
1.  Introduction
Offshore wind power production in the European Union (EU) and specifically the North-Sea region is steadily 
increasing: the Dutch offshore capacity is expected to grow from ∼1 GW in 2019 to ∼11.5 GW in 2030, as part of 
a total expected increase to ∼70 GW in the entire EU (WindEurope, 2017). Wind turbines produce electric energy 
by extracting kinetic energy from the atmosphere, thereby decelerating (and mixing) the air. This typically results 
in a downstream decrease in wind speed and increase in turbulence (e.g., Baidya Roy & Traiteur, 2010; Fitch 
et al., 2012). As wind farms grow—Both in size and number—The impact on weather and climate is expected 
to become more significant, requiring an adaptation of mesoscale models like HARMONIE-AROME (hereafter: 
HARMONIE) to account for the influence of wind farms on the local and regional meteorological conditions.

There are several ways in which the effects of wind turbines on the atmosphere can be parameterized in mesoscale 
models (Fischereit et al., 2021): Implicit—Imposing an additional roughness to implicitly model the effect of 
wind turbines on the atmospheric flow—Or explicit, explicitly solving the momentum sink and enhanced turbu-
lence production due to the presence of wind turbines. In the last two decades several explicit parameterisations 
have been developed (e.g., Abkar & Porté-Agel, 2015; Fitch et al., 2012; Volker et al., 2015). The most commonly 
used and evaluated parameterization is the Fitch et al. (2012) model implemented in the Weather Research and 
Forecasting (WRF) model (Skamarock et al., 2019).
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In this study, we implemented the wind turbine parameterization from Fitch et al. (2012) in HARMONIE. Where 
wind turbines are located, this parameterization adds an elevated drag term to the atmosphere, which locally 
decelerates the flow. The kinetic energy that is extracted from the atmosphere, but not converted into electric 
power, is used as a source term for turbulent kinetic energy (TKE).

HARMONIE with the newly-implemented wind-farm parameterization is evaluated using doppler lidar and 
tower measurements over the North Sea and compared to HARMONIE without wind-farm parameterization. 
This is done for one full year (January up to and including December 2016), instead of short case studies as is 
done in most evaluations of wind-farm parameterisations (e.g., Lee & Lundquist, 2017; Wu et al., 2022). The 
parameterization is evaluated for all seasons with varying wind directions and atmospheric stabilities. In 2016, 
measurements were available from two floating lidars in the Borssele wind farm zone (in the North Sea, off 
the Belgian coast), one ground-based lidar in the Westermost Rough wind farm (off the east coast of the UK), 
cup-anemometer measurements on the FINO1 tower near the Alpha Ventus wind farm in the North Sea (north of 
the Netherlands) and aircraft measurements (off the northwest German coast). Since all these measurements are 
in or near existing wind farms, they are ideal for evaluating the newly implemented wind-farm parameterization. 
The spatial impact of the wind farms on the wind fields is evaluated using dedicated flight campaigns (Lampert 
et al., 2020). The consequence of the WFP on power production is evaluated using Belgian transmission system 
operator (TSO) data. Moreover, the year-long experiment allowed us to quantify the impact of the offshore wind 
farms on the offshore and coastal meteorological conditions.

2.  Model Description and Set-Up
The wind-farm parameterization is implemented in HARMONIE-AROME (cycle 40h1), a non-hydrostatic 
model developed by the HIRLAM-C consortium, which is operationally used in at least 11 countries (Bengtsson 
et al., 2017). The model uses a semi-Lagrangian scheme on an Eulerian grid. The HARATU turbulence scheme 
(de Rooy et al., 2022; Lenderink & Holtslag, 2004) was used, which uses a prognostic equation for the turbulent 
kinetic energy (TKE). Shallow convection follows de Rooy et al. (2022). Surface Externalisée (SURFEX) version 
7.3 was used as a land surface model (Masson et al., 2013) with the land use classification from ECOCLIMAP 
II (Faroux et al., 2013). More details about the model physics can be found in Bengtsson et al. (2017) or www.
hirlam.org.

For the simulations, HARMONIE used a 2000 × 2000 km 2 domain with 65 vertical levels, a 2.5 km horizontal 
grid spacing (which is currently the operational HARMONIE resolution at the Royal Netherlands Meteorologi-
cal Institute (KNMI)), centered around 51.96°N, 4.9°E, and the ERA5 reanalysis (Hersbach et al., 2020) for the 
lateral boundary conditions and sea surface temperature. The lateral boundary conditions are updated hourly and 
coupled using the Davies–Kallberg relaxation scheme (Davies, 1976). The sea surface temperature in ERA5 only 
changes once every 24 hr.

Two simulations were performed: (a) reference simulation without wind turbines, REF, and (b) with the wind-farm 
parameterization, modeling all offshore wind turbines in the model domain in January 2016, WFP. The experi-
ments are run from 01 to 01-2016 00 UTC to 01-01-2017 00 UTC. This period was chosen because of the avail-
ability of two floating lidars in the Borssele wind farm zone, directly north-east of the (Belgian) Northwind wind 
farm (Figure 2). In addition, there are tower measurements from the FINO1 platform, and lidar measurements 
from the Westermost Rough wind farm and flights through wind farm wakes in the German Bight (WIPAFF; 
Lampert et al., 2020) for this period.

The reference simulation was run for several years before the study period for the Dutch Offshore Wind Atlas 
(DOWA) project (Wijnant et al., 2019) and therefore had more than 1 year of spin-up. The WFP run was started 
“warm” from the control experiment and had 10 days of additional spin-up time. Both reanalysis simulations 
used 3D-VAR data assimilation (Fischer et al., 2005; Gustafsson et al., 2018) with a three-hour cycling time. In 
addition to conventional observations, Mode-S EHS aircraft measurements (e.g., de Haan, 2011; de Haan, 2016) 
and Scatterometer (ASCAT) (Marseille & Stoffelen, 2017) were assimilated. In this study the 3-hr forecast is used 
as a proxy for the analysis.

http://www.hirlam.org
http://www.hirlam.org
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3.  Wind-Farm Parameterization
The wind-farm parameterization of (Fitch et al., 2012) imposes an elevated momentum sink on the mean flow, 
where the drag (or thrust) of the individual turbine blades is modeled as a wind speed dependent drag force across 
the area swept by the rotor blades. As the diameter of a wind turbine is about an order of magnitude smaller than 
the horizontal grid spacing in HARMONIE (currently: 2.5 km), the model accounts for the bulk influence of one 
or several wind turbines per grid point.

The wind turbine characteristics are defined by the geometry (hub-height zhub and turbine radius r), the cut-in 
(Vin) and cut-out (Vout) wind speeds, and by the dimensionless power (CP) and thrust (CT) coefficients. The latter 
two describe—As a function of wind speed Vhub at hub height—The fraction of kinetic energy that is extracted 
from the air (CT), and the fraction that is converted into electrical energy (CP). An example of typical CP and CT 
curves is provided in Figure 1.

Given the thrust coefficient CT as a function of the absolute wind speed 𝐴𝐴 |𝑉𝑉 | , the thrust force of a turbine (the force 
opposite to the flow direction and drag force) is defined as:

𝐹𝐹thrust = −
1

2
𝜌𝜌𝜌𝜌T|𝑉𝑉 |𝑉𝑉 𝑉𝑉𝑇𝑇� (1)

where ρ is the air density (kg m −3), 𝐴𝐴 𝑉𝑉 = (𝑢𝑢𝑢 𝑢𝑢) the horizontal wind vector (m s −1), 𝐴𝐴 |𝑉𝑉 | =
√
𝑢𝑢2 + 𝑣𝑣2 , and AT is the 

rotor area (m 2). The rate of loss of kinetic energy (KE) then equals:

𝜕𝜕KE
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|
|
|
|drag

= −
1

2
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In practise the rotor of a turbine intersects multiple model levels, and Equation 2 (and all equations in the remain-
der of this chapter) are solved for each model level k individually, replacing the rotor area AT with the area 
intersected by the k-th model level, and the wind speed 𝐴𝐴 |𝑉𝑉 | , and density ρ with values from the k-th model level, 
indicated where appropriate by a subscript k. As a result, the momentum sink (and TKE source) is elevated and 
height dependent.

In general, the total change in KE imposed by a single wind turbine on a single grid cell with a volume 
Δk = (ΔxΔyΔzk) m 3 equals:

𝜕𝜕KEk
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Combining Equations 2 and 3, that is, setting:
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results, after re-arranging, in an expression for the change in velocity with time:

Figure 1.  Power (CP) and thrust (CT) coefficients of the Belgian offshore wind turbines.
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or, in component form:
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The vertical velocity component is assumed to be unaffected by the wind turbines, and furthermore, drag by the 
wind turbine tower and nacelle is not included in the parameterization. The energy that is extracted from the 
atmosphere, but not converted into electrical energy, is assumed to be converted into turbulent kinetic energy 
(TKE, per unit mass), that is, CTKE = CT−CP, resulting in:

𝜕𝜕TKEk

𝜕𝜕𝜕𝜕
=

1

2
𝐶𝐶TKE |𝑉𝑉𝑘𝑘|

3
𝐴𝐴𝑘𝑘 Δ

−1

𝑘𝑘
.� (8)

We should note that our choice for CTKE = CT−CP—In line with (Fitch et al., 2012)—Is somewhat arbitrary. For 
example, (Archer et al., 2020) suggest reducing CP to 25% of its original value, while others (e.g., Siedersleben 
et al., 2020) concluded that the original definition of CTKE performed satisfactorily when comparing the resulting 
TKE with observations.

Finally, as a diagnostic quantity, the model outputs the electrical power produced by the wind turbines:

P =
1

2
𝜌𝜌𝜌𝜌P 𝐴𝐴𝑇𝑇 |𝑉𝑉hub|

3
.� (9)

For a typical offshore wind farm, multiple wind turbines can occupy a single horizontal grid point. Instead of 
introducing a horizontal wind turbine density—Like in (Fitch et al., 2012)—Equations 6–9 are repeated for each 
individual turbine, allowing different turbine types in a single horizontal grid point. The total tendencies for 
the horizontal wind components and TKE are adjusted after the turbulence scheme is called and fed back to the 
model.

Figure 2.  Overview of all (2.5 × 2.5 km) grid points with one or more wind turbines (red). Black arrows indicate the 
locations of measurements used for evaluation. In the left figure the black square indicates the model domain and the gray 
square the location of the right panel.
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4.  Setup of Wind Turbines in the Domain
In the HARMONIE-AROME domain 3908 wind turbines with 18 different types are included (Figure 2). For 
the Belgian and Dutch wind farms, the exact (individual) turbine coordinates are available, which could directly 
be used in the experiments. For the other offshore wind farms in the computational domain (Figure  2), the 
available information was limited to the wind farm boundaries and the total number of turbines per wind farm. 
For these  sites, the turbine coordinates were first chosen randomly within the wind farm boundary, and next 
distributed uniformly using an iterative repulsion method (Witkin & Heckbert, 2005). This random approach to 
determine the turbine coordinates can be justified by the fact that within the turbine parameterization, all turbines 
are mapped to the nearest 2.5 × 2.5 km grid point, making the exact turbine coordinates less important. The wind 
farm boundaries were obtained from the The European Marine Observation and Data Network (EMODnet; 
Martín Míguez et al., 2019).

The CP and CT curves were obtained from various sources, predominantly from windPRO input database (Acker 
& Chime, 2011). For a small number of turbines, no CP and CT curves were publicly available, those turbines have 
been replaced with either reference data from literature, or CP and CT curves from similar turbines. An overview 
of the wind farms and the turbine types is provided in the supplementary information.

5.  Measurements
5.1.  Borssele Wind Lidars

For the wind resource assessment of the four wind farms in the Borssele wind farm zone (BWFZ), two short-range 
doppler lidars were deployed near the Belgian offshore wind farms. Fugro executed a Metocean campaign and did 
measurements for a number of periods between June 2015 and February 2017. ZephIR 300S lidars were mounted 
on buoys with a bottom mooring weight at 51.707°N, 3.035°E (Figure  3, lidar 1) and at 51.646°N, 2.951°E 
(Figure 3, lidar 2). Lidar 1 (henceforth BWFZ1) measured for the longest period and there were 16 measurement 
periods between June 2015 and February 2017 (Figure 4a). This lidar is located 10 km northeast of the nearest 
wind turbine. Lidar 2 (henceforth BWFZ2) only measured during five periods and only between February and 
July 2016 (Figure 4b). This lidar is closer to the Belgian wind farm zones, at 2 km from the nearest turbine 
(Figure 3). At typical hub heights of about 90 m the uncertainty in floating lidar measurements for wind speeds 
between 4 and 15 m/s is between 3% and 4.5% (Duncan et al., 2019).

Figure 3.  Setup of the Borssele wind lidars off the coast of Belgian and the Netherlands. The blue area are the planned wind 
farm zones, that started to be operational in 2020/2021.
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5.2.  FINO 1 Tower

The FINO 1 tower has been providing measurements since 2003 and is located in the North Sea at 54.015°N, 
6.588°E, 50 km north of the Wadden island Borkum (Figure 2). The water depth at this location is 30 m and the 
tower reaches a height of 103.7 m above Lowest Astronomical Tide (LAT). The first wind turbines were installed 
near FINO1 in November 2009 and the Alpha Ventus wind farm became fully operational in 2010. This means 
that wind measurements for wind directions between 15° and 165° (easterly winds) became disturbed by Alpha 
Ventus since November 2009. Borkum Riffgrund 1 to the south west has been fully operational since 2015, also 
disturbing the flow in 170°–300° directions.

Here, we use the cup anemometers to evaluate the model, since these measure at frequent height intervals (i.e., 
34.1, 41.6, 51.6, 61.6, 71.6, 81.6, 91.6, 101.6). The cup anemometers are manufactured Vector Instruments Wind-
speed Ltd. type A100LK/PC3/WR with an accuracy of 1%. The cup anemometers (for measuring wind speed) 
are on booms on the southeast side of the mast (toward 135–143°) and the wind vanes (for measuring wind 
direction) on booms on the opposite side of the mast. The wind speed measurements are corrected for wind 
mast effects using a measurement correction scheme called the UAM-correction method (i.e., Westerhellweg 
et al., 2010, 2012). Wind direction measurements are not corrected.

The FINO1 measurements are available for the whole of 2016 and only about 2.5% of the data are missing 
(Figure  4). Due to its long-term measurements the tower has been previously used to evaluate atmospheric 
models over the North Sea (e.g., Muñoz-Esparza et al., 2012; Wagner et al., 2019).

5.3.  Westermost Rough Wind Lidar

On top of the Westermost Rough wind farm substation (Figure 2), Ørsted operates a Leosphere WindCube scan-
ning doppler lidar, providing wind speed measurements between 74 and 324 m height. Westermost Rough wind 
farm is located off the coast of Yorkshire, UK. Unlike the Borssele lidars and FINO1 tower, this lidar is located 
in the center of the wind farm (53.804°N, 0.132°N), and is therefore always disturbed by the wind turbines. The 
Westermost Rough (WMR) lidar became operational in mid-January 2016, but only has an overall availability of 
∼14% (1.5 out of 12 months), which limits its usability.

Figure 4.  Availability of the measurements for the two lidars at the Borssele wind farm zone (a) BWFZ1 and (b) BWFZ2, (c) 
the Westermost Rough lidar (WMR) and (d) FINO 1.
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5.4.  WIPAFF

As part of the WInd PArk Far Field (WIPAFF) project (Platis et al., 2020), several measurements were taken 
around wind farms in the German Bight area (Figure 2). In total 41 flights were carried out, of which 8 were in 
our current study period (6–10 September 2016). The aircraft measurements were carried out using the research 
aircraft Dornier 128. The aircraft is equiped with sensors measuring temperature, humidity, all wind components, 
and pressure at 100 Hz. This large data set of spatial data is very valuable to evaluate mesoscale models with 
wind-farm parameterisations, and has been used previously to evaluate the Weather Research Forecasting model 
(WRF) (Platis et al., 2021; Siedersleben et al., 2020; Siedersleben, Lundquist, et al., 2018; Siedersleben, Platis, 
et al., 2018). The measurements are described in detail by Lampert et al. (2020) and data are publicly available 
(Bärfuss et al., 2019).

For the purpose of this study we have only used one of the flights to evaluate the spatial representation of the 
wind farm wakes generated by HARMONIE. This flight took place on 6 September 2016, between 12:13 and 
15:20 downwind of Amrumbank West wind farm. During this day the average background wind speed was about 
7 m s −1 from the south according to Lampert et al. (2020). Therefore the aircraft measurements were taken in a 
meandering pattern north of the wind farm at hub height (i.e., 90 m). Given the average speed of the airplane was 
54 m s −1 and to compare with the model data at a grid spacing of 2.5 km, a 60-s rolling average over the sonic 
anemometer data is performed.

5.5.  Power Production Data

Belgium's high-voltage TSO, Elia, publishes the generated power by their various energy sources, including 
offshore wind farm power production in 15-min intervals. Since in 2016 Belgium only had three offshore wind 
farms (Figures 2 and 3), we are able to use their power generation data to evaluate the HARMONIE-modeled 
generated power. The total capacity of these offshore wind farms was 712.2 MW.

6.  Evaluation
6.1.  Offshore Lidar and Tower Measurements

During the chosen period, all lidars had periods with missing data, as summarized in Figure 4. For all statistical 
analyses in this section we use collocated data, that is, missing data is removed (or masked) in the model data 
set as well. In addition, there is no conditional sampling based on (e.g.,) wind direction; all available measure-
ments  are always included in the statistics.

6.1.1.  Borssele Wind Farm Zone (BWFZ) Lidars

As shown in Figure 3, both lidars were positioned north-east of the Belgian Northwind wind farm. With prevail-
ing winds from the south-west, these lidar measurements are typically disturbed by the Belgian wind farms, 
making them ideal for assessing the impact of the wind turbines on the wind field, and the ability of the wind farm 
parametrization to reproduce the disturbed wind field due to the wake effect of the wind farm.

Figure 5 shows the time averaged vertical wind speed profiles from the reference run (REF), the experiment 
with the wind-farm parameterization (WFP), and the Borssele lidars. These are averaged profiles over the entire 
measurement period for both lidars and represent all different wind directions. However, over the duration of the 
measurement period of BWFZ1, the wind direction was southwesterly (180–270°) 42% of the time.

For both sites the reference simulation (without wind park parameterization) overestimates the wind speed, which 
is most pronounced for lidar location number two, which is closest to the Belgian wind farms at 2 km distance 
from the nearest turbine. Enabling the wind-farm parameterization clearly improves the experiments; for BWFZ2, 
the mean profile from HARMONIE matches very well with the measurements.

6.1.2.  FINO1 Tower

The FINO1 tower is situated directly west of the Alpha Ventus wind farm, and north-east of the Borkum Riff-
grund wind farm (Figure 2). Figure 6a shows the time averaged vertical wind speed profiles, compared to the 
corrected FINO1 measurements. In line with the results from the Borssele area, the reference simulation over-
estimates the wind speed with ∼0.76–0.94 m s −1 (Table S5 in Supporting Information S1). With the wind-farm 
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parameterization included, the absolute bias is decreased, but with a slight negative bias at the highest few 
measurement points, ∼0.04–0.21 m s −1 (Table S5 in Supporting Information S1). This underestimation seems 
to be partially caused by the mapping of wind turbines to the nearest HARMONIE grid point. In reality, the 
FINO1 tower is west (and with the dominating wind direction: upstream) of the Alpha Ventus wind farm, but in 
HARMONIE the grid point nearest to FINO1 also houses some of the Alpha Ventus wind turbines, as shown in 
Figure 6b. This means that the grid point used for the analysis, directly experiences drag from some of the Alpha 
Ventus turbines, resulting in a reduced wind speed. However, including the wind-farm parameterization clearly 
improves the wind profile at the tower location due to the many wind farms in the surroundings. This is also the 
location where the largest impact is expected.

The long measurement period of FINO1 allows us to make a more detailed comparison and verify the model 
simulations based on wind direction (Figure 7). The mean bias and root mean squared errors close to hub height 
(81 m), show a significant improvement across all wind directions between 20 and 330°, especially those which 
include the most wind turbines, between 80 and 110° and 160 and 240°. As also seen in Figure 6 the mean bias in 
the WFP run, is generally negative especially from the southern wind directions (minimum mean bias: −0.98 m 
s −1 around 170°). This means that either the background wind is underestimated, or the velocity deficit is over-
estimated by (Fitch et al., 2012) wind farm parameterization. This negative bias for wind directions influenced 
by wind farm is not as clear when examining the data from the BWFZ lidars (Supporting Information S1). In 
addition, in Section 6.2, we will examine the size and strength of the wake using flight measurements. The corre-
lation coefficients are very similar between the experiments. This is as expected given the nature of the wind-farm 

Figure 5.  Vertical profiles of wind speed, from the reference run (REF) and experiment with wind-farm parameterization 
(WFP), compared to the Borssele (a) Borssele wind farm zone (BWFZ) lidar 1, 10 km from the nearest wind farm and (b) 
BWFZ lidar 2, 2 km from the nearest wind farm. The gray dotted line indicates the mean hub height of the nearest wind farm 
and the gray shaded areas the area the diameter of the rotor.

Figure 6.  (a) Vertical profiles of wind speed, from the reference run without wind-farm parameterization (REF) and 
experiment with wind-farm parameterization (WFP), compared to the FINO1 tower. (b) The number of turbines in the 
HARMONIE grid cells surrounding FINO1.
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parameterization, which locally reduces wind speeds (Equations 6 and 7), but 
has very little influence on the timing of meso-scale wind patterns.

6.1.3.  Westermost Rough Lidar

As shown in Figure 4, the data availability is limited to ∼14% of the Janu-
ary to May period, and even less at the three highest measurement heights. 
Therefore, the analysis here is limited to the lowest 214 m.

Figure 8 shows the time averaged vertical profiles of the lidar measurements 
and HARMONIE experiments. As with the FINO1 and Borssele locations, 
the reference run overestimates the wind speed. The experiment with wind 
turbines (WFP) is very close to the averaged lidar observations, especially 
near hub height. Above the rotor tips the gradient at which the wind speed 
increases is underestimated in the model. This results in a bias at 214 m of 
0.2 m s −1 for the REF experiment and 0.3 m s −1 for the WFP experiment. 
Since the REF experiment also underestimates the wind speed above the rotor 
tip, this bias could be caused by an underestimation of the background wind 
speed or a measured acceleration of the wind above the rotor tip not captured 
by HARMONIE with the WFP. In order to analyse this, we would suggest 
experiments with higher vertical resolutions and evaluate the representation 
of the maritime boundary layer in this area.

6.2.  Airbourne Measurements

For the evaluation of HARMONIE with the wind-farm parameterization the 
lidar and tower measurements show significant improvements at single loca-
tions. However, in order to evaluate the spatial scale of the modeled wakes 
airbourne measurements are used. The WIPAFF measurement flights are 
intended to observe the spatial extent of the wind-farm wakes. As mentioned 
in sect. 5.4, we only use the airbourne measurements carried out during 6 

September 2016, with a near-neutral – slightly stable surface layer and an average wind speed of 7 m s −1 around 
hub height (Lampert et al., 2020). In those cases we expect to see a large wake from the wind farm, but not as 
strong as in very stable conditions (e.g., Zhan et al., 2020). Figure 9 compares the flight measurements with the 
HARMONIE simulations following the same track. For each measurement point the nearest model point in time 
and space was extracted for both REF and WFP simulations. The model output was linearly interpolated between 
the nearest two model levels to 90 m, the flying altitude. The wind speed from the REF simulation is shown to 

indicate the spatial variability of the background wind field and to differenti-
ate the model's representation of the background wind field compared to the 
influence of the wind farms.

Close to the wind farm the wind farm wake is captured very well by the WFP 
(Figure 9a). Here, at ∼4 km distance the velocity deficit is about 2 m s −1 and 
the width of the wind farm is about 15 km. During this time the background 
wind speed decreases left to right of the wind farm (negative to positive 

𝐴𝐴 𝐴𝐴 − 𝑥𝑥turbines), however this is underestimated by the model leading to a bias of 
1.0 m s −1 in the WFP run. An 1.5 hr later (∼14:30) a cross section was taken 
at about 7.3 km downwind of the wind farm (Figure 9b). Here, the HARMO-
NIE WFP run is able to capture the wind speed in the wake of the turbines 
very well, but now underestimates the wind speed east of the turbines (posi-
tive 𝐴𝐴 𝐴𝐴 − 𝑥𝑥turbines)) by about 0.7 m s −1. About 10 km downwind of the previous 
cross section (Figure 9c), the velocity deficit in the wind-farm wake has been 
reduced to ∼1 m s −1, captured well by in the WFP run. As expected, the REF 
run is unable to model the velocity deficit caused by the wind farm.

The part of the flight along the wind direction captures the recovery of the 
wake (Figure 9d). About 4 km away from the wind farm the wind speed is 

Figure 7.  Verification of the wind speed at 81 m with the FINO1 tower 
binned per wind direction (a) root mean squared error (RMSE), (b) Mean bias, 
(c) Pearson correlation coefficient from the reference run without wind-farm 
parameterization (REF) and experiment with wind-farm parameterization 
(WFP), compared to the FINO1 tower. (d) The number of hours for each wind 
direction. The gray shading indicates the wind directions potentially disturbed 
by wind farms.

Figure 8.  Vertical profiles of wind speed, from the reference run without 
wind-farm parameterization (REF) and experiment with wind-farm 
parameterization (WFP), compared to the Westermost rough lidar.
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5.4 m s −1, at 30 km away the wind speed has only increased by 0.7 m s −1 to 6.1 m s −1. Over the same distance the 
model shows a similar reduction in the velocity deficit, 0.8 m s −1. After 30 km the observations show the wake 
to dissipate quickly, while in HARMONIE there remains a difference between the REF and WFP runs of about 
<0.5 m s −1 for at least 70 km downwind of the wind farm. The Fitch et al. (2012) parameterization is known to 
produce long wakes (e.g., Shepherd et al., 2020). However, a more systematic evaluation of the size and shape of 
wakes using Fitch et al. (2012) is needed, with more research aircraft data, scanning doppler lidars (e.g., Banta 
et al., 2015; Rhodes & Lundquist, 2013; Santoni et al., 2020; Schneemann et al., 2020), or satellite measurements 
such as SAR (e.g., Christiansen & Hasager, 2005; Hasager et al., 2015).

6.3.  Power Production

When evaluating HARMONIE with the wind-farm parameterization, power production is a crucial quantity. 
Power production scales with the velocity cubed (Equation 9), making it sensitive to biases in wind speed. For the 
entire year 2016, Elia provides power production data for the Belgian offshore wind farms. This is the total power 
production of all the offshore wind farms. In 2016 these farms had a total capacity of 712.2 MW (Figure 3).

Figure 10 shows the comparison between the observed power production and power production obtained from 
the HARMONIE experiments, both from the reference experiment and experiment with the wind turbine param-
eterization (WFP). The bottom panels indicate the absolute and relative differences, averaged over 50 MW bins. 
The relative bias from the first (0–50 MW) bin should be treated with caution, as conditions where the observed 
power production equals zero result in an infinitely large relative bias.

Figure 9.  Cross sections through the wind farm wake of Amrumbank West in the German Bight on 6 September 2016, 
12:13–15:20 UTC. Cross sections are perpendicular to the wind direction at (a) 3.9 km, (33 times the rotor diameter) (b) 
7.3 km (61 times the rotor diameter), and (c) 16.8 km (140 times the rotor diameter) distance from the turbines, and (d) a 
cross section along the wind from the center of the turbines directly downstream. Dots indicate 60 s rolling average wind 
speeds at 30 s intervals, and the error bars the standard deviation from the aircraft measurements and lines indicate the 
interpolated modeled wind speed along the same flight path (red) reference run and (black) simulation with WFP. The gray 
are indicate the location of the wind farm.
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In the WFP experiment, the power production is calculated online in HARMONIE using Equation 9. The proce-
dure is fairly straightforward: for each wind turbine, the absolute wind speed is linearly interpolated in height 
from the native model grid to hub height, and Equation 9 is used to calculate the power production, which is 
summed over all turbines in a grid point. For the reference experiment, the exact same procedure is applied 
offline using the three dimensional velocity fields on the native model grid, using the same amount, location, and 
properties (CP curves).

The power production calculated offline from the reference experiment clearly overestimates the production, with 
absolute biases as large as 150 MW, and for low wind speeds (low power production) relative biases as large as 
100%. The reference simulation clearly does not include the power production losses attributed to the velocity 
deficit created by the wind turbines. Including the wind turbine parameterization clearly improves the power 
production calculated, reducing the absolute bias to a maximum of 50 MW at high wind speeds, and the relative 
bias to ∼6%. There are a few possible causes for this constant relative bias—For example, efficiency losses in the 
turbines or power cables, the use of (manufacturers) turbine specifications which are too optimistic, inaccuracies 
in the turbine parameterization, or single turbines that are not operational, or not functioning optimally. If the 
aim is to deliver power production forecasts to users, some post processing will be necessary to eliminate these 
inaccuracies.

6.4.  Impact of Wind Farms on Local Meteorological Conditions

As seen in the previous sections, wind turbines have an impact on the (local) wind conditions. In addition, wind 
turbines generate TKE, which enhances vertical mixing, potentially influencing other quantities like temperature, 
humidity, or clouds. Here, we briefly examine the impact of two Dutch offshore wind farms on the local meteor-
ological conditions. In the absence of suitable measurements, the results are limited to comparing the reference 
simulations with the experiment including wind turbines. As previous studies suggest an impact of atmospheric 
stability on wake structures (e.g., Dörenkämper et al., 2015), we have split up the data for stable and unstable 
lower atmospheric conditions. The bulk Richardson number (RiB) is calculated locally as follows:

Figure 10.  Power production calculated from the (a) reference reanalysis (REF) and (b) experiment with wind-farm 
parameterization (WFP), compared to the Elia measurements. The solid black line with markers (top row) indicates the mean 
of the model data calculated over 50 MW bins. The bottom row shows the (c) absolute and (d) relative error of both model 
experiments.
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where g is the gravitational constant (=9.81 m s −2), and θv the virtual potential temperature. RiB is calculated 
using the reference simulation at the location of the two wind farms between a height of 10 and 150 m, as this 
covers the entire wind turbine height for both wind farms.

Stable situations are defined as RiB > 0.2 and unstable situations as RiB < −0.2. Stable bulk Richardson numbers 
are more likely to occur during March – June, as the sea surface temperature is colder on average compared to 
the atmospheric temperature. Most unstable marine boundary layers in this area occur between September and 
December, when the sea surface is generally warmer than the atmosphere above. The number of hours for each 
stability class per month is shown in the supplementary information.

Figure 11 shows the differences in wind speed (V), potential temperature (θ), and specific humidity (q) between 
the experiments with and without wind turbines averaged for stable and unstable boundary layers. For wind speed, 
the elevated drag is clearly visible, with a maximum decrease of 1.9 m s −1 near hub height, but a near-surface 
decrease of 0.3–0.0 m s −1. The relatively small wind farm Princes Amalia (120 MW, −0.75 m s −1 during stable 
and −0.4 m s −1 in unstable conditions) has a smaller impact on the wind speed compared to the larger Gemini 
(600 MW, −1.9 m s −1 during stable and −1.1 m s −1 in unstable conditions). As shown in previous research (e.g., 
Dörenkämper et al., 2015), we see higher velocity deficits during stable cases compared to unstable atmospheric 
boundary layers. In addition, stable conditions also show the wake is spread out over a shallower layer, compared 
to unstable conditions. During unstable conditions, the boundary layer is generally deeper, and the velocity deficit 
is spread out over a larger layer more than five times the hub height.

The enhanced vertical mixing has some impact on temperature and specific humidity. For stably stratified condi-
tions, the enhanced TKE and vertical mixing decreases the stratification, resulting in an increase in temperature 
and decrease in specific humidity near the surface, and decrease in temperature and increase in specific humidity 
at 100–150 m height. At the large wind farm, Gemini, this average vertical potential temperature variation is 

Figure 11.  (a and d) Impact of wind turbines on meteorological variables wind velocity, (b and e) potential temperature, 
and (c and f) specific humidity over two Dutch offshore wind farms, Gemini to the north of the Dutch coast (black dashed) 
and Princes Amalia to the west of the Dutch coast (blue solid), where Δ = WFP-REF. The top panels (a–c) are averaged 
profiles where the local bulk Richardson number (RiB) (between 10 and 150 m) RiB > 0.2, the bottom panels (number of 
hours: NPr.Amalia = 2282 and NGemini = 1988) (d–f) the RiB < −0.2 (number of hours: NPr.Amalia = 4847 and NGemini = 5146). The 
horizontal lines indicate the hub height of each wind farm.
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between −0.46 and 0.41 K, for the smaller wind farm (Princes Amalia) −0.18 to 0.23 K. The specific humidity 
during spring decreases by 0.24 g kg −1 for Gemini and 0.17 g kg −1 for Princes Amalia near the surface and 
increases by 0.13 and 0.04 g kg −1, respectively, above hub height. These results are similar to those seen using 
WRF (Siedersleben, Lundquist, et al., 2018). As a result of the near surface heating and drying, and the cooling 
and moistening aloft, the relative humidity decreases near the surface, and increases higher up. This could impact 
the formation of fog or low clouds.

During unstable conditions the influence of the enhanced vertical mixing by wind turbines is smaller, for poten-
tial temperature less than 0.05 K and specific humidity less than 0.04 g kg −1 for both wind farms. The already 
well-mixed profiles during unstable conditions are barely influenced by enhanced TKE.

7.  Conclusion
The Fitch et al. (2012) wind-farm parameterization was implemented in mesoscale model HARMONIE-AROME, 
and validated with a variety of observations in the north-sea region over a 1-year period. The parameterization 
reduces momentum and converts this into turbulent kinetic energy and power production, depending on wind 
turbine properties. Two one-year-long simulations were performed, one including all wind turbines on the North 
Sea known up to 2016 and one without any wind turbines. The evaluation with various wind measurements on 
the North Sea indicates that inclusion of the turbine parameterization has a positive impact on the modeled wind 
speeds near (offshore) wind farms. For all locations considered, the absolute bias in wind speed is decreased 
compared to the simulation without wind farms. Furthermore, the predicted power production—Compared 
to observations from the Belgian TSO—Shows a substantial improvement with the turbine parameterization 
included.

A brief survey of the impact of wind farms on the local meteorological conditions, indicates that in addition to 
changes in wind speed, other quantities like temperature or humidity are influenced by wind farms as well. These 
variations in temperature and humidity are more pronounced in periods with more stable conditions, where the 
enhanced turbulent kinetic energy from the wind turbines increases the mixing of the marine boundary layer. 
With the expected increase in number and size of wind turbines in the coming decades the influence of wind 
turbines on local to regional meteorology can no longer be neglected. The relatively simple wind-farm parame-
terization by Fitch et al. (2012) improves modeled wind speed near wind farms and can be used operationally to 
improve weather forecasts and predicted power production.

Data Availability Statement
The input data for the wind farm parameterisation together with the HARMONIE-AROME output used to make 
all figures is available at: https://doi.org/10.5281/zenodo.6427317. The measurements used in the manuscript 
have various sources. Borssele wind farm zone lidars: https://offshorewind.rvo.nl/cms/view/78f1a154-5b56-
4ab0-a70f-d746a610179e/studies-borssele, FINO1 tower data: https://www.fino1.de/en/, Westermost Rough 
wind farm zone lidar: https://orsted.com/en/our-business/offshore-wind/wind-data, WIPAFF flight measure-
ments: https://doi.pangaea.de/10.1594/PANGAEA.902845, and Elia power production data: https://opendata.
elia.be/ The HARMONIE-AROME reference simulations are available on the KNMI data platform: https://data-
platform.knmi.nl/dataset/?tags=Dutch+Offshore+Wind+Atlas. Access to the HARMONIE-AROME codes can 
be obtained by contacting one of the member institutes of the HIRLAM consortium and is subject to signing a 
standardised ALADIN-HIRLAM licence agreement (see http://www.hirlam.org/). and other contributors.
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