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Designing a monitoring program for aflatoxin B1 in feed
products using machine learning
X. Wang 1, Y. Bouzembrak 2, A. G. J. M. Oude Lansink1 and H. J. van der Fels-Klerx 1,2✉

Agricultural commodities used for feed and food production are frequently contaminated with mycotoxins, such as Aflatoxin B1
(AFB1). In Europe, both the government and companies have monitoring programs in place for the presence of AFB1. With limited
resources and following risk-based monitoring as prescribed in EU Regulation 2017/625, these monitoring programs focus on
batches with the highest probability of being contaminated. This study explored the use of machine learning algorithms (ML) to
design risk-based monitoring programs for AFB1 in feed products, considering both monitoring cost and model performance.
Historical monitoring data for the presence of AFB1 in feed products (2005–2018; 5605 records in total) were used. Four different
ML algorithms, including Decision tree, Logistic regression, Support vector machine and Extreme gradient boosting (XGB), were
applied and compared to predict the high-risk feed batches to be considered for further AFB1 sampling and analysis. The
monitoring cost included the cost of: sampling and analysis, disease burden, storage, and of recalling and destroying contaminated
feed batches. The ML algorithms were able to predict the high-risk batches, with an AUC, recall, and accuracy higher than 0.8, 0.6,
and 0.9, respectively. The XGB algorithm outperformed the other three investigated ML. Its incorporation would result into up to
96% reduction in monitoring cost in 2016–2018, as compared to the official monitoring program. The proposed approach for
designing risk based monitoring programs can support authorities and industries to reduce the monitoring cost for other food
safety hazards as well.
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INTRODUCTION
The Food and Agriculture Organization (FAO) estimated that 25%
of global food crops are contaminated with mycotoxins1.
Recently, the prevalence of the mycotoxins detected in food
and feed crops was reported to be up to 60–80%2. Aflatoxins are
the major ones among all mycotoxins and produced by Aspergillus
spp. upon and after infection of crops. They are genotoxic and
carcinogenic to animals and humans3–6. From the different
aflatoxins, aflatoxin B1 (AFB1) is found most often in agricultural
commodities used for feed and food production, like peanuts,
maize, and rice, in particular in tropical and subtropical regions.
AFB1 causes adverse health effects, such as liver cancer7. When
AFB1 is present in the feed of dairy cows and digested, it converts
to aflatoxin M1 (AFM1), which is excreted in the milk. Long-term
exposure to aflatoxin M1, for example through consumption of
contaminated dairy products, can lead to DNA damage, cancer or
immunosuppression in humans, and large doses can even lead to
acute poisoning7,8. To keep animal and human exposure of AFB1
as low as possible, many countries worldwide have set maximum
(legal) limits for its presence in feed and food9,10. Next to the
impact on human and animal health, the presence of AFB1 in feed
or its ingredients above the maximum legal limits can lead to
major economic losses, for example due to extra testing, recall,
downgrading or destruction11,12.
In Europe, the European Commission (EC) No. 574/2011 has set

maximum limits for the presence of AFB1 in feed13 and has
defined sampling and analysis (S&A) procedures for AFB1
monitoring in Regulation (EC) No 401/2006 of 23 February
200614. In addition, procedures for official food safety control
have been set by Regulation (EC) No 882/2004 and Regulation
(EU) 2017/625, stating that Member States should establish and

implement control programs for contaminants in feed and food
materials and derived products. The latter regulation implies risk-
based control programs, i.e., feed batches that present a high-risk
of AFB1 non-compliance-, should be collected and analyzed15,16.
Food safety authorities and companies generally want to ensure

a low probability of contamination in feed, while limiting the
resources for AFB1 monitoring17. Thus, the optimal monitoring
(sampling and analysis) program should be risk-based, that is,
focused on monitoring only high-risk batches to limit monitoring
resources, or to increase the probability of detection of high-risk
batches with a given set of resources.
Previous studies have explored the two above-mentioned

aspects related to AFB1 monitoring, mainly aimed at the potential
for risk-based monitoring in the EU and the cost-effectiveness of
S&A procedures. Van der Fels-Klerx, et al.18 used descriptive
statistical analyses—focusing on the occurrence of AFB1 in
different feed products - to prioritize feed products for AFB1
monitoring. Furthermore, Van der Fels-Klerx, et al.19 developed a
model to prioritize individual feed ingredients for AFB1 monitor-
ing, according to the impact of their contamination on animal and
human health. Focker, et al.17 estimated the cost-effectiveness of
several S&A methods for AFB1 monitoring in the maize chain.
Wang et al.20 optimized the S&A monitoring plan for multiple
chemicals, including dioxins and aflatoxins, along the dairy chain
to reduce potential public health impacts. The models for risk-
based monitoring are highly valuable for prioritizing feed or food
products for AFB1 monitoring. The cost-effectiveness S&A
approach can help to reduce the cost while meeting the required
monitoring effectiveness, or to improve the monitoring effective-
ness with given resources.
However, to date, risk-based monitoring and cost-effectiveness

monitoring have been studied separately. The combination of
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these two approaches could help in designing a risk-based
monitoring program while limiting the monitoring resources.
To date, only a few studies have investigated machine learning

(ML) methods for risk-based monitoring. ML has been widely
used in other fields such as food science and medical science21–26

suggesting ML modeling might also be helpful for addressing the
task of AFB1 prediction27. What’s more, most of these studies
apply ML accuracy-based criteria (such as accuracy, recall, and
area under the receiver operating characteristic curve (AUC)) to
evaluate the ML model, while few studies use non-accuracy-
based criteria (such as monitoring cost). For many commercial
applications of ML models, accuracy is not the primary goal of the
model (Kuhn & Johnson, 2013). In the case of AFB1 monitoring,
the primary goal of the ML model might be to reduce monitoring
costs while still meeting accuracy-based predictive criteria.
Predictive accuracy is important, it describes how well the model
predicts the real life situations (i.e., correct or not), while the
criterium—of quantifying the consequences (i.e., associated cost)
of correct and incorrect model predictions—monitoring costs in
this case—should also be considered. For example, for the correct
prediction of contaminated batches, there is a quantifiable
benefit to catching these “flagged” feed batches. Likewise, for
incorrect prediction of uncontaminated batches, there are cost of
the recall and health losses due to “unflagged” contaminated
batches entering the food supply chain and finally being used for
human consumption. The objective of this study was to explore
the potential of machine learning algorithms (ML) to design a

risk-based food safety monitoring program for AFB1 in feed
products considering both monitoring cost and model perfor-
mance. This study contributes to the literature by being
combining risk-based and cost-effectiveness monitoring. It is also
innovative since it integrates an economic dimension (i.e., cost-
effectiveness) with accuracy-based criteria, in the evaluation of
the ML model performance.

RESULTS
ML module
Table 1 presents a few examples of the ML model validation
results, including predicted status and actual status of a feed
batch, of whether or not the presence of AFB1 in the feed batch
was compliant to the EC legal limit, given the input information
related to the feed batches. In the first row, for example, given the
month number is 3, the product is groundnuts, the product group
is pulses, the origin country is China, and the analysis country is
the Netherlands, the ML model predicted the feed batch as high-
risk of AFB1 non-compliance; in line with the actual status. In the
second row, the ML model predicted a high-risk as well, which was
not in line with the actual status of the feed batch.
Figure 1a shows the model performance of four different ML

algorithms using default parameter settings. The average AUC,
recall, precision, and accuracy were around 0.7, 0.3, 0.4, and 1,
respectively. The recall score did not meet the model requirement
of 0.8, meaning the model could not identify at least 80% of the

Table 1. Examples of ML model validation results.

Month Product Product subgroup Product group Country of origin Country of analysis Above or below legal limits

Actual result Predicted result

3 Groundnuts/Peanuts Groundnut/Peanut Pulses CN NL 1 1

3 Groundnuts/Peanuts Groundnut/Peanut Pulses BR NL 0 1

12 Soya Beans, Extracted Soya Bean Oil Bearing Seeds AR AR 0 0

Results consist information (month, product name, product subgroup/group, country of origin, country of analysis) and predicted status and actual status of a
feed batch (whether or not the presence of AFB1 in the feed batch was compliant to the EC legal limit).

Fig. 1 Model performance for four different algorithms (including Extreme gradient boosting (XGB), Decision tree (DT), Logistic
regression (LR), and Support vector machine (SVM)), with default parameter settings (a) and with tuned parameter settings (b).
Default_LR, Default_SVM, Default_DT, and Default_XGB represent ML algorithms using default parameter settings. Tuning_LR, Tuning_SVM,
Tuning_DT, and Tuning_XGB represent ML algorithms using tuned parameter settings. AUC_train, AUC_validation, and AUC_test, represent
AUC score on train, validation, and test dataset. Recall_train, Recall_validation, and Recall_test, represent recall score on train, validation, and
test dataset. Precision_train, Precision_validation, and Precision_test, represent precision score on train, validation, and test dataset.
Accuracy_train, Accuracy_validation, and Accuracy_test, represent accuracy score on train, validation, and test dataset.
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contaminated feed batches. Figure 1b shows the model perfor-
mance of ML algorithms with tuned parameter settings. The AUC,
recall, precision, and accuracy were around 0.9, 1, 0.1, and 0.9,
respectively. Compared to the default settings, the recall score
increased, meaning the ML model could identify a higher
percentage of the non-compliant batches, but the precision score
and accuracy decreased, meaning the ML model misclassified
more compliant batches as non-compliant. Hence, a trade-off
occurs between precision and recall score when changing the
parameter settings28. The XGB algorithm (with tuned parameters)
outperformed the other three ML algorithms, showing the highest
AUC (0.99), recall (1), precision (0.3), and accuracy (0.98) (Fig. 1b).
Since the threshold for identifying non-compliant samples was set
at 80%, LR algorithms resulting in a recall score of around 0.7 were
excluded.

Cost of the monitoring program
Figure 2 shows the cost of the designed monitoring program—
using different ML algorithms—calculated by formulas (1) to (4).
The XGB algorithm (with tuned parameters) resulted in the lowest
monitoring cost (121,488 EUR) and the highest monitoring cost
reduction (97%) as compared to the other three ML algorithms.
Thus, the XGB algorithm was the best performing ML algorithm
considering both monitoring cost and model performance (in
section of ML module). Figure 2 shows the percentage of
monitoring cost reduction using different ML algorithms. Applying
the DT and XGB algorithm for the designed monitoring plan
resulted in lower monitoring cost (cost reduction of around 270%
for the train, test, and validation dataset in total) as compared to
the current monitoring plan. In contrast, applying the LR and SVM
algorithm resulted in higher monitoring cost. This indicates that
comparing and choosing the best performing algorithm for the
predictive model is necessary, especially when the goal of the
predictive model is not only prediction accuracy but also its
practical application. Thus adding non-accuracy-based criteria
(monitoring cost in this case) is recommended when designing a
predictive model.

Application of the monitoring plan using 2016–2018 dataset
Figure 3 shows the model performance of different ML algorithms
for predicting high-risk batches using the dataset of 2016–2018
(external validation results). The XGB model consistently showed

the best performance using internal model validation (Fig. 1b) and
external validation (Fig. 3). This outcome confirmed that the
selection of the XGB model (tuned) for the designed monitoring
was stable and reliable with an AUC of 0.98, recall of 1, precision of
0.04, and accuracy of 0.97. Although the LR algorithm resulted in a

Fig. 2 The cost of the designed monitoring program (a) and the percentage of cost reduction (b) using four different machine learning
algorithms (including Extreme gradient boosting (XGB), Decision tree (DT), Logistic regression (LR), and Support vector machine (SVM)),
each with default and tuned model parameters. Default_LR, Default_SVM, Default_DT, and Default_XGB represent ML algorithms using
default parameter settings. Tuning_LR, Tuning_SVM, Tuning_DT, and Tuning_XGB represent ML algorithms using tuned parameter settings.
AUC_train, AUC_validation, and AUC_test, represent AUC score on train, validation, and test dataset. Cost_train, Cost_validation, and
Cost_test, represent monitoring cost on train, validation, and test dataset. Cost_train_reduction, Cost_validation_reduction, and
Cost_test_reduction, represent monitoring cost reduction on train, validation, and test dataset.

Fig. 3 Model performance for four different machine learning
algorithms (including Extreme gradient boosting (XGB), Decision
tree (DT), Logistic regression (LR), and Support vector machine
(SVM)), with default and tuned parameters settings, using the
2016–2018 dataset. Default_LR, Default_SVM, Default_DT, and
Default_XGB represent ML algorithms using default parameter
settings. Tuning_LR, Tuning_SVM, Tuning_DT, and Tuning_XGB
represent ML algorithms using tuned parameter settings.
AUC_2016_2018 represent AUC score on 2016–2018 dataset.
Recall_2016_2018 represent recall score on 2016–2018 dataset.
Precision_2016_2018 represent precision score on 2016–2018
dataset. Accuracy_2016_2018 represent accuracy score on
2016–2018 dataset.
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similar performance (Fig. 3), it had low recall and AUC scores
(Fig. 1b), which means the LR algorithm performed well for the
2016–2018 data by chance.
Table 2 presents a few examples of external validation results of

the best performing ML model (XGB) using the 2016–2018
dataset. Only some of the predicted high-risk batches are
presented in this Table since these are the batches of highest
concern to stakeholders. For the feed material of groundnuts (with
an EC legal limit of 0.02 mg/kg), feed batches with the features of
analysis month of 1, 3, 7, and 9; country of origin China, India, and

Argentina, and country of analysis the Netherlands, were
predicted to be at high-risk of AFB1 non-compliance. For the
feed material of maize (with a legal limit of 0.02 mg/kg), feed
batches with the analysis month of 2 and 3, and country of origin
Ukrain and country of analysis the Netherlands were predicted as
high-risk as well. Out of the total of 239 feed batches, 238 batches
were compliant and one batch was non-compliant. Result shows
that 16 batches predicted to be high-risk AFB1 batches. From
these, only one batch was in line with the actual status, i.e.,
detected as being non-compliant.
Table 3 presents the top ten features that had the highest

feature importance. Among all the feed materials, rice bran,
groundnuts, barley, and coconut were the ones with the highest
feature importance. Among all the countries of origin, feed
materials coming from Hungary and the United States of America
had the highest feature importance.

Monitoring cost. Table 4 presents the estimated cost of the
official AFB1 monitoring program and the designed monitoring
program (using the XGB algorithm) for feed products in
2016–2018. Among all the 841 feed batches, 25 batches were
predicted to be high-risk batches of being non-compliant
(TP+ FP), and 816 batches were predicted to be compliant
(TN+ FN). In the official control program, a total of 841 feed
batches were flagged for S&A. Out of these, only one batch had an
AFB1 concentration exceeding the legal limit. The total cost for the
monitoring program was estimated at 925100 euros. In the
designed optimal monitoring program, using the best performing
ML algorithm, only 25 high-risk feed batches were flagged for S&A,
at a cost of 32300 euros, achieving a monitoring cost reduction of
96% (at least 82% per year).

DISCUSSION
This study explored the potential of using ML algorithms for the
design of a risk-based monitoring program for AFB1 in feed,
considering the monitoring cost and model performance as
evaluation criteria. To our knowledge, to date, monitoring cost has
not yet been used as non-accuracy-based criteria in the evaluation
of the model performance for several ML algorithms. Another
innovative aspect of this study is that it uses the prediction
result of ML to design a risk-based monitoring program for
monitoring AFB1 in feed in a cost-effective way. This study
showed that ML algorithms were able to predict, with a high
prediction performance, which feed batches were most likely to
be contaminated with AFB1. The designed monitoring program
resulted in a large reduction of the monitoring cost by focusing
S&A on high-risk batches only: cost were estimated to be up to
96% lower than the costs of the official monitoring program in
2016–2018. These saved resources could be applied for additional
random testing of feed batches to identify the AFB1 prevalence or,

Table 2. Examples of the predicted high-risk batches using the best performing ML algorithm for 2016–2018.

Month Product Product subgroup Product group Country of origin Country of analysisa Above or below legal limits

Actual result Predicted result

1 Groundnuts/Peanuts Groundnut/Peanut Pulses IN NL 0 1

7 Groundnuts/Peanuts Groundnut/Peanut Pulses CN NL 0 1

9 Groundnuts/Peanuts Groundnut/Peanut Pulses AR NL 0 1

3 Groundnuts/Peanuts Groundnut/Peanut Pulses CN NL 1 1

2 Maize Maize Grains UA NL 0 1

3 Maize Maize Grains UA NL 0 1

aThe country of analysis is not always NL, but the batches analyzed in NL were being predicted as high-risk batches.

Table 3. Ten most important features of the selected ML model, with
the features ranked based on their respective score, and the score
representing the importance of an feature contributing to the
construction of the XGB model.

Features Score of feature importance

Product: Rice 0.080

Product group: Groundnut/Peanut 0.067

Country of analysis: EG 0.044

Country of origin: HU 0.036

Country of origin: US 0.035

Product group: Palm kernel 0.034

Product: Barley 0.032

Country of analysis: NL 0.032

Product group: Coconut 0.031

Table 4. The estimated cost of the official monitoring program and
the designed monitoring program for AFB1 in feed in 2016–2018.

Monitoring
program of
2016–2018

Total
number of
samples

ML model
prediction result

Total
cost (euro)

Calculation

Designed 841 TP 1 32300 Eqs. (1–4)

FP 24

TN 816

FNa 0

Officialb 841 NANb NAN 925100 Eq. (5)

aTP represents an actual non-compliant batch that was predicted as non-
compliant. FP represents a compliant batch that was predicted to be non-
compliant, TN represents an actual compliant batch that was predicted as
compliant. FN represents an actual non-compliant batch that was
predicted as compliant.
bNo predictive model was performed.
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given related data are available, to monitor other food safety
hazards in various foods.
The finding that ML algorithms are able to predict the high-risk

batches is in line with earlier studies of Bouzembrak and van der
Fels-Klerx (2017) and Bouzembrak and Marvin (2019). These
studies used Bayesian network modeling to predict whether
various food safety hazards had high probabilities to be present in
the particular feed or food product. ML modeling approaches can
learn these patterns from historical food safety monitoring data to
identify food safety risks. Our finding is also consistent with an
earlier study that applied an ML approach (deep neural network),
using weather and cropping system factors as input variables, to
predict whether maize is contaminated with AFB1 and fumoni-
sin27. In each of these three studies, one ML algorithm was
applied, and only accuracy-based criteria were used to evaluate
model performance. Kuhn and Johnson29 states that non-
accuracy-based criteria is necessary to take into account for many
commercial applications of ML models, because accuracy is not
the primary goal of the model. Our research compared four
different ML algorithms, and used both non-accuracy-based
criteria (monitoring cost) and accuracy-based criteria (AUC, recall,
and accuracy) for model evaluation. In our case, XGB out-
performed the other algorithms, but this may be different with
other datasets involving different costs. Thus, it remains necessary
to compare various ML algorithms to select the ML algorithm with
the best performance when designing a predictive model, as also
concluded by Wang et al.26.
In addition, our approach use the prediction result of ML to design

a risk-based monitoring program for monitoring AFB1 in feed in a
cost-effective way. In contrast to Focker et al.17, our study focused on
predicting high-risk batches (applying the S&A strategy for one batch
in line with Regulation (EU) No. 401/2006), whereas Focker et al.17

focused on designing a cost-effective S&A strategy for one batch of
feed material (maize in their case) to reduce the monitoring cost. To
design a full monitoring program and to further reduce costs, both
approaches should be combined. That is, first the high-risk batches
should be predicted (to determine which batches should be
monitored), and then the S&A strategy of Focker et al.17 for one
batch should be applied (to determine how many samples to collect
from one batch and which analytical method to use). Our approach
also builds upon the work of Wang et al.20, who considered the
reduction of disease burden when designing a model for feed
industry to optimize the number of samples for monitoring
aflatoxins. Their study estimated the impact of AFB1 contaminated
feed batches on human health by estimating the loss of quality and
quantity of life due to exposure to AFB1 via dairy milk consumption.
Based on their research, our study further estimated the cost related
to the loss of quality and quantity of life due to contaminated feed.
The monitoring cost was estimated from the perspective of feed

factory, and the monitoring cost included in this study consisted
of the costs of S&A for the tested feed batches, as well as the
recall-related costs and the human disease burden costs of
contaminated feed batches. Although there is no official regula-
tion that states that the disease burden should be considered by
feed industry, the European commission (EC) has set legal
maximum limits for the presence of chemicals in food and animal
feed products to protect human health via exposure to food safety
hazards via food consumption. Since feed industries need to
comply to this regulation, reducing the disease burden is implicitly
considered. We assumed that the monitoring program was
applied at a certain control point in the feed supply chain, being
the moment that feed materials move from the trader to the feed
company. This means the program was focused on monitoring
feed material rather than monitoring compound feed. In practice,
this control point at entry of the feed production is the most
important one. In addition, we assumed a batch size of 100 tonne
for one batch of feed materials. According to Regulation (EU) No
401/2006, the large batch should be subdivided into sub-batches

(EU, 2010b) with weights in the range of 50–500 tonnes. Our
assumed volume for one batch is within the range of such a sub-
batch, and represents a regular batch size in the Netherlands17.
Following Eqs. (1)–(5), changing the assumed weight per batch
will change the monitoring cost, but will not affect the percentage
of monitoring cost reduction. Furthermore, when having the S&A
in a batch of 100 tonnes unprocessed feed materials, the
measurement uncertainty and analytical variance were not
considered in this study for sake of simplicity. In order to decide
whether the batch was compliant with Regulation (EC) No. 181/
2006, the result given by the analytical method, or the mean of
the results in case of analysing multiple aliquots, was considered.
Regulation No. 401/2006 suggests to take into account the
measurement uncertainty when deciding if a batch is compliant or
not. If the result is above the limit but the limit is within the
uncertainty range, or if the mean result is below the limit and the
limit is within the uncertainty range, the batch can be accepted
(EU, 2010b). The variance of a sampling and analysis procedure
was calculated as the sum of the variance due to the sample
collection, the sample preparation, and the analysis of the sample
(Whitaker, 2003). These two factors could slightly affect the test
result of the sample/batch when the AFB1 concentration in feed is
close to the legal limit (Whitaker, 2003).
We designed an risk based monitoring program for feed industry,

but this monitoring program can also be applied by food safety
authorities as long as the recall-related cost are not taken into
account. If the monitoring program designed in the current study
would be applied in practice, fewer batches would be collected and
analyzed for the presence of AFB1. This would generate fewer
historical monitoring records over time, in particular fewer records of
compliant feed material batches. If the designed model would be
applied going forward, each time using the latest historical
monitoring results, the prediction performance of the ML model
would decrease over time. The reason is in that only the predicted
non-compliant batches are collected and analyzed for the presence of
AFB1 (have S&A), and only these analytical results are stored in the
historical monitoring dataset. In the short run (next few years), the
effect on the ML model’s performance is expected to be small, since
the historical monitoring data are usually highly unbalanced between
compliant records and non-compliant records, i.e., the data contain a
small number of non-compliant records and a large number of
compliant records. In the long run, this could results into biased
model performance due to fewer data used for modeling when no
additional samples are collected. It is therefore recommended to add
random sampling to the designed monitoring plan. That means
samples are not only collected from the predicted non-compliant
batches (TP+ FP), but also additional samples are randomly collected
from the predicted compliant batches (TN+ FN). In this way, the
annual monitoring data set could be more balanced.
The ML module was designed based on factors that can

influence the presence of AFB1 and compliance to legal limits.
Other factors such as weather conditions and agronomy might
also influence the presence of AFB1 in feed materials (Camardo
Leggieri et al.27; Kos et al.30; Leggieri et al.31; Munkvold32; Palumbo
et al.33; Van der Fels-Klerx et al.18). For example, the probability of
AFB1 contamination of a particular feed material from one
exporting country might be affected by weather conditions (e.g.,
drought and/or flood) in that country, that vary over the years. A
next research step could be to extend AFB1 monitoring models
with data on weather conditions and possibly also other factors.
In conclusion, this study explored the potential of machine

learning (ML) algorithms in designing a risk-based monitoring
program for AFB1 contamination in feed materials, considering
both monitoring cost and model performance. Our results showed
that ML algorithms were able to predict the high-risk batches,
given batch related conditions. The XGB algorithm outperformed
the other ML algorithms under evaluation (Decision tree, Logistic
regression, Support vector machine) based on a combination of
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non-accuracy-based (monitoring cost) and performance-based
evaluation criteria (accuracy, recall, AUC). The findings of this study
provide insights into the use of non-accuracy-based criteria to
evaluate ML model performance in real-life applications. The study
showed the designed monitoring program could greatly reduce
AFB1 monitoring cost. Based on the official monitoring program in
the Netherlands in the year 2016–2018, the monitoring cost could
be reduced by up to 96% (at least 82% per year). Authorities and
industries could use the designed monitoring program to focus
S&A on the high-risk feed batches and reduce the monitoring cost.

METHOD
AFB1 monitoring
A simplified feed supply chain was assumed consisting of the following
stages (Fig. 4): feed materials are sold by the trader to the feed factories.
Feed factories produce compound feed by mixing and processing different
raw materials. The compound feed enters the dairy farms, where it is
consumed by dairy cows that produce dairy milk. After processing, the milk
is sold as the final product for human consumption. In accordance to
practice, the monitoring point for AFB1 was set prior to feed material entry
the feed factories, as the presence of AFB1 in feed products is to a large
extent determined by its presence in raw materials17.
A risk-based AFB1 monitoring program was designed combining a

machine learning (ML) module and an economic module. The ML module
was used to predict high-risk feed batches, i.e., with a presence of AFB1
exceeding EU maximum legal limits, as set by European Commission (EC)

No. 574/2011. The economic module aimed to estimate the cost of the
monitoring program from the perspective of the feed industry. These two
modules are described below.

Data
The risk-based monitoring program was designed based on of historical
monitoring data from the official AFB1 control program (4492 records)
and private industry monitoring (1113 records) in the period 2005–2018
(5605 records in total). Most of the monitoring data represented the test
results of S&A in the period 2005–2018 following Regulation (EC) No 401/
2006. All samples were independent samples and analyzed once for the
presence of AfB1. The monitoring records were retrieved from the Quality
of Agricultural Products (KAP) database.
Table 5 presents some example records from the dataset with the

information related to sample ID, date of sampling, product name, product
subgroup, product group, hazard, country of origin, country of analysis,
and the determined concentration of AFB1. We assumed that the
monitoring information contained in one record represented the informa-
tion of one feed batch, i.e., 5003 records represented 5003 batches.
The monitoring data were used in both the ML and the economic

module. Data from the years 2005 to 2015 were used to train and test the
ML algorithms to predict the high-risk batches and to estimate the
monitoring cost. In this step, the ML algorithm with the best prediction
performance and lowest monitoring cost was selected for the design of
the monitoring program. Data from the year 2016–2018 were used to test
the designed monitoring program, and to compare the costs of the current
and the newly designed monitoring programs.

Table 5. Example records from the dataset for the AFB1 monitoring program. Records consist the information related to sample ID, date of sampling,
product name, product subgroup/group, specific food safety hazard, country of origin, country of analysis, and the determined concentration of one
specific hazard.

Id Date
sampling

Product name Product
subgroup

Product group Hazard Country
of origin

Country of
analysisa

Concentration

2953 8/3/2005 Sunflower Seed Sunflower Oil Bearing Seeds Aflatoxin B1 AR NL 0.004mg/kg

35792 4/21/2008 Maize Maize Grains Aflatoxin B1 BR NL 0.008mg/kg

aFeed batches were analyzed in NL and other countries.

Fig. 5 The development of the machine learning module, consisting of a data pre-processing part and a model construction part.

Fig. 4 A simplified feed supply chain. The monitoring point along the feed supply chain for AFB1 was set prior to feed material entry feed
factories.
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Machine learning module
The ML module was used to predict which feed batches had a high-risk of
AFB1 non-compliance to EC legal limits using different ML algorithms. The
predictive ability was defined as the effectiveness of the ML module to
identify non-compliant feed batches. A minimal threshold of 80% was set for
the effectiveness, meaning at least 80% of the non-compliant feed batches,
i.e., with an AFB1 concentration above the respective ML, should be identified.
This means the recall score of the ML model should be higher than 80%. In
this AFB1 monitoring program, due to the low number of uncompliant
samples (33 in total in the dataset), the value of monitoring effectiveness is set
at 80%. This value can be set higher in different monitoring cases.
In the ML module, four algorithms were applied: Extreme gradient

boosting (XGB), Decision tree (DT), Logistic regression (LR), and Support
vector machine (SVM). A detailed explanation of these algorithms can be
found in Géron34. The different types of information related to feed
material batches (e.g., country of origin, country of analysis, product group,
and month of sampling) were incorporated as model input variables, and
compliance with the legislation limit (yes/no) was used as the output
variable. The prediction results of the ML algorithms included the number
of true positive (TP), true negative (TN), false positive (FP), and false
negative (FN) batches. TP represents an actual non-compliant batch that
was predicted as non-compliant. FP represents a compliant batch that was
predicted to be non-compliant, TN represents an actual compliant batch
that was predicted as compliant. FN represents an actual non-compliant
batch that was predicted as compliant. Evaluation metrics for model
performance, including AUC, recall, precision, and accuracy, were used to
evaluate the predictive performance of the four different ML algorithms.
AUC computes the area under the receiver operating characteristic (ROC)
curve. ROC curve, is a graphical plot that illustrates the performance of a
binary classifier system. It is created by plotting the fraction of true
positives out of the positives (true positive rate) vs. the fraction of false
positives out of the negatives (false positive rate), at various threshold
settings. The recall is the ratio TP/(TP+ FN). The recall is intuitively the
ability of the classifier to find all the positive samples. The precision is the
ratio TP/(TP+ FP). The precision is intuitively the ability of the classifier not
to label as positive a sample that is negative. The accuracy is the ratio
(TP+ TN)/(TP+ FP+ TN+ FN). The accuracy is intuitively the ability of the
classifier to label a sample that strictly matches with the reality. Figure 5
shows the development of the ML module, consisting of a data pre-
processing part and a model construction part. The data pre-processing
part included:

● Data cleaning: inconsistencies in the data (e.g., in the naming of
batches) were corrected.

● Feature design: the output variable (i.e., whether the concentration of
AFB1 in a feed batch was above or below the EC legal limit of 0.02mg/
kg) was added manually.

● Variable selection: Sampling month, feed product, feed product
subgroup, feed product group, country of origin, and country of
analysis were selected as input variables for ML.

The model construction part included:

● Data split: the entire data set spanning 2005–2015 was split randomly into
training (90% of all data) and testing (10%) data subsets used for internal
validation. Data of 2016–2018 were used for external validation.

● Model training and internal validation: the models’ parameters were
tuned to improve the models’ performance on the training dataset
using cross-validation (CV). Test data were used as internal validation
for testing the model performance. The model was run using the
default setting of these parameters, and then re-run using the tuned
parameters. Because the data were highly unbalanced, adjusting the
parameters is necessary to get a relatively better model performance.
The model with the best performance, using the four above-
mentioned evaluation metrics (accuracy, AUC, recall, and precision),
was selected to design the monitoring plan.

● External validation: the 2016–2018 dataset was used for external
validation. Feature importance was calculated, providing a score that
indicates how valuable each feature was in the construction of the
model35.

Economic module
To estimate the cost of the monitoring program, the monitoring cost was
calculated based on the predicted results of the feed batches (TP, FP, TN or
FN), and the costs of respective follow-up actions (Table 6). These follow-up
actions were: a) accept batch, b) store batch for further sampling and
analysis (S&A) (as prescribed by EU Regulation No. 401/2006, including the
number of samples collected from one batch, the analytical method used,
and the acceptance and rejection rules), or c) recall and destroy the unused
contaminated batch, and estimate the impact of already used contaminated
batch on human health. The costs related to the different follow-up actions
are presented in Table 7. The input parameter values related to costs were
collected based on scientific literature, open data and online news sources.

Cost of the designed monitoring program. Table 6 presents the different
follow-up actions following the prediction result. Batches predicted to be
non-compliant (TP and FP) were collected and analyzed (S&A) to verify the
contamination status; Ccolle and Canaly represented the costs for,
respectively, sampling and AFB1 analyses per tonne of feed material.
Pending the monitoring results, batches were stored at a cost (Cstor) of
0.96 €/t per day. The holding time was assumed to be two days. If the
batch was found to be non-compliant (TP), the feed factories rejected the
batch and returned it to the feed material trader, with no transport costs
for the feed factory. Instead, the cost for transport and delivery of a new

Table 6. Monitoring cost related to the classification decision of the ML model, and used as one of the criteria for ML selection.

Prediction result Definition of the
prediction result

Monitoring

Follow-up actions Costs components per
batcha

Explanation of the follow-up actions

True Positive Non-compliant batch
predicted to be non-
compliant

Sampling & Analysis Ccoll + Canaly + Cstor Sampling & Analysis and holding, followed by rejection of
the non-compliant feed batch to feed material traders

Storage

False Positive Compliant batch
predicted to be non-
compliant

Sampling & Analysis Ccoll + Canaly + Cstor Sampling & Analysis and holding, followed by acceptance
of the compliant batch

Storage

True Negative Compliant batch
predicted to be
compliant

Accept 0 Accept compliant batch

False Negative Non-compliant batch
predicted to be
compliant

Accept,
Recall, Destroy,
Replace, Estimate
disease burden

Precall * (Crecall+ Cdestr+
Cprice)*10+(1− Precall)*
Cburden

1. Accept based on prediction, or
2. Recall and other actions due to non-compliant feed batch
that is used to produce compound feed and found to be
contaminated later

aSee Table 7 for explanation of the cost component variables.
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batch were for the trader. If predicted to be compliant (FP), the feed
factories accepted this batch.
The total cost related to one TP or FP estimated batch was calculated by

the following equations:

TPcost ¼ Ccolle þ Canaly þ 2 ´ Cstor (1)

FPcost ¼ Ccolle þ Canaly þ 2 ´Cstor (2)

Batches predicted as compliant (TN and FN) were accepted by the feed
factories to produce compound feed, without undergoing AFB1 testing (no
S&A or storage costs). TN batches did not lead to any cost since there was no
S&A or contamination of compound feed. FN batches, however, led to a recall
and other costs. These FN batches, which were initially assumed to be
compliant, were assumed to be found to be AFB1 contaminated in the
compound feed in the consecutive downstream stage of the chain (dairy farm)
by other organizations, resulting into recall and related costs, or cost-related to
disease burden. We assumed one FN batch of a certain raw material (100
tonnes) was used to produce one batch of compound feed (1000 tonnes),
resulting in contamination of 10% of compound feed with a concentration of
AFB1 of 20 µg/kg. It was assumed that other organizations conduct regular
S&A at the second stage of the supply chain (from feed factories to dairy farm);
the cost of the regular checks are not considered by the feed factories; the
contaminated compound feed was 100% detected, which is an extreme
condition. Any unused contaminated compound feed at the dairy farm was
directly recalled, destroyed, and replaced. The already used contaminated
compound feed by the dairy farms resulted into disease burden cost due to
human health effects of AFM1 presence in dairy products. Precall represented
the recall percentage of contaminated compound feed—caused by one FN
batch that had not been used in the next stage of the chain, i.e., had not yet
been consumed by dairy cows. The costs included: Crecall the per batch cost to
recall the contaminated compound feed; Cdestr the per batch cost to destroy it,
and Cprice the per batch cost to replace it. 1−Precall represented the percentage
of consumed contaminated compound feed, from one FN batch. This led to
disease burden costs (Cburden), per FN batch, related to the impact on human
health. It was assumed that contaminated compound feed produced from the
FN batch. We assumed a 100,000 population who consumed dairy products
from this dairy supply chain during a period of one year. The resulting human
disease burden was expressed as disability-adjusted life years (DALYs),
indicating the loss of quality and quantity of life due to exposure to AFB1
via dairy consumption. DALYs caused by one FN batch (20 μg/kg AFB1 and
10% contamination) were calculated as 0.313 DALYs/100,000 population using
the model designed by Wang, et al.20. The estimated cost for one DALY was
99,000 EUR derived from RIVM (National Institute for Public Health and the
Environment https://www.rivm.nl/publicaties/disease-burden-of-food-related-
pathogens-in-netherlands-2018). Cburden caused by one FN batch was thus
calculated as 0.313 DALY * 99,000 Euro, equaling 30,987 EUR. The monitoring
cost for one FN batch was calculated using the following equation:

FNcost ¼ Precall ´ Crecallð þ Cdestr þ Cprice
�
´ 10þ 1ð � PrecallÞ ´Cburden (3)

The total cost of the monitoring program for AFB1 in feed was estimated
by the following equation:

TCdesi ¼ NFN ´ FNcost þ NTP ´ TPcost þ NFP ´ FPcost (4)

Where NFN, NTP, and NFP were the number of batches predicted to be FN,
TP, and FP, respectively.

Cost of current official monitoring. Available monitoring data represented
test results of S&A in the period 2005–2018. Most of the samples were
collected following Regulation (EC) No 401/2006. We assumed these data
represented the results of a national official monitoring program. The total
cost of the current official monitoring for AFB1 in feed was calculated by
the following equation:

TCcurr ¼ NFN þ NTP þ NFP þ NTNð Þ ´ Ccolle þ Canaly
� �

(5)

The percentage of cost reduction of the designed monitoring program
compared to the current official monitoring for AFB1 in feed was
calculated by the following equation:

Cost reduction ¼ TCcurr � TCdesið Þ=TCcurr (6)
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