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1 �Introduction
Plant phenotypes are collections of information concerning the composition, 
responses, performance and growth of plants based on the monitoring of their 
physical appearance or characteristics (e.g. height, leaf inclination, colour, yield) 
(Furbank and Tester, 2011; Gjuvsland et al., 2013; Freimer and Sabatti, 2003; Houle 
et al., 2010). Phenotyping is an essential manifestation of the synergy between 
genotyping and the environment. Whereas genotyping concerns the final 
appearance of plant growth and development, the results of phenotyping can differ 
according to several environmental factors. The main factors that interfere with the 
process and results of plant growth are transcriptome, proteome and metabolome, 
as well as the induction of mutations in specific genes within the plant genome 
(Pieruschka and Poorter, 2012). As a result, plants of the same genotype can exhibit 
varying phenotypic features in different environments. The analysis of phenotypes 
can provide valuable information for the functional analysis of genomes and 
molecular breeding, thus helping to enhance yields with plants that are resistant 
to drought, salinization, disease and other consequences of climate change (Tester 
and Langridge, 2010; Yang et al., 2013; Pan, 2015; Araus et al., 2018).

The traditional estimation method for phenotyping relies primarily on 
human observation, manual measurement or destructive sampling tests (Pask 
et al., 2012; Maiti et al., 2004; Qiu et al., 2018). In addition to being time-
consuming and labour-intensive, such processes produce test results with low 
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accuracy. As phenotyping in plant breeding has advanced, a large number 
of scientific research institutions and organizations have been investing in 
research on the acquisition of phenotypic information. Sensor technologies 
have been advancing at the same time. The field now has access to a variety 
of sensors, including ground spectrometers and colour, thermal, multispectral 
and hyperspectral imaging devices, in addition to light detection and ranging 
(LiDAR), amongst other possibilities (Zhang et al., 2019; Chéné et al., 2012; 
Andújar et al., 2015; Stovall et al., 2017; Sakamoto et al., 2012; Falco et al., 2015; 
Stoll et al., 2008). Research investments in these devices have brought about 
a qualitative leap in the development of phenotyping monitoring while also 
driving the construction of sensor-carrying platforms – within the context of this 
chapter, ‘field robots’. Phenotyping field robots are autonomous, self-driving 
devices that are equipped with a range of sensors that are able to reach each 
spot on the field and carry higher payloads than are possible with unmanned 
aerial vehicles (UAVs). Testing methods that rely on manual, handheld sensors 
obstruct the ability to meet the demand for high-throughput information in 
phenomics research. New directions within this field include multi-sensor 
deployment, continuity, synchronicity and high throughput. Developments 
have also included the introduction of field robots, the Internet of Things (IoT), 
large vehicle platforms and remote-sensing platforms (e.g. UAVs and satellites) 
(Shakoor et al., 2017; Hunt et al., 2005; Thomason et al., 2011; Henry et al., 2002; 
Mirik et al., 2011). A conceptual depiction of the integrated system created by 
the Netherlands Plant Eco-phenotyping Centre (NPEC) is presented in Fig. 1.

Methods of phenotype monitoring have been enriched by the application 
of the IoT. This technology uses a variety of sensors with different functions 
to process phenotypic data and to achieve mutual communication between 
sensors based on the technology of wireless sensor networks (WSN). Finally, 
plant-phenotyping parameters are obtained by applying the inversion model 
between sensor data and plant phenotypes (Fan et al., 2021). The common 
application of open-field IoT consists largely of deploying fixed monitoring 
nodes. For example, Liu et al. propose intelligent sensing nodes for farmlands 
and the associated field-deployment method, which is capable of efficiently 
sensing various parameters, including the leaf area index (LAI) of rice and 
wheat crops (Liu et al., 2015). In addition, Bauer et al. (2019) designed low-cost 
sensors based on the technology of WSN and interconnected them with in situ 
agricultural sensor networks in order to estimate crop LAI (Bauer et al., 2019). 
Furthermore, Avotins et al. (2020) used IoT technology to design a camera for 
recording the single-image normalized difference vegetation index (SI-NDVI). 
The device can be used to continuously obtain NDVI data on greenhouse 
tomatoes and diagnose tomato quality according to diurnal variations in NDVI 
(Kviesis et al., 2020). Another new hotspot of agricultural research involving 
IoT technology has to do with the combination of fixed nodes with UAVs and 
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unmanned ground vehicles (UGVs). In this regard, Gao et al. (2020) designed 
a cooperation scheme between UAV and fixed IoT sensor nodes in the field, in 
which the IoT nodes are used to obtain meteorological parameters. The UAV 
serves as an image-acquisition node in order to obtain hyperspectral crop 
images for the diagnosis of pests (Gao et al., 2020). With regard to the methods 
of data collection, Uddin et  al. (2018) propose a UAV dynamic method that 
can efficiently and intelligently select fixed IoT field nodes for collecting data 
through mobile UAV nodes. The method could potentially reduce the energy 
consumption of fixed IoT nodes and extend their service life (Uddin et al., 
2018). As demonstrated by these studies, the application of agricultural IoT 
technology can facilitate the acquisition of phenotypic information on plants. 
In the open-field environment, however, sensors and mechanical devices are 
exposed to harsh weather conditions, thereby decreasing the lifetime of any 
IoT instrument and requiring frequent maintenance. Although fixed nodes can 
be used to cover a large area at the same time, their use in full-range testing is 
severely limited, as fixed nodes cannot move by themselves.

A research team at the American University of Rome in Italy started 
investigating variable-rate fertilizer applicators and their supporting 
technologies based on optical-sensing information in 1993. This research led 
to the 2002 development of the real-time variable fertilizer applicator known 
as ‘GreenSeeker’, which uses spectral reflectance to monitor crop-growth 

Figure 1 Artist’s impression of a field robot and several drones collecting phenotypic 
information in a field. Courtesy: Netherlands Plant Eco- phenotyping Centre (NPEC) 
(2021).
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information and calculate nutritional status in crops (Lukina et al., 2001). 
This system was followed by the vehicle-mounted crop growth sensor Yara 
N-Sensor, which was first tested in 1998 and mounted on agricultural tractors in 
2002 (Link et al., 2003). Since then, digital sensors have increasingly been used 
for open-field vehicle platforms. This study traces the early development of the 
tractor as a vehicle platform in the process of acquiring high-throughput data. 
In the actual testing process, however, it is easy to cause irreversible damage 
to fields and field crops due to the large weight, low chassis and lack of a field-
control robot model. It is thus not conducive to sustainable development.

Aerial remote-sensing platforms allow the rapid, real-time acquisition of 
large-area crop-phenotypic information. One common type, the UAV, offers 
the advantages of high efficiency, flexibility, convenient operation and strong 
terrain applicability. Combined with its lower cost and greater accessibility, the 
recent increase in the popularity of UAVs has led to the widespread use of this 
technology for plant phenotyping (Sagan et al., 2019). A large body of research 
results has been accumulated with regard to the use of UAVs to acquire 
information on the phenotypic characteristics of plants (Xie and Yang, 2020). 
The characteristic phenotypic parameters that can be obtained using UAVs 
include LAI, nutritional parameter status, biotic and abiotic threats (Su et al., 
2019; Buchaillot et al., 2019; Chivasa et al., 2020). As the demand for agricultural 
monitoring has increased, a variety of satellite sensors have been introduced 
to the market. New monitoring methods have emerged (e.g. fluorescence, 
multispectral and hyperspectral measurements). The classification of plants and 
the measurement of their phenotypic information can be achieved effectively 
through the analysis of medium-resolution or high-resolution satellite images. 
Commonly used satellite series include the Sentinel-1/2 satellites, the 
WorldView satellite and the Landsat satellite. More specific applications of 
satellite images are referenced in an overview published by Zhang et al. (2020). 
Although high-altitude satellite images cover the most comprehensive range, 
they are subject to three important disadvantages: some of these images are 
expensive; some have only low resolution and, in many cases, the image quality 
is diminished by clouds, thereby requiring extensive optical correction.

Lightweight field robots offer a number of advantages over large tractors 
or UAVs: flexible operation, minimal impact on soil and crops, durability and 
the ability to accommodate larger payloads (Michaels et al., 2015a,b). It is 
more difficult for field robots to obtain phenotypic data on large-scale plant 
groups simultaneously than it is for drones and satellites. They are nevertheless 
capable of providing all-around, multi-angle and automatic monitoring of the 
mounted sensors, which makes them highly suitable for integrating state-of-
the-art AI technologies (Grigorescu et al., 2020; Zhou et al., 2018). Based on the 
advantages of field robots in phenotyping monitoring, more mature platforms 
have been introduced on the market, and several have performed well in 



© Burleigh Dodds Science Publishing Limited, 2022. All rights reserved.

Field robots for plant phenotyping﻿ 5

field experiments. It is important to note, however, that different countries 
and regions have different plant species and varieties. Most existing field 
robots focus only on specific plant species with similar growth characteristics, 
and none of the existing phenotypic robots is capable of the comprehensive 
general monitoring of multiple plant species.

2 �Specific challenges associated with field robots
Based on their operating environments, phenotyping field robots can be 
roughly classified suitable for use indoors (controlled environment) or in the 
field (uncontrolled environment) (Kirchgessner et al., 2016; Pieruschka and 
Schurr, 2019). Research on indoor robots pre-dates that on field robots. In 
2003, Belgian CropDesign pioneered the development of a high-throughput 
phenotyping monitoring platform known as TraitMill (Reuzeau et al., 2006), 
which uses a plant-to-sensor working mode and which can automatically 
obtain phenotypic information on potted plants in a greenhouse. Since that 
time, scientific research institutions in Germany, Australia, the Czech Republic 
and other countries have also successfully launched numerous platforms for 
acquiring phenotypic information indoors (Deery et al., 2014; Yang et al., 2013). 
Several of these platforms are displayed in Fig. 2.

Most of the indoor high-throughput phenotyping platforms and automated 
robot facilities mentioned above focus on monitoring changes in above-ground 
plant characteristics. To observe below-ground characteristics, researchers 
have explored innovative monitoring solutions for soil and plant roots involving 
rhizotrons and Ecotrons. Rhizotrons are amongst the earliest non-destructive 
below-ground sensing platforms. Due to limitations in sensor technology, early 
rhizotron facilities relied on human inspection through cellars or underground 
corridors with transparent glass windows. By entering such facilities, researchers 

Figure 2 Indoor phenotyping platforms. (a) WIWAM xy is a robot for the high-throughput 
and reproducible phenotyping of seedlings and small plants (e.g. Arabidopsis). (b) 
Conveyor Scanalyzer is an automated high-throughput platform for indoor environments 
(e.g. glasshouses, growth rooms, climate chambers). (c) TraitFinder is a powerful tool that 
automates plant phenotyping and screening applications.
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could directly observe root phenotyping and soil condition (Klepper and 
Kaspar, 1994). Despite their advantages, massive underground observation 
facilities are expensive, are troublesome to maintain and have major destructive 
effects on the soil structure. The rapid advancement of sensor technology and 
the continuous improvement of automated robotics technology have allowed 
the continuing development of small, highly accurate observation devices. 
The research and development of Ecotrons have at least partially facilitated 
the study of the relationship between above-ground phenotyping, below-
ground phenotyping and environmental characteristics. The device’s more 
intelligent control is able to monitor soil status, plant-root phenotyping and the 
above-ground phenotypic characteristics of plants, while simulating different 
natural environmental conditions in order to control changes in ecological 
environmental factors to induce different stress conditions in plants (Granjou 
and Walker, 2016; Roy et al., 2021). Indoor platforms for plant phenotyping 
monitoring offer high accuracy and reliable repeatability, and they are not 
easily disturbed by the external environment. These approaches to monitoring 
below-ground aspects have nevertheless been criticized as deviating from the 
actual growth environment, such that the phenotypic information extracted 
with these systems is negatively affected by the artificial growth conditions to 
which plants are exposed (Jiang et al., 2018).

Phenotyping open-field robots are subject to even more challenges than 
is the case for other robots. First, farmland environments are challenging and 
complex, often with relatively harsh terrain characterized by stones and uneven 
surfaces. In addition, the spacing of plants is often too narrow for robots to 
move between rows. Because of these conditions, robots must be able to 
respond quickly to differences in terrain and ensure highly accurate auto-
navigation. Second, the growth of plants is directly affected by the environment 
and growth period, and plant morphology changes accordingly. Moreover, 
due to the diversity of sensing principles applied in phenotyping, the sensors 
used for phenotyping require a variety of monitoring heights and angles. 
The acquisition of phenotypic information by field robots should be able to 
adapt to sensor-monitoring requirements and changes in plant morphology. 
Finally, field-planting areas are larger than those of greenhouses. Mobile 
robots are often expected to work in teams or to work in conjunction with 
other tools (e.g. IoT devices and drones), in order to achieve high-efficiency 
monitoring. Fieldwork also places higher demands with regard to safety and 
the communication between various devices.

3 �Currently available field robots for phenotyping
The development of field-phenotyping robots begins with the transformation 
of agricultural machinery. Phenotypic information is obtained by mounting 
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sensors on tractors or sprinklers, as is the case with applications of the 
GreenSeeker airborne sensor developed by the NT Company (Wójtowicz et al., 
2016) and the Yara N-sensor from the Agri Con GmbH Company (Link et al., 
2003). Although the load capacity of these agricultural machinery platforms is 
sufficient to meet the needs of high-throughput testing, they are highly likely to 
cause damage to plants and soil during operation, and it is difficult to perform 
all-around and multi-view testing for different sensors. With the development of 
automation technology and robot technology, agricultural machinery platforms 
have been gradually replaced by more field-specific robots.

3.1 �The design of the current field robots

After a period of development, the design of field robots has become more 
diverse. Depending on chassis and operating modes, they can be roughly 
divided into the categories of track, crawler, foot and wheeled robots, as shown 
in Fig. 3.

Track robots often use the gantry structure constructed with two supports 
and a connecting beam in the middle. The sensors are fixed on the beam with 
the vision field perpendicular to the crop canopy. Rails or tracks on both sides 
of the field plots enable the gantry to move repeatedly along a fixed trajectory. 
Sensors can move along the beam to obtain phenotypic data. Another type of 
track robot is the rope camera, which often uses hanging ropes and electric 
hinges to drive sensors along the plant canopy (Kirchgessner et al., 2016; 
Bai et al., 2019). The PhenoField gantry robot (co-designed by Robepec and 
Meca3d and located in France) can test the abiotic stress of wheat (Beauchêne 

Robot types Robots Advantages Disadvantages

Track
robots

Strong load capacity
High repeatability
Extremely convenient control

Requires long-term maintenance
Low moving flexibility
High investment
Relatively small monitoring area
Complex structure

Crawler
robots

Strong ability to cross obstacles
Powerful terrain adaptability
High moving stability

Slow speed and low efficiency
Loud/noisy
Majordamage to crops

Legged
robots

Good manoeuvrability
Small ground-touch area
Low damage to crops

Complex control method
Poor moving stability
Slow speed and low efficiency

Wheeled
robots

Easy to control
High mobility
High working efficiency
Conducive to sensor deployment

Poor ability to cross obstacles
Easy to slip on muddy ground

Figure 3  Field robots with different structural designs (Beauchêne et al., 2019; Virlet 
et al., 2016; Susko et al., 2018; Basu et al., 2020; Young et al., 2019; Zhang et al., 2013; 
Dorhout, 2021; Shafiekhani et al., 2017; De Solan et al., 2015).
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et al., 2019). In 2016, the University of Arizona’s Maricopa Agricultural Center 
built the world’s largest gantry robot, the Field Scanalyzer, which has 200-metre 
steel rails and can acquire phenotypic information on energy sorghum across 
an areas of more than 1.5 acres (Virlet et al., 2016). The structure of the FieldScan 
robot (manufactured by Phenospex) is similar to that of other track robots 
(Vadez et al., 2015). In general, the width and height of track robots depends on 
the size of the plots on which they are used. One important advantage of these 
devices is that they are able to carry large numbers of sensors for continuously 
monitoring a specific area, with reliable repeatability. Given that the platform 
is exposed to the natural environment for a long time, however, it requires 
frequent maintenance. Moreover, the track structure does not provide sufficient 
flexibility, and the monitoring area is relatively small.

Crawler robots offer the advantages of strong obstacle-crossing ability and 
stable operation. They are often used in agriculture for purposes of automatic 
land preparation prior to sowing and mechanical harvesting (as reported by 
Zhang et al., 2013; Noguchi and Barawid Jr., 2011; and Takai et al., 2013). Given 
the shortcomings of the crawler structure’s large contact area, low ground 
clearance and inability to perform cross-row operations, it causes considerable 
damage to the plants and soil during movement. Several applications have 
been developed for the acquisition of phenotypic information. For example, 
Young et al. (Young et al., 2019; Baharav et al., 2017) developed a small-tracked 
field robot—the Transportation Energy Resource from Renewable Agriculture 
Mobile Energy-crop Phenotyping Platform (TERRA-MEPP)—for the purpose 
of monitoring energy sorghum. This platform is able to run between planting 
rows, with the sensor perspective extended through sensor support in order to 
obtain phenotypic information on sorghum. Another small crawler robot was 
developed by Ibex Automation Ltd. for the purpose of weed identification and 
precision weeding (Basu et al., 2020). This robot nevertheless causes damage 
to plants, due to the low ground clearance of its chassis. This problem is difficult 
to resolve.

Research on legged robots has only recently started, and the related 
technologies are still under active investigation with regard to sophisticated 
control, unstable movement and other matters. Dorhout (2021) designed a 
legged robot—the ‘metal crab’—that can explore field conditions using a camera 
and other sensors mounted and assisted by agricultural equipment in such 
operations as sowing, fertilizing, planting, dispersing herbicides or picking 
fruit. Although a report has been published on agricultural auxiliary equipment 
(Toyama and Yamamoto, 2009), we have not found any successful application 
for obtaining phenotypic information. In addition to the field of agriculture, 
research on legged robots has been conducted in industrial settings. The 
Legged Squad Support System (LS3) introduced by Boston Dynamics in recent 
years has been used to perform various functions, including moving motion 
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control, obstacle crossing and navigation. For example, the Spot robot was used 
in a sheep-herding demonstration in 2020.1 Due to the combination of more 
intelligent AI systems, the robot can also cope with various sudden situations, 
and it performs outstanding teamwork (Raibert et al., 2008). This technology 
will soon have excellent applications within the context of agriculture and plant 
phenotyping.

Wheeled robots are the most common amongst the field robots that are 
currently used for plant phenotyping, due to their simple control and stable 
operation. Research on wheeled robots is also attracting considerable attention 
from scientific research institutions and enterprises around the world. Related 
research has been conducted by Shafiekhani et al. (Shafiekhani et al., 2017), 
Weiss and Biber (Weiss and Biber, 2011) and Reina (Reina et al., 2018) on 
wheeled robots with low ground clearance, including the Husky A200 and 
the Volksbot RT3. These robots have exhibited good performance in the 
phenotyping of plants with large row spacing (e.g. sorghum, apple, peach). 
Wheeled robots with ground clearance higher than 0.5 m—such as the Ladybird 
developed by the University of Sydney (Underwood et al., 2017), the Bonirob 
co-developed by Bosch (Pretto et al., 2020), and the Robotti by Agrointelli—can 
operate effectively with dwarf-row plants (e.g. soybeans, lettuce, potatoes). The 
Proximal sensing cart, a wheeled robot developed by White et al. (Bai et al., 
2016; Yuan et al., 2018; White and Conley, 2013), has a high ground clearance, 
but movement must be assisted by human thrust. This simple robot is actually 
a modified bicycle, which requires human power to move over fields. It has 
been used successfully in wheat fields. The structure of the PhenoMobile® 
Lite designed by the Australian Plant Phenomics Facility is similar to that of 
the proximal sensing cart. It is also equipped with sensors—including a global 
positioning system (GPS) and an inertial measurement unit (IMU)—which allow it 
to perform automatic phenotyping monitoring (De Solan et al., 2015). Wheeled 
robots with higher ground clearance (>1.2m), including the Phenomobile 
developed by the Australian Plant Phenomics Facility (Deery et al., 2014) and 
the Gecko developed by the University of Queensland, can be used for the 
phenotyping of taller plants. These robots are equipped with height-adjustable 
supports, with a broad adjustment range that is able to accommodate the 
different test heights of sensors.

4 �Sensors and technologies for phenotyping field robots
Physiological and biochemical changes in plants cause differences in their 
phenotypic traits, which subsequently result in changes in their absorption, 
reflection and refraction of certain spectral features (Feng et al., 2008a; 

1 �​https:/​/blog​.rocos​.io​/rocos​-partners​-with​-boston​​-dynamics

https://blog.rocos.io/rocos-partners-with-boston-dynamics
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Thenkabail et al., 2000). Such changes in data on spectral features offer 
an efficient, non-destructive and accurate means of retrieving phenotypic 
information. Many scientific research institutions have carried out related 
research on spectrum-sensing technology and published results with reference 
significance. For example, information on red-light reflection provides good 
inversion results for the LAI and chlorophyll (Thenkabail et al., 2000); the 
near-infrared band (740–1100 nm) provides an effective means of monitoring 
biomass (Shibayama and Akiyama, 1989, 1991); and the combination of the 
near-infrared band and the red-edge band can be used to detect nitrogen 
change (Yao et al., 2019; Zhu et al., 2008).

Based on the aforementioned principles, various non-imaging and imaging 
sensors have been applied to research on the use of field robots in phenotyping 
monitoring, as shown in Table 1. These instruments can acquire information that 
cannot be seen by the naked eye. The most prevalent non-imaging sensors are 
portable ground spectrometers. Examples include ASD Fieldspec (Feng et al., 
2008b; Wang et al., 2012), GreenSeeker (Osborne, 2007), RapidScan (Miller 
et al., 2018) and SPAD (Uddling et al., 2007). Applications of imaging sensors 
on plant-phenotyping platforms include visible-light cameras, multispectral 
cameras, hyperspectral imagers, time-of-flight cameras, fluorescence cameras, 
thermal-infrared cameras and ground-based LiDAR.

Portable ground spectrometers adopt photoelectric sensing technology 
and use photosensitive components to convert photoelectric information. 
For example, electrical signals can be processed in order to calculate the 
characteristic band spectral vegetation index and then to invert specific 
phenotyping information. Commonly used vegetation indices include the 
normalized difference vegetation index (NDVI) (Tucker, 1979), the ratio 
vegetation index (RVI) (Ni et al., 2017), the soil-adjusted vegetation index (SAVI) 
(Huete, 1988) and the enhanced vegetation index (EVI) (Liu and Huete, 1995). 
The retrievable phenotypic parameters include nitrogen nutrition, biomass, 
chlorophyll content and water content.

Compared to non-imaging instruments, imaging sensors can obtain 
information on plant image, spectrum or three-dimensional structure with 
a high volume of visualization information. With regard to the acquisition of 
phenotypic information, in addition to relying on the vegetation index for 
inversion, the image sensors can intuitively extract leaf colour, flowering 
period, plant height, crown coverage, crop water status and other parameters 
according to the differences between the imaging-sensor perception method 
and the data-processing methods. The extracted phenotypic information can 
be combined with AI technologies to perform the rapid identification of plant 
diseases, biological stress and abiotic stress (Valente et al., 2019). For example, 
Sakurai et al. (2018) propose a fully convolutional network (FCN) (Long et al., 
2015) for semantic plant-image segmentation. Shi et al. (2019) combine deep 
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learning with multi-view images to generate a 3D point-cloud representation of 
a plant. Mohanty et al. (2016) have trained a deep convolutional neural network 
(CNN) to identify 14 crop species and 26 diseases. Fuentes et al. (2017) present 
a deep-learning-based approach for detecting diseases and pests in tomato 
plants using images captured in place by a camera with various resolutions. Li 
et al. (2014) report on the acquisition of current images with AI technologies, 
equipment and applications, and Perez-Sanz et al. (2017) summarize various 
image-processing methods. New imaging sensors—including X-ray computed 
tomography (CT), positron emission tomography (PET) and magnetic resonance 
imaging (MRI) (Jahnke et al., 2009)—that have been applied in other fields are 
gradually being used in plant phenotyping monitoring. Due to their investment 
costs and physical limitations, however, these instruments have thus far been 
used in only a limited number of institutes and only in indoor environments.

In addition to phenotypic information sensors, phenotyping robots need 
a variety of auxiliary functional sensors to support automatic field operations. 
They include GPS/real-time kinematic (RTK), IMU, LiDAR, cameras, Hall-effect 
sensors, ultrasonic sensors and ranging infrared sensors. For row crops, 
phenotyping robots require high-precision automatic navigation and path 
planning in order to improve their operational efficiency and avoid damage 
to the plants during movement. Unlike navigation in an open environment, 
automatic navigation in a plant-field environment requires the coordination 
of multiple sensors, including those listed above. While GPS/RTK can provide 
robots with error position information at the centimetre level, IMU can obtain 
a robot’s three-axis attitude angle and acceleration. In addition, LiDAR and 
cameras can sense environmental details in real time and then cooperate with 
GPS/RTK and IMU to achieve simultaneous localization and mapping (SLAM). 
Derived from autonomous driving technology, SLAM has recently been used 
in the automatic navigation of agricultural robots. When a field robot starts 
operating from any location in the field, SLAM can use information from the 
sensors listed above to observe and locate its position, posture and trajectory 
during its movement. A SLAM system thus builds an incremental map based 
on its position to achieve simultaneous positioning, field map construction 
and automatic navigation (Durrant-Whyte and Bailey, 2006; Montemerlo 
et al., 2002). Two components that are essential to SLAM are LiDAR and 
vision technology. Despite its high accuracy, LiDAR (the core method applied 
during early research on SLAM) is also subject to a number of shortcomings, 
including high price, large volume and lack of intuitive vision information. 
As the popularity of consumer-level RGB-D cameras has increased, vision-
based SLAM has also been applied successfully in several research fields (e.g. 
autonomous driving, AR and intelligent robots), with the camera being used 
as the primary sensor and the video stream serving as the input for achieving 
simultaneous positioning and construction (Jiang et al., 2017; Miro et al., 2006). 
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The advantages of this system include the fact that it is inexpensive and able to 
capture images with high resolution in order to classify objects. Its data depth 
is nevertheless not as good as that of LiDAR.

It is also possible to use GPS/RTK to add geo-referencing to phenotypic 
information on plants in order to generate more conducive results in analysis, 
data classification and mapping (Xiu et al., 2010; Tamaki et al., 2013). The pitch 
angle and roll angle provided by the IMU can also be used to calibrate the 
attitude of phenotyping monitoring sensors. Hall-effect sensors can perform 
the robot’s speed test and improve control over the robot, thereby providing 
precise speed change and steering.

5 �Robotic arms for fruit phenotyping and harvesting
Fruit harvesting is the final link between plant cultivation and the most relevant 
process for yielding economic benefits. Traditional fruit harvesting depends 
on the manual assessment of the maturity and quality of fruit. Differences in 
experience with such assessment lead to wide variations in picking results 
across operators, with a direct impact on fruit sales. The recognition of fruit 
phenotypic features is an important part of plant phenotyping research. Fruit 
picking based on the recognition of such features can be combined with eye–
hand coordination to achieve the full automation of fruit harvesting, thereby 
improving the accuracy and work efficiency of fruit picking (Hashimoto, 2003). 
Results of studies on the method of acquiring fruit phenotypic information 
on plants are consistent with those on the method of recognition for other 
parts of the plant. Spectral reflectance monitoring, thermal infrared imaging 
monitoring and the extraction of colour features and textures have also 
demonstrated good recognition effects for fruit phenotypic features (Bulanon 
et al., 2002; Arivazhagan et al., 2010; Jiménez et al., 1999). In addition to the 
basic phenotyping monitoring method, AI techniques can be used to detect 
the position and shape of the fruit under occlusion. For example, Blok et al. 
(2021) use Mask R-CNN to detect the position and shape of broccoli heads for 
autonomous harvesting. Zhao et al. (2016) provide a systematic review of control 
technology based on visual sensors, as used in harvesting robots, including 
recognition technology for fruits and control technology for manipulators.

With regard to fruit picking, the earliest mechanized picking method relies 
primarily on mechanical or pneumatic methods to shake plants. However, 
because this non-selective picking method does not involve the identification 
of fruit phenotyping characteristics, it is more harmful to plants and has low 
work efficiency. As precision and automated fruit-picking methods have 
become more popular, most fruit-picking robotic arm mechanisms have come 
to be designed as two parts: a moving mechanism and an end effector. The 
mobile mechanism is used to adjust the position of the end effector, and the 
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end effector completes the final picking task. In current industrial production, 
the design of manipulators has become more mature, with structures including 
the cylindrical-coordinate type, the rectangular-coordinate type, the spherical-
coordinate type and the joint type (Almurib et al., 2011). When used for open-
field robots, manipulators are subject to a number of complex problems, 
including the random growth of fruit position and occlusion of fruit. For this 
reason, most of the manipulators that are used for fruit picking are based on 
the joint type of design. Motion angle is a key factor in the design of a joint 
manipulator. Although joints with a low degree of freedom (DOF) lack flexibility, 
an increase in degrees greatly increases the difficulty of control. Kondo et al. 
(1996a,b) designed a 7-DOF articulated manipulator that can be used for 
tomato harvesting. The end effector of the manipulator is designed with Type B 
suction cups. After locating the fruit by binocular vision, the suction cup is used 
to grasp and harvest the tomato. Van Henten et al. (2003) designed a 7-DOF 
cucumber-harvesting manipulator. The end effector is designed with scissors 
that can cut the stem of cucumber while clamping it with a suction cup/gripper. 
De-An et  al. (2011) designed a 5-DOF apple-harvesting manipulator with a 
spoon-shaped end effector, which can firmly fix apples and cut stems with an 
electric cutting device. Many studies have been conducted on various fruits to 
be harvested, including strawberries (Xiong et al., 2020), grapes (Badeka et al., 
2020) and pumpkins (Roshanianfard and Noguchi, 2018). The design of the 
mobile mechanisms of these manipulators is relatively similar. Most differences 
have to do with size and degrees of freedom. The design of the end effector 
is based primarily on the comprehensive consideration of the morphological 
structure and texture of the target fruit.

6 �Conclusion and future trends
Current studies have indicated that the use of field robots for phenotyping can 
improve the efficiency, quality, stability and accuracy of acquiring phenotypic 
information (Tsukor et al., 2012; Zhou et al., 2017). Existing phenotyping 
robots nevertheless continue to be designed for monitoring specific plant-
growth periods or plant species. The development of different platforms for 
different plants is costly and time-consuming. The construction of a universal 
phenotyping robot platform is therefore needed. The Thorvald II robot provides 
several ideas for developments in this direction (Grimstad and From, 2017). 
The platform for this robot is designed with various drive chassis and sensor-
support modules. It can adjust the height, width and drive mode of the chassis 
to adapt to differing field-cultivation environments and plant objects. When 
developing the design of phenotyping robots, however, greater attention 
should be paid to intelligent operations. With the support of image sensors and 
AI technologies, robots should be capable of recognizing the row distance and 
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height of plants. They should then have the ability to automatically calculate 
and adjust the mechanical structure in real time, thereby achieving adaptive 
object monitoring and autonomous operations.

With regard to the acquisition of phenotypic information, field robots 
and UAVs offer different advantages. For example, UAVs are more suitable 
for obtaining canopy-level phenotypic information, and they can efficiently 
monitor dynamic changes in plant populations (Holman et al., 2016). In 
contrast, given their limited test height, field robots are more suitable for 
obtaining phenotypic information on individual plants. Given that both group 
and individual characteristics are clearly of great significance to breeding, 
studies that combine the use of UAVs and field robots are highly valuable. 
Future developments in this direction could focus on drones that are capable 
of obtaining macro-scale information on the canopy traits of plant populations 
(e.g. plant emergence rate, ground coverage, LAI and nitrogen content (Burud 
et al., 2017; Schirrmann et al., 2016; Liu et al., 2017; Pretto et al., 2020)). 
The macro-scale data are used to command the phenotyping robots to go 
to specific areas to obtain individual phenotypic information on individual 
representative plants (e.g. plant height, protein content, stomatal conductance 
and nitrogen assimilation rate). Given the large monitoring coverage and 
high efficiency of drones, phenotyping robots can be operated in teams, 
although this obviously increases the requirements for collaboration between 
different software systems. The combination of information at different scales 
can be used to establish the relationship between phenotypic information on 
individual plants and group characteristics. This could improve the prediction 
of dynamic changes in the growth processes of individual plants and groups of 
plants, in addition to providing effective guidance for breeding and cultivation, 
thus ultimately generating maximum-yield production benefits.

When implementing phenotyping sensors, it is important to note that 
some sensors are still difficult to use in open-field environments, due to volume, 
costs, scalability and measurement requirements (e.g. PET, CT and MRI). These 
problems are likely to be resolved as the costs and size of sensor chips decrease 
and further improvements in sensor integration are achieved. In addition, the 
phenotyping monitoring sensors that are currently carried by field robots are 
used primarily to monitor the phenotypic characteristics of the above-ground 
parts of plants. The current technology for below-ground plant phenotyping and 
the evaluation of the soil environment relies on static measurement. There are 
no specialized methods for combining below-ground phenotyping monitoring 
sensors and soil-environment information sensors with moving robots. The 
related sensing technology and intelligent equipment have yet to be developed. 
Data interaction between different sensors is also important with regard to the 
integration of sensor data. Suppose that it is possible to assemble results from 
2D data tests, 3D data tests, spectral tests and temperature tests quickly and then 
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systematically display them through the human-computer interaction interface. 
This could usher in a new era for research on plant phenotyping monitoring. At 
present, however, major differences exist in the control software, test methods 
and data-aggregation methods of different sensor platforms. There are also 
differences in the analytic methods, programming languages and software 
platforms that are used for the analysis of sensing results. To a certain extent, 
these differences pose obstacles to data interaction between sensor devices.

With the advent of 5G (or even 6G), the combination of AI technology and 
phenotyping robots based on 5G communication offers excellent potential. 
Limited by the speed of data transmission, most current phenotyping robots 
rely on a self-mounted host-computer platform to realize the calculation and 
storage of high-throughput data. This method increases the load of the robot, 
and it does not help researchers to track plant phenotyping information in real 
time. Researchers often need to extract data stored by the host computer for 
post-processing after the robots have obtained all of the results. As a result, 
the results lag behind the real-time growth state of the plant. Wageningen 
University & Research has conducted preliminary research on the use of 5G 
technology and achieved real-time control of weeds in sugar-beet fields (Visser, 
2020). The high bandwidth and low latency characteristics of 5G technology 
make it possible to receive newly obtained phenotyping information on cloud 
platforms and remote computers. After the obtained data has been calculated 
through the aforementioned platforms, the results can be fed back to the field 
robots in real time, cooperating with the actuator to achieve totally unmanned 
farm management.

7 �Where to look for further information
The following article provides a good overview of the subject:

	• Atefi, A., Ge, Y., Pitla, S. and Schnable, J. 2021. Robotic technologies for 
high-throughput plant phenotyping: Contemporary reviews and future 
perspectives. Frontiers in Plant Science 12:611940.

Key research in this area can be found in the following organizations:
	• Netherlands Plant Eco-phenotyping Centre (NPEC) at Wageningen 
University & Research (www​.npec​.nl).

	• Australian Centre for Field Robotics – University of Sydney (https://
www​.sydney​.edu​.au​/engineering​/our​-research​/robotics​-and​-intelligent​
-systems​/australian​-centre​-for​-field​-robotics​.html).

	• UMT CAPTE, a scientific research unit based in Avignon (France), a 
collaboration between INRAE, ARVALIS and HIPHEN (https://umt​-capte​
.fr/).

http://www.npec.nl
https://www.sydney.edu.au/engineering/our-research/robotics-and-intelligent-systems/australian-centre-for-field-robotics.html
https://www.sydney.edu.au/engineering/our-research/robotics-and-intelligent-systems/australian-centre-for-field-robotics.html
https://www.sydney.edu.au/engineering/our-research/robotics-and-intelligent-systems/australian-centre-for-field-robotics.html
https://umt-capte.fr/
https://umt-capte.fr/
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	• Jülich Plant Phenotyping Centre (JPPC) – https://www​.fz​-juelich​.de​/ibg​/
ibg​-2​/EN/​_organisation​/JPPC​/JPPC​_node​.html.

	• EMPHASIS, an organization that enables researchers to use facilities, 
resources and services for plant phenotyping across Europe (https://
emphasis​.plant​-phenotyping​.eu/).
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