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1.  INTRODUCTION 

The temperate North Sea harbours an important 
and abundant group of flatfish species, each of which 
is characterised by a specific life cycle, habitat 

requirements and distribution (Heessen et al. 2015). 
The juvenile stages of a number of these species, 
such as plaice Pleuronectes platessa, flounder 
Platichthys flesus, sole Solea solea, brill Scophthal-
mus rhombus, turbot Scophthalmus maximus and to 
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ABSTRACT: The international Wadden Sea is an important flatfish nursery. Information from the 
Dutch Wadden Sea indicates that the flatfish nursery function of the area has been affected during 
the last decades. Increased seawater temperature has affected settling, habitat suitability for and 
growth performance of the various flatfish species. Settling of plaice, flounder and to a lesser 
extent sole larvae occurs earlier nowadays. In the 1960s, 0-, I-, II- and III-group plaice were pres-
ent, but since 2000, II-group has disappeared and densities of I-group have decreased. For juve-
nile flounder, II-group almost disappeared, and for dab, a decline in densities of all age groups 
was observed from the 1990s onwards. Summer temperatures exceed the optimum for the cold-
water species (plaice, flounder and dab) with increasing frequency, level and duration. Only for 0-
group sole, the period with optimal growth conditions has become longer and has resulted in 
increased growth. Mortality rates in 0-group plaice have increased, coinciding with an increase in 
water temperatures and an increase in the abundance of predators. The decrease in density of 
juvenile plaice and dab in the Wadden Sea has not affected recruitment to North Sea stocks, sug-
gesting that other areas have taken over part of the nursery function. The predicted increase in 
seawater temperature in the next decades will continue to improve the conditions for sole. The 
temperature tolerance of plaice and dab and to a lesser extent flounder will further reduce their 
scope for growth and may ultimately result in their disappearance from the Wadden Sea.  
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a lesser extent dab Limanda limanda, concentrate in 
relatively shallow coastal nursery areas around the 
North Sea. The international Wadden Sea and its 
coastal zone (water depth <10 m), bordering the 
western coast of Denmark and the northern coasts of 
Germany and The Netherlands, has historically been 
the largest juvenile flatfish nursery in the North Sea 
(Zijlstra 1972, van Beek et al. 1989). 

The use of coastal areas as nursery grounds was 
already observed during the first investigations in 
Danish (Petersen 1895, Johansen 1913) and Dutch 
waters (Redeke 1905). The first quantitative inven-
tory in the western Dutch Wadden Sea in 1961−1964 
(Creutzberg & Fonds 1971) found numerous juvenile 
plaice, flounder, sole and dab in the subtidal and 
deeper parts (Fonds 1983). Both the annual Demersal 
Fish Survey (DFS) carried out from the early 1970s 
onwards (Zijlstra 1972) and the bycatch data of the 
shrimp Crangon crangon fishery confirmed these 
observations. An analysis of the first decades of the 
annual DFS concluded that the Wadden Sea was an 
important nursery area for plaice and sole contribut-
ing substantially to annual recruitment and that 
abundance indices of 0-group plaice and I-group 
sole were correlated with recruitment rates to the 
North Sea fishery stocks (Rauck & Zijlstra 1978, van 
Beek et al. 1989). 

Worldwide, coastal ecosystems are critical transi-
tion zones between freshwater and marine environ-
ments (Beck et al. 2001, Levin et al. 2001). For cen-
turies, such areas have suffered from anthropogenic 
disturbance including fisheries, port activities, eu -
trophication and land reclamation. Such activities 
have caused major structural and functional changes 
(Jackson et al. 2001, Lotze 2005, Lotze et al. 2006). 
The Wadden Sea has also experienced major ecosys-
tem changes (for an overview, see Kloepper et al. 
2017). 

In the western Dutch Wadden Sea, sea surface 
temperature (SST) measurements from 1947 on -
wards show that annual means varied around 10°C 
until 1982, but thereafter increased to about 12°C in 
recent years. This increase occurred for all seasons at 
an average rate of about 1°C per 20−25 yr (van Aken 
2008a, Royal Netherlands Institute for Sea Research 
[NIOZ] unpubl.). Increases in SST are not restricted 
to the Wadden Sea and occur in the whole Dutch 
coastal zone (van Aken 2010). In the 1980s, eutroph-
ication doubled the nutrient concentrations in the 
western Dutch Wadden Sea (van der Veer et al. 1989, 
van Raaphorst & de Jonge 2004), resulting in a period 
of increased chlorophyll concentrations and primary 
production (Philippart et al. 2007). Since the 1990s, 

annual planktonic primary production has decreased 
and recently stabilized (Jacobs et al. 2020). The 
increased chlorophyll concentrations and planktonic 
primary production resulted in a doubling of the 
macrozoobenthic biomass in the intertidal areas 
(Beukema & Dekker 2020). During the subsequent 
period of de-eutrophication, reduced primary pro-
duction did not cause a decrease in macrozoobenthic 
biomass (Beukema & Dekker 2020).  

Predation pressure by top predators has also 
increased strongly since the 1990s as a result of an 
increased abundance of cormorants  Phalacrocorax 
carbo, harbour seals Phoca vitulina and grey seals 
Halichoerus grypus (for references see van der Veer 
et al. 2015a). Commercial shrimp fisheries, an impor-
tant source of bycatch-induced fish mortality in the 
Wadden Sea, also increased strongly during the last 
decades (van der Hammen et al. 2015, van der Veer 
et al. 2015a). In the western part of the Wadden Sea, 
catches of both pelagic and demersal fish showed a 
10-fold decrease from the late 1970s before stabiliz-
ing in the late 1990s (Tulp et al. 2008, van der Veer et 
al. 2015a). Densities of scavengers and benthic pred-
ators such as shore crabs increased strongly since the 
early 2000s (Tulp et al. 2012), simultaneously with the 
recovery of mussel beds (van der Meer et al. 2019). 

The combined impact of these major changes in 
the Wadden Sea ecosystem on the flatfish nursery 
function is unclear. For the flatfish nursery function 
of the Wadden Sea, 2 aspects are important: (1) the 
local hydrodynamic and morphodynamic conditions 
in the coastal zone and tidal inlets that provide con-
nectivity for the drifting pelagic larval stage in 
the North Sea with the areas in the Wadden Sea used 
by the subsequent juvenile life stage, and (2) the pro-
vision of essential demersal habitats for juveniles 
which ultimately contribute to the recruitment to the 
North Sea fish stocks. The connectivity between lar-
val habitat in the North Sea and demersal habitat for 
juveniles in the coastal area has been described by 
van der Veer et al. (1998), Bolle et al. (2009), Hufnagl 
et al. (2013) and Tiessen et al. (2014). 

This paper addresses the importance of the Wad-
den Sea in providing essential demersal habitat for 
juveniles and its contribution to recruitment to the 
North Sea fish stocks. The focus is on the boreal 
(cold-water) species plaice, flounder and dab and on 
the Lusitanian (warm-water) species sole (Fonds 
1983). First, the species-specific physiological per-
formance of the various flatfish species is described. 
Next, based on the changes in the Wadden Sea over 
the last 50 yr, expectations on the impact on the flat-
fish nursery functioning of the area are formulated 
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and reviewed. This paper focusses on the western 
part of the Wadden Sea, is based on both published 
and unpublished data and elaborates on previous 
studies presenting aspects of the flatfish nursery 
function of the Wadden Sea (van der Veer & 
Bergman 1987a, Bergman et al. 1988, Lozán et al. 
1994). 

2.  FLATFISH PHYSIOLOGICAL PERFORMANCE 

Poikilothermic marine organisms are affected dif-
ferently by physical factors, depending on their spe-
cies-specific physiological preferences and tolerance 
(for an overview, see Willmer et al. 2000). Within the 
full range of physical factors, water temperature is 
the controlling factor regulating and dictating meta -
bolism; salinity is a masking factor loading meta -
bolism and thereby creating sub-optimal conditions; 
and oxygen conditions are a limiting factor constrain-
ing maximum possible metabolic scope (Fry 1971, 
Neill et al. 1994). 

The Wadden Sea is a dynamic area with abiotic 
conditions varying spatially and temporally at a scale 
ranging from, respectively, tidal gully to tidal basin 
and tide to year (e.g. van Aken 2008a,b). In the Wad-
den Sea, water temperature is among the most 
important factors controlling and regulating metabo-
lism and hence growth (e.g. see Fonds et al. 1992). At 
present, profound salinity gradients occur only in the 
few remaining open estuarine basins, the Ems Dol-

lard and the Elbe. Oxygen deficiencies including 
sediment black spots occurred in the 1990s espe-
cially in the German part of the Wadden Sea (Neira & 
Rackemann 1996, Böttcher et al. 1998), but during 
the last decades, this phenomenon has not been 
reported. 

For many flatfish species and life stages, basic 
information about the effect of various factors on 
metabolism is scarce, and most available information 
deals with the impact of temperature as a controlling 
factor. Some experimental studies addressed the 
effect of temperature in combination with salinity as 
a masking factor (Fonds et al. 1992, Augley et al. 
2008), or in combination with oxygen as a limiting fac-
tor (Pörtner & Knust 2007). The sensitivity for envi-
ronmental factors is often species- and size- specific 
with a well-defined tolerance range. From the juve-
nile stage onwards, flatfish may also be able to avoid 
unfavourable masking and limiting conditions in the 
field by active migration. 

Thermal tolerance ranges are determined by the 
combined impact of the rate-enhancing influence 
of temperature on enzyme function ultimately re -
flected in growth and the increasing destructive 
effects, especially structural damage (Willmer et al. 
2000). As a consequence, physiological performance 
(such as growth) increases with temperature until a 
maximum rate is reached (at the optimum tempera-
ture), followed by an abrupt decrease to zero. 
Within the tolerance range, a temperature prefer-
ence range can be defined where growth rates 

exceed a certain minimum (Fig. 1). 
Temperature tolerance and optimum 
are often determined under experimen-
tal laboratory conditions. 

Experimental data indicate that the 
temperature tolerance of plaice eggs and 
larvae ranges from 2°C to at least an 
optimal temperature of 10°C (Ryland et 
al. 1975), similar to that for flounder 
 larvae (Hiddink 1997). For dab, no ex -
perimental data are available, but in 
the North Sea, developing larvae were 
found within a temperature range of 4 to 
10°C (Malzahn et al. 2007). For sole eggs 
and larvae, the temperature tolerance 
ranges from 10°C to at least 19 and 22°C, 
respectively (Fonds 1979). For all spe-
cies, the upper temperature tolerance 
limits of the eggs and larvae are unclear. 
For juvenile flatfish, more detailed infor-
mation is available (Fig. 2). 0-group sole 
has the largest temperature tolerance 
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Fig. 1. Flatfish thermal tolerance range. Dashed line indicates selected min-
imum growth rate (here 10% of the maximum growth rate). Blue: lower 
temperature range with growth rates <10% of the maximum growth rate at 
the optimal temperature; green: range of temperatures with increasing 
growth rates until maximum growth at the optimal temperature; orange: 
range of temperatures above optimal temperature with decreasing growth 
rates until 10% of the maximum growth rate; red: temperatures above 
which growth becomes <10% of the maximum growth. The green and 
orange area define the preference range within the tolerance range 
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range including the highest temperatures (4−35°C) 
(Lefrançois & Claireaux 2003); 0-group dab has the 
narrowest and lowest range (0−22°C) (Fonds & Rijns-
dorp 1988); 0-group plaice (0−25°C) and flounder 
(2−25°C) are intermediate in extent and level of tem-
perature tolerance (Fonds et al. 1992). The optimum 
temperature varies from 15°C in juvenile dab, 18°C 
in juvenile flounder, 19°C in juvenile plaice to 26°C 
in juvenile sole (Fig. 2). Overall, flatfish eggs and lar-
vae have narrower temperature tolerance ranges 
than juveniles (see also Dahlke et al. 2020). 

3.  WADDEN SEA ECOSYSTEM CHANGES AND 
EXPECTED IMPACT ON FLATFISH NURSERY 

FUNCTIONING 

Based on the observed changes in the Wadden Sea 
ecosystem, expectations about potential impacts on 
the flatfish nursery function of the area are formu-
lated. With respect to the effect of climate change, 
we build on the study of climate effects on fish popu-
lations by Rijnsdorp et al. (2009). 

3.1.  Expectation 1: Coastal warming advances 
larval flatfish immigration 

Egg development rates are species-specific and 
are determined by a variety of factors including in 
particular seawater temperature. Egg development 
rates are inversely related to seawater temperature 
(e.g. Pauly & Pullin 1988). Larval stage duration is 
also inversely related to seawater temperature (e.g. 
Bolle et al. 2009). From hatching onwards, feeding 
starts and larval stage duration also depends on food 
abundance, whereby food limitation increases dev -
elopment time. Consequently, larval development 
depends on the interplay between temperature and 
food conditions. Field studies of drifting plaice larvae 
in the Southern Bight of the North Sea observed an 
inverse relationship between larval stage duration 
and seawater temperature, albeit less strong than 

expected based on experimental data (van der Veer 
et al. 2009). Warming of the Dutch coastal zone is 
expected to accelerate egg and larval development 
and to advance the timing of flatfish immigration in 
spring. 

3.2. Expectation 2: Effect of increased seawater 
temperature on spatial distribution and growth 

potential is species-specific 

Temperature preference and tolerance differ be -
tween flatfish species, with ranges varying from 20°C 
for dab to 30°C for sole (Fig. 2). Temperature optima 
also differ, from 15°C for juvenile dab, 18°C for juve-
nile flounder, 19°C for juvenile plaice to 26°C for 
juvenile sole (Fig. 2). In the western Dutch Wadden 
Sea, mean summer seawater temperatures in the 
Marsdiep tidal inlet already exceeded the optimum 
temperature for the 0-group dab in the late 1940s 
(Fig. 3). For the 0-group flounder and plaice, mean 
summer temperatures are still within their respective 
tolerance ranges but have reached or even exceeded 
their optimum temperature in the last decades. For 0-
group sole, mean summer seawater temperatures are 
still below their optimum temperature. Shallower 
waters, such as intertidal areas, will warm up even 
more and will experience even larger fluctuations 
and maximum water temperatures (van der Veer & 
Bergman 1986, Frölicher & Laufkötter 2018). For 
cold-water species, the water temperature in the 
Wadden Sea increasingly exceeds their temperature 
optimum and preference. 

3.3.  Expectation 3: Increased top predator 
 abundance and fisheries have increased flatfish 

mortality 

Juvenile flatfish are prey to a wide range of preda-
tors such as larger fish, seals and piscivorous birds. 
Various fish species in the Wadden Sea (including 
flatfish) consume juveniles, both in the intertidal and 
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Fig. 2. Thermal tolerance range for 0-group 
sole, flounder, dab and plaice. Temperature tol-
erance range (combined blue, green, orange 
and red bar), optimal temperature (maximum of 
green bar), and temperature preference range 
(green + orange bar) for various flatfish species 
and age groups. Temperature preference range 
is defined as the temperature range with growth 
rates >10% of maximum rate at optimal temper-
ature (see Fig. 1 for more detail). For references, 
see Section 2. Data from Freitas et al. (2010) 
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in the subtidal (Fig. 4). Seals in the Wadden Sea feed 
predominantly on juvenile flatfish, resulting in sub-
stantial mortality (Aarts et al. 2019). Cormorants are 
important fish-eating birds in the Wadden Sea, and 
flatfish comprise a large part of their diet. Based on 
otoliths in regurgitated pellets, the average contribu-
tion of flatfish in the diet was estimated at 73% in 

numbers and 79% in mass (Leopold et al. 1998). 
Bycatch mortality from shrimp fisheries is also sub-
stantial (Glorius et al. 2015). The increase in popula-
tions of seals (since the 1990s) and fish-eating birds 
(since the 1970s), as well as bycatch mortality (since 
the 1970s) will have increased flatfish mortality in the 
area. 
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3.4.  Expectation 4: Year-class strength of cold-
water species will decrease in response to 
increased seawater temperatures offshore 

Year-class strength and ultimate recruitment in 
fish are primarily determined by mortality processes 
operating during the pre-juvenile stage of the life 
history (Leggett & DeBlois 1994), and flatfish are no 
exception (Brander & Houghton 1982, van der Veer 
et al. 2015b). Interannual variability in year-class 
strength is generated during the pelagic egg and 
 larval stage, probably by variations in the hydrody-
namic circulation (Bolle et al. 2009) and in mortality 
rates of eggs and larvae (Harding et al. 1978, van der 
Veer et al. 2000a). For most species, the underlying 
mechanisms are unclear. Settling plaice larvae in the 
western Wadden Sea originate mainly from the 
spawning location in the Southern Bight of the North 
Sea (Talbot 1977, Bolle et al. 2009), and year-class 
strength is inversely related to seawater temperature 
during egg and larval development (Brander & 
Houghton 1982, van der Veer 1986, Fox et al. 2000). 
Year-class strength of plaice may therefore decrease 
in response to the increase in seawater temperature 
in the coastal zone (van Aken 2010), and this may 
also hold for other cold-water species. 

4.  CHANGES IN WADDEN SEA NURSERY 
 FUNCTIONING 

4.1.  Expectation 1: Coastal warming advances 
larval flatfish immigration 

Recent information about larval supply to the Wad-
den Sea is not available; however, the patterns in 
abundance of settling and just-settled flatfishes pro-
vide an indication of both timing and abundance of 
larval supply (van der Veer 1986). Such data are 
available for the Balgzand intertidal area located in 
the western Wadden Sea for plaice, flounder and sole 
from 1979 to 2019 with less frequent observations in 
recent years. 

Larval immigration at Balgzand, as indicated by 
the time of maximum (= peak) abundance, starts with 
plaice, followed by flounder and finally by sole 
(Fig. 5). In the 1980s, peak abundance of plaice 
occurred at the end of April, followed by flounder at 
the end of May and sole at the end of June. Over 
time, peak abundance for plaice and flounder has 
shifted and in recent years occurred about 1 mo ear-
lier for plaice and 1.5 mo earlier for flounder. For sole, 
a similar shift occurred before 2000, but the time of 

peak abundance has been stable since then. The 
data are in line with the expectation that the recent 
warming of the Dutch coastal zone has advanced lar-
val flatfish immigration in spring, especially of the 
cold-water species. 

4.2.  Expectation 2: Effect of increased seawater 
temperature on spatial distribution and growth 

potential is species-specific 

4.2.1.  Spatial distribution 

Settling flatfish larvae have species-specific habi-
tat and sediment preferences (Gibson & Robb 2000). 
Newly settled flatfish larvae have been observed in 
most of the Wadden Sea habitats, especially in inter-
tidal and subtidal areas (Kuipers 1977, Zijlstra et al. 
1982, van der Veer & Witte 1993, Freitas et al. 2016). 
Plaice larvae settle on a wide range of sediment 
types in intertidal and subtidal areas between March 
and mid-May (Kuipers 1977, Zijlstra et al. 1982, van 
der Veer & Witte 1993, Jager et al. 1995). Flounder 
larvae settle in relatively muddy areas at low salini-
ties, or in fresh water in rivers or canals (Berghahn 
1984, van der Veer et al. 1991, Jager et al. 1995). Set-
tlement of sole larvae occurs more widely in coastal 
areas, and within the Wadden Sea mainly in sandy 
and muddy habitats (Rijnsdorp et al. 1992), with a 
preference for finer sediments (Post et al. 2017). Dab 
larvae settle mainly in coastal waters in the North 
Sea, and the size range of 0-group dab observed 
within the Wadden Sea indicates that they migrate 
into the Wadden Sea after settlement (Bolle et al. 
1994). This means that habitat use within the Wad-
den Sea differs among species, with juvenile plaice 
and flounder using both intertidal and subtidal areas, 
and sole and dab concentrating mainly in subtidal 
areas. 

Juvenile flatfish spatial distribution patterns have 
changed over time. Until the 1990s, various age 
groups of plaice and flounder could be found in inter-
tidal areas (van der Veer et al. 2011). Subsequently, 
the densities of I- and II-group plaice in intertidal 
areas decreased, and from 2000 onwards only 0-
group was observed. A similar pattern, though less 
pronounced, was observed for juvenile flounder in 
the intertidal areas (van der Veer et al. 2011). Simul-
taneously with the strong decreases in I- and II-
group plaice in intertidal areas, increased numbers 
were observed in subtidal areas and tidal channels 
(Freitas et al. 2016) and also in deeper waters outside 
the Wadden Sea (van Keeken et al. 2007). Inside the 
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Wadden Sea, settlement of 0-group plaice still occurs 
in intertidal areas, but they move quickly to deeper 
subtidal areas and tidal channels (Freitas et al. 2016). 
It is not clear whether a similar shift in distribution to 
deeper waters has also occurred for flounder and sole 
(van der Veer et al. 1991, 2001). 

The age composition of juvenile flatfish in the 
Dutch Wadden Sea has also changed over time. In 
the 1960s, 0-, I-, II- and III-group plaice were ob -
served (Fonds 1983). In the early 1980s, III-group dis-
appeared from the Wadden Sea. From the mid-1980s 
onwards, densities of I- and II-group plaice also 

decreased (van der Veer et al. 2011; Fig. 6). Since 
2000, II-group has disappeared and densities of I-
group have been low (Fig. 6). For dab, a decline in all 
age groups was observed from the 1990s onwards 
(Tulp et al. 2008; Fig. 6). For flounder, the time series 
is shorter and does not reveal any clear change in the 
past 15 yr. For sole, a decrease in the density of I-
group occurred since the 1990s, but the pattern is 
less clear than for plaice and dab (Fig. 6). 

The changes in juvenile flatfish distribution pat-
terns and age composition in the Wadden Sea are 
species-specific, and in line with the expectation. 
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and H. van der Veer & J. Witte (unpubl.) For more information, see van der Veer (1986) and Section 4.1
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The disappearance of the cold-water species with 
their low temperature preference and tolerance sug-
gests a relationship with the increased seawater tem-
peratures in the Wadden Sea. 

4.2.2.  Growth 

The species-specific temperature preference and 
tolerance ranges (see Fig. 1 for explanation) can be 
applied to the temperature conditions in the Wadden 
Sea to determine the seasonal growth windows for 
the various species. Daily seawater temperature 
measurements from the NIOZ jetty in the Marsdiep 
tidal inlet in the western Wadden Sea are available 
from 1982 onwards, and were reconstructed for the 
period 1956−1982. Specifically, SST data were taken 
from 2 stations in the western Dutch Wadden Sea: 
the NIOZ jetty and Breezanddijk. Daily SST meas-
urements were available from 1957 to 1989 for 
Breezanddijk (https://waterinfo.rws.nl) and from 
1982 to present for the NIOZ jetty (NIOZ unpubl.). 
Data for the period 1982−1989 were used to deter-
mine the linear relationship between daily SST at 
Breezanddijk and daily SST at the NIOZ jetty: 

 SSTMarsdiep = 0.91 × SSTBreezanddijk + 1.47 (R2 = 0.96; p < 
0.001). This relationship was used to reconstruct daily 
SST for the period 1956−1982 for the NIOZ jetty. 

Classification of daily water temperatures for pref-
erence and tolerance of the 0-groups of the various 
flatfish species during the growing season (1 April to 
30 September) shows that in spring the temperatures 
are within the tolerance limits of all flatfish species, 
and do not restrict growth in any year (Fig. 7a). In 
summer, the number of days with temperatures 
within the respective preference ranges and below 
the optimum temperatures (green in Fig. 7) de -
creased for 0-group plaice and dab, especially in the 
last decades. For 0-group flounder, there was no 
trend. For 0-group sole, a warm-water species, tem-
peratures were at the low end of the preference 
range in spring and autumn (blue), and below the 
optimum in summer (green). 

For 0-group plaice and flounder, water tempera-
tures during the growing season remain within their 
respective tolerance ranges, but they exceed the 
optimum during parts of the summer. For 0-group 
dab, water temperatures in summer exceed the toler-
ance range (red). The growth conditions during the 
growing season improved over the years for 0-group 
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Fig. 7. Classification of daily water temperature conditions for 0-group flatfish growth in the western Wadden Sea between 
1956 and 2018, based on daily water temperature measurements in the Marsdiep. (a) Daily classification according to species-
specific tolerance range from 1956 to 2018 for the 4 species. Blue: low temperatures less than 10% maximum growth; green: 
growth rates >10% maximum growth until maximum growth at the optimal temperature; orange: growth range of tempera-
tures above optimal temperature until 10% maximum growth; red: high temperatures <10% maximum growth. (b) Number 
of green and orange days during the growing season (1 April to 30 September) for the 4 species. For more explanation,  

see Fig. 1
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Location              Year         tmax           Dmax             M     Days until   Mt         Reference 
                                                     (ind. [103 m2]−1)   (d−1)     30 Sept                    
 
0-group plaice  
Nordstrander      1981         145             70           0.002        125       0.250       Berghahn (1986) in: Iles & Beverton (1991) 
Bay                       1982         154           105           0.013        116       1.508       Berghahn (1986) in: Iles & Beverton (1991)  
                             Mean       150             88           0.008                     0.879        

Dollard                 1992         113             46           0.011        157       1.727       Jager et al. (1995) 
                             Mean       113             46           0.011                     1.727 

Balgzand              1973         129           500           0.010        141       1.410       Kuipers (1977) in: Iles & Beverton (1991) 
                             1975         122           137                             148                      Zijlstra et al. (1982) in: Iles & Beverton (1991) 
                             1976         126           191           0.009        144       1.296       Zijlstra et al. (1982) in: Iles & Beverton (1991) 
                             1977           88           202           0.007        182       1.274       Zijlstra et al. (1982) in: Iles & Beverton (1991) 
                             1978         129           519           0.009        141       1.269       Zijlstra et al. (1982) in: Iles & Beverton (1991) 
                             1979         121           320           0.008        149       1.192       Zijlstra et al. (1982) in: Iles & Beverton (1991) 
                             1980         113           164                             157                      van der Veer (1986) in: Iles & Beverton (1991) 
                             1981         126           360           0.025        144       3.600       van der Veer (1986) in: Iles & Beverton (1991) 
                             1982         118           297           0.014        152       2.128       van der Veer (1986) in: Iles & Beverton (1991) 
                             1993         117           370           0.034        153       5.202       van der Veer et al. (2000b) 
                             1994         108           375           0.030        162       4.860       van der Veer et al. (2000b) 
                             1995           94           244           0.029        176       5.104       van der Veer et al. (2000b) 
                             1996           98         1282           0.021        172       3.612       van der Veer et al. (2000b) 
                             1997         100           453           0.031        170       5.270       van der Veer et al. (2000b) 
                             1998           91           262           0.026        179       4.654       van der Veer et al. (2000b) 
                             1999           83           312           0.022        187       4.114       van der Veer et al. (2000b) 
                             2000           94           674                                                         H. van der Veer & J. Witte (unpubl.) 
                             2001         125           760                                                         H. van der Veer & J. Witte (unpubl.) 
                             2002           63           324                                                         H. van der Veer & J. Witte (unpubl.) 
                             2007           85           379                                                         H. van der Veer & J. Witte (unpubl.) 
                             2009           90           216                                                         H. van der Veer & J. Witte (unpubl.) 
                             2014           93           582                                                         H. van der Veer & J. Witte (unpubl.) 
                             2019           87           379                                                         H. van der Veer & J. Witte (unpubl.) 
                             Mean       104           404           0.020        166       3.213        

0-group flounder  
Balgzand           1979         162             89           0.023        108       2.484       van der Veer et al. (1991) 
                             1980         163             28           0.071        107       7.597       van der Veer et al. (1991) 
                             1981         153           227           0.089        117     10.413       van der Veer et al. (1991) 
                             1982         158             23           0.043        112       4.816       van der Veer et al. (1991) 
                             1993         130             88           0.034        140       4.760       H. van der Veer & J. Witte (unpubl.) 
                             1994         122           305           0.050        148       7.400       H. van der Veer & J. Witte (unpubl.) 
                             1995         136           399           0.050        134       6.700       H. van der Veer & J. Witte (unpubl.) 
                             1996         153           229           0.054        117       6.318       H. van der Veer & J. Witte (unpubl.) 
                             1997         146               9           0.039        124       4.836       H. van der Veer & J. Witte (unpubl.) 
                             1998                                                                                          
                             1999                                                                                          
                             2000         122             80           0.055        148       8.140       H. van der Veer & J. Witte (unpubl.) 
                             2001         157             51           0.022        113       2.486       H. van der Veer & J. Witte (unpubl.) 
                             2002                                                                                          
                             2007         113             51           0.035        157       5.495       H. van der Veer & J. Witte (unpubl.) 
                             2009         139             13           0.006        131       0.786       H. van der Veer & J. Witte (unpubl.) 
                             2014         121             36           0.016        149       2.384       H. van der Veer & J. Witte (unpubl.) 
                             Mean       141           116           0.042        129       5.330        

Dollard                 1992         168             26           0.028        102       2.856       Jager et al. (1995) 
                             Mean       168             26           0.028                     2.856        

0-group sole 
Dollard                 1992         224               4           0.011          46       0.506       Jager et al. (1995) 
                             Mean       224               4           0.011                     0.506 

Table 1. Maximum densities, mortality rates of 0-group flatfish for various Wadden Sea nursery areas and years — Nordstrander 
Bay, Germany (54° 28’ N, 8° 47’ E); Dollard, The Netherlands (53° 17’ N, 7° 07’ E); Balgzand, The Netherlands (52° 54’ N, 4° 91’ E).  
tmax: time (d) of maximum observed density from 1 January; Dmax: maximum observed density; M: mean daily instantaneous 
mortality rate based on the slope of the regression of densities over time; Mt: total stage mortality (M × number of days from peak 
 numbers until 30 September). For more information, see Beverton & Iles (1992). Empty cells: years with insufficient data 
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sole (more days marked in green) (Fig. 7b). 
In conclusion, the growth window in the 
western Wadden Sea is becoming increas-
ingly unfavourable especially in summer 
for 0-group dab, plaice and flounder, but not 
for sole. 

Based on an annual autumn survey (DFS) 
in Dutch, German and Danish coastal waters, 
Teal et al. (2008) did not find a clear trend in 
the mean size at the end of the growing sea-
son for 0-group plaice, whereas for 0-group 
sole, the mean size increased since the 1980s, 
coinciding with the increase in seawater tem-
perature. Therefore, the effect of increased 
seawater temperatures in the Wadden Sea on 
growth appears to be species-specific and 
depends on physiological preference, in 
agreement with the expectation. 

4.3.  Expectation 3: Increased top  predator 
 abundance and fisheries have increased 

flatfish mortality 

Mortality can be calculated from changes 
in densities over time when immigration and 
emigration can be determined or excluded. 
Mortality is often expressed as an instanta-
neous daily mortality rate calculated from 
the slope of a linear regression through log-
transformed observed local densities over 
time (Beverton & Iles 1992). 

Mortality estimates of 0-group flatfish species in 
the Wadden Sea are available for only a few semi-
closed populations: for 0-group plaice (Zijlstra et al. 
1982, van der Veer 1986, van der Veer et al. 2000b) 
and flounder (van der Veer et al. 1991) in the Dutch 
Wadden Sea in the Balgzand intertidal and for 0-
group plaice, flounder and sole in the Dollard (Jager 
et al. 1995). For the North Frisian German Wadden 
Sea, mortality estimates are available for a 0-group 
plaice population in a mixed intertidal and subtidal 
setting (Berghahn 1986); however, these estimates 
also include shrimp fishery bycatch mortality in the 
subtidal area. 

Comparison of mortality rates from the various 
intertidal areas and species showed a range from 
0.002 to 0.034 d−1, including interannual variability 
within and among species and areas (Table 1). The 
largest amount of information is available for the 
Balgzand intertidal area, where the mortality rate 
increased for 0-group plaice between 1973 and 1999 
(Fig. 8a). Furthermore, the increase in instantaneous 

daily mortality rate of 0-group plaice correlated with 
the increase in mean seawater temperature in the 
Marsdiep in spring (Table 2), which suggests that 
part of the increased mortality might be due to in -
creased seawater temperature conditions. Mortality 
estimates could not be made for the last 2 decades 
because of their earlier migration to deeper waters. 

For 0-group flounder, instantaneous daily mortality 
rates at the Balgzand intertidal area did not change 
in time. On average, instantaneous daily mortality 
rates of 0-group flounder were roughly twice those of 
0-group plaice (Fig. 8b), reflecting the settlement of 
flounder both at a smaller size and at a higher water 
temperature later in the year (van der Veer 1986, van 
der Veer et al. 1991). The instantaneous daily mortal-
ity rate of 0-group flounder did not correlate with the 
increase in mean seawater temperature in the Mars-
diep in spring and summer (Table 2). 

Shrimp fisheries are restricted to subtidal areas, so 
there is no bycatch-induced mortality in intertidal 
areas. Predation pressure by top predators has in -
creased strongly since the 1990s because of increased 
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abundance of cormorants, harbour seals and grey 
seals (Fig. 9). The mean daily mortality of 0-group 
plaice was significantly positively correlated to the 
index of predation by top predators (Spearman’s 
rank correlation: n = 14; rS = 0.71), in contrast to 0-
group flounder (n = 14; rS = −0.55). 

The changes in daily mortality of 0-group plaice 
are in agreement with the expectation that the 
increase in abundance of top predators has increased 
the mortality of juvenile flatfish in the Wadden Sea. 
The results for 0-group flounder are not in line with 
this expectation. The available data are not sufficient 
to establish the contribution of bycatch-induced mor-
tality by shrimp fisheries. 

4.4.  Expectation 4: Year-class strength of cold-
water species will decrease in response to 
increased seawater temperatures offshore 

The peak abundance of settling flatfish larvae, used 
as proxy for larval supply and 0-group at the 
Balgzand intertidal, showed the highest densities for 
plaice, followed by flounder and then sole throughout 
the time series (Fig. 5). Large interannual variations 
were observed in all 3 species. The temporal varia-
tions of the 3 species appeared to be similar, with re -
latively high peak densities in the 1990s, but there 
were no significant relationships between year-class 
strengths of the 3 species (plaice versus flounder and 
sole: r2

adj = 0.07; flounder versus sole: r2
adj = 0.27). 

Time series of recruitment to the North Sea fish 
stocks are available for I-group plaice and sole from 
1957 onwards and for dab from 2003 onwards (ICES 
2017, 2018a,b). Recruitment estimates showed year-
to-year fluctuations, with exceptionally strong re-
cruitment of plaice in 1964, 1986 and 1997 and of sole 
in 1959, 1964, 1988 and 1992. After the peak in 1986, 
plaice recruitment decreased until 1992, and then sta-
bilized but with a tendency to increase again. Sole re-
cruitment did not change over time. Dab recruitment 
increased strongly from 2003 to 2014, and then de-

creased in 2015 and 2016. The decreasing 
trends for juvenile flatfish abundance in 
autumn in the Wadden Sea (Fig. 5) were 
not reflected in the recruitment estimates 
(Fig. 10). The results do not support the 
expectation that year-class strength of 
plaice and other cold-water species de-
creases in response of the increase in sea-
water temperature offshore. 

5.  DISCUSSION 

5.1.  Shifts in flatfish nursery function 

The early studies starting in the 1890s 
(Petersen 1895, Redeke 1905, Johansen 

194

Year          TSP        TSU      TMEAN             M (d−1) 
                 (°C)         (°C)          (°C)         Plaice   Flounder  
 
1973           8.2         17.6         12.9          0.01               
1976           7.5         18.4         13.0          0.009             
1977           8.1         16.2         12.2          0.007             
1978           7.6         15.9         11.7          0.009             
1979           6.6         16.4         11.5          0.008       0.023 
1980           7.9         16.7         12.3                          0.071 
1981           8.7         16.6         12.6          0.025       0.089 
1982           8.3         18.3         13.3          0.014       0.043 
1993           9.0         16.8         12.9          0.034       0.034 
1994           8.3         17.8         13.1          0.03          0.050 
1995           8.7         18.1         13.4          0.029       0.050 
1996           6.4         17.0         11.7          0.021       0.054 
1997           8.7         18.4         13.5          0.031       0.039 
1998           9.8         16.8         13.3          0.026             
1999         10.0          18.2         14.1          0.022             
2000         10.1          17.2         13.6                          0.055 
2001           8.5         18.1         13.3                          0.022 
2002           9.7         18.4         14.0                               
2003           9.3         19.2         14.2                          0.035 
2004           9.3         17.8         13.5                          0.006 
2005           8.3         17.0         12.7                          0.016 

Table 2. Mean water temperature in the Marsdiep in spring 
(March−May; TSP), summer (June−August; TSU) and 
March−August (TMEAN) together with mean instantaneous 
mortality rate (M) of 0-group plaice and flounder at Balg-
zand. Spearman rank correlations (rS) with p-values (ns: not 
significant): Plaice: M−TSP: rS = 0.70, p < 0.01; M−TSU: rS = 
0.36, ns; M−TMEAN: rS = 0.58, p < 0.05. Flounder: M−TSP:  
rS = 0.11, ns; M−TSU: rS = 0.22, ns; M−TMEAN rS = 0.17, ns.  

Empty cells: years with insufficient data
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1913, Lübbert 1925, Bückmann 1935a,b, Smidt 1951), 
the systematic inventories in the western Wadden 
Sea in 1963−1964 (Creutzberg & Fonds 1971, Fonds 
1983), in 1986 (van der Veer & Witte 1993) and in 
2009 (Freitas et al. 2016), the studies of the intertidal 
Balgzand area in the 1970s (Kuipers 1977), the long-
term fyke catches since 1960 (van der Veer et al. 
2015a) and the annual DFS since 1970 (Zijlstra 1972, 
Tulp et al. 2008, this study) all show that until the 
1980s, the Wadden Sea was a system with numerous 
seasonally immigrating juvenile plaice, flounder, 
sole and dab of different age groups. 

From the 1970s onwards, the Wadden Sea has 
experienced major changes. The western Wadden 
Sea has become a system with higher and still 
increasing seawater temperatures (van Aken 2010), 

while returning to lower primary production 
levels after a period of eutrophication in the 
1980s (Jacobs et al. 2020), but nevertheless 
with a higher intertidal macrozoobenthic bio-
mass (Beukema & Dekker 2020), higher num-
bers of top predators and an increased shrimp 
fishery (van der Veer et al. 2015a). In the Jade 
tidal basin in the German part of the Wadden 
Sea, climate warming, decreasing nutrient loads 
and species introductions occurred between 
the 1970s and 2009 with resulting changes 
in the macrofauna communities (Schückel & 
Kröncke 2013) and with decreasing abun-
dances of juvenile plaice and dab while abun-
dances of juvenile sole in creased (Meyer et al. 
2016). The functional changes for the western 
Wadden Sea and Jade, caused by increased 
water temperature and a eutrophication event, 
are most likely indicative of changes in the 
whole international Wadden Sea (see also 
Kloepper et al. 2017). 

Since the 1980s, the nursery function of the 
Wadden Sea for flatfish species has changed 
substantially, resulting in decreased suitability 
for juvenile plaice and dab (Tulp et al. 2008, 
van der Veer et al. 2011, Meyer et al. 2016, 
ICES 2018c). The question is to what extent 
these changes were caused by internal (local) 
or external (large-scale) factors, and whether 
they result from bottom-up or top-down regu-
lation. There are strong indications that in -
creased seawater temperature, both locally 
and offshore, is an important causal factor. For 
North Sea plaice, the timing of spawning is 
negatively correlated with seawater tempera-
ture (Rijnsdorp 1989). For the Southern Bight 
spawning population that supplies the Balg-

zand intertidal area with larvae (Harding & Talbot 
1973, Talbot 1977, van der Veer et al. 1998, Bolle et 
al. 2009), the observed trend of increasing sea water 
temperatures in the coastal zone (van Aken 2008a) is 
expected to cause earlier spawning, faster egg and 
larval development, and earlier settling. In contrast, 
Hovenkamp (1990) argued, based on RNA:DNA-
ratios and otolith growth rates, that plaice larvae 
experience periods of food limitations causing 
growth retention, which counteracts a faster devel-
opment. This agrees with smaller ob served reduc-
tions in development time than ex pected from labo-
ratory data (van der Veer et al. 2009). Nevertheless, 
the peak in plaice larval immigration occurs about 
1 mo earlier at the Balgzand intertidal compared to 4 
decades ago. The similar trend in earlier immigration 
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of flounder larvae suggests a relationship between 
increased seawater temperatures, earlier timing of 
spawning and shorter egg and larval development 
times for these species. 

Locally, increased seawater temperatures in the 
Wadden Sea are expected to be a critical factor for 
the observed changes in habitat use by and growth 
performance of the various flatfish species. The 
decrease in abundance of juvenile plaice and dab 
from their 1980s levels (Tulp et al. 2008, van der Veer 
et al. 2011, ICES 2018c) coincides with the start of the 
increase in seawater temperatures (van Aken 2008a). 
After the 1980s, seawater temperatures during the 
growing season increasingly exceeded the optimum 
for plaice, flounder and dab. Thermal limits are 
thought to be caused by an increasing mismatch 
between oxygen demand and the capacity of oxygen 
supply to tissues, and has been suggested to cause 
the decline of eelpout Zoarces viviparus in the Wad-
den Sea (Pörtner & Knust 2007). For sole, a warm-
water species, seawater temperatures are still within 
their preferred temperature range. Increased water 
temperatures may also cause the observed shifts in 
habitat use. Shallow waters, such as intertidal areas, 
warm up more quickly than deeper waters in sum-
mer (van der Veer & Bergman 1986), causing juve-
nile plaice and flounder to abandon the intertidal 
areas earlier in the season. 

As a result of the warming, summer seawater tem-
peratures in the Wadden Sea exceed the tolerance 
range of juvenile dab, as well as the optimum for 
juvenile plaice and flounder, but have improved con-
ditions for 0-group sole. Juvenile dab have vanished 
almost completely from the Wadden Sea. Juvenile 
plaice and flounder still grow up in the Wadden Sea, 
but they increasingly use deeper waters. For juvenile 
sole, the increased temperatures enhance growth 
(Teal et al. 2008). In the adjacent North Sea, seawater 
temperatures have increased by 0.2 to 0.6°C per 
decade between 1980 and 2009 (Belkin 2009), posi-
tively affecting the growth potential of sole but also 
plaice (Teal et al. 2012). 

The period of eutrophication in the 1980s has been 
suggested to have caused an increase in fish produc-
tion and a shift in the distributions of flatfishes. 
Assuming that fish growth is food limited, Boddeke & 
Hagel (1991) stated that the eutrophication of the 
Dutch coastal zone caused enhanced production. 
Inversely, the reduction in nutrient loads to the Wad-
den Sea reduced fish production, an effect also sug-
gested by Støttrup et al. (2017) for juvenile flatfish 
abundance in Danish coastal waters. In the western 
Wadden Sea, flatfish growth was not affected by 

eutrophication. The pattern before, during and after 
the period of eutrophication was the same: juvenile 
flatfish growth appears to be optimal (for plaice, 
flounder, sole) in spring and early summer, and lim-
ited in summer not only in the Wadden Sea but also 
in other flatfish nurseries (Freitas et al. 2012, van der 
Veer et al. 2016). Growth rates for 4 resident fish 
 species in the Wadden Sea (twaite shad Allosa fallax, 
bull-rout Myoxocephalus scorpius, thick-lipped grey 
mullet Chelon labrosus and eelpout) are even higher 
at present than during the period of eutrophication 
(Bolle et al. 2021). 

The correlation of mortality of 0-group plaice in 
inter tidal areas with the mean seawater temperature 
in spring suggests contributions from increased pre-
dation by shrimps, crabs and fishes (van der Veer & 
Bergman 1987b) at higher temperatures; however, in 
that case a similar relationship for 0-group flounder  
is expected. On the other hand, the lower daily mor-
tality for 0-group plaice at the Balgzand intertidal 
area during the 1980s compared with the 1990s (this 
study; Table 1) suggests that enhanced system pro-
ductivity in response to eutrophication in the 1980s 
(Philippart et al. 2007) reduces predation pressure. 
Most of the top predators strongly increased in abun-
dance since the 1990s and consume juvenile flat-
fishes. Cormorants were estimated to cause substan-
tial mortality during the period July−September in 
the 1990s (Leopold et al. 1998). Since then, cormorant 
numbers have increased (van der Veer et al. 2015a). 

Year-class strength in marine flatfishes is con-
trolled in early life history in agreement with the 
hypothesis postulated by Hjort (1914, 1926), through 
a combination of density-independent processes 
related to fluctuations in the physical environment 
and density- dependent processes caused by either 
predation or food competition (Leggett & DeBlois 
1994, van der Veer et al. 2000a,b, 2015b, Beggs & 
Nash 2007, Taylor et al. 2010). Various field and 
hydrodynamic modelling studies demonstrated the 
importance of hydrodynamic conditions in connect-
ing spawning grounds to nursery areas and causing 
interannual fluctuations in larval supply to nursery 
grounds (Harding & Talbot 1973, Talbot 1977, Hard-
ing et al. 1978, van der Veer et al. 1998, de Graaf et 
al. 2004, Fox et al. 2006, Bolle et al. 2009, Erftemeijer 
et al. 2009, Savina et al. 2010, Hufnagl et al. 2013, 
Lacroix et al. 2013, Tiessen et al. 2014, Barbut et al. 
2019, Cabral et al. 2021). Various studies also point to 
negative relationships between seawater tempera-
tures and year-class strength. Van der Veer (1986) 
and van der Veer & Witte (1999) observed an inverse 
relationship between seawater temperatures during 
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larval drift and the abundance of settling plaice lar-
vae at Balgzand. Such a negative relationship be -
tween sea water temperature in the first few months 
of the year and subsequent year-class strength was 
confirmed for most plaice stocks around the UK (Fox 
et al. 2000) and several areas in the North Sea for 
plaice and sole (Akimova et al. 2016). The expecta-
tion that year-class strength of plaice and other cold-
water species would decrease as a consequence of 
the increase in sea water temperature offshore in the 
North Sea (van Aken 2010) is so far not reflected in 
the abundance of immigrating and settling larvae at 
the Balgzand intertidal. 

5.2.  Future perspectives 

Most climate change studies predict increases in 
sea level and water temperature for the North Sea, 
alongside decreases in salinity and primary produc-
tion, with regional differences and uncertainties in 
estimates of both magnitudes and consequences for 
hydrodynamic circulation (Schrum et al. 2016). For 
the Wadden Sea, a further rise in sea level (Ver-
meersen et al. 2018) and an increase in atmospheric 
temperatures by 1 to 5°C towards the end of the 21st 
century is predicted (Oost et al. 2017). Rijnsdorp et al. 
(2009) predicted a general (further) shift in abun-
dance and distribution with latitude and depth for 
marine species and suggested that the response of 
demersal species, including flatfishes, may be ham-
pered by geographically fixed habitats, such as nurs-
ery areas. However, spawning adults and embryos 
appear to be the most vulnerable life stages to cli-
mate warming due to their narrower temperature tol-
erance ranges (Dahlke et al. 2020). This means that 
further climate change may especially affect spawn-
ing in the open sea (see also the CERES project: 
https://ceresproject.eu). Until the mid-2000s, the 
increase in temperatures of coastal waters by 1.5°C 
(van Aken 2008a) did not change larval plaice set-
tling at the Balgzand intertidal area. The broad spa-
tial distribution of plaice in the North Sea, with 
spawning grounds in the English Channel, Southern 
Bight and German Bight, may provide potential for 
the Balgzand nursery and other areas of the Wadden 
Sea to shift to larvae from other spawning areas in 
the future. 

Nursery use in the Dutch Wadden Sea has de -
creased over time especially for plaice and dab. This 
trend will likely continue with the predicted in crease 
in seawater temperatures. However, at present, the 
Wadden Sea is still an important area for juvenile 

flatfish. Furthermore, the area is still within the toler-
ance limits of juvenile dab in autumn and winter, 
when temperatures are lower. Moreover, species 
with a high temperature tolerance and optimum, 
such as the tub gurnard Chelidonichthys lucerna, 
can benefit from the higher temperatures (Tulp et al. 
2017). 

The distribution of juvenile and adult plaice has 
shifted to deeper and northern areas in the North Sea, 
most likely in response to climate change (warming) 
(van Keeken et al. 2007, Engelhard et al. 2011). Fur-
ther climate change will reduce the ‘temperature 
window’ for the remaining age groups of the cold-
water species in the Wadden Sea (plaice, dab and to 
a lesser extent flounder), and growing conditions in 
late spring and summer will become less favourable 
as temperatures exceed their respective thermal tol-
erance range. Only sole can cope with higher water 
temperatures. However, other, new Lusitanian (warm-
water) fish species may settle in the Wadden Sea as 
water temperatures increase. 

The nursery function of the Wadden Sea will con-
tinue to change, and suitable nursery areas will shift 
towards the coastal zone in the North Sea, in agree-
ment with expectations that habitat availability for 
North Sea plaice will reduce with further climate 
change (Petitgas et al. 2013). However, so far the 
decreasing abundances of juvenile plaice and dab in 
the Wadden Sea have not changed recruitment esti-
mates for the North Sea, suggesting that the juve-
niles of these species have apparently found other 
alternative nursery areas. 
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