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Chapter 1 

ASSESSING DIETARY INTAKE: WHY? 

Scurvy was a major cause of disability and mortality among long-distance sailors for decades 
[1]. In 1497, the Portuguese explorer Vasco da Gama led an expedition to India and reported 
that crew members with scurvy recovered days after eating fresh oranges. Yet, another 150 
years passed before scurvy was finally acknowledged as being caused by malnutrition [1].  

Fortunately, our understanding of how diet influences the human body evolved more rapidly 
during the past decades, and nutrient-related diseases considerably decreased. Accurate 
dietary assessment played an important role in these developments by generating 
quantitative information on the intake of foods, energy, and/or nutrients. The demand for 
quantitative information on dietary intake is still high, now more and more focusing on the 
exploration of diet-related determinants of today’s challenges such as obesity and (age-
related) non-communicable diseases (NCD) [2, 3]. For example, the world’s population is faced 
with a large prevalence of the cardiometabolic risk factors overweight [4], hypertension [5], 
hypercholesterolemia [6], all in the range of 40%, and/or hyperglycaemia, respectively [7], 
~10%, indicating the size of the current public health burden. 

Consequently, many studies nowadays focus on the identification of modifiable dietary 
factors affecting the development of obesity and NCD risk. Nutritional epidemiologists, 
for instance, focus on potential associations between dairy consumption and body weight 
development or diabetes risk using data from large observational cohort studies [8, 
9]. Dietary intake assessment is also an important component of dietary intervention 
studies. By modifying the consumption of a nutrient, food or diet in a controlled way 
and monitoring the potential impact on a selected health parameter, intervention studies 
are key to providing evidence on the actual causality of the role of a dietary component 
[10]. Dietary assessment is also performed by various national organisations to monitor 
the food and nutrient intake of the general population, which serves the formulation and 
evaluation of food policy [11]. Finally, a very important non-research-related application 
of dietary assessment is the healthcare setting, where it is used to prevent or treat 
diseases caused by malnutrition or disease-related malnutrition. Dietary assessment allows 
the healthcare professional to diagnose and provide feedback on nutritional status to the 

patient and to educate the patient to improve dietary habits. 

Page | 8 
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ASSESSING DIETARY INTAKE: HOW? 

Currently, self-report methods are the most commonly used dietary assessment methods in 
nutrition research. These can be generally divided in methods of recall and methods of real-
time recording, and are described more in detail below. 

METHODS OF RECALL 
In nutrition research 24-hour recalls and food frequency questionnaires are the most 
commonly used methods of recall. Methods of recall rely on an individual to recall, i.e., 
remember, all foods and drinks consumed during a previous time period. 

24-hour recall
The 24-hour recall (24hR) is an open-ended method to generate detailed information on all
foods and drinks consumed during the previous 24 hours, i.e., actual intake, usually starting
with breakfast on the previous day. On the individual level, data of two to three non-
consecutive 24hRs can be used to gain insight into the habitual intake of commonly consumed 
foods. More than three days are needed to sufficiently capture the day-to-day variation of a
variety of nutrients and foods that are episodically consumed, such as vitamin A, vitamin C,
cholesterol, and fish [12]. The required observation period for individuals with a stable food
pattern is usually shorter than the required observation period for individuals with a varied
food pattern due to less day-to-day variation. Traditionally, 24hRs were mostly carried out by
trained dietitians, either face-to-face or by telephone. In general, the interview can be
completed in approximately 30 minutes, whereas food coding by the dietitian requires
another 30-60 minutes. In research, dietitians perform the 24hRs according to the multiple-
pass method; a validated five-step method developed to systematically conduct 24hRs and
provides standardized questions and response options [13, 14]. Due to the workload related
to this method, it is expensive to use face-to-face or phone-based 24hRs, which limits its use
to small-scale studies. Fortunately, recent technological innovations led to the development
of various self-administered 24hR tools. The development process of these 24hR tools is
extensively described in literature [15-20] Obviously, it is of key importance that these new
tools are just as accurate as the dietitian-guided recalls. So far, validation studies of self-
administered recalls show promising results, but also clues for further improvement [21-28].

At the division of Human Nutrition and Health of Wageningen University, we also developed 
a self-administered web-based dietary 24hR tool, Compl-eat™ [28]. Contrary to the traditional 
method, this web-based tool is not guided by a research dietitian but self-completed by the 
respondent. Yet, comparable to the traditional 24hR, the web-based tool is based on the 

1



Chapter 1 

Page | 10 

multiple-pass method, ensuring proper guidance while reporting the consumed foods [13, 14]. 
Identical to the traditional 24hR, respondents are requested to report their dietary intake of 
the previous day, starting in the morning after waking up till the next morning. At 6.00 AM, 
the respondent receives an invite via e-mail to complete the recall; the invite remains effective 
until midnight that same day. Compl-eat™ contains an extensive food list based on the Dutch 
food composition table [29], including commonly used synonyms as well as previously entered 
foods and standard recipes. This food list is flexible and can be easily modified in order to be 
tailored to specific research questions or updated to include new food items. Consumed 
amounts can be reported in food item-specific commonly used household measures, standard 
portion sizes, or in grams/litres. Compl-eat™ also comprises a recipe module, which facilitates 
the reporting of a complete dish by selecting or modifying a standard recipe from the food 
list. In addition, the respondent has the option to enter all ingredients of an original recipe in 
combination with the consumption amount of the meal. Yield and retention factors, i.e., 
retained weight and nutrients after cooking, are automatically taken into account. 
Respondents also have the possibility to include notes to clarify their input. After each eating 
occasion, respondents receive prompts to report on commonly omitted foods, such as sugar 
and/or milk in coffee/tea, oils and fats used in the preparation of dishes, snacks/candies and 
fruits) [28]. Generally, all web-based 24hRs are checked by research dietitians for 
completeness, unusual portion sizes, and notes entered by the respondent. Identified errors 
and notes are processed according to a standardised protocol, using standard portion sizes 
and recipes. Respondents are not contacted for clarifications. Examples of errors include the 
report of 125 cups of coffee instead of one cup of 125 g. Notes may relate to a product 
consumed, but could not be identified in the food list. The computation module of Compl-
eat™ subsequently calculates food groups, energy and nutrient intakes. Respondents require 
on average 40-45 minutes to complete the web-based recall, which is 10-15 minutes more 
compared to the traditional 24hR method. However, the dietitians can process the recalls in 
5-10 minutes, whereas approximately 60-90 minutes are needed to complete the interview
and coding according to the traditional method.

Food frequency questionnaire 
A Food Frequency Questionnaire (FFQ) is a fixed-food list, with or without portion size 
descriptions, inquiring about the consumption frequency of foods and beverages over the past 
month, past three months, or past year, i.e., focussing on habitual rather than actual intake. 
FFQs can be interviewer-based and self-administered. In general, an extensive FFQ that 
addresses macronutrients and the majority of micronutrients can be completed in 
approximately 45 minutes. FFQs are primarily designed to rank respondents according to their 
intakes and not to estimate absolute intakes. Nevertheless, in the case of nutrients or foods 
with large day-to-day variability, such as fish or alcohol, an FFQ may be more accurate than 
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other methods also in terms of absolute intake. Important benefit of an FFQ is the efficiency 
of administration and processing. Several thousands of FFQs can easily be processed at once, 
and the output is relatively easy to convert to computer-ready data, making the FFQ a very 
practical method for use in large-scale studies, such as in cohort studies. However, in contrast 
to a recall or food record, the use of validated FFQs requires intensive preparation before it 
can be sent to the respondents. Food items that contribute most to the relevant energy and 
nutrient intakes in the target population need to be identified, and the FFQ needs to be 
validated (i.e., measures it what it is intended to measure), ideally using objective markers. 
However, due to the limited availability of such markers, as will be discussed later, and the 
associated costs, validation studies are often conducted using other self-reported dietary 
assessment methods as the reference method (e.g., 24hRs, food records) [30]. This is not 
optimal, as part of the measurement error is then correlated, which may lead to 
overestimation of the validity. All in all, the development of FFQs is a skilled task, time-
consuming, and expensive. Fortunately, also this research area substantially developed in 
terms of automatization during the past years [31-35]. 

Together with partners we developed the Dutch FFQ-TOOL™; a data-driven web-based 
computer system developed to generate and process tailored FFQs (i.e., for nutrients of 
interest and population under study) by standardized, reproducible, relatively fast and flexible 
procedures [35]. The FFQ-TOOL™ has three main functionalities, i.e., ‘selection of food items’, 
‘question generation’, and ‘nutrient and food calculations’. The selection of food items is a 
semi-automated process. The FFQ-TOOL™ uses data from the Dutch National Food 
Consumption Survey (DNFCS) [36] to tailor the FFQ to the nutrients and (Dutch) population of 
interest, which is comparable to the procedure used to develop paper-based FFQs. Generally, 
researchers aim to cover about 80% of the absolute intake level and 80% of the between-
person variability of each nutrient under study [37, 38]. The FFQ-TOOL™ indicates to which 
extent an item contributes to the total intake or the variation in intake for the nutrient(s) of 
interest for each aggregation level. Depending on the research question, the researcher 
subsequently selects the most suitable aggregation level and related food items. Thereafter, 
the selected food items are automatically translated to standard questions. Once the FFQ is 
completed, individual food(group) intake, and energy and nutrient intake is computed 
through the computation module of the FFQ-TOOL™, which is facilitated by attached (Dutch) 
food composition tables. 

In addition, we also developed the Eetscore™; a self-administered web-based screener to 
assess habitual diet quality during the previous month. In contrast to above-described method 
and tool, the Eetscore™ is a relatively short FFQ specifically developed to fulfil the demand for 
a shorter and less burdensome questionnaire. The Eetscore™ its primary aim is not to obtain 
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quantitative food or nutrient intakes, but to assess the individual’s diet quality. First a dietary 
index was developed that indicated diet quality, and in the second step a short FFQ was 
designed that covered the items of this index. The most recent version of the Eetscore™ is 
based on the Dutch Healthy Diet 2015-index (DHD15-index) [39]. The DHD15-index includes 
fifteen components, including vegetables, fruit, whole-grain products, legumes, nuts, dairy, 
fish, tea, fats and oils, coffee, red meat, processed meat, sweetened beverages and fruit juices, 
alcohol, and salt. For each component a respondent can score from 0 to 10. In addition to 
these 15 components of the DHD15-Index, the Eetscore™ comprises one additional 
component, i.e., the unhealthy choices component. This component was added based on the 
guidelines of the Netherlands Nutrition Centre aiming to get insight in dietary intake beyond 
the Dutch dietary guidelines [40]. The Eetscore™ can be completed in approximately 10-15 
minutes and therefore respondent and researcher burden as well as the associated costs are 
relatively low. The Eetscore™ also has an unique addition, the possibility to provide immediate 
personal dietary advice after submission of the questionnaire. However, the Eetscore™ can 
also be administered without the advice module, and solely used as screener. 
 

METHOD OF REAL-TIME MONITORING 
The food record is the most commonly used method of real-time monitoring in nutrition 
research. Individuals record all foods and drinks consumed throughout one or more days. 
 
Food record 
Food records are open-ended and generate detailed information, i.e., amount and type, on all 
foods and drinks consumed during the recording period. Similar to the 24hR, a one-day food 
record provides information on actual food and nutrient intake; two to three non-consecutive 
day food records provide information on the habitual intake of commonly consumed foods on 
the individual level. More days are needed to cover the nutrients and foods that are less 
commonly consumed, similar as for the 24HR [12]. The completion time of a one-day food 
record is approximately 30 minutes distributed over the day. In theory, multiple (i.e., 7 day) 
weighed food records are the most accurate self-reported dietary assessment method; the 
so-called “gold standard” [41]. In case of weighed food records, the respondent is instructed 
to weigh all foods and drinks consumed, ideally using scales with an accuracy up to 1 gram. 
Following a demonstration on the weighing and reporting of consumed foods (i.e., food type 
such as white bread vs. whole-wheat bread, food brands, recipe details) the respondent 
receives a simple notebook. A disadvantage of dietary records is that they are prone to 
reactivity bias, very intrusive for respondents, and also time-consuming and labour-intensive 
for dietitians due to the food coding of the notebooks. Weighed food records can be very 
useful in dietary studies, but not feasible for use in large-scale studies. The non-weighed food 
record largely follows the same procedure, but is less intrusive as food quantity is estimated, 
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using e.g., standard portion-sizes and household measures. Obviously, this procedure requires 
more of the dietitian in terms of the interpretation of the portion size estimates and is thus 
less precise compared to the weighed food record. Fortunately, also for the food record, 
technological inventions have led to promising innovations, including the use of mobile 
devices. Whereas the more basic apps still collect dietary intake data through descriptive text 
[42], other apps are also exploring the potential of before and after photography, which 
provides additional information on consumed portion sizes and potentially undocumented 
foods [43].

1
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TRUE VS. MEASURED DIET: SOURCES OF MEASUREMENT ERROR 
 
Studies exploring diet–disease associations often show inconsistent findings [44, 45]; varying 
from null associations, beneficial associations to adverse associations. Inconsistencies may 
relate to various factors, including study population (e.g., healthy vs. health-compromised 
population), variation in the exposure (e.g., population with high intakes of a certain food or 
nutrient vs. population with a low intake) or outcome (e.g., low vs. high prevalence of a certain 
disease) under study, the covariates considered (e.g. inadequate vs. satisfactory correction for 
confounders) or the applied statistical approach (which may affect statistical power to detect 
potential associations). Methodological issues related to the assessment of the exposure 
(dietary factors) are also commonly discussed. Indeed, it is indisputable that the above-
described methods have their limitations and introduce measurement error. This error can be 
both “intake-related”, reflecting the correlation between the error and true intake, and 
“person-specific”, indicating errors related to the respondent’s personal characteristics [46]. 
Besides, errors can be systematic or random [46]. To be more specific, a shared factor for all 
methods of recall, such as 24hR and FFQ, is its sensitivity to memory-related bias (Figure 1). 
Other shared sources of errors for these methods as well as the non-weighed food record 
include the inaccurate estimation of portion sizes and errors in food composition tables. An 
additional source of measurement error for FFQs is the large supply of newly available foods, 
which cannot be fully reflected in a fixed-food list. Additionally, reporting obtained through 
food records may be influenced by the fact that respondents are made aware of their habits 
while recording/collecting. To limit this specific source of error it is therefore important to 
emphasize that respondents should not change their food intake at the time of 
recording/collecting (i.e., reactivity bias).  
 
As all dietary assessment methods contain measurement error, it is important to understand 
the impact of these errors to correctly interpret nutritional outcomes. Random errors (e.g., 
day-to-day variation) decrease the precision of the assessment, they do not influence mean 
dietary intake but increase the variation in the population and may weaken (i.e., attenuate) 
the strength of the diet-disease association (although this also depends on the measurement 
error in the covariates) [12]. In contrast, systematic errors, such as systematic under- or 
overreporting, decrease the accuracy of the method resulting in an inaccurate mean intake. 
Yet, in contrast to random errors, the diet-disease association remains unaffected [12]. 
Validation studies are of extreme importance to gain insight into present measurement errors, 
especially after development of a new dietary assessment method and/or tool. The selection 
of an appropriate reference method is of special importance, where independent measures, 
such as recovery markers (discussed later), are preferred. A variety of statistical methods can 
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then be used to (partly) correct for measurement errors. Measurement error models can be 
used to calculate, for instance, validity coefficients and attenuation factors. Validity 
coefficients can be used to assess the loss of statistical power to detect a diet-disease 
association and to assess how well a method is able to rank participants according to their 
unknown true dietary intake. Validity coefficients of <0.20 are classified as poor, 0.20-0.49 as 
acceptable, and ≥0.50 as good [47]. Attenuation factors can be used to give insight in the 
extent to which diet-disease relations are attenuated by measurement error, e.g., using self-
report food intake data instead of true intake. In addition, attenuation factors can also be used 
to correct attenuated diet-disease associations assessed with that specific method. An 
attenuation factor closer to 1 means less attenuation, with 1 representing no attenuation at 
all [48].  

1
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INNOVATIONS 

It may be clear that each dietary assessment tool has its strengths and its weaknesses. Up to 
15-20 years ago, above presented methods were completely paper-pencil based, which
shifted more and more towards web-based throughout the past decade. The current pace of
technological development is very valuable to improve our methods, i.e., reduce sources of
error, increase user-friendliness, and decrease workload of dietitians and/or researchers.
Moreover, due to the absence of a dietitian/researcher, data obtained through web-based
tools are for instance expected to be less biased by socially desirable answers. Web-based
tools are also assumed to be less burdensome for the respondents as they can complete the
dietary assessment at a time that is convenient for them.

DIETARY ASSESSMENT APPS 
In addition to the web-based tools, many smartphone-based dietary assessment tools (apps) 
are being developed, enabled by the universal adoption of smartphones in the population. To 
illustrate, in 2019, 83% of Dutch citizens over 12 years used a smartphone with mobile internet 
outside the home [49], showing that apps provide the opportunity to enable real-time data 
collection at any location, at any time. Furthermore, research shows that respondents prefer 
to use dietary assessment apps over conventional dietary assessment methods [50]. 
Respondents are often familiar which such apps due to the high availability and popularity of 
commercial diet tracking apps (e.g., MyFitnessPal, Lifesum, Lose it!). However, publicly 
available apps have several limitations that make them unfit for research. The most important 
one being their unreliable food composition databases. The compilation procedures of these 
databases are non-standardized, non-documented, and users are often allowed to add foods 
to the database (i.e., user-compiled database), without any form of quality control [51], 
resulting in inaccurate nutrition calculations [52, 53]. Another disadvantage of publicly 
available apps is their purpose of weight management, i.e., they provide feedback on recorded 
intake which could result in adaptations of a user’s diet. However, in research, you often do 
not want participants to alter their diet as this could hamper estimates of habitual dietary 
intake and negatively affect results in e.g., cohort studies on diet-disease relationships [53, 
54].  

Still, apps have undeniable potential for use in dietary assessment and many research groups 
seized this opportunity which resulted in a variety of different dietary assessment apps. These 
apps can be roughly divided into text-based apps, i.e., traditional intake recording via fixed 
food list, and image-based apps, i.e., intake recording via images/pictures. However, to date, 
image-based apps still require manual coding of food items, as they remain unable to correctly 
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identify all food items and/or consumed amounts from images [50, 55]. Hence, text-based 
apps are currently predominantly used in nutrition research. There is only limited availability 
of fully automated and validated dietary assessment apps without feedback [42, 56, 57]. For 
an overview of currently available and validated apps that can be used for nutrition research 
see Table 1.  

Table 1. Overview of fully automated and validated dietary assessment research apps, without 
feedback, for adults 

App Country Method Population Referenc
e method 

First author, year 
[ref] 

e-12HR Spain Recall1 University students 
and staff (>18y) 

FFQ, food 
record 

Béjar, 2018 [58] 
Béjar, 2019 [59]  

e-CA Switzerland Food 
record 

Adults (20-60y) 24hRs Bucher Della Torre, 
2017 [60] 

e-DIA Australia Food 
record 

University students 
(19-24y) 

24hRs Rangan, 2015 [61] 
Rangan, 2016 [62] 

Eat and Track 
(EaT) 

Australia Food 
record 

Young adults (18-
30y) 

24hRs Wellard-Cole, 2019 
[63] 

PIQNIQ USA Food 
record2 

Adults (18-65y) 24hRs Blanchard, 2021 [64] 

Research Food 
Diary (RFD) 

Australia Food 
record 

University students 
and staff (>18y) 

24hRs Ambrosini, 2018 [65] 

1 e-12HR is only able to capture a selection of food groups. 
2 PIQNIQ can also be used as an image-assisted recall, i.e., respondent takes pictures of food intake throughout the day and 
reports intake the following day in the app. Yet, this is not an official 24hR but more a combination of a record and a recall. 

Strikingly, most validated research apps are based on the food record method. Although the 
food record method is not new, the reporting of food intake via an app is. Therefore, it is 
important that new dietary assessment apps are extensively validated, preferably against 
independent markers, before being applied in research. However, even after extensive 
validation, method-related errors remain such as reactivity bias [66, 67]. This is not the case 
for recalls, which emphasizes the need for validated recall-based apps [48]. Yet, no recall-
based apps exist except for one: the electronic 12-hour dietary recall app “e-12HR”. Although 
the e-12HR is well-validated, it is only able to capture the intake of certain food groups and 
not an entire diet [58, 59]. 

ECOLOGICAL MOMENTARY DIETARY ASSESSMENT 
The 12hR is a variant of the 24hR. Although 12hRs are already less reliant on memory, 12-
hours is still a long time period and memory-related bias remains. So why not go a step 
further? Apps have the major advantage of enabling (near) real-time assessment of dietary 
intake data [66, 68-70]. This method of real-time assessment is often used in behavioural and 
social sciences, and referred to as ecological momentary assessment (EMA); repeated real-
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time assessment of individual’s behaviour in their natural environment, where the ecological 
aspect focuses on the individual’s ‘real-world’ and the momentary aspect on the individual’s 
current or very recent state [70].  
 
First attempts to integrate EMA and dietary assessment approaches have resulted in two 
EMDA (i.e., ecological momentary dietary assessment) approaches: event-contingent EMDA 
and signal-contingent EMDA [71, 72]. Event-contingent EMDA is basically a mobile food 
record, where an eating occasion triggers the recording of what is being consumed. In 
contrast, with signal-contingent EMDA, individuals are prompted to report recent dietary 
intake. Although individuals are prompted to report dietary intake, signal-contingent EMDA 
does not allow for real-time dietary intake assessment. Yet, it does allow near real-time 
recording by using short recall intervals (e.g., past hour). The sampling scheme is determined 
by the researcher and can occur either at fixed times or at random times within a fixed time 
period; current signal-contingent EMDA methods all use a brief survey focussing on only part 
of an individual’s diet such as intake of specific foods or food groups (e.g., snacks, alcoholic 
beverages, fruits and vegetables) [71, 72].  
 
The Dutch ‘Snackimpuls app’ is currently the only signal-contingent EMDA method that is 
directly linked to a national food consumption database and is able to provide data on intake 
of energy, carbohydrates, fat, and protein. However, as the name already reveals, the 
Snackimpuls app only assesses intake of snacks (i.e., non-main meals) [73]. The other existing 
methods only assess frequency of consumption of certain foods [71]. Still, signal-contingent 
EMDA is very promising due to the possibility of (unannounced) sampling, short recall intervals 
(i.e., low reliance on memory), and limited reporting burden [72]. To optimize this method, 
some aspects warrant attention. First, the sampling scheme needs to be optimized to ensure 
coverage of a full day (i.e., actual intake) or three or more full days (i.e., habitual intake). 
Second, the surveying method to ensure individuals can record their entire dietary intake. 
Therefore, it is also important to ensure direct linkage to a trustworthy food composition 
database. Finally, extensive validation is essential to ensure the new method assesses what it 
is intended to assess, preferably against independent biomarkers. 
  

BIOMARKERS 
Biological markers for dietary intake are more objective than self-reported dietary intake 
methods, as they are not affected by memory, social desirability and/or errors in food 
composition tables [74, 75]. There are several well-validated nutritional biomarkers that can 
be used to assess the validity and accuracy of (new) dietary assessment methods. In general, 
two classes of biomarkers can be discerned: recovery biomarkers and concentration 
biomarkers.  
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Recovery biomarkers are based on the recovery of certain food compounds in urine, i.e., 
doubly labelled water (for metabolic rate and total energy expenditure), nitrogen (for total 
protein), potassium, and sodium. Recovery biomarkers are founded on the concept of the 
metabolic balance between intake and excretion over a fixed time period and are able to 
estimate absolute nutrient intakes [74]. Thus, excretion levels are highly correlated with 
intake (>0.80) [74, 76]. Although urinary sodium can be used to validate self-reported sodium 
intake, it is often not included in validation studies. Self-assessment of sodium intake is 
extremely difficult as intake is not only determined by sodium present in foods. Sodium is also 
added while cooking and while eating in very small amounts, making estimation of added 
sodium (or salt) nearly impossible [76].  

Concentration biomarkers are based on the correlation of certain food compounds or 
metabolites in e.g., the circulation and intake of corresponding foods or nutrients. Examples 
are carotenoids and polyunsaturated fatty acids (PUFA). These blood concentration levels 
show often lower correlations with intake (<0.60) than recovery markers, and can, therefore, 
not be used to estimate absolute levels of intake [74, 76]. Still, serum carotenoids and n-3 
PUFA can be used to assess the relative validity (i.e., ranking) for the intake of fruit/vegetables 
and fish, respectively [77-79].  
Unfortunately, currently not many biomarkers are available that can be used to validate self-
reported dietary intake. However, this field is developing rapidly and metabolomic techniques 
now provide a unique opportunity to measure up to thousands of metabolites at once, 
hopefully providing valuable information on the food metabolome using a variety of body 
tissues in the near future [76, 80]. 
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RATIONALE FOR THIS THESIS 
 

Due to innovations in technology the methods to assess dietary intake have improved 
regarding cost- and time-effectiveness, labour-intensiveness and respondent and researcher 
burden. However, novel tools still share various methodological problems with the traditional 
self-report methods. Some of these issues can be traced back to the original dietary 
assessment methodology, important examples being memory-related bias, social desirability 
bias, and reactivity bias (Figure 1). Although the implementation of technology decreased 
these sources of error, major issues remain. Therefore, it is important to not only innovate 
current methodologies but also explore new approaches. 
 

 
Memory-related bias 

 
Respondents struggle to accurately remember their food intake, i.e., they 
forget to report certain foods 

 
Reactivity bias 

 
Respondents may alter their food intake due to the awareness that they 
are being observed 

 
Social desirability bias 

 
Respondents reports higher intakes of healthy foods and a lower intake 
of unhealthy foods, or even omits unhealthy foods 
 

Figure 1. Most common sources of bias in dietary assessment 
 

The overarching objective of this thesis is, therefore, to develop a flexible smartphone-based 
EMDA tool that can be tailored to specific research objectives and to further explore the use 
of signal-contingent EMDA to collect detailed dietary intake data. A 2-hour reporting period 
would minimize the reliance on memory compared to the traditional 24hRs. The 2-hour 
reporting window was considered an optimum, avoiding ‘I did not consume anything’ 
responses when using shorter time-windows, and avoiding the higher memory-related and 
reporting burden using 24-hour time windows. Several steps were taken to reach this 
objective: 
 

1. To evaluate the accuracy of different portion size estimation aids (Chapter 2) 
 

2. To develop a smartphone-based dietary assessment tool ‘Traqq®’ (Chapter 3) 
 

3. Designing an extensive evaluation study that allows assessment of the validity, 
usability and perceived burden of the 2hR methodology (Chapter 4) 
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4. Validation of repeated 2hRs during one day to assess actual intake on specific days 
(Chapter 5) 
 

5. Evaluation of random 2hRs over a longer time period to assess habitual intake (Chapter 
6) 
 

6. Exploration of technological innovations with the potential to further improve current 
dietary assessment efforts (Chapter 7) 

 
The first two objectives relate to the development of the methodology and the smartphone-
based tool to apply the methodology. Portion size estimation is a vital part of dietary 
assessment as it allows quantification of reported food intake. The current dietary assessment 
tools make use of textual portion size descriptions (i.e., household measures, standard portion 
sizes) and estimation in grams. In Chapter 2, a pilot study was conducted to explore whether 
the use of image-based portion size estimation would result in more accurate portion size 
assessments. Chapter 3 describes the protocol that was used for the development of the 
smartphone-based tool. The objectives 3 to 5 relate to the evaluation and validation of the 
new EMA-based 2hR methodology. Chapter 4 describes the design of the extensive study that 
was conducted to thoroughly evaluate the new methodology. Results of this evaluation study 
are described chapters 5 and 6. Chapter 5 describes the results of the validation of repeated 
2hRs during one day for assessing actual intake, while Chapter 6 describes the results of the 
evaluation of random 2hRs over a longer time period for assessing habitual intake. After 
developing and evaluating both the tool and the new methodology, Chapter 7 explores 
technological innovations that could be applied to further improve current dietary assessment 
efforts, including the new tool. This chapter also discusses opportunities to further develop 
the tool(s) to not only measure dietary behaviours, but also positively influence them. Finally, 
in Chapter 8 the main findings of the different chapters are summarized and discussed in the 
context of existing literature. This chapter also includes lessons learned in combination with 
recommendations for future research and implications for research and practice.  
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ABSTRACT 

BACKGROUND 
Inaccurate self-report of portion sizes is a major cause of measurement error in dietary 
assessment. To reduce this error, different portion size estimation aids (PSEAs) have been 
developed, including food images (image based, IB-PSE) and textual descriptions of portion 
sizes (text-based, TB-PSE). We assessed the accuracy of portion size estimation by IB-PSE and 
TB-PSE. 

METHODS 
True intake of one lunch was ascertained in forty participants. Self-reported portion sizes were 
assessed after 2 and 24 hours by means of TB-PSE and IB-PSE, in random order. Wilcoxon’s 
tests were used to compare mean true intakes to reported intakes. Moreover, proportions of 
reported portion sizes within 10% and 25% of true intake were assessed. An adapted Bland-
Altman approach was used to assess agreement between true and reported portion sizes. 
Analyses were conducted for all foods and drinks combined and for predetermined food types. 

RESULTS 
No significant differences were observed between reported portion sizes at 2 and 24 hours 
after lunch. Combining median relative errors of all foods items resulted in an overall 0% error 
rate for TB-PSE and 6% error rate for IB-PSE. Comparing reported portion sizes within 10% 
(31% vs. 13%) and 25% (50% vs. 35%) of the true intake showed a better performance for TB-
PSE compared to IP-PSE, respectively. Bland-Altman plots indicated a higher agreement 
between reported and true intake for TB-PSE compared to IB-PSE. 

CONCLUSIONS 
Although the use of TB-PSE still results in measurement error, our results suggest a more 
accurate dietary intake assessment with TB-PSE than IB-PSE.  
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INTRODUCTION 

Accurate dietary assessment is essential in nutrition research. Although dietary intake is still 
often assessed using paper-pencil tools, i.e. food frequency questionnaires (FFQs), food 
records (FRs) and 24-hour recalls (24hRs), dietary assessment techniques have advanced 
rapidly in recent years. The last decade numerous valuable computer-based and web-based 
tools, mostly based on 24hRs and FFQs, have been developed [1-3]. More recently also 
different smartphone applications (i.e. apps), mostly based on FRs, have been developed to 
collect real-time dietary intake data [3, 4]. Important benefits of these new tools include that 
they are assumed to lower burden on both participant and researcher compared to traditional 
techniques [3-6]. 

A fundamental aspect of accurate dietary assessment is portion size estimation [6-8]. 
However, assessment of portion sizes is challenging and a major cause of error in dietary 
assessment [6, 9-11]. Difficulties occur while reporting previously consumed foods as well as 
when judging displayed foods [4, 11, 12]. The accuracy of portion size estimation is affected 
by various factors, including type of food and serving size [6, 10, 13]. Generally, single-unit 
foods (e.g. sliced bread, fruits) are more likely to be reported correctly compared to liquids or 
amorphous foods (e.g. pasta, lettuce) [4, 12, 14]. Another issue in portion size estimation is 
that large portions tend to be underestimated and small portions tend to be overestimated, 
which is also known as the ‘flat-slope phenomenon’ [11]. In addition, foods consumed in small 
portions (e.g. spreads) are likely to be estimated more accurately than large portions of foods 
[13].  

Portion size estimation aids (PSEAs) (e.g. images, referent objects, portion size suggestions) 
have been suggested to result in more accurate portion sizes estimates [15-17]. However, 
research indicates that these PSEAs still result in measurement error and that further 
optimization of PSEAs is needed [17], especially with respect to PSEAs that may be 
implemented in web-based and smartphone-based dietary assessment tools. The most 
commonly used PSEAs in web-based and smartphone-based tools are portion size suggestions 
(i.e. standard portion sizes and household measures), food images, and free entry of weight 
in grams [1]. As individuals fail to recognize the metric quantities of portion sizes, estimations 
in grams are usually inaccurate [18]. For this reason, participants tend to prefer the use of 
household measures rather than estimation in grams [17, 18]. Yet, inconsistent or vague 
descriptions of household measures may still result in measurement error, especially among 
individuals that are not frequently involved in meal preparation [18, 19]. Therefore, clear 
descriptions of the portion sizes are crucial [20].  
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To facilitate the estimation of portion sizes, several dietary assessment tools have 
included food images as visual aids, where individuals are requested to select the most 
comparable image with respect to the portion size consumed or displayed (i.e. image-
based portion size assessment or IB-PSE). Previous research indicates that IB-PSE is 
particularly influenced by three main elements, namely perception, conceptualization and 
memory [13]. Despite these elements of potential error, IB-PSE is suggested to be a useful 
aid to estimate portion sizes [14, 21-24]. However, there is only limited evidence on the 
reliability of IB-PSE in real-life situations [14, 19]. Up to now, the reliability of IB-PSE has 
mainly been examined by exposing participants to foods and food images simultaneously 
while focussing on perception and not conceptualization and memory [22-24]. More 
specifically, the majority of previous research only compared PSEAs to weighed portion 
sizes as a reference technique [12, 19, 21-24]. To the best of our knowledge, none of the 
previous studies examined the accuracy of portion size estimation using a combination of 
textual descriptions of household measures (e.g. spoons, cups, glasses), standard portion 
sizes (e.g. small, medium, large) and estimation in grams (i.e. for the purpose of this study 
referred to as text-based portion size estimation or TB-PSE) and IB-PSE.  

Therefore, the current study aimed to compare the accuracy of TB-PSE and IB-PSE. As we 
hypothesize that accuracy varies over different food types, accuracy of both PSEAs 
was examined for all foods and drinks combined and for specific food types. In addition, to 
gain a first insight in the effect of memory on the accuracy of the PSEAs, the portion 
sizes were reported after either 2 hours or 24 hours.
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METHODS 

PARTICIPANTS 
Participants were recruited through a convenience sampling method using a database of 
research volunteers of the division of Human Nutrition and Health of Wageningen University 
and Research (WUR), social media accounts of the division (i.e. Facebook and Twitter), and 
through posters. Eligible participants were Dutch speaking, not visually impaired, not 
participating in another dietary intervention study, not an employee of the division, and not 
having any formal training in the field of nutrition. In total, 40 participants aged 20-70 years 
old were included in this study that was conducted during a 2-week period in February 2018. 
Participants were stratified by sex and age to ensure equal distribution of these characteristics 
and randomly assigned to two groups. Participants were informed that the study focused on 
different digital methods to assess food intake. The true study purpose was not disclosed until 
the end of the study. Written informed consent was obtained from all participants.  

OVERALL STUDY DESIGN 
Participants were invited for one lunch at the study centre as part of the cross-over study and 
asked to complete two dietary questionnaires on a tablet or computer; 2 and 24 hours after 
lunch. The first group reported their food intake 2 hours after lunch by means of TB-PSE and 
24 hours after lunch by means of IB-PSE. The second group reported their intake with the two 
PSEAs in the opposite order. As previous studies suggest that the potential difficulty to 
accurately estimate portion size depends on the type of food, we offered a variety of 
commonly consumed food types in the Netherlands [7, 12-14] (Table 1).  

Table 1. Food items offered, by food type. 
Amorphous 

- Cheese 
- Crunchy muesli 
- Fruit salad 
- Scrambled eggs 
- Yogurt 

Liquids 
- Milk 
- Orange juice 
- Water 

Single-units 
- Bread slices 
- Bread rolls 

Spreads 
- Jam 
- Margarine 
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Each participant was provided with pre-weighed, ad libitum amounts of the food items. Each 
item was offered in a container without indication of the content. To minimize the effect of 
tableware on portion size estimation [25], the participants received a variety of tableware. 
After lunch, plate waste was weighed to assess true intake of each food item. Weights were 
taken with ‘Sartorius Signum 1’ calibrated weighing scales. True intake was calculated by the 
following formula:  

True intake (g) = Pre-weighed food item (g) – Plate waste food item (g) 

PORTION SIZE ASSESSMENT 

For the purpose of this study, a TB-PSE and IB-PSE questionnaire was developed in Qualtrics 
(Qualtrics, Provo, UT, USA). The question formulation and portion size estimation within the 
TB-PSE questionnaire were based on Compl-eat™; a self-administered web-based dietary 
24hR-tool developed by WUR [20]. Portion sizes described in Compl-eat™ are a combination 
of estimation in grams/millilitres, standard portion sizes and household measures, which are 
based on the ‘Food portion sizes and coding instructions’ [26]. The question formulation 
within the IB-PSE questionnaire was also based on Compl-eat™, thus ensuring that observed 
differences were solely due to the different PSEAs and not due to differences in question 
formulation. For the IB-PSE questionnaire, the portion size images from the Automated Self-
Administered 24-hour dietary recall (ASA24) picture book, developed by the National Cancer 
Institute, Bethesda, MD [27], were used. This picture book contains 3 to 8 portion size images 
per food item. To the best of our knowledge, this is the only freely available picture book 
portraying food images with known amounts (g) for research purposes [28]. Questionnaires 
started with questions whether or not a type of food was consumed, which was followed by 
questions on the amount of food consumed by means of one of the PSEAs. An example 
question from each questionnaire can be found in Supplement A.  

ADDITIONAL MEASUREMENTS  
On the study day, participants completed a short questionnaire about basic characteristics 
(i.e. age, sex, educational level). In addition, weight and height were measured to calculate 
participants’ BMI (kg/m2). Participants were characterized in three educational levels (low: 
primary or lower education, intermediate: secondary or higher vocational education, high: 
college or university) and four age groups (18-28, 29-45, 46-55, 56-70 years).  

STATISTICAL ANALYSIS 
Normally distributed data is displayed as means (M) and standard deviations (SDs) in case of 
continuous variables, or frequencies in case of categorical variables; non-normally distributed 
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data as medians and interquartile ranges (IQRs). Significant differences between true and 
reported intake, and between 2 and 24 hours, were assessed for each PSEA. To allow 
comparison between PSEAs across different food types, relative differences were calculated. 
As previous research indicated that accuracy of portion size estimation varies over food types, 
all analyses were conducted for all foods and drinks combined and for predetermined food 
types individually (i.e. “all foods excluding liquids”, “amorphous foods”, “liquids”, “single-
units”, “spreads”; Table 1). As there are no guidelines on the acceptable level of accuracy [7, 
14, 29], the proportion of the reported intake that fell within 10% and 25% of true intake were 
assessed, which is in line with comparable studies in this research area [14]. Proportions within 
10% of true intake will be deemed acceptably accurate, whereas proportions within 25% of 
true intake will be used to get further insight in the levels of accuracy [30]. To determine 
agreement between reported and true intake for both PSEAs, Bland-Altman plots with 95% 
limits of agreement (LMO) were plotted. Usually the Bland-Altman method is applied for 
assessing agreement between two imperfect measures. Since true intake was assessed an 
adapted Bland-Altman method was used to plot the differences between reported and true 
intake against true intake [14, 31]. However, when true intake increased, the absolute error 
increased. Therefore, we plotted the log-transformed ratio of reported and true intake against 
log-transformed true intake. Middle line indicates the mean and the upper and lower lines 
indicate borders based on mean ± 1.96 SD. Since the variables were not normally distributed, 
Wilcoxon signed rank test was used to test within group and the Wilcoxon rank sum test was 
used to test for between group differences. All analyses were conducted with SAS software, 
version 9.4 (SAS Institute Inc., Cary, NC, USA). Statistical significance was set at p < 0.05. 
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RESULTS 

A total of 40 participants took part in this study. Participants had a mean ± SD age of 46.9 ± 
19.2 years (range 20.7–69.4 years), BMI 24.9 ± 3.8 kg/m2, 47.5% was men and the majority of 
the population was highly educated (62.5%). Participant characteristics did not significantly 
differ between group 1 (2hR: TB; 24hR: IB) and group 2 (2hR: IB; 24hR: TB) (Table 2). 
Furthermore, no significant differences were observed between reported at 2 and at 24 hours 
after lunch, for each PSEA. Therefore, the results are only shown per PSEA and are not 
subdivided per time point.  

Table 2. Characteristics of the participants 
Total 
(n 40) 

Group 1† 
(n = 20) 

Group 2‡ 
(n = 20) 

Mean SD % Mean SD % Mean SD % 
Men 47.5 50.0 45.0 
Age (years) 46.9 19.2 48.7 19.8 45.0 18.9 
BMI (kg/m2) 24.9 3.8 25.9 4.1 24.0 3.3 
Educational 
level 

Low 
Intermediate 
High 

0.0 
37.5 
62.5 

0.0 
35.0 
65.0 

0.0 
40.0 
60.0 

† Group 1: 2hR = TB-PSE; 24hR = IB-PSE 
‡ Group 2: 2hR = IB-PSE; 24hR = TB-PSE 
No significant differences were found between groups. 

Median true intake for “all foods and drinks combined” was 94 g (IQR: 128 g), while median 
reported intake was 75 g (IQR: 120 g) for TB-PSE and 88 g (IQR: 164 g) for IB-PSE. Comparing 
the true intake with the reported intake, as assessed with TB-PSE, pointed towards significant 
differences for “all foods excluding liquids”, “amorphous foods”, “liquids” and “spreads” 
(Table 3). For IB-PSE, significant differences with the true intake were observed for “all foods 
and drinks combined”, “liquids”, “single-units” and “spreads”. For “all foods and drinks 
combined” the median relative difference was 0% (IQR: 44%) as assessed by TB-PSE, and 6% 
(IQR: 115%) as assessed by IB-PSE (Table 3).  

Significantly higher relative errors were shown for IB-PSE than for TB-PSE for “all foods and 
drinks combined”, “all foods excluding liquids”, “amorphous foods” and “liquids”. For “all 
foods and drinks combined” the proportion of reported intakes within 10% of true intake was 
31% for TB-PSE and 13% for IB-PSE, the proportion within 25% of true intake was 50% for TB-
PSE and 35% for IB-PSE. For TB-PSE, the lowest proportion within 10% and 25% of true intake 
was observed for “spreads”, whereas for IB-PSE, the lowest proportion was observed for 
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“liquids”. The highest proportion of reported intake that fell within 10% and 25% of true intake 
was, for both PSEAs, observed for the food type “single-units” (Table 3).  

The log-transformed Bland-Altman plot of “all foods and drinks combined” showed a higher 
level of agreement for TB-PSE (M: 0.04; LOA: -1.11-1.03) than for IB-PSE, as shown by more 
widely scattered estimates and wider limits of agreement for IB-PSE (Supplement B). Excluding 
liquids did not substantially alter these findings; agreement for TB-PSE (M: -0.10; LOA: -1.22-
1.00) remained higher compared to IB-PSE (M:0.03; LOA: -1.37-1.43). The same trend was 
observed for the other food types (Supplement B). The highest level of agreement was 
observed for “single-units” (TB-PSE M: -0.02; LOA: -0.30-0.25 vs. IB-PSE M: -0.09; LOA: -0.84-
0.66), whereas the lowest level of agreement was observed for “amorphous foods” (TB-PSE 
M: -0.13; LOA: -1.43-1.15 vs. IB-PSE M: 0.17; LOA: -1.38-1.71). 
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RESULTS 

A total of 40 participants took part in this study. Participants had a mean ± SD age of 46.9 ± 
19.2 years (range 20.7–69.4 years), BMI 24.9 ± 3.8 kg/m2, 47.5% was men and the majority of 
the population was highly educated (62.5%). Participant characteristics did not significantly 
differ between group 1 (2hR: TB; 24hR: IB) and group 2 (2hR: IB; 24hR: TB) (Table 2). 
Furthermore, no significant differences were observed between reported at 2 and at 24 hours 
after lunch, for each PSEA. Therefore, the results are only shown per PSEA and are not 
subdivided per time point.  

Table 2. Characteristics of the participants 
Total 
(n 40) 

Group 1† 
(n = 20) 

Group 2‡ 
(n = 20) 

Mean SD % Mean SD % Mean SD % 
Men 47.5 50.0 45.0 
Age (years) 46.9 19.2 48.7 19.8 45.0 18.9 
BMI (kg/m2) 24.9 3.8 25.9 4.1 24.0 3.3 
Educational 
level 

Low 
Intermediate 
High 

0.0 
37.5 
62.5 

0.0 
35.0 
65.0 

0.0 
40.0 
60.0 

† Group 1: 2hR = TB-PSE; 24hR = IB-PSE 
‡ Group 2: 2hR = IB-PSE; 24hR = TB-PSE 
No significant differences were found between groups. 

Median true intake for “all foods and drinks combined” was 94 g (IQR: 128 g), while median 
reported intake was 75 g (IQR: 120 g) for TB-PSE and 88 g (IQR: 164 g) for IB-PSE. Comparing 
the true intake with the reported intake, as assessed with TB-PSE, pointed towards significant 
differences for “all foods excluding liquids”, “amorphous foods”, “liquids” and “spreads” 
(Table 3). For IB-PSE, significant differences with the true intake were observed for “all foods 
and drinks combined”, “liquids”, “single-units” and “spreads”. For “all foods and drinks 
combined” the median relative difference was 0% (IQR: 44%) as assessed by TB-PSE, and 6% 
(IQR: 115%) as assessed by IB-PSE (Table 3).  

Significantly higher relative errors were shown for IB-PSE than for TB-PSE for “all foods and 
drinks combined”, “all foods excluding liquids”, “amorphous foods” and “liquids”. For “all 
foods and drinks combined” the proportion of reported intakes within 10% of true intake was 
31% for TB-PSE and 13% for IB-PSE, the proportion within 25% of true intake was 50% for TB-
PSE and 35% for IB-PSE. For TB-PSE, the lowest proportion within 10% and 25% of true intake 
was observed for “spreads”, whereas for IB-PSE, the lowest proportion was observed for 
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DISCUSSION 

In this study, the reported intake and its estimation error for “all foods and drinks combined” 
using IB-PSE significantly differed from true intake while no statistically significant difference 
was observed between the reported intake and its estimation error from true intake using TB-
PSE. However, as indicated by the proportion of reported intakes within 10% and 25% of true 
intake, being 31% and 50% using TB-PSE compared to 13% and 35% using IB-PSE, meaning 
that for both PSEA’s only the minority of estimations lies within the acceptable range, further 
improvements to increase the accuracy of portion size estimation are needed. 

Before discussing our findings, the strengths and limitations of our study will be discussed. 
First, despite the fact that participants consumed their lunch in a controlled setting, we strived 
to mimic a real-life situation. Specifically, in contrast to most other studies, participants could 
choose from a selection of food items and actually consumed the selected items [19, 24]. 
Furthermore, participants had the opportunity to choose between different sizes of tableware 
[25] and had ad libitum access to the foods provided [32]. Moreover, all products were served 
in bowls, jugs and plates without indication of content. Second, as the accuracy of two PSEAs
was assessed separately, accuracy of both methods could be studied independently.
Moreover, due to the study’s cross-over design the accuracy of both PSEAs was assessed in
each participant. Third, to our knowledge, this is the first study comparing the two PSEAs,
while keeping all other factors in the questionnaire identical. Finally, to avoid extra focus on
portion sizes, participants were not informed on the goal of the study and did not see the
weighing of the foods. A limitation of our study is that we used the ASA24 picture book in a
Dutch population. The ASA24 is the only freely available photo database for research with
known portion size weights. However, the ASA24 photographs are based on the 5th and 95th
percentile of intake per product in the US and as such tailored for usage in the US [14, 33, 34]. 
It is known that portion sizes in the US are larger than in the Netherlands [35, 36]. To illustrate, 
the glasses in the study of Donders-Engelen, Van der Heijden [26] range between 100 g and
220 g whereas the glasses in ASA24 range between 177 g and 473 g. As ASA24 does not contain 
pictures of the smallest portion sizes consumed in the Netherlands, this may explain the
overestimated intakes by IB-PSE estimates in our study (e.g. 118% for “liquids”). However, we 
have to note that the portion size database that currently is being used in the Netherlands
dates from 2003. It is known that plate sizes have increased in the past decades [36], which
on its turn may have led to an underestimation of TB-PSEs.

A more general limitation of the ASA24 food images is the usage of cutlery as reference, which 
is meant to help participants estimate the real-life size of a portion. However, as cutlery can 
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vary in size, it might not be the best reference and as such explain the more scattered points 
observed in the Bland-Altman plot of IB-PSE compared to TB-PSE. Finally, in view of 
generalisability it needs to be mentioned that our participants were relatively old and highly 
educated. However, several previous studies concluded that age and education level did not 
affect the participants ability to estimate portion sizes [19, 22, 23, 37]. In addition, we only 
tested a limited number of food items, and as such our findings are only applicable to these 
tested food items. 

As hypothesized, the accuracy of reported intake with both PSEAs varied between the 
different food types. Both PSEAs overestimated the median reported intake of “liquids” 
whereas the intake of “all foods excluding liquids” and “spreads” were (slightly) 
underestimated. In addition, for TB-PSE, the reported median intake of “amorphous foods” 
was underestimated, while for IB-PSE the intake was overestimated. Previous research 
showed both under- and overestimations of portion size estimations [7, 14]. Moreover, the 
accuracy of food intake estimates varied depending on the food types [12, 13, 38]. Both PSEAs 
showed the highest estimation errors for “liquids, which is not in line with similar studies 
showing the highest estimation errors for “amorphous foods” [12-14, 37]. In contrast to 
previous studies, which mostly provided liquids in containers that were identical to containers 
portrayed on the images, we aimed to resemble the real-life situation and therefore studied 
commonly-used PSEA descriptions and used glasses that did not necessarily match with the 
glasses on the images. As conceptualization plays a major role in the accurateness of portion 
size estimation [13], it is easier to estimate portion sizes when the portion sizes are similar to 
the portions portrayed on the images [23, 39] or the textual descriptions [18, 20]. For instance, 
the description “lemonade glass” lacks detail and can easily result in misclassification. In 
agreement with our study, Hernandez, Wilder [7] also studied the intake of liquids in 
containers that were not identical to the containers on the images and also observed the 
highest estimation errors for liquids, which underlines the influence of conceptualization.  

As illustrated by small errors for “single-units” and “spreads” and larg(er) errors for 
“amorphous foods” and “liquids” for both PSEAs, our findings clearly indicate that foods 
consumed in small or defined units are more accurately estimated than foods consumed in 
larger amounts. These findings are in line with previous studies [23, 37, 39]. Generally, the 
accuracy for the food types “amorphous foods”, “liquids” and “single-units” was higher for TB-
PSE than for IB-PSE estimates, except for “spreads” which were more accurately estimated 
with IB-PSE. The latter may relate to the fact that textual description of the size of spoons and 
spread on bread is open to interpretation, whereas a picture may provide a better impression 
of the portion size estimate [13]. Moreover, the fact that we used images of spoons, instead 
of images of spread on bread, to estimate the amount of “spreads” consumed, may have 
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resulted in more accurate estimates for this food type [12]. The size of the bread might 
influence the perception of the portion size and thereby lead to errors in estimations [21].  

We found no significant differences in accuracy between reporting after 2 hours and 24 hours 
for each of the PSEAs. Based on this, we concluded that memory did not influence the accuracy 
of portion size estimations within this timeframe. Therefore, only the combined results per 
PSEA were used for further analysis. However, after dividing the participants per PSEA over 
the two time points, the sample size per group was very small (i.e. ~10 participants) and 
therefore we had less power to detect significant differences. Previous research has shown 
that errors increase after 1-2 hours, compared to immediate estimations [24]. However, our 
first time point was after two hours and in line with our results, De Keyzer, Huybrechts [21] 
found no increase in estimation errors after 1-2 days compared to after 4 days [21]. To truly 
understand the effect of memory on accuracy of portion size estimation more research is 
needed with a larger sample size.  

Due to lack of consensus on the minimal required level of accuracy for PSEAs no strong 
conclusion can be drawn on that matter. However, the accuracy of the reported intake by TB-
PSE was higher than by IB-PSE for all food types except for “spreads”, which was higher with 
IB-PSE. Overall, TB-PSE provided more accurate portion size estimations than IB-PSE. As 
discussed, these findings are different from previous studies [14, 21-24]. However, in contrast 
to these studies we incorporated all elements that influence IB-PSE (i.e. perception, 
conceptualization, memory), instead of focusing on one or two of these elements [22-24], in 
an attempt to mimic a real-life situation. Therefore, our findings in combination with previous 
studies may indicate that IB-PSE is a useful PSEA, but only when judging displayed foods and 
not for retrospective portion size estimation.  

TB-PSE and IB-PSE were selected due to their applicability for implementation in web-based 
and smartphone-base dietary assessment tools. However, there are other PSEAs which would 
be applicable for implementation in web-based or smartphone-based dietary assessment 
tools (e.g. remote food photography method, body-worn monitors) [8, 40]. These innovative 
tools also have a range of drawbacks, for instance, it is known that they are unable to detect 
all aspects of the food consumed (e.g. no difference detected between spinach vs. spinach a 
la crème) [41]. Furthermore, individuals might feel uncomfortable wearing the device, 
especially long-term, and it is difficult to guarantee the privacy of bystanders [40]. Moreover, 
even though these devises have been proven to be up to 90% accurate [40], such devices are 
expensive and therefore not suited for large-scale studies. Selecting a PSE-tool needs to be 
considered carefully while taking into account study design, methods and target group [8]. 
Therefore, even though there are new, more innovative PSE-tools being developed, it is still 

2



Chapter 2 

Page | 42 
 

valuable to further improve both TB-PSE and IB-PSE. These PSEAs are easy to implement in 
web-based and smartphone-based tools, relatively inexpensive, well-known and therefore 
easy to use with limited training.  
 
To conclude, in our study TB-PSE is shown to be more accurate than IB-PSE. Country-specific 
pictures with a clear reference are needed to improve the accuracy of IB-PSE. Next to this, we 
can conclude that TB-PSE seems to be an accurate PSEA for “single-units”, as 95% of the 
reported intake fell within 10% of true intake. However, for the other food types, only 32% or 
less of the reported intakes fell within 10% of truth. Therefore, in line with Bucher, Rollo [42], 
we conclude that the accuracy of portion size estimations with TB-PSE needs to be improved 
further and therefore standardized terminology is needed to avoid ambiguity with regard to 
textual descriptions of portion sizes. Finally, the use of a combination of PSEAs might be 
valuable to increase accuracy of portion size estimation. 
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SUPPLEMENTARY MATERIAL 
 

SUPPLEMENT A 
Example question of TB-PSE questionnaire 

 

Scrambled eggs: How much did you eat (first select a serving unit and then insert the number 
of servings)? 

Grams (1 gram)  
Grams (1 gram) 
Pieces (50 grams) 
Tablespoon (15 grams) 

 
Insert the number of consumed servings for scrambled eggs: 

 
 

 

Example question of IB-PSE questionnaire 

 

Scrambled eggs: How much did you eat (first select a serving unit and then insert the number 
of servings)? (4 images) 

 
Insert the number of consumed servings for scrambled eggs: 
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SUPPLEMENT B 
All foods and drinks 

sFigure 1. Bland-Altman plot of log transformed proportion of TB-PSE/true intake against log transformed true 
intake with mean proportion and 95% limits of agreement as reference lines for all foods and drinks.  

sFigure 2. Bland-Altman plots of log transformed proportion of IB-PSE/true intake against log transformed true 
intake with mean proportion and 95% limits of agreement as reference lines for all foods and drinks.  
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All foods excluding liquids 
 

 
sFigure 3. Bland-Altman plot of log transformed proportion of TB-PSE/true intake against log transformed true 
intake with mean proportion and 95% limits of agreement as reference lines for all foods excluding liquids.  

 

 
sFigure 4. Bland-Altman plots of log transformed proportion of IB-PSE/true intake against log transformed true 
intake with mean proportion and 95% limits of agreement as reference lines for all foods excluding liquids.  
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Amorphous foods  

sFigure 5. Bland-Altman plot of log transformed proportion of TB-PSE/true intake against log transformed true 
intake with mean proportion and 95% limits of agreement as reference lines for amorphous foods.  

sFigure 6. Bland-Altman plots of log transformed proportion of IB-PSE/true intake against log transformed true 
intake with mean proportion and 95% limits of agreement as reference lines for amorphous foods.  
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Liquids 
 

 
sFigure 7. Bland-Altman plot of log transformed proportion of TB-PSE/true intake against log transformed true 
intake with mean proportion and 95% limits of agreement as reference lines for liquids.  

 

 
sFigure 8. Bland-Altman plots of log transformed proportion of IB-PSE/true intake against log transformed true 
intake with mean proportion and 95% limits of agreement as reference lines for liquids.  
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Single-unit foods 

sFigure 9. Bland-Altman plot of log transformed proportion of TB-PSE/true intake against log transformed true 
intake with mean proportion and 95% limits of agreement as reference lines for single-unit foods.  

sFigure 10. Bland-Altman plots of log transformed proportion of IB-PSE/true intake against log transformed true 
intake with mean proportion and 95% limits of agreement as reference lines for for single-unit foods.  
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Spreads  
 

 
sFigure 11. Bland-Altman plot of log transformed proportion of TB-PSE/true intake against log transformed true 
intake with mean proportion and 95% limits of agreement as reference lines for spreads. 
  

 
sFigure 12. Bland-Altman plots of log transformed proportion of IB-PSE/true intake against log transformed true 
intake with mean proportion and 95% limits of agreement as reference lines for for spreads.  
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Single-unit foods 

sFigure 9. Bland-Altman plot of log transformed proportion of TB-PSE/true intake against log transformed true 
intake with mean proportion and 95% limits of agreement as reference lines for single-unit foods.  

sFigure 10. Bland-Altman plots of log transformed proportion of IB-PSE/true intake against log transformed true 
intake with mean proportion and 95% limits of agreement as reference lines for for single-unit foods.  
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ABSTRACT 
 
To collect dietary intake data in a fast and reliable manner, a flexible and innovative 
smartphone application (app) called Traqq was developed (iOS/Android). This app can be used 
as a food record and 24-h recall (or shorter recall periods). Different sampling schemes can be 
created on either prespecified or random days/times within a predetermined period for both 
methods, with push notifications to urge the participants to register their food intake. In case 
of non-response, notifications are automatically rescheduled to ensure complete data 
collection. For use as a food record, respondents can access the app and log their food intake 
throughout the day. Food records close automatically at the end of the day; recalls close after 
submission of the consumed items. The recall as well as the food record module provide 
access to an extensive food list based on the Dutch food composition database (FCDB), which 
can be accustomed to fit different research purposes. When selecting a food item, 
respondents are simultaneously prompted to insert portion size, i.e., in household measures 
(e.g., cups, spoons, glasses), standard portion sizes (e.g., small, medium, large), or weight in 
grams, and eating occasion/time of consumption. Portion size options can be adjusted, e.g., 
only entry in grams in case of a weighed food record or time of consumption instead of eating 
occasion). The app also includes a My Dishes function, which allows the respondent to create 
their own recipes or product combinations (e.g., a daily breakfast) and only report the total 
quantity consumed. Subsequently, the app accounts for yield and retention factors. The data 
are stored on a secure server. If desired, additional questions, i.e., in general or those related 
to specific food items or eating occasions can be incorporated. This paper describes the 
development of the system (app and backend), including expert evaluations and usability 
testing. 
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INTRODUCTION 

Accurate dietary assessment is crucial to ensure the quality of studies on the role of nutrition 
in health and disease prevention. Currently, such studies generally use established self-report 
dietary assessment methods, i.e., food frequency questionnaires, 24-h recalls (24hRs), and/or 
food records [1]. Despite the fact that these methods are of major importance for nutrition 
research, they also possess various drawbacks, e.g., memory-related bias, social desirability 
bias, and are burdensome for the respondent as well as the researcher [1, 2]. Recent 
technological inventions now offer the opportunity to overcome these drawbacks. During the 
past years, various research groups seized this opportunity and developed web-based and 
smartphone-based dietary assessment tools for nutrition research that address some of these 
known drawbacks (see Eldridge, Piernas [3] for an extensive overview of web- and 
smartphone-based tools), i.e., reduce causes of error, improve user-friendliness, and decrease 
the participant’s and researcher’s burden [1].  

Nevertheless, the number of fully automated and validated smartphone applications (apps) 
that are appropriate for nutrition research is still limited. Most of the available dietary 
assessment apps (i.e., commercially or developed for research) are either not fully automated 
(i.e., require manual coding of food items) or are not (well) validated [3]. Moreover, most 
available validated apps have been developed for one specific research purpose and use in a 
specific country; due to rather fixed designs, re-using such apps for other research purposes 
or in other countries seems challenging [3-8]. Finally, despite the availability of food record-
based apps, to date, there are no recall-based apps. Although food records are prone to 
reactivity bias, i.e., respondents may alter their food intake due to the awareness that they 
are being observed [2, 9], this is not the case for recalls, which emphasizes the need for the 
development of a validated recall-based app [10]. An innovative dietary assessment app called 
Traqq was developed for use in the Netherlands which can be used as a food record as well as 
a recall, depending on the research question [1].  

Besides the possibility to alternate between the food record option and recall option, this app 
also differs from other dietary assessment tools because of its flexible nature. Specifically, 
regarding the food list, portion size estimates, sampling schemes, and the possibility to 
incorporate additional questions. The level of flexibility in the system enables tailoring to 
multiple research purposes that require accurate assessment of dietary behaviours. Currently, 
the app is in the process of being validated and will be ready to be used in various types of 
nutrition related research. The app can also be used, and perhaps further improved, for use 
in nutritional intervention programs to measure and influence dietary behaviours. As the 
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development of reliable dietary assessment tools is challenging, and reports on these 
processes are scarce, especially with respect to user and expert involvement [3, 11, 12], this 
paper provides a detailed overview on how different information sources were integrated in 
the systematic and iterative development of this smartphone-based dietary assessment app. 
The process incorporates theory, expert consultation, and user engagement. 
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PROTOCOL 

NOTE: All the procedures including human participants were conducted in a non-invasive 
manner by means of mostly qualitative research methods. Informed consent was obtained 
from all participants before the start of the evaluations. This protocol describes the iterative 
developmental process that can be roughly divided into four stages in which stages 1–3 are 
intertwined (Figure 1). 

1. CONDUCT EXTENSIVE FORMATIVE RESEARCH IN PREPARATION OF THE DEVELOPMENTAL

PROCESS.

1.1. Perform desktop research exploring existing web- and smartphone-based dietary 
assessment tools, with special attention to features known to be of key importance for 
accurate food intake data collection, i.e., method of food entry (including the food list 
and underlying FCDB) and portion size estimations. 

1.2. Inspect existing web- and smartphone-based dietary assessment tools focusing on 
aspects such as dietary assessment methodology, information provision, reliability, 
search engine, and implemented features (e.g., images, barcode scanner, recipe 
functions). 

1.3. Consult experts in the field of dietary assessment. 
NOTE: Results of the desktop research and inspection of existing tools were discussed 
with experts in the field of dietary assessment, leading to a draft design plan for the 
development of the app. This draft design plan was evaluated by the experts and 
further improved as required. 

3
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development of reliable dietary assessment tools is challenging, and reports on these 
processes are scarce, especially with respect to user and expert involvement [3, 11, 12], this 
paper provides a detailed overview on how different information sources were integrated in 
the systematic and iterative development of this smartphone-based dietary assessment app. 
The process incorporates theory, expert consultation, and user engagement. 
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2. DESIGN THE DIETARY ASSESSMENT APP

2.1. Create the visual design of the app considering important aspects such as animation, 
branding, colour, layout, and typography [13]. 
NOTE: As space, colour, fonts, graphics, and interface elements highlight content and 
convey interactivity, it is essential to incorporate elements facilitating the functionality 
of the app.  

2.2. Select a trustworthy FCDB (here, NEVO) to facilitate nutrient calculations of the 
collected food intake data. 

2.3. Create a food list by critically evaluating the description of the food items mentioned 
in the FCDB. 
NOTE: FCDBs are mostly developed for professional use; food descriptions are often 
complex and hinder searchability (e.g., “margarine low-fat 35% fat < 10 g of saturated 
fats unsalted” [14]).  

2.4. Formulate search engine requirements; consider the use of punctuation marks, foreign 
names, misspellings, different search terms, and ranking of search results to facilitate 
searchability of food items. 

2.5. Select portion size estimation (aid) by evaluating various existing dietary assessment 
tools and field testing of suitable options. 

2.6. Design routing within the app to ensure that the user’s navigation through the app is 
logical, predictable, and easy to follow. 

2.7. Design backend features and requirements to control the app; include functions 
related to overall project management, project-specific management (e.g., 
participants, invitations, data collection), and user management (e.g., authorizations). 

3. EVALUATIONS BY RESEARCHERS

NOTE: Following each upgrade, the app was tested by nutrition scientists and research
dieticians with expertise in dietary assessment (in-house testing) to verify whether
functionalities improved as anticipated. The following instructions are to be executed by
researchers.

3
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3.1. Conduct expert evaluation by means of cognitive walkthroughs to simulate a first-time 
user experience so that the experts can explore the app individually and without 
guidance [15]. Ensure that the cognitive walkthroughs consist of the following steps. 
3.1.1. Make sure that the expert completes a general questionnaire inquiring about 

the brand and type of smartphone. 
3.1.2. Install the app on the expert’s smartphone. 

NOTE: To ensure proper installation and functioning and minimize the risk of 
interruptions during the evaluation, it is recommended that the researcher first 
verifies the app’s functionality.  

3.1.3. Instruct the expert on test procedures in which each expert is asked to take on 
the role of first-time user (i.e., research participant). Emphasize that the 
evaluation is performed from a user’s perspective and not from the expert’s 
own perspective.  
NOTE: The user was assumed to be an experienced smartphone user and to 
have knowledge on the use of apps in general. However, this app was used for 
the first time. 

3.1.4. Start the screen and audio recording. 
3.1.5. Have the expert complete the cognitive walkthrough while using the app and 

carrying out a predetermined set of tasks [16]: 1) “I want to record my dinner. 
I started with a cup of tomato soup and a glass of milk.”, 2) “Thereafter, I ate a 
pasta dish, which I consume regularly and want to enter it as a favourite (i.e., 
predecessor of My Dishes).” [recipe was provided], 3) “As I also consumed the 
pasta dish, I want to add this to today’s food intake record.”, and 4) “I entered 
everything I ate during dinner. I want to check my entry once more and then 
submit it.”.  
NOTE: While performing the tasks, the expert informs the researcher about 
his/her thought process, i.e., by explaining the steps needed to be completed 
to fulfil the described task. 

3.1.6. Conduct a brief follow-up to clarify ambiguities [17], and provide the expert the 
opportunity for additional feedback. 

3.1.7. Evaluate the results of each expert by checking the recordings to ensure that 
tasks were executed as intended and by reviewing the additional comments 
provided. 

3.1.8. Share the results with the experts to assess whether assumptions made based 
on the recordings were correct. 
NOTE: Results of the evaluation were discussed and prioritized in consultation 
with the experts. Based on the results of this evaluation, the app was further 
upgraded. 
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3.2. Conduct usability testing with intended users to evaluate the app’s usability and 
likability among the intended users by means of think-aloud interviews and the system 
usability scale (SUS) [18] by following these steps: 
3.2.1. Recruit participants who are representative of the target user population [19]. 
3.2.2. Instruct the participant regarding the study procedures, including the recording 

of screen and audio. Then, obtain informed consent from the participants. 
NOTE: It is important that the researcher encourage the participant to “think-
aloud” during the evaluation, i.e., explaining their thoughts on the required 
steps to complete each task whilst performing the task, as well as commenting 
on what functionalities did or did not work well. 

3.2.3. Install the app on the participant’s smartphone. 
NOTE: To ensure proper installation and functioning and minimize the risk on 
interruptions during the evaluation, it is recommended that the researcher first 
verify the app’s functionality. 

3.2.4. Ask the participant to perform a practice task for the think-aloud interview: ask 
participants to visualize their bedroom and count the number of windows, 
while telling the researcher about what they saw and thought while counting 
the windows. Next, ask the participants to approach one of the windows in their 
bedroom and describe their experiences on their way to that window. 
NOTE: A practice task was provided and repeated if needed to ensure that 
participants felt comfortable to think-aloud as desired [20].  

3.2.5. Start the screen and audio recording. 
3.2.6. Ask the participant to complete actual think-aloud interview with the 

predefined tasks: the participant must: 1) record everything they ate and drank 
during the previous day, and 2) record a regularly consumed dish through the 
My Dishes function. 

3.2.7. During the session, observe, take notes, and stimulate the participants to keep 
thinking aloud, if needed, by simple prompts such as “Keep talking out loud”, 
“Tell me what you think”, or ”Tell me what is on your mind”. Minimize further 
interactions to prevent interference with the participant’s thought process [15, 
17]. 

3.2.8. Conduct a brief follow-up to clarify ambiguities [17]. 
3.2.9. Ask the participant to complete an evaluation questionnaire with general 

questions related to age, sex, educational level, type of smartphone, level of 
smartphone experience (i.e., experienced users are more likely to perform 
tasks quick and correctly [21]), as well as the SUS [18]—a 10-item questionnaire 

3
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to assess the system’s usability by means of Likert scale scoring ranging from 1 
(strongly disagree) to 5 (strongly agree). 

3.2.10. Analyse the data from each session by: 1) transcribing, coding, and creating 
(sub)themes, and 2) calculating the SUS score using a predefined formula 
resulting in a score between 0 to 100 [18], where a score of >68/100 indicates 
that the tool functions at above-average level of usability and a score >80/100 
indicates excellent usability [22, 23]. 
NOTE: It is recommended that the researcher who guided the session analyse 
the data by using qualitative data analysis software. A second researcher can 
be consulted in case of ambiguities.  

3.3. Conduct quantitative validation of dietary intake records against validated traditional 
methods and preferably independent measures [3]. 
NOTE: The app is being validated against web-based and telephone-based (i.e., 
interviews) 24hRs as well as independent urinary and blood biochemical markers. As 
the quantitative validation of the app is outside the scope of this paper, this will not 
be discussed further.  

4. USING THE BACKEND SYSTEM FOR APP AND STUDY MANAGEMENT

NOTE: The system has three authorization levels: (1) administrator—this authorization level
provides access to all sections of the backend (i.e., creating new users, determining user
authorization, and granting users access to one or more projects); (2) project managers—this
authorization level allows access to specific projects and the possibility to create new projects; 
and (3) researchers—this authorization level only provides access to the specific projects that
researchers are involved in.

4.1. Management of users and projects in the backend by administrators 
4.1.1. Access the online backend via traqq.idbit.net, with login credentials (i.e., 

username, password). 
4.1.2. Create a new project by clicking on the Projects tab and then on Create a new 

project. 
4.1.3. In the next screen, enter the requested project details (i.e., project name, 

contact description, contact email, contact phone, contact website). 
NOTE: Only the project name is mandatory to create a new project. The contact 
description, email, phone number, and website will become visible in the app 
under the Contact & Info button.  

4.1.4. Select the desired features (i.e., product list, ask eating occasion and/or time of 
consumption, record or recall). 
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NOTE: Each new project requires individual decision-making with respect to the 
most appropriate dietary assessment method (i.e., record or recall), food list, 
portion size estimation, and eating occasion or meal times. 

4.1.5. Save the new project by clicking on Save. 
NOTE: When the screen closes, the administrator returns to the Project 
overview screen. 

4.1.6. Next, create a new user by clicking on the User tab and then on Add new user. 
4.1.7. In the following screen, enter a Username, a Password, and assign the user a 

Role (i.e., administrator, manager, or user). 
4.1.8. Save the new user by clicking on Save. 

NOTE: When the screen closes, the administrator returns to the User overview 
screen.  

4.1.9. Assign a user to a project by clicking on the notepad icon (i.e., Edit column) for 
a specific user. 

4.1.10. Assign a project by opening the dropdown menu under Linked Projects, 
selecting the desired project, and clicking on Add. 
NOTE: This action needs be repeated for each project the user needs to be 
assigned to. 

4.1.11. Communicate the log-in credentials to the new user along with the backend 
URL. 

4.2. Management of projects in the backend by researchers (i.e., Manager or User role) 
4.2.1. Log in to the backend via traqq.idbit.net by using the credentials provided by 

the administrator. 
4.2.2. Click on Go to projects to manage the projects. 
4.2.3. Click on the arrow in the View column for the desired project. 

NOTE: After doing this, the researcher is taken to a Project Overview page, and 
new tabs for this specific project appear. 

4.2.4. Enter the participants in the backend by clicking on the Participants tab. Next, 
when a Participant Overview screen appears, click on Add new participant. 

4.2.5. In the following screen, enter Codename, Notes (optional), Login ID, Login Key, 
and ending with Save. 
NOTE: It is recommended that the Participant’s study ID be used as both 
codename and login ID. This minimizes confusion for the participant in case of 
multiple login credentials. Moreover, the codename is visible in the responses. 
Using the participant ID makes it easy to use the data. This option needs to be 
repeated for each participant. For larger groups, Import participants from file 
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(.csv) can be used. Here, the same details are required for each participant. The 
backend may not contain any personal information of participants.  

4.2.6. Schedule invitations for each participant by clicking on the Invitations tab. 
Next, when an Invitation Overview screen appears, click on Add new 
invitation. 

4.2.7. In the following screen, select a Participant from the dropdown menu, and 
enter Period start time, Period end time, Opening time, Closing time, Survey 
URL (i.e., optional for implementation of additional questions), Notes 
(optional), Enable (always yes). 
NOTE: The Period start and end time refer to reporting time frame (i.e., what 
has been consumed between ..:.. and ..:..). In contrast, opening and closing time 
refer to the period in which the participant can actually report their intake. The 
correct implementation of an external survey requires some coding; for this, 
help from the administrator is recommended. For the majority of the 
invitations, the Import invitations from (.csv) option under File can be used. 
The file requires the same information as for the manual input. Invitations can 
also be created via Sampling Schemes (i.e., where the system generates a 
random invitation scheme across different days and times based on a pre-set 
of rules such as sampling period, number of required invitations, response 
deadline). An advantage of the Sampling Schemes option is that the system 
automatically schedules a new invitation in case of non-response.  

4.2.8. Track data collection via the Calendar tab by selecting a participant of interest 
from the dropdown menu. 
NOTE: The calendar provides an overview of scheduled invitations within a 
project, either in general or for specific participants. Future invitations are 
portrayed in blue, completed past invitations are green, while past invitations 
without response are red. Responses to invitations can also be checked via the 
Response tab. 

4.2.9. Track responses via the Response tab. 
NOTE: In the Response section, the reported food intake data (i.e., food item, 
consumed amount, eating occasion and/or time of consumption) is gathered. 

4.2.10. Requests the administrator for data export. 
NOTE: Data can be exported from the backend to a .csv file for further analysis 
(e.g., responses/food intake data, compliance data) by the administrator. 
Responses include reported food items, selected portion sizes, consumed 
amounts in grams, and eating occasions/times.  

4.2.11. Import the .csv file into nutrition calculation software for in-depth nutrient 
analyses. 
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NOTE: The data can be imported into nutrition calculation software that makes 
use of the Dutch FCDB. 

5. USE OF THE APP BY THE PARTICIPANTS DURING THE STUDY

5.1. Download the freely available app from the App Store (iOS) or Google Play Store 
(Android), and access the app by logging in. 
NOTE: Login credentials, as provided by the researcher, are required to access the app 
(step 4.2.5.). After logging in, the app sends invitations as scheduled in the backend 
based on the participant’s credentials (step 4.2.7.). 

5.2. After receiving an invitation via the app, report food intake. 
NOTE: Participants can only register their food intake on predetermined days and 
times.  
5.2.1. Open the app by clicking on the notification received or by opening the app via 

the app icon. 
NOTE: After opening the app, an Invitation Overview screen appears where 
previous and current invitations are displayed. 

5.2.2. Click on the open invitation. 
NOTE: Participant is taken to an Overview screen where the invitation period 
is visible. 

5.2.3. Enter the food item consumed first by clicking on Product toevoegen (Add food 
item). 
NOTE: The participant is taken to the Search screen. 

5.2.4. Start typing the name of the consumed item (e.g., orange juice [jus d ’orange]). 
Click on the desired item as it appears whilst typing. 

5.2.5. In the following screen, report the consumed amount (Hoeveelheid), 
corresponding portion size description (Portie), eating occasion 
(Maaltijdmoment) and/or time of consumption (Tijdstip), and end by saving 
(Opslaan). 

5.2.6. Repeat the aforementioned steps until all food items are reported. 
5.2.7. Submit the list (recall) by clicking on Lijst versturen (Send list), or the invitation 

automatically closes at the end of the day (record). 
NOTE: The Send List option is also visible in the record version, so participants 
using the record can also send their input to the database. However, even if the 
data is already sent, the invite still closes at the end of the day, sending all data 
to the server. 
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REPRESENTATIVE RESULTS 

The system (app and backend) was developed using the steps outlined in the above described 
protocol; the key results of this process are described below, concluding with the final design 
of the app. 

FORMATIVE RESEARCH  
In addition to extensive literature review, several web-based tools were inspected (e.g., 
Compl-eat [24], ASA24 [25], Foodbook24 [26], MyFood24 [27]) with respect to dietary 
assessment methodology and implemented features. In addition, the performance of several 
food tracking apps frequently used in the Netherlands were compared (e.g., MijnEetmeter 
[28], MyFitnessPal [29], Virtuagym Food [30]), focusing on aspects such as dietary assessment 
methodology, provision of information, reliability, search engine, and the use of additional 
features (e.g., images, barcode scanner, recipe functions). The results of this inspection led to 
the decision to develop the app in such a way that it can be used as a food record and a recall. 
Moreover, it led to the implementation of the My Dishes function, which can be used to create 
original recipes or frequently consumed product combinations (e.g., a daily breakfast). Within 
this function, yield and retention factors are automatically taken into account.  

To accurately quantify food and nutrient intake, a complete, albeit practical, food list is crucial. 
Compiling such a food list requires a trade-off between the extensiveness of the food list and 
the searchability of the food items (i.e., food descriptions need to be clear, understandable, 
and easy to locate) [31, 32]. As food composition data form the fundamental basis for dietary 
assessment [33, 34], it is important to ensure that the developed food list can be linked to 
accurate food composition data. The food list included in the app is based on the Dutch FCDB 
(NEVO) [14], which was selected for its reliability and rich food composition data. Originally, 
the NEVO consists of 2,389 food items (version 2016/5.0), which was reduced to a food list of 
1,449 items by eliminating “confusing items” (e.g., foods that cannot be consumed raw, foods 
that cannot be consumed without additions) or items that are not as essential to include (e.g., 
due to low consumption rates based on the Dutch Food Consumption Survey (DNFCS) [35]).  

Additionally, the NEVO contains similar foods with different brand names; in such a case, only 
the generic option was included in the food list. To further facilitate usability, some food items 
were renamed to eliminate needless terminology such as ‘prepared’, ‘frozen’, ‘average’, and 
‘natural’. This “cleaning protocol” was developed by three well-trained research dietitians and 
executed by means of a syntax, which can be rerun once NEVO is updated. In addition, to 
optimize the searchability of food items, 1,019 well-known synonyms of the included foods 
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were added to the food list. Thus, the food list included in the app eventually comprised 2,468 
items. An overview of the food list development is displayed in Figure 2. To note, although this 
extensive food list has been developed for general use, the backend of the app does allow the 
import of alternative food lists if required. 

Figure 2. Structure of the food list developed for the app. The food list is based on the Dutch food 
composition database (FCDB) and corresponding portion size suggestions and synonyms were added 
for each item in the final food list. 

Another crucial aspect of dietary assessment is the quantification of portion sizes. Although 
portion size estimation aids (PSEAs), e.g., images, referent objects, and standard portion sizes, 
support the reporting of the amounts of foods consumed [36-38], misreport of portion sizes 
is still a substantial source of bias [36, 39-41], and literature on the effectiveness of the 
different PSEAs is inconsistent [38]. Food images, portion size suggestions (i.e., standard sizes 
and household measures), and free entry of weight in grams are the most used PSEAs in web- 
and smartphone-based dietary assessment tools. For example, whereas portion size 
suggestions (e.g., cups, spoons, small, large) are used in tools such as Compl-eat [24] and 
Oxford WebQ [42], images aid portion size estimates in tools such as ASA24 [25] and 

Food Composition Database (FCDB) 

Consists of well-known food items with their 
respective food composition data per 100 g. 

Food list 

Consist of relevant food items based on the FCDB. 
Food descriptions are simplified for the consumer.  

Synonyms 

Often used 
synonyms are 

determined for each 
item on the food 

Portion sizes 

Often used portion 
sizes are 

determined for each 
item on the food 
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Myfood24 [27]. To investigate the most appropriate PSEA for the app, a pilot study was 
conducted to compare the accuracy of portion size suggestions (e.g., small, medium, large, or 
cup, spoon), free entry in grams, and portion size images. The results of this study led to the 
implementation of portion size suggestions as the PSEA in the app along with the option to 
enter amounts in grams [43]. 

EXPERT REVIEW 
The aim of the expert evaluations was to qualitatively evaluate the app in terms of 
functionality and ease of learning. As many users prefer to learn software by exploration [44], 
a system’s level of learnability is important. A total of 10 experts, i.e., 4 (research) dietitians 
and 6 nutrition and health behaviour experts (scientists) participated in the cognitive 
walkthroughs in which 60% used an Android smartphone. Most importantly, expert 
evaluations indicated that the first version of the app was not sufficiently intuitive, e.g., menu-
structure was judged unclear due to vague buttons/icons, and the search engine generated 
an illogical order of results. Another critical point arising from the expert reviews related to 
the fact that selected items could not be modified. Based on these results, the design of the 
app was considerably upgraded from stage 2 onwards (Figure 1). 

USABILITY EVALUATION 
A total of 22 participants participated in the think-aloud interviews, which formed the basis of 
the usability evaluation. The initial sample size was set at 20 participants [45], after which data 
saturation was assessed. As data saturation was not reached after 20 interviews, inclusion 
continued while assessing data saturation after each successive interview. Participants had a 
mean ± standard deviation age of 48 ± 17 years (range 22–70 years); 36% were male, and the 
majority of the population was highly educated (55%). In addition, most participants used an 
Android device (n=14, 64%), and almost all participants had over 1 year of experience with 
smartphone use (n=21, 96%) (Table 1). All participants completed the tasks without or with 
minimal instruction. 
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Table 1. Characteristics of the study population and results of usability evaluation. Only the results of 
the system usability scale (SUS) are portrayed in this table along with the participant characteristics. 

Total (n=22) 
Gender 
 Male (%) 36.4 

  Female (%) 63.6 
Mean age (mean, SD) 48.1 (17.2) 
Educational level 
 Low (%) 0 
 Medium (%) 45.5 
 High (%) 54.5 

Smartphone type 
 Android (%) 63.6 

  iOS (%) 36.4 
Smartphone experience 
 Shorter than 6m (%) 4.5 
 Between 6m and 1y 

(%) 0 

  Longer than 1y (%) 95.5 
SUS (mean, SD) 79.4 (15.1) 

Whereas some participants (n=13, 59%) indicated difficulties while using the My Dishes 
functionality; others (n=5, 23%) encountered minor functionality issues such as slow response 
of the menu button and difficulties using buttons related to insufficient screen size of smaller 
smartphones). Moreover, 15 (68%) participants indicated their preference for an option to 
enter consumed portion sizes in grams. Finally, evaluation of the SUS score indicated a rating 
of 79/100 (range 40–100), wherein only 3 out of the 22 participants rated the app below 
68/100 and 13 rated >80/100, which suggests that the app can be considered user-friendly. 
Thus, overall, the suggested improvements were minor, and usability evaluations were 
promising. Subsequently, suggestions for improvement were discussed within the research 
team and, if deemed relevant, incorporated in the stage 4 upgrade to further optimize 
likability and usability of the app (Figure 1).  

FINAL DESIGN  
The steps described in the protocol and the results of the evaluation study eventually resulted 
in a final design for the app and the backend, which aimed for a simple visual design. This app 
can be used as a food record and a recall. As described previously, the food list is a modified 
version of the NEVO. Portion size estimation is supported by food-specific portion size 
suggestions; consumed portions can also be entered in grams. In case of the recall version of 
the app, the researcher has the possibility to select different timeslots (e.g., 2hR, 8hR, or 
24hR). To collect food intake data on different days and times, various sampling schemes can 
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be created within a predetermined period. Push notifications invite respondents to record 
their food intake. To ensure complete data collection, invitations are automatically 
rescheduled in case of non-response. Within the recall module, respondents can only report 
their food intake after receiving an invitation. In case of the food record, respondents can 
access the app and log their food intake throughout the day.  

In contrast to most 24hR tools, the recall module of the app is not based on the Automated 
Multiple-Pass Method—a five-step method for collecting food intake data for the previous 24 
h [46]—as this method is too elaborate and time-consuming for use in an app. More 
specifically, to increase usability and enhance the compliance of the food intake recordings 
[11, 21, 47], navigation was reduced to a minimum by limiting the number of screens that 
need to be accessed to 4 (Figure 3): 1) an Overview screen showing the reporting window; 2) 
consumed food items are reported through the Search screen, and once the desired item is 
selected 3) a dialog box appears probing eating occasion and consumed amount, after which 
4) the user returns to the Overview screen now showing the recorded food items. In addition, 
the user could also use the My Dishes function to create recipes or product combinations,
which can be entered via the Menu button.

Figure 3. Schematic overview of the routing in the app. 

The data are stored on a secure server. If desired, additional questions—general or related to 
specific eating occasions or food items—can be incorporated. The app can connect with online 
survey tools. Therefore, it is possible to conduct a survey unrelated to food intake via the app 
at prespecified times (e.g., context, behavioural, mood questions). It is also possible to ask 
specific questions related to reported food items or eating occasions (e.g., when apples are 
reported, when lunch is reported). The use of online survey tools provides an opportunity to 
ask many different questions via the app. The collected food intake data can be exported from 
the server and imported into nutrition calculation software for further analyses. In case of the 
use of additional questions, these data will be available in the survey tool as usual. The aim 
was to develop a well-structured and easy-to-use app. Some screenshots of the design can be 
seen in Figure 4A–E.  
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Figure 4. Screenshots of the final version of the app. (A) The Start/Overview screen, showing the 
invitation with the (in this case) 2 h-recall period. The user can press Product toevoegen (i.e., Add item) 
to report a food item or Niets gegeten of gedronken (i.e., I did not eat or drink anything) in case 
nothing was consumed during this time window. (B) The Search screen, showing results matching the 
search term “Jus” from the food list. The desired item can be selected from the search results. (C) A 
pop-up screen requires input of details on the selected item “Jus d ’orange”. In this case, the app asks 
for the amount consumed and eating occasion. The user can go back to the search result by pressing 
Annuleren (i.e., cancel) or Opslaan (i.e., save) to go further. (D) The Overview again, this time showing 
all the reported items. Another item can be added (Product toevoegen) or the input can be sent (Lijst 
versturen). (E) After selecting Lijst versturen, a pop-up appears asking the user if they are sure that 
they want to send, and reminds the user that it is not possible to make any more changes after the list 
has been sent. The user has the option to cancel (Annuleren) or send (Versturen).  
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DISCUSSION 

This paper presents the iterative developmental process of the smartphone-based dietary 
assessment app Traqq. Balancing the required level of accuracy and user-friendliness posed 
the following main challenges in the development of the app related to decisions on 1) data 
entry (i.e., selecting the most accurate method for food identification and portion size 
quantification), 2) food composition data (i.e., selecting an accurate database and creating a 
full-fledged food list), 3) customization options (i.e., flexibility in food list, portion size 
quantification, and recipes), and 4) validation (i.e., against traditional methods and/or 
independent measures) [3, 48].  

During the literature review, five validated and fully automated, smartphone-based, dietary 
assessment tools developed for research were identified [3], namely My Meal Mate [4], 
Electronic Dietary Intake Assessment (eDIA) [7], Easy Diet Diary [8], Electronic Carnet 
Alimentaire (e-CA) [5], and Eat and Track (EaT) [6]. Owing to the level of automatization of 
these five dietary assessment apps as well as this app, researcher burden and costs 
substantially decreases while data completeness increases compared to traditional dietary 
assessment methods. Additionally, this app, in turn, differs from the five existing dietary 
assessment tools in terms of flexibility. Specifically, whereas existing apps are all based on the 
food record method, this app can be used as a food record as well as a recall. Moreover, 
whereas the design of these apps is fixed, Traqq has the major advantage that it can be 
modified to fit different research purposes (e.g., dietary assessment method, food list, 
sampling schemes, additional questions) [3, 48]. Conversely, other existing dietary assessment 
apps contain valuable features, which are not implemented in the app (yet). To illustrate this 
point, some apps allow the user to take photographs of their food for food recognition and 
portion size estimation such as the semi-automated, technology-assisted dietary assessment 
(TADA) system [49, 50].  

Participants in the usability study also indicated that the use of photographs could be a 
valuable addition to aid portion size estimation. However, there were still too many challenges 
to be addressed to implement such a feature at this stage, e.g., specifying and guiding with 
respect to the photographic angle (i.e., to assess depth), the need for a reference maker (i.e., 
to correct for sizes and colours), the essential before and after photo (i.e., to assess consumed 
amounts), and on how to process recipe dishes. Due to these technical challenges, the existing 
image-based dietary assessment apps are still semi-automated, which means manual image 
review must be done by the user, the researcher, or both [49, 50]. Technological advances, 
such as crowdsourcing and machine learning, have the potential to improve the use of food 
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images for dietary assessment [51, 52]. In the future, these options will be explored to further 
improve the app.  

The developmental process of the app was characterized by various critical steps. First, a 
formative research step was completed wherein the scientific concepts underpinning the 
rationale for app creation facilitated decision-making in setting up the general outline of the 
app. During this stage, special attention was paid to the selection of the FCDB and the selection 
of the PSEA—aspects that both directly influence data accuracy [33]. Regarding the FCDB, as 
the app has originally been developed for use in the Netherlands, its food list is based on the 
Dutch FCDB, NEVO [3]. In the future, the aim is to further develop the app for international 
use, which requires more extensive food composition data as many foods are country-specific. 
Currently, no international FCDB exists yet and if existent, its use might have been limited. 
More specifically, as the Dutch food list already contains 2,389 food items, the 
implementation of an international food composition table, e.g., for 5 countries would 
probably multiply this number of food items by about 5 and negatively affect the searchability 
of foods and consequently, the app’s usability. Therefore, country-specific food lists will 
probably be most valuable and often also preferred by professionals [53]. This is facilitated by 
the app as it enables the import of alternative food lists and thus linkage to different 
(international) food composition tables.  

Regarding the portion sizes, there are multiple options available to support the accuracy of 
the estimates, e.g., use of image booklets, referent objects, and/or textual portion size 
suggestions [38]. In view of user-friendliness, direct implementation of a PSEA in the app is 
preferred over using a PSEA alongside the app (e.g., image booklet, referent objects). During 
the development of the app, the decision was made to facilitate portion size quantification by 
offering the opportunity to enter portion sizes using portion size suggestions and entry in 
grams. Portion size suggestions are based on the only available Dutch portion size database 
[54]. Although Dutch dietary assessment tools such as Compl-eat and Eetmeter also rely on 
this database [24, 28], it needs to be noted that this portion size database dates from 2003, 
and tableware sizes have since increased [55]. Using this database may therefore 
underestimate food intake.  

Currently, the portion size database is being updated by the Dutch National Institute for Public 
Health and the Environment (RIVM), the Dutch Nutrition Centre, and Wageningen University 
and Research [56], which will eventually be used to update the portion size suggestions in the 
app. Discrepancies between the old and new portions will be mapped and adjusted where 
needed. Although the use of portion size images (i.e., a series of images portraying different 
amounts of a selected food) may be a good alternative for text-based portion size suggestions 
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[57], research has shown that the accuracy of portion size estimation is highest when a series 
of portion size images is presented at once, instead of one image at a time [40, 58, 59]. 
Generally, currently available smartphones have relatively small screens, which limits the 
presentation of a series of images. Although new technologies facilitate the use of interactive 
portion size graphics wherein amounts of food on a virtual plate or cup can be increased or 
decreased by using a slider[60], these techniques are relatively new and still need to be 
thoroughly evaluated to assess their accuracy. 

Another critical step in the development of the app included the involvement of experts and 
intended end-users. Although not often incorporated in the developmental process of tools 
(or not described) [11, 12], feedback from experts—as well as intended end-users—is 
crucial[61], allows maximization of usability, and maintains the required level of accuracy. The 
feedback of the intended end-users was particularly helpful in the final design of the My 
Dishes function. Overall, the users were satisfied with the possibility to create their own 
dishes. However, they did struggle with some of the procedures, for instance, although the 
function would automatically save data, this was not visible to the user. Therefore, many users 
kept searching for the Save button and got stuck, afraid to go back and lose their input. Based 
on these kinds of feedback, the function was improved to better fit the expectations of the 
user.  

To conclude, Traqq is an innovative app with many advantages over existing apps and web-
based tools. However, there are still various limitations. As the app still relies on self-report, 
self-report-related measurement errors still exist (e.g., memory bias (i.e., in case of recall), 
social desirability bias, and food intake modifications (i.e., in case of food records), inaccurate 
portion size estimations (i.e., in both)) [1]. In the coming years, recently launched novel 
technologies will be explored to further advance the app, e.g., by exploring the value of 
implementing features such as barcode scanners, voice recording, chatbots, and images, 
which could improve food identification and portion size estimation. Possibilities to connect 
with other apps (e.g., activity trackers, sleep trackers) and devices (e.g., accelerometers, heart 
rate monitors, chewing sensors) are being explored as well. Finally, the backend is also being 
subjected to further development e.g., through the expansion of sampling options. 
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ABSTRACT 
 
During recent years, the integration of technology has substantially improved self-reported 
dietary assessment methods, such as food frequency questionnaires (FFQ), food records, and 
24-h recalls. To further reduce measurement error, additional innovations are urgently 
needed. Memory-related measurement error is one of the aspects that warrants attention, 
which is where new smartphone technologies and ecological momentary assessment (EMA) 
approaches provide a unique opportunity. In this article, we describe the DIASS study, which 
was designed to evaluate an innovative 2-h recall (2hR) smartphone-based methodology, 
against traditional 24-h recalls, FFQ, and biomarkers, to assess both actual and habitual dietary 
intake. It is hypothesized that a 2-h reporting window decreases reliance on memory and 
reporting burden, and increases data accuracy. We included 215 men (28%) and women 
(72%), with a mean ± SD age of 39 ± 19 years and a mean ± SD BMI of 23.8 ± 4.0. Most 
participants were highly educated (58%). Response rates for the various dietary assessment 
methods were >90%. Besides the evaluation of the accuracy, usability, and perceived burden 
of the 2hR methodology, the study set-up also allows for (further) evaluation of the other 
administrated dietary assessment tools. 
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INTRODUCTION 

Accurate dietary assessment is one of the essential aspects of nutrition and health (behaviour) 
research, where 24-h recalls (24hRs), food frequency questionnaires (FFQs), and food records 
are currently the most commonly-used dietary assessment methods [1–4]. However, these 
methods have a range of drawbacks [2,5]. FFQs and 24hRs are retrospective and, thus, 
memory dependent, which makes recall bias [6,7] and misreporting nearly inevitable [2,8,9]. 
A food record is not memory dependent, but its prospective nature may introduce reactivity 
bias, due to, for instance, social desirability or to ease the recording task [2,7,9]. Finally, all 
these methods appear to heavily burden both the participant and the researcher [5,7,10]. 

Accordingly, there is a growing interest in more technology-based dietary assessment 
methods, which have the potential to improve accuracy and reduce the burden on both 
participant and researcher [3,11,12]. Numerous valuable computer- and web-based tools, 
mostly based on 24hRs and FFQs, have been developed during the past decade [3,10,12,13]. 
More recently, various smartphone applications (i.e., apps) have been developed to collect 
dietary intake data via digital food records [3,7,12]. Nevertheless, due to their self-report 
nature, prospective apps are still prone to reactivity bias and still highly intrusive [5,7,10], as 
illustrated by the time needed to register food intake [3]. 

To the best of our knowledge, no (validated) recall-based dietary assessment apps exist at 
present [12]. Although an innovative retrospective app still relies on the participants’ memory 
[2,4,7], apps have the major advantage of enabling (near) real-time collection of dietary intake 
data [3,7,14,15]. In behavioural and social sciences, this is referred to as ecological momentary 
assessment (EMA); repeated real-time assessment of individual’s behaviour in their natural 
environment, where the ecological aspect focuses on the individual’s ‘real-world’ and the 
momentary aspect on the individual’s current or very recent state [15]. EMA opens the 
possibility of deviating from traditional dietary assessment methods and exploring new data 
collection efforts. More specifically, it offers the opportunity of deviating from the traditional 
24hRs, to shorter recall periods (e.g., 2-h, 4-h, 8-h), which reduces the reliance on a 
participants’ memory, takes less time to complete, and, thus, should have a lower burden for 
the respondent. 

Therefore, we developed an innovative smartphone-based dietary assessment app [16] that 
can serve to collect dietary intake data in a faster, more flexible, and more reliable manner 
than the traditional methods. In order to facilitate tailored use, and depending on the purpose 
of dietary intake collection, the app can be used in the format of a food record or recall. The 
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recall-module is also flexible, in terms of the reporting window; enabling 1-h recalls up to 
24hRs. Within the current study, we explored the use of an innovative 2-h recall (2hR) 
methodology for (near) real-time data collection. A 2-h reporting period minimizes the 
reliance on memory compared to the traditional 24hRs. The 2-h reporting window was 
selected over a 1-h reporting window to avoid ‘I did not consume anything’ responses; e.g., 
overburdening of the participant. A longer reporting window of, e.g., 3-h or 4-h, was 
considered, but repudiated owing to a higher memory-related and reporting burden. 
Therefore, we felt that a 2-h reporting window would result in the lowest participant 
(perceived) burden relative to the report of a limited number items at once, while limiting 
memory-related bias. The 2hR methodology is flexible and can be used to assess actual food 
intake, by sending consecutive 2hRs on one or more full-days or dayparts, depending on the 
research question. The 2hRs can also be used to assess habitual intake, by sending random 
2hRs over a longer period of time. However, it needs to be stressed that an adequate sampling 
scheme is crucial here, i.e., ensuring equal coverage of all eating occasions, allowing the 
assessment of habitual intake. 
 
Although the 2hR methodology sounds promising, its validation against established methods 
is imperative, to judge its actual value. The DIASS study was designed to evaluate the accuracy 
of the smartphone-based 2hR methodology, to assess both actual and habitual intake of food 
groups, energy, and nutrients compared to established methods and independent biological 
markers. Secondary aims included the evaluation of the usability, perceived burden, and 
compliance of the 2hR method compared to established methods. Additionally, the DIASS 
study allows further evaluation of the other administrated dietary assessment tools. With this 
article, we aim to provide an overview of the (1) study design of the DIASS study, and (2) 
baseline characteristics of the study population, as a reference for future evaluation studies 
that will be performed using these data. 
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MATERIALS AND METHODS 

DESIGN 
The DIASS study had a cross-over design (12-weeks), with two experimental conditions; i.e., 
measuring actual intake and habitual intake. Dietary intake was assessed by means of the new 
2hR app, as well as various established methods. In addition, information on demographics 
(e.g., educational level, occupation) was collected by means of an online questionnaire 
derived from the NQplus questionnaire [17]. Additional questions were included regarding the 
participant’s weight stability and sleep pattern. Height and weight were measured on-site. 
During the study, activity trackers were used to assess physical activity levels. In the final study 
week participants were invited to complete an evaluation questionnaire regarding the various 
dietary assessment methods. 

Originally, the 215 participants were randomly allocated into six groups (Figure 1). Groups 
differed in terms of the additional methods used to assess actual intake; groups did not differ 
in terms of the methods used to assess habitual intake. Therefore, the habitual groups in 
Figure 1 are combined. Unfortunately, due to the COVID19 pandemic, the urine and blood 
collections of 31 participants (groups 2, 3, 5, 6), scheduled from March 2020 onwards, were 
cancelled. Consequently, these participants were relocated to matching groups without urine 
and blood collections (groups 4, 6, and newly formed 7). 
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Figure 1. Flowchart study design. 2hR-day: Full day of consecutive 2-h recalls; WB-24hR: web-based 
24-h recall; 24-h urine: 24-h urine collection; TB-24hR: telephone-based 24-h recalls; Random-2hRs: 
Randomly distributed 2-h recalls; FFQ: food frequency questionnaire; Eetscore: Web-based screener 
for diet quality. 
 

After randomization in week 1, each participant completed two study periods of four weeks 
each (i.e., week 2–5 and week 8–11), during which, either actual or habitual intake was 
assessed, in random order. To minimize the participant burden, and as such optimize 
compliance, the two study periods were separated by a wash-out period of two weeks (i.e., 
week 6–7). Additionally, overall diet quality was assessed in week 12. The DIASS study was 
approved by the ethics committee of Wageningen University and Research (WUR) (ABR No.: 
NL69065.081.19) and conducted according to the guidelines laid down in the Declaration of 
Helsinki. 
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PARTICIPANTS 
Recruitment took place between June 2019 and May 2020, and aimed to include 220 Dutch 
adults (men and women) aged 18–70 years. Eventually, 215 men and women were included 
in the study. Participants were recruited via the research volunteer database of the division 
of Human Nutrition and Health of WUR, social media accounts of the division (i.e., Twitter, 
Facebook), and through flyers and posters. Participants had to be Dutch speaking, not visually 
impaired, in possession of a smartphone with internet plan, metabolically stable (i.e., gained 
or lost ≤3 kg in the past 3 months), willing to maintain current dietary habits for the duration 
of the study, not participating in another dietary intervention study, not an employee of the 
division, and not having any formal training in the field of nutrition. Written informed consent 
was obtained from all participants prior to participation. 

DIETARY INTAKE ASSESSMENT 
Actual food intake was assessed on random non-consecutive days over one of the four-week 
study periods. Within this period, participants were invited to complete three 2hR-days and 
three 24hRs. In addition, a random subsample of 69 participants also provided four 24-h urine 
samples and two fasting blood samples. The urine collections were intentionally coupled to 
the recall days (i.e., 2× to 2hR-day and 2× to 24hR-day). Blood sampling occurred following 
two of the urine collections while the participants were at the study centre to hand in their 
urine containers. During the other four-week study period, habitual food intake was assessed 
by random 2hRs. The same number of 2hRs was used as for the 2hR-days. However, to assess 
habitual intake, the 2hRs were randomly distributed over the four-week period (i.e., 3× each 
time slot). In case of non-response, the 2hR was automatically rescheduled on the same time 
on another day. In addition, at the end of the study period, participants were invited to 
complete a FFQ. In the final study week, participants were invited to complete an additional 
short FFQ, to assess overall diet quality. 

2HRS 
The 2hRs were sent via Traqq®, a dietary assessment app developed by WUR [16]. By clicking 
on the notification/opening Traqq®, participants were able to report their food intake of the 
previous 2 h. The food intake report screen is supported by an extensive food list, based on 
the Dutch Food Composition Database [18]. Following the reporting of the food, participants 
are requested to enter the consumed amount and eating occasion (i.e., breakfast, lunch, 
dinner, snack). Amount was reported in household measures (e.g., cups, spoons), standard 
portion size (e.g., small, large) [19] or amount in gram. Participants could also report all 
ingredients of a recipe and the amount consumed (i.e., yield and retention factors are 
automatically taken into account) under the ‘My Dishes’ feature. In addition, this function 
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could also be used to create frequently consumed food combinations (e.g., daily breakfast) to 
simplify the reporting of these items. When participants did not consume anything in the 
specified time window they could simply press the ‘I did not eat or drink anything’ button [16]. 

Actual intake was measured on thee random days by means of multiple consecutive 2hRs per 
day (Figure 2). A subsample also collected 24-h urine samples. Therefore, for this group, two 
of the 2hR-days were first randomly scheduled and then communicated to the participant to 
ensure 24-h urine collection on the recall day. The remaining 2hR-day was unannounced. On 
the recall days, participants received an invitation every 2 h to report their food intake during 
the previous 2 h (Figure 2). To ensure complete data collection, participants also received an 
additional prompt the following morning, i.e., to report any remaining food intake from the 
previous night. To stimulate a quick response [20], participants were informed that a 2hR 
closed after 60 min. However, in reality, the 2hRs remained open until the end of the day and 
then closed automatically. Participants were allowed to miss one invitation on a 2hR-day. In 
case of >1 missed 2hRs, the sampling was seen as incomplete and a new recall day was 
scheduled. On average, participants received eight consecutive 2hR invitations on a recall day. 
The 2hR-day sampling scheme was individualized according to the participant’s sleep pattern 
(i.e., inquired though the baseline questionnaire). 
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Figure 2. Example actual intake sampling scheme (i.e., three 2hR-days). 

Habitual intake was measured by multiple random 2hRs. Participants received an invitation 
on random days and times to report their food intake during the previous 2 h (Figure 3). The 
same timeslots were used as for the actual intake measurement, but now, randomly divided 
over the four-week period instead of combined on full days. The 2hRs were restricted to a 
maximum of two per day to limit the number of recordings on one day. However, the 
additional question regarding the previous night remained linked to the final evening 2hR. 
Participants had a 60-min response deadline. In case of non-response, the 2hR closed, and a 
new invitation was automatically rescheduled for the same time on a different day. 
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Figure 3. Example habitual intake sampling scheme (i.e., three times each 2hR-slot). 

WEB-BASED 24HRS 
A total of 168 participants were invited to complete thee random web-based 24hRs with 
Compl-eat™. A subsample of 38 of these participants also collected 24-h urine samples. 
Consequently, for this group, two of the 24hRs were randomly scheduled and then 
communicated to the participant to ensure 24-h urine collection on the recall day. The 
remaining 24hR was unannounced. Compl-eat™ is a validated self-administered web-based 
dietary 24hR-tool developed by WUR and is based on the automated five-step multiple-pass 
method [21]. In this method, participants first fill in a quick list of consumed foods and then 
in the next steps provide detailed information about eating occasion, type of foods, and 
consumed quantities [22]. The method of reporting intake in Compl-eat™ is similar to the 
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reporting method in Traqq®. Items can be searched for in the food list, and consumed 
amounts can be reported in similar household measures, standard portion sizes, or in grams 
[19,22]. Compl-eat™ contains a recipe module similar to the ‘My Dishes’ function of Traqq®. 
Moreover, participants were able to make notes for clarifications. Invites for the web-based 
24hRs were sent via email at 06:00 in the morning of the recall day. The questionnaire was 
accessible until midnight that same day. In case of non-response, a new 24hR was randomly 
scheduled. 

TELEPHONE-BASED 24HRS 
A subsample of 39 participants were asked to complete interviewer-administered telephone-
based 24hRs instead of web-based 24hRs. A subsample of 28 of these participants also 
collected 24-h urine samples. Therefore, two of the 24hRs were randomly scheduled and then 
communicated to the participant to ensure 24-h urine collection on the recall day. The final 
24hR remained unannounced. If needed, the dieticians made multiple attempts to reach the 
participant by phone on a recall day. In case of non-response, a new 24hR was randomly 
scheduled. 

Since the validation of Compl-eat™, improvements have been made to the tool that still need 
to be validated. Therefore, the telephone-based 24hRs were used to ensure the accuracy of 
Compl-eat™. The telephone-based 24hRs were conducted by trained dieticians using a 
standardized protocol and the five-step multiple-pass approach [22]. However, to minimize 
reactivity bias, participants were not informed that the interviews were conducted by 
dieticians, in attempt to minimize socially desirable answers. 

COMPUTATION OF DIETARY RECALL DATA 
Data from both the 2hRs and the 24hRs were entered in the computation module of Compl-
eat™ [21]. Total intakes of energy, macro-, and micronutrients, and food group intakes (g/d) 
were calculated using the Dutch Food Composition Database 2016 [18]. Dietary intake data 
were thoroughly checked by trained dieticians, according to a standardized protocol. The 
dieticians checked the data for completeness and unusual amounts. Errors were corrected 
according to a standardized approach, using standard portion sizes and recipes (e.g., 35 slices 
of bread was corrected to 1 slice of 35 g). Participants were not contacted in case of 
discrepancies. 

FFQ 
All participants were asked to complete a validated 183-item semi-quantitative FFQ, with a 
reference period of four weeks [23]. This extensive FFQ was administered online with the self-
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administered Dutch FFQ-tool™ [24]. Participants indicated the frequency of consumed food 
items by selecting answers ranging from ‘not consumed’ to ‘7 days per week’. In addition, 
portion sizes were estimated using natural portions and commonly used household measures. 
Energy and nutrient contents of foods were based on the Dutch Food Composition Database 
2010 [25] and multiplied by the portion size and frequency of consumption to calculate mean 
daily intake of energy, macro-, and micronutrients. In addition, average daily intake (in grams) 
of food items were calculated by multiplying frequency of consumption by portion size. 
Trained dieticians conducted multiple quality checks to safeguard the quality of the data. 
 

DIET QUALITY 
All participants were asked to complete the Eetscore™ in the final study week. The Eetscore™ 
is a self-administered web-based screener for diet quality [26]. It consists of a 55-item FFQ 
and is scored with the Dutch Healthy Diet 2015-index to evaluate adherence to the Dutch 
food-based dietary guidelines [27]. This short FFQ was administered online with the Dutch 
Eetscore-tool™. Participants indicated frequency of consumed food items by selecting 
answers ranging from ‘never’ to ‘every day’ for regularly consumed foods and from ‘not this 
month’ to ‘four times a month’ for episodically consumed foods (e.g., legumes). Portion sizes 
were estimated using natural portions and commonly used household measures. Average 
daily intake of food items were calculated by multiplying frequency of consumption by portion 
size in grams. Sodium content of food items were based on the Dutch Food Composition 
Database 2010 [25] and multiplied by the portion size and frequency consumption. 
 

URINE COLLECTION 
A total of 66 participants provided four 24-h urine samples during the ‘actual intake’ period. 
Two of these samples were linked to 2hR-days and the other two to 24hRs. The participants 
were instructed on 24-h urine sampling according to a standardized protocol and were 
provided with three-liter containers containing the preservative lithium dihydrogenphosphate 
(25 g). Participants also received three 100 mg para-aminobenzoic (PABA) tablets (KAL 
Vitamins, Salt Lake City, UT, USA), and were instructed to ingest one PABA tablet with each 
main meal. The 24-h urine collection started with the second voiding after waking up and was 
completed with the first voiding after waking up the next day. Participants were instructed to 
record the beginning and end times of the 24-h urine collection, the time of ingesting the PABA 
tablets, and any possible deviations from the protocol (e.g., missing urine). Urine samples 
were handed in at the study center where they were mixed, weighed, aliquoted, and stored 
at −80 °C until further analysis. 
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PABA was provided to check for completeness of the 24-h urine samples. Research has shown 
that providing PABA is recommended, but that it does not necessarily have to be analyzed 
[28]; often creating a feeling of being observed is enough. Moreover, when participants are 
willing to commit to four 24-h-urine collections, two blood samplings, and four extra visits to 
the study center, compliance often follows [29]. However, the 24-h urine collections were 
determined as valid if they met all of the following criteria: (1) collection time of 22–26 h, (2) 
sample volume ≥500 mL, (3) no more than 1 reported missed void, (4) estimated missed 
volume ≤5% of the total volume, and (5) creatinine levels of >10 mg/kg for women and >15 
mg/kg for men [28]. Urinary creatinine was measured at 520 nm on the Synchon LX20 by the 
modified Jaffé procedure using a commercial kit. 

The 24-h urine samples were assessed on nitrogen, potassium, and sodium content, which 
were used to estimate absolute intakes of protein, potassium, and sodium, respectively 
[30,31]. Urinary 24h-nitrogen (N) excretion was determined with the Kjeldahl technique (Foss 
KjeltecTM 2300 analyzer; Foss Analytical). Urinary protein content was calculated with the 
following formula: 6·25×(urinary N/0·81), accounting for an assumed 19% of fecal and skin 
losses [28,32]. Additionally, urinary potassium (K) concentration measurements were 
performed with an ion-selective electrode on a Roche 917 analyzer. The 24-h K-excretion was 
calculated by multiplying the total weight of the 24-h urine sample by the K-concentration. 
Following, this was divided by 0.77, assuming an urinary excretion of 77% [28]. Finally, urinary 
sodium (Na) was calculated the same way as urinary K. However, an urinary excretion of 86% 
was assumed [28]. The remaining 24-h urine samples were stored at −80°C for additional 
analyzes. 

BLOOD COLLECTION 
The 66 participants that provided 24-h urine samples also provided two fasting blood samples. 
Following a 10-h overnight fast, these participants underwent a venipuncture at the study 
center. The venipunctures were conducted by experienced staff members and scheduled on 
days that participants were already at the study center to hand in their 24-h urine samples, 
sparing them extra visits. Biochemical analyses were performed either on a Dimension Vista 
1500 automated analyzer (Siemens, Erlangen, Germany) or a Roche Modular P800 chemistry 
analyzer (Roche Diagnostics, Indianapolis, IN, USA). The blood samples were used to assess 
carotenoid, folate and n-3 fatty acid concentrations, to estimate habitual intake of fruit and 
vegetables, folate, and fish, respectively [31,33,34]. The remaining plasma and serum samples 
were stored at −80°C for additional analyzes. 
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ANTHROPOMETRICS 
Anthropometrics were conducted by trained staff, according to a standardized protocol in 
study week 1. Height was measured without shoes, using a stadiometer (SECA 213; SECO 
Corp., Hamburg, Germany) to the nearest 0.1 cm. Weight was measured without shoes, heavy 
clothing, and with empty pockets on a digital scale (SECA 877; SECA Corp., Hamburg, Germany) 
to the nearest 0.1 kg. Weight measurements were repeated in study weeks 7 and 12, to 
determine weight stability. 
 

TOTAL ENERGY EXPENDITURE 
Total energy expenditure (TEE) is estimated by calculating basal metabolic rate (BMR) and 
assessing physical activity level (PAL). BMR was calculated using the Harris and Benedict 
equation [35]. In addition, PAL was assessed over a 7-day period, in which the participant wore 
the ActiGraph wGT3X-BT accelerometer (ActiGraph LLC, Pensacola, FL, USA), except when 
showering, bathing, swimming, or involved in contact sports [36]. Accelerometers have been 
reported to be objective, practical, non-invasive, accurate, and reliable tools to assess physical 
(in)activity [36,37]. 
 
The raw accelerometer data was downloaded from the ActiGraph devices and thoroughly 
checked by an experienced data scientist. Participants were included if the devices collected 
accelerometer data of 7 consecutive days. Next, the data were imported into ActiLife version 
6.13.4 (ActiGraph LLC, Pensacola, FL, USA), and participant’s percentage of time spent in 
sedentary, light, moderate, vigorous, and very vigorous activity using the Troiano algorithm 
[38]. The daytime activity percentages were then extracted from ActiLife and multiplied with 
the corresponding PALs using Python version 3.7 (Python Software Foundation, Wilmington, 
DE, USA), according to the guidelines set by the WHO. The WHO guidelines describe a mean 
PAL, based on factorial calculations of the time spent on activities during the day and the 
energy cost of those activities (i.e., sedentary: 1.4, light activity: 1.55, moderate: 1.7, vigorous: 
1.8, very vigorous: 2.2) [39]. This process resulted in an individual PAL for each participant. 
 

DEMOGRAPHICS 
The baseline questionnaire acquired general participant information (i.e., age, gender, 
educational level, daytime activities, sleeping pattern, intention to maintain current body 
weight). This questionnaire was derived from the NQplus study, a large cohort study in the 
Netherlands [17]. Additional questions were included to assess a participant’s sleep pattern 
in order to personalize the 2hR sampling times. 
 

 



Design of an evaluation study 

Page | 97  

EVALUATION QUESTIONNAIRE 
In the final study week, participants completed an evaluation questionnaire on their 
experiences using the app and various commonly-used conventional dietary assessment 
methods. The evaluation questionnaire was based on previous studies and assessed aspects 
such as ease of use, convenience, perceived reporting burden, perceived accuracy, likelihood 
of future use, and overall experience [40,41]. Responses were based on a 5-point Likert scale 
(i.e., strongly agree, agree, neutral, disagree, strongly disagree), or participants could indicate 
what dietary assessment method matched best with a specific statement. In addition, the 
participants were asked to complete the system usability scale (SUS) for Traqq® [42]. This is 
an 10-item questionnaire with a 5-point Likert scale ranging from 1 (strongly disagree) to 5 
(strongly agree). The SUS has been used in previous studies to assess the usability of dietary 
assessment apps [43,44]. 

STATISTICAL ANALYSES 
Baseline characteristics are presented as means with standard deviations (SD) and frequencies 
(n) with percentages (%). The SUS score was calculated with a predefined formula (range 0–
100). A SUS score of >68/100 indicates an above-average usability and a score of >80/100
indicates an excellent usability [42]. Data analyses were performed using SPSS Statistics
version 25.0 (SPSS Inc. Chicago, IL, USA).

BASELINE CHARACTERISTICS 
In total, 215 men (28%) and women (62%) were included in the DIASS study (Table 1). The 
participants had a mean ± SD age of 39 ± 19 years and a mean ± SD BMI of 23.8 ± 4.0 kg/m2. 
According to the accelerometer data the participants had a sedentary lifestyle (mean ± SD PAL 
of 1.46 ± 0.02). The majority of the participant were either <25 years (42%) or ≥50 years (38%), 
most of the participants were highly educated (58%), the majority of the participants were 
either married/registered partners (32%) or single (42%), over half of the participants (52%) 
had a paid job, and the majority of the participants did not follow a diet regimen (71%). 
Overall, response rates for the dietary assessment methods were high (>90%). The 
completeness of the urine collections was 86%, and 100% of the fasting blood samples were 
collected. Finally, mean SUS score of the app was 72 ± 14. 
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Table 1. Baseline characteristics of the DIASS participants, including collected dietary intake data. 

N Total Men Women 
Men (n, %) 215 60 (28) 60 (100) 155 (0) 
Mean age, years (SD) 215 39 (19) 45 (19) 37 (18) 
Age category (n, %) 
<25 years 
25–50 years 
≥50 years 

215 
 90 (42) 

43 (20) 
82 (38) 

19 (32) 
10 (16) 
31 (52) 

71 (46) 
33 (21) 
51 (33) 

Mean BMI, kg/m2 (SD) 215 23.8 (4.0) 25.0 (4.3) 23.4 (3.8) 
BMI category (n, %) 215 
<18.5 kg/m2 7 (3) 1 (1) 6 (4) 
18.5–25 kg/m2 148 (69) 34 (57) 114 (73) 
≥25 kg/m2 60 (28) 25 (42) 35 (23) 
Mean BMR, kcal/day (SD) 215 1545 (211) 1799 (174) 1446 (122) 
Mean PAL 203 1.46 (0.02) 1.46 (0.02) 1.46 (0.01) 
Educational level (n, %) 215 
Low 5 (2) 0 (0) 5 (3) 
Intermediate 85 (40) 26 (43) 59 (38) 
High 125 (58) 34 (57) 91 (59) 
Marital status (n, %) 215 
Married/registered partnership 69 (32) 25 (42) 44 (28) 
Cohabiting 25 (12) 8 (13) 17 (11) 
Serious relationship, not cohabiting 20 (9) 6 (10) 14 (9) 
Single 90 (42) 17 (28) 73 (47) 
Divorced 7 (3) 3 (5) 4 (3) 
Widowed 3 (1) 0 (0) 3 (2) 
Other 1 (1) 1 (2) 0 (0) 
Paid job currently (n, %) 215 
Yes 112 (52) 33 (55) 79 (51) 
No 103 (48) 27 (45) 76 (49) 
Diet regimen (n, %) 204 
Yes, always 35 (17) 4 (7) 31 (21) 
Yes, sometimes 24 (12) 6 (11) 18 (12) 
Never 145 (71) 45 (82) 100 (67) 
Number of complete dietary data 
collections (n, %) 
2hR-day 1  214 591 (92) 158 (88) 433 (94) 
WB-24hR  167 474 (90) 126 (88) 348 (91) 
TB-24hR  39 117 (98) 33 (92) 84 (100) 
Linked 24-h urine collections 66 238 (86) 73 (83) 165 (88) 
Blood sample  66 138 (100) 44 (100) 94 (100) 
Random 2hRs  212 4669 (96) 1322 (95) 3347 (96) 
FFQ 212 204 (96) 55 (92) 149 (98) 
Eetscore  203 192 (95) 54 (98) 138 (93) 
Mean System Usability Score (SD) 190 72 (14) 73 (15) 72 (13) 
1 No more than one 2hR missed per day. 
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DISCUSSION 

We have described the design of the DIASS study, which aimed to evaluate a newly developed 
smartphone-based dietary assessment methodology against established methods and 
objective markers. A total of 215 men and women were included (18–70 years); mainly 
women and highly educated. The overall response rates were high with >90% for the dietary 
assessment approaches and >86% for the collection of biological samples. 

Various dietary assessment apps have been developed for research purposes, all based on the 
food record approach. Similarly to Traqq®, most of these apps rely on text entry for food 
identification and quantification; respondents select consumed foods from a fixed food list 
and quantify amounts by weights or household measures [12,41,45–48]. In contrast, some of 
the available apps rely on digital images for food identification and quantification, i.e., 
respondents take a before and after picture of each meal. Although this approach seems 
promising these apps are not fully automated, i.e., require some form of manual image review 
by user and/or researcher [12,43,44,49–51]. The text- and image-based dietary assessment 
apps all rely on national databases as the source of food composition data; thus, ensuring the 
quality of the nutrition calculations. Validation studies of these apps also show good 
agreement between the apps and the reference methods [12,43,48]. These comparisons are 
mostly made against established methods (e.g., 24hRs, weighed food records). A limited 
number of validation studies also included objective measures for total energy expenditure 
(TEE) from doubly-labelled water or accelerometers [49,50,52]. However, objective measures 
for nutrient intakes (i.e., biomarkers) are generally lacking [12,43,48]. Despite their limited 
availability [30,31], biomarkers are more sensitive for quantifying the magnitude and direction 
of potential measurement errors than traditional self-report dietary assessment methods 
[53]. Therefore, an important strength of this evaluation study was the collection of biological 
samples, which offered the opportunity to conduct established urine- and blood-based 
nutrient biomarker assessments, including nitrogen, potassium, sodium, folate, carotenoids 
and EPA/DHA, as well as more innovative food metabolomics [54]. Moreover, similarly to a 
few of the validated apps, we used accelerometers to obtain an objective measure for TEE. 

The SUS score of 72 indicates that the app Traqq® has a good usability. This SUS rating was 
slightly lower compared to our prior usability test (mean SUS of 79) [16]. However, it should 
be noted that participants in our previous study only used the app for approximately one hour 
while performing specific tasks in a controlled environment, while during the DIASS study, 
participants used the app for two periods of four weeks in their day-to-day lives. Obviously, 
more issues occur with prolonged use (e.g., more missing food items or connectivity issues).  
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The DIASS study may be considered limited by the fact that about 70% of the participants 
were highly educated women, which may limit the generalizability of the results. 
However, this validation study was designed to assess the accuracy of the 2hR-based 
dietary intake estimates. Therefore, the lack of generalizability may not be as much of a 
limitation as it would have been in research into diet–disease relationships. However, 
acceptability and usability levels might be lower for individuals with a lower educational 
level [55,56]. Therefore, for usage in other study populations, it will be important to 
perform additional evaluations, and alterations to the method might be required. 

Unfortunately, the COVID-19 pandemic forced us to cancel the final blood and 
urine collections, to safeguard the participants’ health. This decreased the number of 
participants that collected independent biomarkers, from 100 to 69 participants. However, 
the data from the remaining participants in this subsample still provide valuable insights 
into the relation between true and assessed intake. Although this last sample of 
participants were in lockdown for the entire study duration, the self-reported dietary 
assessment and additional measures could proceed as planned. 

In conclusion, the most important feature of the DIASS study is its elaborate study design. 
The results consist of actual dietary intake data obtained by multiple 2hR-days, multiple 
web-based or telephone-based 24hRs, and biochemical markers. This allows validation of 
actual intake assessment with the 2hR-days against both established methods and 
independent urinary biomarkers. Moreover, the same data can also be used to validate 
the most recent version of Compl-eat™. In contrast, the habitual dietary intake data 
obtained by multiple random 2hRs, FFQ, and, again, biochemical markers allows for 
validation of habitual intake assessment. This data also allow for further validation of the 
FFQ. Finally, the results of the Eetscore™ can be validated against the results of the FFQ 
and the 24hRs, as the diet quality score used in the Eetscore™ can also be calculated from 
these more extensive approaches. Additionally, the collected data can also be used to 
evaluate all administered methods, in terms of usability, response time, and perceived 
burden. As such, we believe that the DIASS study offers a unique opportunity for extensive 
evaluation of a variety of dietary assessment methods and contributes to the further 
improvements of these methods.
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ABSTRACT 

BACKGROUND  
Conventional dietary assessment methods are affected by measurement error. We developed 
a smartphone-based 2-hour recall (2hR) methodology to reduce participant burden and 
memory-related bias.  

OBJECTIVE  
Assessing the validity of the 2hR method against traditional 24-hour recalls (24hRs) and 
objective biomarkers. 

METHODS 
Dietary intake was assessed in 215 Dutch adults on six randomly selected non-consecutive 
days (i.e., three 2hR-days and three 24hRs) during a four-week period. Sixty-three participants 
provided four 24-hour urine samples, to assess urinary nitrogen and potassium 
concentrations.  

RESULTS 
Intake estimates of energy (2,052±503 kcal vs. 1,976±483 kcal) and nutrients (e.g., protein: 
78±23 g vs. 71±19 g; fat: 84±30 g vs. 79±26 g; carbohydrates: 220±60 g vs. 216±60 g) were 
slightly higher with 2hR-days than 24hRs. Comparing self-reported protein and potassium 
intakes to urinary nitrogen and potassium concentrations indicated a slightly higher accuracy 
of 2hR-days than 24hRs (protein: -14% vs. -18%; potassium: -11% vs. -16%). Correlation 
coefficients between methods ranged from 0.41 to 0.75 for energy and macronutrients and 
from 0.41 to 0.62 for micronutrients. Generally regularly consumed food groups showed small 
differences in intake (<10%) and good correlations (>0.60). Intakes of and energy, nutrients 
and food groups showed similar reproducibility (ICC) for 2hR-days and 24hRs. 

CONCLUSIONS  
Comparing 2hR-days with 24hRs showed relatively similar group-level bias for energy, most 
nutrients, and food groups. Differences were mostly due to higher intake estimates by 2hR-
days. Biomarker comparisons showed less underestimation by 2hR-days as compared to 
24hRs, suggesting that 2hR-days are a valid approach to assess intake of energy, nutrients and 
food groups.  
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INTRODUCTION 

Research on the role of nutrition in health and disease prevention mostly relies on self-
reported dietary intake data, i.e., 24-hour recalls (24hRs), food frequency questionnaires 
(FFQs) or food records. Although these methods are the mainstay of dietary assessment, they 
have several drawbacks [1, 2]. FFQs and 24hRs are retrospective and prone to memory-related 
bias. On the other hand, food records are prospective and prone to reactivity bias, i.e., a user 
may alter their food intake because they are aware that they are observed or to simplify the 
recording task. More importantly, irrespective of the method, both researcher and participant 
burden is high [3].  

Recent implementation of new technologies has resulted in the development of multiple web- 
and smartphone-based dietary assessment tools and substantially improved the quality of 
dietary assessment (see Eldridge and colleagues [4] for an overview). Compared to 
conventional methods, web-based tools have many advantages such as the integration of a 
fixed food consumption database. This facilitates automatic coding of reported food items, 
which reduces measurement error, improves accuracy, increases user-friendliness, lowers 
participant and researcher burden, and reduces costs [1, 5]. Smartphone-based tools (apps) 
can even further advance the field as they are perceived as easier to complete, more flexible 
(i.e., no computer needed), and less burdensome [6]. Moreover, apps have the major 
advantage of enabling (near) real-time data collection [1, 3, 7]. This concept is widely used in 
behavioral and social sciences where it is referred to as ecological momentary assessment 
(EMA); repeated real-time assessment of individual’s behavior in their own environment. 
Where the ecological aspect focuses on the individual’s “real-world” and the momentary 
aspect on the individual’s current or very recent state [8].  

Yet, all available research and commercial dietary assessment apps are based on the food 
record approach, and still prone to socially desirable answers and reactivity bias [2, 3]. 
Moreover, there are only a limited number of fully-automated (i.e., no manual coding) and 
validated dietary assessment apps that are appropriate for use in nutrition research. When 
validated, apps are only validated against traditional self-report methods and not against 
objective measures such as doubly-labelled water or urinary recovery markers (i.e., nitrogen 
for protein intake, potassium) [9-13].  

To further improve the quality of dietary assessment, we recently developed an innovative 
smartphone-based tool called ‘Traqq®’ as described elsewhere [14]. In short, Traqq® is a 
flexible dietary assessment app (iOS/Android) that can be tailored to different research 
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questions, e.g., food list, portion size estimation, sampling schemes. In contrast to existing 
apps, Traqq® can be used as both a food record and a recall method. Moreover, the recall-
module is flexible in terms of recall/reporting period, which enables shorter reporting periods 
and thus offering the opportunity to deviate from traditional 24hRs to shorter recall periods 
(e.g., 2-hours, 4-hours) according to the EMA principle. This enables collection of (near) real-
time dietary intake data, which reduces the reliance on memory, takes less time to complete, 
and consequently should have a lower burden for the respondent, thus increasing accuracy of 
the reports.  
In this study, we validated the accuracy of the collected dietary intake data using the EMA 
principle. We compared the use of repeated, consecutive 2hRs on one day for (near) real-time 
assessment of actual food intake, i.e., energy, macro/micronutrients, food groups, to 
traditional 24hRs and urinary recovery biomarkers. 
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METHODS 

PARTICIPANTS  
The DIASS study was conducted between June 2019 and May 2020 and included 215 
participants aged 18-70 years. Participants were eligible for participation if they were able to 
speak and read Dutch, in possession of a smartphone with internet plan, metabolically stable 
(i.e., gained or lost ≤3 kg in the past 3 months), and willing to maintain their dietary habits for 
the duration of the study. The DIASS study had a cross-over design with two study periods; 
one study period focused on actual intake (i.e., 2hR-days vs. 24hRs) and one on habitual intake 
(i.e., random 2hRs vs. FFQ). More details on the DIASS study can be found elsewhere [15].  

The present study describes the data of the actual study period including participants who 
completed three 2hR-days and three 24hRs (n=162; Supplemental Figure 1), and four 24-hour 
urine samples (n=65; subsample). The DIASS study was approved by the ethics committee of 
Wageningen University and Research (ABR No.: NL69065.081.19) and conducted according to 
the guidelines laid down in the Declaration of Helsinki. Written informed consent was 
obtained from all participants. 

STUDY DESIGN 
Food intake was assessed on randomly selected non-consecutive days over a four-week study 
period. Participants completed three 2hR-days and three 24hRs (i.e., either web-based or 
interviewer-administered). Recall days were randomly selected and scheduled over the four-
week study period using the statistical analyses system (SAS) version 9.4 (SAS Institute Inc, 
Cary, NC, USA), except when in combination with urine collections. Urine collections were 
matched to the recall days (i.e., 2x to 2hR-day and 2x to 24hR-day) where recall days were 
randomly scheduled and then preannounced to facilitate the 24-hour urine collection on the 
recall days. In case of non-response, a new day was randomly selected and scheduled.  

METHODS OF DIETARY ASSESSMENT 
2-hour recalls
The smartphone app Traqq® was used for the 2hR-days. On 3 random recall days, all
participants (n=162, 100%) received an invitation to report their food intake every two hours.
On average, participants received eight consecutive 2hR invitations on a recall day, see Figure
1 for an example scheme of a 2hR-day. Notifications were sent at the end of each 2-hour
interval with a reporting window of 1 hour (e.g., interval 6:00-8:00; notification at 8:00;
reporting deadline at 9:00). The morning after the recording day, another invitation was sent
to report on potential nighttime food intake (e.g., nighttime interval 22:00-6:00; notification
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at 8:00; reporting deadline at 9:00). The 2hR-day sampling scheme was individualized based 
on the participant’s sleeping pattern, as inquired via the baseline questionnaire, to minimize 
the risk that participants where disturbed while sleeping. To illustrate, if a participant 
indicated to wake up at 9:00, the first notification was sent at 10:00 instead of 8:00. For all 
participants, no invitations were sent after 22:00. Participants report their food intake by 
clicking on the notification or opening the app. Thereafter, the search screen opens and food 
items can be selected from an extensive food list based on the Dutch Food Composition 
Database [16]. Subsequently, participants are prompted to report quantity and eating 
occasion, i.e., breakfast, lunch, dinner, snack. Quantity can be reported in household 
measures (e.g., spoon, cup), standard portion sizes (e.g., small, large) or amount in gram. 
Traqq® also contains a “My Dishes” feature where participants can enter all ingredients of a 
recipe and the amount consumed of the dish, with yield and retention factors automatically 
being taken into account. The “My Dishes” feature can also be used to create frequently 
consumed product combinations (e.g., daily breakfast products), which simplifies reporting 
these items and decreases (mis)calculation errors.  

Figure 1. Example of a 2hR-day sampling scheme. 

24-hour recalls
Participants also completed three random non-consecutive web-based 24hRs (n=128, 79%) or 
three random non-consecutive interviewer-administered 24hRs (n=34, 21%). Web-based
24hRs were administered via Compl-eat™; a self-administered web-based dietary 24hR-tool
developed by our department based on the automated multiple-pass method, a five-step
method to assist the participant in recalling food intake of the previous 24 h [17, 18]. With this 
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method, participants first complete a quick list of consumed foods and subsequently provide 
detailed information about type of foods, consumed quantities, and eating occasion [19]. The 
reporting method in Compl-eat™ is similar to the reporting method in Traqq®. Foods are 
identified in a food list and portion sizes are reported in household measures, standard 
portion sizes or in gram [17]. Additionally, Compl-eat™ contains a recipe module similar to the 
“My Dishes” function of Traqq®. Invitations for the web-based 24hRs were sent via email at 
6:00 in the morning on the recall day. The 24hR could be completed until midnight the same 
day. 

The interviewer-administered 24hRs were administered via telephone and conducted by 
trained dieticians using the multiple-pass approach [19]. Methods of portion size estimation 
included household measures, standard portions or in gram. The interviewer-administered 
24hRs were coded by the trained dietician and entered in Compl-eat™ using the Dutch Food 
Composition Database [16]. Although the interviewer-administered 24hRs are seen as the 
most accurate version of the 24hR method and included to ensure the accuracy of Compl-
eat™, no major differences were found between results of 24hRs administered via Compl-
eat™ and by telephone (results not included here). Therefore, the reported intakes were 
combined in the current analyses. 

COMPUTATION OF DIETARY INTAKE DATA 
Data from both 2hR-days and 24hRs were entered in the computation module of Compl-eat™ 
[17]. Total intakes of energy and nutrients were calculated using the Dutch Food Composition 
Database [16]. Data was thoroughly checked by well-trained dieticians according to a 
standardized protocol, particularly focusing on reported amounts. Unusual amounts were 
corrected using standard portion sizes and recipes (e.g., 35 slices of bread was corrected to 1 
slice of 35 g). 

URINE COLLECTION AND BIOCHEMICAL ANALYSIS OF NUTRITIONAL BIOMARKERS 
Urine collection (24h) was performed according to a standardized protocol. Participants 
received three-liter containers containing the preservative lithium dihydrogenphosphate (25 
g), three 100 mg para-aminobenzoic acid (PABA) tablets (KAL Vitamins, Salt Lake City, UT, 
USA), and a questionnaire for each 24h-urine collection. Urine collection started with the 
second voiding after waking up and was completed with the first voiding after waking up the 
next day. To verify completeness of the 24h-urine samples, participants were instructed to 
ingest one PABA tablet with each main meal (i.e., breakfast, lunch, diner), and informed that 
this process was to check the completeness of the collection [20]. Simultaneously, participants 
were instructed to record the beginning and end time of the 24h-urine collection, time of 
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ingestion of PABA tablets, and any possible deviations from the protocol (e.g., missed urine 
collection). Urine samples were handed in at the study center where they were weighed, 
mixed, aliquoted into 5 ml samples and stored at -80ºC until further analysis. 
 
Urinary creatinine was used to assess completeness of the urine sample. Urinary creatinine 
concentrations were measured at 520 nm on the Synchron LX20 by the modified Jaffé 
procedure using a commercial kit. The 24h-urine collections were classified as complete if they 
met all of the following criteria: 1) collection time of 22-26h, 2) sample volume ≥500 ml, 3) no 
more than 1 reported missed void, 4) estimated missed volume ≤5% of the total volume, and 
5) creatinine levels of >10 mg/kg for women and >15 mg/kg for men [21]. Of the 259 collected 
24h-urine samples, 177 (68%) were classified as complete; only complete samples were used 
for data analyses. 
 
Urinary 24h-nitrogen (N) was used to estimate protein intake. 24h-N excretion was 
determined by the Kjeldahl technique (Foss KjeltecTM 2300 analyzer; Foss Analytical). 
Assuming that approximately 81% of N is excreted via 24h-urine (i.e., 19% fecal and skin 
losses), and that protein contains 16% of N [22], dietary protein intake was calculated with 
the following formula: 
 

Protein (g/d) = urinary N (mol/L) × volume 24h-urine (L) × 14 (g/mol) × 6·25 / 0·81 
 
Finally, urinary potassium (K) concentration was used to assess potassium intake. Urinary 
potassium was measured with an ion-selective electrode on a Roche 917 analyzer (Roche 
Diagnostics). Assuming that approximately 77% of potassium is excreted via 24h-urine, 24-
hour potassium intake was calculated with the following formula:  

 
K (mg/d) = urinary K (mol/L) × volume 24h-urine (L) × 39 (g/mol) × 1000 / 0.77 

 

OTHER VARIABLES 
General participant characteristics (i.e., age, sex, educational level, daytime activities, sleeping 
pattern, intention to maintain current body weight) was acquired with a questionnaire. Height 
was measured without shoes using a stadiometer (SECA 213; SECO Corp., Hamburg, Germany) 
and weight was assessed without shoes, heavy clothing and empty pockets on a digital scale 
(SECA 877; SECA Corp., Hamburg, Germany). BMI was calculated as weight/height2. 
 
Physical activity levels were assessed over a 7-day period by means of the ActiGraph wGT3X-
BT (ActiGraph LLC, Pensacola, FL, USA). The ActiGraph was not worn during showering, 
bathing, swimming, or contact sports [23]. The accelerometer data was used to determine the 
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participant’s percentage of time spent in sedentary, light, moderate, vigorous, and very 
vigorous activity using the Troiano algorithm [24]. The daytime activity percentages were 
multiplied with the corresponding physical activity level (PAL) according to the guidelines set 
by the WHO. The WHO guidelines describe a mean PAL, based on factorial calculations of the 
time spent on activities during the day and the energy cost of those activities (i.e., sedentary: 
1.4, light activity: 1.55, moderate: 1.7, vigorous: 1.8, very vigorous: 2.2) [25]. This resulted in 
an individual PAL for each participant. 

At the end of the study period, participants were asked to indicate which dietary assessment 
method they preferred (i.e., 2hR-days or 24hRs).  

MEASUREMENT ERROR MODELS 
Measurement error models were used to compare the results of 2hR-day assessment with 
24hRs and urinary recovery biomarkers (i.e., protein and potassium). Dietary intakes 
estimated with multiple 24hRs as well as protein and potassium intakes estimated from 
urinary analysis were assumed to be the best method to approximate true intake [26]. Our 
measurement error model assumed a linear relationship between the 2hR-days, 24hRs and 
the true (unknown) intake. For the 2hR-days and the 24hRs, intake-related bias, person-
specific bias and a constant bias were assumed. Biomarker is assumed to be an unbiased 
measurement. To evaluate the comparability of the 2hR-days and the 24hR-days with the 
biomarkers as reference method, the following measurement error modes were used:  

Reference method X (Biomarker):  Xij = 𝑇𝑇𝑇𝑇�𝑖𝑖𝑖𝑖 + ΔTij + εXij (1) 

2hR-days or 24hRs (R)  Rij = αR + βR( 𝑇𝑇𝑇𝑇�𝑖𝑖𝑖𝑖 + ΔTij ) + wRi + ϵRij (2) 

where i is the person, j the occasion, α the constant bias and β the proportional scaling bias 
(i.e., intake-related bias). The average (habitual) true intake of person i is 𝑇𝑇𝑇𝑇�𝑖𝑖𝑖𝑖, while the true 
intake on day j is given by 𝑇𝑇𝑇𝑇�𝑖𝑖𝑖𝑖 + ΔTij . The person-specific bias of the method is given by wRi and 
the random error by ϵRij. 𝑇𝑇𝑇𝑇�𝑖𝑖𝑖𝑖, ΔTij, wRi and ϵRij are each assumed to follow mutually independent 
normal distribution with variance var𝑇𝑇𝑇𝑇, varΔ𝑇𝑇𝑇𝑇, var𝑤𝑤𝑤𝑤𝑋𝑋𝑋𝑋𝑖𝑖𝑖𝑖  and var𝜖𝜖𝜖𝜖𝑋𝑋𝑋𝑋𝑖𝑖𝑖𝑖𝑋𝑋𝑋𝑋 respectively. In this model, 

the assumptions of negligible error correlation between the reference method and the 2hR-
days, and between replicates of the reference method (within the same person), and absence 
of proportional scaling bias in the reference method (βX = 1) were made to enable estimation 
of the model parameters. To evaluate the 2hR-days with the 24hRs as reference method, we 
used the same model, but without ΔTij as 2hR and 24hR measurements took place on different 
days. 
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STATISTICAL ANALYSIS  
Results are presented as means with standard deviations (mean±SD) and frequencies with 
percentages (n (%)). Under- and over-reporters were identified and excluded based on the 
Goldberg cut-offs for both methods (n=16). Participants were identified as dietary under- or 
over-reporters if their ratio of average daily total energy intake to basal metabolic rate 
(EI:BMR) fell outside an individualized cut-off. BMR was calculated using the Harris and 
Benedict equation, taking into account gender, age, weight, and height [27]. Individual cut-
offs were estimated using the method recommended by Black [28]. For this, the PAL as 
determined by the accelerometer was used.  

To evaluate the 2hR-days against the 24hRs for intake of energy, nutrients and food groups 
multiple analyses were performed [29]. First, absolute intake differences between methods 
were calculated and expressed as group-level bias ((mean intake 2hR-days) / (mean intake 
24hRs) * 100 – 100). A group-level bias of ≤10% was classified as acceptable (i.e., indication of 
a relatively similar mean intake) [29]. Second, absolute differences between the 2hR-days and 
the 24hRs were evaluated using paired t-tests. Third, Spearman correlation coefficients were 
calculated to assess the strength and direction of the association between the methods. 
Correlation coefficients of <0.20 were classified as poor, 0.20-0.49 as acceptable, and ≥0.50 as 
good [29]. Mean±SD intakes of protein and K, assessed with both 2hR-days and 24hRs, were 
also compared against the matched 24h-urine samples. Again, group-level bias and paired t-
tests were used to evaluate absolute differences, Spearman correlations were calculated to 
examine the association between the methods, and in addition Bland-Alman plots were 
created to examine the level of agreement.  

Validity coefficients and attenuation factors were calculated using the estimates of the 
measurement error models. Validity coefficients were estimated to assess the ability of the 
2hR-days to rank participants according to their intake and assess the loss of statistical power 
to detect a diet-disease association. Validity coefficients of <0.20 were classified as poor, 0.20-
0.49 as acceptable, and ≥0.50 as good. Attenuation factors provide information about the 
extent to which diet–health associations are affected by measurement error, e.g., using the 
2hR data instead of true intake, and can be used to correct for measurement error in future 
studies on diet-disease that use 2hR-days to assess dietary intake. An attenuation factor closer 
to 1 means less attenuation (with 1 representing no attenuation at all). The following 
equations were used: 

Validity coefficient: 𝜌𝜌𝜌𝜌𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋 =  �
𝛽𝛽𝛽𝛽2𝑋𝑋𝑋𝑋var𝑋𝑋𝑋𝑋

𝛽𝛽𝛽𝛽2𝑋𝑋𝑋𝑋var𝑋𝑋𝑋𝑋+𝛽𝛽𝛽𝛽2𝑋𝑋𝑋𝑋varΔ𝑋𝑋𝑋𝑋/𝑘𝑘𝑘𝑘𝑘var𝜖𝜖𝜖𝜖𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋 𝑘𝑘𝑘𝑘⁄ +var𝑤𝑤𝑤𝑤𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋
(3)
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Attenuation factor: 𝜆𝜆𝜆𝜆𝑋𝑋𝑋𝑋 =  𝜌𝜌𝜌𝜌
2
𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋

𝛽𝛽𝛽𝛽𝑋𝑋𝑋𝑋
(4) 

where varT is the variance of the habitual true intake, varϵXij the variance of the random 
within-person error, varwXi is the variance of the person-specific bias, varΔT is the variance 
of the day-to-day variation in true intake (not present when 24hR is the reference), and k is 
the number of replicates of the 2hR-days (k=3 for 24hR comparison; k=1 for biomarker 
comparison). 

The reproducibility was evaluated using the intraclass correlation coefficients (ICC) between 
the three 2hR-days and between the three 24hRs.  

ICC: 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑤𝑤𝑤𝑤𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵−𝑝𝑝𝑝𝑝𝐵𝐵𝐵𝐵𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐵𝐵𝐵𝐵 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣𝐵𝐵𝐵𝐵𝑣𝑣𝑣𝑣𝐵𝐵𝐵𝐵
(𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑤𝑤𝑤𝑤𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵−𝑝𝑝𝑝𝑝𝐵𝐵𝐵𝐵𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐵𝐵𝐵𝐵 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣𝐵𝐵𝐵𝐵𝑣𝑣𝑣𝑣𝐵𝐵𝐵𝐵 + 𝑊𝑊𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖ℎ𝑖𝑖𝑖𝑖𝐵𝐵𝐵𝐵−𝑝𝑝𝑝𝑝𝐵𝐵𝐵𝐵𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐵𝐵𝐵𝐵 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑣𝑣𝑣𝑣𝐵𝐵𝐵𝐵𝑣𝑣𝑣𝑣𝐵𝐵𝐵𝐵)

(5) 

All analyses were performed using IBM SPSS Statistics version 25.0 (SPSS Inc. Chicago, IL, USA) 
and SAS Software version 9.4 (SAS Institute Inc, Cary, NC, USA). 
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RESULTS 

PARTICIPANT CHARACTERISTICS 
Participants had a mean±SD age of 40.4±18.8 years, 73% were women and 62% were highly 
educated. Overall, participants had a sedentary or lightly active lifestyle, 73% had a healthy 
BMI (<25 kg/m2), and 71% did not follow a diet regimen. The majority of the participants 
preferred the use of 2hR-days over traditional 24hRs (87%) (Table 1).  

Table 1. General characteristics of the participants included in this validation study 

Total (146) Men (39) Women (107) 
Mean age, years (SD) 40.4 (18.8) 46.8 (18.8) 38.1 (18.3) 
Age category (n, (%)) 

<25 years 55 (38) 10 (26) 45 (42) 
25-50 years 34 (23) 7 (18) 27 (25) 
>50 years 57 (39) 22 (56) 35 (33) 

Mean BMI, kg/m2 (SD) 23.6 (3.8) 24.8 (4.2) 23.2 (3.5) 
BMI category (n, (%)) 

<25 kg/m2 107 (73) 22 (57) 85 (79) 
25.0-29.9 kg/m2 30 (21) 13 (33) 17 (16) 
≥30 kg/m2 9 (6) 4 (10) 5 (5) 

Mean estimated BMR, kcal/d 
(SD)1 1,530 (200) 1,780 (144) 1,439 (127) 

Mean PAL (SD) 1.46 (0.01) 1.46 (0.02) 1.46 (0.01) 
Educational level (n, (%)) 

Low2 3 (2) 0 (0) 3 (3) 
Intermediate3 53 (36) 16 (41) 37 (34) 
High4 90 (62) 23 (59) 67 (63) 

Diet regimen (n, (%)) 
Yes, always 25 (17) 3 (8) 22 (21) 
Yes, sometimes 18 (12) 4 (10) 14 (13) 
Never 103 (71) 32 (82) 71 (66) 

Preferred method (n, (%)) 
2hR-days 126 (87) 35 (90) 91 (85) 
24hRs 15 (10) 4 (10) 11 (10) 
Unknown5 5 (3) 0 (0) 5 (5) 

1 Based on the Harris and Benedict equation, for men: BMR=(66.4730+(13.7516*weight))+(5.0033*height)- 
(6.7750*age), and for women: BMR=(655.0955+(9.5634*weight))+(1.8496*height)-(4.6756*age) [27].  
2 Primary or lower education. 
3 Secondary or higher vocational education. 
4 University or college. 
5 Answering was not compulsory.
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ACCURACY OF ENERGY AND NUTRIENTS REPORTED WITH 2HR-DAYS COMPARED TO 24HRS  
Estimated intakes of energy and most nutrients were higher with 2hR-days than with 24hRs, 
as supported by statistically significant paired-t-tests, except for carbohydrates (en%), alcohol 
(en% and g), β-carotene and vitamin D (Table 2). 2hR-days and 24hRs showed relatively similar 
intakes of energy and nutrients (group-level bias ≤10%). For macronutrients, only reported 
intakes of animal protein (g) and alcohol (en% and g) had a group-level bias exceeding 10%. 
For micronutrients, group-level bias exceeded 10% for β-carotene, vitamin B2, vitamin B6, 
vitamin B12 and vitamin D.  

Spearman correlation coefficients between 2hR-days and 24hR were acceptable to good for 
energy and macronutrients, ranging from 0.41 for total protein (en%) to 0.75 for plant-based 
protein (g). Similarly, for the micronutrients, correlations ranged between 0.41 for β-carotene 
and 0.62 for potassium. Validity coefficients for energy and macronutrients were all judged as 
good (range 0.57-0.86). A similar trend was observed for micronutrients except for vitamin 
B12 and vitamin D, which were acceptable (0.33 and 0.41, respectively). Attenuation factors 
for energy and macronutrients ranged between 0.20 for total protein (en%) and 0.47 for fiber. 
They varied somewhat more for micronutrients, ranging from 0.04 for vitamin B12 to 0.42 for 
β-carotene and potassium. 

ACCURACY OF FOOD GROUPS REPORTED WITH 2HR-DAYS COMPARED TO 24HRS 
Statistically significant paired-t-tests were only found for ‘alcoholic beverages’, ‘grains and 
cereals’, ‘non-alcoholic beverages’, and ‘nuts, seeds and snacks’ (Table 3). Group-level bias 
was relatively small for ‘bread’, ‘cheese’, ‘dairy’, ‘eggs’, ‘fish’, ‘fruit’, ‘meats and poultry’, 
‘pastry, cake and biscuits’, ‘potatoes’, ‘sugar and confectionary’, and ‘vegetables’. Group-level 
bias was large (>10%) for ‘composite dishes’, ‘non-alcoholic beverages’, ‘nuts, seeds and 
snacks’, ‘savory sandwich fillings’, and ‘vegetarian products’, where food intake estimates 
were higher with the 2hR-days than with 24hRs. In contrast, ‘alcoholic beverages’, ‘fats, oils 
and savory sauces’, ‘grains and cereals’, ‘legumes’, and ‘soups’ showed also large group level 
bias, but with higher food intakes estimated with the 24hRs than with 2hR-days.  

Accordingly, Spearman correlation coefficients between 2hR-days and 24hRs varied across 
food groups as well with the majority being higher than 0.52. Remaining food groups were 
classified being acceptable, except for ‘composite dishes’, ‘fish’, and ‘soups’ that were 
classified as poor (0.16, 0.14, 0.09, respectively). In agreement, validity coefficients and 
attenuation factors were classified as good for most food groups. Validity coefficients for 
‘composite dishes’ (0.15) and ‘fish’ (0.11) were low. Attenuation factors ranged from 0.02 for 
‘composite dishes’ and ‘fish’ to 0.54 for ‘non-alcoholic beverages’.  

5
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COMPARISON OF SELF-REPORTED INTAKE WITH URINARY RECOVERY BIOMARKERS 
Compared with urinary recovery biomarkers, 2hR-days showed slightly lower underestimation 
than 24hRs for both protein intake (-13.7% vs. -17.9%) and potassium intake (-11.0% vs. -
16.0%) (Table 4). For protein intake, the correlation between the self-report measures and 
urinary nitrogen were similar and classified as good (0.59 for 2hR-days vs. biomarker; 0.57 for 
24hRs vs. biomarker). For potassium, a good correlation was found for 2hR-days vs. urinary 
potassium (0.62), which was lower and acceptable for 24hRs (0.45). Validity coefficients for 
protein intake (0.41 for 2hR-days vs. biomarker; 0.44 for 24hRs vs. biomarker) where 
acceptable. For potassium, a good validity coefficient was found for 2hR-days vs. urinary 
potassium (0.54), and an acceptable correlation for 24hRs (0.49). Attenuation factors were 
also relatively similar for both methods (protein: 0.27 for 2hR-days vs. biomarker; 0.38 for 
24hRs vs. biomarker, and potassium: 0.52 for 2hR-days vs. biomarker; 0.55 for 24hRs).  
 
The Bland-Altman plots showed relatively similar patterns when comparing intakes of protein 
and potassium intake for both 2hR-days and 24hR against urinary biomarkers (Figure 2). The 
regression line of differences was insignificant for both urinary protein comparisons (2hR-days 
β = 0.19, p = 0.14; 24hRs β = 0.01, p = 0.91) and for the urinary potassium and 24hR comparison 
(β = -0.24, p = 0.12), while the regression line of differences for the comparison to 2hR-days 
was significant (β = -0.28, p = 0.01). Yet, both urinary potassium comparisons showed a similar 
pattern and indicated that differences between the methods decreased while the intake 
increased. 
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Figure 2. Bland-Altman plots of the differences in intake estimated with the self-report measure and 
the biomarker, plotted against the mean of both methods (g/d). Mean difference (solid line), 95% limits 
of agreement (1.96xSD of mean difference; dashed line), and linear regression line (blue dashed line) 
are included. Protein intake differences are plotted for (a) 2hR-days vs. biomarkers and (b) 24hRs vs. 
biomarker; potassium intake differences are plotted in (c) 2hR-days vs. biomarkers and (d) 24hRs vs. 
biomarker. 

REPRODUCIBILITY OF THE 2HR-DAYS COMPARED TO THE 24HRS 
The ICC for repeated 2hR-days showed acceptable reproducibility for energy and 
macronutrients (range 0.27-0.49), which is similar as the reproducibility observed for the 
repeated 24hRs (range 0.21-0.51) (Table 5). For micronutrients, the variation in ICC was larger, 
with acceptable to good reproducibility between 2hR-days, except for vitamin B12 (0.04) and 
vitamin D (0.19). The 24hRs also showed an acceptable reproducibility for all micronutrients 
(range 0.21-0.46), except for β-Carotene that had a good reproducibility (0.80).  

The reproducibility for food groups was similar for 2hR-days and 24hR (Table 6), except for 
the group ‘fats, oils and savory sauces’ (0.31 and 0.14, respectively), ‘grains and cereals’ (0.33 
and 0.18, respectively), and ‘vegetarian products’ (0.53 and 0.48, respectively) where the ICC 
was higher for the 2hR-days than for the 24hRs.  
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COMPARISON OF SELF-REPORTED INTAKE WITH URINARY RECOVERY BIOMARKERS 
Compared with urinary recovery biomarkers, 2hR-days showed slightly lower underestimation 
than 24hRs for both protein intake (-13.7% vs. -17.9%) and potassium intake (-11.0% vs. -
16.0%) (Table 4). For protein intake, the correlation between the self-report measures and 
urinary nitrogen were similar and classified as good (0.59 for 2hR-days vs. biomarker; 0.57 for 
24hRs vs. biomarker). For potassium, a good correlation was found for 2hR-days vs. urinary 
potassium (0.62), which was lower and acceptable for 24hRs (0.45). Validity coefficients for 
protein intake (0.41 for 2hR-days vs. biomarker; 0.44 for 24hRs vs. biomarker) where 
acceptable. For potassium, a good validity coefficient was found for 2hR-days vs. urinary 
potassium (0.54), and an acceptable correlation for 24hRs (0.49). Attenuation factors were 
also relatively similar for both methods (protein: 0.27 for 2hR-days vs. biomarker; 0.38 for 
24hRs vs. biomarker, and potassium: 0.52 for 2hR-days vs. biomarker; 0.55 for 24hRs).  
 
The Bland-Altman plots showed relatively similar patterns when comparing intakes of protein 
and potassium intake for both 2hR-days and 24hR against urinary biomarkers (Figure 2). The 
regression line of differences was insignificant for both urinary protein comparisons (2hR-days 
β = 0.19, p = 0.14; 24hRs β = 0.01, p = 0.91) and for the urinary potassium and 24hR comparison 
(β = -0.24, p = 0.12), while the regression line of differences for the comparison to 2hR-days 
was significant (β = -0.28, p = 0.01). Yet, both urinary potassium comparisons showed a similar 
pattern and indicated that differences between the methods decreased while the intake 
increased. 
  



Ta
bl

e 
4.

 S
el

f-r
ep

or
te

d 
in

ta
ke

 o
f p

ro
te

in
 a

nd
 p

ot
as

siu
m

 a
s c

om
pa

re
d 

w
ith

 th
ei

r u
rin

ar
y 

re
co

ve
ry

 b
io

m
ar

ke
r, 

w
ith

 co
rr

es
po

nd
in

g 
gr

ou
p-

le
ve

l b
ia

s,
 p

ai
re

d-
t-

te
st

s, 
Sp

ea
rm

an
 c

or
re

la
tio

n 
co

ef
fic

ie
nt

s;
 v

al
id

ity
 c

oe
ffi

ci
en

ts
 a

nd
 a

tt
en

ua
tio

n 
fa

ct
or

s 
of

 t
he

 2
hR

-d
ay

s 
or

 t
he

 2
4h

Rs
 w

ith
 t

he
 u

rin
ar

y 
re

co
ve

ry
 b

io
m

ar
ke

r 
as

 t
he

 
re

fe
re

nc
e 

m
et

ho
d.

 
Se

lf-
re

po
rt

ed
 

in
ta

ke
 

U
rin

ar
y 

bi
om

ar
ke

r 
Gr

ou
p-

le
ve

l
bi

as
 (%

)1 
P 

2 
Co

rr
el

at
io

n 
co

ef
fic

ie
nt

 3  (9
5%

 C
I) 

Va
lid

ity
 

co
ef

fic
ie

nt
 (9

5%
 

CI
) 

At
te

nu
at

io
n 

fa
ct

or
 (9

5%
 C

I) 
M

ea
n 

± 
SD

 
M

ea
n 

± 
SD

 
Pr

ot
ei

n 
(g

/d
) 

2h
R-

da
ys

 (n
 =

 8
7)

 
80

.1
 ±

 3
1.

7 
92

.8
 ±

 2
7.

5 
-1

3.
7 

<0
.0

01
 

0.
59

 (0
.4

2,
 0

.7
2)

 
0.

41
 (0

.1
8,

 0
.6

3)
 

0.
27

 (0
.0

9,
 0

.4
6)

 
24

hR
s (

n 
= 

75
) 

71
.6

 ±
 2

4.
2 

87
.2

 ±
 2

3.
9 

-1
7.

9 
<0

.0
01

 
0.

57
 (0

.3
7,

 0
.7

1)
 

0.
44

 (0
.2

5,
 0

.6
2)

 
0.

38
 (0

.1
7,

 0
.5

8)
 

Po
ta

ss
iu

m
 (m

g/
d)

 
2h

R-
da

ys
 (n

 =
 8

7)
 

34
29

 ±
 1

16
1 

38
52

 ±
 1

45
3 

-1
1.

0 
<0

.0
1 

0.
62

 (0
.4

6,
 0

.7
4)

 
0.

54
 (0

.4
2,

 0
.6

7)
 

0.
52

 (0
.3

2,
 0

.7
3)

 
24

hR
s (

n 
= 

75
) 

30
60

 ±
 1

08
5 

36
45

 ±
 1

28
5 

-1
6.

0 
<0

.0
01

 
0.

45
 (0

.2
4,

 0
.3

7)
 

0.
49

 (0
.3

2,
 0

.6
6)

 
0.

55
 (0

.2
6,

 0
.8

4)
 

1  G
ro

up
-le

ve
l b

ia
s =

 (m
ea

n 
se

lf-
re

po
rt

ed
 in

ta
ke

) /
 (m

ea
n 

bi
om

ar
ke

r)
 x

 1
00

 - 
10

0.
 

2  P
ai

re
d-

t-
te

st
 b

et
w

ee
n 

m
ea

n 
in

ta
ke

 a
ss

es
se

d 
w

ith
 2

hR
s a

nd
 2

4h
Rs

. 
3  S

pe
ar

m
an

 c
or

re
la

tio
n.

Validation of repeated 2-hour recalls 

Page | 125  Page | 125

Validation of repeated 2-hour recalls 

Page | 127  

Figure 2. Bland-Altman plots of the differences in intake estimated with the self-report measure and 
the biomarker, plotted against the mean of both methods (g/d). Mean difference (solid line), 95% limits 
of agreement (1.96xSD of mean difference; dashed line), and linear regression line (blue dashed line) 
are included. Protein intake differences are plotted for (a) 2hR-days vs. biomarkers and (b) 24hRs vs. 
biomarker; potassium intake differences are plotted in (c) 2hR-days vs. biomarkers and (d) 24hRs vs. 
biomarker. 

REPRODUCIBILITY OF THE 2HR-DAYS COMPARED TO THE 24HRS 
The ICC for repeated 2hR-days showed acceptable reproducibility for energy and 
macronutrients (range 0.27-0.49), which is similar as the reproducibility observed for the 
repeated 24hRs (range 0.21-0.51) (Table 5). For micronutrients, the variation in ICC was larger, 
with acceptable to good reproducibility between 2hR-days, except for vitamin B12 (0.04) and 
vitamin D (0.19). The 24hRs also showed an acceptable reproducibility for all micronutrients 
(range 0.21-0.46), except for β-Carotene that had a good reproducibility (0.80).  

The reproducibility for food groups was similar for 2hR-days and 24hR (Table 6), except for 
the group ‘fats, oils and savory sauces’ (0.31 and 0.14, respectively), ‘grains and cereals’ (0.33 
and 0.18, respectively), and ‘vegetarian products’ (0.53 and 0.48, respectively) where the ICC 
was higher for the 2hR-days than for the 24hRs.  
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COMPARISON OF SELF-REPORTED INTAKE WITH URINARY RECOVERY BIOMARKERS 
Compared with urinary recovery biomarkers, 2hR-days showed slightly lower underestimation 
than 24hRs for both protein intake (-13.7% vs. -17.9%) and potassium intake (-11.0% vs. -
16.0%) (Table 4). For protein intake, the correlation between the self-report measures and 
urinary nitrogen were similar and classified as good (0.59 for 2hR-days vs. biomarker; 0.57 for 
24hRs vs. biomarker). For potassium, a good correlation was found for 2hR-days vs. urinary 
potassium (0.62), which was lower and acceptable for 24hRs (0.45). Validity coefficients for 
protein intake (0.41 for 2hR-days vs. biomarker; 0.44 for 24hRs vs. biomarker) where 
acceptable. For potassium, a good validity coefficient was found for 2hR-days vs. urinary 
potassium (0.54), and an acceptable correlation for 24hRs (0.49). Attenuation factors were 
also relatively similar for both methods (protein: 0.27 for 2hR-days vs. biomarker; 0.38 for 
24hRs vs. biomarker, and potassium: 0.52 for 2hR-days vs. biomarker; 0.55 for 24hRs).  
 
The Bland-Altman plots showed relatively similar patterns when comparing intakes of protein 
and potassium intake for both 2hR-days and 24hR against urinary biomarkers (Figure 2). The 
regression line of differences was insignificant for both urinary protein comparisons (2hR-days 
β = 0.19, p = 0.14; 24hRs β = 0.01, p = 0.91) and for the urinary potassium and 24hR comparison 
(β = -0.24, p = 0.12), while the regression line of differences for the comparison to 2hR-days 
was significant (β = -0.28, p = 0.01). Yet, both urinary potassium comparisons showed a similar 
pattern and indicated that differences between the methods decreased while the intake 
increased. 
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Figure 2. Bland-Altman plots of the differences in intake estimated with the self-report measure and 
the biomarker, plotted against the mean of both methods (g/d). Mean difference (solid line), 95% limits 
of agreement (1.96xSD of mean difference; dashed line), and linear regression line (blue dashed line) 
are included. Protein intake differences are plotted for (a) 2hR-days vs. biomarkers and (b) 24hRs vs. 
biomarker; potassium intake differences are plotted in (c) 2hR-days vs. biomarkers and (d) 24hRs vs. 
biomarker. 

REPRODUCIBILITY OF THE 2HR-DAYS COMPARED TO THE 24HRS 
The ICC for repeated 2hR-days showed acceptable reproducibility for energy and 
macronutrients (range 0.27-0.49), which is similar as the reproducibility observed for the 
repeated 24hRs (range 0.21-0.51) (Table 5). For micronutrients, the variation in ICC was larger, 
with acceptable to good reproducibility between 2hR-days, except for vitamin B12 (0.04) and 
vitamin D (0.19). The 24hRs also showed an acceptable reproducibility for all micronutrients 
(range 0.21-0.46), except for β-Carotene that had a good reproducibility (0.80).  

The reproducibility for food groups was similar for 2hR-days and 24hR (Table 6), except for 
the group ‘fats, oils and savory sauces’ (0.31 and 0.14, respectively), ‘grains and cereals’ (0.33 
and 0.18, respectively), and ‘vegetarian products’ (0.53 and 0.48, respectively) where the ICC 
was higher for the 2hR-days than for the 24hRs.  
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Table 5. Intra-class correlations (ICC) and 95%CI for energy and nutrient intake between the three 2hR-
days and between the three 24hRs 

ICC 2hRs 95% CI ICC 24hRs 95% CI 

Energy (kcal) 0.42 0.32, 0.52 0.48 0.39, 0.58 
Protein (en%) 0.30 0.19, 0.40 0.21 0.10, 0.31 
Protein (g) 0.36 0.25, 0.46 0.45 0.35, 0.55 

Plant-based protein (g) 0.44 0.35, 0.53 0.51 0.42, 0.60 
Animal protein (g) 0.32 0.21, 0.42 0.41 0.31, 0.51 

Fat (en%) 0.45 0.35, 0.55 0.24 0.14, 0.35 
Fat (g) 0.43 0.33, 0.53 0.40 0.30, 0.50 

SFA (g) 0.37 0.27, 0.47 0.37 0.27, 0.48 
MUFA (g) 0.44 0.34, 0.54 0.32 0.21, 0.42 
PUFA (g) 0.36 0.26, 0.47 0.33 0.23, 0.44 

Cholesterol (mg) 0.27 0.18, 0.37 0.25 0.16, 0.35 
Carbohydrates (en%) 0.48 0.38, 0.57 0.37 0.28, 0.47 
Carbohydrates (g) 0.45 0.36, 0.54 0.49 0.40, 0.58 

Mono and disaccharides 0.48 0.38, 0.57 0.45 0.35, 0.55 
Polysaccharides 0.42 0.33, 0.52 0.43 0.33, 0.52 

Fiber (g) 0.49 0.39, 0.58 0.49 0.39, 0.58 
Alcohol (en%) 0.32 0.22, 0.41 0.37 0.27, 0.46 
Alcohol (g) 0.31 0.21, 0.41 0.32 0.22, 0.42 
Ca (mg) 0.32 0.21, 0.52 0.37 0.27, 0.48 
Fe (mg) 0.49 0.39, 0.58 0.37 0.27, 0.48 
K (mg) 0.49 0.39, 0.58 0.46 0.36, 0.56 
β-Carotene (μg) 0.48 -1.33, 2.28 0.80 0.78, 0.82 
Vitamin B1 (mg) 0.20 0.11, 0.30 0.21 0.12, 0.31 
Vitamin B2 (mg) 0.41 0.31, 0.51 0.42 0.32, 0.52 
Vitamin B6 (mg) 0.30 0.19, 0.41 0.26 0.15, 0.37 
Vitamin B12 (μg) 0.04 -0.01, 0.09 0.26 0.16, 0.37 
Vitamin C (mg) 0.25 0.15, 0.36 0.21 0.11, 0.32 
Vitamin D (μg) 0.19 0.08, 0.29 0.25 0.15, 0.36 
Vitamin E (mg) 0.34 0.23, 0.44 0.24 0.13, 0.34 
Folate (μg) 0.32 0.21, 0.42 0.35 0.24, 0.45 
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Table 6. Intra-class correlations and 95%CI for intake of food groups between the three 2hR-days and 
between the three 24hRs 

ICC 2hRs 95% CI ICC 24hRs 95% CI 

Alcoholic beverages 0.27 0.16, 0.38 0.39 0.29, 0.50 
Bread 0.43 0.34, 0.52 0.38 0.29, 0.47 
Cheese 0.20 0.11, 0.30 0.19 0.09, 0.28 
Composite dishes 0.01 -0.03, 0.05 0.06 -0.03, 0.15 
Dairy 0.51 0.42, 0.60 0.50 0.41, 0.59 
Eggs 0.15 0.06, 0.24 0.13 0.04, 0.22 
Fats, oils, savory sauces 0.31 0.20, 0.41 0.14 0.03, 0.24 
Fish 0.00 -0.02, 0.03 0.13 0.03, 0.23 
Fruit 0.41 0.31, 0.51 0.35 0.24, 0.45 
Grains and cereals 0.33 0.23, 0.44 0.18 0.08, 0.29 
Legumes 0.11 0.01, 0.22 0.09 -0.01, 0.19 
Meats and poultry 0.31 0.21, 0.42 0.25 0.15, 0.36 
Non-alcoholic beverages 0.71 0.65, 0.78 0.72 0.66, 0.79 
Nuts, seeds, snacks 0.09 0.00, 0.19 0.06 -0.01, 0.14 
Pastry, cake, biscuits 0.23 0.13, 0.33 0.20 0.11, 0.29 
Potatoes 0.09 0.01, 0.17 0.07 -0.00, 0.15 
Savory sandwich fillings 0.23 0.14, 0.32 0.27 0.18, 0.37 
Soups 0.14 0.04, 0.24 0.17 0.07, 0.28 
Sugar and confectionery 0.34 0.23, 0.44 0.32 0.22, 0.43 
Vegetables 0.44 0.34, 0.53 0.35 0.25, 0.44 
Vegetarian products 0.53 0.44, 0.62 0.48 0.39, 0.57 

5



Chapter 5 

Page | 130 
 

DISCUSSION  
 
We developed a new smartphone-based 2hR methodology by combining traditional dietary 
assessment approaches and EMA principles with the assumption that 2hR time-windows are 
less sensitive to memory-related errors and less obtrusive than traditional approaches. We 
showed that 2hR-days provide higher intake estimates for energy, most nutrients, and most 
food groups compared to validated 24hRs. Validation against objective urinary biomarker for 
protein and potassium intake further substantiated these findings by showing that 2hR-days 
intake estimates were also more accurate i.e., slightly closer to the ‘true intake’ than 24hRs 
intake estimates. Finally, most participants preferred 2hR-days over traditional 24hRs. 
 
Our results showed low group-level bias for energy and most macronutrients (≤10%), except 
for animal protein and alcohol (14-17%). In terms of protein, Dutch National Food 
Consumption (DNFCS) data show a median animal protein intake of 51 g/d (95% CI: 51-51 g/d) 
of the average Dutch population, which is closer to our 2hR-days (i.e., 42±21 g/d) than our 
24hRs (37±17 g/d) estimates [30]. In addition, the total protein intake estimate by the 2hR-
days was closer to the total protein intake estimate based on urinary nitrogen excretion than 
24hRs (-14% vs. -18%, respectively); thus we can conclude that 2hR-days provides a more 
precise and accurate estimate of protein intake than the 24hRs. In terms of alcohol, DNFCS 
data show a 11 g/d (95% CI: 10-12 g/d) median intake estimate, which is close to our 24hR 
estimate (9±12g/d) but higher than our 2hR-day intake estimate (7±11 g/d) [30]. Accordingly, 
a similar difference between 2hR-day and 24hR is observed for the food group ‘alcoholic 
beverages’ (109 g/d vs. 141 g/d). As it is well known that alcohol consumption varies highly 
accross days [31], it is difficult to detemine the exact origin and direction of this difference 
between 2hR-day and 24hR [32]. A possible explanation could be the short reporting deadline 
of the nighttime recall (i.e., 1 hour), which is easily missed after a late night (e.g., a party). In 
contrast, a 24hR remains open for an entire day giving participants more time to respond after 
a night out. However, this is an assumption and more research is needed to determine an 
optimal sampling scheme to ensure that we capture episodical consumed foods such as 
alchoholic beverages.  
 
Differences in absolute micronutrient intakes were relatively small, only β-carotene, vitamin 
B2, vitamin B6, vitamin B12, and vitamin D group-level bias slightly exceeded 10%. For vitamin 
B12 and vitamin D, the ICCs showed a larger variation in reported intake between the 2hR-
days (0.04 and 0.19, respectively) as compared to 24hRs (0.26 and 0.25, respectively), 
Therefore, these differences could be caused by day-to-day variation in, for instance, reported 



Validation of repeated 2-hour recalls 

Page | 131  

‘fish’. In terms of correlations (range 0.41-0.61) results are well within the acceptable range 
suggested by Willet and colleagues (0.4-0.7) [31]. 

Group-level bias was low for the majority of regurlarly consumed food groups (≥5 days/week 
according to the DNFCS), i.e., ‘bread’, ‘dairy’, ‘fruit’, ‘meats and poultry’, ‘vegetables’ [30] 
suggesting an at least similar accuracy for 2hR-days and 24hRs [4, 17], which is further 
underlined by good correlations for these food groups (≥0.6). Larger differences were 
observed for regularly consumed food groups ‘fats, oils and savory sauces’, ‘grains and 
cereals’, and ‘non-alcoholic beverages’. Intake estimates were lower for ‘fats, oils and savory 
sauces’ and ‘grains and cereals’ with 2hR-days than 24hRs, yet the ICCs were higher for the 
2hR-days; where higher ICCs suggests better recollection and thus reporting with shorter 
recall periods. In contrast, intake estimates for non-alcoholic beverages were higher for 2hR-
days than 24hRs, which may be explained by the fact that non-alcoholic beverages are often 
consumed throughout the day, not always linked to specific eating ocassions, and thus more 
difficult to recall with a 24hRs than 2hRs. 

The results of the attenuation factors for nutrients and food groups were in line with the 
correlation coefficients, with an attenuation factor of 0.54 for ‘non-alcoholic beverages’ being 
the highest. Relatively similar attenuation factors were observed for urinary protein (2hR-
days: 0.27 vs. 24hR: 0.38) and potassium (2hR-days: 0.52 vs. 24hRs 0.55). Freedman and 
colleagues observed a similar range of attenuation factors for protein in their biomarker 
analyses (0.14-0.54) [33]. 

As far as we know, Traqq® is the first recall-based dietary assessment app with a 2hR-
approach. However, there are several validation studies of food record-based apps against 
24hRs. Although validation studies using objective markers are lacking [34], evaluation studies 
mostly show lower intake estimates of energy and macronutrients by food record apps 
compared to 24hRs [9-12, 35, 36]. In contrast, our results show mostly higher intake estimates 
of the 2hR-approach, which may relate to the fact that our approach minimizes reactivity bias 
while limiting memory-related bias owing to the relatively short reporting window of the 
recall-method. Specifically, with the 2hR, participants register their food intake every two 
hours of the day and immediately send it to an external server after which data are not visible 
anymore for the participant. With regular food records, food intake reports remain visible 
throughout the day, which increases the likelihood of introducing reactivity bias. All in all, 
these data may suggest that our smartphone-based 2hR-approach is able to provide a more 
accurate (near) real-time assessment of dietary intake compared to food record based-apps.  
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Although the design of this validation study is well thought-out, there are still some 
methodological issues that warrant discussion. First, we used a validated 24hR method as well 
as objective urinary biomarkers as a reference method to validate the 2hR-day approach. As 
both the 24hR and 2hR rely on memory, the same food composition tables, and similar portion 
size suggestions, differences in these data may be inflated by correlated errors. However, 
validations of 2hR data against urinary recovery biomarkers for protein and potassium show 
similar trends and thus confirm the differences between 2hR and 24hR. Second, the majority 
of our sample consisted of highly educated women, which may have affected the 
generalizability of the validation results. Therefore, additional validation with a more diverse 
population might be needed. Nevertheless, considering that 2hRs have a lower reliance on 
memory makes it a promising approach for use in populations with decreasing cognitive 
abilities. A strength of the current study is that we used multiple tests to assess validity of 2hR-
days, which has been suggested as the most optimal approach to assess validity of a dietary 
assessment method [29, 32]. 
 
In conclusion, the use of 2hR-days are a reliable approach to assess actual intake of energy, 
nutrients and food groups. The group-levels bias was relatively low for the majority of the 
macro- and micronutrients and food groups. Comparisons with biomarkers showed a smaller 
underestimation of protein and potassium intake by 2hR-days as compared to 24hRs. Finally, 
the majority of the participants indicated to prefer the use of 2hR-days of the 24hRs. 
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SUPPLEMENTAL MATERIAL 
 

Supplemental Figure 1. Flowchart participant selection from the DIASS 
population. 
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ABSTRACT  

 

INTRODUCTION  
Accurate dietary assessment is essential in nutritional epidemiology for studying diet-disease 
relations. These studies mainly rely on food frequency questionnaires (FFQ) and/or repeated 
24-hour recalls (24hRs) for assessing habitual dietary intake. Yet, these methods are affected 
by memory-related bias and heavily burden respondents. To reduce respondent burden and 
associated measurement error, we recently developed an innovative smartphone-based 2-
hour recall (2hR) method. In this study, we evaluated the use of random 2hRs for assessing 
habitual intake against a validated FFQ and blood concentration markers.  
 

METHODS  
Dietary intake was assessed in 215 Dutch adults by a number of 2hRs on randomly selected 
days and times (i.e., equivalent to three full days of 2hRs) over a four-week period. At the end 
of the study period, participants completed an FFQ. Sixty-five participants also provided two 
fasting blood samples, to assess plasma carotenoid and plasma n-3 fatty acid concentrations. 
 

RESULTS  
Intake estimates of energy (2,132±665 kcal vs. 2,017±572 kcal) and most nutrients (e.g., 
protein: 79±29 g vs. 74±22 g; fat: 85±34 g vs. 82±29 g; carbohydrates: 233±75 g vs. 221±65 g) 
were slightly higher with 2hRs than FFQ. Spearman correlations between 2hRs and FFQ ranged 
from 0.33 to 0.69 for energy and macronutrients and from 0.32 to 0.58 for micronutrients. For 
all nutrients, ≥72% of the participants classified in the same/adjacent quartile. Spearman 
correlations between 2hRs and plasma carotenoids and n-3 fatty acids ranged between 0.34 
and 0.57 and cross-classification ranged between 61% to 83% in the same/adjacent quartile. 
 

CONCLUSION 
Comparing 2hRs with FFQ and blood concentration markers showed good ranking ability for 
energy, most nutrients, and most frequently consumed foods. More variation was seen for 
episodically consumed foods and nutrients. Sampling scheme optimalization will probably 
result in the capturing of episodically consumed foods and, thus, provide a complete estimate 
of habitual dietary intake.  
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INTRODUCTION 

Adequate assessment of dietary intake is an essential part of nutritional epidemiology, not 
only to study diet-disease relations, but also for nutritional surveillance to evaluate a 
(sub)population’s nutritional status [1]. In many of such studies, food frequency 
questionnaires (FFQ) or repeated 24-hour recalls (24hR) are the method of choice to assess 
habitual dietary intake [1, 2].  

FFQ is a closed method, specifically developed to assess long-term habitual dietary intake. A 
FFQ consists of a list of foods and drinks and asks the respondent to report frequency of 
consumption for each of these items [3]. In large studies, FFQ is often the preferred method 
as they are relatively easy and inexpensive to process [1, 2]. However, respondents often 
perceive completing the FFQ as extremely burdensome [4]. To illustrate, an extensive FFQ 
assessing intake of energy, macro-, and most micronutrients takes 45-60 minutes to complete 
[3]. This often results in incomplete questionnaires. In addition, questions at the end of an FFQ 
are more likely to be affected by measurement error compared to questions in the beginning 
of an FFQ [5].  

Repeated 24hRs are often used as an alternative method to assess habitual dietary intake. In 
contrast to FFQ, 24hR is an open method in which a participant is asked to recall all foods and 
drinks consumed during the previous 24-hours [1-3]. Data of three 24hRs can be used to gain 
insight in the habitual intake of frequently consumed foods, whereas more than three days 
are needed to capture the day-to-day variation of a variety of nutrients and foods that are 
episodically consumed (e.g., vitamin A, vitamin C, fish) [6]. Although repeated 24hRs result in 
a more detailed account of habitual dietary intake, they are also more difficult to process and, 
therefore, more expensive. Also for the respondents, the burden remains high as completing 
one 24hR takes approximately 30-45 minutes [2, 3]. Moreover, both FFQ and 24hR, heavily 
depend on the respondents ability to correctly recall food intake of the past 24-hours (24hR) 
or month (FFQ) [1, 3].  

Novel technologies are explored and integrated to improve dietary assessment methods, 
striving to reduce respondent’s burden, recall bias, and to improve accuracy. For FFQ and 
24hRs, this mostly resulted in web-based applications. In these applications the reporting 
process is usually standardized, for instance by facilitating self-reporting by the respondent, 
integration of a fixed food-list linked to a reliable food composition database, which in turn 
allows automatic coding and calculation of dietary intake [1, 7]. Although these applications 
significantly improved the accuracy of dietary assessment and lowered researcher burden, 
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issues related to reliance on self-reported data remain (i.e., (un)intentional misreporting of 
food intake) [2, 7].   
 
To reduce respondent burden and associated measurement error, we recently developed a 
smartphone-based 2-hour recall (2hR) method [8, 9]. The 2hR method is based on the 
ecological momentary assessment (EMA) principle; repeated real-time assessment of 
individual’s behaviour in their own environment. Where the ecological aspect focuses on the 
individual’s “real-world” and the momentary aspect on the individual’s current or very recent 
state [10]. In a recent study, we already showed that the use of repeated 2hRs on one day 
results in a more accurate account of actual dietary intake data as compared to traditional 
24hRs (Lucassen, Brouwer-Brolsma, Boshuizen, et al., submitted for publication). In the 
current study, we explored the use of randomly assessed 2hRs over a longer period of time 
for assessing habitual dietary intake (i.e., by randomly distributing the equivalent of three full 
2hR-days over a period of four weeks). If proven effective, this approach has major potential 
for improving the accuracy of collected dietary intake data in nutritional epidemiology as 2hRs 
minimizes the reliance on memory and take little time to complete. 
 
Therefore, in this paper we describe the validation of the collected dietary intake data using 
the EMA principle. We compared the use of repeated random 2hRs for (near) real-time 
monitoring of habitual food intake, i.e., energy, macro/micronutrients, food groups, to a 
traditional validated FFQ and blood concentration markers.  
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METHODS 

PARTICIPANT SELECTION AND STUDY DESIGN 
The DIASS study included 215 participants aged 18-70 years and was conducted between June 
2019 and May 2020. Participants were eligible for participation if they were able to speak and 
read Dutch, metabolically stable (i.e., gained or lost ≤3 kg in the past 3 months), willing to 
maintain their dietary habits for the duration of the study, and in possession of a smartphone 
with internet plan. The DIASS study had a cross-over design with two study periods; one study 
period focused on actual intake (i.e., 2hR-days vs. 24hRs) and one on habitual intake (i.e., 
random 2hRs vs. FFQ). More details on the DIASS study can be found elsewhere [9]. 

The present study describes the data of the habitual study period. Food intake was assessed 
on randomly selected days and times over a four-week study period. Participants completed 
a number of random 2hRs, equivalent to three full days of 2hRs, and an FFQ. A subsample also 
provided fasting blood samples. Venepunctures were scheduled in agreement with these 
participants and conducted at the study centre. Included participants completed a full scheme 
of random 2hRs (i.e., each timeslot three times) and an FFQ (n=145; Supplemental Figure 1), 
and provided two fasting blood samples (n=41; subsample). Under- and over-reporters were 
identified and excluded based on the Willet cut-offs for both methods [11]. Participants with 
unreliable or incomplete 2hR and/or FFQ data (i.e., men with energy intakes <800 kcal or 
>4200 kcal; women <500 kcal or >3500 kcal) were excluded (n=4). The DIASS study was
approved by the ethics committee of Wageningen University and Research (ABR No.:
NL69065.081.19) and conducted according the guidelines laid down in the Declaration of
Helsinki. Written informed consent was obtained from all participants.

METHODS OF DIETARY ASSESSMENT 
2-hour recalls
The smartphone app Traqq® was used for the 2hRs [8]. Habitual intake was measured by
repeated random 2hRs over a four-week study period. Within this period, participants
received invitations on random days and times to report their food intake of the previous 2
hours (Figure 1). A personalized, automated 2hR sampling scheme was created in Traqq for
each participant. First, a scheme of consecutive 2hRs was created that covered a full day (i.e., 
on average eight 2hRs). The full day was completed by another invitation, linked to the final
evening 2hR, to report on night-time food intake. Next, the timeslots in this full-day scheme
were randomly distributed over a four week period; where each time slot was assessed three
times to ensue most optimal coverage of the habitual intake (Figure 1). This approach was
based on the traditional approach of using three 24hRs to assess habitual intake [6].
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Figure 1. Example random 2hR sampling scheme (right), based on full days of 2hRs (left). 

 
2hRs were restricted to a maximum of two per day to limit the number of recordings on one 
day where the night-time recall was linked to the preceding final evening 2hR. For all recalls 
participants had a 1-hour response deadline. Participant’s sleeping pattern was taken into 
account (i.e., inquired in the baseline questionnaire) to avoid disturbing participants while 
they were sleeping. In general, no invitations were send after 22:00. In case of non-response, 
the 2hR closed, and a new invitation was automatically rescheduled for the same time on a 
different day. 
 
Notifications were send at the end of each 2-hour interval with a reporting window of one 
hour (e.g., interval 6:00-8:00; notification at 8:00; reporting deadline at 9:00). The morning 
after a final evening 2hR, another invitation was send to report on potential night-time food 
intake (e.g., night-time interval 22:00-6:00; notification at 8:00; reporting deadline at 9:00). 
Participant reported their food intake by clicking on the notification or opening the app. 
Thereafter, the search screen opened and food items could be selected from an extensive 
food list based on the Dutch Food Composition Database. Subsequently, participants were 
prompted to report quantity and eating occasion, i.e., breakfast, lunch, dinner, snack. 
Quantity could be reported in household measures (e.g., spoon, cup), standard portion sizes 
(e.g., small, large) or amount in grams. Traqq® also contains a “My Dishes” feature where 
participants could enter all ingredients of a recipe and the amount consumed of the dish, with 
yield and retention factors automatically being taken into account. The “My Dishes” feature 
could also be used to create frequently consumed product combinations (e.g., daily breakfast 
products), which simplified reporting these items and decreased (mis)calculation errors. 
 
Data from the 2hRs was entered in the computation module of Compl-eat™ [12]. Total intakes 
of energy and nutrients were calculated using the Dutch Food Composition Database 2016 
[13]. Data was thoroughly checked by well-trained dieticians according to a standardized 
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protocol, particularly focusing on unusual amounts. Unusual amounts were corrected using 
standard portion sizes and recipes (e.g., 150 cups of coffee was corrected to 1 cup of 150 g). 
Habitual intake was calculated per participant by adding up reported intake of all the 2hRs and 
dividing them by 3 (i.e., as each time point was assessed three times). 

Food frequency questionnaire 
At the end of the four-week study period, participants were asked to complete a 183-item 
semi-quantitative FFQ, with a reference period of four weeks. This extensive FFQ was 
validated for energy, macronutrients, and a number of vitamins [14-16], and administered 
online with the self-administered Dutch FFQ-tool™ [17]. Participants indicated the frequency 
of consumed food items by selecting answers ranging from ‘not consumed’ to ‘7 days per 
week’. In addition, portion sizes were estimated using natural portions and commonly used 
household measures. Energy and nutrient contents of foods were based on the Dutch Food 
Composition Database 2010 [18] and multiplied by the portion size and frequency of 
consumption to calculate mean daily intake of energy, macro-, and micronutrients. In 
addition, average daily intake (in gram) of food items were calculated by multiplying frequency 
of consumption by portion size. Trained dieticians conducted multiple quality checks to 
safeguard the quality of the data. 

BLOOD COLLECTION 
Following a 10-hour overnight fast, blood was drawn from an antecubital vein using 
venepuncture. Venepunctures were conducted at the study centre, by experienced staff 
members. Blood was immediately centrifuged, and plasma was stored at −80°C until further 
analyses. Plasma carotenoids and plasma fatty acids were available for 65 participants, of 
which fatty acids were determined in replicate blood samples of all participants, and 
carotenoids were determined in replicate blood samples of 13 participants. Blood samples 
were used to assess carotenoid and n-3 fatty acid concentrations, to estimate habitual intake 
of fruit and vegetables and fish, respectively [19-21]. 

Plasma carotenoids, including α- and β-carotene, β-cryptoxanthin, lutein, and zeaxanthin, 
were determined using ultra-pressure liquid chromatography coupled to diode array 
detection (UPLC-DAD). In short, 375 µL plasma was denatured using ethanol in the presence 
of the internal standard retinyl acetate. The carotenoids were subsequently extracted using 
0.01% w/v butylated hydroxytoluene in hexane. The extracts were dried under nitrogen in a 
TurboVap evaporator (Biotage, Uppsala, Sweden) at 35 °C, reconstituted in 150 µL 
acetonitrile, and transferred to a LC vial. LC analysis was performed on a Acquity H-class UPLC 
coupled to an Acquity PDA eLambda detector (Waters, Etten-Leur, the Netherlands) using an 
Acquity UPLC HSS T3 column (2.1 x 150 mm, 1.8 µm; Waters). Gradient elution was performed 
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using a mixture of acetonitrile-dichloromethane-methanol (ratio 85:5:10) containing 0.1% 
ammonium acetate (eluens A) and ULC-MS grade water (eluens B) with a constant flow of 400 
µL/min and a runtime of 30 min. The detector was set at 292, 325 and 450 nm. Concentrations 
were calculated using a 6-point calibration curve. A pooled plasma sample was analysed in 
duplicate in each analytical batch to monitor the quality of the analyses. The interbatch CV 
values ranged between 4 and 11% for all compounds.  

Plasma fatty acid profiles in cholesterol esters, including n-3 fatty acids, were determined 
using gas chromatography with flame ionization detection (GC-FID). In short, the lipid fraction 
was extracted from 650 µL plasma using 2-propanol and n-octane. The octane layer was 
evaporated to dryness and reconstituted in a 1:39 mixture of diethylether-hexane. Lipid 
fractions were separated using a 500 mg SPE column (Sopachem, Ede, the Netherlands) which 
allowed to isolate the cholesterol-bound lipid fraction. Lipids were de-esterified in sulfuric acid 
in methanol for one hour at 90°C, after which MQ water and hexane were added. After shaking 
the samples, the hexane layer was used for GC analysis, which was performed on an 8690 GC 
system (Agilent, Amstelveen, the Netherlands). Separation of fatty acid methyl esters was 
performed on a CP WAX 58 CB column (25 m, i.d. 0.25 mm; Chrompack). The GC oven 
temperature was set to increase from 60°C to 245°C over a runtime of 45 minutes. 

OTHER VARIABLES 
General participant characteristics (i.e., age, sex, educational level, daytime activities, sleeping 
pattern, intention to maintain current body weight) was acquired with a standardized 
questionnaire. Height was measured without shoes using a stadiometer (SECA 213; SECO 
Corp., Hamburg, Germany) and weight was assessed without shoes, heavy clothing and empty 
pockets on a digital scale (SECA 877; SECA Corp., Hamburg, Germany). BMI was calculated as 
weight/height2. At the end of the study period, participants were asked to indicate which 
dietary assessment method they preferred (i.e., random 2hRs or FFQ). 

STATISTICAL ANALYSES 
Results are presented as means with standard deviations (mean±SD) and frequencies with 
percentages (n (%)). Macronutrients and alcohol were additionally expressed in energy 
densities to adjust for energy. To evaluate the random 2hRs against the FFQ for habitual intake 
of energy, nutrients and food groups multiple analyses were performed [22]. First, absolute 
intake differences between methods were calculated and expressed as group-level bias 
((mean intake 2hRs) / (mean intake FFQ) * 100 – 100). A group-level bias of ≤10% was classified 
as acceptable (i.e., indication of a relatively similar mean intake) [22]. Second, absolute 
differences between the 2hRs and the FFQ were evaluated using paired t-tests. Third, 
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Spearman correlation coefficients were calculated to assess the strength and direction of the 
association between the methods [23]. Correlation coefficients of <0.20 were regarded as 
poor, 0.20-0.49 as acceptable, and ≥0.50 as good [22]. The ranking ability of the random 2hRs 
was assessed by dividing the intake of nutrients and foods as assessed by the 2hRs and FFQ 
over quartiles after which we examined whether persons were ranked into the same, adjacent 
or extreme quartile. Classification of ≥50% of the participants in the same quartile [22], ≥75% 
in the same or adjacent quartile [24], and <10% in the extreme quartile [22], was considered 
a good outcome. Presence, direction and extent of bias at group level for total energy intake 
was visualized by plotting the difference between 2hRs and FFQ against the mean of the two 
methods [25]. All analyses were performed using IBM SPSS Statistics version 28.0 (SPSS Inc. 
Chicago, IL, USA). 
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RESULTS 

Participants had a mean±SD age of 38.5±18.4 years, were mainly women (74%), highly 
educated (56%), normal weight (74%; BMI <25 kg/m2), and did not follow a diet regimen 
(73%). Overall, 77% of the participants preferred random 2hRs over an extensive FFQ (Table 
1).  

Table 1. General characteristics of the participants included in this validation study 
Total (141) Men (37) Women (104) 

Mean age, years (SD) 38.5 (18.4) 42.0 (19.1) 37.3 (18.1) 
Age category (n, (%)) 

<25 years 58 (41) 14 (38) 44 (42) 
25-50 years 32 (23) 6 (16) 26 (25) 
>50 years 51 (36) 17 (46) 34 (33) 

Mean BMI, kg/m2 (SD) 23.8 (4.0) 24.7 (4.2) 23.5 (3.9) 
BMI category (n, (%)) 

<25 kg/m2 104 (74) 24 (65) 80 (77) 
25.0-29.9 kg/m2 25 (18) 10 (27) 15 (14) 
≥30 kg/m2 12 (8) 3 (8) 9 (9) 

Educational level (n, (%)) 
Low1 4 (3) 0 (0.0) 4 (4) 
Intermediate2 58 (41) 14 (38) 44 (42) 
High3 79 (56) 23 (62) 56 (54) 

Diet regimen (n, (%)) 
Yes, always 21 (15) 1 (3) 20 (19) 
Yes, sometimes 17 (12) 4 (11) 13 (13) 
Never 103 (73) 32 (86) 71 (68) 

Preferred method (n, (%)) 
Random 2hRs 108 (77) 27 (73) 81 (78) 
FFQ 26 (18) 8 (22) 18 (17) 
Unknown4 7 (5) 2 (5) 5 (5) 

1 Primary or lower education. 
2 Secondary or higher vocational education. 
3 University or college. 
4 Answering was not compulsory. 

Estimated intakes of energy and most macronutrients were higher with the 2hRs than with 
the FFQ, with the exception of fat (en%), PUFA, ALA, EPA, DPA, and alcohol (en%) (Table 2). 
Yet, differences in estimated energy and most macronutrient intakes were small (group-level 
bias ≤10%). Group-level bias was >10% for animal protein (13%), EPA (-16%), DHA (-23%) and 
alcohol (en%, -12%). A larger variation was found for the micronutrients with percentual 
differences ranging between -27% (β-carotene) and 12% (vitamin B1).  

Spearman correlation coefficients between the 2hRs and FFQ ranged from acceptable to good 
for both energy and macronutrients (range 0.33 – 0.69) and for micronutrients (range 0.32 – 
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0.58). Moreover, the 2hRs classified ≥75% of the participants in the same or adjacent quartile 
as the FFQ except for DHA (72%), β-carotene (74%), and lycopene (73%). Misclassification in 
the extreme quartile was below 10% for energy and all nutrients (range 0 – 8%). The Bland-
Altman plot shows an increasing difference between 2hRs and FFQ with increasing energy 
intake (β = 0.26, p = <0.01) (Figure 2). 

Figure 2. Bland-Altman plot of the differences in energy intake (kcal) estimated with random 2hRs and 
FFQ, plotted against the mean of the both methods (g/d). Mean difference (solid line), 95% limits of 
agreement (1.96xSD of mean difference; dashed line), and linear regression line (blue dashed line) are 
included. 

For food groups, a larger variation in intake estimates was found ranging from -65% (legumes) 
to +62% (pastry, cake and biscuits) (Table 3). Group-level bias was relatively small (≤10%) for 
‘alcoholic beverages’, ‘dairy’, ‘eggs’, ‘fruit’, ‘potatoes’, ‘soups’, and ‘vegetables’. For the 
remaining food groups, group-level bias exceeded 10%, which was also supported by mostly 
statistically significant paired-t-tests for these groups. Higher intakes were estimated by 2hRs 
than FFQ for the food groups ‘bread’, ‘cheese’, ‘dairy’, ‘eggs’, ‘fruit’, ‘non-alcoholic beverages’, 
‘pastry, cake and biscuits’, ‘savoury sandwich fillings’, ‘soups’, ‘sugar and confectionery’, and 
‘vegetables’. For the remaining food groups, intake estimates were higher by FFQ than 2hRs. 

Spearman correlation coefficients for most food groups were acceptable to good (range 0.27 
– 0.67). Except for the correlation for ‘soups’, which was poor (0.14). For the majority of the
food groups, ≥75% of the participants were classified in the same or adjacent quartile except
for ‘fats, oils and savoury sauces’ (72%) and ‘potatoes’ (70%). Similar as to the nutrients,
misclassification in the extreme quartile was below 10% (range 0 – 9%).
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RESULTS 

Participants had a mean±SD age of 38.5±18.4 years, were mainly women (74%), highly 
educated (56%), normal weight (74%; BMI <25 kg/m2), and did not follow a diet regimen 
(73%). Overall, 77% of the participants preferred random 2hRs over an extensive FFQ (Table 
1).  

Table 1. General characteristics of the participants included in this validation study 
Total (141) Men (37) Women (104) 

Mean age, years (SD) 38.5 (18.4) 42.0 (19.1) 37.3 (18.1) 
Age category (n, (%)) 

<25 years 58 (41) 14 (38) 44 (42) 
25-50 years 32 (23) 6 (16) 26 (25) 
>50 years 51 (36) 17 (46) 34 (33) 

Mean BMI, kg/m2 (SD) 23.8 (4.0) 24.7 (4.2) 23.5 (3.9) 
BMI category (n, (%)) 

<25 kg/m2 104 (74) 24 (65) 80 (77) 
25.0-29.9 kg/m2 25 (18) 10 (27) 15 (14) 
≥30 kg/m2 12 (8) 3 (8) 9 (9) 

Educational level (n, (%)) 
Low1 4 (3) 0 (0.0) 4 (4) 
Intermediate2 58 (41) 14 (38) 44 (42) 
High3 79 (56) 23 (62) 56 (54) 

Diet regimen (n, (%)) 
Yes, always 21 (15) 1 (3) 20 (19) 
Yes, sometimes 17 (12) 4 (11) 13 (13) 
Never 103 (73) 32 (86) 71 (68) 

Preferred method (n, (%)) 
Random 2hRs 108 (77) 27 (73) 81 (78) 
FFQ 26 (18) 8 (22) 18 (17) 
Unknown4 7 (5) 2 (5) 5 (5) 

1 Primary or lower education. 
2 Secondary or higher vocational education. 
3 University or college. 
4 Answering was not compulsory. 

Estimated intakes of energy and most macronutrients were higher with the 2hRs than with 
the FFQ, with the exception of fat (en%), PUFA, ALA, EPA, DPA, and alcohol (en%) (Table 2). 
Yet, differences in estimated energy and most macronutrient intakes were small (group-level 
bias ≤10%). Group-level bias was >10% for animal protein (13%), EPA (-16%), DHA (-23%) and 
alcohol (en%, -12%). A larger variation was found for the micronutrients with percentual 
differences ranging between -27% (β-carotene) and 12% (vitamin B1).  

Spearman correlation coefficients between the 2hRs and FFQ ranged from acceptable to good 
for both energy and macronutrients (range 0.33 – 0.69) and for micronutrients (range 0.32 – 
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0.58). Moreover, the 2hRs classified ≥75% of the participants in the same or adjacent quartile 
as the FFQ except for DHA (72%), β-carotene (74%), and lycopene (73%). Misclassification in 
the extreme quartile was below 10% for energy and all nutrients (range 0 – 8%). The Bland-
Altman plot shows an increasing difference between 2hRs and FFQ with increasing energy 
intake (β = 0.26, p = <0.01) (Figure 2). 

Figure 2. Bland-Altman plot of the differences in energy intake (kcal) estimated with random 2hRs and 
FFQ, plotted against the mean of the both methods (g/d). Mean difference (solid line), 95% limits of 
agreement (1.96xSD of mean difference; dashed line), and linear regression line (blue dashed line) are 
included. 

For food groups, a larger variation in intake estimates was found ranging from -65% (legumes) 
to +62% (pastry, cake and biscuits) (Table 3). Group-level bias was relatively small (≤10%) for 
‘alcoholic beverages’, ‘dairy’, ‘eggs’, ‘fruit’, ‘potatoes’, ‘soups’, and ‘vegetables’. For the 
remaining food groups, group-level bias exceeded 10%, which was also supported by mostly 
statistically significant paired-t-tests for these groups. Higher intakes were estimated by 2hRs 
than FFQ for the food groups ‘bread’, ‘cheese’, ‘dairy’, ‘eggs’, ‘fruit’, ‘non-alcoholic beverages’, 
‘pastry, cake and biscuits’, ‘savoury sandwich fillings’, ‘soups’, ‘sugar and confectionery’, and 
‘vegetables’. For the remaining food groups, intake estimates were higher by FFQ than 2hRs. 

Spearman correlation coefficients for most food groups were acceptable to good (range 0.27 
– 0.67). Except for the correlation for ‘soups’, which was poor (0.14). For the majority of the
food groups, ≥75% of the participants were classified in the same or adjacent quartile except
for ‘fats, oils and savoury sauces’ (72%) and ‘potatoes’ (70%). Similar as to the nutrients,
misclassification in the extreme quartile was below 10% (range 0 – 9%).
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RESULTS 

Participants had a mean±SD age of 38.5±18.4 years, were mainly women (74%), highly 
educated (56%), normal weight (74%; BMI <25 kg/m2), and did not follow a diet regimen 
(73%). Overall, 77% of the participants preferred random 2hRs over an extensive FFQ (Table 
1).  

Table 1. General characteristics of the participants included in this validation study 
Total (141) Men (37) Women (104) 

Mean age, years (SD) 38.5 (18.4) 42.0 (19.1) 37.3 (18.1) 
Age category (n, (%)) 

<25 years 58 (41) 14 (38) 44 (42) 
25-50 years 32 (23) 6 (16) 26 (25) 
>50 years 51 (36) 17 (46) 34 (33) 

Mean BMI, kg/m2 (SD) 23.8 (4.0) 24.7 (4.2) 23.5 (3.9) 
BMI category (n, (%)) 

<25 kg/m2 104 (74) 24 (65) 80 (77) 
25.0-29.9 kg/m2 25 (18) 10 (27) 15 (14) 
≥30 kg/m2 12 (8) 3 (8) 9 (9) 

Educational level (n, (%)) 
Low1 4 (3) 0 (0.0) 4 (4) 
Intermediate2 58 (41) 14 (38) 44 (42) 
High3 79 (56) 23 (62) 56 (54) 

Diet regimen (n, (%)) 
Yes, always 21 (15) 1 (3) 20 (19) 
Yes, sometimes 17 (12) 4 (11) 13 (13) 
Never 103 (73) 32 (86) 71 (68) 

Preferred method (n, (%)) 
Random 2hRs 108 (77) 27 (73) 81 (78) 
FFQ 26 (18) 8 (22) 18 (17) 
Unknown4 7 (5) 2 (5) 5 (5) 

1 Primary or lower education. 
2 Secondary or higher vocational education. 
3 University or college. 
4 Answering was not compulsory. 

Estimated intakes of energy and most macronutrients were higher with the 2hRs than with 
the FFQ, with the exception of fat (en%), PUFA, ALA, EPA, DPA, and alcohol (en%) (Table 2). 
Yet, differences in estimated energy and most macronutrient intakes were small (group-level 
bias ≤10%). Group-level bias was >10% for animal protein (13%), EPA (-16%), DHA (-23%) and 
alcohol (en%, -12%). A larger variation was found for the micronutrients with percentual 
differences ranging between -27% (β-carotene) and 12% (vitamin B1).  

Spearman correlation coefficients between the 2hRs and FFQ ranged from acceptable to good 
for both energy and macronutrients (range 0.33 – 0.69) and for micronutrients (range 0.32 – 
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Spearman correlation coefficients between plasma carotenoids and fruit and vegetables 
intake were acceptable to good for intake reported by 2hRs (range 0.42 – 0.57) (Table 4). For 
all plasma carotenoid comparisons, correlations were lower, yet still acceptable, for intake 
reported by FFQ (range 0.20 – 0.39). In contrast, correlation between plasma n-3 fatty acids 
(EPA and DHA) and fish intake was acceptable for 2hRs but better for FFQ (0.34 vs 0.52, 
respectively).  

For most of the concentration markers and self-reported intakes, ≥75% of the participants 
were classified in the same or adjacent quartile except for sum of carotenoids and vegetable 
intake by 2hRs (61%) and FFQ (71%), α-carotene and fruit/vegetable intake by FFQ (71%), β-
carotene and fruit/vegetable intake by 2hRs (71%), and β-cryptoxanthin and fruit intake by 
2hRs (68%). Misclassification in the extreme quartile was ≤10% for both methods (range 0 – 
7%), except for sum of carotenoids and fruit intake by FFQ (10%) and sum of carotenoids and 
vegetable intake by FFQ (10%).  
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Table 4. Spearman correlation coefficients and cross-classification of reported intakes of fish, fruit and 
vegetables in 2hRs and FFQ and related blood concentration biomarkers 

  Correlation 
coefficient1  

(95% CI) 

Cross-classification by 
quartiles 

  

Same 
(%) 

Same + 
adjacent 

(%) 

Extreme 
(%) 

Fruit and vegetable intake and sum of carotenoids         
2hRs 0.57 (0.30, 0.76) 39 83 0 
FFQ 0.36 (0.05, 0.61) 34 81 7 

Fruit intake and sum of carotenoids         
2hRs 0.49 (0.20, 0.70) 46 78 7 
FFQ 0.37 (0.06, 0.62) 44 83 10 

Vegetable intake and sum of carotenoids         
2hRs 0.54 (0.26, 0.74) 44 61 7 
FFQ 0.20 (-0.12, 0.48) 32 71 10 

Fruit and vegetable intake and α-carotene         
2hRs 0.48 (0.19, 0.70) 44 76 2 
FFQ 0.34 (0.03, 0.59) 42 71 5 

Fruit and vegetable intake and β-carotene         
2hRs 0.44 (0.14, 0.67) 32 71 0 
FFQ 0.35 (0.04, 0.60) 39 78 5 

Fruit intake and β-cryptoxanthin         
2hRs 0.42 (0.12, 0.65) 29 68 5 
FFQ 0.39 (0.08, 0.63) 37 78 7 

Vegetable intake and lutein + zeaxanthin         
2hRs 0.42 (0.12, 0.65) 29 76 7 
FFQ 0.35 (0.04, 0.60) 29 81 7 
Fish intake and EPA + DHA         
2hRs 0.34 (0.03, 0.59) 24 83 0 
FFQ 0.52 (0.23, 0.72) 49 83 0 

 1 Spearman correlation  
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DISCUSSION 

 In this study we explored the accuracy of the EMA-based 2hR methodology for assessing 
habitual intake by repeated random 2hRs. The 2hRs yielded slightly higher energy and 
macronutrient intake estimates compared to the validated FFQ. Most importantly, as shown 
by correlations ≥0.40 and a ranking agreement ≥ 75% (i.e., ranking in the same or adjacent 
quartile as the FFQ), the ranking ability of the 2hRs were promising for energy, most nutrients, 
and most frequently consumed foods. Validation against blood concentration markers for 
carotenoid and n-3 fatty acids showed acceptable to good correlations for both methods. 
Finally, most participants preferred repeated random 2hRs over one extensive FFQ. 

Our results showed higher intake estimates for energy and most macronutrients with 2hRs, 
except for fat (en%), EPA, DHA and alcohol (en%). The FFQ used in this study is developed to 
cover at least 96% of absolute intake [14-16, 26], therefore, some underestimation by FFQ 
was expected. Still, difference between methods were mostly small (group-level bias ≤10%), 
except for animal protein (13%), EPA (-16%), DHA (-23%), and alcohol (en%, -12%). These 
results are in line with habitual intake estimates by repeated 24hRs, of which is known that 
three days is enough to gain insight in the habitual intake of frequently consumed foods [6, 
16, 27]. Yet, difference in alcohol estimates was only (slightly) larger for en%, whereas 
differences in alcohol (g) and alcoholic beverages were very low (<1% and 2%, respectively). 
The larger differences for EPA and DHA, and also for fish intake, can be attributed to the fact 
that these are episodically consumed, and are therefore more difficult to capture with the 
2hRs. This is also the case for repeated 24hRs [6]. Episodically consumed foods are more 
difficult to capture with open methods such recalls or records, due to day-to-day variation in 
intake, whereas an FFQ specifically asks about consumption of these foods. Yet, correlations 
between 2hRs and FFQ intake estimates of EPA, DHA and fish were similar or higher as 
compared to results from previous studies investigating correlations between repeated 24hRs 
and similar Dutch FFQs [16, 27-30]. This is also in line with results from our previous validation 
study, showing more accurate intake estimates by repeated 2hRs on one day compared to 
24hRs (Lucassen, Brouwer-Brolsma, Boshuizen, et al., unpublished results).  

As expected, larger differences were found in intake estimates of micronutrients between 
random 2hRs and FFQ, especially for β-carotene (-27%), vitamin B1 (12%), and vitamin D 
(21%). Yet, correlations for micronutrients were all acceptable to good, and ranking 
agreement was ≥ 75% for most micronutrients, except for β-carotene and lycopene who 
showed only a slightly lower ranking agreement (73% and 74%, respectively). Interesting, a 
similar study comparing an FFQ with repeated 24hRs, showed much lower correlations for 
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vitamin B1 (0.21) and vitamin D (0.27) than in our study (vitamin B1: 0.48; vitamin D: 0.48) 
[27]. Although β-carotene was not included, this study did include comparisons of FFQ 
estimates with plasma carotenoids. As mentioned, plasma carotenoids are considered 
biological markers for the past intake of fruits and vegetables [20]. When comparing our 
results to other studies investigating correlations between self-reported fruit and vegetable 
intake (by FFQ) and plasma carotenoids, we found similar results between our FFQ and plasma 
carotenoids (range 0.20 – 0.39), and mostly higher correlations between the 2hRs and plasma 
carotenoids (range 0.42 - 0.57). To illustrate, Sluik and colleagues found correlations between 
FFQ reported fruit and vegetable intake and plasma levels between 0.24 and 0.43 [27]. A 
similar trend can be seen when comparing to international studies [20, 31]. In contrast, the 
correlation between 2hR reported fish intake and plasma EPA/DHA) was lower than the 
correlation between FFQ reported fish intake and plasma EPA/DHA (i.e., 0.34 vs. 0.52, 
respectively). Interestingly, correlations between FFQ reported fish intake and plasma 
EPA/DHA varies over studies (e.g., 0.43 [27], 0.29 [21], 0.17 [32]). These differences can 
probably be attributed to the large day-to-day variation in fish intake, which not only affects 
recalls but also seems to affect FFQs.  
 
Regarding food groups, we see a similar trend as for the nutrients, with correlations of ≥0.40 
for most frequently consumed foods (i.e., ≥5 days/week according to the Dutch National Food 
Consumption Survey) and some episodically consumed foods (<5 days/week) [33]. Only for 
‘fats, oils and savoury sauces’, ‘fish’, ‘legumes’, ‘nuts, seeds and snacks’, ‘potatoes’, ‘savoury 
sandwich fillings’, ‘soups’, and ‘vegetables’ correlations were lower. With the exception of 
vegetables, these are mostly episodically consumed foods of which we know that they are 
difficult to capture with an open method [6, 33]. However, recall days do not automatically 
have to result in better coverage of episodically consumed foods, due to the infrequent 
consumption of for instance fish and legumes. Perhaps a better option would be to combine 
the recalls with a short food propensity questionnaire, which is specifically focused on 
assessment of episodically consumed food groups [34, 35].  
 
Overall, the correlations between food group intake estimates by 2hR and FFQ were similar, 
as compared to other studies comparing repeated 24hRs and Dutch FFQ [16, 27, 28]. Although 
absolute differences in intake are less relevant for nutritional epidemiology, some differences 
do stand out. Significantly higher intakes were estimated for ’non-alcoholic beverages’ by 
2hRs than FFQ (1,795±913 g vs. 1,489±522 g; 21% difference). Interestingly, similar results 
were found for ‘non-alcoholic beverages’ in our previous study, comparing intake estimated 
by 2hR-days with 24hRs (i.e., 1,670±788 vs. 1,405±644; 19% difference) (Lucassen, Brouwer-
Brolsma, Boshuizen, et al., submitted for publication). These results strengthen our previous 
explanation that reporting of non-alcoholic beverages is easily forgotten as they are often 
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consumed throughout the day, without being linked to a specific eating occasion, which makes 
it more difficult to recall. Also in line with our previous study, are the significant lower intake 
estimated for ‘fats, oils and savoury sauces’ with 2hRs than FFQ (27±24 g vs. 44±26 g; 39% 
difference). It seems that reporting of fat, oils and savoury sauces is more easily forgotten with 
2hRs. This can be explained by the fact that FFQ specifically asks about the consumption of 
these foods, whereas with 24hRs, respondents are prompted by either the tool or the 
interviewer to report consumption for these items. Adding a prompt to specific eating 
occasions to report added fats could increase the recall of these items (e.g., butter/margarine 
on bread for lunch; added fats/oils while cooking diner).  

Although we used data from an extensive validation study [9], there are still some 
methodological issues that warrant attention. We developed our 2hR sampling schemes 
according to the assumption that three 24hRs are enough to estimate habitual intake. Yet, it 
is also known that three 24hRs is often not enough to capture the daily variation in episodically 
consumed foods (and related nutrients) [6]. The effect on intake estimates of these foods can 
also be seen in our results (on fish and legumes). To enable capturing habitual intake of all 
foods, a more extensive sampling scheme might be more efficient (e.g., equivalent of 7 days) 
or to combine the 2hRs with a short food propensity questionnaire. Next, the majority of our 
sample consisted of highly educated women, potentially limiting generalizability of our results, 
which is extremely important for use in nutritional epidemiology. Therefore, additional 
evaluation in a more diverse population is needed before the 2hR method can be adopted in 
nutritional epidemiology to study diet-disease relations [36]. Still, the current evaluation 
clearly indicate the potential of using 2hRs to assess habitual dietary intake. Especially as our 
results are based on multiple statistical tests, which has been suggested as the most optimal 
approach to evaluate a dietary assessment method [22, 37].  

In conclusion, the use of random 2hRs shows great potential as an alternative method for 
assessing dietary intake. A sampling scheme, based on the equivalent of three full recall days, 
shows higher intake estimates and good ranking ability for energy, most nutrients, and most 
frequently consumed foods. More variation was seen for episodically consumed foods and 
nutrients. A more extensive sampling scheme will probably be able to provide a complete 
estimate of habitual dietary intake. Yet, more research is warranted to prove these 
assumptions.  

6



Chapter 6 

Page | 158 

REFERENCES 

1. Naska, A., A. Lagiou, and P. Lagiou, Dietary assessment methods in epidemiological
research: current state of the art and future prospects. F1000Research, 2017. 6.

2. Shim, J.-S., K. Oh, and H.C. Kim, Dietary assessment methods in epidemiologic studies.
Epidemiology and health, 2014. 36.

3. Thompson, F.E. and A.F. Subar, Dietary assessment methodology. Nutrition in the
Prevention and Treatment of Disease, 2017: p. 5-48.

4. Cade, J., et al., Development, validation and utilisation of food-frequency
questionnaires–a review. Public health nutrition, 2002. 5(4): p. 567-587.

5. Peytchev, A. and E. Peytcheva. Reduction of measurement error due to survey length:
Evaluation of the split questionnaire design approach. in Survey Research Methods.
2017.

6. Willett, W., Nutritional Epidemiology. 3rd ed. 2013, New York,: Oxford University
Press.

7. Brouwer-Brolsma, E.M., et al. Dietary intake assessment: From traditional paper-pencil
questionnaires to technology-based tools. in International Symposium on
Environmental Software Systems. 2020. Springer.

8. Lucassen, D.A., et al., Iterative Development of an Innovative Smartphone-Based
Dietary Assessment Tool: Traqq. JoVE, 2021(169): p. e62032.

9. Lucassen, D.A., et al., DIetary ASSessment (DIASS) Study: Design of an Evaluation Study 
to Assess Validity, Usability and Perceived Burden of an Innovative Dietary Assessment 
Methodology. Nutrients, 2022. 14(6): p. 1156.

10. Shiffman, S., A.A. Stone, and M.R. Hufford, Ecological momentary assessment. Annu.
Rev. Clin. Psychol., 2008. 4: p. 1-32.

11. Rhee, J.J., et al., Comparison of methods to account for implausible reporting of energy 
intake in epidemiologic studies. American journal of epidemiology, 2015. 181(4): p.
225-233.

12. Meijboom, S., et al., Evaluation of dietary intake assessed by the Dutch self-
administered web-based dietary 24-h recall tool (Compl-eat™) against interviewer-
administered telephone-based 24-h recalls. Journal of Nutritional Science, 2017. 6.

13. RIVM. NEVO-online (version 2016/5.0). NEVO-online (2016/5.0). 2016 [cited 2018 15
August]; Available from: https://nevo-online.rivm.nl/.

14. Feunekes, G.I., et al., Relative and biomarker-based validity of a food-frequency
questionnaire estimating intake of fats and cholesterol. The American journal of
clinical nutrition, 1993. 58(4): p. 489-496.



Evaluation of random 2-hour recalls 

Page | 159  

15. Siebelink, E., A. Geelen, and J.H. de Vries, Self-reported energy intake by FFQ compared 
with actual energy intake to maintain body weight in 516 adults. Br J Nutr, 2011.
106(2): p. 274-81.

16. Streppel, M.T., et al., Relative validity of the food frequency questionnaire used to
assess dietary intake in the Leiden Longevity Study. Nutrition journal, 2013. 12(1): p.
1-8.

17. Molag, M., Towards transparent development of food frequency questionnaires:
scientific basis of the Dutch FFQ-TOOL tm: a computer system to generate, apply and
process FFQs. 2010.

18. RIVM. NEVO-online (2010/2.0). 2010.
19. Jenab, M., et al., Biomarkers in nutritional epidemiology: applications, needs and new

horizons. Human genetics, 2009. 125(5-6): p. 507-525.
20. Al-Delaimy, W., et al., Plasma carotenoids as biomarkers of intake of fruits and

vegetables: individual-level correlations in the European Prospective Investigation into 
Cancer and Nutrition (EPIC). European journal of clinical nutrition, 2005. 59(12): p.
1387-1396.

21. Saadatian-Elahi, M., et al., Plasma phospholipid fatty acid profiles and their association 
with food intakes: results from a cross-sectional study within the European Prospective
Investigation into Cancer and Nutrition. The American journal of clinical nutrition,
2009. 89(1): p. 331-346.

22. Lombard, M.J., et al., Application and interpretation of multiple statistical tests to
evaluate validity of dietary intake assessment methods. Nutr J, 2015. 14: p. 40.

23. Masson, L.F., et al., Statistical approaches for assessing the relative validity of a food-
frequency questionnaire: use of correlation coefficients and the kappa statistic. Public 
health nutrition, 2003. 6(3): p. 313-321.

24. Forster, H., et al., Online dietary intake estimation: the Food4Me food frequency
questionnaire. Journal of medical Internet research, 2014. 16(6): p. e3105.

25. Bland, J.M. and D. Altman, Statistical methods for assessing agreement between two
methods of clinical measurement. The lancet, 1986. 327(8476): p. 307-310.

26. Brouwer-Brolsma, E.M., et al., Development and external validation of the 'Flower-
FFQ': a FFQ designed for the Lifelines Cohort Study. Public Health Nutr, 2021: p. 1-12.

27. Sluik, D., et al., A national FFQ for the Netherlands (the FFQ-NL 1.0): validation of a
comprehensive FFQ for adults. Br J Nutr, 2016. 116(5): p. 913-23.

28. Ocke, M.C., et al., The Dutch EPIC food frequency questionnaire. I. Description of the
questionnaire, and relative validity and reproducibility for food groups. International
journal of epidemiology, 1997. 26(suppl_1): p. S37.

6



Chapter 6 

Page | 160 

29. Ocke, M.C., et al., The Dutch EPIC food frequency questionnaire. II. Relative validity
and reproducibility for nutrients. International journal of epidemiology, 1997.
26(suppl_1): p. S49.

30. van Dongen, M.C., et al., The Maastricht FFQ: Development and validation of a
comprehensive food frequency questionnaire for the Maastricht study. Nutrition,
2019. 62: p. 39-46.

31. Burrows, T.L., et al., Fruit and vegetable intake assessed by food frequency
questionnaire and plasma carotenoids: a validation study in adults. Nutrients, 2015.
7(5): p. 3240-51.

32. Welch, A.A., et al., Dietary fish intake and plasma phospholipid n–3 polyunsaturated
fatty acid concentrations in men and women in the European Prospective Investigation 
into Cancer–Norfolk United Kingdom cohort. The American journal of clinical nutrition, 
2006. 84(6): p. 1330-1339.

33. Van Rossum, C., et al., The diet of the Dutch: Results of the Dutch National Food
Consumption Survey 2012-2016. 2020.

34. Subar, A.F., et al., The food propensity questionnaire: concept, development, and
validation for use as a covariate in a model to estimate usual food intake. J Am Diet
Assoc, 2006. 106(10): p. 1556-63.

35. Smiliotopoulos, T., E. Magriplis, and A. Zampelas, Validation of a Food Propensity
Questionnaire for the Hellenic National Nutrition and Health Survey (HNNHS) and
Results on This Population’s Adherence to Key Food-Group Nutritional Guidelines.
Nutrients, 2020. 12(6): p. 1808.

36. Illner, A.K., et al., Review and evaluation of innovative technologies for measuring diet 
in nutritional epidemiology. Int J Epidemiol, 2012. 41(4): p. 1187-203.

37. Kirkpatrick, S.I., et al., Best Practices for Conducting and Interpreting Studies to
Validate Self-Report Dietary Assessment Methods. J Acad Nutr Diet, 2019. 119(11): p.
1801-1816.



Evaluation of random 2-hour recalls 

Page | 161  

SUPPLEMENTAL MATERIAL 

Supplemental Figure 1. Flowchart participant selection from the DIASS 
population. 
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ABSTRACT 

Overweight, obesity and cardiometabolic diseases are major global health concerns. 
Lifestyle factors, including diet, have been acknowledged to play a key role in the 
solution of these health risks. However, as shown by numerous studies, and in clinical 
practice, it is extremely challenging to quantify dietary behaviours as well as 
influencing them via dietary interventions. As shown by the limited success of ‘one-
size-fits-all’ nutritional campaigns catered to an entire population or subpopulation, the 
need for more personalized coaching approaches is evident. New technology-based 
innovations provide opportunities to further improve the accuracy of dietary assessment 
and develop approaches to coach individuals towards healthier dietary behaviours. Pride 
& Prejudice (P&P) is a unique multi-disciplinary consortium consisting of researchers in 
life, nutrition, ICT, design, behavioural and social sciences from all four Dutch Universities 
of Technology. P&P focuses on the development and integration of innovative technological 
techniques such as artificial intelligence (AI), machine learning, conversational agents, 
behaviour change theory and personalized coaching to improve current practices and 
establish lasting dietary behaviour change. 
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INTRODUCTION 

Globally, poor diet quality is acknowledged to significantly impact health, and associated 
health care costs. The Global Burden of Disease study even indicated that a suboptimal diet is 
the second-leading risk factor for disability-adjusted life years and deaths worldwide after 
tobacco [1]. 

Despite the importance of a healthy diet, nutrition guidelines set by the Dutch Health Council 
are often not met by Dutch consumers. To illustrate, the Dutch Health Council (2015) 
recommends daily intakes of ≥250 g of vegetables and ≥200 g of fruits, one portion of fatty 
fish per week (17 g/day) and to limit intake of red meat and processed meat (<43 g/day) [2]. 
According to the Dutch Food Consumption Survey 2012–2016, a substantial proportion of 
Dutch women and men (19–50 year) do not adhere to these recommendations, i.e., shown by 
self-reported mean daily intakes of 128 g and 131 g of vegetables, 115 g and 97 g of fruits, 14 
g and 14 g of fish, along with 88 g and 131 g of meat (products), respectively [3]. Meeting 
healthy diet requirements is implicated in benefiting long-term health, i.e., a lower risk of 
overweight, obesity, coronary heart disease, stroke, diabetes, and colon and lung cancer [2]. 
Moreover, in order to prevent overweight and obesity, which often precede the above listed 
adverse health outcomes, food overconsumption (i.e., energy intake exceeding energy 
expenditure) should also be prevented [4]. In 2019, more than 50% of Dutch adults were 
overweight (volksgezondheidenzorg.info, accessed on 26 September 2020). This high 
overweight prevalence may to some extent relate to an obesogenic environment offering 
many high-caloric fast foods such as sugar-sweetened beverages and cakes/cookies [4-13]; 
often liquid foods or foods with a soft texture can be consumed quickly and in larger quantities 
compared to foods that require chewing [8, 14, 15]. It has for instance been shown that 
participants consuming a liquid product consumed 30% more of the product compared to 
participants consuming a semi-solid product despite similar palatability, energy density and 
macronutrient composition [16]. Therefore, targeting eating rate may reduce 
overconsumption and consequently excessive weight gain [17], for instance by stimulating the 
intake of hard textured foods such as a fruit salad instead of smoothies or by creating 
awareness of individual eating speed to stimulate people to eat more slowly. 

To date, already many interventions have been designed to steer individuals to a healthier 
diet. However due to their ‘one-size-fits-all’ approach with merely generic advice catered to a 
(sub)population, these nutritional interventions have shown only limited success. To 
effectively influence dietary behaviours, interventions need to be more tailored to the 
individual’s needs and preferences [18, 19], which is where mobile applications or 

7



Chapter 7 

Page | 166 

technologies offer opportunities to coach individuals towards a healthier diet and prevent 
overconsumption [20]. However, at least three central questions need to be addressed. First, 
how to capture problems related to diet and eating behaviour on an individual level? It is an 
enormous challenge to accurately quantify an individual’s food intake (i.e., food identification 
and portion size estimation) and as such to target personal diet optimization. There are many 
apps on the market that assess food intake but only very few are validated [21, 22]. Validated 
dietary assessment apps are key to ensure the collection of reliable food intake data. 
Nevertheless, due to their self-report nature, even validated apps still contain various sources 
of error, such as inaccurate portion size estimates, inaccurate food identification, and 
incomplete recordings [23]. Second; how to tailor the dietary intervention to the individual? 
The adoption of behaviour change theories is important to identify and influence key 
constructs related to behaviour change. However, multiple reviews indicate that the 
integration of behaviour change theories in diet-related apps is still limited [24-26]. Third, how 
to engage individuals in long-term use of diet-related apps? Perceived usability, perceived 
benefit, and trust in an app are important aspects for long-term user acceptance [27]. 
Moreover, intrinsic motivation is essential to commit to long-term use [28, 29]. As existing 
diet-related apps are quite burdensome when related to food recording, decreasing this 
burden is assumed to beneficially impact user engagement, preferably while simultaneously 
improving the accuracy of the records. The above aspects can already be addressed in the 
developmental process by involving potential end-users as well as other stakeholders 
(intermediate users) (e.g., general practitioners, dieticians) [30], which can be especially 
valuable when developing for specific target groups (e.g., children, low SES, older adults). This 
approach is not only assumed to benefit app quality, but also trustworthiness of the app, the 
likelihood of professionals’ implementing the app in daily practice, and the prospect of 
adoption of the app by the target group [31]. 

New innovative technologies offer the opportunity for more personalized dietary 
interventions through apps, even more so by utilizing technologies such as wearables, 
different types of cameras, artificial intelligence (AI), and machine learning techniques [32-
34]. The use of such smartphone applications allows for real-time personalized nutritional 
coaching, which requires less effort and has the potential to be more accurate compared to 
traditional methods [35]. However, the development of effective diet-related apps and 
technologies requires a multidisciplinary approach. Nutrition-, behaviour change-, (AI) 
technology-, health- and human-technology interaction expertise is crucial to develop and 
implement dietary interventions that have an actual impact on health. 
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THE PRIDE & PREJUDICE CONSORTIUM 
Pride & Prejudice (P&P) is a consortium that features a unique combination of disciplines, 
involving life, nutritional, ICT, design, behavioural and social sciences, and is composed of 
researchers from all four Dutch Universities of Technology (Delft University of Technology, 
Eindhoven University of Technology, University of Twente, and Wageningen University & 
Research). Within this consortium in-depth nutrition and nutrition behaviour knowledge is 
combined with the technological knowledge of machine learning, lifestyle sensors, and 
knowledge of the design of effective health behaviour change interventions. As such, P&P 
offers an exceptional platform to jointly develop new technology-based opportunities to build 
upon existing tools (Figure 1), for example by studying features that simplify the reporting of 
dietary intake as well as increase its accuracy by combining photo, video and/or speech 
recording with machine-learning or AI. This will not only facilitate a more accurate dietary 
behaviour assessment among healthy adults, but may also aid assessment among specific 
target groups such as children and older adults. Moreover, the accuracy of dietary behaviour 
assessment directly influences the efficacy of nutritional behaviour coaching as dietary 
problems can be targeted more specifically [35]. Therefore, once a more accurate assessment 
can be achieved, individual, personalized dietary advice can be generated rather than general 
nutritional guidelines. P&P started its funded activities in January 2019 and will continue until 
January 2023. In this paper we outline our vision with respect to innovating our current dietary 
behaviour assessment and intervention tools. 

Figure 1. Overview of P&P efforts on technology driven dietary behaviour assessment, and 
personalized interventions and coaching. 
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CURRENT TOOLS TO ASSESS DIETARY INTAKE 

Academia has long been investing considerable effort into creating validated tools to 
accurately assess dietary intake [21, 23]. The mainstay of dietary assessment is based on self-
report methods, i.e., food frequency questionnaires (FFQ), 24-h recalls (24hR), and food 
records. Originally, these methods were paper-pencil based but these evolved into computer- 
and web-based tools. The level of automatization within these tools has multiple benefits 
compared to traditional methods, e.g., decreased level of error, improved level of accuracy, 
increased user-friendliness, lower burden, and reduced costs. More recently, these dietary 
assessments tools were further innovated through the implementation of smartphone 
technology, enabled by almost universal adoption of smartphones in the population. 
Smartphone-based tools (i.e., apps) have the major advantage of enabling real-time data 
collection at any location at which the owner of the phone is present. Moreover, smartphones 
have multiple build-in sensors that may provide valuable information without any effort to 
provide input by the consumer (e.g., GPS, pedometer), and smartphones also offer the 
opportunity to easily connect to other apps/sensors (e.g., heart rate monitors, wearables). 
Eldridge et al. [21] created a clear overview of the available dietary assessment tools. 
Strikingly, whereas web-based tools are generally based on the FFQ or 24hR, all smartphone-
based tools are based on the food record method. 

The division of Human Nutrition and Health of Wageningen University & Research (WUR) 
created a solid foundation to assess diet in the general population by means of FFQs, 24hRs 
and food records [23]. Since the early 2000s, the original paper-pencil methods evolved into 
web-based tools (i.e., FFQ-tool™ and Compl-eat™) [23]. In addition, the most recent 
innovative tool developed by WUR researchers is the app “Traqq”, which can be used as a 
recall and food record. In the food record module, users can enter consumed foods 
throughout the day. Conversely, the recall module invites the user to record food intake in a 
specific time period by means of notifications. Once the user opens the app, access is given to 
an extensive food list based on the Dutch food composition database. The food list is flexible 
and can be modified by the researcher to fit different research purposes or different target 
groups (i.e., include sports nutrition or infant foods). Once a food item is selected, a consumed 
amount needs to be inserted, which can be reported in household measures (e.g., cups, 
spoons, glasses), standard portion sizes (e.g., small, medium, large), and weight in grams. The 
app also allows the user to enter all ingredients of an original recipe in combination with the 
quantity of the meal consumed. Yield and retention factors (i.e., retained weight and nutrients 
after cooking) are automatically taken into account. Traqq also enables linkage to online 
survey tools (e.g., Qualtrics). This way, additional questions can be incorporated linked to 
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specific foods, eating occasions or times (e.g., context-related questions, mood questions) 
[36]. 

User-friendliness and trustworthiness of Traqq was addressed by consulting intended end-
users during the development process, which eventually resulted in a clear and simple tool 
that can be used with minimal instruction. The effectiveness of this process was confirmed by 
the results of the evaluation study showing system usability scores (SUS) of 79/100, 
representing above average (SUS > 68) to excellent usability (SUS > 80) [36]. The logo of WUR, 
a respected research university, was incorporated in the app to underline solid scientific 
underpinning and enhance system credibility [37]. Currently, the validation of the recall-app 
is ongoing. Participants record their dietary intake by means of the app as well as validated 
traditional web-based dietary-assessment tools, with further validation using blood and urine 
samples. To evaluate upgrades since the previous evaluation, usability is reassessed as well. 
The preliminary results in terms of user-friendliness, validity and reproducibility seem 
promising; the final results are expected in mid-2021. 

Traqq distinguishes itself from other dietary assessment apps in terms of its flexible nature. 
The app can be tailored to fit different research purposes in terms of the food list, portion size 
options, eating occasion or time questions, including additional questions and sampling 
scheme options. Moreover, it is possible to alternate between the recall and the food record 
module. To the best of our knowledge, Traqq is the only dietary assessment app that can also 
function as a recall, while other dietary assessment apps are all based on the food record 
method [21, 36] that are prone to reactivity bias and social desirability bias, thus affecting 
dietary assessment accuracy [38, 39]. In turn this will influence reliability of provided 
personalized advice and negatively influence the intervention’s efficacy. 

In addition to self-report methods, there are also sensor-based technologies available that 
may facilitate dietary intake assessment (e.g., body-worn cameras, tooth sensors, smart 
dishes with weighing scales). Vu et al, [34] created an extensive overview of wearable dietary 
assessment technologies that aid objective food intake measurement, and as such eliminate 
various self-report related errors (e.g., estimation errors). These technologies are often 
invasive, not fully automated, or only provide partial food intake assessment; for example, 
only consumed amounts without food identification (smart dishes) or only a limited number 
of nutrients (tooth sensors). Consequently, these technologies are mostly exclusively used in 
a laboratory-setting and not validated for use in a real-life setting [33, 34]. 
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CURRENT TOOLS TO ASSESS EATING BEHAVIOUR 
 

INDIVIDUAL EATING BEHAVIOUR 
Sensory-based technology such as weighing scales and video recordings can be used to assess 
dietary behaviour (i.e., what and how much is consumed) and also to assess eating behaviour 
(i.e., how is it consumed, e.g., chewing rate, bite size) [40, 41]. Current gold standards to 
measure individual eating behaviour are labour intensive and not suited for use beyond a 
controlled environment. To detect automated eating behaviours or oral processing such as 
chews and bites, participants are filmed while eating. Subsequently, recordings are annotated 
by two independent trained observers. Programs often used to annotate videos are Observer® 
XT (Noldus Information Technology) and ELAN (Max Planck Institute) [42, 43]. Chews and bites 
are annotated over time with readouts such as meal duration (i.e., time between first and last 
bite), eating rate (i.e., gram per minute), bite size (i.e., gram per bite) and oral processing 
duration (i.e., time between first chew and main swallow) [15, 44]. Eating behaviour and food 
texture (liquid, solid) can also be assessed with ear sensors that measure sound, PPG and 
accelerometery [41, 45]. Oral processing in turn can also be measured with tracking dots (i.e., 
stickers on nose and chin) using Kinovea [46, 47], which provides detailed and objective 
information on chew cycle duration, number of chews, and oral processing duration. 
Moreover, oral processing can be assessed by electromyography (EMG) or electromagnetic 
articulography (EMA), which tracks electrical activity of the jaw muscles [48, 49]. EMG 
provides information on muscle effort or eating effort, number of chews, and chewing 
duration. EMA provides information on tongue movements, displacement, speed, and 
acceleration, which requires adhesive sensors on the tongue, jaw and cheeks. Other, more 
invasive methods of oral processing are video fluorograph and magnetic resonance imaging 
(MRI) that can be used to visualize the inside of the mouth and throat to track food and to 
observe movement of the jaw, tongue and oesophagus [50, 51]. The later methods are 
particularly suited to identify anatomical abnormalities and tracking of the swallowing process 
(e.g., evaluation of choking hazards in patients). To measure food properties in relation to 
eating behaviour, bolus properties can be measured such as dry matter, particle size and 
mechanical properties [52]. Additionally, actual food intake (i.e., consumed amounts) is 
mostly measured by weighing before and after the meal. 
 
As stated, most methods used to study eating behaviour are not suited for field studies, but 
do allow for measures of food intake and eating behaviour outside the lab [40, 41]. Recently, 
WUR combined these technologies in a weighing-tray, hereafter referred to as the mEETr 
(derived from the Dutch words for ‘measurement device’ and ‘to eat’). The mEETr consists of 
a regular dining tray with three built-in weighing stations. These three weighing stations 
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continuously measure the weight of a bowl, plate, and drinking cup or glass. Each weighing 
station consists of three triangle positioned measurement points (sensors) to balance weight. 
Besides these weighing stations, the mEETr tray includes a video-camera holder. Using a 
camera holder on the plate ensures that the camera is well positioned for the dietary and 
eating behaviour measurements. Based on these video images, eating behaviour 
characteristics can be determined as an extension of emotion detection software [53]. Eating 
behaviour characteristics that can be determined are number of bites, sips, chews and 
swallows. Combining eating behaviour information with weighing data of the meal facilitates 
calculation of bite size, eating duration per bite and eating rate, and the order in which 
different meal components are consumed. Tray weight and video data are transported to a 
PC using a wireless receiver. Here the data is cleaned after which outcome measures are 
calculated. The mEETr gives insight into how much people eat and the way food is consumed, 
which can be used for research purposes and to provide personalized eating behaviour advice. 
More specifically, this could result in recommendations on food type (whole fruit instead of 
juices and smoothies) and eating rate, which adds to current dietary-assessment methods 
such as the 24hR, FFQ or food records that do not provide information on eating rate. 
Therefore, the mEETr is especially of use in specific population groups in which current dietary 
questionnaires cannot be used, such as in children [54, 55]. 

SOCIAL EATING BEHAVIOUR 
Eating is not only about what, how much, and how food is consumed, it also about the social 
environment: ‘the social space of eating’. Sharing a meal can involve overt social aspects such 
as serving oneself or someone else food, passing on plates or serving trays, and adjusting 
overall dining time to table partners. There are also more subtle or covert social aspects 
involved such as going for seconds or thirds, synchronizing bites or eating speed, and 
synchronizing eating or serving quantity [56]. To understand the implicit social dynamics of 
eating together and how this impacts food choices, studies of social interaction are needed to 
also address social environmental factors in personalized dietary coaching. Social eating 
behaviour is predominantly assessed through video recordings, which provides valuable 
insights into effects of conversations, eye contact between table members, or gesture 
mimicking [57]. However, video recordings miss out on dimensions like quantities of foods, 
which can relate to individual food intake but also food sharing. Although such dimensions 
can be monitored through weighing scales or instrumented cutlery, such attributes create 
awareness and may intervene with natural behaviours of the table members, and such 
introduce reactivity bias. 

To address this, the University of Twente developed the Sensory Interactive Table (SIT) to 
measure both individual and social eating behaviours [58]. The SIT is an instrumented, 
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interactive round dining table (⌀1.45 m). The table surface is composed of 199 individually 
controllable, hexagon-shaped modules, each embedded with a load cell (199 load cells total) 
and 42 LEDs each (8358 LEDs total) just below the tabletop surface. Each module is covered 
with hexagon-shaped 15 mm thick white plexiglass to diffuse the LED light. Modules are 
replaceable, providing the option to use other sensors and feedback modalities. A plastic foil 
is placed on top of the plexiglass to create a waterproof surface. A tablecloth makes up the 
last layer of the table to create a visually appealing unobtrusive measurement instrument [58]. 
The load cells measure the weight of the items on the table, over the course of a meal. As a 
result, many overt and covert aspects of eating behaviour related to mass become 
measurable, such as bite size, total amount of food on a plate, or synchronicity of eating speed 
between individual table members. Additionally, the SIT provides the option for coaching 
through use of the LEDs, which allow for communication with table members by use of light 
interactions, potentially providing feedback and advice about their behaviour, habits and 
eating choices [58]. 
Currently, the table is controlled through Unity (Unity Technologies), a cross-platform game 
engine that collects and processes the data from the loadcells (input) and control the 
interactions that is sent back towards the LEDs (output). The software allows for individual 
processing of input and output alone, or can interconnect the two, creating a feedback loop 
to the user. It creates a flexible set-up, suitable to study the eating behaviours of people in a 
social setting, the social interactions between people in a dining setting, and the continuous 
cycle of feedback and the response to this feedback in real time [58]. 
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Technology to Improve Measures of Dietary Behaviour 

IMAGE AND SPECTROSCOPY TO IMPROVE DIETARY INTAKE MEASURES 
In order to improve the quality of dietary intake assessment, a feature that may contribute to 
a more accurate dietary assessment is the use of images [59, 60]. Images can be particularly 
interesting when tools are devoted to specific populations, such as children or individuals with 
intellectual impairment, as related to limited skills in terms of literacy, writing, food 
recognition and dependency of the care-giver [61-63]. Smartphone-based systems that 
estimate food intake by means of images already exist [e.g., 64], but their usability still seems 
limited and results are often insufficiently validated. 

Current efforts are particularly focused on two approaches, including image-assisted and/or 
food recognition image-based approaches. Image-assisted approaches are especially useful as 
part of retrospective methods (i.e., 24hR). Interviewees capture all food and drinks consumed 
through pictures, which subsequently assists the reporting of the foods and drinks consumed 
and associated portion sizes. However, for this approach image-review is required by the 
interviewee and/or researcher, which makes the method quite tedious. To circumvent this 
problem, automated food recognition (and volume) image-based approaches can be used as 
part of prospective methods (i.e., food records); interviewees record their intake by taking 
before and after pictures of all foods and drinks consumed. As image-based recording may 
facilitate automatic food identification and portion size estimation, this approach is especially 
promising to reduce respondent and researcher burden and increases the accuracy of current 
food and nutrient intake estimates by reducing reactivity bias, portion size errors and errors 
due to incorrect food identification. However, these methods still have many limitations as 
pictures must be taken from a specific angle and often in combination with a reference marker 
(i.e., to assess size and depth). Additionally, food recognition is still a challenge, especially in 
case of mixed-dishes or when differentiating between a diet soda and a sugar-containing 
version of that same soda [60, 64]. Portion size estimation from pictures is also still a challenge 
as the weight estimate is based on food volume. However, volume is food specific, i.e., 
whereas a salad is voluminous and light, a candy bar is often dense and heavy [65, 66]. 
Differences in food volume can be better assessed by using 3D-images over regular images. A 
3D-camera, which is already part of the newest smartphone models, is able to detect the 
shape and volume of a food item. This allows the assessment of portion sizes. 

Besides regular images, spectroscopic images of food products may serve future energy and 
macronutrient estimates of foods, so called chemical fingerprinting [67, 68]. A spectroscopic 
camera can detect many different frequencies of light outside of the visible spectrum, which 
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may facilitate product identification. Besides, spectroscopy uses near-infrared and infrared, 
which serve the assessment of food composition. The translation from chemical fingerprint to 
geometric and dynamic dietary information requires advanced ‘chemometric’ data-analyses 
techniques [59]. To determine a set of wavelengths needed to quantify macronutrient 
content, a 400–800 nm wavelength hyperspectral camera is needed. Such cameras with a 
limited wavelength range are expected to be incorporated in smartphones in the near future. 
Thus, integrating a hyperspectral camera and a 3D-camera could provide more detailed food 
data, and lead to more objective measures of food intake. 
 

CONVERSATIONAL AGENTS TO IMPROVE DIETARY INTAKE MEASURES 
Exploring the potential use of a conversational agent or chatbot could be another valuable 
supplementary input source to assess dietary intake, particularly among (older) adults with 
functional impairments (e.g., visual and/or motor impairment) and individuals with limited (E-
)health literacy [69, 70]. Implementation of a conversational agent may further simplify the 
recording process and increase accuracy [71, 72]. 
 
A distinction can be made between rule-based chatbots and AI-based chatbots. Rule-based 
bots are the most common chatbots and are programmed according to a decision tree 
architecture; users have to answer specific (often closed) questions via text- and/or button-
entry, after which the bot will respond based on the fixed decision tree. Therefore, rule-based 
bots are only useful for ‘simple’ tasks (e.g., tracking and stimulating fruit intake). In case of 
more complex tasks, AI-based chatbots are more suitable due to use of AI and Natural 
Language Processing (NLP), which enable more advanced ‘conversations’. By converting and 
interpreting text/speech and even images, AI-bots have the ability to make ‘intelligent 
decisions’, ‘learn’ (i.e., machine learning, deep learning) and provide better and more accurate 
answers in case of more long-term use [71]. Due to this learning process, AI-based bots are 
able to identify frequently consumed foods related to eating occasions and/or identify 
habitual consumption patterns, which in its turn enables the AI-bot to send personalized 
reminders at opportune moments to remember users to report their food intake. 
 
Currently, multiple diet-related chatbots are available to assess and (often) influence dietary 
behaviour [73-76], but these are not yet validated. Choi and Kim [79] evaluated the feasibility 
and acceptability of ICT based mobile chatbot technology to reduce dietary sugar intake: >60% 
of the participants reported difficulties related to the use of the chatbot and forgot to record 
their food intake, resulting in incomplete food intake registration. AI and machine learning 
techniques are assumed to further stimulate the use of conversational agents to assist dietary 
intake assessment, especially among specific target groups. Nevertheless, although chatbots 
may reduce participant burden, reporting an entire diet via chatbot may still be tedious due 
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to the question-answer structure. Consequently, to further reduce participant burden, 
integrating the use of chatbots with other tools is needed. Utilization of available smartphone 
features and advanced AI and machine learning techniques are eminent to facilitate multiple 
data entry methods (text, speech, images), integrate personalized reminders and minimize 
reporting burden, but also to analyses the collected, often complex, data. These technological 
advances are not able to fully replace existing dietary assessment technologies but could be 
valuable additions to existing tools such as Traqq and have the potential to decrease reporting 
burden and improve accuracy, especially for specific target groups. 

VIDEO IMAGE ANALYSIS AND SENSORS TO IMPROVE EATING BEHAVIOUR MEASURES 
Whereas cameras provide opportunities to improve dietary intake assessment, advanced 
video image analysis techniques offer new opportunities in terms of automated detection of 
eating behaviours such as emotion detection (adults and children), acceptance and rejection 
behaviour of infants and automated oral processing behaviours such as chews and bites in 
different age groups [77, 78]. Deep learning models can be based on extracted data from the 
video, for example facial landmarks, and training the model on annotated events and their 
time. Alternatively, video images can be analysed as a whole using all the available pixels as 
inputs to the model. This allows in context analysis, tracking all behaviours that occur when 
eating a family meal where interactions with the environment and all family members are 
taken into account [79]. The former may yield higher accuracy with simpler models and 
smaller datasets, and the latter may allow more comprehensive machine learning of the full 
complexity of eating behaviour. Besides video processing, eating behaviour can also be 
assessed using newly-developed sensors such as a wristband with an IMU sensor to detect the 
hand-movement bringing food to the mouth [80, 81]. In the future, eating events may also be 
detected using other sensor wearables such as headbands like Muse™, which measures EEG, 
PPG heartrate and accelerometery. Based on input from all these different sensors eating 
episodes or chewing may be detected using prediction analysis such as a neural networks (AI). 
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Technology to Improve Personalized Dietary Behaviour Interventions 

CONVERSATIONAL AGENTS FOR STIMULATING DIETARY BEHAVIOUR CHANGE 
In addition to using conversational agents for dietary assessment, conversational agents are 
also used to stimulate dietary behaviour change. However, considering existing apps using this 
technology, it can be concluded that the level of personalized advice is limited. Users are often 
referred to health professionals for more detailed advice [71]. Integrating AI-based chatbots 
will enable the detection and visualization of dietary patterns, both graphical and textual, as 
well as the provision of real-time personalized suggestions and goal setting to promote small 
daily changes. Such changes or goals could apply to changes in dietary intake as well as eating 
behaviour. More specifically, in terms of eating behaviour, the chatbot could pop questions 
related to appetite and feelings of hunger, which could translate into portion sizes 
suggestions, or a timer could be initiated to motivate the user to eat more slowly. 

Additionally, embodied conversational agents (ECAs) also seem promising in stimulating and 
maintaining health behaviour change [82]. ECAs are animated computer characters (i.e., 
avatars) that are able to establish and maintain a more personal relationship with the user 
[83]. Research indicates that face-to-face coaching seems to be more effective in establishing 
long lasting behaviour change [19]. As ECAs can mimic face-to-face coaching and are available 
24/7, ECAs can offer coaching when it is needed most. Moreover, motivational features can 
stimulate the user to adhere to the recommendations and, for instance, support users with 
shopping in a healthy and sustainable way [84]. Additionally, avatars can also be used to 
communicate feelings of hunger and satiation to teach children, for instance, when to stop 
and start eating through imitation, establishing healthy eating behaviour from an early age 
[85]. Therefore, implementing an AI-based chatbot or ECA into existing tools such as Traqq 
can be very valuable in enabling tailored diet coaching [82, 83]. Future research should 
address how the use of ECAs can be optimized in order to create actual behaviour change. 
Regular interaction is a prerequisite, but like other eHealth tools, uptake is limited. Studies 
show that appearance of the ECA matters, but even when appearance and design is optimized, 
the dialogues need to remain persuasive and engaging over time. It might well be that 
conversational agents for dietary change could function best in an add-on format to other 
interventions (e.g., in addition to regular care or dietician’s advice) or for specific patients 
group that are highly motivated to adjust their diets (e.g., patients in cardiac rehabilitation) 
[86-88]. 



Short and long-term innovations 

Page | 177  

GAME-ELEMENTS TO IMPROVE DIETARY BEHAVIOUR INTERVENTIONS 
Another promising and attractive strategy to increase intrinsic motivation and engagement of 
diet-related tools is via games (i.e., serious games) or game elements (i.e., gamification) [89, 
90]. By harnessing the ‘fun factor’ of games, enjoyment in using diet-related tools can be 
increased and in such way users’ motivation and engagement can be fostered. Moreover, 
digital tools can become easier to use and better understandable [90, 91]. Although research 
on effectiveness is still in its infancy, reviews show promising results of gamified interventions 
to promote healthy behaviours and, specifically, the promotion of a healthy diet, both in 
children and in adults [92-94]. An example of a gamified intervention is the serious game 
‘Squire’s Quest!’ that encourages children to consume more fruits and vegetables. The 
purpose of the game is to go from squire to knighthood and for this the squire (i.e., child) had 
to overcome multiple challenges. These challenges consisted of attaining real-word fruit and 
vegetable consumption-related goals. By successfully completing these challenges, the child 
earned badges and progressed towards knighthood [95]. Squire’s Guest! contains a variety of 
integrated behaviour change techniques to promote self-efficacy and intrinsic motivations 
(e.g., goal setting, planning, self-monitoring, goal review and feedback), which are key 
mediators of behaviour change in children [96]. To optimize chances of app engagement and 
effectiveness it is important to match the game or gamified tool to the user’s needs and 
preferences, therefore, it is recommended to follow a user-centred design approach when 
developing gamified diet-related tools [97, 98]. 

TARGETED DIETARY INTERVENTIONS DURING FOOD SHOPPING 
Trustworthy diet-related apps also have the potential to deliver real-time dietary advice to 
users when food shopping. For example, users receive personal dietary advice, e.g., specific 
product recommendations, recipes, grocery lists, tailored to the assortment while shopping in 
an online grocery store or when using a smartphone or handheld scanner devices in a physical 
store. 

To date, nutrition health apps (i.e., apps aiming at improving users’ health) and nutrition 
information apps (i.e., apps aiming at delivering transparent nutrition information of food 
products) [99] exist that help make smarter food purchases. These have mostly been 
developed by researchers [100, 101], governmental organizations [102], retailers, or other 
organizations. Most of these dietary recommendations apps focus on tracking weight loss, or 
specific health conditions over a longer period and aim to educate users to adopt a healthier 
lifestyle. However, few focus on the specific context of food consumption and purchasing 
moments [99, 101, 103-106]. In addition, most apps do not include personalized dietary advice 
but are based on general nutrition guidelines. 
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It is assumed that app-based interventions that do not solely focus on educating but include 
more concrete coaching in the form of eating tips, recipes, and grocery lists (e.g., for specific 
food retailers) make it easier to adopt behavioural change [105]. A practical and tailored 
grocery shopping list can assist in healthful shopping. An example, ‘MyNutriCart’, is a 
smartphone app that helps users select healthier foods based on the U.S. Dietary Guidelines 
and on their budget [100, 106]. It offers users a practical grocery list fitting the dietary 
nutritional recommendations and taking into account the caloric requirements based on their 
weight goal (i.e., loose, gain or maintain weight) [100] and led to improvements in terms of 
healthy food-related behaviour [106]. 
 
Integrating such approach into a dietary assessment app like Traqq could also simplify the 
reporting of food intake. Recommended recipes and grocery lists can be stored in the app and 
consulted during food intake reporting. Consumed recipes or products can then easily be 
transferred to the food record or recall module of the app. 
 

TAILORED DIETARY BEHAVIOUR INTERVENTIONS 
While most food intake recommendations follow a one-size-fits-all approach catered to a 
population or subpopulation, personalized dietary advice provides recommendations tailored 
to the individual. Therefore, personalized dietary advice fits better with individual needs and 
leads to a more effective approach towards long-term change in dietary behaviours [107, 108]. 
In order to personalize advice, various individual characteristics and their interactions can be 
taken into account such as educational level, social and economic status, current nutritional 
status (i.e., nutrient deficits and surpluses), and individual lifestyle behaviours and 
preferences. Provision of personalized advice may offer opportunities for tailored 
interventions with superior health benefits aligned to the individual’s nutritional status and a 
better compliance with the advice through better alignment with individual lifestyles and 
preferences. Examples of such a personalized intervention are Just-In-Time-Adaptive 
Interventions (JITAIs). JITAIs adapt their support “overtime to an individual’s changing status 
and contexts”, aiming to deliver support “at the moment and in the context that the person 
needs it most and is most likely to be receptive” [109]. Data from smartphones or wearables 
are used to automatically and continuously acquire information about the user and its context 
(e.g., environmental exposures) and deliver individualized interventions based on states of 
vulnerability and receptivity of the user [110, 111]. Based on these data the delivery of the 
intervention elements can be continuously tailored towards the specific status and context of 
the user [112]. 
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Additionally, to provide tailored dietary interventions, it is crucial to adopt behaviour change 
theory to identify and influence key constructs related to behaviour change. Currently, the 
integration of behaviour change techniques (BCTs) in diet-related apps is often lacking [24-
26]. Although diet-related apps vary greatly in the number of integrated BCTs, goal setting, 
self-monitoring and feedback are integrated most frequently [24]. These BCTs have been 
proven effective in general weight loss interventions [113-115]. However, these techniques 
all relate to behavioural control and do not focus on other constructs such as development of 
essential behavioural skills [24]. More recently, Villinger et al. [119] reviewed the effectiveness 
of app-based diet-related behavioural interventions and concluded that additional 
intervention components besides the app and a higher number of implemented BCTs did not 
necessarily improve the effectiveness of the interventions. Thus, the effectiveness of an app-
based diet intervention will not be determined by the quantity of implemented BCTs, but by 
their quality. The design and the technical implementation of a BCT can influence 
effectiveness of an app [116]. Implementing a variety of BCTs will enable the user to tailor the 
app to their preferences and develop a personalized intervention. 
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DISCUSSION 
 
This paper discusses technological opportunities to improve dietary behaviour assessment 
and interventions. The P&P consortium offers a unique combination of disciplines, which is 
needed to improve dietary behaviour assessment and subsequently tailor interventions to 
establish lasting dietary behaviour change. P&P’s current efforts have led to the development 
of tools such as Traqq, mEETr and SIT. These tools allow for assessment of dietary intake, 
eating behaviour and social or contextual dietary behaviours. 
 
Developing targeted dietary behaviour measures and connecting these to behaviour change 
interventions is key to the establishment of lasting behaviour change in order to ultimately 
improve health. Specific target (sub)populations have explicit (nutritional) requirements, and 
behaviour change efforts should be tailored to the individual. Consequently, various individual 
characteristics should be taken into account such as age, culture, social-economic status, 
personality trait and level according to the theory of behaviour change [117]. During the 
development of tailored interventions or tools it is imperative to take these requirements in 
to account. Currently, P&P efforts are focused on four main target populations. 
 
The first target group of the P&P consortium are pregnant, lactating women and their 
(unborn) children. Although a healthy diet during pregnancy and lactation is important to 
ensure optimal supply of various nutritional sources, the diet of pregnant and lactating women 
is often suboptimal [118-120], which stresses the need for more effective personalized 
approaches. The new technologies as described in this paper offer the opportunity to develop 
more personalized approaches for pregnant and lactating women. Another window of 
opportunity to stimulate a healthy diet is childhood, which highlights the second target group 
of the P&P consortium, namely children. Currently, dietary assessment among young children 
is challenged by limited reading and writing skills as well as food knowledge of the children 
themselves. As a result, health care professionals and researchers depend on the caregivers. 
Therefore, P&P aims to develop practical technological tools to optimize dietary intake 
assessment and guidance of (future) mothers and their young children. The third target group 
of the P&P consortium are older adults, who have specific nutritional needs, often limited 
digital capabilities, and prefer the more personal approach [75]. Human-computer interaction 
design seems promising here, e.g., using ECAs that are able to mimic face-to-face coaching. A 
fourth target group of the P&P consortium are office workers, who spend a large proportion 
of their time at work where they consume about a third of their daily energy intake [121, 122]. 
The office environment is ideal to set up dietary interventions due to fixed work schedules 
and a generally limited access to food items and meals [121, 123]. 
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To arrive at personalized diet-related tools, P&P not only focuses on end-users but also on 
stakeholders (e.g., health and nutrition professionals, commercial firms, government bodies). 
We investigate underlying values that play a role for different stakeholders; uncovering values 
provides insight into how people wish to live their lives and what matters most to them. 
Stakeholder values and any potential tensions between co-existing values need to be taken 
into account in the design of interventions. In part, the focus needs to be on the worth that is 
created for different parties [124]. For example, for users there could be worth in having to 
spend less time on their diet, while for health and nutrition professionals a better insight into 
the nutritional needs of different target groups could be of interest. However, stakeholders’ 
internal values also need to be taken into account, such as the need for privacy, or being able 
to autonomously decide about food intake [124]. We feel that adopting a multi-stakeholder, 
value-based approach is crucial to arrive at tools that can be seamlessly integrated into 
people’s daily lives for long-term use, and that will be supported by the ecosystem of 
stakeholders involved. 

To achieve personalized technology-assisted dietary interventions, supporting technologies 
need access to relevant data on the individual. This implies that individuals have to be willing 
to engage in an information exchange process with the diet-coaching app [125]. People have 
to share personal, often sensitive information with the app, which induces (perceived) privacy 
risks for users in order to receive tailored advice. Therefore, the use of user-documented food 
consumption data also raises specific legal and ethical challenges [22]. The trade-off between 
the perceived personal benefit of this advice and the perceived privacy risk of sharing personal 
information will affect whether or not users adopt the diet-coaching app [125, 126]. Therefore 
in developing apps to facilitate personalized advice, characteristics such as the type, amount 
and sensitivity of personal information disclosed, advice scope (e.g., personal diet plan, 
personalized shopping list, religious taboos, personal allergies), the trustworthiness of the 
communication channel, business model, and service provider need are to be taken into 
account [125, 127]. 

Nowadays, technology advances rapidly which results in new technological opportunities to 
improve dietary behaviour assessment and intervention. However, it also brings along new 
challenges. Due to the rapid technological evolution, it is difficult to stay up-to-date. New 
quickly becomes outdated. To ensure the quality of the tools we develop, we focus on 
techniques that have been proven effective in either dietary assessment or dietary behaviour 
change. We do not attempt to develop new techniques but implement existing techniques. 
To further ensure the accuracy and effectiveness of the tools, thorough evaluation is an 
important aspect of the developmental process. 
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CONCLUSIONS 
 
Technological innovations offer the opportunity to improve dietary behaviour assessment and 
interventions. Moreover, they enable targeted dietary behaviour interventions, tailored to 
individuals, specific target groups or situations (e.g., during food shopping). Advanced image 
and video processing in combination with AI and machine learning techniques will be explored 
to improve current dietary behaviour measures and to reduce registration burden and 
improve accuracy. Integration of conversational agents (i.e., chatbots, avatars) and game 
elements in existing systems such as Traqq show promise in tailoring dietary behaviour 
coaching to improve engagement. Finally, targeted dietary behaviour interventions can be 
improved by integrating behaviour change techniques and tailoring to the individual, target 
group, or situation. Utilization of these technological innovations in dietary behaviour 
assessment and interventions has the potential to significantly improve the healthiness of 
individuals’ eating behaviours. 
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MAIN FINDINGS 

The overarching objective of this thesis was to develop a flexible smartphone-based dietary 
assessment tool that can be tailored to specific research objectives while also exploring the 
potential of ecological momentary dietary assessment (EMDA) principles by 2-hour recalls 
(2hRs): Traqq®. The development of Traqq® was an iterative process that included both expert 
and user evaluations (Chapters 2 & 3), which led to in an innovative app with many tailoring 
options, see Table 1 for an overview. 

Table 1. Overview of Traqq®’s flexible features 

Feature Standard option Tailoring options 
Dietary assessment 
method 

Full-day food record Food record: 
- Dayparts (e.g., only office hours) 
Recall with flexible time periods, e.g.: 
- 2hR 
- 4hR 
- 8hR 

Sampling scheme Manual food record 
scheduling 

Automated recall schemes: 
- Full-day scheme (i.e., automatic scheduling of 

predefined number of recall days &
rescheduling when predetermined number of
prompts is missed on a recall day) 

- Random scheme (i.e., automatic random
scheduling of a predefined number of recalls 
& rescheduling on same time different day in 
case of none-response) 

Food list Cleaned version of 
NEVO 2021 

Tailored food lists, e.g.: 
- Adding of specific items of interest (e.g., sport

nutrition, infant foods) 
- Adding of provided intervention foods 
- Deleting of irrelevant food items (e.g., focus 

on snacking, focus on fruit/vegetable intake) 

Portion size estimation Household measures, 
standard portion sizes, 
grams 

- Only household measures and standard 
portion sizes 

- Only grams 
- No portion size assessment 

Additional questions None Send additional questions via online survey tool 
(only for recalls), e.g.: 
- Food choice motive questions 
- Contextual/food environment questions 
- Mood questions 
- Symptoms related to intake of intervention 

foods 
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We assumed that repeated 2hRs instead of a 24-hour recall (24hR) or a food frequency 
questionnaire (FFQ) would decrease memory-related bias and reporting burden, and increase 
the accuracy of dietary assessment. In Chapter 4 we describe the study design and evaluation 
approach of the use of consecutive 2hRs on one day for assessing actual intake (i.e., full 2hR-
days), and single 2hRs spread over multiple weeks for assessing habitual intake (i.e., random 
2hRs). Chapter 5 shows that three 2hR-days are a reliable approach to assess actual intake of 
energy, nutrients, and food groups. Differences with validated 24hRs were small and 
biomarker comparisons showed smaller underestimations of protein and potassium intake for 
the 2hR-days as compared to 24hRs. Chapter 6 suggests that random 2hRs (i.e., equivalent of 
three full days; three times each timepoint) can be a good alternative for regular 24hRs to 
assess habitual dietary intake as shown by a good ranking ability for energy, most nutrients, 
and most frequently consumed foods when compared to a FFQ and concentration markers. 
More variation was seen for episodically consumed foods and nutrients, which may be solved 
by a more extensive sampling scheme. Chapters 5 and 6 also showed that the majority of the 
participants favoured using either 2hR-days or random 2hRs over using traditional methods 
(i.e., 24hRs, FFQ). Although the current version of Traqq® is well received by respondents 
(Chapters 3-6), points for improvement in terms of accuracy remain (Chapters 5-6). Therefore, 
in Chapter 7 we explored emerging technologies that may help to improve Traqq®.  

CURRENT STATE OF THE ART 
Traqq® distinguishes itself from other dietary assessment research-apps by its sound scientific 
basis, transparent development process, extensive validation, and its wide-ranging tailoring 
options. Comparable available dietary assessment research apps all have rather fixed designs 
(Chapter 1). To illustrate, e-CA [1], e-DIA [2, 3], Eat and Track [4, 5], PIQNIQ [6], and Research 
Food Diary [7] can only be used as a food record, whereas e-12HR [8, 9] can only be used as 
recall. Moreover, developmental processes of comparable text-entry based apps are often not 
or minimally described [1-3, 6, 8-10], which hampers their quality assessment [11]. As an 
exception, the development of the Australian ‘Eat and Track (EaT)’ app shows important 
resemblances to the approach for Traqq® (Chapters 2 & 3). To illustrate, EaT has also been 
developed guided by usability testing including think aloud interviews, and assessment of the 
system usability scale. Moreover, EaT also includes a tailored food list that is compiled after 
thorough review of the national food consumption database and development of a portion 
size database [5]. As the development of reliable dietary assessment tools is challenging, it is 
important to provide insight in tool development and features such data entry, food list, 
source of food composition data, food quantification options, tailoring options, outputs, and 
pre-testing [11]. 
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In addition, it is important to validate new tools against established and, preferably, also 
objective measures to determine whether the new tool or methodology assesses what it is 
intended to asses. Only a limited number of apps underwent some sort of evaluation [11-14]. 
Strikingly, none of the comparable apps was validated against objective measures for nutrient 
or food intake (e.g., recovery biomarkers) [1-4, 6, 8, 9]. PIQNIQ was evaluated during a 
randomized control trial; participants were asked to report their food intake through PIQNIQ 
while consuming study menus and handing-in any leftovers (i.e., to determine true intake) [6]. 
However, although true intake was assessed, this evaluation was conducted in a controlled 
setting where participants where especially focussed on their intake and reporting [15]. The 
Traqq®-2hR method was extensively validated in a real-world setting, including objective 
markers (Chapters 4-6). Although validation studies using objective markers are lacking, most 
available food record apps are evaluated against dietitian-guided 24hRs (i.e., relative validity) 
[14]. Dietitian-guided 24hRs are perceived as a high quality dietary assessment method, but 
they are not a true gold standard [16, 17]. Evaluation studies of food record apps mostly show 
lower intake estimates of energy and macronutrients compared to 24hRs [1, 3, 4, 18-20]. In 
contrast, our results show mostly higher intake estimates of the 2hR-days as compared to 
24hRs. This may relate to the fact that our approach limits memory-related bias owing to the 
relatively short reporting window of the recall-method (i.e., 2-hours vs. 24-hours). Specifically, 
with the 2hR, participants register their food intake every two hours of the day and 
immediately send it to an external server. This also minimizes reactivity bias as recorded 
intakes are not visible anymore for the participant. With regular food records, food intake 
reports remain accessible throughout the day, which increases the likelihood of introducing 
reactivity bias. All in all, these data may suggest that our smartphone-based 2hR-approach is 
able to provide a more accurate (near) real-time assessment of dietary intake compared to 
more traditional food record based-apps. 

Yet, as Traqq® is extremely flexible, it is important continue with the evaluations following 
major upgrades related to for instance the food list, or when using other recall variants (e.g., 
4hR, 8hR). In addition, as mentioned in Chapter 7, new technologies have the potential to 
improve the current version of Traqq®, and also to make the app more suitable for specific 
populations (e.g., chatbot integration for individuals with a lower e/mHealth literacy). When 
exploring new technologies, it is important to involve relevant stakeholders (e.g., target users) 
and disciplines (e.g., nutrition experts, design experts, IT experts) throughout the 
development process, to ensure that the final tool is tailored to the needs and requirements 
of the target population.   
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METHODOLOGICAL CONSIDERATIONS 

DEVELOPMENT PROCESS 
We followed a user-centred co-design approach, where both intended end-users and experts 
were involved throughout the design process. However, the ‘user’ in this process was more 
the expert instead of the actual end-user of the app. As a result the design of Traqq® was 
mostly based on expert input, where end-users evaluated the design via pre-testing and 
usability evaluations after which the design was adjusted according to their feedback 
(Chapters 2 & 3). This resulted in an simple and easy-to-use app for the general Dutch adult 
population, with many flexible features in the backend tailored to the needs and preferences 
of (nutrition) researchers. Still, the app might have been even more accurate if potential end-
users would have been able to indicate their needs and preferences as well [21]. It also needs 
to be stressed that the current version of Traqq® might be less appropriate for specific target 
groups. Similar to widely-used commercially available food tracker apps, Traqq® relies on an 
individual’s ability to search and enter consumed foods via the food list (i.e., text-entry), [22]. 
However, a chatbot or barcode scanner might be a more suitable data entry method than text-
entry for e.g., (older) adults with functional impairments (e.g., visual and/or motor 
impairment) and individuals with limited (E-)health literacy [23-26], (Chapter 7). Therefore, in 
future studies aiming to tailor Traqq®, a user-centred co-design approach is recommended 
that actually puts the targeted end-user in the centre [27, 28]. This approach is not only 
assumed to benefit app quality, but also trustworthiness of the app and the prospect of 
adoption of the app by the target group [28-30]. 

SAMPLING SCHEMES  
Although both the 2hRs-days and random 2hRs resulted in a clear overview of frequently 
consumed foods and nutrients, they lacked details on episodically consumed foods and 
nutrients, such as fish, legumes, EPA, DHA, and vitamin A (Chapters 5 & 6). Both sampling 
schemes were based on the premises that three full recall days are sufficient to gain insight in 
habitual intake of commonly consumed foods [31]. In line with previous research, our results 
show that a more extensive sampling scheme is required to capture the day-to-day variation 
of episodically consumed foods. However, including more recall days may not automatically 
result in better coverage of episodically consumed foods [32]. In addition, the required 
number of days is also variable between individuals as individuals with a stable food pattern 
have less day-to-day variation than individuals with a highly variable food pattern [31]. Thus 
even with more recall days, there is still a large possibility to ‘miss’ episodically consumed 
foods due to their infrequent consumption. Yet, it certainly will result in an increased burden 
for the respondents. Another option might be to supplement the recalls with a short food 
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propensity questionnaire (FPQ) that focusses on the intake of episodically consumed food 
groups (e.g., fish and legumes) [32-34]. Although the FQP is an added burden for the 
respondent, it can be administered once while an potentially large number or 2hRs is required 
to ensure coverage of episodically consumed foods. Still, it remains essential to tailor the 
sampling scheme and dietary assessment method(s) to the research questions and the study 
population. 

PROMPTS 
In contrast to web-based 24hR tools, the 2hR approach is not based on the automated 
multiple-pass method (AMPM). The AMPM is a validated five-step method developed to 
systematically conduct 24hRs and provides standardized questions and response options [35, 
36]. Although this is a valid approach, completing all five steps for short recall periods, 
including only a limited number of foods per time slot, is too burdensome.  However, the 
AMPM does contain a certain aspect that is now lacking in the 2hR method, namely “the 
forgotten-foods list”, where the respondents is prompted to report frequently omitted foods 
(e.g., sugar/milk in coffee, fat with cooked meal). Our results show that, similar to other 
studies, these items are often not reported (Chapters 5 & 6) [37, 38]. Integrating additional 
prompts linked to certain food items and/or eating occasion could remind the respondent to 
report such items. In turn, this will increase the completeness of reported intake. 

GENERALIZATION 
Despite extensive validation of our 2hR methodology, where we compared its accuracy 
against both established self-report methods and independent biological markers (Chapters 
4-6), these results need to be interpreted with some caution. We aimed to include a
representative sample of Dutch adults (Chapter 4). However, in our sample most participants
were highly educated (58%) and/or women (72%) whereas in 2019, 41% of the general Dutch 
population was highly educated [39] and 50% of the population were women [40]. Several
determinants are known to affect reporting of food intake, i.e., body mass index (BMI), age,
sex, socio-economic status, educational level, health-related activities (e.g., smoking, dieting), 
psychological factors, and eating habits (e.g., high vs. low intake) [41]. Of these determinants, 
BMI seems to be the most important factor related to misreporting [41-43]. Still, findings are
inconclusive and misreporting may occur in all individuals. To illustrate, not all overweight
individuals underreport, whereas not all normal weight individuals provide accurate reports
[41]. It is better to assume that all self-reported dietary intake data is affected by some degree
of measurement error, and to check, and if needed, correct for it by using statistical methods
[15, 41]. Examples of such methods are the Goldberg cut-offs [44] or the Willet cut-offs [45]
to identify (and exclude) under- and over-reporters, which we both used in our validation
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studies (Chapters 5 & 6). Another statistical method that we used are attenuation factors 
which give insight in the extent to which diet-disease relations are attenuated by 
measurement error, e.g., using self-report food intake data instead of true intake. 
Furthermore, attenuation factors can also be used to correct attenuated diet-disease 
associations assessed with that specific method [46]. In the end, validity of self-reported 
dietary assessment depends most on participant instruction, literacy, and commitment to 
accurate report their food intake, instead of on participant determinants [47]. 

SELECTION OF DIETARY ASSESSMENT METHOD 
The EMDA-based 2hR method has been proven effective to capture both actual and habitual 
intake of energy, most nutrients and frequently consumed food groups (Chapters 5 & 6). Still, 
2hR-days may not always be the most appropriate dietary assessment method. When 
selecting a dietary assessment method there are many factors to take into account, i.e., main 
objective, required type of information (e.g., actual intake, usual intake), study population 
(e.g., children, adults, patients), reference period (e.g., week, month, year), comparability to 
other studies, resources (e.g., budget, expertise) [34]. The 2hR method is flexible and can be 
tailored to many of these factors. Yet, 2hRs might not be appropriate to all study populations. 
Older adults are often faced with memory-related limitations which mainly affect short-term 
memory, making a 2hR less appropriate. Another example are children, who need their 
parents help to report food intake. Thus, although the 2hR method is well-validated, it does 
not replace existing methods and is merely an addition. For each new research questions, it is 
important to select the most appropriate dietary assessment method taking all previously 
mentioned factors in account.  
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IMPLICATIONS FOR RESEARCH 

TRAQQ® 
Traqq®’s main strength lies in its flexibility e.g., of the food list to specific research aims, 
portion size estimation options, dietary assessment method, and monitoring of the dietary 
assessment data collection process in the backend. Our evaluation studies already showed 
that this flexibility significantly decreases researcher burden and participant burden [48], 
which makes Traqq® a popular new tool for a variety of study types. To illustrate, Traqq® has 
been used as a food record in a study focussing on shift workers, who followed a nutrition 
protocol during two or three consecutive night shifts. Provided intervention foods were added 
to food list to ensure correct reporting of these items, and reporting windows were altered to 
fit the shift workers unregular schedules. The nutrition protocol started with dinner before 
the first night shift (i.e., food record opened at 17:00) and lasted until breakfast after either 
the second or third night shift (food record closed at 9:30), depending on the night shift 
schedule of the participant. 

Traqq® has also been used in an observational study amongst millennials that focussed on the 
motivations for certain food choices, particularly focussing on eating occasions other than the 
three main meals (e.g., snacks). As the focus of this study was not on what and how much 
food was consumed but on the what, where and why, this study benefitted from the flexible 
Traqq® option to include additional questions related to food intake such as contextual 
factors. Moreover, Traqq®’s flexibility also allowed tailoring of the food list to also include 
popular foods that are frequently consumed by millennials (e.g., plant-based drinks, vegan 
foods, super foods), which were not included in the Dutch food composition database of 2016. 
A list of important foods, frequently consumed by millennials, was created based on literature 
research. This list was compared with available foods in Dutch supermarket and on-the-go 
food vendors (e.g., at train stations). Identified items were added to Traqq®’s food list. As the 
focus of this study was on what and why certain foods were consumed, we did not need 
elaborate food composition data. Therefore, we used data from supermarkets to supplement 
the food list. 

The potential of Traqq® is not only limited to nutrition research. Traqq® is also very suitable 
for use in food environment research, which focusses on understanding how the food 
environment affects dietary intake [49]. Moreover, although the original version of Traqq® is 
developed for use in the Netherlands, its flexible nature allows easy tailoring to other cultures. 
This is in contrast to most tools which are only available in 1 maybe 2 languages, except for 
myfood24 which is available in English, Danish, French, German, Norwegian, with an Arabic 
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version in development [50]. Currently, we also have a Polish, Swiss-German, Spanish and 
Greek version of the app (i.e., and an English, French and Belgium version in development). 
The development of these country-specific versions occurred according to a simplified version 
of the developmental protocol (Chapter 3). As the app itself is finished, and contains limited 
fixed text, these were easily translated. The main focus was on the development of country-
specific food lists with accompanying portion sizes. The original cleaning protocol was used 
with slight project-specific adjustments. We made use of national databases and the cleaning 
was conducted by local nutrition experts according to the protocol. Issues were discussed 
during expert meetings to ensure comparability of final food lists. The quality (i.e., publication 
date) and extensiveness (i.e., number of foods, nutrients) of national food composition 
databases (FCDB) varied widely over countries (Table 2) [51]. To ensure comparability of food 
intake data over countries, high-quality and up-to-date FCDBs are essential. 

Table 2. Overview of number of foods in FCDB and publication year per country. 
Country Number of foods Publication year 
Greece 305 2013 
Poland 1045 2017 
Spain 967 2009 
Switzerland 1152 2021 
The Netherlands 2207 2021 

These five apps (i.e., also including the Dutch version) have been embedded in a large 
European project that uses 4hRs with additional questions to gain insights in the food 
environment, which makes Traqq® one of the first dietary assessment tools adapted to 
multiple cultures [13]. As the collected data needs to be comparable over countries, 
differences in FCDBs were challenging. To ensure coverage of all foods of interest for this 
specific project, missing items were added from the Dutch FCDB (e.g., plant-based drinks, 
vegetarian foods). Moreover, with the exception of Poland, the aforementioned countries did 
not have country-specific portion size databases available. Therefore, we used a combination 
of the portions described in the national food-based dietary guidelines [52-54], the Dutch food 
portion size database [55], and to input of local nutrition experts to compile country-specific 
food portion sizes. 

These are just a few examples of current uses of Traqq®. Yet, Traqq®’s flexible nature allows 
for application in many research projects and is currently used or being used in close 
to 20 national and international studies, more requests pending. Most of these studies 
requested some form of tailoring, mostly regarding the food list, which shows the need for 
such a tool. 8
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2HRS 
In addition to the app Traqq® itself, the 2hR method has great implications for research as 
well. Our validation studies showed that this EMDA-based method results in more accurate 
food intake data as compared to established self-report methods. Moreover, EMDA has the 
potential to also capture additional (intake-related) information to understand determinants 
of dietary behaviour [56]. EMDA’s potential is not limited to short-term nutrition-related 
research, but can also be applied in longitudinal studies or national food consumption surveys 
for monitoring long-term dietary intake. Applying the 2hR methodology in such studies has 
the potential to increase the accuracy of collected food intake data while minimizing 
participant burden, as compared to frequently used approaches; repeated 24hRs and FFQs 
[15, 48]. As these methods only capture part of the diet, while a random 2hR scheme has the 
potential to obtain a full overview of habitual food intake. Full-day recordings, and associated 
burden, are spread over a long time period. Therefore, we can collect more days of food 
intake, while the perceived participant burden remains low. However, it needs to be stressed 
that an adequate sampling scheme is crucial, i.e., ensuring equal coverage of all eating 
occasions, allowing the assessment of habitual dietary intake. To illustrate, to monitor a 
participant’s food intake over a year, we could do the equivalent of two full 2hR-days per 
season (i.e., eight full days over a year). To obtain a full day of 2hRs you need approximately 
eight single 2hRs, i.e., 8 full days results in 64 random 2hRs spread over 365 days, this is less 
than 6 random 2hRs per month. The sampling scheme would run automatically, striving to 
complete all scheduled recalls (i.e., each timepoint 8 times). Afterwards, the data can easily 
by processed for further analyses with minimal burden for both researcher and participant. 

In addition to previous example, the 2hR methodology also has potential for use in citizen 
science-based projects [57]. An example of such a project is the Horizon2020 funded Big Data 
Against Childhood Obesity (BigO) project. BigO is a citizen science project that collect data on 
children’s health behavioural patterns and their living environment via an app [58, 59]. 
Currently, food intake data is only collected via pictures. Yet, these images are proven to 
be difficult to process and do not provide accurate insights in these children’s dietary 
behaviours. A modified version of the 2hR methodology with additional questions could 
allow for a more detailed account of their dietary behaviours and the food environment, 
which in turn has great potential for nutritional epidemiology [60]. 

Finally, the 2hR-method also has potential for use in personalized health initiatives. 
Personalized health, or in this case personalized nutrition, uses data on individual 
characteristics (e.g., biological, behavioural) to provide targeted nutritional advice to attain 
lasting behaviour change [61, 62]. Using 2hRs in such personalized nutrition initiatives allows 
for easy assessment of current dietary behaviour and immediate communication with the 
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respondent [48], thus tailored feedback can be provided [63]. Utilization of other smartphone 
features (e.g., GPS) or linkage to wearables (e.g., smartwatch), in combination with 2hRs, 
would allow for more extensive personalized interventions. To illustrate, smartwatches can 
be used as in signal-contingent EMDA as they are able to detect eating-gestures, which in turn, 
if connected to Traqq®, could prompt an invite to report current food intake (e.g., shortly after 
the repeated movement has stopped) [64-66]. Obtained data can be used to automatically 
and continuously acquire information about the user (e.g., 2hRs for dietary intake) and its 
context (e.g., GPS for environmental exposures) and deliver individualized interventions based 
on states of vulnerability and receptivity of the user [67, 68]. Such a personalized intervention 
is also known as a Just-In-Time-Adaptive Intervention (JITAI). JITAIs adapt their support 
“overtime to an individual’s changing status and contexts”, aiming to deliver support “at the 
moment and in the context that the person needs it most and is most likely to be receptive” 
[69]. The 2hRs method could be a valuable addition to diet-related JITAIs for the assessment 
of current dietary behaviours. However, more research is needed to bring this into practice.  
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FUTURE RESEARCH 
 
More research is needed to further improve dietary assessment efforts, especially with regard 
to EMDA. We focused on 2hRs to assess dietary intake. However, there are many different 
recall intervals that may be more appropriate in general, or for specific purposes (e.g., 3hRs, 
4hRs, 6hRs). In addition, for each of these options, more research is needed in the 
development of tailored sampling schemes to capture an entire diet, i.e., include more recall 
days [31] or add an additional measure such as the FPQ [32]. In addition, more research is 
needed in use of both Traqq® and EMDA for specific target populations [11, 13]. 
 
However, even a perfectly tailored dietary assessment tool, with personalized sampling 
scheme, still relies on self-report and will remain sensitive for measurement errors. One major 
source of measurement error in current dietary assessment tools is portion size estimation 
[48, 70, 71]. New technologies have the potential to decrease these errors. For Traqq®, the 
integration of a visual portion size estimation aid could be a valuable addition. An example of 
such an aid is already integrated in the PIQNIQ app which includes a visual portion size 
selector, i.e., the slider alongside the portion size image can be moved to increase or decrease 
portion size, and the amount on the plate will change accordingly [6]. 
 
Another reporting error relates to unintendedly omitting certain foods (e.g., sugar/milk in 
coffee, fat in cooked meals). Integration of additional prompts to remind respondents to also 
report these items could increase completeness of the intake recording. At first, previously 
collected intake data can be reviewed to identify frequently omitted foods [72]. These results 
can then be used to integrate prompts for these specific foods, e.g., respondent reports the 
eating occasion ‘dinner’; Traqq® prompts the user to report fat or oil. Eventually Traqq® should 
be able to learn from previous reports and provide personalized recommendations to ensure 
data completeness, by using artificial intelligence.  
 
As self-reported dietary intake data will always contain measurement error, ideally, we would 
like to move away from self-report dietary assessment towards objective food intake 
monitoring. However, at the moment there is no sensor technology available that is able to 
automatically and objectively monitor food intake [73, 74]. Still, sensor-based technologies 
can be a valuable addition to self-report measures [47]. An opportunity worth exploring is 
linkage to sensor-based wearables such as smartwatches to collect additional data (e.g., 
heartrate, accelerometry, GPS). The accelerometry data, for instance, can be used to detect 
eating gestures which in turn can be used to further tailor sampling schemes [64, 65]. This 
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way, dietary intake is assessed shortly after consumption (reducing memory bias) and only 
when the smartwatch suspects eating behaviour (avoiding unnecessary prompts) [66]. 

RECOMMENDATIONS FOR FUTURE PROJECTS 
The main lesson learned from this thesis relate to the design process of a new dietary 
assessment and/or coaching tools. Although we used an iterative process and included both 
experts and targeted end-users from early on, improvements for future, similar research 
remain. In addition, to the guidelines for reporting on new dietary assessment tools as 
proposed by Eldridge and colleagues [11], we propose a user-centered, multistakeholder 
approach for the actual development of future tools. The developmental process is guided by 
four main themes: 1) explore, 2) develop, 3) evaluate, and, if appropriate, 4) implement. This 
process should be supported by a highly interdisciplinary approach to cover all research 
needed to ultimately realize technology-driven, personalized, and effective dietary solutions. 
To illustrate this process, we will describe the further development of Traqq® to improve 
dietary assessment efforts and also integrate a personalized dietary coaching module. 
Objectives then include: 

1. Explore: Determining needs and preferences of targeted end-users and other
important stakeholders in terms of required support, tools, and design to establish
long-term dietary behaviour changes.

2. Develop: Co-create, test, and integrate new techniques to improve dietary assessment 
and develop novel personalized dietary support tools with underlying ICT platforms.

3. Evaluate: Conduct evaluation studies to:
a. validate the improved dietary assessment tools.
b. evaluate the effect of integrated behaviour change interventions.

4. Implement: Map the steps to be taken for successful implementation of the developed 
tools in daily life, healthcare, and nutrition and sustainability research.

Developing, testing, and (possible) implementing novel, technology-driven, solutions to 
support individuals to improve and maintain a healthy diet, required an interdisciplinary team 
of researchers. This team should include researchers in nutrition, dietetics, AI, ICT, design, 
behavioural and social sciences.  

Theme 1 - Explore needs to be driven by an interdisciplinary team of designers, nutrition 
scientists, and behavioural scientists. Perspectives, needs and preferences of targeted end-
users need to be mapped. To facilitate the adoption of the dietary support tool and empower 
end-users towards long-term dietary behaviour change, perspectives, needs, and preferences 
of other relevant stakeholders need to be mapped as well (e.g., dieticians, health care 
providers, supermarkets, municipal health institutes, health insurance companies). Thus, 
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theme 1 should consist of a mix of quantitative research (i.e., self-administered (online) 
questionnaires) and qualitative research (e.g., focus groups, in-depth interviews, journey 
mapping and/or Delphi rounds) to gain insight in various design directions to improve Traqq® 
and develop dietary behaviour change interventions.  
 
Theme 2 - Develop needs to be driven by designers, software developers, data scientists, 
nutrition scientists, and behaviour scientists, and focus on the improvement of Traqq® by 
developing, testing, and implementing novel techniques. Promising techniques need to be 
explored that can improve dietary assessment efforts in terms of accuracy, reporting burden, 
and motivation for long-term use (e.g., use of images, AI/machine learning, smartwatch 
integration, persuasive game design). Additional focus is needed on the development of novel 
behaviour change interventions using desk-top research and co-creation sessions with target 
users. Behaviour change solutions need to be able to be integrated directly in Traqq®, which 
will result in an all-round dietary support tool including dietary assessment module and 
customizable dietary behaviour change features. In parallel, a supporting ICT infrastructure 
needs to be created to facilitate use of the tool. 
 
Theme 3 - Evaluate needs to be driven by nutrition, behavioural, and social scientists. A solid 
dietary intake assessment is crucial for well-founded personalized dietary behaviour change 
interventions, dietary monitoring efforts, and nutrition research. Therefore, quantitively 
evaluation (e.g., usability, self-report dietary intake) and validation (biochemical markers by 
metabolomics) of the upgraded version of Traqq® is essential. Additional focus should be on 
examining whether the integrated dietary support tool(s) effectively empower citizens to 
obtain and maintain a healthy diet. Preferably, this is evaluated in a randomized control trial.  
 
Theme 4 - Implement needs to be driven by nutrition, behavioural, social, and design 
scientists. All partners need to work together to optimize the chance for successful adoption 
of the tool by both end-users and health care professionals. To achieve this, the steps to be 
taken to ensure a successful implementation of the dietary support tool in daily life and health 
care need to be mapped. Relevant stakeholders as determined in theme 1 need to be 
interviewed and required steps need to be incorporated in an implementation plan.  
 
The described process will result in a full-fledged tool, tailored to the needs and requirements 
of a specific target population. To ensure transparency of the development of future tools, 
publication of the developmental process in addition to evaluation results is eminent.  
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OVERALL CONCLUSIONS 

The work described in this thesis showed the development of the dietary assessment app 
Traqq® and the potential of the EMDA-based 2hR methodology for accurate assessment of 
dietary behaviours. The iterative developmental process resulted in a flexible dietary 
assessment app that can be tailored to different research aims. In addition, Traqq® was used 
to evaluate the 2hR methodology against established dietary assessment methods and 
independent markers of intake. We showed that 2hR-days result in a more accurate 
assessment of food intake as compared to traditional 24hRs and that random 2hRs are able 
to rank participants according to intake of frequently consumed foods, similar to an FFQ. 
Overall, we showed that both Traqq® as well as the 2hR methodology have great potential for 
use in nutrition-related research.  
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Accurate dietary assessment is an essential aspect of nutrition research and health care. Yet, 
current methods have a range of drawbacks. Chapter 1 provides an overview of most 
commonly-used dietary assessment methods, their limitations and sources of measurement 
error. In addition, promising innovations are described, including dietary assessment apps and 
ecological momentary dietary assessment (EMDA). This thesis describes the development and 
evaluation of a flexible smartphone-based EMDA tool ‘Traqq®’ that can be tailored to specific 
research objectives.  

The first step in the development of Traqq® was the evaluation of portion size estimation aids 
that were suitable for integration in a smartphone app (Chapter 2). Literature review resulted 
in two possible options: text-based portion size assessment and image-based portion size 
assessment. Text-based portion size assessment refers to the use of textual descriptions of 
portion sizes (e.g., household measures, standard portion sizes), whereas image-based 
portion size assessment refers to the use of a series of food images to assess portion size. We 
evaluated the accuracy of both portion size estimation aids in a pilot study. Participants (n=40) 
consumed an ad libitum lunch (i.e., unlimited amount) after which true intake was assessed. 
Next, participants estimated consumed amounts using both methods. The results of this study 
clearly indicated that, of the two, text-based portion size assessment resulted in a more 
accurate estimation of consumed amounts. These findings led to the integration of text-based 
portion size estimation options in the app, namely estimation in household measures (e.g., 
cups, spoons) and standard portion sizes (small, large).  

The steps described in the protocol and the results of the evaluation studies resulted in a final 
design for the app and the backend (Chapter 3). We strived to develop a flexible dietary 
assessment app that can be tailored to different research purposes. A first wish was flexibility 
in dietary assessment methods. As a result, Traqq® can be used as a food record as well as a 
recall. The food record-module is similar as previously described apps whereas the recall-
module is completely new (Chapter 1). Moreover, based on EMDA principles, Traqq® not only 
facilitates traditional recalls (i.e., 24hRs) but shorter recall periods as well (e.g., 2h, 4h, 8h). 
Moreover, reporting periods are flexible for both methods, therefore, the food record-module 
also allows reporting during parts of the day (e.g., during office hours). To further increase 
flexibility, for the recall-module, it is possible to create different sampling schemes to facilitate 
tailored data collection. Push notifications invite respondents to record their food intake, and, 
to ensure complete data collection, invitations are automatically rescheduled in case of non-
response. Unfortunately, automatic rescheduling is not possible for the food record-module 
as one recording (e.g., one cup of coffee) already counts as a response, whereas this is far 
from being a complete recording. Hence, for food records, manual monitoring of data 
collection remains needed. In nutrition research, research questions often go beyond merely 
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what is being consumed (e.g., food choice motivation, mood during eating, environmental 
context). Therefore, we also included an option to connect with online survey tools to send 
additional questions after a recall. These questions can be general (e.g., where, with whom) 
or related to specific eating occasions or food items (e.g., motivation, symptoms). Another 
flexible aspect is the integration of the food list. The standard food list is a cleaned version of 
the Dutch food composition database (i.e., originally NEVO 2016, currently updated to NEVO 
2021), optimized for use in an app. However, as flexibility is important, the backend allows for 
creating a new food list for each project. Thus, food lists can be tailored to specific research 
questions and/or target populations.  

Following the development of the app, we designed an extensive validation study that allowed 
for validation of both actual and habitual intake, against established dietary assessment 
methods and independent biological markers: ‘DIASS’ (Chapter 4). The DIASS study (n=215) 
had a cross-over design and lasted a total of 12 weeks: week 1 – randomization, week 2-5 – 
study period 1, week 6-7 – wash-out, week 8-11 – study period 2, and week 12 – evaluation. 
DIASS had two experimental conditions; i.e., measuring actual intake and habitual intake. We 
assessed actual food intake on random non-consecutive days over one of the four-week study 
periods. Within this period, participants were invited to complete three 2hR-days (i.e., full 
days of consecutive 2hRs) and three web-based or telephone-based 24hRs. In addition, a 
random subsample of participants also provided four 24-h urine samples and two fasting 
blood samples. The urine collections were intentionally coupled to the recall days (i.e., 2× to 
2hR-day and 2× to 24hR-day). Blood sampling occurred following two of the urine collections 
while the participants were at the study centre to hand in their urine containers. During the 
other four-week study period, we assessed habitual food intake by random 2hRs. The same 
number of 2hRs was used as for the 2hR-days. However, to assess habitual intake, the 2hRs 
were randomly distributed over the four-week period (i.e., different days and times, 3× each 
time slot). In addition, at the end of the study period, we invited participants to complete a 
web-based FFQ. In the final study week, we invited participants to complete the Eetscore™, 
to assess overall diet quality. 

Data from the DIASS study (n=146) was used to explore the ability of repeated 2hRs on one 
day to assess actual intake, i.e., consecutive 2hRs from waking to sleeping, with a night-time 
recall the following morning. We found that, compared to traditional 24hRs, 2hR-days resulted 
in slightly higher intake estimates of energy, most nutrients, and most food groups (Chapter 
5). As it is well-known that 24hRs tend to underestimate intake, this was perceived as a 
positive result. Comparisons of both methods to urinary biomarkers for protein and potassium 
intake, showed less underestimation of the 2hR-days compared to the 24hRs: protein: -14% 
vs. -18%; potassium: -11% vs. -16%.  
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In addition, data from DIASS (n=141) was also explored the ability of repeated random 2hRs 
for to assess habitual food intake, i.e., repeated 2hRs on random days and times, with a night-
time recall, linked to a final evening 2hR, the following morning (Chapter 6). We found that, 
random 2hRs showed good ranking ability for energy, most nutrients, and most frequently 
consumed foods, compared to a traditional validated FFQ and blood concentration markers 
(carotenoids n-3 polyunsaturated fatty acids).  

Although the current version of Traqq® is well received by respondents (Chapters 3-6), 
improvements in terms of accuracy remain (Chapters 5-6). Therefore, we explored emerging 
technologies that can help further improve Traqq®, but also other existing tools (Chapter 7). 
In this chapter, we distinguish between tools and technologies focussed on dietary intake (i.e., 
what is consumed) and eating behaviour (i.e., how it is consumed). Moreover, we not only 
focus on assessment of these dietary behaviours, but also explore technologies that have the 
potential to improve personalized dietary behaviour interventions. Potential technologies to 
improve dietary intake assessment include images (i.e., food identification, portion size 
assessment), spectroscopy (i.e., food identification, chemical fingerprint), and conversational 
agents (i.e., alternative reporting, personalized reminders). Conversational agents also have 
potential to improve personalized dietary behaviour interventions (i.e., 24/7 coaching), as well 
as game-elements (i.e., enjoyment), targeted interventions (e.g., during food shopping), and 
tailoring (i.e., personalized advice).  

In Chapter 8, the main findings of this thesis were summarized and discussed. Methodological 
aspects related to generalization of findings, development process, sampling schemes and 
selection of a dietary assessment method/tool are discussed. Furthermore, implications for 
research are given. The chapter ends with lessons learned translated to recommendations for 
future research.  

To conclude, this thesis describes the development of the flexible dietary assessment app 
Traqq® and the validation of the 2hR methodology for assessment of dietary intake. We found 
that the app was well received by participants and favoured over traditional dietary 
assessment methods. Moreover, we showed that both 2hR-days and random 2hRs are a viable 
method to assess dietary intake. It is important to mention that measurement errors 
decreased but remain due to the self-report nature of the 2hR recall method. Therefore, more 
research is needed to further improve measures of dietary intake. 
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what is being consumed (e.g., food choice motivation, mood during eating, environmental
context). Therefore, we also included an option to connect with online survey tools to send
additional questions after a recall. These questions can be general (e.g., where, with whom)
or related to specific eating occasions or food items (e.g., motivation, symptoms). Another
flexible aspect is the integration of the food list. The standard food list is a cleaned version of
the Dutch food composition database (i.e., originally NEVO 2016, currently updated to NEVO
2021), optimized for use in an app. However, as flexibility is important, the backend allows for
creating a new food list for each project. Thus, food lists can be tailored to specific research
questions and/or target populations.

Following the development of the app, we designed an extensive validation study that allowed
for validation of both actual and habitual intake, against established dietary assessment
methods and independent biological markers: ‘DIASS’ (Chapter 4). The DIASS study (n=215)
had a cross-over design and lasted a total of 12 weeks: week 1 – randomization, week 2-5 –
study period 1, week 6-7 – wash-out, week 8-11 – study period 2, and week 12 – evaluation.
DIASS had two experimental conditions; i.e., measuring actual intake and habitual intake. We
assessed actual food intake on random non-consecutive days over one of the four-week study
periods. Within this period, participants were invited to complete three 2hR-days (i.e., full
days of consecutive 2hRs) and three web-based or telephone-based 24hRs. In addition, a
random subsample of participants also provided four 24-h urine samples and two fasting
blood samples. The urine collections were intentionally coupled to the recall days (i.e., 2× to
2hR-day and 2× to 24hR-day). Blood sampling occurred following two of the urine collections
while the participants were at the study centre to hand in their urine containers. During the
other four-week study period, we assessed habitual food intake by random 2hRs. The same
number of 2hRs was used as for the 2hR-days. However, to assess habitual intake, the 2hRs
were randomly distributed over the four-week period (i.e., different days and times, 3× each
time slot). In addition, at the end of the study period, we invited participants to complete a
web-based FFQ. In the final study week, we invited participants to complete the Eetscore™,
to assess overall diet quality.

Data from the DIASS study (n=146) was used to explore the ability of repeated 2hRs on one
day to assess actual intake, i.e., consecutive 2hRs from waking to sleeping, with a night-time
recall the following morning. We found that, compared to traditional 24hRs, 2hR-days resulted
in slightly higher intake estimates of energy, most nutrients, and most food groups (Chapter
5). As it is well-known that 24hRs tend to underestimate intake, this was perceived as a
positive result. Comparisons of both methods to urinary biomarkers for protein and potassium
intake, showed less underestimation of the 2hR-days compared to the 24hRs: protein: -14%
vs. -18%; potassium: -11% vs. -16%.
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