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APPLE MOTS: Detection, Segmentation and
Tracking of Homogeneous Objects using MOTS*

Stefan de Jong', Hilmy Baja!?, Karsjen Tamminga! and Jodo Valente'

Abstract—Current multi object tracking and segmentation
(MOTS) methods made great progress for the simultaneous detec-
tion and tracking of heterogeneous objects like cars and pedes-
trians. Nevertheless, all of these scenes consisted of dissimilar
objects, which are easier to track than homogeneous and smaller
objects, as those are more similar in appearance. Therefore, this
is the first paper that explores the implementation of MOTS
algorithms for the simultaneous detection and tracking of homo-
geneous objects. Towards this end, video data was acquired in an
apple orchard using a wearable camera and unmanned aerial ve-
hicles (UAV). The dataset, called APPLE MOTS, contains almost
86000 manually annotated apple masks and is the first public
dataset in which apple instances are temporally consistent la-
belled across frames. Implementation of the MOTS architectures
called TrackR-CNN and PointTrack indicates that they could
be suitable for the joint detection (MOTSP: 80.4) and tracking
(sSMOTSA: 38.7, MOTSA: 52.9) of apples. This paper exposes the
challenge of tracking homogeneous objects due to their similar
shape and colour while detection performance remains state-of-
the-art. The APPLE MOTS code (https://git.wur.nl/said-lab/rt-obj-
tracking) and datasets (https://doi.org/10.5281/zenodo.5939726)
have been released to support the scientific community.

Index Terms—Object Detection, Segmentation and Catego-
rization; Agricultural Automation; Robotics and Automation in
Agriculture and Forestry; Deep Learning Methods

I. INTRODUCTION

N recent years, major improvements have been made in

the field of deep learning and in particular object detection.
Therefore, there are many recent deep learning breakthroughs
that have become current state-of-the-art deep learning frame-
works, e.g. MaskR-CNN [1] which is an extension of Faster
R-CNN [2], and You Only Look Once (YOLO) [3] are popular
methods. Nevertheless, tracking of objects remains a difficult
task, especially for segmentation purposes. Recent work in
the field of multi object tracking and segmentation (MOTS)
[4]-[6] made great progress on this topic by simultaneously
detecting and tracking heterogeneous objects on a pixel level.
Their research focused on the application of MOTS on tempo-
rally consistent scenes for cars and pedestrians. As an addition,
the scenes were crowded and challenging due to the many
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(c) Heterogeneous sample image
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Fig. 1: Sample image of APPLE MOTS (a) with corresponding
instance annotation (b) and KITTI MOTS sample image (c)
with corresponding instance annotation (d).

occlusions. Nevertheless, all of these scenes consisted of dis-
similar objects (heterogeneous) which are easier to track than
homogeneous objects, as those are more similar in appearance
in terms of shape and colour (Figure 1).

So far, no previous deep learning-based studies were done
for applying MOTS on homogeneous scenes, as difficulty
increases in terms of detection and tracking. Therefore, there
is a need to explore the ability to detect and track instance
segmentation masks for homogeneous object scenes. Typical
homogeneous object scenes can be found in agriculture, espe-
cially in the field of orchard management, consisting of large
orchards with homogeneous fruits (e.g. low-hanging fruits like
pears, apples, mangoes, and berries). Specifically, apples are
one of the most widely farmed fruits in the world, taking
over five million hectares of planting space in the world
with a yield around 83 million tonnes in 2017 [7]. In apple
orchards, yield is commonly estimated in the flowering stage
or the mature stage, with the former by counting the flowers,
and the latter by counting the apples [8]. This technique
is mostly done manually. However, manual yield estimation
is labour-intensive and inaccurate. The techniques often rely
on extrapolating data from a select number of trees, which
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might not be an accurate representation for the whole orchard.
Accurate yield estimation is beneficial to improve fruit quality,
making better decisions on harvesting, calculating required
labour for efficiency and reduce operating costs by optimizing
storage facilities and packaging logistics [9].

A few challenging problems which arises in yield estimation
are the difficulties (1) to detect low-hanging fruits due to
complex and occluded fruits, (2) to track fruits in order to
avoid double counting and (3) to perform on site decision-
making. The framework of MOTS can be used to solve
these problems, as it provides both instance segmentation with
tracking. Next to that, MOTS methods show the possibility
of applying near real-time image processing and counting of
apples. Common issues like disk space, processing time and
uploading time will be potentially resolved with near real-
time processing and therefore enable rapid decision-making
on site. A speed evaluation is also added in the results to show
the feasibility of applying these algorithms for near real-time
processing. Overall, this paper explores the possibility of using
MOTS for homogeneous objects like apples in order to obtain
improvements in future yield estimation of low-hanging fruits.

For heterogeneous scenes, benchmark datasets like KITTI
MOTS [4] and Apollo MOTS [10] were constructed to facil-
itate the research of multi object tracking and segmentation.
Moreover, efforts were made to construct benchmark datasets
for homogeneous objects like apples and mangoes [11], [12].
Nevertheless, these datasets do only contain bounding boxes
or segmentation masks without having temporal consistent
information with them. Hence, there is also a lack of suitable
datasets in order to perform multi object tracking and seg-
mentation on homogeneous scenes. To summarize, this paper
builds a suitable dataset and subsequently provides results on
the first attempt to use MOTS for the simultaneous detection,
segmentation and tracking of homogeneous objects like apples.
Therefore, we make the following contributions:

o We construct and provide APPLE MOTS, the first pub-
lic dataset in which apple instances are labelled across
frames with temporal consistency. This dataset contains
almost 86000 manually annotated apple masks which is
32% larger than the Apollo MOTS and KITTI MOTS
datasets;

« We explore the possibilities to apply MOTS on homoge-
neous scenes, in specific low-hanging fruits (apples);

« We propose new tracking branches (Kalman filter and
Optical Flow) to existing MOTS models to validate its
performance on tracking apples.

II. RELATED WORK

Homogeneous object detection. For homogeneous object
scenes (and especially fruits) multiple researches and datasets
were constructed with the objective of detecting fruits on the
canopy of trees, for example apples [13]-[15], citrus [16],
strawberries [17], mangoes [18] and blueberries [19]. The
MangoYOLO [18] dataset tests detection on several object
detection architectures such as YOLOv3 [3] and MaskR-CNN
[1] with their own re-design of YOLO.

The fruit datasets mentioned above cannot be used within
MOTS as those datasets consist of random images which lack

temporal information. Moreover, solely using object detection
(without tracking) will cause many repetitions, which will lead
to non-precise yield information for the farmer.

Heterogeneous MOT. For the task of multi-object tracking
(MOT) with object detection, the research community has
shown a very large interest in tracking heterogeneous objects
like cars and pedestrians in urban settings, due to research of
autonomous driving technology. Numerous MOT algorithms
have been developed utilizing various methods to improve
tracking and detection of these objects [20]-[22], which are
benchmarked on various datasets. DeepSORT [20] is a MOT
tracker that makes use of FasterRCNN [2] to generate de-
tections. The datasets that are commonly benchmarked on
new MOT algorithms are, among others, the KITTI [23],
MOTChallenge [24], ApolloScape [25], and UA-DETRAC
[26] dataset. These datasets are annotated with bounding
boxes, so they lacks per-pixel accuracy provided by instance
segmentation tasks, causing lower performance in localization
of fruits.

Heterogeneous MOTS. As a solution to previously men-
tioned problems with detection and tracking methods, re-
cent developments in computer vision like MOTS attempt to
track objects across frames by having an end-to-end trainable
network sharing useful information over the whole pipeline.
Currently, this is only tested for pedestrians and cars. The first
proposed method that addresses the aspects of the MOTS task
is called TrackR-CNN [4]. TrackR-CNN consists of two steps,
object detection, fulfilled by the MaskR-CNN algorithm, and
tracking fulfilled by a tracking mechanism. 3D convolutions
were added to the feature maps of the ResNet-101 backbone.
The extra dimension, time, was included with the features in
order to augment them with temporal context. The second
proposed method is PointTrack [5]. Its object detection is
fulfilled by SpatialEmbedding [27], and tracking by associ-
ation of instance embeddings. Currently, there are multiple
MOTS datasets that are used to benchmark MOTS algorithms.
Most of these datasets are extensions of MOT datasets, which
include among others, KITTI MOTS and MOTSChallenge
[4], Apollo MOTS [10], and CityScapes [28]. These datasets
emphasize tracking and detection of heterogeneous objects in
urban scenes. Thus far, there is a lack of a MOTS dataset that
is suitable in homogeneous scenes (like agriculture).

III. METHOD
A. Data acquisition

Data acquisition was conducted in an apple orchard of Wa-
geningen Plant Research for Flower bulbs, Nursery stock and
Fruits in Randwijk (Netherlands, 51°56°19.3”N 5°42°24 4”E).
Three different varieties of apples were grown, Elstar, Jon-
agold and Junami. By using a novel wearable sensor platform,
DIJI Matrice 210 RTK V2 (UAV) and Parrot Anafi (UAV)
(see Figure 2) videos of the orchard plots were acquired. All
systems were able to acquire videos at a frame rate between
25-30 FPS. Different acquisition strategies were applied by
acquiring videos at a height of 2-3m within or next to the
apple rows. The field work was done on four different days,
spread over 1.5 month, to acquire video under different light
conditions.
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(a) Wearable Sensor Platform. The
system components of the wearable
sensor platform (a) are: 1) front cam-
era, 2) side cameras, 3) customized
helmet, 4) headphone to receive sound
signals and 5) numpad to send com-
mands or enter data.

Fig. 2: Overview of the platforms used during our research.

B. Dataset construction

Due to the fact that MOTS were not studied before within
orchard research, there was a lack of suitable datasets where
apple instances were labelled across frames. The annotation
tool CVAT was used for the annotation of apples across the
frames, having a resolution of 1296x972. CVAT is developed
by Intel and has powerful features like interpolation and
tracking of objects between frames to decrease the annotation
time. The same annotation procedure that was used for the
MinneApple dataset [11] was applied. This procedure com-
prises the labelling of both fully and partially visible fruits in
the trees, while ignoring fruits in background trees or on the
ground. In total, nine datasets were annotated in 5-6 weeks. Six
datasets were used for training and three for testing. This lead
to an image data split of 70% for training and 30% for testing.
Two train datasets were acquired by the wearable sensor and
four by the Parrot Anafi. Moreover, two test datasets were
acquired by both UAVs and one was acquired using the

Image
Features

Image
Features

PE:

Temporally Enhanced
Image Features

Fig. 3: An image acquired from the Parrot Anafi UAV with
an added gray overlay, the so-called ignore region. The ignore
region is added on top of visible background apples that may
be detected as false positives.

wearable sensor platform. Our dataset called APPLE MOTS
has a substantial dimension of almost 86000 manual annotated
masks (see Figure 1 for sample image). The masks are divided
over 1673 frames and consist of 2304 unique apple instances.
In accordance with the KITTI dataset [23], the so-called ignore
regions are added to the APPLE MOTS test datasets to make
sure that unlabelled apples in the background do not get
detected as false positives. An example is shown in Figure
3. The extent of this dataset makes this dataset suitable for
current computer vision tasks. As an addition, it is currently
one of the largest publicly available orchard datasets.

C. TrackR-CNN implementation

One of the MOTS architectures used in this research was
TrackR-CNN, which consisted of three core features: training
(with addition of extra tracking branches), forwarding and
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Fig. 4: TrackR-CNN architecture. Differences to Mask R-CNN architecture are highlighted in yellow.
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tuning. An overview of TrackR-CNN’s architecture can be
found in Figure 4.

Training. The best performing model from the research of
Voigtlaender et al. [4] is used as a starting point. This baseline
model used two stacked 3D convolutions as its temporal
component and data association with learned embeddings. As
an addition, the MaskR-CNN of the TrackR-CNN algorithm
used the pre-trained weights of COCO and Mapillary. This
method, called transfer learning, migrated the knowledge
learned from the COCO and Mapillary dataset to the target
dataset. Likewise, the association head was fine-tuned by using
the initialized weights of the KITTI MOTS dataset. The model
was trained using an Adam optimizer with a learning rate
of 5x1077. A batch size of 8 and 40 epochs was used as a
starting point for our dataset according to Voigtlaender et al.
[4]. Different batch size and epochs were applied to find the
optimal value for the dataset in order to avoid overfitting.

Kalman Filter. To improve the tracking capabilities of the
algorithm, a linear velocity Kalman filter [29] was imple-
mented, which replaces the association head for the tracking
step. The Kalman filter is invoked on the bounding box track-
ing mechanism using Euclidean distance, due to the inability
of mask prediction using the Kalman filter. The estimation
model is shown as follows:

x:[xlaxZaylvyZ] (1)

where x; and xp is the coordinate for the top left point
of the bounding box, and y; and y; is the bottom right
coordinate of the bounding box. The bounding boxes are then
associated to a target instance mask, which will be updated
based on subsequent detections in the sequence. If there are
no detections associated to a state, then the next position is
predicted using the linear velocity model.

Optical Flow. Mask warping is a promising approach to
associate masks over the sequence. Mask propagation scores
are calculated with images of flow estimations. In accordance

Foreground 2D Pointcloud Sample

Instance
Segmentation

Environ;nent 2D
Pointcloud

cate-

—

Position Encoding

to the methods of [4], the optical flow estimation of all pairs
of adjacent frames are calculated with the model of PWC-Net
[30].

Forwarding. After training, the training dataset was for-
warded and tracked. This means that the network was eval-
uated on the given training datasets and created a tracking
output with all images and their corresponding detections.

Tuning. In order to increase the detection and tracking
performance of the model, the parameters were fine-tuned
by making use of a random search of 1000 iterations. Sub-
sequently, the best detection and tracking parameters were
defined for the training dataset and evaluated (using the
evaluation metrics) on the test dataset.

D. PointTrack Implementation

The other MOTS architecture used in this research was
PointTrack [5]. The implementation consists of two steps:
1) instance segmentation model training, and 2) PointTrack
training. An overview of PointTrack’s architecture is shown in
Figure 5. How the implementation differs from TrackR-CNN
is depicted in the flowchart, shown in Figure 6.

Instance segmentation training. Before training the in-
stance segmentation model, spatial embedding [27] mask crops
are generated. It is done by selecting masks that are considered
unique, then subsequently parsing them as an image and
instance PNG. Out of the 62899 apple masks in the train
datasets, there are a total of 26631 generated mask crops.
Considering one apple is around 30-50 pixels wide, each
mask crop has a size of 80x80 pixels to fully encapsulate the
apple and its surroundings. Two models were trained on the
segmentation network, a model pre-trained on the weights of
KITTI MOTS (transfer learning) and a model trained from
scratch. The network was trained with a learning rate of
5x1073 with an Adam optimizer. It was trained with a batch
of 20 mask crops and 400 epochs. Consequently, the trained

@: Avg. Pooling

@: Max. Pooling

Mp: Pposition Embedding

ME : Environment Embedding

: E i1 Multi Layer Perceptron
M:

Final Instance Embedding

Fig. 5: PointTrack architecture.
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Fig. 6: Flowchart showing the implementation of TrackR-CNN
(along with the Optical Flow and Kalman Filter method) and
PointTrack.

network is fine-tuned with weights from larger mask crops
(160x160) to let the model learn the surrounding features of
the masks. The fine-tuning trained with a learning rate of
5x107% and 1200 epochs.

PointTrack training. In this step, the PointTrack network
will learn the embeddings (critical points) obtained from the
instance segmentations and assign association weights to help
in tracking and reducing ID switches (IDS). The PointTrack
training is similar to the instance segmentation training. Pre-
trained weights of KITTI MOTS are used with a training of
100 epochs and a batch size of 64.

E. Evaluation

To assess the performance of the algorithms, different eval-
uation metrics were implemented. Three evaluation measures
were used, the multi-object tracking and segmentation accu-
racy (MOTSA), the multi-object tracking and segmentation
precision (MOTSP) and the soft multi-object tracking and
segmentation accuracy (SMOTSA). They were calculated as
follows:

|TP| —|FP|—|IDS|

MOTSA = 2)

M|

P
MOTSP = — 3)

| TP|

TP—|FP|—|IDS

sMOTSA = [FPI = |IDS] 4

M|

where:

TP  True positives, number of hypothesized masks
mapped to a ground truth mask (where IOU> 0.5).
TP  Soft true positives, sum of the IOU of all true

positives.
FP  False positives, number of hypothesized masks that
are not mapped to any ground truth mask.
ID switches, ground truth mask whose former ground
truth mask (t-1) was tracked with a different id.
M The number of ground truth masks.

IDS

IV. RESULTS
A. Detection

Table I shows the performance of the model of our test set of
APPLE MOTS. The highest metrics are highlighted in bold.
For the task of detection, the MOTSP does not show much
variation between all the methods. The model with the highest
MOTSP is PointTrack trained with KITTI MOTS weights.

B. Tracking

The results show that the model with the best tracking
metrics (SMOTSA and MOTSA) is the PointTrack model,
outperforming the the TrackR-CNN models by 3-5%. On
the other hand, the ID switches of PointTrack outperformed
TrackR-CNN by almost three times. The tracking metrics for
the Kalman filter and mask warping were the worst performing
ones.

C. Speed

The speed column in Table I shows the time it takes
to process the detection, segmentation and tracking of each
frame. The speed results show a significant difference between
the two algorithms used. The models of TrackR-CNN and
PointTrack have a difference of a factor of 40, with the latter
being considerably faster due to the usage of SpatialEmbed-
ding [27] for instance segmentation.

D. Discussion, limitations and outlook

TrackR-CNN models results. Table I shows the best
performing TrackR-CNN model. In the case of apples, the
bounding box tracking method managed to outperform the
association head tracking. These results differ from those of
Voigtlaender et al. [4]. In their research, the bounding box
tracking method gave lower sMOTSA and MOTSA values
(2-4%). This difference might be attributed to the different
object type tracked. APPLE MOTS is a dataset with homoge-
neous objects, compared to KITTI MOTS (cars, pedestrians)
a dataset with heterogeneous objects, as such is much easier
used for re-identification. Objectively, there are many factors
that differentiates KITTI MOTS and APPLE MOTS, which
does not make this a straightforward comparison. However, it
is a comparison that still needs to be made due to the lack of
research on homogeneous MOTS objects. On the other hand,
the tracking results of the Kalman filter and mask warping
on TrackR-CNN are inaccurate. The Kalman filter had such
results due to the bounding box predictions not being able to
properly match the assigned apple mask instances, resulting
in low IoU scores, hence low tracking scores. Further, the
mask warping calculations from the APPLE MOTS dataset
using PWC-Net [30] returned very inaccurate optical flow
images, due to individual apples not being detected in the flow
estimation. The leaves and apple occlusions hindered the flow
estimation to detect the apple contours and motion boundaries,
hence resulting in inaccurate tracking metrics.

PointTrack models results. Table I shows that both of the
PointTrack models achieved slightly lower tracking metrics
than the TrackR-CNN model, 3% to 6% lower, which is
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(b) Ignore regions that censor the unlabeled apples

Fig. 7: Image showing how PointTrack is able to detect
background apples quite well, despite them not being labeled
in the current iteration of the APPLE MOTS dataset.

unexpected considering PointTrack is the more state-of-the-
art algorithm. However, PointTrack makes it up with slightly
higher MOTSP and a much better IDS. Inspecting the results
qualitatively, it is shown in Figure 7 that PointTrack is able
to detect many small unlabeled apples in the background,
which in turn is detrimental to the tracking performance. This
potentially confirms that PointTrack is better than TrackR-
CNN in detecting smaller objects. Comparing both PointTrack
models, the model trained from scratch has higher tracking
metrics (sSMOTSA and MOTSA) by 4-5%.

Results of models with ignore region. With the purpose of
eliminating the possibility of false positives in the detection
of all models, ignore regions in the form of overlays were
added to the background apples of the testing datasets of
APPLE MOTS. This technique is also present in the latest
iteration of the KITTI [23] dataset, to reduce false positive
detections. Table I shows results of the models evaluated with
these ignore regions. The tracking metrics of the PointTrack
model improved by 6.9%, confirming our suspicion that Point-
Track had lower results due to many false positive detections.
TrackR-CNN’s model also improved slightly in sMOTSA and
MOTSP but not as much as PointTrack, which signifies that
it didn’t suffer that many false positive detections. Ultimately,

the tracking metrics of PointTrack’s model surpasses TrackR-
CNN'’s model by 5.1%, while also achieving a 64.6% decrease
in IDS.

ID assignment. A qualitative visual analysis was done on
the detection results, it is found that both MOTS algorithms
suffer from the algorithm reusing IDs throughout the sequence,
as emphasized in Figure 8. Figure 8 (a) shows the same apple
being assigned to ID number 29, 42 and 7 in consecutive
frames, moreover, (d) shows another single apple assigned to
two different ID numbers, 30 and 14. The models of both
algorithms struggled to differentiate unique apples through
the sequence, leading to extreme cases where one apple ID
is assigned to 9 different apples. These high amount of ID
switches (see Table I) resulted in a negative numerator for
SMOTSA and MOTSA and therefore a negative metric.

Speed. Currently, TrackR-CNN has a processing speed
of 0.2 FPS when forwarding the detections. Meanwhile, on
the same machine, PointTrack demonstrates more efficient
processing by attaining a speed of 7.8 FPS on average.
A possible solution to speed up the process could be to

frame n+1 frame n+2

(c)

(d)

Fig. 8: Comparison of consecutive frames n of the model
results on APPLE MOTS. (a) & (c) shows PointTrack results
and (b) & (d) shows TrackR-CNN results on the test dataset.

Table I: Performance of the models on the test dataset. One PointTrack model is trained from KITTI MOTS weights (transfer

learning) and the other model is trained from scratch.

Method Speed (FPS)

sMOTSA MOTSA MOTSP

ID switches (IDS)

TrackR-CNN (Bounding box) 0.20 34.8 46.8 80.4 1427
TrackR-CNN + Kalman Filter 0.20 -9.7 1.4 79.3 11949
TrackR-CNN + Mask Warping and Optical Flow 0.21 -13.2 -2.9 80.7 11735
PointTrack (KITTI MOTS weights) 7.81 28.9 41.2 81.7 349
PointTrack (Scratch) 7.81 31.8 46.0 80.0 469
TrackR-CNN with ignore regions 0.20 35.7 47.8 80.4 1480
PointTrack with ignore regions 7.81 38.7 529 80.0 524
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(a) Annotated ground truth

(b) Result TrackR-CNN

Fig. 9: Image of the wearable sensor platform test set con-
taining the ground truth (a) and TrackR-CNN output (b). The
white rectangles highlight the missing predictions.

downsize the image. Nevertheless, this is at the expense of
detection accuracy, as apples will also be downsized to a lower
resolution.

Detection performance. Figure 9 shows one example frame
from the wearable sensor platform. Most predicted masks
correspond correctly to the ground truth. However, the white
rectangles in the predicted output of TrackR-CNN highlight
some areas where predicted masks are not matching the ground
truth masks. The corresponding apples are occluded by leaves
or branches and therefore difficult to detect for the algo-
rithm. Nevertheless, the detection performance of all meth-
ods (MOTSP) shows comparable results with Voigtlaender et
al. [4]. A slightly lower detection performance is achieved
compared to the car class (85.1) and slightly better than the
pedestrian class (75.6). Hence, it reflects the suitability of
using both TrackR-CNN and PointTrack for the detection of
homogeneous objects even though, the apple annotations had
a diameter of only 30-50 pixels in a challenging scene (occlu-
sions). Compared to the resolution of the image (1296x972)
this is rather small.

Challenges in tracking homogeneous objects. The results
from this letter show that tracking fruits using the MOTS
current 2D state-of-the-art method, PointTrack, outperforms
the baseline method of TrackR-CNN in terms of performance.
Due to a lack of comparable datasets (homogeneous MOTS),
the evaluation metrics can only be compared to existing
MOTS datasets from previous literature (cars and pedestrians,
compared to apples). Therefore, it might be argued that the
lower tracking performance is related to the object class,
especially due to the heterogeneity and larger objects of car
and pedestrians compared to homogeneity and smaller apples.
Therefore, further research into tracking homogeneous objects
should be done. This impairs that currently little is known
about implementation of MOTS in orchard research, as this is
the first research that implements MOTS in that setting.

Limitations. A major limitation of the MOTS technique
is that it only takes into account the detection and tracking
of apples from one side. One should be aware that double
counting of apples can still appear if apples are visible from

opposite sites. In the long term it is therefore of interest to not
only detect and track the apples accurately but also to compare
this information with the actual amount of apples within the
tree. A prediction model would then be helpful to translate
the detected amount of apples to the total number of apples
within an orchard [31].

V. CONCLUSION

This research constructed and provided APPLE MOTS, with
almost 86000 manual annotated masks, the first public dataset
where apple instances are labelled across frames. State-of-the-
art algorithms (MOTS) were implemented and tested on the
APPLE MOTS dataset to validate the feasibility of detection
and tracking of homogeneous objects in agriculture (apples).
The task of tracking homogeneous objects is difficult, despite
pixel-wise segmentation of the objects. It can be argued that
the small size of the apples (~30-50 pixels wide per seg-
mentation) and the homogeneous nature of the objects make
the tracking way more challenging than larger heterogeneous
objects like cars and pedestrians. Nevertheless, with evaluation
results of a baseline and a state-of-the-art MOTS algorithm,
we present a new powerful tool for the detection and tracking
of fruits. By making the data and code used in this research
publicly available, it can serve as a foundation for further
research regarding the implementation of MOTS in agricul-
tural scenes (dataset: https://doi.org/10.5281/zenodo.5939726,
code: https://git.wur.nl/said-lab/rt-obj-tracking).
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