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1 Introduction

Plant phenotypes are collections of information concerning the composition,
responses, performance and growth of plants based on the monitoring of their
physical appearance or characteristics (e.g. height, leaf inclination, colour, yield)
(Furbank and Tester, 2011; Gjuvsland et al., 2013; Freimer and Sabatti, 2003; Houle
et al., 2010). Phenotyping is an essential manifestation of the synergy between
genotyping and the environment. Whereas genotyping concerns the final
appearance of plant growth and development, the results of phenotyping can differ
according to several environmental factors. The main factors that interfere with the
process and results of plant growth are transcriptome, proteome and metabolome,
as well as the induction of mutations in specific genes within the plant genome
(Pieruschka and Poorter, 2012). As a result, plants of the same genotype can exhibit
varying phenotypic features in different environments. The analysis of phenotypes
can provide valuable information for the functional analysis of genomes and
molecular breeding, thus helping to enhance yields with plants that are resistant
to drought, salinization, disease and other consequences of climate change (Tester
and Langridge, 2010; Yang et al., 2013; Pan, 2015; Araus et al., 2018).

The traditional estimation method for phenotyping relies primarily on
human observation, manual measurement or destructive sampling tests (Pask
et al., 2012; Maiti et al., 2004; Qiu et al., 2018). In addition to being time-
consuming and labour-intensive, such processes produce test results with low
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2 Field robots for plant phenotyping

accuracy. As phenotyping in plant breeding has advanced, a large number
of scientific research institutions and organizations have been investing in
research on the acquisition of phenotypic information. Sensor technologies
have been advancing at the same time. The field now has access to a variety
of sensors, including ground spectrometers and colour, thermal, multispectral
and hyperspectral imaging devices, in addition to light detection and ranging
(LiDAR), amongst other possibilities (Zhang et al., 2019; Chéné et al., 2012;
Andujaretal., 2015; Stovall etal., 2017; Sakamoto etal., 2012; Falco et al., 2015;
Stoll et al., 2008). Research investments in these devices have brought about
a qualitative leap in the development of phenotyping monitoring while also
driving the construction of sensor-carrying platforms - within the context of this
chapter, ‘field robots’. Phenotyping field robots are autonomous, self-driving
devices that are equipped with a range of sensors that are able to reach each
spot on the field and carry higher payloads than are possible with unmanned
aerial vehicles (UAVs). Testing methods that rely on manual, handheld sensors
obstruct the ability to meet the demand for high-throughput information in
phenomics research. New directions within this field include multi-sensor
deployment, continuity, synchronicity and high throughput. Developments
have also included the introduction of field robots, the Internet of Things (loT),
large vehicle platforms and remote-sensing platforms (e.g. UAVs and satellites)
(Shakooretal., 2017; Huntetal., 2005; Thomason etal.,2011; Henry etal., 2002;
Mirik et al., 2011). A conceptual depiction of the integrated system created by
the Netherlands Plant Eco-phenotyping Centre (NPEC) is presented in Fig. 1.
Methods of phenotype monitoring have been enriched by the application
of the loT. This technology uses a variety of sensors with different functions
to process phenotypic data and to achieve mutual communication between
sensors based on the technology of wireless sensor networks (WSN). Finally,
plant-phenotyping parameters are obtained by applying the inversion model
between sensor data and plant phenotypes (Fan et al., 2021). The common
application of open-field 10T consists largely of deploying fixed monitoring
nodes. For example, Liu et al. propose intelligent sensing nodes for farmlands
and the associated field-deployment method, which is capable of efficiently
sensing various parameters, including the leaf area index (LAl) of rice and
wheat crops (Liu et al., 2015). In addition, Bauer et al. (2019) designed low-cost
sensors based on the technology of WSN and interconnected them with in situ
agricultural sensor networks in order to estimate crop LAl (Bauer et al., 2019).
Furthermore, Avotins et al. (2020) used loT technology to design a camera for
recording the single-image normalized difference vegetation index (SI-NDVI).
The device can be used to continuously obtain NDVI data on greenhouse
tomatoes and diagnose tomato quality according to diurnal variations in NDVI
(Kviesis et al., 2020). Another new hotspot of agricultural research involving
loT technology has to do with the combination of fixed nodes with UAVs and

© Burleigh Dodds Science Publishing Limited, 2022. All rights reserved.



Field robots for plant phenotyping 3

Netherands Plant
Eco-Phenolyping
Cenrre

A% &
Geo-referenced
data(RTK-GPS):

aaaaa

Height profile
(O LIDAR)

Hyperspectral
(VNIR/SWIR)

Figure 1 Artist's impression of a field robot and several drones collecting phenotypic
information in a field. Courtesy: Netherlands Plant Eco- phenotyping Centre (NPEC)
(2021).

unmanned ground vehicles (UGVs). In this regard, Gao et al. (2020) designed
a cooperation scheme between UAV and fixed loT sensor nodes in the field, in
which the loT nodes are used to obtain meteorological parameters. The UAV
serves as an image-acquisition node in order to obtain hyperspectral crop
images for the diagnosis of pests (Gao et al., 2020). With regard to the methods
of data collection, Uddin et al. (2018) propose a UAV dynamic method that
can efficiently and intelligently select fixed loT field nodes for collecting data
through mobile UAV nodes. The method could potentially reduce the energy
consumption of fixed loT nodes and extend their service life (Uddin et al.,
2018). As demonstrated by these studies, the application of agricultural loT
technology can facilitate the acquisition of phenotypic information on plants.
In the open-field environment, however, sensors and mechanical devices are
exposed to harsh weather conditions, thereby decreasing the lifetime of any
loT instrument and requiring frequent maintenance. Although fixed nodes can
be used to cover a large area at the same time, their use in full-range testing is
severely limited, as fixed nodes cannot move by themselves.

A research team at the American University of Rome in ltaly started
investigating variable-rate fertilizer applicators and their supporting
technologies based on optical-sensing information in 1993. This research led
to the 2002 development of the real-time variable fertilizer applicator known
as 'GreenSeeker’, which uses spectral reflectance to monitor crop-growth
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information and calculate nutritional status in crops (Lukina et al., 2001).
This system was followed by the vehicle-mounted crop growth sensor Yara
N-Sensor, which was first tested in 1998 and mounted on agricultural tractors in
2002 (Link et al., 2003). Since then, digital sensors have increasingly been used
for open-field vehicle platforms. This study traces the early development of the
tractor as a vehicle platform in the process of acquiring high-throughput data.
In the actual testing process, however, it is easy to cause irreversible damage
to fields and field crops due to the large weight, low chassis and lack of a field-
control robot model. It is thus not conducive to sustainable development.
Aerial remote-sensing platforms allow the rapid, real-time acquisition of
large-area crop-phenotypic information. One common type, the UAV, offers
the advantages of high efficiency, flexibility, convenient operation and strong
terrain applicability. Combined with its lower cost and greater accessibility, the
recent increase in the popularity of UAVs has led to the widespread use of this
technology for plant phenotyping (Sagan et al., 2019). A large body of research
results has been accumulated with regard to the use of UAVs to acquire
information on the phenotypic characteristics of plants (Xie and Yang, 2020).
The characteristic phenotypic parameters that can be obtained using UAVs
include LAI, nutritional parameter status, biotic and abiotic threats (Su et al.,
2019; Buchaillotetal., 2019; Chivasa et al., 2020). As the demand for agricultural
monitoring has increased, a variety of satellite sensors have been introduced
to the market. New monitoring methods have emerged (e.g. fluorescence,
multispectral and hyperspectral measurements). The classification of plants and
the measurement of their phenotypic information can be achieved effectively
through the analysis of medium-resolution or high-resolution satellite images.
Commonly used satellite series include the Sentinel-1/2 satellites, the
WorldView satellite and the Landsat satellite. More specific applications of
satellite images are referenced in an overview published by Zhang et al. (2020).
Although high-altitude satellite images cover the most comprehensive range,
they are subject to three important disadvantages: some of these images are
expensive; some have only low resolution and, in many cases, the image quality
is diminished by clouds, thereby requiring extensive optical correction.
Lightweight field robots offer a number of advantages over large tractors
or UAVs: flexible operation, minimal impact on soil and crops, durability and
the ability to accommodate larger payloads (Michaels et al., 2015a,b). It is
more difficult for field robots to obtain phenotypic data on large-scale plant
groups simultaneously than itis for drones and satellites. They are nevertheless
capable of providing all-around, multi-angle and automatic monitoring of the
mounted sensors, which makes them highly suitable for integrating state-of-
the-art Al technologies (Grigorescu et al., 2020; Zhou et al., 2018). Based on the
advantages of field robots in phenotyping monitoring, more mature platforms
have been introduced on the market, and several have performed well in
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field experiments. It is important to note, however, that different countries
and regions have different plant species and varieties. Most existing field
robots focus only on specific plant species with similar growth characteristics,
and none of the existing phenotypic robots is capable of the comprehensive
general monitoring of multiple plant species.

2 Specific challenges associated with field robots

Based on their operating environments, phenotyping field robots can be
roughly classified suitable for use indoors (controlled environment) or in the
field (uncontrolled environment) (Kirchgessner et al., 2016; Pieruschka and
Schurr, 2019). Research on indoor robots pre-dates that on field robots. In
2003, Belgian CropDesign pioneered the development of a high-throughput
phenotyping monitoring platform known as TraitMill (Reuzeau et al., 2006),
which uses a plant-to-sensor working mode and which can automatically
obtain phenotypic information on potted plants in a greenhouse. Since that
time, scientific research institutions in Germany, Australia, the Czech Republic
and other countries have also successfully launched numerous platforms for
acquiring phenotypic information indoors (Deery et al., 2014; Yang et al., 2013).
Several of these platforms are displayed in Fig. 2.

Most of the indoor high-throughput phenotyping platforms and automated
robotfacilities mentioned above focus on monitoring changes in above-ground
plant characteristics. To observe below-ground characteristics, researchers
have explored innovative monitoring solutions for soil and plant roots involving
rhizotrons and Ecotrons. Rhizotrons are amongst the earliest non-destructive
below-ground sensing platforms. Due to limitations in sensor technology, early
rhizotron facilities relied on human inspection through cellars or underground
corridors with transparent glass windows. By entering such facilities, researchers

WIWAM xy Conveyor Scanalyzer TraitFinder

Figure 2 Indoor phenotyping platforms. (a) WIWAM xy is a robot for the high-throughput
and reproducible phenotyping of seedlings and small plants (e.g. Arabidopsis). (b)
Conveyor Scanalyzer is an automated high-throughput platform for indoor environments
(e.g. glasshouses, growth rooms, climate chambers). (c) TraitFinder is a powerful tool that
automates plant phenotyping and screening applications.
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could directly observe root phenotyping and soil condition (Klepper and
Kaspar, 1994). Despite their advantages, massive underground observation
facilities are expensive, are troublesome to maintain and have major destructive
effects on the soil structure. The rapid advancement of sensor technology and
the continuous improvement of automated robotics technology have allowed
the continuing development of small, highly accurate observation devices.
The research and development of Ecotrons have at least partially facilitated
the study of the relationship between above-ground phenotyping, below-
ground phenotyping and environmental characteristics. The device's more
intelligent control is able to monitor soil status, plant-root phenotyping and the
above-ground phenotypic characteristics of plants, while simulating different
natural environmental conditions in order to control changes in ecological
environmental factors to induce different stress conditions in plants (Granjou
and Walker, 2016; Roy et al., 2021). Indoor platforms for plant phenotyping
monitoring offer high accuracy and reliable repeatability, and they are not
easily disturbed by the external environment. These approaches to monitoring
below-ground aspects have nevertheless been criticized as deviating from the
actual growth environment, such that the phenotypic information extracted
with these systems is negatively affected by the artificial growth conditions to
which plants are exposed (Jiang et al., 2018).

Phenotyping open-field robots are subject to even more challenges than
is the case for other robots. First, farmland environments are challenging and
complex, often with relatively harsh terrain characterized by stones and uneven
surfaces. In addition, the spacing of plants is often too narrow for robots to
move between rows. Because of these conditions, robots must be able to
respond quickly to differences in terrain and ensure highly accurate auto-
navigation. Second, the growth of plants is directly affected by the environment
and growth period, and plant morphology changes accordingly. Moreover,
due to the diversity of sensing principles applied in phenotyping, the sensors
used for phenotyping require a variety of monitoring heights and angles.
The acquisition of phenotypic information by field robots should be able to
adapt to sensor-monitoring requirements and changes in plant morphology.
Finally, field-planting areas are larger than those of greenhouses. Mobile
robots are often expected to work in teams or to work in conjunction with
other tools (e.g. loT devices and drones), in order to achieve high-efficiency
monitoring. Fieldwork also places higher demands with regard to safety and
the communication between various devices.

3 Currently available field robots for phenotyping

The development of field-phenotyping robots begins with the transformation
of agricultural machinery. Phenotypic information is obtained by mounting
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sensors on tractors or sprinklers, as is the case with applications of the
GreenSeeker airborne sensor developed by the NT Company (Wdjtowicz et al.,
2016) and the Yara N-sensor from the Agri Con GmbH Company (Link et al.,
2003). Although the load capacity of these agricultural machinery platforms is
sufficient to meet the needs of high-throughput testing, they are highly likely to
cause damage to plants and soil during operation, and it is difficult to perform
all-around and multi-view testing for different sensors. With the development of
automation technology and robot technology, agricultural machinery platforms
have been gradually replaced by more field-specific robots.

3.1 The design of the current field robots

After a period of development, the design of field robots has become more
diverse. Depending on chassis and operating modes, they can be roughly
divided into the categories of track, crawler, foot and wheeled robots, as shown
in Fig. 3.

Track robots often use the gantry structure constructed with two supports
and a connecting beam in the middle. The sensors are fixed on the beam with
the vision field perpendicular to the crop canopy. Rails or tracks on both sides
of the field plots enable the gantry to move repeatedly along a fixed trajectory.
Sensors can move along the beam to obtain phenotypic data. Another type of
track robot is the rope camera, which often uses hanging ropes and electric
hinges to drive sensors along the plant canopy (Kirchgessner et al., 2016;
Bai et al., 2019). The PhenoField gantry robot (co-designed by Robepec and
Meca3d and located in France) can test the abiotic stress of wheat (Beauchéne

Robot types Robots Advantages Disadvantages

Requires long-term maintenance
Low moving flexibility

High investment

Relatively small monitoring area
Complex structure

Strong load capacity
High repeatability
Extremely convenient control

Track
robots

Strong ability to cross obstacles Slow speed and low efficiency
Crawler Powerful terrain adaptability Loud/noisy
robots High moving stability Majordamage to crops
Good manoeuvrability Complex control method
Legged Small ground-touch area Poor moving stability
robots Low damage to crops Slow speed and low efficiency
Easy to control Poor ability to cross obstacles
High mobility .
Wheeled Easy to slip on muddy ground

High working efficiency

robots Conducive to sensor deployment

Figure 3 Field robots with different structural designs (Beauchéne et al., 2019; Virlet
et al.,, 2016; Susko et al., 2018; Basu et al., 2020; Young et al., 2019; Zhang et al., 2013;
Dorhout, 2021; Shafiekhani et al., 2017; De Solan et al., 2015).
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et al., 2019). In 2016, the University of Arizona's Maricopa Agricultural Center
built the world’s largest gantry robot, the Field Scanalyzer, which has 200-metre
steel rails and can acquire phenotypic information on energy sorghum across
an areas of more than 1.5 acres (Virletetal., 2016). The structure of the FieldScan
robot (manufactured by Phenospex) is similar to that of other track robots
(Vadez et al., 2015). In general, the width and height of track robots depends on
the size of the plots on which they are used. One important advantage of these
devices is that they are able to carry large numbers of sensors for continuously
monitoring a specific area, with reliable repeatability. Given that the platform
is exposed to the natural environment for a long time, however, it requires
frequent maintenance. Moreover, the track structure does not provide sufficient
flexibility, and the monitoring area is relatively small.

Crawler robots offer the advantages of strong obstacle-crossing ability and
stable operation. They are often used in agriculture for purposes of automatic
land preparation prior to sowing and mechanical harvesting (as reported by
Zhangetal., 2013; Noguchi and Barawid Jr., 2011; and Takai et al., 2013). Given
the shortcomings of the crawler structure's large contact area, low ground
clearance and inability to perform cross-row operations, it causes considerable
damage to the plants and soil during movement. Several applications have
been developed for the acquisition of phenotypic information. For example,
Young etal.(Young etal., 2019; Baharav et al., 2017) developed a small-tracked
field robot—the Transportation Energy Resource from Renewable Agriculture
Mobile Energy-crop Phenotyping Platform (TERRA-MEPP)—for the purpose
of monitoring energy sorghum. This platform is able to run between planting
rows, with the sensor perspective extended through sensor support in order to
obtain phenotypic information on sorghum. Another small crawler robot was
developed by Ibex Automation Ltd. for the purpose of weed identification and
precision weeding (Basu et al., 2020). This robot nevertheless causes damage
to plants, due to the low ground clearance of its chassis. This problem is difficult
to resolve.

Research on legged robots has only recently started, and the related
technologies are still under active investigation with regard to sophisticated
control, unstable movement and other matters. Dorhout (2021) designed a
legged robot—the 'metal crab’—that can explore field conditions using a camera
and other sensors mounted and assisted by agricultural equipment in such
operations as sowing, fertilizing, planting, dispersing herbicides or picking
fruit. Although a report has been published on agricultural auxiliary equipment
(Toyama and Yamamoto, 2009), we have not found any successful application
for obtaining phenotypic information. In addition to the field of agriculture,
research on legged robots has been conducted in industrial settings. The
Legged Squad Support System (LS3) introduced by Boston Dynamics in recent
years has been used to perform various functions, including moving motion
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control, obstacle crossing and navigation. For example, the Spot robot was used
in a sheep-herding demonstration in 2020." Due to the combination of more
intelligent Al systems, the robot can also cope with various sudden situations,
and it performs outstanding teamwork (Raibert et al., 2008). This technology
will soon have excellent applications within the context of agriculture and plant
phenotyping.

Wheeled robots are the most common amongst the field robots that are
currently used for plant phenotyping, due to their simple control and stable
operation. Research on wheeled robots is also attracting considerable attention
from scientific research institutions and enterprises around the world. Related
research has been conducted by Shafiekhani et al. (Shafiekhani et al., 2017),
Weiss and Biber (Weiss and Biber, 2011) and Reina (Reina et al.,, 2018) on
wheeled robots with low ground clearance, including the Husky A200 and
the Volksbot RT3. These robots have exhibited good performance in the
phenotyping of plants with large row spacing (e.g. sorghum, apple, peach).
Wheeled robots with ground clearance higher than 0.5 m—such as the Ladybird
developed by the University of Sydney (Underwood et al., 2017), the Bonirob
co-developed by Bosch (Pretto et al., 2020), and the Robotti by Agrointelli—can
operate effectively with dwarf-row plants (e.g. soybeans, lettuce, potatoes). The
Proximal sensing cart, a wheeled robot developed by White et al. (Bai et al.,
2016; Yuan et al., 2018; White and Conley, 2013), has a high ground clearance,
but movement must be assisted by human thrust. This simple robot is actually
a modified bicycle, which requires human power to move over fields. It has
been used successfully in wheat fields. The structure of the PhenoMobile®
Lite designed by the Australian Plant Phenomics Facility is similar to that of
the proximal sensing cart. It is also equipped with sensors—including a global
positioning system (GPS) and an inertial measurement unit (IMU)-which allow it
to perform automatic phenotyping monitoring (De Solan et al., 2015). Wheeled
robots with higher ground clearance (>1.2m), including the Phenomobile
developed by the Australian Plant Phenomics Facility (Deery et al., 2014) and
the Gecko developed by the University of Queensland, can be used for the
phenotyping of taller plants. These robots are equipped with height-adjustable
supports, with a broad adjustment range that is able to accommodate the
different test heights of sensors.

4 Sensors and technologies for phenotyping field robots

Physiological and biochemical changes in plants cause differences in their
phenotypic traits, which subsequently result in changes in their absorption,
reflection and refraction of certain spectral features (Feng et al., 2008a;

1 https://blog.rocos.io/rocos-partners-with-boston-dynamics

© Burleigh Dodds Science Publishing Limited, 2022. All rights reserved.


https://blog.rocos.io/rocos-partners-with-boston-dynamics

10 Field robots for plant phenotyping

Thenkabail et al., 2000). Such changes in data on spectral features offer
an efficient, non-destructive and accurate means of retrieving phenotypic
information. Many scientific research institutions have carried out related
research on spectrum-sensing technology and published results with reference
significance. For example, information on red-light reflection provides good
inversion results for the LAl and chlorophyll (Thenkabail et al., 2000); the
near-infrared band (740-1100 nm) provides an effective means of monitoring
biomass (Shibayama and Akiyama, 1989, 1991); and the combination of the
near-infrared band and the red-edge band can be used to detect nitrogen
change (Yao et al., 2019; Zhu et al., 2008).

Based on the aforementioned principles, various non-imaging and imaging
sensors have been applied to research on the use of field robots in phenotyping
monitoring, as shown in Table 1. These instruments can acquire information that
cannot be seen by the naked eye. The most prevalent non-imaging sensors are
portable ground spectrometers. Examples include ASD Fieldspec (Feng et al.,
2008b; Wang et al., 2012), GreenSeeker (Osborne, 2007), RapidScan (Miller
et al., 2018) and SPAD (Uddling et al., 2007). Applications of imaging sensors
on plant-phenotyping platforms include visible-light cameras, multispectral
cameras, hyperspectral imagers, time-of-flight cameras, fluorescence cameras,
thermal-infrared cameras and ground-based LiDAR.

Portable ground spectrometers adopt photoelectric sensing technology
and use photosensitive components to convert photoelectric information.
For example, electrical signals can be processed in order to calculate the
characteristic band spectral vegetation index and then to invert specific
phenotyping information. Commonly used vegetation indices include the
normalized difference vegetation index (NDVI) (Tucker, 1979), the ratio
vegetation index (RVI) (Ni et al., 2017), the soil-adjusted vegetation index (SAVI)
(Huete, 1988) and the enhanced vegetation index (EVI) (Liu and Huete, 1995).
The retrievable phenotypic parameters include nitrogen nutrition, biomass,
chlorophyll content and water content.

Compared to non-imaging instruments, imaging sensors can obtain
information on plant image, spectrum or three-dimensional structure with
a high volume of visualization information. With regard to the acquisition of
phenotypic information, in addition to relying on the vegetation index for
inversion, the image sensors can intuitively extract leaf colour, flowering
period, plant height, crown coverage, crop water status and other parameters
according to the differences between the imaging-sensor perception method
and the data-processing methods. The extracted phenotypic information can
be combined with Al technologies to perform the rapid identification of plant
diseases, biological stress and abiotic stress (Valente et al., 2019). For example,
Sakurai et al. (2018) propose a fully convolutional network (FCN) (Long et al.,
2015) for semantic plant-image segmentation. Shi et al. (2019) combine deep
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learning with multi-view images to generate a 3D point-cloud representation of
a plant. Mohanty et al.(2016) have trained a deep convolutional neural network
(CNN) to identify 14 crop species and 26 diseases. Fuentes et al. (2017) present
a deep-learning-based approach for detecting diseases and pests in tomato
plants using images captured in place by a camera with various resolutions. Li
et al. (2014) report on the acquisition of current images with Al technologies,
equipment and applications, and Perez-Sanz et al. (2017) summarize various
image-processing methods. New imaging sensors—including X-ray computed
tomography (CT), positron emission tomography (PET) and magnetic resonance
imaging (MRI) (Jahnke et al., 2009)-that have been applied in other fields are
gradually being used in plant phenotyping monitoring. Due to their investment
costs and physical limitations, however, these instruments have thus far been
used in only a limited number of institutes and only in indoor environments.

In addition to phenotypic information sensors, phenotyping robots need
a variety of auxiliary functional sensors to support automatic field operations.
They include GPS/real-time kinematic (RTK), IMU, LiDAR, cameras, Hall-effect
sensors, ultrasonic sensors and ranging infrared sensors. For row crops,
phenotyping robots require high-precision automatic navigation and path
planning in order to improve their operational efficiency and avoid damage
to the plants during movement. Unlike navigation in an open environment,
automatic navigation in a plant-field environment requires the coordination
of multiple sensors, including those listed above. While GPS/RTK can provide
robots with error position information at the centimetre level, IMU can obtain
a robot’s three-axis attitude angle and acceleration. In addition, LiDAR and
cameras can sense environmental details in real time and then cooperate with
GPS/RTK and IMU to achieve simultaneous localization and mapping (SLAM).
Derived from autonomous driving technology, SLAM has recently been used
in the automatic navigation of agricultural robots. When a field robot starts
operating from any location in the field, SLAM can use information from the
sensors listed above to observe and locate its position, posture and trajectory
during its movement. A SLAM system thus builds an incremental map based
on its position to achieve simultaneous positioning, field map construction
and automatic navigation (Durrant-Whyte and Bailey, 2006; Montemerlo
et al., 2002). Two components that are essential to SLAM are LiDAR and
vision technology. Despite its high accuracy, LiDAR (the core method applied
during early research on SLAM) is also subject to a number of shortcomings,
including high price, large volume and lack of intuitive vision information.
As the popularity of consumer-level RGB-D cameras has increased, vision-
based SLAM has also been applied successfully in several research fields (e.g.
autonomous driving, AR and intelligent robots), with the camera being used
as the primary sensor and the video stream serving as the input for achieving
simultaneous positioning and construction (Jiang et al., 2017; Miro et al., 2006).
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The advantages of this system include the fact that it is inexpensive and able to
capture images with high resolution in order to classify objects. Its data depth
is nevertheless not as good as that of LiDAR.

It is also possible to use GPS/RTK to add geo-referencing to phenotypic
information on plants in order to generate more conducive results in analysis,
data classification and mapping (Xiu et al., 2010; Tamaki et al., 2013). The pitch
angle and roll angle provided by the IMU can also be used to calibrate the
attitude of phenotyping monitoring sensors. Hall-effect sensors can perform
the robot's speed test and improve control over the robot, thereby providing
precise speed change and steering.

5 Robotic arms for fruit phenotyping and harvesting

Fruit harvesting is the final link between plant cultivation and the most relevant
process for yielding economic benefits. Traditional fruit harvesting depends
on the manual assessment of the maturity and quality of fruit. Differences in
experience with such assessment lead to wide variations in picking results
across operators, with a direct impact on fruit sales. The recognition of fruit
phenotypic features is an important part of plant phenotyping research. Fruit
picking based on the recognition of such features can be combined with eye-
hand coordination to achieve the full automation of fruit harvesting, thereby
improving the accuracy and work efficiency of fruit picking (Hashimoto, 2003).
Results of studies on the method of acquiring fruit phenotypic information
on plants are consistent with those on the method of recognition for other
parts of the plant. Spectral reflectance monitoring, thermal infrared imaging
monitoring and the extraction of colour features and textures have also
demonstrated good recognition effects for fruit phenotypic features (Bulanon
et al., 2002; Arivazhagan et al., 2010; Jiménez et al., 1999). In addition to the
basic phenotyping monitoring method, Al techniques can be used to detect
the position and shape of the fruit under occlusion. For example, Blok et al.
(2021) use Mask R-CNN to detect the position and shape of broccoli heads for
autonomous harvesting. Zhao etal.(2016) provide a systematic review of control
technology based on visual sensors, as used in harvesting robots, including
recognition technology for fruits and control technology for manipulators.
With regard to fruit picking, the earliest mechanized picking method relies
primarily on mechanical or pneumatic methods to shake plants. However,
because this non-selective picking method does not involve the identification
of fruit phenotyping characteristics, it is more harmful to plants and has low
work efficiency. As precision and automated fruit-picking methods have
become more popular, most fruit-picking robotic arm mechanisms have come
to be designed as two parts: a moving mechanism and an end effector. The
mobile mechanism is used to adjust the position of the end effector, and the
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end effector completes the final picking task. In current industrial production,
the design of manipulators has become more mature, with structures including
the cylindrical-coordinate type, the rectangular-coordinate type, the spherical-
coordinate type and the joint type (Almurib et al., 2011). When used for open-
field robots, manipulators are subject to a number of complex problems,
including the random growth of fruit position and occlusion of fruit. For this
reason, most of the manipulators that are used for fruit picking are based on
the joint type of design. Motion angle is a key factor in the design of a joint
manipulator. Although joints with a low degree of freedom (DOF) lack flexibility,
an increase in degrees greatly increases the difficulty of control. Kondo et al.
(1996a,b) designed a 7-DOF articulated manipulator that can be used for
tomato harvesting. The end effector of the manipulator is designed with Type B
suction cups. After locating the fruit by binocular vision, the suction cup is used
to grasp and harvest the tomato. Van Henten et al. (2003) designed a 7-DOF
cucumber-harvesting manipulator. The end effector is designed with scissors
that can cut the stem of cucumber while clamping it with a suction cup/gripper.
De-An et al. (2011) designed a 5-DOF apple-harvesting manipulator with a
spoon-shaped end effector, which can firmly fix apples and cut stems with an
electric cutting device. Many studies have been conducted on various fruits to
be harvested, including strawberries (Xiong et al., 2020), grapes (Badeka et al.,
2020) and pumpkins (Roshanianfard and Noguchi, 2018). The design of the
mobile mechanisms of these manipulators is relatively similar. Most differences
have to do with size and degrees of freedom. The design of the end effector
is based primarily on the comprehensive consideration of the morphological
structure and texture of the target fruit.

6 Conclusion and future trends

Current studies have indicated that the use of field robots for phenotyping can
improve the efficiency, quality, stability and accuracy of acquiring phenotypic
information (Tsukor et al., 2012; Zhou et al., 2017). Existing phenotyping
robots nevertheless continue to be designed for monitoring specific plant-
growth periods or plant species. The development of different platforms for
different plants is costly and time-consuming. The construction of a universal
phenotyping robot platform is therefore needed. The Thorvald Il robot provides
several ideas for developments in this direction (Grimstad and From, 2017).
The platform for this robot is designed with various drive chassis and sensor-
support modules. It can adjust the height, width and drive mode of the chassis
to adapt to differing field-cultivation environments and plant objects. When
developing the design of phenotyping robots, however, greater attention
should be paid to intelligent operations. With the support of image sensors and
Al technologies, robots should be capable of recognizing the row distance and
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height of plants. They should then have the ability to automatically calculate
and adjust the mechanical structure in real time, thereby achieving adaptive
object monitoring and autonomous operations.

With regard to the acquisition of phenotypic information, field robots
and UAVs offer different advantages. For example, UAVs are more suitable
for obtaining canopy-level phenotypic information, and they can efficiently
monitor dynamic changes in plant populations (Holman et al., 2016). In
contrast, given their limited test height, field robots are more suitable for
obtaining phenotypic information on individual plants. Given that both group
and individual characteristics are clearly of great significance to breeding,
studies that combine the use of UAVs and field robots are highly valuable.
Future developments in this direction could focus on drones that are capable
of obtaining macro-scale information on the canopy traits of plant populations
(e.g. plant emergence rate, ground coverage, LAl and nitrogen content (Burud
et al., 2017; Schirrmann et al.,, 2016; Liu et al., 2017; Pretto et al., 2020)).
The macro-scale data are used to command the phenotyping robots to go
to specific areas to obtain individual phenotypic information on individual
representative plants (e.g. plant height, protein content, stomatal conductance
and nitrogen assimilation rate). Given the large monitoring coverage and
high efficiency of drones, phenotyping robots can be operated in teams,
although this obviously increases the requirements for collaboration between
different software systems. The combination of information at different scales
can be used to establish the relationship between phenotypic information on
individual plants and group characteristics. This could improve the prediction
of dynamic changes in the growth processes of individual plants and groups of
plants, in addition to providing effective guidance for breeding and cultivation,
thus ultimately generating maximume-yield production benefits.

When implementing phenotyping sensors, it is important to note that
some sensors are still difficult to use in open-field environments, due to volume,
costs, scalability and measurement requirements (e.g. PET, CT and MRI). These
problems are likely to be resolved as the costs and size of sensor chips decrease
and further improvements in sensor integration are achieved. In addition, the
phenotyping monitoring sensors that are currently carried by field robots are
used primarily to monitor the phenotypic characteristics of the above-ground
parts of plants. The current technology for below-ground plant phenotyping and
the evaluation of the soil environment relies on static measurement. There are
no specialized methods for combining below-ground phenotyping monitoring
sensors and soil-environment information sensors with moving robots. The
related sensing technology and intelligent equipment have yet to be developed.
Data interaction between different sensors is also important with regard to the
integration of sensor data. Suppose that it is possible to assemble results from
2D datatests, 3D data tests, spectral tests and temperature tests quickly and then
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systematically display them through the human-computer interaction interface.
This could usher in a new era for research on plant phenotyping monitoring. At
present, however, major differences exist in the control software, test methods
and data-aggregation methods of different sensor platforms. There are also
differences in the analytic methods, programming languages and software
platforms that are used for the analysis of sensing results. To a certain extent,
these differences pose obstacles to data interaction between sensor devices.

With the advent of 5G (or even 6G), the combination of Al technology and
phenotyping robots based on 5G communication offers excellent potential.
Limited by the speed of data transmission, most current phenotyping robots
rely on a self-mounted host-computer platform to realize the calculation and
storage of high-throughput data. This method increases the load of the robot,
and it does not help researchers to track plant phenotyping information in real
time. Researchers often need to extract data stored by the host computer for
post-processing after the robots have obtained all of the results. As a result,
the results lag behind the real-time growth state of the plant. Wageningen
University & Research has conducted preliminary research on the use of 5G
technology and achieved real-time control of weeds in sugar-beet fields (Visser,
2020). The high bandwidth and low latency characteristics of 5G technology
make it possible to receive newly obtained phenotyping information on cloud
platforms and remote computers. After the obtained data has been calculated
through the aforementioned platforms, the results can be fed back to the field
robots in real time, cooperating with the actuator to achieve totally unmanned
farm management.

7 Where to look for further information

The following article provides a good overview of the subject:
o Atefi, A, Ge, Y., Pitla, S. and Schnable, J. 2021. Robotic technologies for
high-throughput plant phenotyping: Contemporary reviews and future
perspectives. Frontiers in Plant Science 12:611940.

Key research in this area can be found in the following organizations:

e Netherlands Plant Eco-phenotyping Centre (NPEC) at Wageningen
University & Research (www.npec.nl).

e Australian Centre for Field Robotics - University of Sydney (https://
www.sydney.edu.au/engineering/our-research/robotics-and-intelligent
-systems/australian-centre-for-field-robotics.html).

e UMT CAPTE, a scientific research unit based in Avignon (France), a
collaboration between INRAE, ARVALIS and HIPHEN (https://umt-capte
Ar/).
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e Jilich Plant Phenotyping Centre (JPPC) - https://www.fz-juelich.de/ibg/
ibg-2/EN/_organisation/JPPC/JPPC_node.html.

e EMPHASIS, an organization that enables researchers to use facilities,
resources and services for plant phenotyping across Europe (https://
empbhasis.plant-phenotyping.eu/).
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