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Kalkidan Ayele Mulatu c, Yitebitu Mogesd, Heiru Sebrala d, Christopher Martius e and Martin Herold a

aLaboratory of Geo-Information Science and Remote Sensing, Wageningen University Research, PB Wageningen, Netherlands; bDepartment of 
Information Systems, University of Münster, Leonardo-Campus 3, Münster, Germany; cInternational Center for Tropical Agriculture (CIAT), 
Addis Ababa, Ethiopia; dNational REDD+ Secretariat, Environment, Forest and Climate Change Commission, Addis Ababa, Ethiopia; eCenter for 
International Forestry Research (CIFOR)- Germany gGmbH, Bonn, Germany

ABSTRACT
National-scale assessments of post-deforestation land-use are crucial for decreasing deforestation 
and forest degradation-related emissions. In this research, we assess the potential of different 
satellite data modalities (single-date, multi-date, multi-resolution, and an ensemble of multi-sensor 
images) for classifying land-use following deforestation in Ethiopia using the U-Net deep neural 
network architecture enhanced with attention. We performed the analysis on satellite image data 
retrieved across Ethiopia from freely available Landsat-8, Sentinel-2 and Planet-NICFI satellite data. 
The experiments aimed at an analysis of (a) single-date images from individual sensors to account 
for the differences in spatial resolution between image sensors in detecting land-uses, (b) ensem
bles of multiple images from different sensors (Planet-NICFI/Sentinel-2/Landsat-8) with different 
spatial resolutions, (c) the use of multi-date data to account for the contribution of temporal 
information in detecting land-uses, and, finally, (d) the identification of regional differences in 
terms of land-use following deforestation in Ethiopia. We hypothesize that choosing the right 
satellite imagery (sensor) type is crucial for the task. Based on a comprehensive visually interpreted 
reference dataset of 11 types of post-deforestation land-uses, we find that either detailed spatial 
patterns (single-date Planet-NICFI) or detailed temporal patterns (multi-date Sentinel-2, Landsat-8) 
are required for identifying land-use following deforestation, while medium-resolution single-date 
imagery is not sufficient to achieve high classification accuracy. We also find that adding soft- 
attention to the standard U-Net improved the classification accuracy, especially for small-scale 
land-uses. The models and products presented in this work can be used as a powerful data 
resource for governmental and forest monitoring agencies to design and monitor deforestation 
mitigation measures and data-driven land-use policy.
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1. Introduction

The recent Intergovernmental Panel on Climate 
Change (IPCC) report highlights that human activities 
are the unequivocal cause of climate change. It 
further accentuates that human activities are accoun
table for an increase in greenhouse gases emissions 
henceforth an increase of 1.1°C of warming since 
1850–1900 (IPCC 2021). Tropical forests are essential 
in mitigating the impact of climate change through 
provision of clean air, contributing to the biodiversity, 
regulating water cycle, preventing erosion, and miti
gating climate change (FAO 2014; IPCC 2021; Koh 
et al. 2021; Nowak et al. 2014). However, the increas
ing global trend of forest loss and degradation risks 
losing the continual supply of these ecosystem ser
vices provided by forests (Hansen et al. 2013; IPCC 

2021). Providing information on the human activities 
(direct drivers) causing forest loss (Finer et al. 2018; 
Geist and Lambin 2001) and its coverage will enable 
governments, and national forest monitoring systems 
to concentrate on forest emission reduction and on 
mitigation efforts (REDD+) toward specific proximate 
deforestation drivers, where they will have the great
est impact (BioCarbon Fund 2020; Curtis et al. 2018; 
De Sy et al. 2019; FAO 2010; IPCC 2021; UNFCCC 2018).

Currently, there are several global initiatives for the 
assessment and monitoring of deforestation and its 
proximate drivers (Curtis et al. 2018; Hansen et al. 
2014, 2013). However, these global assessments 
often differ from national assessments in terms of 
reported forest extent, drivers, and trends of defores
tation (Nomura et al. 2019; Sandker et al. 2021). The 
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difference is due to the fact that these initiatives often 
require a similar definition of forest and method to 
ensure consistency on large area, which usually 
entails a choice in precision and accuracy at local 
level (Hansen et al. 2014; Latawiec and Agol 2015; Lu 
2007; Yanai et al. 2020). In addition, global assess
ments often differ from national assessments due to 
either one or the other assessment being poorly ana
lyzed or inaccurate, but also by decisions relating to 
the included land-use types and the choice of mini
mum mapping unit (Nomura et al. 2019). 
Furthermore, global-scale assessment of direct defor
estation drivers is prone to lack of diverse representa
tion of land-use classes due to spatial heterogeneity 
(Masolele et al. 2021), thus causing more uncertainties 
when comparing global versus national land-use 
change data (Curtis et al. 2018). In the present work, 
we aim at a method that is locally suited for develop
ing a national forest monitoring system for REDD+ 
reporting, and thus informing the local and national 
decision-making processes (CIFOR 2021). Having an 
open, accessible, transparent, reliable, credible, and 
relevant national forest monitoring system can result 
in better decision-making for forests and can contri
bute to driving down deforestation and attain nation
ally determined contributions (NDCs) (Sandker et al. 
2021; UNFCCC 2021).

In spite of the increasing demand and technical 
capacity for national-based forest monitoring system, 
the assessment of proximate causes of forest loss in 
the tropical countries remains limited (De Sy et al. 
2015; FAO 2010, 2016; Hansen et al. 2013). 
Specifically, the limited availability of data about the 
location, spatial extent, and type of human activities 
causing forest loss (FAO 2010). The limitation is due to 
a lack of a robust system that can monitor forest loss 
to provide up-to-date information on drivers and 
data-driven land-use policies and actions (FAO 2010; 
Nomura et al. 2019; UNFCCC 2018) through identify
ing the land-use activities that cause forest loss and 
help mitigate its effects (Finer et al. 2018). In this 
paper, we explore the analysis of drivers of forest 
loss at the national scale by focusing on Ethiopia, 
where the vast majority of the original forests are 
long gone (FAO 2010; Hansen et al. 2013). As 
a proxy for the deforestation drivers, we use the 
follow-up land-use (FLU) after a forest loss event.

The recent advances and availability of free and 
open-source remote sensing satellite imagery like 

Landsat 1–5, 7, 8 & 9 and Sentinel-1, 2A, 2B have 
extensively enabled the assessment of changes in 
land-use (Curtis et al. 2018; De Sy et al. 2019; 
Masolele et al. 2021), changes in land-cover (Brown 
et al. 2022; Tsendbazar et al. 2021), forest character
istics (Lu et al. 2004; Mutanga, Adam, and Cho 2012; 
Potapov et al. 2021), and in forest disturbances mon
itoring (Decuyper et al. 2022; Reiche et al. 2021; Ye 
et al. 2021). The policy of free and open data with 
respect to the Landsat and Sentinel satellites means 
increased accessibility of moderate resolution images 
to commercial and noncommercial players, which is 
essentially relevant to the assessment of land-use 
changes over the pan-tropics in a medium spatial 
and high temporal detail (Curtis et al. 2018; Hansen 
et al. 2013; Schepaschenko et al. 2019). Nevertheless, 
the moderate spatial resolution limits its use in iden
tifying the land-use following deforestation in much 
subtle and fine detail (Irvin et al. 2020; Masolele et al. 
2021). The considerable increase in the capacity of the 
new generation sensors to detect subtle change has 
opened new opportunities for ecological monitoring 
with higher accuracy (Finer et al. 2018; Gallwey et al. 
2020; Masolele et al. 2021; Meng et al. 2017; C. Zhang 
et al. 2019).

One example of this is the privately owned 
PlanetScope constellation, which aims at providing 
under 5 m spatial resolution daily imagery with four 
bands, RGB and NIR. Recently, thanks to Norway’s 
International Climate & Forests Initiative (NICFI) pro
gram, tri-monthly composites with a 4.77 m spatial 
resolution and very low cloud cover, thanks to the 
daily acquisition frequency, have been made available 
to initiatives that help protect forest and biodiversity 
and reduce the impact of climate change (NICFI 2021). 
This imagery has already proven useful for mapping 
forest loss across the tropics (Zeng et al. 2018). The 
availability of this imagery, in conjunction with the 
forest loss dataset in Hansen et al. (2013), provides an 
opportunity to characterize the direct drivers of forest 
loss in Ethiopia. Together with Deep Learning (DL) 
approaches, these data can be utilized to automate 
the classification of deforestation drivers, which, in 
turn, would allow to locate hotspots and spatial pat
terns of land-use changes at local level (Finer et al. 
2018; Irvin et al. 2020; Masolele et al. 2021).

DL methods for computer vision, based on convolu
tional neural networks (CNN), are designed to automa
tically learn to extract useful spatial or spatio-temporal 
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patterns in images, often leading to substantially bet
ter performances than traditional machine learning 
approaches (Gallwey et al. 2020; Rousset et al. 2021; 
Verma and Jana 2020; Wang et al. 2021; X. Zhang et al. 
2021; B. Zhao, Huang, and Zhong 2017). These meth
ods have recently demonstrated capabilities in an 
extensive range of satellite image analysis tasks (Irvin 
et al. 2020; Masolele et al. 2021; Reichstein et al. 2019; 
Rußwurm and Körner 2020), including for FLU detec
tion (Descals et al. 2021a; Irvin et al. 2020; Masolele 
et al. 2021). However, these approaches either require 
substantial computational resources (on dense time- 
series analysis) (Masolele et al. 2021; Rußwurm and 
Körner 2018, 2020), are not aimed toward wall-to-wall 
land-use classification (Descals et al. 2021a), assess 
somewhat smaller number of land-use classes (Irvin 
et al. 2020) or only use medium resolution (10–30 m) 
images (Landsat or Sentinel) (Curtis et al. 2018; Geist 
and Lambin 2001; Silva, Alves, and Ferreira 2018). 
Integrating DL algorithms with HRSI provides an 
opportunity to map and analyze FLU at the national 
scale with higher accuracy and spatial resolution than 
alternative approaches (Finer et al. 2018).

Unfortunately, despite the recent advancements in 
remote sensing, and computational capabilities for 
the assessment of land-use or direct drivers of forest 
loss (Irvin et al. 2020; Masolele et al. 2021), we still lack 
the capacity to frequently monitor land-use charac
teristics (De Sy et al. 2019, 2015; Schepaschenko et al. 
2019). Field assessments or surveys are valuable to 
have an accurate information of the types of defores
tation drivers, locations, and extent. However, they 
are challenging and expensive to implement at an 
administrative or decision-making level (FAO 2010; 
Gibbs et al. 2007; Harfoot et al. 2021). Existing efforts 
to assess land-use change and causes of forest loss in 
Ethiopia based on medium resolution remote sensing 
imagery have thus far been performed at the subna
tional scale (e.g. Habte, Belliethathan, and Ayenew 
2021; Tadese, Soromessa, and Bekele 2021; Tewabe, 
Fentahun, and Li 2020; Zewdie & Csaplovies, 2017).

The government of Ethiopia is currently starting to 
pilot the use of high-resolution Planet-NICFI for land-use 
change detection (Ethiopian Forest Division 2022). 
Nevertheless, these studies were conducted on a few 
isolated study areas (local scale) and do not provide 
detailed identification of the drivers of forest loss (few 
classes). There is a need for national or sub-national- 
based approaches that can integrate the available land- 

use data and high-resolution Planet-NICFI imagery 
(NICFI 2021) with DL methods to identify the direct 
drivers of deforestation. Therefore, in this work, we 
apply state-of-the-art DL approaches for monitoring 
land-use that can assist in detecting land-use following 
deforestation in Ethiopia. Particularly, we address the 
following two objectives:

(1) We develop, validate, and apply 
a segmentation method to predict the defores
tation drivers in Ethiopia based on open-source 
satellite data (Planet-NICFI/Sentinel-2/Landsat- 
8) at multiple spatio-temporal resolutions and 
assess its performance.

(2) We use the same procedure to produce 
a country-scale map of post-deforestation land- 
use and assess the proportionality (%) of each 
land-use based on region and forest types in 
Ethiopia.

To achieve these objectives, we explore the use of 
models specifically designed for mapping tasks, 
inspired by U-Net (Ronneberger, Fischer, and Brox 
2015), in contrast to the patched-based approaches 
used in (Masolele et al. 2021), in order to allow for 
efficient inference of large-scale wall-to-wall FLU 
maps. We also extend the application of attention 
gates (Oktay et al. 2018) to the multi-class setting.

2. Method and materials

Our methodology follows six consecutive steps: (i) data 
extraction, which includes using a map of forest loss 
Hansen et al. (2013), reference land-use and satellite 
data (Planet-NICFI, Sentinel-2, and Landsat-8, refer to 
Subsection 2.2), (ii) data pre-processing (refer to 
Subsection 2.2.4), (iii) DL method design for land-use 
classification (refer to Subsection 2.3), (iv) technical 
implementation details of the methods for classifying 
land-use, refer Subsection 2.4, (v) evaluation of the per
formance of DL models, refer to Subsection 2.5, and 
finally (vi) wall-to-wall prediction of FLU over Ethiopia, 
refer to Subsection 2.6. These steps are discussed in 
detail below.

2.1. Study area

We have selected Ethiopia, a country in East Africa, as 
the study area for this work (Figure 1). Ethiopia has 
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a diverse climate and geography with yearly rainfall in 
a range of below 200 mm to over 2400 mm and 
altitudes ranging from 125 m below sea level to 
4533 m above sea level (Friis, Sebsebe, and van 
Breugel 2010, & reugel, 2010). The rainfall for most 
parts of the country occurs in two seasons, between 
March to April and June to September. Ethiopia pos
sesses high forest biodiversity consisting of about 
7000 higher plant species. 12% of plant species are 
endemic to Ethiopia (Berhan and Egziabher 1991). 
Due to its long history of high deforestation rate 
caused by increasing population and hence increased 
clearing for agriculture, grazing, and settlements 
(Bishaw 2001; FAO 2010; Getahun, Poesen, and Van 
Rompaey 2017), 64 species are identified as threa
tened in 2018, and 21 species are identified as endan
gered in the IUCN Red List (Stévart et al. 2019). Over 
50 years ago, Ethiopia had about 40% of the forest. At 
present, that number is close to 15% (BBC 2019), 
mostly in the south-west of the country. Efforts have 
been initiated to preserve these remaining forests 
because of their richness in plant species, for instance, 
hosting most of the world’s coffee diversity (Lemenih 
and Kassa 2014). The country has been praised for its 
efforts to reduce deforestation through forest restora
tion and regeneration (BBC 2019; UN-REDD 2017). 

However, in spite of the said effort, the speed of forest 
loss is still high (Hansen et al. 2013), specifically defor
estation related to small-scale and large-scale crop
land expansion (Lemenih and Kassa 2014). This work 
aims at improving the tool-set for data-driven forest 
management and policy toward sustainable and 
actionable conservation of Ethiopian forests.

2.2. Data

Three data sources acquired within Ethiopian bound
aries were used in this study: (1) the Hansen forest 
loss, to identify areas of forest loss; (2) Manually anno
tated reference data, using very high-resolution ima
gery, containing 11 land uses following deforestation 
or follow-up land-use (FLU) classes; and (3) satellite 
imagery data (Planet-NICFI, Sentinel-2, and 
Landsat-8).

2.2.1. Forest loss data
We made use of the Hansen forest loss data (Hansen 
et al. 2013) as an interim step in identifying training 
labels of land-use following deforestation. Hansen 
forest loss data is a global forest product that has 
been extensively used to evaluate forest loss. The 
data provide useful annual spatial and temporal forest 

Figure 1. Map showing the spatial distribution of forest loss locations, training and test data across Ethiopia. The colors represent 
training and testing samples of one of the train-test split. The gray-lines are the boundaries of the study area, regions, and country.
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loss information on a global scale for as much as 2000 
(Zeng et al. 2018). A total of 300 forest loss locations 
were randomly sampled using Hansen forest loss in 
Google Earth Engine (GEE) with a buffer of 5 km. 
However, five were rejected due to cloud cover. The 
5 km spacing or buffer ensured that samples are 
sufficiently spaced to avoid the risk of spatial auto
correlation. The sampled locations were used as priors 
to visually create or identify FLU training and valida
tion labels.

2.2.2. Reference data
Using seasoned experts and manual interpretation 
of HRSI from the Planet-NICFI, GEE, and Hansen 
forest loss data, we visually interpreted the ran
domly collected reference sample data specifically 
for classifying FLU in Ethiopia (Figure 1). The task 
of interpreting and collecting the reference FLU 
was conducted during July and August 2021. The 
Hansen-derived forest loss from 2010 to 2014 
(Hansen et al. 2013) was used as a baseline for 
identifying the forest loss areas, while HRSI from 
the Planet-NICFI for 2016 and GEE was used for 
identifying and digitizing the FLU as polygons 
(Figure 2). In addition, other data sources such as 
the Ethiopia Sentinel-2 Land-Use Land-Cover 2016 
map, forest cover change map for year 2000–2013 
based on Landsat images and the Ethiopia Mining 
Cadastre were also helpful to aid in interpreting 
and digitizing the FLU classes (Ministrry of Mines 
and Petroleum 2021; RCMRD 2018; UN-REDD 2017). 
Here, we adopt the definitions of FLU presented in 
Masolele et al. (2021), corresponding to IPCC main 
FLU classes (IPCC 2013). The FLU classes were 
identified in consultation with representative sta
keholders from Ethiopia such as the National REDD 
+ Secretariat, Environment, Forest and Climate 

Change Commission (EFCCC), Oromia REDD+ 
Coordination Unit, FAO – Ethiopia, Ethiowetlands, 
International Center for Tropical Agriculture (CIAT), 
Ethiopian Geospatial Information Agency, Ethiopian 
Environment and Forest Research Institute (EEFRI), 
Farm Africa, and Center for International Forestry 
Research-World Agroforestry (CIFOR-ICRAF).

The collected labels consist of six main land-use 
classes, namely, Agriculture, Infrastructure, Mining, 
Water, Tree plantations, and Others. The main land- 
use classes were further divided into 11 more detailed 
FLU classes see details as provided by Masolele et al. 
(2021), i.e. large-scale cropland (20.0%), small-scale 
cropland (30.2%), pasture or free grazing (6.5%), 
roads (3.0%), tree plantation (3.5%), coffee crops 
(10.5%), tea plantation (10.0%), mining (7.0%), build
ings and dams (2.3%), other land with tree cover 
(1.2%), and water (5.8%). In Figure 1, we present the 
reference data showing the spatial distribution of FLU 
used in this research. The ground-truth data are poly
gons relative to the forest loss per FLU in Ethiopia for 
the 11 selected FLU classes. It is important to note 
that the tree plantation class is often not related to 
the loss of natural forest. Tree plantations are often 
cleared for sustainable forestry management and 
typically grow back over time between rotational 
periods. This class was included in this study to 
avoid confusion with other FLU since the harvested 
patches from forest plantations are shown in the 
Hansen data as forest loss.

In total, we annotated 237 tiles used for model 
training and an additional set of 28 and 30 images 
as test sets stemming from disjoint locations for the 
years 2016 and 2020 based on forest loss from 2010 to 
2014 and 2015 to 2019, respectively. This was impor
tant to evaluate the spatial and temporal robustness 
of our model Figure 1.

Figure 2. Figure For the same location in Ethiopia, (a) Planet-NICFI image, (b) Google earth engine image used for visual interpretation, 
(c) Hansen forest loss and, (d) manually annotated reference polygon. Example imagery and polygon were retrieved from Google Earth 
Engine
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2.2.3. Satellite data
We used Planet-NICFI, Sentinel-2, and Landsat-8 satel
lite imagery to classify land-use following deforesta
tion. The imageries have a spatial resolution of 4.77 m, 
10 m, 30 m, and a maximal temporal resolution of bi- 
annual, 5, and 16 days, respectively. For this study, we 
used bi-annual images to match the temporal resolu
tion of Planet-NICFI images. We selected these satel
lite images to assess the usefulness of different spatial 
resolutions for characterizing FLU. For Planet-NICFI 
imagery, we used analysis-ready, PlanetScope 
Surface Reflectance Mosaics1 covering a period from 
December 2015 to May 2016. The Planet-NICFI images 
are a product of KSAT and Airbus. They are HRSI made 
open-source (noncommercial) by Planet Lab through 
NICFI in order to assist protect forest and biodiversity 
and reduce the impact of climate change (NICFI 2021). 
The images come with four spectral bands, specifi
cally – Blue, Green, Red, and Near-Infrared NICFI 2021, 
plus 3-vegetation indices (NDWI – the normalized 
difference water index, SAVI – the soil-adjusted vege
tation index, and NDVI – the normalized difference 
vegetation index), resulting in seven bands in total.

Median composite images (December 2015 – 
May 2016) for Sentinel-2, and Landsat-8 images were 
also collected for each sample location using GEE. The 
images cloud filtering was performed by use of the 
quality assessment band of Sentinel-2, and Landsat-8 
(Cook et al. 2014). The final image composite was 
created using images with less than 50% of cloud 
cover. For each median composite, the NDVI, the 
SAVI, the normalized buildup index (NDBI), and the 
normalized difference moisture index (NDMI) were 
computed. Each composite image for Landsat-8 
included seven spectral bands (e.g. Blue, Green, Red, 
Near-Infrared, Shortwave infrared-1, Thermal-infrared, 
and shortwave infrared-2) and four vegetation indices 
(SAVI, NDVI, NDMI, and NDBI), resulting in a total of 11 
bands. On the other hand, the composite image for 
Sentinel-2 consisted of 10 spectral bands (Blue, Green, 
Red, 3-Vegetation red edge bands (B5, B6, and B7), 
Near-Infrared, Narrow Near-Infrared, Shortwave infra
red-1, and shortwave infrared-2), plus four indices 
(SAVI, NDVI, NDMI, and NDBI), resulting in a total of 
14 bands. All sentinel-2 bands were resampled to 
10 m. Overall, the satellite data collected comprise 4, 
7, and 10 spectral bands (plus 3, 4, 4 vegetation 
indices each for Planet-NICFI, Landsat-8, and 
Sentinel-2, respectively) from 2016.

Additionally, four composite images, each with the 
same number of bands as the above images, were 
collected from four different time steps for multi-date 
image analysis. The composite images were acquired 
from (December 2015–May 2016, June 2016– 
November 2016, December 2016–May 2017, and 
June 2017 – November 2017). The multi-date images 
were essential to add the temporal dimension in clas
sifying the FLU.

2.2.4. Data preprocessing
Using 295 sampled forest loss location across the 
country, we manually delineated rectangular poly
gons around sampled locations to download images 
(tiles) from GEE for each data source (Planet-NICFI, 
Sentinel-2, and Landsat-8). From each downloaded 
image tile, patches of dimensions xi 2 R w � h � d and 

the corresponding FLU labels yi 2 R w � h � c were 
extracted, where w, h ,and d specify the width, height, 
and number of bands of an image patch and c spe
cifies the number of classes. The patch dimensions for 
each modality were, respectively 128� 128, 64� 64, 
32� 32 pixels, to account for the different resolu
tions. Patches were extracted such that each would 
have a 3=4 overlap with others, in an effort to 
decrease the loss of data used for training due to 
border effects. Each band j 2 f1; . . . ; dg of a given 
image patch xi was normalized via min-max scaling 
by resorting to the minimum and maximum pixel 
value for that band across all the training-images 
such that the resulting pixel values were in the 
range from 0 to 1.

2.3. Deep learning models for FLU classification

Two semantic segmentation DL architecture, inspired 
by U-Net (Ronneberger, Fischer, and Brox 2015), were 
tested to characterize FLU using Planet-NICFI, 
Sentinel-2, and Landsat-8 satellite imagery. The 
U-Net architecture was chosen as a starting point 
due to its efficiency in extracting features and spatial 
patterns from satellite data, even in the case of limited 
training data (Gallwey et al. 2020; F. Zhao et al. 2022). 
In particular, we consider the following two variants:

(1) A standard U-Net architecture, which uses con
volution operations to retrieve spatial features 
from images at different scales of an image. The 
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coarse activation maps highlight contextual- 
rich information and underscore the type and 
position of global descriptors. The activation 
maps retrieved along different scales are sub
sequently combined via shortcut connections 
to join coarse and higher-level predictions 
(Descals et al. 2021b; Irvin et al. 2020; 
Ronneberger, Fischer, and Brox 2015). Refer to 
the architecture details in the Appendix A1

(2) Attention U-Net, which integrates attention 
gates into the standard U-Net architecture to 
accentuate important descriptors that are 
passed via the shortcut connections. This is 
important as pieces of information retrieved 
from lower layers are used in the attention 
gate layer to amplify unimportant and noisy 
features in shortcut connections (Oktay et al. 
2018; Schlemper et al. 2019). We adapted the 
design of the attention module to the multi- 
class setting by learning one attention map per 
feature map. Without this adaptation, the mod
els in (Oktay et al. 2018; Schlemper et al. 2019), 
developed to remove the background informa
tion in foreground/background segmentation 
tasks, tend to completely remove information 

from some of the image areas, negatively 
affecting performance.

The details for implementation of each model are 
described in the subsequent section and its summary 
in Appendix B. The computational consideration is 
described in Appendix F. The figures of individual 
model designs are described in Appendix A. We also 
provide the flowchart showing the workflow of this 
research in Appendix C.

2.4. Implementation details

In this section, we talk about hyperparameter opti
mization and model implementation. We split the 
training dataset 3-times in a ratio of 90% and 10% 
for training and validation important for three-fold 
cross-validation (Figure 3). We use Bayesian optimi
zation to choose the model parameters (see below 
Appendix B) based on one of the folds see details as 
provided by Masolele et al. (2021), in which the best 
model parameters for U-Net and Attention U-Net 
models are chosen on the basis of accuracy attained 
on the validation data. The ultimate model architec
ture was then evaluated on the held-out test data for 

Figure 3. The training, validation, and test data showing the number of pixels per FLU (in %) of one of the random splits. Where SSCP, 
OLWTC, PF, LSCP, and TeaP correspond to small-scale cropland, Other land with tree cover, tree plantation, large-scale cropland, and 
tea plantation, respectively
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each run. Thus, in this paper, we report the mean 
and standard deviations of the accuracies on the test 
data over the threefolds (Masolele et al. 2021). We 
describe the final allocation of the best parameters 
in Appendix B.

Both models were created using the Keras library 
(Chollet 2015) and TensorFlow (Abadi et al. 2015) as 
backend. All models were trained for 100 epochs 
using a batch size of 64. For every convolutional 
layer, we added a padding operation to ensure that 
the size of the last layer stays comparable to the input 
layer and followed by a non-linearity function-ReLU 
(Appendix B1). The features in the convolution layers 
were normalized using Batch normalization followed 
by a regularization dropout rate of 0.1. All models 
were optimized by using Adam optimizer with 
a learning rate (lr) of 10� 3 . The optimized loss was 
a sum of multi-class categorical Focal Loss and Dice 
Loss of the post-softmax probability and the one-hot 
label analogous to the land-use class of the pixels of 
the image patch. Every one of the associated tasks 
was performed using Python in the Sepal geospatial 
analysis platform FAO (2021).

2.4.1. U-Net
This is a direct adaptation of the standard U-Net 
architecture (Ronneberger, Fischer, and Brox 2015) 
that receives images from a single time step of 
shape (width × height × bands), along with the corre
sponding label maps. The model architecture is made 
up of an encoding followed by a decoding section. 
For the encoder, we have used four successive con
volution layers with 3 × 3 filters, each followed by 
a pooling layer, resulting in a set of 512 feature maps. 
The encoder section is designed such that at each 
block the number of feature maps is increased by 
a factor of 2, while its spatial size is decreased by 
a factor 2. This is useful to increase the receptive 
field during the convolution operation. It also allows 
the model to increasingly retrieve semantic- 
contextual information. The decoder is the reverse 
of the encoder, by which the convolution layer is 
followed by upsampling layers instead of the pooling 
layers. The output maps of the decoders have the 
same spatial dimensions as the input data. The coarse 
and fine feature maps extracted at various blocks of 
the encoder and decoder section are combined 
through shortcut connections as shown in 
(Appendix A1). Finally, the softmax activation 

functions were used to obtain the final segmentation 
results.

2.4.2. Attention U-Net
As an improvement to the standard U-Net, we incor
porated attention gates, in a fashion similar to those 
proposed by Oktay et al. (2018), into the standard 
U-Net architecture to accentuate predominant 
descriptors that are passed via the shortcut connec
tions (see Appendix A2). Unlike in Oktay et al. (2018), 
we compute one attention map per feature, instead 
of all features sharing the same attention map in 
each attention gate, in order to adapt the method 
to the multi-class setting. In this way, the attention 
gates learn features passed through the skip connec
tions to model location and relationship between 
FLU at local scale, thus improving the detection of 
small-scale and complex FLU, i.e. roads, settlement, 
small-scale cropland. This is important as pieces of 
information retrieved from lower layers are used in 
the attention gate layer to amplify unimportant and 
noisy features in shortcut connections. The gating 
operation is done prior to the concatenation step to 
combine only important activations. In addition, in 
both forward-and backward pass, the neuron activa
tions are filtered (Schlemper et al. 2019). This enables 
the parameters in the lower layers to be updated 
largely in the context of spatial locations that are 
important to a specific class Oktay et al. (2018).

2.4.3. Ensemble of Attention U-Nets
Finally, we consider an ensemble of different models 
trained on single-date Planet-NICFI, Sentinel-2, and 
Landsat-8 data, respectively. The ensemble is based 
on the late fusion of probability maps of the output of 
the three Attention U-Net models from single-date 
Planet-NICFI, Sentinel-2, and Landsat-8. Since the 
satellite data and, hence, the prediction maps are 
available in different spatial resolutions (there are 
three resolutions in our scenario; “Planet-NICFI 
model,” “Sentinel-2 model,” and “Landsat-8 model,” 
equivalent to image patches with a resolution of 
4.77 m, 10 m, and 30 m, respectively), we first upscale 
the prediction maps that stem from the Sentinel-2 
and Landsat-8 data to match the resolution of the 
Planet-NICFI model (via nearest neighbor upscaling). 
The output of the ensemble is then based on the 
average probabilities induced by these three 
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Attention U-Net models, where the final prediction 
per pixel is the class with the highest mean value.

2.5. Evaluation of models

Typically, land-use classification and related tasks are 
evaluated based on spatially sampled data acquired 
at the same time step. For this study, however, the 
same model is validated two times on spatial and 
temporal test datasets to predict the FLU for other 
years. Thus, we evaluated the performance of our DL 
models in identifying the FLU (1) by use of held-out 
test data for 2016 (the same year as training data) and 
applying a threefold approach, and (2) using the test 
dataset of FLU for 2020 (Section. 3.4). For each model, 
we used Precision P ¼ TP=ðTPþ TNÞ, Recall 
R ¼ TP=ðTP þ FNÞ, F1-scores F1 ¼ 2 � P=ðP þ RÞ, 
micro-and macro average of F1-scores as the evalua
tion metrics, where TP, TN, and FN stand for true 
positives, true negatives, and false negatives, respec
tively. More details can be seen in (Masolele et al. 
2021).

2.6. Wall-to-wall prediction

Once the best-performing satellite imagery and DL 
model were identified using the F1-score 
(Section 2.5), we then used this satellite imagery and 
model to predict land-use following deforestation in 
Ethiopia for the study period of 2016 using the areas 
known to be covered by tropical forest in 2010 (FAO 
2010) and forest loss data in 2010–2014 as a mask 
(Hansen et al. 2013).

After land-use was classified, we estimated the 
proportions of each of land-use following deforesta
tion per loss area based on Ethiopian regions (Abebe 
et al. 2019; FAO 2010) and forest type (Dinerstein et al. 
2017). This is important to show the patterns and 
dominance of different deforestation drivers for each 
regions and forest type for better conservation 
actions and data-driven land-use policy decisions.

2.7. Accuracy assessment of the wall-to-wall 
product

To evaluate the accuracy of the final wall-to-wall land- 
use product, we conducted independent assessments 
based on the visual interpretation of bi-annual Planet 
images. We used stratified estimation of area, and 

accuracy Olofsson et al. (2014) to estimate the num
ber of samples required to assess the output map of 
direct drivers of forest loss. First, the area of each land- 
use class was estimated from the map product, fol
lowed by calculating the proportion of each class of 
drivers of forest loss. For each class, sample estimation 
weights were calculated. The resulting weights were 
used to calculate the number of samples required to 
assess the accuracy of the map for each land-use class. 
In total, 770 samples were collected and interpreted 
(Figure E1). Following these, the accuracy of the map 
was calculated using the F1-score, user’s and produ
cer’s accuracies.

3. Results

We start by presenting the results of the classifica
tion of FLU for single-date, multi-date, and an 
ensemble of Planet-NICFI, Sentinel-2, and Landsat-8 
images using a deep learning model (namely 
Attention U-Net), for identifying the FLU in 
Ethiopia. In Section 3.1 we present the FLU classifica
tion results comparing the performance of U-Net 
and Attention U-Net models. We then explore the 
classification results of FLU based on single-date 
Planet-NICFI, Sentinel-2, and Landsat-8 data using 
the Attention U-Net model (Section 3.2). In 
Section 3.3, we report the performance of FLU clas
sifications from single-date image prediction, multi- 
date image prediction, and ensemble of multi-sensor 
image prediction, using test data from the same year 
as training data (2016). In Section 3.4, we compare 
the accuracy score of FLU prediction using forest loss 
test data from year 2016 and year 2020. Eventually, 
in section 3.6, we show the spatial pattern and pro
portions (%) of land-use following deforestation per 
region and forest type in Ethiopia.

3.1. Model comparison

In this section, we highlight the advantage of adding 
the attention mechanisms to the standard U-Net 
model using Planet-NICFI data. The Attention U-Net 
model achieved relatively higher accuracy than the 
standard U-Net model (Figure 4). For most FLU 
classes, both models obtain near similar levels of 
accuracy except for FLUs with smaller footprints 
such as small-scale agriculture, settlement, and 
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roads where the standard U-Net tends to lag behind 
the Attention U-Net by a large margin (Figure 4) .

3.2. Performance of single-date Planet-NICFI, 
Sentinel-2, and Landsat-8 satellite imagery

The FLU classification model based on single-date 
Planet-NICFI data outperformed the models based 
on single-date Sentinel-2, and Landsat-8 data, as 
shown in Figure 5. The Planet-NICFI model attained 
a macro- and micro-average F1-score of 79%, 65% 
compared to 70%, 59% for Sentinel-2, and 70% and 
54% for Landsat-8 model.

The higher score by planet-NICFI model is particu
larly observed for the FLU type, large-scale cropland 
(90%), mining (53%), small-scale cropland (72%), 
roads (54%), coffee crops (86%), settlement (52%), 
and tea plantation (85%). The exception is water, 
where Sentinel-2 and Landsat-8 based models out
performed Planet-NICFI based model, possibly due to 
additional spectral bands in the short-wave region of 
the spectrum useful for monitoring water variability 
(Figure 5). On the other hand, pasture and small-scale 
cropland are likely to be incorrectly predicted as other 

land with tree cover by (27%, 12%), respectively. 
Settlements and tree plantations are often misclassi
fied as other land with tree cover, 31% and 43% of the 
test samples, respectively (Figure D4). This results are 
based on image acquired on a single time-step.

3.3. Performance of single-date image predictions, 
multi-date image predictions, and ensemble 
prediction

As we expected, the F1-classification scores were 
higher for the single-date planet-NICFI, ensemble, 
and multi-date medium resolution image predictions 
compared to the single-date medium resolution 
image predictions (Figure 5).

Interestingly, the increase in F1-score when mov
ing to multi-date imagery is only consistent in the 
case of Sentinel-2 imagery, where it improves for all 
classes and for the overall FI-scores. For example, 
prediction accuracies increased for large-scale crop
lands (from 87% to 90%), coffee crops (from 51% to 
66%), mining (from 50% to 52%), roads (from 48% 
to 50%), and tea Plantation (from 81% to 87%). 
Also, higher micro (59% to 66%) and macro (70% 

Figure 4. The classification F1-scores of FLU using standard U-Net, and Attention U-Net models in Ethiopia. SSCP and LSCP correspond 
to small-scale cropland and large-scale cropland, while Other-LWTC correspond to other land with tree cover. For each F1-score, we 
show the standard deviation represented as error bars.
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to 77%) average F1-scores were obtained. In the 
case of Landsat-8, improvement in F1-score is 
observed mostly for large-scale land-uses such as 
large-scale cropland (from 77% to 86%), tree- 
plantation (from 58% to 63%), coffee-crops (from 
71% to 75%), and tea-plantation (from 67% to 
70%). For planet-NICFI improvement in F1-score is 
observed for small-scale land-uses such as mining 
(from 53% to 64%), small-scale croplands (from 65% 
to 74%) and settlement (from 52% to 60%) 
(Figure 5).

3.4. Temporal robustness

We further analyzed the robustness of our approach 
over independent data (Planet-NICFI) from different 
time steps (2020), based on forest loss from 2015 to 
2019. The earlier FLU predictions using Planet-NICFI 
images of 2016 (Figure 5) are based on forest loss 
from 2010 to 2014. The 2016 FLU prediction results 
are compared with FLU prediction results from 2020 
test data. This step is necessary to investigate the 
capability of our approach in generalizing across spa
tial locations and time. As indicated in Figure 6, rela
tively similar micro- and macro-average F1-scores 
(65%, 64% and 79%, 79%) were obtained when pre
dictions are made for year 2016 and 2020.

3.5. Wall-to-wall product

The accuracy assessment of wall-to-wall map using 
stratified estimation of area and accuracy using pla
net-NICFI showed the reliability of the final land-use 
following deforestation product produced by the 
Attention U-Net model. The most validated FLU had 
an accuracy higher than 0.8% (Table 1), with the 
exception of mining (0.73%). These accuracy results 
are consistent with the model performance accuracies 
obtained in Section 3.3, which further proves the 
robustness of our proposed method for mapping 
land-use following deforestation.

3.6. Regional patterns of land-use following 
deforestation

Using the HRSI and Attention U-Net, we classify and map 
the FLU per forest loss location in Ethiopia based in 
regions and forest types where forest loss occurs. The 
map in Figure 7 shows forest being heavily cleared for 
the establishment of small-scale croplands in regions 
like SNNPR2 Oromia, Gambela, and Benishangul 
Gumuz (Figure 8a). Small tracts of forest have also 
been cleared for small-scale croplands in Amhara region. 
Bright hotspots of forest loss for coffee crops are most 
prevalent in the northwest and east of SNNPR and 

Figure 5. The classification F1-scores of FLU using Attention U-Net models in Ethiopia. The F1-scores are based on single-date, multi- 
date, and an ensemble of image predictions for Planet-NICFI, Sentinel-2 and Landsat-8 data. SSCP and LSCP correspond to small-scale 
cropland and large-scale cropland, while Other-LWTC correspond to other land with tree cover. The error bars are the standard 
deviation on F1-scores
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Gambela regions, respectively, while large-scale crop
lands are most prevalent in Gambela, Benishangul 
Gumuz, SNNPR, and Oromia regions, respectively. 
Nevertheless, we can also see a confusion between 
small-scale cropland with pasture and other land with 
tree cover, particularly in Gambela and Benishangul 
Gumuz. Another confusion can be seen in SNNPR 
between other land with tree cover and coffee crops 
(mainly in the district of Guraferda) Figure D1. In 
(Figure 7), we show detail maps (zoomed in) of some 
of the areas indicated by B, C, D, E, F, and G. Detail maps 
show the local patterns exhibited by each type of land- 
use following deforestation including (B) Coffee crops 

(teal), (C) Small-scale cropland (orange) and settlement 
(pink), (D) roads (red), settlement (pink), and dam con
struction in the woodlands of Benishangul Gumuz, (E) 
Large-scale croplands (yellow), (F) small-scale croplands, 
and (G) Tea plantations (cyan). New roads (red), as 
detected in (D), (E), (F), and (G), provide accessibility to 
patches of land-use.

Likewise, the results of FLU prediction based on 
forest types (Figure 8b) follow similar spatial patterns 
to predictions based on regions (Figure D1, Figure 7). 
Small-scale cropland is the dominant FLU observed in 
all Ethiopian forest types.

Croplands (SSCP, LSCP, coffee, and tea plantations) 
dominate the FLU in all of the regions and all of the 
forest types (73%, 15%, 0.75%, 0.21%), with the majority 
of small-scale croplands establishments being observed 
in the Ethiopian montane forests, especially on forest 
edges, while large-scale croplands are observed in 
montane grasslands and shrublands, deserts, and xeric 
shrublands, as well as tropical and subtropical grass
lands, savannas, and shrublands (Figure 8b).

4. Discussion

Our results confirm the usability of U-Net 
Ronneberger, Fischer, and Brox (2015) style CNN 

Figure 6. The classification F1-scores of FLU using for planet-NICFI images acquired in year 2016 and 2020. SSCP and LSCP correspond 
to small-scale cropland and large-scale cropland, while Other-LWTC correspond to other land with tree cover. The error bars are the 
standard deviation on F1-scores

Table 1. Accuracy metrics of the wall-to-wall map from inde
pendently sampled validation data. SSCP and LSCP correspond 
to small-scale and large-scale cropland and PF for plantation 
forests. All the accuracies are reported as average values and 
95% confidence intervals for each class.

FLU User’s accuracy (%) Producer’s accuracy (%) F1 (%)

LSCP 95� 3:6 92� 4:5 94� 3:9
Pasture 84� 10:2 88� 9:0 86� 9:6
Mining 100� 0:0 57� 13:7 73� 12:3
SSCP 90� 8:3 94� 6:5 92� 7:5
Roads 96� 5:4 100� 0:0 98� 3:8
PF 86� 9:6 88� 9:0 87� 9:3
Coffee 97� 4:7 92� 7:5 94� 6:6
Settlement 94� 6:6 96� 5:4 95� 6:1
Tea 96� 5:4 100� 0:0 98� 3:9
Water 100� 0:0 80� 11:1 88� 9:0
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architectures for large scale FLU mapping using either 
Landsat-8, Sentinel-2, or Planet-NICFI imagery. They 
also show that it is advantageous to use a multi-class 
version of Attention U-Net Oktay et al. (2018).

As expected, we observed a strong correlation 
between spatial resolution and FLU classification per
formance, with Planet-NICFI imagery resulting in the 
best overall results even if it provides less spectral 

Figure 7. Classified land-use post-deforestation for the Ethiopia tropical forest for the period 2010 through to 2014. The green in A is 
NDVI base map showing areas with forest cover as retrieved from USDA (2017). Areas indicated by b, c, d, e, f, and g are shown in 
zoomed in maps. Zoomed in maps show local patterns of the follow-up land-use with planet-NICFI as a base map. (b) Coffee crops 
(teal), (c) Small-scale cropland (orange) and settlement (pink), (d) Roads (red), settlement and dam construction (pink) in the 
woodlands of Benishangul Gumuz, (e) Large-scale croplands (yellow), (f) small-scale croplands (orange), and (g) Tea plantations 
(cyan). New roads (red) as detected in (d), (e), (f), and (g) provides accessibility to patches of land-use. SSCP, LSCP, PF correspond to 
small-scale cropland, large-scale cropland, and tree plantation while OLWTC correspond to other land with tree cover
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resolution than the other sources (Section. 3.2). This 
confirms that more detailed spatial features are vital 
to differentiate the FLUs, especially the FLUs with 
smaller footprints such as settlement, roads, and 
small-scale cropland. Visually, this is also true as 
small features are easily identifiable with high- 
resolution images at local level, as opposed to coarser 
resolutions, possibly due to mix of different land-use 
practices at a coarser spatial scale, i.e. new roads 
passing through forest or new village settlements.

Additionally, we also observed that the use of 
multi-date data for medium resolution images allows 
to close the accuracy gap with high-resolution ima
gery, at least for Sentinel-2 data (Figure 5). This shows 
that for medium-resolution images, temporal patterns 
of land-use can compensate from the loss of spatial 
information stemming from the coarser spatial reso
lution with respect to the Planet-NICFI imagery, parti
cularly when the problem includes small-scale 
agriculture and coffee crops. On the other hand, this 
might suggest a higher level of the temporal variabil
ity that distinguishes every land-use, probably 
because of variation in seasonality and land-use prac
tices in Ethiopia (Masolele et al. 2021).

The performance of all models using the three 
datasets in identifying pasture versus other FLU 
classes is relatively low, indicating that pasture is 
indeed often mixed with other FLU, i.e. small-scale 
croplands, settlement, and other land with tree 
cover. This is due to the fact that small holder 
farmers in Ethiopia keep their livestock close to 

home and bring them food and water to preserve 
the newly acquired deforested areas for farming 
and housing (Dow Goldman et al. 2020). On the 
other hand, pasture is a rare class, indicating that 
even greater amount of training data or even tem
poral data across the same seasons for pasture 
would be required to cover the spatial heterogene
ity of pasture in Ethiopia.

In Section 3.6, we observed that the class other 
land with tree cover, which includes forest regrowth, 
is over-predicted in most regions (Figure D1). This is 
because, although forest loss was detected, the tran
sition to land-use classes such as agriculture, coffee, 
tea is a slow process and takes time. Looking at the 
satellite imagery (Figure D2), we see that the forest is 
cut down in several steps, where parts of the forest 
are deforested at different points in space and time. 
Since we use a single deforestation map for the whole 
period, this can lead to ambiguities in which the 
model may confuse forest regrowth with yet-to-be 
cut down forest. A potential solution for next research 
would be to start looking at what would be the best 
lag time to detect land-use after deforestation. Our 
assumption is that the model would perform better in 
an older deforested area as land-use is more distinct 
after a few years of human activities (Figure D2). It is 
also important to note that not all detected forest 
changes, i.e. in Hansen et al. (2013), were due to land- 
use conversion, as some of it may also be detected as 
a result of fire, landslides, and floods, which were not 
considered in this study.

Figure 8. Proportions of post-deforestation land-use, (a) per region, and, (b) per forest type, for the Ethiopia tropical forest for the 
period 2010 through to 2014. SSCP correspond to small-scale cropland, LSCP to large-scale cropland, EMF to Ethiopia montane forests, 
MGS to montane grasslands and shrublands, TSGSS to tropical subtropical grasslands-savanna and shrublands, and DXS to Deserts and 
Xeric shrublands.
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Small-scale croplands are the dominant cause of 
forest loss in all regions and forest types of Ethiopia, 
Figure 8a, Figure 8b and Figure D1. Most of the 
small-scale clearing occurs at the edge of the forest, 
as seen in Figure D3. This is the common practice, 
as deforestation is done by small-scale farmers, 
often families, who farm a mixture of food, fruit 
crops, and livestock herds for some years, and 
when the soil loses its fertility, they let the farms 
go fallow (Dow Goldman et al. 2020). Forest con
version into large-scale cropland is the second main 
driver of forest loss. The LSCP typically involves 
large-scale clear-cutting and is grown on an indus
trial scale (Figure D1, Figure 7). Most LSCP hotspots 
can be seen in Gambela, Benishangul Gumuz, and 
SNNPR regions and in all forest types with the 
exception of Flooded Grasslands & Savannas, indi
cating that LSCP is not limited to a single forest 
type or region (FAO 2010).

In addition to small- and large-scale cropland, the 
third and fourth dominant drivers of forest loss are 
pasture and settlement, respectively (Figure 8a and 
Figure 8b). This observation is in line with the results 
of recent similar studies (Betru et al. 2019; Hishe et al. 
2021; Mengist, Soromessa, and Feyisa 2021; Sisay et al. 
2021; Yahya et al. 2020) which used Landsat satellite 
imagery and focus group discussion to assess prox
imate drivers of forest loss in different parts of 
Ethiopia. However, these studies were conducted on 
few isolated study areas (local scale) and do not pro
vide detailed identification of drivers of forest loss 
(fewer classes). Our research goes beyond small- 
scale, pixel-based methods, coarse spatial resolution 
benchmarking tasks to national scale, deep learning 
method, and higher spatial resolution images. The 
increased spatial resolution of the satellite dataset 
(Planet-NICFI) to 5 m allows for more accurate and 
detailed identification of small features and those 
with fine spatial textures such as roads, mining, coffee 
crops, and village settlement, which would otherwise 
not be included (NICFI 2021).

Our study contributes to reducing methodologi
cal, data, and knowledge gaps in more direct mea
sures of proximate drivers of deforestation in 
Ethiopia based on satellite image assessments by 
using a robust semantic segmentation deep learning 
method. For small-scale and large-scale cropland, 
pasture, settlements, coffee-crops, roads, and 
mining, all of which are identified in dramatic forest 

declines in Ethiopia (Betru et al. 2019; FAO 2010), our 
method provides a way of mapping the extent of 
these drivers on forest resources at a national scale. 
Even for drivers for which satellite imagery maps of 
land-use conversion exist (for example, agriculture 
and forest loss), our results provide additional infor
mation by offering higher thematic detail. Regional 
and global analyses (Curtis et al. 2018) have also 
incorporated information about spatial distributions 
of land-use to account for where drivers are likely to 
affect most forests. However, while important, such 
analyses still assume that drivers of deforestation are 
uniformly likely across the national scale. Our results 
show that patterns of deforestation drivers often 
differ at national scale based on region and forest 
type. This disparity in part relates to traditional 
representations of mainly dominant land-use leav
ing-out some types of land-uses (for instance, 
“roads” providing accessibility to forests or dams, 
i.e. in Benishangul Gumuz (Figure D1), “Mining” 
established deep within forests, “new settlements,” 
and/or lack of distinction between small and large- 
scale cropland) (Curtis et al. 2018; FAO 2010; 
Mengist, Soromessa, and Feyisa 2021). In addition, 
the effect of these drivers varies with the specific 
spatial context, so the same intensity of forest loss 
can have different impacts in different regions or on 
different forest types (Betru et al. 2019; FAO 2010; 
Hishe et al. 2021; Mengist, Soromessa, and Feyisa 
2021; Sisay et al. 2021; Yahya et al. 2020). For exam
ple, small-scale croplands affect a larger proportion 
of forests in Amhara and Benishangul Gumuz, where 
a bit of primary forest is left, than in the Gambela, 
SNNPR, and Oromia where considerable forest 
remains despite high rates of forest loss in both 
regions (Hansen et al. 2013). The opposite is true 
for large-scale croplands. This in turn may also affect 
the choice of policy process (reforestation or more 
conservation) to be implemented in either regions.

In summary, although Planet-NICFI or multi- 
temporal Sentinel-2 data obtained a substantially 
higher F1-score in identifying most of the FLU classes 
compared to single-time Sentinel-2 and Landsat-8, the 
latter can still be seen as an alternative when focusing 
on certain land-use classes. This is especially true in 
identifying large-scale land-uses such as large-scale 
cropland where Planet-NICFI images had relatively 
similar accuracy as Sentinel-2 and Landsat-8 imagery 
(Figure 5). Thus, the latter are suitable in regions where 
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large-scale land uses are a dominant cause of defores
tation as it does not require intensive computational 
resource for analysis (Table F1). However, in regions 
where small-scale land-uses (i.e. Mining, small-scale 
cropland, and settlements) are a threat to deforestation 
Planet-NICFI would be the best choice for achieving 
higher classification accuracies (Figure 5). However, it is 
important to keep in mind that the use of Planet-NICFI 
for this type of analysis requires more computational 
resources (Table F1). Here, the use of open-source 
cloud-based computational platform like SEPAL (FAO 
2021) offers an opportunity to overcome this problem. 
Ethiopia is piloting the use of Planet-NICFI using SEPAL, 
which shows that such computational resources are 
accessible for developing countries like Ethiopia given 
the right mix of training and tools, opening new paths 
for the monitoring of the proximate drivers of defor
estation at country and, eventually, continental scale.

5. Conclusion

This paper presents the use of high and medium 
resolution open-access satellite imagery for identify
ing post-deforestation land-use on a country-level 
using an Attention U-Net deep learning segmentation 
method. The land-use classification strategy was 
applied to a single-date, multi-date and an ensemble 
of Planet-NICFI, Sentinel-2, and Landsat-8 satellite 
data. This process relies on the use of a forest loss 
dataset to select forest loss areas, followed by the 
creation of a reference dataset through the visual 
interpretation of land-use following deforestation 
using Planet-NICFI imagery. Experimental results 
show that the performance of identifying and map
ping land-use following deforestation requires either 
(1) the use of high-resolution satellite imagery or (2) 
use of temporal data for medium resolution satellite 
imagery. We also observed that the addition of an 
attention mechanism to the standard U-Net segmen
tation model increases model performance.

Our approach can support a more detailed spatial 
and temporal analysis of forest loss locations and their 
proximate drivers. The main contribution of our method 
is that it presents a new opportunity and possibility to 
identify land-use. The model can help identify and 
inform how forest in Ethiopia is currently being affected 
by a wider range of land-use activities than is currently 
thought. They can also help report previous and future 
proximate driver assessments by providing a more 

systematic and updated understanding of potential dri
ver hotspots over the local and national scales.

Thus, the value of this paper is in illuminating spatial 
patterns of deforestation drivers and elucidating an 
approach to identifying causes as well as aid in decision- 
making within the context of national policy processes, 
recognizing that understanding the location of different 
proximate drivers of forest loss is vital for setting up 
effective forest conservation policy and responses.

In future research, we intend (1) to start looking at 
what would be the best time to detect land-use after 
deforestation, (2) to quantify the trend of predomi
nant drivers of forest loss over national and/or con
tinental scale applied for previous and more recent 
time periods while leveraging seasonality, the avail
ability of dense time series of HRSI and the free and 
open-source global forest loss data Hansen et al. 
(2013); Reiche et al. (2021) through Attention U-Net 
deep learning method.

Notes

1 planet_medres_normalized_analytic_2015-12_2016- 
05_mosaic.

2 Since 2020 SNNPR has “split off” into two regions, 
Sidama & South West Ethiopia Peoples’ regions. Here 
we are referring to the region before the split.
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6. Appendices 

Appendix A. Diagrams of individual deep learning model architectures 

Figure A1. Schematic view of our U-net network for single-date images input. Inputs are tensors are of size i width � j height �
n bands. The colors represents, white = Input array, teal = Double 2D convolution operations, and cyan = output layer.

Figure A2. Schematic view of our Attention U-net network for single-date images input. Inputs are tensors are of size i width �
j height � n bands. The colors represents, white = Input array, teal = Double 2D convolution operations, red = Attention gate, and 
cyan = output layer.
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Appendix B. model parameters

Figure A3. Schematic view of our Attention U-net network for multi-date images input. Inputs are tensors from four time steps (time 1 
to time 4), each of size t time steps � i width � j height � n bands. The model operates on a sequence of four input tensors, each 
composed of n bands. The network architecture automatically detect the useful features of the multiple input bands and combines 
this information for the following layers to predict the Land-use following deforestation. Note that this model setting is also useful to 
handle scenarios where either one of the input images are affected by clouds.

Table B1. Architecture of a standard U-Net, Attention U-Net, temporal Attention U-Net, and ensemble of multi-sensor Attention U-Net 
models

Parameters Model type and dimensions

Standard U-Net Attention U-Net Temporal Attention U-Net Ensemble

Input shape Planet-NICFI 128 × 128 × 7 128 × 128 × 7 128 × 128 × 28 128 × 128 × 28
Input shape Sentinel-2 64 × 64 × 12 64 × 64 × 12 64 × 64 × 48 64 × 64 × 48
Input shape Landsat-8 32 × 32 × 12 32 × 32 × 12 32 × 32 × 48 32 × 32 × 48
No. conv layers 20 20 20 20
No. filter encoder 32, 64, 128, 256, 512, 1024 32, 64, 128, 256, 512, 1024 32, 64, 128, 256, 512, 1024 32, 64, 128, 256, 512, 1024
No. filter decoder 32, 64, 128, 256, 512, 1024 32, 64, 128, 256, 512, 1024 32, 64, 128, 256, 512, 1024 32, 64, 128, 256, 512, 1024
Filter size 3 × 3 3 × 3 3 × 3 3 × 3
Padding Same Same Same Same
Pool size 2 × 2 2 × 2 2 × 2 2 × 2
Strides 1 × 1 1 × 1 1 × 1 1 × 1
Attention gate – Yes Yes Yes
Learning rate 0.0001 0.0001 0.0001 0.0001
No. of classes 11 11 11 11
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Appendix C. Workflow of this study

Appendix D. Spatial patterns of land-use following deforestation

Figure C1. The flowchart showing the steps in data generation, modeling, map validation in our study.

Figure D1. Spatial pattern of classified land-use following deforestation for the Ethiopia tropical forest for the period 2010 through to 
2014. The map shows the follow-up land-use predicted using planet-NICFI image. Street map is used as a base map for display. SSCP 
and LSCP correspond to small-scale cropland and large-scale cropland, PF to tree plantation, and OLWTC to other land with tree cover.
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Figure D2. Represents the planet-NICFI images, showing how FLU evolves over time from deforestation. This is one of the patches of 
land-use following deforestation (large-scale cropland) in Ethiopia where changes happened over n-years, (a) Planet-NICFI image 
2016, (b) Planet-NICFI image 2017, (c) Planet-NICFI image 2018 and, (d) the Planet-NICFI image 2020, respectively.

Figure D3. Classified land-use following deforestation for the Ethiopian tropical forest for the period 2010 through to 2014. Areas in 
orange color are the predicted small-scale clearing occurring at the edges of the forest. Roads in red color provides accessibility on 
new established patches of land-use following deforestation. SSCP and LSCP correspond to small-scale cropland and large-scale 
cropland, PF to tree plantation, and OLWTC to other land with tree cover.
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Appendix E. Wall-to-wall validation samples

Figure D4. The percentage of true- and false predicted FLU’s using Attention U-Net deep learning method and Planet-NICFI images. 
SSCP and LSCP correspond to small-scale cropland and large-scale cropland, TP to tree plantation, TeaP to tea plantation, and OLWTC 
to other land with tree cover.

Figure E1. Visually interpreted data used for wall-to-wall validation of the land-use following deforestation product. SSCP and LSCP 
correspond to small-scale cropland and large-scale cropland, and OLWTC to other land with tree cover.
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Appendix F. Computational Considerations

The use of high-resolution Planet-NICFI and ensemble of multi-sensor data was more computationally expensive during training 
versus using the Sentinel-2 and Landsat-8 data (Table F1). This is due to the high number of pixels per unit in planet-NICFI data 
compared to Sentinel-2 and Landsat-8 data resulting in increasing computational resource and time demand. Likewise, ensemble 
model requires training multiple models to retrieve predictions, hence requiring more time on data preparations for training, 
testing, and when making predictions. Likewise, in testing time, we also observed slight differences between the datasets. This is 
useful information in relation to resource availability. The choice of whether to use high-resolution images or ensemble or high 
temporal medium resolution images will depend on available computational resources and time.

All data preprocessing, analysis, and model development were done in (SEPAL 2.0). A cloud-based computing environment of 
FAO with instance type g8, NVIDIA Tesla M60 GPU 32GB RAM.

Table F1. The time for training and testing in minutes (m) of attention deep learning models using Planet-NICFI, Sentinel-2, and 
Landsat-8 datasets over a single-date, multi-date, and ensemble approach.

Model Planet-NICFI Sentinel-2 Landsat-8 Ensemble (Planet-NICFI, Sentinel-2, Landsat-8)

Training (m) Testing (m) Training (m) Testing (m) Training (m) Testing (m) Training (m) Testing (m)

Single-date 1880.47 3.96 212.58 2.45 115.39 1.55 2208.4 6.96
Multi-date 4300.02 5.52 621.55 3.56 219.14 2.212 5140.71 8.63
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