.e., the consumption of lactate
and acetate [20]. In contrast, B. hydrogenotrophica occupied the
lowest trophic guild consuming inorganic substrates. Thus, MDb-
MM allowed us to unravel functional roles of each of the key gut

species in presence of other core microbiota. In addition, we were
able to identify potential metabolic interactions and cross-feeding
occurring within the MDb-MM by investigating trophic guilds
associations based on species-specific transcriptional profiles for
GMMs related to degradation of complex substrates, production
and consumption of fermentation products like formate
and lactate.
Our experimental system did not take the host-aspect into

account, which will influence the community composition and
dynamics [99]. Hence, improvements can be envisaged by
incorporating the MDb-MM in an in vitro model such as HUMix
and organoid cell cultures [15, 100, 101], that comprise host
features such as aspects of the immune system. The ability to track
abundances of closely related species across time points in
synthetic communities is crucial. Here, we used short amplicons of
the V5-V6 (~280 bp) region of the 16S rRNA gene and noticed
non-specific amplification of B.hydrogenotrophica at few time
points prior to its addition. In such scenarios, using whole shotgun
metagenomics might provide better resolution. One of the major
challenges we faced during this study was the difficulty in
predicting the metabolic functions based simply on automated
annotation and analysis. For instance, the identification of an
amylase gene (K01176, alpha-amylase [EC:3.2.1.1]) with high
expression in A. muciniphila suggested its contribution to starch
degradation. This gene is likely coding for a glycoside hydrolase
involved in breaking glycosidic linkages present in mucin and is
not involved in starch degradation. These observations highlight
the need for careful curation and interpretation of -omics based
functional analysis of fecal samples where the majority of the
species remain uncharacterized. With some manual curation of
the published GMMs, we were able to capture >87% of the
variation between samples that were identified at KO level
annotation. This suggests that it is also valuable to investigate
other key functions such as those involved in signaling and
processing, virulence, vitamin and co-factor biosynthesis and their
role in the species dynamics we observed in this study. We did not
include bile salts in our media, and several key vitamins and co-
factors such as vitamin B12 were provided exogenously. Therefore,
impact of these key compounds on the community remains
unknown. In addition, a bioreactor with similar setup but with
constant supply of DoS could help in identifying if the pulse
feeding played a role in co-existence of all species till the end of
the experiment.
In this study, we created a minimal microbiome that exhibits

ecological stability properties and intricate metabolic interactions
that are observed in more diverse and complex natural
ecosystems. We provide experimental evidence for temporally
variable niche occupation as one of the important mechanisms
by which species competing for similar resources can co-exist in a
dynamic ecosystem. In addition, we demonstrate how metatran-
scriptomics can be used to assign quantitative traits for identifying
niche overlap at transcriptional level. We foresee the use of data
generated in this study to serve as a useful resource for ecologists,
systems biologists and microbiome experts for developing
predictive ecological and metabolic models and improving our
understanding of the human gut microbiome.

MATERIALS AND METHODS
Species selection for the composition of the synthetic MDb-MM
Taxonomic composition data from metagenomic studies was obtained
from the curatedMetagenomicData data package (v1.18.2) [102]. To
identify the taxa that are part of the core microbiota we analysed
species-level data from 1155 “Western healthy” human gut metagenomes
covering general populations from North America and Europe. A total
of 64 metagenomic species, which were present in at least 50%
of all samples were analysed with a minimum relative abundance of
0.00001 [103].
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Bacterial strains used in this study
The following strains were obtained from the German Collection of
Microorganisms and Cell Cultures (DSMZ, Braunschweig, Germany) or the
American Type Culture Collection (ATCC, Manassas, USA): Agathobacter
rectalis (DSM 17629), Eubacterium siraeum (DSM 15702), Roseburia
intestinalis (DSM 14610), Subdoligranulum variabile (DSM 15176), Blautia
obeum (DSM 25238), Blautia hydrogenotrophica (DSM 10507), Coprococcus
catus (ATCC 27761), Ruminococcus bromii (ATCC 27255), and Collinsella
aerofaciens (DSM 3979/ATCC 25986). Anaerobutyricum soehngenii (DSM
17630, L2-7) was kindly provided by Prof. Harry J. Flint’s group (University
of Aberdeen, UK). The strains from the human microbiome project (HMP)
catalog were Bacteroides sp. 3_8_47FAA (Bacteroides ovatus), Bacteroides
sp. 2_1_22 (Bacteroides xylanisolvens) and Flavonifractor plautii 7_1_58FAA.
Furthermore, Akkermansia muciniphila (ATCC BAA-835), Bifidobacterium
adolescentis (L2-32), and Faecalibacterium prausnitzii (A2-165) were taken
from the culture collection of the Laboratory of Microbiology, Wageningen
University & Research, The Netherlands.

Medium composition for MDb-MM strains
All strains were grown in a medium with the following composition: KH2PO4

(0.408 g/L), Na2HPO4.2H2O (0.534 g\L), NH4Cl (0.3 g/L), NaCl (0.3 g/L),
MgCl2*6H2O (0.1 g/L), NaHCO3 (4 g/L), yeast extract (2 g/L), beef extract (2
g/L), CH3COONa (2.46 g/L), casitone (2 g/L), peptone (2 g/L), cysteine-HCl (0.5
g/L), carbohydrates (1.1 g/L), resazurin (0.5mg/L), 1 mL trace elements in acid
(50mM HCl, 1 mM H3BO3, 0.5 mM MnCl2*4H2O, 7.5mM FeCl2*4H2O, 0.5mM
CoCl2, 0.1 mM NiCl2 and 0.5mM ZnCl2, 0.1 mM CuCl2*2H2O), 1 mL trace
elements in alkaline (10mM NaOH, 0.1mM Na2SeO3, 0.1 mM Na2WO4 and
0.1mM Na2MoO4), 1 mL hemin solution (50mg hemin, 1mL 1 N NaOH, 99
mL dH2O), 0.2 mL vitamin K1 solution (0.1mL vitamin K1, 20mL 95% EtOH).
After autoclaving and before inoculation, 1% of vitamin solution was added
(11 g/L CaCl2, 20mg biotin, 200mg nicotinamide, 100mg p-aminobenzoic
acid, 200mg thiamin (vitamin B1), 100mg panthothenic acid, 500mg
pyridoxamine, 100mg cyanocobalamin (vitamin B12), and 100mg riboflavin).
This basal medium composition was used for both pre-cultures and the
bioreactors and the feed with differences in carbon source supplementation.
For pre-cultures, the bacteria were grown in serum bottles in anoxic

conditions with 80/20 CO2/N2 as mixed gas using different combinations of
carbon sources (Supplementary Table S3). The pre-cultures were incubated
non-shaking at 37 °C for 24 h.

Anaerobic bioreactor operation
Fermentations were conducted in three parallel bioreactors (DasGip,
Eppendorf, Germany) filled with 300ml of the abovementioned growth
medium at 37 °C, at a stirring rate of 100 rpm. For the first 24 h, the
bioreactors were operated in batch mode where the 300mL growth
medium was supplemented with 5 g/L mucin from porcine stomach type
III (Sigma-Aldrich) as well as Diet origin Substrates (DoS) which comprised
of 1.11 g/L of each of xylan (beechwood, Apollo scientific, U.K.), soluble
starch (from potato) (Sigma-Aldrich, USA), inulin (from chicory) (Sigma-
Aldrich, USA) and pectin (from apple) (Sigma-Aldrich, USA) at the
beginning of the fermentation. The carbon sources, except for mucin,
were prepared as 60 g/L stock solutions. These stock solutions were
prepared anoxically in serum bottles and autoclaved prior to adding the
carbon sources to the bioreactors. The pH was controlled at 6.8.
The bioreactors were inoculated with a normalized O.D. of 1.0 of each

one of the abovementioned species in order to have the same cells
abundance at the beginning of the fermentation. A single inoculum mix
was prepared from the same pre-cultures. The three bioreactors thus
represent technical replicates for a single experiment. This was done to
avoid potential technical errors in preparation of starting inoculum which
may influence the behavior of species within the community resulting in
inter-bioreactor differences. After allowing the species to grow for 24 h,
continuous operation of the bioreactors was initiated. The flow rate of the
feed was set to 10mL/h with a medium retention time of 30 h. In our
experiment we used a retention time of 30 h, which is within the range of
gut transit times [104–106].
In the first phase of continuous feed supply i.e., from 24 h up to 248 h,

basal medium in the feed consisted of 5 g/L mucin and 30mM of sodium
acetate. During the continuous operation, the bioreactors were spiked
three times a day with a 4 h gap with DoS (xylan, soluble starch, inulin and
pectin) with a final concentration of 1 g/L in each bioreactor. After the first
24 h, we initiated pulsed feeding of DoS and sampled for metabolite and
16S rRNA gene analysis as follows: The 24 h sample taken at ~9:00 h
represented overnight sample and after sampling the bioreactors were

pulsed with DoS and the community allowed to grow undisturbed until
~13:00 h. At this time, we collected samples for analysis and immediately
following this a second DoS pulse was introduced. We then allowed the
MDb-MM to grow until ~17:00 h at which point we sampled again. This
represented the second DoS pulse sample of the day. This was followed by
a third DoS pulse, the MDb-MM grew overnight, and the next day at 9:00 h
we sampled to repeat the cycle of sample-pulse-grow-sample-pulse. At
248 h of bioreactor operation, we replenished the feed with freshly
prepared anoxic growth medium but this time we removed sodium
acetate and only 0.5% mucin was added.
During the fermentation period (2 weeks) different perturbations were

introduced in the system. These disturbances included the addition of
Blautia hydrogenotrophica, the increase of the concentration of carbohy-
drates addition to 2.22 g/L, elongation of the fasting period from 16 to 21
h, increase of the substrate feeding rate to 20ml/h. These events are
depicted in Supplementary Fig. 2. Samples were taken during both the
fasting and feeding period and at every perturbation point (Schematic
overview Fig. 1 and Supplementary Fig. 2). Samples for DNA and HPLC
were stored at −20 °C. Samples for RNA were centrifuged at 4816 × g for
30min at 4 °C. Then, 1 mL of RNAlater was added to the pellet, the pellets
were snap-frozen in liquid nitrogen and stored at −80 °C.

High performance liquid chromatography (HPLC)
For fermentation product analysis, samples were obtained at different time
points of the incubation period. Crotonate was used as the internal
standard, and the external standards were lactate, formate, acetate,
propionate, butyrate, isobutyrate, 1,2-PD, sialic acid and glucose. Standards
were prepared in the following concentrations: 2.5, 5, 10, and 20mM.
Substrate conversion and product formation were measured with
Shimadzu LC_2030C equipped with a refractive index detector and a
Shodex SH1011 column. The oven temperature was set at 45 °C with a
pump flow of 1.00mL/min using 0.01N H2SO4 as eluent. All samples and
standards (10 µl injection volume) ran for 20min.

DNA isolation and library preparation
Genomic DNA was extracted using the FAST DNA Spin kit (MP Biomedicals,
Fisher Scientific, The Netherlands) following the manufacturer’s instruc-
tions. We included positive controls, a mock community DNA with known
composition [107] and reagent controls for DNA extraction and PCR. The
concentration of genomic DNA was measured fluorometrically using Qubit
dsDNA BR assay (Invitrogen). The hypervariable region V5-V6 (~280 bp) of
the 16S rRNA gene was amplified with Phusion Hot Start II DNA
polymerase (2 U/μL) for 25 cycles using 0.05 μM of each primer
(784F–1064R) that both contained sample-specific barcodes at their 5′-
end. The amplification program for PCR included an initial step of 98 °C for
30 s, then 25 cycles of at 98 °C for 10 s, followed by an annealing step at 42
°C for 10 s and elongation step at 72 °C for 10 s and a final extension at 72 °
C for 7 min. PCR products were purified using MagBio beads according
to the manufacturer’s protocol. Purified products were quantified using
Qubit dsDNA BR assay kit (Life Technologies, USA) and were pooled in
equimolar amounts into one single library. After pooling, the mixed
libraries were concentrated using MagBio beads to a concentration
needed by the sequencing company. The samples were sequenced on a
NovaSeq platform (Illumina) in 2 × 150 base paired-end mode at
Novogene (U.K).

qPCR
The total abundance of all species in the synthetic community was
determined by qPCR. The DNA concentrations were measured fluorome-
trically (Qubit dsDNA BR assay, Invitrogen) and adjusted to 1 ng/μL by
diluting them in DNase/RNase-free water and prior to use as the template in
qPCR. Universal primers targeting the 16 S rRNA gene of all the species
(1369F 5′-CGG TGA ATA CGT TCY CGG-3′ and 1492R 5′-GGWTACCTTGTTAC-
GACTT-3′; 123 bp) were used for quantification. A standard curve targeting
the 16 S rRNA gene of B. thetaiotaomicron was prepared with nine standard
concentrations from 100 to 108 gene copies/μL. The qPCR was performed in
triplicate with iQ SYBR green supermix (Bio-Rad, USA) in a total volume of
13 μL prepared with primers at 500 nM in 384-wells plates with the wells
sealed with optical sealing tape. Amplification was performed with an
iCycler (Bio-Rad): one cycle of 95 °C for 5min; 40 cycles of 95 °C for 15 s, 60 °C
for 20 s and 72 °C for 30 s each; one cycle of 95 oC for 1min; and a stepwise
increase of temperature from 60 to 95 °C (at 0.5 °C per 5 s) to obtain melt
curve data. Data were analysed using CFX Manager 3.0 (Bio-Rad).
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RNA isolation
The cells (10mL) were centrifuged at 4816 × g for 15min at 4 °C and the
supernatant was discarded. Total RNA was isolated by combining
enzymatic lysis, the Trizol reagent and the RNeasy mini kit (QIAGEN,
Germany). A mixture of lysozyme (15 mg/mL), mutanolysin (10 U/mL) and
Proteinase K (100 µg/mL) in 1X TE buffer was added to the pellet
normalizing to an OD600 of 2.0 per 100 µL of this mixture. The samples
were mixed by vortexing and incubated at room temperature for 10min.
After 5 min of incubation, the samples were vortexed again. Four
microliters of p-mercaptoethanol mixed with 400 µL RLT buffer was added
to the sample. Subsequently 1 mL of Trizol reagent was added to 100 µl of
the sample. This mixture was transferred to a sterile tube containing 0.8 g
of glass beads (diameter of 0.1 mm). The tubes were homogenized by
bead beating three times for 1 min at 5.5 m/s, while cooling the samples
on ice in between steps (bead beater, Brand). Then, 200 µL of ice-cold
chloroform was added. The tubes were mixed gently and centrifuged at
12,000 × g for 15 min at 4 °C. The RNA isolation was continued following
the manufacturer’s instructions of the RNeasy mini kit, including an on-
column DNase step using DNase I recombinant, RNase-free, (Roche
Diagnostics, Germany) incubating at 37 °C for 30min. RNA concentration
was measured using Qubit and the quality was determined by the
Qsep100 bioanalyzer (BiOptic inc, Taiwan). The RNA samples were stored at
−80 °C until further processing. Further processing such as removal of
rRNA, library preparation and sequencing was performed by Novogene
using platform NovaSeq PE150 (Illumina).

Bioinformatics
Amplicon data analysis. The 16S rRNA gene amplicon sequencing data
was analysed using the DADA2 R package [108]. Raw data (total
4,27,03,796 reads) was filtered to remove low quality reads and reads
with more than 2 errors and those matching the PhiX (filterAndTrim
function) resulting a total of 4,18,65,602 reads which were then subjected
to removal of chimeric sequences (removeBimeraDenovo, consensus
method), an average of 225083 ± 102107 reads per samples were obtained
(Supplementary Table S4). We used a custom database consisting of 16S
rRNA gene sequences fetched from the genomes of the 16 bacterial strains
used in this study using barnap (available at https://github.com/
mibwurrepo/Shetty_et_al_MDbMM16) [109]. On average 97 ± 1.9% of the
reads were assigned to the MDb-MM strains (Supplementary Table S4).
Taxonomic assignment was done using the RDP classifier [110]. The unique
amplicon sequence variants (ASVs) were merged at species-level using the
tax_glom() function in phyloseq (v1.32) [111]. The species counts were
normalized for the differences in 16S rRNA gene copy number
(Supplementary Table S3) and absolute counts were calculated as
described previously [112]. Further analysis of the community composition
and structure was done using the microbiome R package (v.1.10.0) [113].
Data visualization packages, ggplot2 and ggpubr R packages were used for
plotting figures [114, 115].

Metatranscriptomics analysis. A total of 816,752,875 raw paired-end reads
totaling to 244.9 giga base pairs were obtained from thirty-six samples
(Supplementary Table S5). We followed the approach described in the
SAMSA2 pipeline [116]. The forward and reverse adaptors were filtered
using Trimmomatic (v0.36) (settings: PE -phred33, SLIDINGWINDOW:4:15,
MINLEN:70) and then merged using pear (v0.9.10) [117, 118]. Merged
reads matching the ribosomal rRNA were removed with SortMeRNA (v2.1)
[119]. A custom database was created from genome sequences of all the
bacterial strains used in this study. All the genome sequences in FASTA
format were downloaded from the NCBI genome database. For
consistency all the genomes were re-annotated using Prokka (v1.12)
and the 16S rRNA gene copy numbers for individual strains were
identified using the barrnap (v0.9) tool [109, 120]. The amino-acid
sequences from each strain were then combined to create a database
compatible with DIAMOND (v 0.9.22.123) using the makedb function
[121]. The ribosomal sequences depleted reads were annotated with
DIAMOND using blastx. The DIAMOND output files were further analysed
in R. The corresponding codes are available at (https://github.com/
mibwurrepo/Shetty_et_al_MDbMM16). The amino-acid sequences
obtained from genomes were also annotated using the KEGG databases
using the GhostKola tool for KEGG ortholog (KO) annotations [122].

Gut metabolic modules (GMMs). We did additional curation for the
metabolic modules from our previous study to incorporate further
refinements for the strains used in this study [20]. The curated GMMs

are available at the GitHub repository of this study (https://github.com/
mibwurrepo/Shetty_et_al_MDbMM16). We used counts per million nor-
malized KO abundances (cpm function in edgeR R package v3.24.3) for
profiling the metabolic modules using the omixer-rpmR R package (v0.3.1)
[123, 124]. The parameters for the rpm function in omixer-rpmR, were as
follows, score.estimator= “median”, contribute= 0.5, KO= 2, distribute=
NULL.

Niche overlap and trophic organization. A lower niche overlap (NO) would
suggest higher transcriptional niche segregation and vice-versa between
species. We used the NO index using the kernel density estimates
approached described by Mouillot et al. [125]. The function to calculate
niche overlap was adapted from here https://github.com/umr-marbec/
nicheoverlap/blob/master/nicheoverlap.R This niche-overlap index is non-
parametric and assumes no normality in trait values. We used the GMM
framework in which we used metabolic module expression as quantitative
traits for calculation of niche-overlap index. A schematic figure depicting
the calculation approach is shown in Supplementary Fig. S16. We
calculated pairwise niche overlap using the species GMM trait abundances
for each of the time points separately as the area of overlap between the
density distributions of traits. For every pair of species, we removed traits
that did not sum up to 50 counts. We also excluded GMM traits for central
metabolism such as glycolysis and the pentose phosphate pathway among
others and used only those associated with degradation, consumption or
production. A list of GMMs and classification of trophic levels in provided
in the Supplementary Table S2.

DATA AVAILABILITY
All necessary information to reproduce the analysis and figures is available at the
GitHub repository (https://github.com/mibwurrepo/Shetty_et_al_MDbMM16) and
Supplementary Notes. Metabolites data are available here https://github.com/
mibwurrepo/Shetty_et_al_MDbMM16/blob/master/data/metabolites_hplc_mdbmm.
csv. Custom R functions used for analysis and generating figures are available as a
research compendium R package, syncomR (https://github.com/microsud/syncomR).
The raw 16S rRNA amplicon sequencing and metatranscriptomics data are available
at ENA under the study accession number PRJEB46578.
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