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A B S T R A C T   

A novel method is proposed for fitting microbial inactivation models to data on liquid media: the Most Probable 
Curve (MPC) method. It is a multilevel model that makes a separation between the “true” microbial concen
tration according to the model, the “actual” concentration in the media considering chance, and the actual counts 
on the plate. It is based on the assumptions that stress resistance is homogeneous within a microbial population, 
and that there is no aggregation of microbial cells. Under these assumptions, the number of colonies in/on a plate 
follows a Poisson distribution with expected value depending on the proposed kinetic model, the number of 
dilutions and the plated volume. 

The novel method is compared against (non)linear regression based on a normal likelihood distribution 
(traditional method), Poisson regression and gamma-Poisson regression using data on the inactivation of Listeria 
monocytogenes. The conclusion is that the traditional method has limitations when the data includes plates with 
low (or zero) cell counts, which can be mitigated using more complex (discrete) likelihoods. However, Poisson 
regression uses an unrealistic likelihood function, making it unsuitable for survivor curves with several log- 
reductions. Gamma-Poisson regression uses a more realistic likelihood function, even though it is based 
mostly on empirical hypotheses. We conclude that the MPC method can be used reliably, especially when the 
data includes plates with low or zero counts. Furthermore, it generates a more realistic description of uncer
tainty, integrating the contribution of the plating error and reducing the uncertainty of the primary model pa
rameters. Consequently, although it increases modelling complexity, the MPC method can be of great interest in 
predictive microbiology, especially in studies focused on variability analysis.   

1. Introduction 

Microbial inactivation is one of the main elements of food safety 
control systems. Considering that most foodborne pathogens are ubiq
uitous in the environment and are able to survive in processing envi
ronments (e.g., in biofilms), ingredients used for making food products 
cannot be guaranteed to be free of pathogenic microorganisms, nor that 
these products will not be recontaminated during production (Guillén 
et al., 2021). The application of processing treatments to reduce the 
potential microbial load in the product is, therefore, often essential for 
food safety, as a way to reduce the microbial concentration to an 
appropriate level of protection (Gorris, 2005). 

Although a variety of alternative technologies has been applied 

during the last decades, the application of high temperatures (thermal 
treatments) remains the most common technology in food production 
(Peng et al., 2017). While being effective at inactivating foodborne 
pathogens, the application of thermal treatments can also have a nega
tive impact on the sensorial and/or nutritional quality of food products 
(van Boekel et al., 2020). Furthermore, their application in industrial 
settings can consume a high amount of energy and have a relevant 
environmental impact. Consequently, it is of interest for food industries, 
and for society in general, to apply minimal treatments to achieve the 
desired microbial inactivation with minimal negative impacts. 

One of the applications of predictive models is their use to support 
process design (Allende et al., 2022). In the case of microbial inactiva
tion, these models predict the reduction in the microbial population as a 

* Corresponding author. 
E-mail address: tiny.vanboekel@wur.nl (M.A.J.S. van Boekel).   
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function of treatment time and process parameters; e.g., temperature 
(Perez-Rodriguez and Valero, 2012). This requires the description of a 
highly complex system, as microbial inactivation is ultimately governed 
by a complex combination of molecular reactions that are not yet fully 
understood, as well as thermodynamics (Smelt and Brul, 2014). 
Consequently, the inactivation models used for process design, shelf life 
estimation and microbial risk assessment are, to some extent at least, 
empirical models, which model parameters must be estimated from 
experimental data. 

The most common method to estimate model parameters from data 
in predictive microbiology is the application of ordinary least-squares 
(OLS) from a frequentist perspective. However, this approach has 
some limitations for microbial inactivation. Experimental protocols for 
building inactivation models often require several log-reductions in the 
microbial concentration (in the order of 6 or 7 logs (National Advisory 
Committee on microbiological criteria for foods, 2010)), so it is not 
possible to directly observe the microbial concentrations in media. 
Instead, microbial concentration is estimated by colony counting in/on 
Petri dishes after an adequate number of serial dilutions. Observations 
obtained by this method can be an issue for parameter estimation based 
on OLS, when the dataset includes plates with low colony count and/or 
zero count especially towards higher log-reductions (Chik et al., 2018; 
Duarte et al., 2015; Garcés-Vega and Marks, 2014; Garre et al., 2019). 
For this reason, guidelines often recommend discarding plates with <30 
colonies. However, this recommendation may be too restrictive in some 
cases, and the study may need the information contained in those plates 
with low colony count (or even zero count). 

In this article, we propose a novel method to fit microbial inactiva
tion models from experimental data obtained in liquid systems. The 
main motivation is to also use information contained in plates with low 
colony count and/or zero counts for parameter estimation without 
introducing a bias in the parameter estimates. The method is based on 
similar statistical hypotheses regarding the distribution of the number of 
colonies to those underlying the Most Probable Number method (MPN), 
commonly used in microbiology (Alexander, 1965). These are extended 
including stochastic hypotheses about inactivation in liquid media 
during the treatment previously described by us (Garre et al., 2019, 
2021) and implemented as a multilevel Bayesian model (Garre et al., 
2020). The MPN method is used to estimate the microbial concentration 
of one sample. Here we used the same basis to determine the most 
probable curve through data at various timepoints, both at higher and 
lower concentrations. Due to this inspiration, the method is named the 
Most Probable Curve (MPC) method. The statistical hypotheses of the 
method are derived in Section 2.2.4 below. 

The novel method is compared against traditional regression fitted to 
the logarithm of the microbial counts (based on normal distributions, 
equivalent to OLS), which can be considered as the reference approach 
in the field. Furthermore, it is also compared against several other 
methods based on variations of generalized linear models that have been 
suggested during the last years (Hiura et al., 2021). The comparison is 
based both on a critical inspection of the statistical hypotheses of each 
method (i.e., their likelihood functions), and on the analysis of an 
already published dataset on the inactivation of Listeria monocytogenes 
(Aryani et al., 2015). This dataset includes curves showing both linear 
and non-linear inactivation kinetics, allowing the evaluation of the 
methods for different microbial responses. 

Another reason to select this dataset is its inclusion of independent 
biological replicates for each bacterial strain. This allows the analysis of 
variability in microbial inactivation, defined as the reflection of inherent 
sources of variation (such as genetic differences between cells) that 
cannot be reduced by gathering more or better data (Nauta, 2000). In 
spite of its relevance for food safety (Aspridou and Koutsoumanis, 2020), 
variability can be hard to include in predictive models, requiring 
advanced statistical methods. In this article, we also show how the 
multilevel nature of the MPC method allows the inclusion of variability 
following a methodology already used in a previous study for a different 

type of model (Garre et al., 2020). 

2. Materials and methods 

2.1. Datasets used to compare the methods 

The data on inactivation of Listeria monocytogenes published by 
Aryani et al. (2015) was used to compare the different methods studied 
in the present article. This study followed standard methods from food 
microbiology to perform thermal treatments under isothermal condi
tions on 20 different strains of L. monocytogenes. Thermal treatments 
were performed under isothermal conditions using flasks filled with 
brain heart infusion (BHI) immersed in a water bath. 

Although the study by Aryani et al. (2015) included 20 different 
L. monocytogenes strains and three different temperatures, for the scope 
of the current study the data of only two strains was used: FBR16 and 
FBR14 at 55 ◦C. They were selected because a visual exploration shows 
that the response of FBR16 is close to log-linearity whereas FBR14 had 
clearly nonlinear survivor curves. 

The usual response variable in microbial inactivation models is the 
microbial concentration (Nobs; often in CFU/ml), where Nobs is calcu
lated from plate counts after correcting for the number of dilutions (Eq. 
(1)). However, in the MPC method the response variable is the number 
of colonies in/on a plate (Nplate). Then, the volume of liquid menstruum 
plated (Vplate) and the number of decimal dilutions (d) are included in 
the likelihood estimation. Therefore, the MPC method does not require 
pre-processing of the data using Eq. (1) before model fitting. Instead, 
this calculation is implicitly included in the method. 

Nobs = Nplate
1

Vplate
10d (1)  

2.2. Modelling approaches compared in the study 

2.2.1. Traditional method - (Bayesian) OLS 
Model fitting by OLS can be written equivalently in a Bayesian 

framework as illustrated in Eq. (2). Although this model is most often 
fitted using frequentist statistics, here we use an equivalent Bayesian 
formulation to ease comparison with the other methods tested. 

log10Nobs ∼ Normal(y(t) , σobs) (2) 

According to this model, the variation in the logarithm of the 
observed microbial concentration (log10 Nobs) follows a normal distri
bution with constant standard deviation (σobs) (i.e. Nobs follows a log- 
normal distribution). The expected value is supposed to vary with 
time (t) according to a function y(t); i.e., the primary inactivation model. 
In this article, we will use two primary models, one for each particular 
strain. Note that, because this method is defined for the logarithm of the 
microbial concentration, it cannot include plates without colonies (the 
logarithm of zero is minus infinity). 

Because the survivor curves of strain FBR16 do not deviate strongly 
from linearity, we used a Bigelow (log-linear) primary model. This 
model is shown in Eq. (3), where N0 is the initial microbial count and D is 
the D-value (treatment time to reduce the microbial count with one log). 

y(t) = logN0 − t/D (3) 

On the other hand, the survivor curves of strain FBR14 clearly 
deviated from log-linearity. Consequently, the Mafart inactivation 
model (Mafart et al., 2002), shown in Eq. (4), was used to describe the 
inactivation for this microbial strain. In this model, the curvature is 
described by parameter β. Values of this parameter lower than one 
indicate an upward curvature, whereas values higher than one result in 
the opposite. Parameter δ (δ-value) has a similar interpretation to the D- 
value, being equal to the treatment time required for the first log- 
reduction in the microbial count. 
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y(t) = logN0 − (t/δ)β (4)  

2.2.2. Poisson regression 
As formulated by Hiura et al. (2021), Poisson regression for micro

bial inactivation can be defined in Bayesian notation as shown in Eq. (5). 

Nobs ∼ Poisson(Y(t) ) (5) 

This model differs from the traditional method in the use of a 
different likelihood function. Instead of assuming that the logarithm of 
the microbial concentration (log10 Nobs) follows a normal distribution, 
this model assumes that the microbial count (Nobs) follows a Poisson 
distribution. Therefore, this model is defined for discrete variables 
(number of colonies; e.g. as CFU/ml) and can account for plates with 
zero count, unlike the traditional method that is defined on continuous 
ones (microbial concentration; e.g. as log CFU/ml). It is also worth 
noting that the normal distribution has one more parameter than the 
Poisson distribution: the Poisson distribution imposes that the variance 
equals the expected value, whereas the normal distribution uses the 
variance (σ2) as an additional parameter. As a result, the normal dis
tribution is more “flexible” than the Poisson distribution. 

In the Poisson model, the expected value of the microbial count is 
given by function Y(t) (note the use of a different notation to indicate 
that this function is in units of CFU/ml, not log CFU/ml). In a similar 
way as for the traditional method, a linear (Bigelow model; Eq. (6)) and 
a nonlinear (Mafart model; Eq. (7)) primary model were used to analyse 
the experimental data. 

Y(t) = N0⋅10− t/D (6)  

Y(t) = N0⋅10− (t/δ)β
(7)  

2.2.3. Gamma-Poisson regression 
As mentioned above, the Poisson distribution imposes that the 

variance (often called dispersion in statistical literature) equals the 
mean. Experimental data often deviates from this hypothesis; for 
instance, the term “overdispersion” is used when the variance of the data 
is greater than its mean. This can be accounted for by introducing 
additional parameters or model hypotheses that account for this (over) 
dispersion. 

One common approach is to assume that the expected value of the 
distribution is not fixed but follows a gamma distribution. This 
assumption results in the Gamma-Poisson or, equivalently, the negative 
binomial distribution (Vose, 2008), as shown in Eq. (8). In this article, 
we use the alternative parameterization of the negative binomial dis
tribution (neg_binomial_2 in Stan, described below). This parameteriza
tion separates between the expected value of the distribution and its 
overdispersion (indicated by parameter ϕ in Eq. (8)) with respect to the 
Poisson distribution. Therefore, its formulation is more convenient for 
describing microbial inactivation using primary models from predictive 
microbiology. 

Nobs ∼ NegBinomial(Y(t) ,ϕ) (8) 

In a similar way as for the Poisson regression model, the expected 
value of the microbial count is described by the linear or nonlinear 
primary inactivation model, Y(t), defined in Eqs. (6) and (7). Note that, 
as well as the Poisson regression model, this model is defined for discrete 
random variables (Nobs), so it can account for plates with zero colonies. 

The overdispersion is introduced in this model by parameter ϕ ∈
(0,+∞). The effect of this parameter on the variance is shown in Eq. (9). 
For large values of ϕ, the Gamma-Poisson model is equivalent to the 
Poisson distribution (no overdispersion), whereas lower values indicate 
increasingly larger overdispersion. 

Var(Nobs) = Y(t) +
Y(t)2

ϕ
(9) 

Note that the Gamma-Poisson model cannot include under
dispersion. Nonetheless, this is not relevant for our case studies, as the 
results of microbial inactivation experiments rarely show under
dispersion with respect to the Poisson distribution. 

2.2.4. Most Probable Curve method 
The Most Probable Curve (MPC) method is defined based on sto

chastic, mechanistic hypotheses regarding microbial inactivation, as 
well as the sampling error due to serial dilutions and plating, previously 
derived by Garre et al. (2019) and Garre et al. (2021), based on real 
sampling deviations like pipetting error, but mainly determined by the 
probability distribution of having a certain number of cells in the final 
volume. Under the assumption that stress resistance in microbial pop
ulations is homogeneous (i.e., every individual cell has the same prob
ability to be inactivated) and the number of cells in the media at the 
beginning of the experiment follows a Poisson distribution, the number 
of microbial cells in the heating menstruum (Nm) follows a Poisson 
distribution, as formulated in Eq. (10). Note that, as described by Garre 
et al. (2021), this variation does not fit within the usual definitions of 
variability and uncertainty often used in microbial risk assessment. 
Consequently, they recommended calling it “chance”. 

Nm ∼ Pois(Y(t) ) (10) 

As mentioned above, the expected value (Y(t)) is supposed to follow 
either log-linear (Eq. (6)) or nonlinear (Eq. (7)) kinetics for the present 
case study (note that it could be any other primary inactivation model 
depending on the microbial response). 

It is worth highlighting the differences between Eq. (10) and the 
Poisson regression model (Eq. (5)). In Poisson regression, the likelihood 
function is directly related to the observed microbial count. The MPC 
method extends the Poisson regression by introducing the fact that the 
microbial count in the media (Nm) cannot be measured directly. Instead, 
it is approximated based on the number of colonies identified in a given 
volume (Vplate) in a petri dish (Nplate), in most cases, after a number of 
decimal dilutions (d). As described in Garre et al. (2019), under the 
hypothesis that the cell positions are independent (e.g., there is no ag
gregation), the number of cells in a Petri plate conditional to Nm would 
follow a binomial distribution (Eq. (11)) of size Nm and probability 
Vplate⋅0.1⋅d. 

Nplate∣Nm ∼ Binomial
(
Nm,Vplate⋅0.1d) (11) 

Considering that Nm follows a Poisson distribution (Eq. (10)), the 
number of colonies in a plate would follow a Poisson distribution (Eq. 
(12)). 

Nplate ∼ Pois
(
Y(t)⋅Vplate⋅0.1d ) (12) 

Therefore, the MPC method is a type of multilevel model (Garre 
et al., 2020) that defines a hierarchical relationship between the un
certainty of the true concentration in the media (the primary model; Eqs. 
(6)–(7)), the actual microbial count in the media accounting for chance 
(Nm; Eq. (10)) and the measured microbial concentration based on the 
number of colonies in a plate (combination of Eqs. (12) and (1)). Note 
that, because it is defined for Nplate, the MPC method can account for 
plates with zero count. 

Regarding function Y(t), as commented above, the same two primary 
models were used in the case study: the Bigelow model (Eq. (6)) and the 
Mafart model (Eq. (7)). From a biological point of view, the curvature of 
the Mafart model can be explained by two different phenomena. One is 
based on the hypothesis that the resistance is heterogeneous among the 
microbial cells (Peleg and Cole, 1998). An equivalent one for isothermal 
conditions is that the stress resistance of cells is homogeneous within the 
population but dynamic. That implies that the cells have some physio
logical response to the treatment that affects their stress resistance, 
either increasing it (upward curvature) or decreasing it (downward 
curvature). For consistency with the hypothesis of the Most Probable 
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Curve method, we will use in this article the second hypothesis (i.e., a 
homogeneous, dynamic resistance). 

2.3. Introduction of variability in the MPC method using multilevel models 

The variability in the results of a microbial inactivation experiment is 
the result of a combination of various sources (Garre et al., 2021). Some 
of them, like the error associated with the plating method, are spurious 
and should not be included in predictions. However, other sources, such 
as biological variability, are very relevant in food science and should, 
ideally, be included in model predictions (Zwietering et al., 2021). As 
defined in the previous section, the MPC method only accounts for the 
sampling error associated with the serial dilution and plating method. 
Nevertheless, its multilevel nature allows extending it to include addi
tional sources of variability and uncertainty, so these are quantified and 
can be incorporated in model predictions. 

As an illustration, we introduce the effect of within-strain variability 
in the case studies, using an approach similar to the one by Garre et al. 
(2020). Instead of assuming that the parameters of the primary model 
(N0, D, δ, β) are fixed among all the repetitions, they are assumed as a 
vector of length 3 (reflecting the number of independent biological 
replicates in this particular dataset, the length will obviously vary be
tween case studies). Then, it is assumed that the logarithm of the ele
ments of each of these vectors follows a normal distribution with 
unknown mean and variance (Eqs. (13)–(16)). 

logN0 ∼ Normal
(
logN0, σlogN0

)
(13)  

logD ∼ Normal
(
logD, σlogD

)
(14)  

logδ ∼ Normal
(
logδ, σlogδ

)
(15)  

logβ ∼ Normal
(
logβ, σlogβ

)
(16)  

2.4. Model fitting and computational methods 

The models were fitted following Bayesian regression using the 
Hamiltonian Monte Carlo method based on the No-U-Turn sampler 
(NUTS) included in Stan (Carpenter et al., 2017). The convergence of the 
Markov Chains was checked using standard visualisations (Brooks, 
2011), as well as evaluating the R̂ statistic (McElreath, 2016). 

For every model, we used a weakly informative prior distribution for 
every model parameter. For the initial microbial concentration (N0), this 
was a log-normal prior with expected value 8 log CFU/ml and standard 
deviation 2 log CFU/ml. Regarding the kinetic parameters of single-level 
models, for the D-value and the δ-value log-normal distributions were 
used with expected values 0 log min (i.e., in log scale) and standard 
deviation 2 log min. In the case of the curvature parameter of the Mafart 
model, β, we use a log-normal distribution with expected value 0 (in log 
scale; i.e., β = 1, equivalent to the Bigelow model) and standard devi
ation of 1 (also in log scale). 

For fitting by the traditional method, we used an exponential prior 
for σobs with expected value of 1 log CFU/ml. To parameter ϕ of the 
Gamma-Poisson model, a Gamma prior was assigned with parameters k 
= 1 and θ = 1. Moreover, we introduced a lower bound in the Stan code 
to avoid θ = 0, as this results in a singular likelihood (infinite variance 
according to Eq. (9)). Regarding the additional parameters of the 
multilevel model, we use weakly informative normal priors for the grand 
means (logN0 ∼ N(8,2); logD ∼ N(0,2); logδ ∼ N(0, 2); logβ ∼ N(0,1)) 
and weakly informative exponential priors for the standard deviations 
(σlogN0~Exp(2); σlogD~Exp(1); σlogδ~Exp(1); σlogβ~Exp(1)). In every 
case, the calculations were repeated for different prior distributions 
without observing any relevant impact on the results (not shown). 

The calculations were implemented in R version 3.6.3 (R Core Team, 
2016) using the rstan package version 2.21.2 (Stan Development Team, 

2019). Credible intervals (CI) were estimated based on the quantiles of 
the Monte Carlo simulations. Unless otherwise stated, every CI is 
calculated for a 90 % confidence level. The convergence of the pre
dictions was evaluated repeating the calculations for an increased 
number of iterations, without observing any relevant difference. More
over, calculations were repeated for several seeds of the pseudo-random 
number generator, without observing any impact in the results. The 
code and data are available in the GitHub page of one of the authors 
(https://github.com/albgarre/MostProbableCurve). 

3. Results and discussion 

3.1. Model fitting without variability 

3.1.1. Linear inactivation - L. monocytogenes strain FBR16 
Fig. 1 illustrates the fit of each one of the models tested for the 

inactivation of L. monocytogenes FBR16. These models account for 
different types of uncertainty. The coloured ribbons in Fig. 1A–C (which 
may look like a line due to their very small width) reflect the uncertainty 
of the primary model in estimating the expected value (the mean). This 
can be seen as a reflection of the uncertainty in the estimates of D and log 
N0 (quantified by the standard errors reported in Table 1), that represent 
an “ideal” microbial concentration in the media (Eq. (3) or Eq. (6), 
depending on the model). The ribbons depicted by dashed lines intro
duce the remaining variation that is not included in the uncertainty of 
the primary model in estimating the mean, and that reflects the 
dispersion of the observations. In the models, this additional dispersion 
is quantified by the variance parameters (σ or ϕ). Note that the plot for 
the MPC method (Fig. 1D) includes an additional ribbon. This reflects 
the fact that this model introduces an additional level between the ideal 
microbial concentration in the media (Eq. (6)), the actual concentration 
in the media (Eq. (10)), and the observed concentration based on plate 
count (Eq. (12)). Note that this separation between different levels of 
uncertainty is relatively simple in the (multilevel) Bayesian modelling 
approach, and is one of its main advantages with respect to frequentist 
statistics (van Boekel, 2020). 

The model obtained by the traditional method (i.e., based on a 
normal likelihood for the residuals) (Fig. 1A) behaves as expected, being 
able to represent the general trend in the data. Both credible and pre
diction intervals have regular width (a reflection of the hypothesis of 
constant variance), and the interval for the observations cover most of 
the data points used to build the model. 

On the other hand, the fit of the Poisson regression model (Fig. 1B) is 
much poorer than the one of the traditional model. The fitted model 
clearly deviates from the general trend of the data points, systematically 
fitting expected microbial counts higher than the observed ones. This is 
most likely due to the likelihood function of this model. The Poisson 
distribution imposes a relationship between the mean and the variance, 
reducing the flexibility of the distribution by one parameter. As a result, 
regardless of the values of the model parameters, the shape of the 
credible interval of the observations will always have the “trumpet” 
shape (i.e., very narrow for high expected counts, wider for low ex
pected counts) illustrated in Fig. 1B. The variance in the observations 
clearly deviates from this shape defined by the Poisson likelihood. 
Although the variance is higher at the end of the experiment, this 
increment is much smaller than predicted by the Poisson likelihood. 

This type of deviation with respect to the underlying statistical model 
assumptions is a common source of bias in model fitting. A typical 
example is fitting a regression model by OLS to data with severe het
eroskedasticity (i.e., non-constant variance) (Bates and Watts, 2007). In 
a similar way, fitting the Poisson regression model to data whose vari
ance does not follow the distribution expected by a Poisson likelihood 
results in biased model fits, as illustrated in Fig. 1B. This is further 
confirmed in Table 1, where the values of the parameter estimates for 
each model are reported. The Poisson regression model estimates a D- 
value of 27.0 min, much higher than the value estimated by the 
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traditional approach (19.9 min). An additional reason to suspect this 
model fit were problems during model fitting of this model with Stan. 
Unlike for the other models tested, the fit had to be repeated several 
times due to lack of convergence of the Markov chain. This is a common 
indicator of poor model hypotheses (McElreath, 2016). 

The flexibility introduced by the overdispersion parameter of the 
Gamma-Poisson regression model (ϕ = 1.09 ± 0.12) mitigates many of 
the issues of the Poisson regression. As illustrated in Fig. 1C, the fitted 
model correctly described the overall trend of the observations. The 
Gamma-Poisson model practically fits the same primary inactivation 

model as the traditional approach (CI for D of [19.4, 20.9] min for the 
traditional; [19.4, 20.8] min for Gamma-Poisson), resulting in equiva
lent uncertainty in the primary model (coloured ribbon in Fig. 1C). 
Nevertheless, there are noticeable differences in the CI of the observed 
microbial counts between the Gamma-Poisson model and the traditional 
approach. Whereas the traditional approach calculates a CI with con
stant width, the Gamma-Poisson CI of the model widens at the end of the 
experiment, when the expected microbial count is lower than 1 log CFU/ 
ml. Furthermore, the CI of the Gamma-Poisson model is asymmetrical, 
with its upper bound being similar to the traditional approach but with a 
tail towards lower microbial concentrations. Both effects are a reflection 
of the different likelihood function (Eq. (2); Eq. (8)). The Gamma- 
Poisson model uses a negative binomial distribution, an asymmetrical 
distribution defined for discrete random variables. As a logical result, 
the credible intervals for the observations are also asymmetrical. 
Furthermore, it has been demonstrated based on numerical simulations 
that discrete microbial counts result in an increased variance for low 
microbial concentrations (Garre et al., 2019, 2021). This is conveniently 
reflected in the Gamma-Poisson model due to the use of a discrete 
likelihood function. 

The MPC method estimates similar D-values as the traditional 
approach, although with lower uncertainty (CI for D of [19.4, 20.9] min 
for the traditional; [19.6, 19.7] min for the MPC). As a result, the un
certainty of the primary model estimated by the MPC method (dark 
ribbon in Fig. 1D) has a similar expected value than for the traditional 
model, but a lower uncertainty with a very narrow band that may be 
mistaken for a line in Fig. 1D. 

The reduction in the uncertainty of the parameters of the primary 
model is possible because the MPC method uses a multilevel approach 
that separates between three levels: (1) the ideal concentration ac
cording to the primary model (Y(t); Eq. (6)), (2) the concentration in the 
media (Nmedia; Eq. (10)), and (3) the number of colonies that are 

Fig. 1. Comparison of the models fitted to the inactivation data of L. monocytogenes FBR16 (o). The coloured ribbon shows the uncertainty of the primary model (90 
% credible interval). The dashed line illustrates the uncertainty of the observations according to each model (90 % credible interval). The panels show the fit of each 
model: (A) Traditional regression using the normal likelihood for log N, (B) Poisson regression, (C) Gamma-Poisson regression, (D) Most Probable Curve (MPC). The 
latter has an additional coloured ribbon because this model introduces a separation between the primary model (Y(t)), the microbial concentration in the media (Nm) 
and the observations (Nplate). The additional ribbon illustrates the 90 % credible interval of Nm. Half circles on the x-axis represent plates with zero colonies (not 
included in panel A because they cannot be considered by the traditional method). (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 

Table 1 
Model parameters estimated from the isothermal inactivation data on 
L. monocytogenes FBR16.  

Model Parameter Estimate Standard 
errora 

90 % credible 
interval 

Traditional log N0 (log 
CFU/ml)  

7.81  0.04 [7.72, 7.89] 

D (min)  19.9  0.26 [19.4, 20.9] 
σ (log CFU/ml)  0.30  0.02 [0.26, 0.34] 

Poisson log N0 (log 
CFU/ml)  

7.71  0.00 [7.71, 7.71] 

D (min)  27.0  0.00 [27.0, 27.0] 
Gamma- 

Poisson 
log N0 (log 
CFU/ml)  

7.86  0.06 [7.75, 7.98] 

D (min)  20.1  0.34 [19.4, 20.8] 
ϕ (⋅)  1.09  0.12 [0.87, 1.35] 

MPC log N0 (log 
CFU/ml)  

7.78  0.01 [7.77, 7.79] 

D (min)  19.6  0.03 [19.6, 19.7]  

a For kinetic parameters, the fit is done in log-scale, but the parameters are 
reported in their natural scale here. Hence, their standard error should not be 
interpreted as the one of a normal distribution. 
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observed on/in a plate (Nplate; Eq. (12)). This separation is illustrated in 
Fig. 1D, where the MPC method has one additional coloured ribbon with 
respect to the other three methods. The additional interval represents 
the variation of Nmedia with respect to the concentration predicted by the 
primary model due to the effect of chance. As already described by Garre 
et al. (2021), this effect is negligible for large microbial concentrations. 
However, when the number of cells is low (approximately <100 CFU/ 
ml) it becomes relevant, increasing the variance of the microbial 
concentration. 

It must be highlighted that Nmedia cannot be observed directly. 
Instead, the experimental observations (the dots in Fig. 1) represent the 
microbial concentrations calculated based on the number of colonies 
on/in a plate using Eq. (1). Three of the methods tested (traditional 
method, Poisson regression, Gamma-Poisson regression) disregard this 
fact, calculating the likelihoods directly from the microbial concentra
tions (log-transformed or not) resulting from Eq. (1). Then, the sampling 
error of the serial dilution and plating method is integrated in the overall 
uncertainty (σ in the traditional approach, ϕ in the Gamma-Poisson), or 
disregarded (Poisson regression). 

This is not the case for the MPC method, which makes a precise ac
count of the uncertainty associated with the serial dilution and plating 
method. This can be done because the number of dilutions and the 
plated volume for each individual data point are retained for the like
lihood calculation (Eq. (12)). Note that the MPC method does not need 
introducing an additional parameter, because these effects are described 
using mechanistic assumptions (i.e., chance and the sampling error of 
the plating) that are generally valid as long as their basic hypotheses 
hold (i.e., homogeneous resistance and no cell aggregation). This makes 
it different from the Gamma-Poisson model, which introduces an 

empirical relationship quantified by an additional parameter (Eq. (9)). 
In the MPC method, the unexplained uncertainty is partly included in 
the standard error of the parameter estimates. For instance, the standard 
error of log N0 has a similar influence in the uncertainty of the model 
predictions as the overall variance (σ) of the traditional method. 

The dashed interval in Fig. 1D illustrates the credible interval of the 
observed microbial concentrations according to the model fitted using 
the MPC method. The shape of this interval is extremely different from 
the one calculated using the other three methods, with its width 
increasing and decreasing through the treatment time, and largely 
increasing by the end of the experiment. The reason for this is that the 
variance of Nplate depends on the number of dilutions and the plated 
volume (Eq. (12)). Consequently, the sharp reductions in width of the CI 
correspond to time points where the number of dilutions is reduced by 
one. As a result, this interval is not directly comparable to the experi
mental data because it includes data from different dilutions for the 
same time point (e.g. t = 80 min includes data for dilution 0 and dilution 
− 1). Another interesting aspect of the CI for the observations is that its 
upper limit reaches zero approximately at t = 155 min, earlier than the 
interval for the actual concentration in the media considering chance 
(Nm, approximately at t = 125 min). This is an illustration of the sam
pling error: when the microbial concentration is very low, the micro
organism will not be detected in most plates (Duarte et al., 2015; 
Zwietering et al., 2021). 

Fig. 2 provides a conceptual illustration of the impact of the plated 
volume and the number of dilutions in the variance of the observations. 
It is clear from this plot that the variance of the observations is strongly 
dependent on the experimental design, as previously illustrated based 
on numerical simulations (Garre et al., 2019). A comparison of Fig. 2A–B 

Fig. 2. Credible intervals of the microbial concentration estimated based on the plate counts accounting for the sampling error of the plating method for 
L. monocytogenes FBR16. The results are based on 1000 MC simulations for 4 different experimental designs: (A) Vplate = 1 ml; (B) Vplate = 0.1 ml; (C) Vplate = 0.05 ml; 
(D) Vplate = 1 ml with an increase in the number of dilutions. The number of serial dilutions before plating is illustrated by the colours of the shaded areas. 
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shows that a reduction in the plated volume from 1 ml to 0.1 ml results 
in a very relevant increase in uncertainty. Reducing the plated volume 
even more, to 0.05 ml (Fig. 2C), can potentially result in misleading 
empirical results. With this experimental design, the possibility of hav
ing plates without any colony is higher than 5 % for most time points, 
even at the beginning of the experiment. Therefore, it would be possible 
to obtain survivor curves where the microorganism is not observed for 
intermediate time points and “resuscitate” in posterior points. This 
resuscitation effect would not be the result of any biological mechanism; 
it would be an artefact caused by the sampling error of the serial dilution 
and plating method. This result emphasises the relevance of the plated 
volume and the number of dilutions for the design of microbial inacti
vation experiments. 

Fig. 2 also illustrates that an alternative approach to reduce the 
plating variability that comes from the number of serial dilutions before 
plating is by modifying the number of serial dilutions before plating. As 
depicted in Fig. 2D, an increase in the number of dilutions significantly 
increases the variance of the observations. Furthermore, this plot also 
highlights that the variance is not constant. Because it is the reflection of 
an underlying Poisson distribution (Eq. (12)) that imposes a relationship 
between the expected value and the variance, it widens with the treat
ment time until it is reduced sharply when the next dilution is used. This 
result supports the recommendations that discourage the combination of 
microbial concentrations (in log CFU/ml or CFU/ml) calculated from 
different dilutions for the same time point when using the traditional 
model fitting approach (Garcés-Vega and Marks, 2014; Jarvis, 2008). 
Nonetheless, the MPC method accounts for the effect of the number of 
dilutions, so it can be used to fit models to data that combine different 
dilutions for the same time point. 

The effect of the probability distribution illustrated in Fig. 2 is also 
relevant for optimal experiment design. Previous studies have increased 
the information extracted in the experiment by optimising the position 

of the sampling points or changing the temperature profile (Garre et al., 
2018; Mertens et al., 2012; Peñalver-Soto et al., 2019; Telen et al., 2012; 
van Derlinden et al., 2010). However, all these studies were based on the 
hypothesis of normality of residuals with constant variance. As illus
trated in Fig. 2, for an ideal scenario that considers only the sampling 
error of the dilutions, this hypothesis can be violated in greater or lower 
measure depending on the experimental design. Furthermore, the plated 
volume and the number of serial dilutions have a very strong influence 
on the variance of the observations. Therefore, they are suitable targets 
for optimal experiment design, in combination with the location of the 
time points and the type of inactivation treatment. 

In conclusion, the introduction of mechanistic hypotheses regarding 
the sampling error of the plating method using a multilevel approach in 
the MPC method results in a significant reduction of the unexplained 
variance for linear microbial inactivation with respect to traditional 
approaches. It is worth highlighting that the credible interval relevant 
for microbial risk assessment, shelf life estimation or process design is 
the one referred to the microbial concentration in the product, not the 
one of the observations. In other words, the sampling error of the plating 
occurs in the laboratory, but not in the food chain. Hence, the MPC 
method can reduce the parameter uncertainty of the model in the case of 
log-linear inactivation. Although the Poisson regression and gamma- 
Poisson regressions are also based on the Poisson distribution, they do 
not make a distinction between the microbial concentration in the 
product and the one observed in the plate. Therefore, they do not 
introduce this reduction in uncertainty. 

3.1.2. Non-linear inactivation - L. monocytogenes strain FBR14 
The inactivation of L. monocytogenes FBR14 showed clear deviations 

with respect to non-linearity. Therefore, unlike for strain FBR16, the 
data for this strain was analysed using the Mafart inactivation model 
(Eq. (3); Eq. (7)). Fig. 3 compares the credible and prediction intervals 

Fig. 3. Comparison of the models fitted to the inactivation data of L. monocytogenes FBR14 (o). The coloured ribbon shows the uncertainty of the primary model (90 
% credible interval). The dashed line illustrates the uncertainty of the observations according to each model (90 % credible interval). The panels show the fit of each 
model: (A) Traditional regression using the normal likelihood, (B) Poisson regression, (C) Gamma-Poisson regression, (D) Most Probable Curve (MPC). The latter has 
an additional coloured ribbon because this model introduces a separation between the primary model (Y(t)), the microbial concentration in the media (Nm) and the 
observations (Nplate). The additional ribbon illustrates the 90 % credible interval of Nm. Half circles on the x-axis represent plates with zero colonies (not included in 
panel A because they cannot be considered by the traditional method). (For interpretation of the references to colour in this figure legend, the reader is referred to the 
web version of this article.) 
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calculated for each of the four methods used in this study against the 
data used for model fitting, and Table 2 reports the parameter estimates. 
From a qualitative point of view, the results have similarities with those 
observed for strain FBR16 (Fig. 1). The traditional approach (Fig. 3A) 
correctly describes the general trend of the microbial counts during the 
treatment. Furthermore, as expected, this approach calculates a credible 
interval with constant width (in the y-direction) that envelops most of 
the observations. 

As depicted in Fig. 3B, the Poisson regression model strongly de
viates with respect to the general trend of the observations, even more 
severely than for strain FBR16 (Fig. 1B). Again, this is most likely due to 
the unrealistic likelihood used in this modelling approach. The variance 
in the data at the beginning of the experiment is much larger than 
predicted by this model (especially for t = 40 min). As a result, the 
Poisson regression model has unrealistic confidence intervals (Fig. 3B) 
and parameter values (δ = 29.1 min; β = 1.37) that largely deviate with 
respect to those estimated for the other methods. Also in this case, the 
fitting algorithm had convergence issues when fitting this model, further 
highlighting the unsuitability of this model for this data. Note that, in 
spite of being unsuitable to describe the experimental data, the param
eter estimates have very low standard deviation. This emphasises that 
the goodness of the fit should not be validated solely based on statistical 
indexes (such as the standard errors of the model parameters), and that 
it requires a more holistic approach (Dayal, 2015). 

As well as for strain FBR16, the introduction of overdispersion in the 
Gamma-Poisson model largely mitigates the issues of the Poisson 
regression model. This model estimates a similar primary model than the 
traditional method (δ = [5.79,16.0] min, β = [0.57,0.75] for Gamma- 
Poisson; δ = [6.5,12.9] min, β = [0.57,0.70] for the traditional 
method) reflected in similar CI for the primary inactivation model 
(coloured ribbon in Fig. 3A and C). However, there are obvious differ
ences between the CI of the observations. As well as for the linear case, 
the Gamma-Poisson model predicts an asymmetric CI, with an upper 
limit similar to the one of the traditional method and a much wider 
lower limit. This difference is more clear in this case due to the larger 
value of the overdispersion parameter (ϕ = 0.21 for FBR14; ϕ = 1.09 for 
FBR16), which can be interpreted as the model for FBR14 having more 
unexplained variation (higher uncertainty) than the one for FBR16. 

One possible reason for this increase in uncertainty is the experi
mental design. The data for strain FBR14 combines at t = 40 min data 
obtained after 4 serial dilutions with data after 2 serial dilutions. As 

discussed above and illustrated in Fig. 2, the number of dilutions is a 
very significant factor for the variance of the observations. The tradi
tional regression method explains differences between the expectation 
of the primary model and the observations using an overall error term 
(σ). However, the Gamma-Poisson model utilises a more complex rela
tionship between the expected value and the variance through param
eter ϕ that could be more sensitive to deviations in the data. Although 
this hypothesis should be further validated, this result emphasises the 
recommendation to avoid (when possible) the combination in the same 
time point of microbial concentrations calculated for different dilutions 
because these observations come from different distributions when the 
model fitting approach uses a likelihood function that does not consider 
the number of dilutions. 

On the other hand, the MPC method does include the number of 
dilutions and the plated volume for parameter estimation, so it is more 
robust for experimental designs combining several dilutions. As well as 
for strain FBR16, the MPC method is able to describe the general trend of 
the observations, with narrower credible intervals than the traditional 
methods (Fig. 3D). This is again reflected in parameter estimates with 
lower uncertainty (δ = [7.3,8.0] min, β = [0.57,0.59] for MPC; δ =
[6.5,12.9] min, β = [0.57,0.70] for the traditional). Similarly as for the 
linear case (Fig. 1D), this is due to part of the total uncertainty being 
assigned to the sampling error of the plating method (Supp. Fig. 1). Note 
that, although for this dataset the model has been fitted using a non- 
linear model (Eq. (7)), the MPC model formulated in such a way does 
not make any assumption regarding variability. Therefore, the reduction 
in the uncertainty in the concentration in the food product is due to a 
reduction of the unexplained uncertainty (Supp. Fig. 1), not due to the 
inclusion of variability. This lack of variability in the model can explain 
the relatively poor description of the data at t = 40 min. In the next 
section, we illustrate how this can be accounted for by augmenting the 
MPC method including biological variability. 

3.2. MPC method with variability 

3.2.1. Linear inactivation with variability - L. monocytogenes strain FBR16 
The MPC method can be seen as an extension of the MPN method to 

estimate the parameters of inactivation models instead of just microbial 
concentrations at a single time point, by including the effect of the 
sampling error of the serial dilution and plating method. However, 
numerous sources of variability and uncertainty affect the variance of 
microbial inactivation. The MPC method, being a multilevel method, has 
the advantage that it can be extended to account for additional sources 
of variability and/or uncertainty (Garre et al., 2020). As an example, it 
was extended to include within-strain variability in the heat resistance 
of L. monocytogenes FBR 16. 

Fig. 4 illustrates the model fitted using a multilevel model where the 
kinetic parameters (N0 and D-value) vary between three independent 
biological replicates. The parameter estimates are included in Supp. 
Table 1. As expected, based on the goodness of fit of the single-level 
model, the multilevel-MPC method is able to describe the general 
trend of the data, showing slightly different D-values for each biological 
replicate. Again, the credible interval of the primary model is extremely 
low for the reasons explained above: the assignment of part of the total 
uncertainty to the sampling error of the plating method. 

Although the plot shows three different fitted models (one per bio
logical replicate), the multilevel approach assumes that the model pa
rameters for each replicate are drawn from an underlying distribution 
(in this case, a log-normal distribution; Eq. (13)). Therefore, the three 
models illustrated in Fig. 4 are three replications of a unique model that 
includes a description of variability. This allows both an estimation of 
the impact of variability, as well as making predictions for biological 
replicates of L. monocytogenes FBR16 not observed in the laboratory. 

Fig. 5A illustrates the estimated probability density function for the 
D-value of L. monocytogenes FBR16. This plot illustrates that, although 
the MPC method estimates a relatively small variability (σlogD = 0.07 

Table 2 
Model parameters estimated from the isothermal inactivation data of 
L. monocytogenes FBR14.  

Model Parameter Estimate Standard 
errora 

90 % credible 
interval 

Traditional log N0 (log 
CFU/ml)  

8.04  0.14 [7.77, 8.31] 

δ (min)  9.5  1.6 [6.5, 12.9] 
β (⋅)  0.64  0.03 [0.57, 0.70] 
σ (log CFU/ml)  0.63  0.04 [0.55, 0.72] 

Poisson log N0 (log 
CFU/ml)  

7.98  0.00 [7.98, 7.98] 

δ (min)  29.1  0.00 [29.1, 29.1] 
β (⋅)  1.37  0.00 [1.37, 1.37] 

Gamma- 
Poisson 

log N0 (log 
CFU/ml)  

8.33  0.26 [7.9, 9.0] 

δ (min)  10.8  2.59 [5.79, 16.0] 
β (⋅)  0.66  0.04 [0.57, 0.75] 
ϕ (⋅)  0.21  0.02 [0.16, 0.26] 

MPC log N0 (log 
CFU/ml)  

7.88  0.01 [7.86, 7.89] 

δ (min)  7.64  0.18 [7.29, 7.98] 
β (⋅)  0.58  0.00 [0.57, 0.59]  

a For parameter δ and β, the fit is done in log-scale, but the parameters are 
reported in their natural scale here. Hence, their standard error should not be 
interpreted as the one of a normal distribution. 
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log min), this estimate is poorly characterised and has large uncertainty 
(CI of [0.01, 0.33] log min). This is an outcome of the amount of in
formation included in the experimental data used to estimate this source 
of variability. Although it includes a reasonable number of data points 
per curve, it only includes three independent biological replicates. As a 
result, each individual replicate can be characterised with accuracy 
(Fig. 4), but the within-strain variability of the D-value can only be 
characterised with poor precision (i.e., with high uncertainty). 

The high uncertainty in the variability estimates is reflected in the 
model predictions when variability is included. As illustrated in Fig. 5B, 
the estimated credible interval of the prediction mostly consists of un
certainty. This result can be surprising, when compared with the 
extremely low uncertainty of the model predictions for each individual 
biological replicate (Fig. 4) or for the complete data as a whole (Fig. 1D). 
Nonetheless, it is a logical reflection of the information included in the 
experimental data that allows to analyse each individual repetition 
accurately, but does not contain enough information to predict the 
variability of future repetitions. 

This result emphasises the strong link that exists between statistical 
methods for model fitting and experimental design. The use of more 
complex statistical methods can improve how the parameters of 
empirical models (and their distributions) reflect the information 
included in the experimental data. However, these models can never 
include information beyond what is included in the data. As an illus
tration, inactivation experiments in predictive microbiology are often 
designed considering two different dimensions mirroring the division of 
the modelling procedure in primary and secondary models. The first 
dimension is related to the intensity of the inactivation agents (e.g., the 
number and range of treatment temperatures), and should be informa
tive enough to describe the secondary model. The second dimension is 
the number and position of the time points, which should be adequate to 
describe the primary inactivation model (e.g., when there are shoulders 
in the data). In order to build reliable primary and secondary models, the 
experimental design at both levels must be adequate (Peñalver-Soto 
et al., 2019). 

Including variability in inactivation models adds an additional 
dimension to the experimental design, which must be informative 
enough to estimate this attribute of the microbial population. Conse
quently, following the same logic, experimental studies aiming at the 
characterization of variability should account for a sufficiently large 

number of conditions. In other words, they should include a sufficiently 
large number of “truly” new experiments (e.g., using independent bio
logical cultures). Otherwise, although advanced data analysis tools 
(optimal experimental design, Bayesian statistics) can reduce the 
amount of experimental information required, it is impossible to obtain 
realistic estimates for variability if the data does not include enough 
information on variability. 

3.2.2. Non-linear inactivation with variability - L. monocytogenes strain 
FBR14 

Fig. 6 compares the models fitted by the MPC method including 
within-strain variability using a multilevel approach for 
L. monocytogenes FBR14. The values of the parameter estimates are re
ported in Supp. Table 2. As well as in the previous cases, the fitted model 
is able to describe the overall trend of the experimental data for each 
individual biological replicate. Of special interest is the curve fitted for 
the second repetition (yellow in Fig. 6). When the data is plotted on log- 
scale, it seems that the data for this repetition has a tail at concentrations 
slightly lower than 1 log CFU/ml. Indeed, fitting a model by the tradi
tional approach to this repetition independently results in a survivor 
curve with upwards curvature (β = 0.75). However, a closer inspection 
of the data elucidates that this tail corresponds to observations with <6 
colonies per plate, lower than the lower threshold often recommended 
(~30 colonies). It has been previously demonstrated that, under the 

Fig. 4. Inactivation model fitted using the MPC method with within-strain 
variability to the isothermal inactivation data of L. monocytogenes FBR16 (o). 
The points were obtained from three independent bacterial cultures and are 
coloured accordingly. The dark ribbons represent the uncertainty of the pri
mary model (Y(t); 90 % credible intervals). The lighter ribbons represent the 
uncertainty associated to the microbial concentration in the media (Nmedia; 90 
% credible intervals). They data points and ribbons are coloured according to 
the biological replicate. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 

Fig. 5. (A) Probability density function of the variability of the D-value within 
strain FBR16. The solid line represents the expected value and the shaded area 
the 90 % credible interval (calculated using MC simulations with 1000 simu
lations). (B) Credible interval of the predicted microbial count of 
L. monocytogenes FBR16 in the media during an inactivation treatment at 55 ◦C 
for a fixed initial concentration of 8 log CFU/ml accounting for within-strain 
variability and the uncertainty associated to the estimate of variability (calcu
lated using 100 MC simulations in the variability dimension and 10⋅100 MC 
simulations in the uncertainty dimension). The experimental data used to build 
the model is included for reference (o), although the interval does not include 
the effect of the experimental error. 
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hypothesis of no aggregation of microbial cells, the error of the sampling 
can induce this type of tail when plates with low colony counts are used 
for model fitting (Garre et al., 2019). Furthermore, there are several 
plates without any colonies (half points on the x-axis) at t = 80 and t =
120 min that cannot be included in the traditional approach. Conse
quently, there are reasons to question whether this tail is a biological 
mechanism or an experimental artefact. 

The traditional model for fitting inactivation models cannot account 
for this nuance, and will always find the best fitting line disregarding the 
number of colonies in the plate (i.e., it directly considers the concen
tration estimated by Eq. (1)). The MPC method, on the other hand, 
considers in the calculation of the likelihood the number of colonies 
observed, the number of dilutions and the plated volume. Consequently, 
it can account for both possibilities (curvature of the primary model, or 
plating error) and fit the most probable one. In this particular case, 
based on the available information and according to the model likeli
hood, the MPC method determines that it is more likely that this 
observed tail is an artefact of the plating. Nevertheless, it is always 
important to corroborate the results of complex statistical methods with 
expert knowledge. Although this approach introduces some hypotheses 
to consider the error of the plating in parameter estimation, these hy
potheses are based on a “correct” procedure and idealizations. If there 
was any kind of experimental mistake (e.g., mislabelling of plates), or 
some biological mechanism (e.g., cell aggregation), it would not be 
compensated by the complex hypotheses of this method. 

The large variation between the models fitted to each biological 
replicate is reflected in the estimates of variability for L. monocytogenes 
FBR14, as illustrated in Fig. 7. For this strain, we have used the Mafart 
primary inactivation model, where the curvature direction of the sur
vivor curve is described by parameter β. When β > 1, the survivor curves 
have a downward curvature, whereas β < 1 results in the opposite. As 
illustrated in Fig. 7B, the variability distribution estimated for this 
parameter includes values both greater and smaller than β = 1 (logβ = −

0.2; σlogβ = 0.4). An interpretation of this result is that, according to the 
experimental data and considering the likelihood function, the 
multilevel-MPC model could not conclude whether survivor curves for 
independent cultures not included in the experiment would have up
ward or downward curvature. 

The estimates of variability also have large uncertainties (Fig. 7). 
This is not the result of some limitation of the modelling approach. 
Indeed, when the MPC method is used to describe the data as a whole 
(Fig. 3D) or for each repetition independently (Fig. 6), the method is 

able to estimate the primary model with lower uncertainty than the 
other methods. Furthermore, when the multilevel modelling approach is 
supplied with inactivation data from a large number of strains, it can 
estimate the variability with precision (Garre et al., 2020). Instead, this 
uncertainty is due to the amount of information included in the data 
(lack of information, in this case) because, as already mentioned for 
strain FBR16, variability is estimated based only on three experiments. 
In the case of strain FBR14, this lack of information is enlarged due to 
the larger discrepancies between the individual repetitions. This em
phasises that every estimate of variability will have some uncertainty, 
and that it is important to include this uncertainty in model predictions. 
Although variability is often parameterized as a variance, it is a model 
parameter estimated from empirical data. Therefore, as any other 
parameter, its parameter uncertainty should be quantified using stan
dard errors, confidence intervals, prediction intervals or similar statis
tical quantities. 

3.3. Final recommendations based on the comparison between the 
methods 

The development of novel methods to estimate more accurate 
models from experimental data has received some attention during the 
last years (Chik et al., 2018; Duarte et al., 2015; Garre et al., 2020; Hiura 
et al., 2021; van Boekel, 2020, 2021). However, when developing such 
methods, it is important to reflect on the limitations of the reference 
method that the novel method must improve. In the case of microbial 
inactivation in liquid products, the reference method is undoubtedly 

Fig. 6. Comparison of the data on the inactivation of L. monocytogenes FBR14 
used to build the models (o) and the credible intervals of the models fitted at the 
90 % level (ribbons). The points were obtained from three independent bac
terial cultures and are coloured accordingly. (For interpretation of the refer
ences to colour in this figure legend, the reader is referred to the web version of 
this article.) 

Fig. 7. Probability density function of the variability of the δ-value (A) and the 
β-value (B) within strain FBR14. The solid line represents the expected value 
and the shaded area the 90 % credible interval (calculated using MC simula
tions with 1000 simulations). 
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OLS regression using a frequentist approach. This approach assumes that 
the residuals follow a normal distribution with mean zero and constant 
variance (Eq. (2)). Microbial inactivation experiments often deviate 
from these hypotheses mainly for three reasons. The first one is that the 
normal distribution is defined for continuous values, whereas microbial 
concentrations are estimated based on the number of colonies counted 
on a Petri dish. Therefore, this empirical approach can only calculate a 
discrete set of microbial concentrations (although these discrete 
numbers do not have to be integers). If the expected number of colonies 
in the plate is high, this limitation is practically irrelevant. However, if 
the expected number of colonies is low (in the order of tens), the method 
can only estimate a limited range of values (Garre et al., 2019), resulting 
in a large deviation with respect to the hypothesis of normality of 
regression. 

The second reason that can make experimental data on microbial 
inactivation deviate from the normality hypothesis is the fact that 
(under the simplifying assumptions described in Section 2.2.4) the 
number of colonies in a plate follows a Poisson distribution. If the ex
pected number of colonies in a plate is high (in the order of hundreds), 
the probability mass function of the Poisson distribution is similar to the 
probability density function of a normal distribution. However, if the 
expected number of colonies in the plate is low (in the order of tens), the 
Poisson distribution has a right hand tail (Garre et al., 2019). As shown 
in Eq. (11), the expected value of the number of colonies on the plate 
depends both on the number of dilutions and the plated volume. This 
can result in observations with non-constant variance (Fig. 2; Supp. 
Fig. 1), introducing an additional deviation with respect to the model 
hypotheses. On top of this, the third deviation with respect to the as
sumptions of regression is the autocorrelation between the observations 
of each experiment, introducing a violation of the independence 
assumption of the residuals (van Boekel, 2021). 

Consequently, the sampling error of the plating method introduces 
some violations of the stochastic hypotheses of regression. Nonetheless, 
the relevance of this deviation will depend on the experimental design. If 
the experimental protocol follows common recommendations, including 
only plates with >30 colonies (Jarvis, 2008), there should not be any 
relevant violation of the normality hypotheses (due to the sampling 
error) and the traditional method could be used safely. However, this is 
not always attainable in practical situations. The first step in experi
mental protocols is the preparation of a bacterial culture, which will 
seldom reach a concentration higher than 8 log CFU/ml. Next, experi
mental protocols often require at least one dilution before carrying out 
the experiments, so the initial microbial concentrations are often be
tween 6 and 7 log CFU/ml. Considering that process design often targets 
a number of reductions in the order of 6 log-reductions, the concentra
tion at the end of the experiment would be between 0 and 1 log CFU/ml. 
According to Eq. (12), in order to expect 100 colonies in a plate, a mi
crobial concentration of 1 log CFU/ml would require pouring 10 ml 
(0.01 l) of liquid media in a Petri dish, a fully unpractical volume in most 
experimental settings. A concentration of 0 log CFU/ml would require 
an outrageous volume of 100 ml (0.1 l). As a result, microbial inacti
vation experiments often need to consider plates with low colony counts 
(in the order of tens), especially at the end of the experiment. 

Considering that low plate counts can introduce a relevant violation 
on the hypotheses of regression, the development of novel methods to 
introduce this information robustly for model fitting can be of great 
interest. In this article, we have analysed three methods for this: Poisson 
regression (Eq. (5)), gamma-Poisson regression (Eq. (8)) and the MPC 
method (Eq. (11)), a novel approach proposed within this article. Our 
results show that the Poisson regression method has several limitations 
for microbial inactivation that generally discourage its application. 
Although it can account for discrete microbial counts, this method 
proposes an unrealistic likelihood function that results in biased 
parameter estimates. The reason for this deviation is that, although the 
microbial concentration during an inactivation treatment follows a 
Poisson distribution under some simplifying hypotheses (Garre et al., 

2021), it is impossible to directly observe the microbial concentration in 
the media. Instead, we have to use as a surrogate of the number of 
colonies in a Petri dish after a given number of dilutions. Although 
(under simplifying assumptions (Garre et al., 2019)) the sampling error 
of the plating does not change the type of distribution, it does change its 
expected value, which depends both on the number of dilutions and the 
plated volume (Eq. (12)). As evidenced in Fig. 3, this results in a variance 
in the experimental observations that deviates severely with respect to 
the expectation of the Poisson regression (illustrated in Fig. 2B). More
over, in Supp. Document 1, we replicate the fit of the data reported by 
Hiura et al. (2021), reaching the same conclusions. Therefore, the 
Poisson regression method would only be valid for data without any 
dilution, something extremely rare in microbial inactivation 
experiments. 

In this article, we propose the MPC method for fitting microbial 
inactivation models in liquid media. It can be seen as an improvement 
upon Poisson regression that accounts for the sampling error of the 
plating and serial dilution, resulting in a more realistic likelihood 
function. Therefore, it is a robust method to include plates with low 
numbers of colonies in inactivation models, as well as for experimental 
designs that combine different dilutions (or plated volumes) for the 
same time point. A second advantage of the MPC method is that it 
separates between the “ideal” microbial concentration according to the 
primary model (Y(t)), the “actual” microbial concentration in the media 
considering the effect of chance (Nmedia), and the observed microbial 
count on/in a plate (Nplate). This can result in a large reduction in the 
uncertainty of the primary model parameters (Figs. 1, 3; Tables 1–2). It 
is worth highlighting that this uncertainty reduction is “for free”, in the 
sense that it is not based on the introduction of additional model pa
rameters (e.g., ϕ in Gamma-Poisson). It is based on the introduction of 
equations describing the sampling error of the plating method based on 
mechanistic hypotheses (as derived by Garre et al. (2019)). Although it 
has been used here to fit only primary models, its extension for fitting 
also secondary models in a one-step approach is trivial (Stan code 
available in https://github.com/albgarre/MostProbableCurve/blob 
/main/MPC_one_step.stan), and is also easily applicable to microbial 
growth. 

The identification of different sources of uncertainty and variability, 
their quantification and their separation has received plenty of interest 
by the scientific community in recent years (den Besten et al., 2018; 
Garre et al., 2020; Jaloustre et al., 2012; Koyama et al., 2019). Never
theless, it is important to reflect on the types of uncertainties included in 
a model, and whether they are of relevance for the case studied. In this 
sense, the uncertainty introduced by the sampling error of the plating is 
unique to the experimental setting. In the food chain, the consumer 
intakes every microbial cell in a serving, not a sample taken after a 
number of dilutions. Therefore, this source of uncertainty should, in 
general, not be part of a predictive model for MRA or shelf life estima
tion. Considering that the MPC method is able to separate its contribu
tion, this method poses a clear advantage with respect to the other 
methods that include a single source of variance. Nonetheless, microbial 
inactivation is affected by numerous sources of variability and uncer
tainty. In this sense, the MPC method, being a multilevel model, has the 
advantage that it can be extended to include additional sources of 
variability and/or uncertainty. 

Nonetheless, it is worth highlighting that the application of the MPC 
method as defined in Eq. (11) does not introduce any variability in the 
model. Variability is often defined as an inherent source of variance that 
is part of the system, so it cannot be reduced by gathering better or more 
information (Nauta, 2000). As illustrated in Fig. 2, the contribution of 
the plating method can be strongly modified using different experi
mental designs. Therefore, it is a source of uncertainty. Furthermore, 
even if the underlying inactivation model is non-linear (Eq. (7)), this 
equation does not introduce any sort of explicit hypotheses regarding 
variability. There are two hypotheses to explain the type of curvature 
observed in Weibullian inactivation models: a heterogeneous microbial 
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population with static resistance or a homogeneous population with 
dynamic resistance. Assuming a heterogeneous population would 
deviate from the hypothesis introduced by Garre et al. (2021) to justify 
the Poisson distribution within the heating media. Therefore, the MPC 
method is based on a homogeneous population; i.e., it does not include 
any sort of variability by default. In order to include variability, one 
would need to extend the multilevel model with explicit hypotheses on 
how the kinetic parameters vary within different levels (for instance, as 
illustrated in Sections 2.3 and 3.2). 

In spite of its advantages with respect to other methods, the MPC 
method also has some limitations. The first one is the use of a different 
type of input. Instead of using the microbial concentration (e.g., log 
CFU/ml) calculated by Eq. (1) for different time points, it uses the 
number of colonies observed in a plate (CFU), the number of serial di
lutions and the plated volume for each observation. This changes the 
way data should be stored and organised, and is a first hurdle (albeit 
minor) for the use of this method. A second (more relevant) limitation is 
that it uses a complex likelihood function (Eq. (12)). Although the model 
could potentially be fitted using frequentist statistics, it would require 
the application of advanced numerical algorithms, especially for the 
estimation of confidence intervals (Vilas et al., 2018). For that reason, it 
is advisable to fit the MPC model using Bayesian statistics. This in
troduces an additional complexity in terms of model definition, fitting, 
validation, interpretation and communication that should not be 
underestimated (Garre et al., 2020). 

A third relevant limitation of the MPC approach is model validation. 
There are plenty of guidelines and recommendations for evaluating the 
goodness of the fit of regression models (Bates and Watts, 2007). 
However, most of these statistical tests and graphical checks are based 
on the hypotheses that the residuals follow a normal distribution with 
constant variance. Hence, they are not generally applicable for the MPC 
method because this method uses a different likelihood function (nor are 
they applicable for Poisson regression or Gamma-Poisson regression). 
This is a main limitation of the MPC method because it does not include 
a specific parameter to quantify the unexplained variance (such as σ in 
the traditional method or ϕ in Gamma-Poisson regression). Conse
quently, in a similar way as the Most Probable Number method, the 
robustness of the estimates by MPC is dependent on the underlying 
model hypotheses (described in Section 2.2.4) being true. 

For this reason, the development of reliable methods to validate the 
goodness of the fit of this modelling approaches with non-normal like
lihoods are a topic of great relevance for the application of methods with 
non-normal likelihoods, especially those lacking an error term. In this 
sense, the Bayesian approach has large potential due to its focus not only 
on fitting (also called “retrodiction” (McElreath, 2016)), but also on 
predictive capacity of the models. Therefore, methods like posterior 
predictive checks, WAIC (widely applicable information criterion), 
WBIC (Widely Applicable Bayesian Information Criterion) and loo-cv 
(leave-one-out-cross-validation, including Pareto smoothed impor
tance sampling) could potentially be used to evaluate the goodness of 
this type of model (Gelman et al., 2014; Vehtari et al., 2017). 

Considering the limitations of the MPC method and those of the 
traditional method summarised above, we recommend using the MPC 
method when the data contains a large number of plates with low counts 
(<30 colonies) or with zero colonies. If this is not the case, the standard 
regression method should return similar parameter estimates without 
the added complexity. The Gamma-Poisson method could be used as a 
convenience solution that mixes some advantages and disadvantages of 
both the traditional and MPC method. According to our results, Poisson 
regression has strong limitations for the analysis of microbial inactiva
tion data, and its use should be discouraged against methods with more 
realistic likelihood functions. 

Some of these limitations of the MPC method could be mitigated 
through the development of user-friendly (web) applications that allow 
using this advanced method without the need to implement its calcu
lations (Possas et al., 2022). A first step is the development of R packages 

such as rethinking (McElreath, 2016) or brms (Bürkner, 2017), which 
simplify the definition of Bayesian models. Nonetheless, it is worth 
highlighting that a cook-and-look approach can be dangerous. In other 
words, it is necessary that researchers are aware of the underlying 
(statistical) hypotheses of models. In this sense, the Bayesian approach 
can be seen as an advantage because it “forces” researchers to commu
nicate these assumptions explicitly (van Boekel, 2020). 

4. Conclusions 

This article presents a new method to fit microbial inactivation 
models from data on liquid media: the Most Probable Curve (MPC) 
method. It is a multilevel model based on two hypotheses: homogeneous 
stress resistance within the microbial population, and the lack of ag
gregation of microbial cells. Under these assumptions, it can be 
concluded based on mechanistic arguments that the number of colonies 
in/on a plate follows a Poisson distribution with expected value 
depending on the kinetic parameters, the number of dilutions and the 
plated volume. 

A comparison between the MPC method, traditional regression, 
Poisson regression and Gamma-Poisson regression highlights that the 
traditional method loses robustness when the inactivation data includes 
a large number of plates with low or zero counts. In those cases, the 
Gamma-Poisson and the MPC methods can improve the robustness of the 
estimates. Despite the fact that the low and zero count data contain less 
robust information, the information is accounted for statistically correct 
in contrary to the traditional method. Poisson regression defines a 
likelihood function that seems unrealistic for high microbial concen
trations, so its application is discouraged. 

An advantage of the MPC with respect to the other methods tested is 
a separation between the uncertainty of the primary model, the effect of 
chance and the uncertainty associated with the sampling error of the 
plating method. This results in a significant reduction of the prediction 
uncertainty for microbial risk assessment and shelf life estimation. On 
the other hand, the MPC method involves additional complexity in 
model definition, implementation, validation, and communication. 
Based on our results, we conclude that the MPC method can be of great 
interest for parameter estimation in predictive microbiology, especially 
from data that include low plate counts. Furthermore, its hypotheses can 
be used to support (optimal) experiment design, including the effect of 
the number of dilutions and the plated volume on the variance of the 
experimental observations. Consequently, we anticipate that the method 
will be of great interest for predictive microbiologists, especially in 
studies focused on variability analysis. 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.ijfoodmicro.2022.109871. 
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Jaloustre, S., Guillier, L., Morelli, E., Noël, V., Delignette-Muller, M.L., 2012. Modeling of 
Clostridium perfringens vegetative cell inactivation in beef-in-sauce products: a 
meta-analysis using mixed linear models. Int. J. Food Microbiol. 154 (1), 44–51. 
https://doi.org/10.1016/j.ijfoodmicro.2011.12.013. 

Jarvis, B., 2008. Statistical Aspects of the Microbiological Examination of Foods. Elsevier 
Academic Press. 

Koyama, K., Aspridou, Z., Koseki, S., Koutsoumanis, K., 2019. Describing uncertainty in 
salmonella thermal inactivation using Bayesian statistical modeling. Front. 
Microbiol. 10, 2239. https://doi.org/10.3389/fmicb.2019.02239. 

Mafart, P., Couvert, O., Gaillard, S., Leguerinel, I., 2002. On calculating sterility in 
thermal preservation methods: application of the Weibull frequency distribution 
model. Int. J. Food Microbiol. 72 (1–2), 107–113. https://doi.org/10.1016/S0168- 
1605(01)00624-9. 

McElreath, R., 2016. Statistical Rethinking: A Bayesian Course With Examples in R and 
Stan. CRC Press/Taylor & Francis Group. 

Mertens, L., Van, Derlinden, Van Impe, J.F., 2012. Comparing experimental design 
schemes in predictive food microbiology: optimal parameter estimation of secondary 
models. J. Food Eng. 112 (3), 119–133. https://doi.org/10.1016/j. 
jfoodeng.2012.03.018. 

Nauta, M.J., 2000. Separation of uncertainty and variability in quantitative microbial 
risk assessment models. Int. J. Food Microbiol. 57 (1), 9–18. 

National Advisory Committee on microbiological criteria for foods, 2010. Parameters for 
determining inoculated pack/challenge study protocols. J. Food Prot. 73 (1), 
140–202. 

Peleg, M., Cole, M.B., 1998. Reinterpretation of microbial survival curves. Crit. Rev. 
Food Sci. Nutr. 38 (5), 353–380. https://doi.org/10.1080/10408699891274246. 
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