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The conventional dynamic cost inefficiency model relies on the directional distance function with an ex-
ogenous directional vector to measure technical and allocative inefficiency. However, this approach may
lead to contradictory recommendations for firms to become technically and allocatively efficient. By defi-
nition, the conventional model forces firms to reduce their inputs and increase their investments in order
to become technically efficient; for some firms this is followed by the reverse recommendation to become
allocatively efficient. This paper proposes a model that endogenizes the directional vector to solve for
the cost minimizing combination of inputs and investments. In contrast to the conventional model with
an exogenous directional vector, our model provides managers with monotonic prescriptions. We illus-
trate the superiority of the endogenous directional vector model over its conventional counterpart using
a dataset of EU firms in the dietetic food industry. The differences in the managerial prescriptions are
striking, with the conventional model wrongly recommending reductions in inputs that are underused
with respect to their optimal amounts minimizing cost.
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and the greater their value, the more efficient is the firm in each
of these dimensions.

1. Introduction

The measurement and decomposition of economic efficiency
into technical and allocative components has a long tradition in
economic theory since Debreu (1951), and, particularly, Farrell
(1957). The latter author showed that cost efficiency, defined as
minimum cost divided by observed cost, can be decomposed into
a technical efficiency measure depending only on quantities, and,
a residual, which he termed price efficiency. While technical effi-
ciency measures the cost excess from the failure to exploit the pro-
duction frontier, price efficiency measures the additional cost ex-
cess in which a (projected) technically efficient firm incurs by fail-
ing to use the optimal cost minimizing quantities (mix) of inputs at
given market prices. Hence, price efficiency effectively corresponds
to the concept of allocative efficiency as defined in the literature
on measurement of efficiency of production; at least since Fdre et
al. (1985). Cost efficiency and its components are bounded by one,
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From an economic perspective, this decomposition is grounded
on the duality theory introduced by Shephard (1953), and later ex-
tended by Fdre and Primont (1995). Duality theory simply states
that, assuming cost minimization, it is possible to recover the tech-
nology, in this case the associated input production possibility set,
from its supporting cost function, and vice versa. The relevance
of duality is the possibility of proving the existence of a so-called
Mahler inequality by which minimum cost is smaller or equal than
observed cost at the technically efficiency projection of any firm
under evaluation (Pastor, Aparicio & Zofio, 2022). Hence Farrell’s
decomposition is theoretically consistent by relating the quantity
(primal) and dual (price) spaces.

Beyond the radial model corresponding to the technical effi-
ciency measure introduced by Farrell (1957), several authors have
proposed alternative models to decompose cost inefficiency relying
on additive measures of technical inefficiency (e.g. Charnes, Cooper,
Golany, Seiford & Stutz, 1985). For instance, based on the input
oriented Enhanced Russell Graph measure introduced by Pastor
et al. (2011) (also known as Slack Based Measure), Aparicio, Or-
tiz and Pastor (2017) develop the duality that allows decompos-
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ing normalized cost inefficiency into technical and allocative terms.
Aparicio, Pastor and Vidal (2016) introduced the weighted addi-
tive distance function (WADF), which endows additive-type mod-
els with a distance function structure. An appealing feature of the
WADF is the flexibility offered when choosing the weights for the
input slacks. Hence, the duality theory developed by these authors
for the WADF encompasses a wide range of measures, enabling a
consistent decomposition of cost inefficiency. For instance, the nor-
malized weighted additive model, the measure of inefficiency pro-
portions (MIP), the range adjusted measure (RAM) of inefficiency,
etc.

Recently, Silva, Oude Lansink and Stefanou (2015) have ex-
tended duality theory underlying all these models to the cost
adjustment model that provides an intertemporal (dynamic) ap-
proach to efficiency measurement when some inputs are quasi-
fixed. Their analytical proposal departs from the multiplicative ap-
proach inherent to the radial approach by adopting the flexible in-
put directional distance function (DDF) introduced by Chambers,
Chung and Fare (1996). The DDF is flexible because researchers
may choose the directional vector g and, as shown by Chambers
et al. (1996), it nests its Farrell radial counterpart. Specifically, if
the directional vector is equal to the observed amount of inputs,
g=x, then it can be proven that the DDF is equal to one minus
Farrell’s input technical efficiency.! Because of the additive nature
of the DDF, and based on its duality with the cost function, eco-
nomic performance defines as the (normalized) difference between
observed cost minus minimum cost.

However, the flexibility offered by the DDF comes at the cost
of a subjective choice of the directional vector g. Because of its
straightforward relationship with the popular radial approach, as
shown above, most studies in the empirical literature choose as
directional vector the observed amount of input quantities. This
allows a straightforward interpretation of the value of the direc-
tional distance function as the proportion of inputs that need to
be reduced to reach the production frontier. It also makes the DDF
units’ invariant in the sense that if we multiply inputs and out-
puts as well as their directional vector by the same vector, then its
value remains unchanged. However, choosing different directional
vectors across firms was soon identified as a shortcoming in the
context of technical and economic efficiency measurement.

Firstly, the value of the DDF—i.e., the technical inefficiency
score, depends both on the length and the direction of g, implying
that their absolute values are not directly comparable. Secondly,
as in the radial approaches, the exogenous choice of the direc-
tional vector results, through duality, in an arbitrary decomposi-
tion of cost inefficiency into technical inefficiency, and the resid-
ual allocative efficiency. To the extent that the value of the DDF
depends on the subjective choice of the directional vector g, so
does the value of the allocative inefficiency. Consequently, chang-
ing the value of g; i.e, projecting the same observation in alter-
native directions or projecting observations in different directions,
changes the value of both the technical and allocative inefficien-
cies, which, once again, become incomparable across observations.
Fdre, Grosskopf and Margaritis (2008) discuss several possibilities
when choosing a common or ‘egalitarian’ directional vector g, that
makes the distance functions readily comparable in value and im-
ply that the cost inefficiency decomposition is based on the same
direction. Two possible choices are the unitary vector, g=1, or the
mean of the observed input quantities, g = x.

1 Interestingly, although this relationship extends to the cost measure, so additive
cost inefficiency is equal to one minus Farrell’s cost efficiency, this relationship does
extend to the allocative (in)efficiency component, see Aparicio et al. (2017). Hence,
a decomposition of cost inefficiency based on the DDF does not generalize that of
Farrell
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Regardless the trade-off between alternative directional vectors,
either different or equal to all observations, they all have in com-
mon their subjective nature. For this reason several authors have
proposed alternative criteria to endogenize its value by considering
specific goals. One option in the primal space, considering quan-
tities only, is the minimization of the distance to the production
frontier. This consists in the identification of the closest targets
as surveyed by Aparicio & Pastor, 2014a, 2014b). Fire, Grosskopf
and Whittaker (2013) also propose to endogenize the values of the
directional vector by normalizing the sum of its element to one.
Under this restriction, the technical inefficiency measure project-
ing the observation on the production frontier can be directly re-
lated to the slacks-based directional distance function introduced
by Fiare and Grosskopf (2010). Also, based on the information con-
tained in the sample when identifying peers, several authors have
proposed data driven orientations. A recent example is Daraio and
Simar (2016), who propose a method that allows choosing context
specific (or local) directions for firms, considering as benchmarks
those facing similar characteristics. These conditions can be associ-
ated with the closeness of those benchmark peers to the input mix
of the evaluated firm (again, g=x), but also to some other con-
textual conditions (factors); e.g., benchmarks facing the same non-
discretionary inputs and outputs. A characteristic of all these ap-
proaches endogenizing the directional vector is that they are tech-
nological in nature and therefore unrelated to economic optima in-
volving market prices. As shown below our approach departs from
these models by considering as endogenous direction the projec-
tion of the observations on the optimal minimizing cost bench-
mark.

Yet, one additional drawback of the DDF, common to all ap-
proaches above, is that it does not satisfy the indication property—
e.g., see Fdre and Lovell (1978) and Russell and Schworm (2009).
This implies that the technically efficient projection does not be-
long to the strongly efficient production possibility set, and addi-
tional individual reductions (slacks) in input quantities may still
be feasible, beyond the radial projections. As noted by Fukuyama,
Matousek and Tzeremes (2020) the existence of individual slacks
in input quantities implies that, when decomposing cost efficiency,
technical efficiency is overestimated and, correspondingly, alloca-
tive efficiency is underestimated.

The existence of these shortcomings prompts us to propose
the endogenization of the directional vector in the dynamic cost
model, so the firm is projected on an economically optimal bench-
mark on the frontier; in this case the optimal input bundle that
minimizes dynamic production costs. The endogenous model that
we introduce solves these problems, because: i) it ensures that the
technical inefficiencies are comparable in monetary values; ii) the
decomposition of cost inefficiency is clearly classified into techni-
cal or allocative for each observation, so they do not weight dif-
ferently depending on the length and direction of the directional
vector; iii) by searching for minimum cost peers, it prevents that
non Pareto-Efficient firms belonging to the weakly efficiency fron-
tier are identified as benchmark; and, therefore, iv) technical effi-
ciency and allocative efficiency cannot be overestimated and un-
derestimated, respectively. The reason is that, under the usual as-
sumptions about the technology and the cost function, firms be-
longing to the weakly efficient technological frontier cannot define
the cost minimizing hyperplanes characterizing the economic fron-
tier because additional input reductions would be feasible.

Finally, in the new approach, by searching for the cost minimiz-
ing optima, an additional restriction imposed by the conventional
model is overcome. That related to the forceful reduction of inputs,
which is unwarranted from a managerial perspective. If inputs are
to be reduced, as in the existing radial and DDF approaches, it may
be still possible that the best available economic benchmark on
the technological frontier, subject to the no-negativity constraint
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of the directional vector, does not minimize cost. But if, as in re-
ality, inputs can be adjusted at will, so the firm is free to reduce
but also increase them if necessary, then the new proposal shows
that the cost minimizing benchmark can be reached directly with-
out any intermediate projections because of existing constraints on
input changes. As anticipated above, the freedom that managers
have to adjust inputs results in a relevant result. Cost inefficiency
is either technical or allocative. The reason is rather logical. If a
technically inefficient firm laying inside the production possibility
set can be directly projected to the cost minimizing benchmark,
then all inefficiency is technical and there is no room for alloca-
tive inefficiencies. On the other hand, if a technically efficient firm
laying on the frontier does not minimize cost, then all its cost in-
efficiency is allocative. Moreover, as indicated, the subjective—two-
stage—decomposition of cost inefficiency into technical and alloca-
tive criteria is avoided.

The new method brings simplicity to the managerial decision
making process, as it would not make sense that firms are pre-
scribed a reduction in the amount of an input to overcome techni-
cal inefficiencies, and yet, in a subsequent stage, they are required
increase it so as to demand the optimal amount that minimizes
cost. For example, in the case of labor, furloughing employees in
a first stage to reach the efficient frontier, and re-hire them in
a later moment so as to minimize cost, rises extra costs related
to legal and compensation expenses, as well as training activities.
These unwarranted costs can be prevented by adopting the mono-
tonic approach proposed here; i.e., setting a final target is dynami-
cally more cost efficient than following the two-stage approach im-
plicit in the conventional model. The monotonic approach makes
sense from a managerial perspective when one realizes that firms
tend to solve their technical and allocative inefficiencies simulta-
neously, and therefore do not follow the two-stage process, first
technical, then allocative, as directed by the standard model. In-
deed, prescribing these conflicting actions results in inconsistencies
that raise transaction or adjustment costs, which brings us back
and shows the connection to the dynamic cost inefficiency model
of Silva et al. (2015).

The duality model by Silva et al. (2015) explicitly accounts for
the adjustments costs associated with quasi-fixed factors and, in
particular, the well-known case of capital stock in tangible assets.
The model links optimal decisions related to the optimal flow of
variable factors like investments, to the amount of quasi-fixed in-
puts, which are taken as constant in the short-run. However the
model incurs in the same drawback mentioned above, since even
if considering adjustment costs in the form of the investment in-
put, reaching the cost minimizing benchmark may require increas-
ing the investment flows in a first stage, and then disinvesting in
a second stage so as to reach the optimal amount of capital stock.
As before, these conflicting financial decisions are not warranted
because of the extra cost that the second stage entails, or even
its irreversibility in a ‘putty-clay’ context; i.e. the impossibility of
disinvesting once the firm has committed contractually to a given
amount, implying that the elasticity of substitution once the in-
vestment has materialized is zero in the short-run, see Baddeley
(2003).

The purpose of this article is to enhance the dynamic cost inef-
ficiency model of Silva et al. (2015) by endogenizing the directional
function, thereby preventing non-monotonic and unrealistic man-
agerial prescriptions on the intertemporal (dynamic) adjustment of
inputs and investment, aiming at achieving the optimal long-run
value of gross capital stock of the firm. Nevertheless, the model
can be applied to any organizational situation where some inputs
are quasi-fixed, and the optimal allocation of resources is based on
an intertemporal optimization model that requires the change in
some flow variables representing the change in the stock. We also
aim at showing how the model can be empirically implemented
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through Data Envelopment Analysis (DEA) techniques and illustrate
its potential to inform managerial decision making by using a real
dataset of European firms belonging to the dietetic food industry.

The remainder of this article proceeds as follows: In Section
2 we present the Silva et al. (2015) dynamic cost inefficiency
model, with its decomposition into technical inefficiency and al-
locative inefficiency. Next, in this section, inspired by Zofio, Pas-
tor and Aparicio (2013), we show that it is possible to endoge-
nize the directional vector to prevent unrealistic managerial advice
on input changes and save on transaction and adjustment costs.
We also show how to operationalize the new model using DEA
methods. Section 3 illustrates the numerical differences and alter-
native managerial advice that emerges when using the two ap-
proaches. For this purpose the empirical application focuses on a
panel dataset of European firms producing dietetic food. Recent
statistics by Eurostat (2019a) show that this is a dynamic industry
in the EU exhibiting double-digit growths rates in the last decade.
In this context of general expansion, we find indeed that rather
than generally reducing inputs and increasing investment so as to
reach the production frontier, as the standard model assumes, for
the majority of firms inputs should be actually increased, so as to
minimize production costs. Section 4 concludes.

2. The dynamic cost inefficiency model: Exogenous and
endogenous approaches

2.1. Decomposing dynamic cost inefficiency: the conventional
approach with an exogenous orientation

The dynamic cost inefficiency model characterizes the produc-
tion technology through the input correspondence: V (y(t)|K(t)) =
{x(t), I(t) : (x(t), I(t)) can produce y(t) given K(t)}. It is as-
sumed that at time t, there are j=1,..J firms producing a range
of M outputs, y e RM,, using N variable inputs, x e RY, F in-
vestments, [ € R, as well as quasi-fixed factors, K € RE . It also
assumed that the N and F prices corresponding to the variable
and quasi-fixed factors are observed. These prices are denoted by
weRN, and ce R, respectively. Following Silva and Stefanou
(2003), Silva et al. (2015) and Kapelko, 2017, at any base period
t € [0, +00), the firm is assumed to minimize the discounted flow
of costs over time subject to an adjustment cost technology char-
acterized by constant returns to scale. Expressing this in terms of
the current value, and drooping the subscript t to avoid notational

clutter, yields the Hamilton-Jacobi-Bellman equation:
rW(y.k.w.c) = min [Wx+ K+ W'l - 8K)]
X,

S.t.
D(y.K.x.I:gx.g) > 0 (1)

where W(e) represents the discounted flow of costs in all future
time periods. Wi = Wi (y, K, w, c) is the vector of shadow values
of quasi-fixed factors. The discount rate is r > 0 and § is a di-
agonal FxF matrix of depreciation rates, § > 0, f=1,..., F. For
simplicity we assume that firms have the same discount rate and
depreciation matrix. Finally, D(y, K, x, I; g, g;) is the dynamic input
directional distance function associated with the dynamic cost in-
efficiency model and is defined as follows:

DO K x.1:gog) =max (B : (x— Bge. 1+ Bg) € VOIOL  (2)

This function measures the distance of firm (x, I) to the fron-
tier in the direction defined by the directional vector g = (—gx, g).
In the conventional approach it is assumed that g = (gx, g;) € RY x
RE\{Oy.¢}; i€, when reaching the production frontier, it is as-
sumed that inputs are reduced—hence the preceding negative sign
above, while investments are increased. Silva et al. (2015) and sub-
sequent authors choose the observed quantities of input and in-
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vestment, g = (g, &) = (x,I) as directional vector, resulting in the
proportional directional distance function. In the endogenous di-
rectional vector approach that we propose below in Section 2.3 we
relax these assumptions so inputs and investment can be freely
adjusted to reach the cost minimizing benchmark. This results in
an optimal direction that we will represent by g* = (g}, gf), where
the superscript *’ denotes that the endogenous direction measures
cost inefficiency against the economic benchmark.

Given the production possibility set, the minimum cost pre-
sented in the objective function of (1) can be calculated resorting
to DEA techniques by solving the following model:

W (y.k,w,c) = min [Wx + K+ W' (I-8K)]v/a? + b
XLy

s.t.

J
Zyjyjm >Ym, m=1,., M,
=1

J
Xn = YiXjn, n=1,..N,
=1

J
ny(l]f —81<]f) > If, f= ], . F,
j=1

V]ZO, ]:1##.17 (3)

where y is the (J x 1) intensity vector. Following the standard ap-
proach in the literature on cost efficiency decomposition, the tech-
nology is characterized by constant returns to scale; see Fire et al.
(1985:75) for the traditional model and Silva et al. (2015) for the
dynamic cost inefficiency model. Nevertheless, variable returns to
scale could be considered by adding the constraint i yi=1
j=1

Based on the representation property of the directional distance
function, implying that: D(y, K, x,I;gx.g) >0 < (x, ) e V(y | K),
Silva et al. (2015) prove through duality theory the following
Mahler inequality:

Cly. K. x. I gv. gn w. W ()
WX+ K4+ We(-) (I - 8K) — W (. K, w, ¢)
B wWgy — Wi (-)'gr
> Dy, K. x,I; g &),

(4)

where the left-hand side represents (overall) dynamic cost in-
efficiency as the difference between observed cost w'x + 'K +
Wi (-)'(I-8K) and minimum cost W (y,K, w, c), normalized by
the constraint w/gy — W (-)’g;. This normalization ensures that
economic inefficiency is units independent as initially suggested
by Nerlove (1965). Calculating the dynamic cost inefficiency
Cl(y, K, x, I; gx, g; w, W(-)) is straightforward once minimum cost is
known by solving Eq. (3), and dividing by the normalizing con-
straint.

The dynamic directional distance function D(y, K, x, I; g, g/) can
be regarded as a measure of dynamic technical inefficiency, i.e.,
Dy, K, x,I; 8 g) = TI, whose empirical value we calculate by re-
sorting to the same DEA approximation of the production technol-
ogy used to determine minimum cost in Eq. (3). For firm j,, the
DEA model measuring dynamic technical inefficiency (TI) is the so-
lution of the following linear program:

DV Kips Xy iy 8 &1) = max

S.t.

J
> ViVim = Yim m=1,.. M,
=1
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J
Xjn = B8 = Y VX n="1...N,
j=1
J
> villyy = 8Kip) = Lip + Bgi = 8Kjp. f =1, F
j=1

As anticipated, in empirical applications of the dynamic cost inef-
ficiency model, it is usual to set the directional vector to be equal
to the observed amounts of inputs and investments (or as a frac-
tion of the capital stock): g = (gx,g) = (x,I).This eases the inter-
pretation of the inefficiency score 8 as the percentage reduction in
the amount of inputs and the percentage expansion of investments
needed to reach the frontier.

Afterwards, once program (5) is solved, and based
on the Mahler inequelity (4), any difference between
Cl(y,K, x, I; gx, g&; w,W(-)) and D(y,K, x,I; gx,g/) can be attributed
to allocative inefficiency. Hence, it is possible to decompose dy-
namic overall cost inefficiency into the contributions of dynamic
technical inefficiency (TI), and a residual term defined as dynamic
allocative inefficiency (AI). This requires rendering expression (4)
an equality:

CIy, K, X, I; g, g W, W () = D(y, K. x, I; g, &)

+AI(Y, K, x, I; g, g, w,W(-)) =TI + Al (6)
and therefore,
WX + 'K+ Wi () (I - 8K) — W (y, K, w, )
Al = > -
wgy — Wk (-)'g
—D(. K. x, I; g. &) (7)

2.2. A monetary valued directional distance function

Chambers et al. (1998) did not specify a particular orientation
at the time of introducing the decomposition of economic effi-
ciency into the technical component represented by the directional
distance function and allocative inefficiency. However, regardless
a particular direction g= (gx,g;), it can be trivially seen from
the denominator in (4) that normalizing its value (length) so the
following equality is verified: w'gy — Wi (-)'g;=1, results in a val-
uation of cost inefficiency and its components in monetary terms;
e.g., dollars. This makes the interpretation of D(y,K,x,I; gx, &)
straightforward as the cost excess in which the firm incurs due
to dynamic technical inefficiency. To prove this assertion we first
denote by g’ = (gf.gl) e R, xR, any directional vector that
projects the firm under evaluation to the frontier point (xT,IT),
while satisfying w/gl — Wy(-)’gl =1. In the dynamic cost inef-
ficiency model, (xT,IT) represents technological targets on the
production frontier (hence the superscript T). Consequently, given
(xT,IT), the directional vector can be rewritten as g’ = (gf, gl) =
¢c(x—xT, 1T 1), where ¢ >0 is a scalar. From this expression,
and recalling the input and investment prices, we note that
¢ = [Wx+We()'D — (WxT + W ()] since  cw/(x—xT) +
Wi ()T =T")=¢[W (x —xT) + Wx ()’ —I")] = 1. Therefore, ¢
corresponds to the inverse of the cost difference between the
observed firm (x,I) and its projection (x',I") on the frontier.
Relevant for our goal is that ¢ is related to the length of the di-
rectional distance function, and therefore the technical inefficiency
it represents. Let us define the dynamic input directional distance
function subject to the unit valued normalizing constraint as

IjT(y, K x, I g,f,g,T)
=max (B : (x—pgy. I+ Bgf) € VOIO|We, —Wi()eg, =1},
(8)



M. Kapelko, A. Oude Lansink and J.L. Zofio

Then we can establish the following result:

Proposition 1. Let (w, Wi(-)) be the vector of prices and let g7 =
(gf.gh) e RN, xRE, be a vector such that wgx —Wg(-)'g= 1
Let (x,I) e V(y|K), then DT(y.K.x,1:gk.gl) = 1/5, where ¢ =
[(WX+Wg()'D) = (WXT + W () 1]

Proof. For any input-investment vector (x,1) € V(y|K),
any projected vector in the direction g =(gl.gl)eRY,
xRE, is feasible; ie, T.IT) =(x-DT(y.Kx1:g.g"gk I
+D"(y.K,x.1:g%.80)gl) e V(y|K). Recalling the optimal solution
to program (5), i.e, B* we see that (WxT +Wy(-)I") is equal
to Wx+ Wi (-)T+ B*(—w'gl + Wi (-)'gl). Now, substituting g’ =
(gh.gl) = c(x—xT, 1" — 1), we have that (WxT + Wi (-)'I") =w'x +
Wi () T+ B*c(—w' (x —xT) + W (-)’(IT —1)). Finally, rearranging
terms we obtain that ((WxT +Wg()'IT) — Wx +Wg()'D) |
c=B*(—w (x—xT) + Wi (-)’dT —=1). And since (WxT + Wi (-)'I")
- Wx+Wg()D=-w(x-x") + Wg(-)(" =),  then  1/¢=
D"(y.K.x,1:g.g).m

This result shows that the normalized distance function
DT (y.K.x.1:g5.gD) =1/ =Wx+Wg()'I) = (WxT + Wg(-)'IT) is a
natural measure of dynamic technical inefficiency in monetary val-
ues. Then, relying on the definition of the directional distance func-
tion (8), we can decompose dynamic cost inefficiency in the same
vein as (6); i.e.,

CI(y, K.x. I, g0, g5 w, W(~)) - IjT(y, K x,I; g,f,g,f)
+AIT (v, K.x. I g7, gv: w. W (1))

=TI" +AI". (9)
And, consequently,
AT — WX+ 'K+ Wi () (I - 8K) — W (y, K, w, )
wgh — Wi (-)'g]
—D(y.K.x.I:g;. g/ ). (10)

But, contrary to (6) and (7), CIT(-), TI"(-) and AI’ (-) above are ac-
tually measured in monetary units.

From an empirical perspective, calculating the dynamic direc-
tional distance function D' (y,K.x.1;g%,gl) for firm j, implies
adding the constraint w'gl — WK(-)’g,T =1 when solving linear pro-
gram (5). Specifically:

ﬁT(yjo’ Kjo’ xfo’ Ifo; gi, g[T) = rl/‘glayxﬁ
s.t.

J
S vy zYim m=1...M
j=1

J
Xip — B = Y yiXjn.n=1...N,
j=1

J
2_villiy = 8Kjp) = Lir + Bgf — Ky, f =1, F,
j=1

wg, —Wi()gl =1,

Yiz0, j=1..] (11)

Since prices are given when solving (11), this implies that once an
exogenously directional vector is chosen: g = (g, g;), it must be
rescaled in advance by the researcher to meet the unit value re-
striction on the normalizing constraint g" = (gf, g). In the empir-
ical application we show one of the many possibilities to imple-
ment this approach based on the conventional model that relies
on the exogenous orientation.
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Fig. 1 illustrates cost inefficiency measurement in the context
of the dynamic cost inefficiency model resorting to the dynamic
input directional distance functions (2) and (8). Given the vector
of prices (w,Wk(-)), firm A minimizes cost, whose associated
optimal isocost is w'x* + Wy (-)'I*. Firms B and C are both cost and
technically inefficient, while the remaining firm D is technically
efficient. The particularity for all these firms is that while their
dynamic technical inefficiencies differ, as shown by the values
of their respective directional distance functions, they incur in
the same production cost (belonging to the same isocost line),
and therefore have the same dynamic cost inefficiency, defined
as  CI(x, I gx, g W, W()) = Wxj + Wi ()'Tj) — Wk + Wi ()'T3),
j=B, C, and D. We explore first the case of technically inefficient
firms to show the relevance of Proposition 1. Taking firm C as
reference, and choosing as direction that routinely adopted in
empirical studies and corresponding to the observed input and
investment amounts g = (g.g;) = (xc.Ic), but whose values are
rescaled to satisfy the normalizing constraining w'xc — Wi (-)'Ic =1,
result in the directional vector g’ = (g}, gl). Relying on this di-
rection, we identify (xE,Ig) as the projection of firm C on the
production frontier, and the value of the corresponding in-
put distance function D' (yc.Kc,xc.lc:gh.gl) is equal to the
cost excess in which firm C incurs as a result of technical in-
efficiencies: D" (yc. K. xc. Ic: gh. 1) =TIL = (W'xe — Wi (1)'Ic) —
(WxL — Wi (-)'IY).  Subsequently, since dynamic cost ineffi-
ciency is equal to CIE = Wxc + Wi (-)Ic) — Wi +Wr()'T7),
we can decompose it into TIE and the residual alloca-

tive inefficiency AIE given in expression (10), which
in this case corresponds to Al = (WxE+Wi()IL) -
(WX + Wi ()I5) =CIL — DT (ye, Ke. xc. Ic: g5 g). Consequently,

for firm C, dynamic cost inefficiency is due to technical and
allocative reasons: CIl= TII +AIL, with TIT > 0 and AIl > 0. Firm
C illustrates the shortcoming of the conventional non-monotonic,
two-stage approach that motivates this study. It can be seen that
to reach the production frontier and eliminate dynamic technical
inefficiencies in the usual (rescaled) direction g’ = (gf.gl), firm
C should reduce inputs and increase investment simultaneously.
However, it can be seen that to match the optimal demand
amounts given by the benchmark firm A, firm C would have to
reduce the level of investment, which implies that committing
to investment increases, so as to reach the reference benchmark
(XE,IE). results in exceeding the optimal investment levels, and
leads to conflicting investment strategies. Focusing now on firms B
and D, Fig. 1 shows that while the former is technically inefficient,
D" (vg. Kp. xp. Ip; g5, &1) > 0, it is allocatively efficient, A} =0. This
result holds because the (rescaled) direction set by its observed
amount of inputs and investment, precisely projects it to the
cost minimizing firm; ie, (xL.II)=(x3.I;). Hence CII =TIl -
0. For firm D, the opposite situation is verified. It is technically
efficient D' (yp.Kp.xp.Ip: gf.8/) =0, and therefore all dynamic
cost inefficiency is allocative: CIT =AIl > 0.

2.3. Optimal resource allocation and endogenous orientation

We are now able to introduce endogenous directions. Assuming
that the managers’ final goal is to minimize production costs ac-
counting for capital adjustment costs, it seems sensible to choose
a direction that projects the firm to that locus. From a modeling
perspective, this requires a flexible approach that endogenizes the
directional vector, thereby removing the existing constraints on in-
puts and investments of the conventional model. In particular, the
possibility of increasing the amount of inputs to be employed if
necessary or, as shown above, reducing the investment flows of the
firm. Following Zofio et al. (2013), in this section we show that by
endogenizing the choice of direction we can define a measure of
dynamic cost inefficiency that gets rid of the allocative residual as-
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Fig. 1. Cost inefficiency measurement in the dynamic cost inefficiency model.

sociated to the Mahler’s inequality in (6) and (10), and that along
with the value of the standard distance function (2)—or its mone-
tary valued counterpart (8), allows to determine whether cost in-
efficiency is due to technical or allocative reasons. The new frame-
work prevents the ad-hoc decomposition of dynamic cost ineffi-
ciency in these two components because of the subjective choice
of directional vector.

To this end we set the value of the directional vector free:
g = (g5.8) € RN x RF\{Oy, ¢}, where the superscript *’ denotes
that the endogenous direction will now measure cost inefficiency
against the optimal cost minimizing benchmark (x*, I*), while sat-
isfying w'g; — Wi (-)’gi= 1. For market prices (w, Wy(-)) we iden-
tify (x*,I*) as (x*,I*) = argmin (W'x + W(-)’'I) and define the di-

(x.1).eV (yIK)
rectional vector we are searching for as:

g=(g.8)=Ttx—-x"TI"-1I), (12)
where the scalar T corresponds to the following expression:
T =[Wx+ K+ Wi () (I - 8K) - TW (y, K, w, c)]fl, (13)

Thanks to this expression, (g}.g}) satisfies w'gy — Wy (-)'gf =1.
Therefore, (g, g) =[Wx + 'K+ Wi () (I - 8K) —tW (. K, w, ¢)] !
(x—x*,I*=1).

We can now define the dynamic directional input cost inef-
ficiency measure in the dynamic cost inefficiency model for any
observation (x,I) € V(y|K) by way of (12), and determined from
(w, W (), V(y|K) and (x,I). For this purpose, we assume that the
minimum cost is not achieved at (x,I), and therefore w'x + ¢’K +
Wi (1)’ (I - 8K) = T'W (y. K, w, ¢). Then, given (g, g) as in (12), the
directional input cost inefficiency measure D(y, K, x, I 185 &) is de-
fined as

D*(y, K, x, 1, w, Wi (-)) :=D*(v, K, x, I ; g, &)
=max {B: (x— Bg..I+ Bg) € VUIK) [We - Wi()'gr =1},
(14)

which corresponds to the definition of the dynamic cost directional
distance function (8) with a relevant qualification. In (14) the di-
rectional vector (g, g;) may present negative elements; i.e., it is
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possible to increase inputs and decrease investment when reach-
ing the cost minimizing benchmark. Now, mirroring Proposition 1,
D*(y, K, x,1; w,Wg(-)) =1/t with T defined as in (13).

Lemma 1. Let (w, Wy (-)) be the vector of market prices. Let (x,I) €
V(y|K) such that wx+ 'K+ Wg(-)' I - 38K) > rW (y,K, w,c). Then
D*(y, K, x,I; w, Wg(-)) = 1/t as in (13).

As with the conventional and monetary valued dynamic direc-
tional distance functions, (4) and (11), D*(y, K, x,I ; w, W (-)) can
also be derived from the cost function resorting to duality, even if
some of its elements are negative.

Proposition 2.. Let (w,Wg(-))
ket  prices. Let (x,I) e V(y|K)
Wg () (I-68K) > W (y,K,w,c). Then

be the wvector of mar-
such  that wWx+cK+
D*(y, K. %, 1; w, Wi ()

min {Wx +'K+Wg () (I -0K) —TW(y. K, w.c) : w'gy — Wi (-)'gf =1}.

w,Wg ()

Proof. Given the vector of market prices (w,Wg(-)), (g &)
defined as in (12) and ensuring that w'gy — Wi (-)'g; = 1, the value
of the objective function at this feasible solution (w,Wk(-)) is
(Wx 4+ 'K + Wy (-)' (I = 8K)) — r'W (y. K, w, c). Hence, we have that

min {Wx + 'K+ Wg(-) (I - 8K) =W (y. K. w,c) : wg — Wi (-)'gf =1}

wWg ()

< WX+ K+Wy () (I = 8K) =W (. K, w, ©) =D*(y, K, x. I ; w, Wg (1)),
where the last equality holds thanks to Lemma
1. To prove the reverse equalityy, we note that
(x—D*(v. K. x.1; 858085 1+D* (. K.x, 1:85.8)g) € V(yIK).

Then by the definition of the dynamic cost func-
tion, we have that for all (w,Wg(-)) such that wg;—
Wi()'g; =1, w(x—D*, K x, T ; w, W ())g: + K +

Wi () (0 +D*(v. K, %, 1; w, Wi (1)g) — 8K) =w'x + 'K +

Wi () (I = 8K) +D* (v, K, x, 1 ; w, Wi (1)) (Wgs =W ())'g}) =wx+
K+ Wy () (I =8K)+D*(v. K. x, 1; wWi () = Wy Kw,o).
Rearranging terms, we obtain that  D*(y, K. x,I;w, Wg(-)) <
(WX + K +Wg () (I -68K)) — W (y, K, w,c). And by the definition

of minimum, we finally have that D*(y, K, x,I;w, Wi (-)) < n‘}/in

w,Wj (-
{(Wx+ K+Wg(-)I=8K) —tW(y, K, w,c) : wgy —Wg(-)g =1}
]
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Also, using Proposition 2, and since W,‘gﬁ+’<(‘yg¥./g;§—
X 1
Wi () _ ; ; ; ;
W,g?WK(_),g?/gjk_l, we obtain the following Mahler inequality

counterpart to (4):

CIy.K.x. I g5 g w, W(-))
_ Wx+ K4+ W (-) (I - 8K) — W (v, K, w, ¢)
B wgi —Wk(-)'g
> D*(y, K, x, I, w, W (). (15)

To finish our exposition, we need to show that the equal-
ity always holds, implying that D*(y,K, x,I;w,Wx(-)) can be
interpreted as a measure of overall dynamic cost inefficiency in-
stead of the money valued dynamic technical inefficiency given
by its counterpart DT (y, K, x.I:gL.gl). Here, from Lemma 1 we
have that D*(y, K, x,I;w, Wg(-)) = Wx + 'K+ Wg(-)' (I - 8K)) —
W (y. K. w, c). Additionally, (gj.gf) must satisfy w'g; — W (-)'gf =
1. Therefore, trivially, the equality holds in (15), implying that
D*(y, K, x, I, w, Wg (-)) = CI(y, K, X, I; g5, &; w, W (-)). Petersen (2018:
1074) provides a geometric interpretation of Proposition 2 by
showing that the approach introduced by Zofio et al. (2013),
endogenizing the directional vector (g, gf) and including the
normalizing constraint w'g; — Wi(-)'gf =1, is equivalent to the
requirement that the scalar projection of (g}, gf) onto (w, Wi(-))
with [|[(w, Wg(-))|l, =1 must equal 1. This result holds since
(W, Wy ())/(g5. &) = | (W, W () 2]l (8. )2 cos @ by the def-
inition of the cosine, where ¢ is the angle between (w,Wg(.))
and (g;. g;). Therefore, the endogenous dynamic distance function
D*(y, K, x, I, w, Wg(-)) can be interpreted as the Euclidean distance
between (x, ) and the supporting hyperplane characterized by the
cost minimizing firm, given market prices.

Resorting to definitions (8) and (14) we can determine
whether dynamic cost inefficiency is either technical or al-
locative. To achieve this categorization we note first that
D*(y. K. x, I w,Wy(-)) = DT (y. K. x,I; gf, gl ) and, consequently, we
have that AI* =D*(y,K.x,; w,Wk(-)) = DT (v.K.x.I: gL gl). Sec-
ond, if D'(y,K.x,I;gf.gl)=0 the firm is technically efficient,
lying on the production frontier of the input set, while if
DT (y,K, x,I; g, gl) > 0, the firm is technically inefficient; i.e. an in-
terior point. Consequently, if B (y.K,x,I; g, gl ) = 0, all dynamic
cost inefficiency is allocative, and equal to D*(y, K, x, I; w, W (-)) in
monetary terms. But in the latter case D' (y, K. x,I; g}.gl) > 0, we
have shown that the directional cost inefficiency measure projects
the firm under evaluation to the cost minimizing benchmark,
where it is allocatively efficient: Al* = 0. Consequently, all cost in-
efficiency is technical and equal to D*(y, K, x, I; w, Wi ()), again in
monetary terms. Finally, it follows that if D*(y, K, x, I, w, Wi (-)) = 0,
the firm is cost efficient by minimizing production costs. We con-
clude that the assumption of a consistent dynamic behavior on the
part of managers, aiming at monotonic adjustments of inputs and
investment to prevent conflicting strategies that entail additional
transaction costs, directly results in the categorization of dynamic
cost inefficiency as either technical or allocative. We can summa-
rize these results as follows:

CIy. K. x, I, w,W(-)) = D*(y, K. x, I, w, W (-))

=TI iff D'(y.K.x.I:g,.g) >0, (16)
and
Cly, K, x, I w,W(-)) = D*(y, K, x, I, w, W (-))

= A" iff D" (y.K.x,I: g.8/) = 0. (17)

Resorting to DEA methods, it is possible to calculate the dy-
namic directional cost inefficiency measure solving the following
program:
ok
D (yja’ I<jo’xjo’ I]a’g;):’g;;) =

max B (18)

B.v.&.&
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s.t.
J
Y ViVim =y, m=1...M, (18a)
j=1
J
Xjn— Bg, = Z YiXjn, n=1,..,N, (18b)
j=1
J
> villiy = 8Kip) = Lyp + B8 — 8Ky, f=1, ., F, (18¢c)
j=1
wgs —Wi (g =1, (18d)
yi=0, j=1,.J (18e)

Although this program is nonlinear, it can be linearized by
replacing the constraints (18b) and (18c) by writing: ox, = g},
and oj; = ,Bg’}. In addition, the constraint w'g; — Wi (-)'gf =1 is
rewritten as: w'oy — W’'o; = 8. Program (18) differs from (11) in
that the directional vector is not preassigned but endogenous,
and therefore (18) searches for the direction (g;. gf) that projects
the firm under evaluation to the cost minimizing benchmark
(x*,I*). From a managerial perspective, rendering the directional
vector endogenous allows a direct evaluation of firm’'s perfor-
mance in terms of technical or allocative inefficiency, and, more
importantly, prescribes input and output adjustments that avoid
conflicting non-monotonic changes. Hence, additional transaction
and adjustment costs resulting from a subjective decomposition
of cost inefficiency are bypassed. This is critical for investment
decisions since it is not unusual that the dynamic adjustments of
capital stocks actually require reducing investment levels, while
the conventional model of Silva et al. (2015) forces an increase
in its magnitude. This result, which is observed in our empirical
application, is illustrated in Fig. 1 by way of firm C, (xc,I¢).
As already discussed, choosing the exogenous vector (g}, gl)
projects it on a first stage to its benchmark on the frontier
represented by (x[,IL); ie. TIT =D"(yc,Kc,Xc,Ic: g, 8]). But it
turns out that to minimize cost, the actual investment effort in
new capital should be lower than both the observed and the
projected ones, Ic and IE, thereby matching the amount of the
cost minimizing firm (x}, ;). Moreover, choosing the exogenous
vector (g,f,g,T), results in unwarranted dynamic allocative inef-
ficiencies (i.e., signaling the wrong bundle of input demands),
AIl = CI(yp, Kp. xp. In; w.W (-)) = DT (yc, Kc, Xc. Ic: g% 8] ) > 0, be-
cause (xg, IE ) represents an unnecessary intermediate step, whose
interpretation in terms of dynamic technical inefficiency (i.e.,
wrong engineering practices associated to investment levels
lower than those that would be technically optimal) cannot be
justified, unless there are convincing reasons to choose (g)f,g,T),
thereby forcing investment increases. Consequently, by solving
the endogenous model, D*(yc.Kc,xc.Ic: gh.gl) =TI, we rightly
learn that all dynamic cost inefficiency is due to technical rea-
sons. While firm C illustrates the arbitrary decomposition of
cost inefficiency into technical an allocative components when
using the conventional model, firm D illustrates the case of a
technically efficient firm, with an exogenous directional distance
function TIJ=DT(yp.Kp.xp.Ip: 5. &l ) =0, and therefore, solving
the endogenous model tells us that all dynamic inefficiency is
allocative CI(y, K, x, I, w,W (-)) =Al: =D* (yc, K, xc, Ie; w, W(+))
> 0. Note that it is necessary to solve both programs be-
cause having information on D*(yc, Kc, xc, Ic; w, W(-)) only,
does not allow to identify whether cost inefficiency is due
to technical or allocative reasons. Finally, as previously com-
mented, firm B represents the specific case for which the direc-
tional vector (gf, gIT), corresponding to the observed amounts



M. Kapelko, A. Oude Lansink and J.L. Zofio

(xg, Ig), once rescaled so as to satisfy the unit valued normal-
izing constrain, projects the firm exactly onto the cost min-
imizing firm (xj,I}). Therefore (gf,gl)=(g{ &), resulting in
CI(y. K. x,I; w,W(-)) = D7 (yg. Kg. Xp. Ip; 8% 8] ) = D* (vp. Kp. xp. Ip; W,
W(-)) > 0. Hence all dynamic inefficiency is technical.

3. Empirical application to the European dietetic food industry
3.1. Data set

Our empirical application focuses on EU firms in the dietetic
food manufacturing industry which represents an interesting case
study given its dynamism in the past decade. As consumers are in-
creasingly equating food with health and wellness, the growth of
dietetic food industry is inevitable and evident. Dietetic food is as-
sociated with sustainability and corporate social responsibility be-
cause healthy food choices are often sustainable choices (Esteve-
Llorens et al., 2020). According to Eurostat (2019a), this industry
has grown rapidly in the EU between 2011 and 2016, with the
number of firms and employees increasing by 51% and 24%, re-
spectively, while its value added increased by 11% in the same pe-
riod. Examples of dietetic foods include: infant and young children
food, slimming foods (that is foods for people undertaking energy-
restricted diets to lose weight), food for special medical uses (such
as food for diabetics), sports foods and food for people with gluten
intolerance (Bragazzi et al., 2017). Our dataset on firms’ inputs and
outputs were taken from the AMADEUS database provided by Bu-
reau van Dijk and corresponds to NACE Rev. 2 code 1086, iden-
tified as “Manufacture of homogenized food preparations and di-
etetic food”. This database comprises financial information on pub-
lic and private companies in Europe. We focused on a balanced
panel of firms that were observed in the database in three years,
2011, 2014 and 2017. These three years were chosen because this
is the period when the industry under study was increasing in
terms of the number of companies, employment, and value added
(Eurostat, 2019a).

The application distinguishes two variable inputs, i.e., materials
and labor; their costs were taken from the firms’ profit and loss
account. Quasi-fixed input (capital) was measured as the starting
value of fixed assets from the firms’ balance sheet (i.e., the end
of year value of the previous year). Gross investments in fixed as-
sets in year t were computed as the starting value of fixed assets
in year t+1 minus the beginning value of fixed assets in year t
plus the value of depreciation in year t. The firm-specific values of
depreciation were directly taken from the firms’ profit and loss ac-
counts. A single output is distinguished in the model as the aggre-
gation of all products in monetary terms, i.e., this corresponds to
the revenue reported by the firms in their profit and loss accounts.
Such configuration of inputs and outputs is based on prior research
(e.g., Kapelko & Oude Lansink, 2017; Kapelko, Oude Lansink & Ste-
fanou, 2014).

The variables downloaded from AMADEUS were measured in
local currencies and in current prices. To obtain a common cur-
rency, these variables were adjusted by the Purchasing Power Par-
ity (PPP) of the local currency to the US dollar (World Bank, 2019).
To obtain input and output values at constant prices, these vari-
ables were deflated using country-specific price indices obtained
from Eurostat (2019b): material costs were deflated using the pro-
ducer price index for intermediate goods, labor costs by the la-
bor cost index in food manufacturing, fixed assets by the producer
price index for capital goods, and revenues by the producer price
index for food manufacturing.

The price indices for materials and labor were used as an ap-
proximation of the prices of variable inputs w. The cost price of
quasi-fixed factors was calculated as: ¢; = (r + §;)z;, where r is
the interest rate, §; is depreciation rate, and z; is the price index
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of the quasi-fixed input. The interest rate r is approximated by
the long-term interest rates, collected from the Eurostat (2019c)
database. Following Silva et al. (2015), the shadow values of the
quasi-fixed factors were determined separately, using a quadratic
specification of the optimal value function and rewriting it as:
wx=1W(y. K, w,c) — K —-W;(I - 8K). When this specification is
fitted, the shadow values are obtained using the parameter esti-
mates.

The final sample of dietetic food producers in the EU was ob-
tained after eliminating observations with missing data as well as
outliers following the method of Simar (2003). The final sample
consisted of 143 firms, divided into Eastern European firms (27
firms), Southern European firms (91 firms) and Western European
firms (25 firms). Table 1 presents averages and standard deviations
of the input-output variables valued in monetary terms (i.e., multi-
plied by their corresponding prices), separately for 2011, 2014 and
2017 and the regional composition of the sample. The table indi-
cates that Western firms have, on average, the greatest values for
the variable inputs (materials and labor) and output for both years
(resulting from higher prices and larger quantities), while the op-
posite is observed for Eastern European firms, exhibiting the small-
est values.

3.2. Results

The computation of dynamic inefficiency measures was under-
taken for all three years and including the whole set of firms be-
longing to all European regions to be able to appropriately com-
pare inefficiencies between regions. We compare the dynamic cost
inefficiency results and interpretation of the conventional, mone-
tary valued, model (9) with an exogenous directional vector and
the endogenous model (16)—(17). For the exogenous model we
choose a directional vector g' = (g}, gl) e R, x Rf, that is neu-
tral with respect to the orientation, common to all firms, and as-
signs equal weight to all inputs and investment. This implies that
gl =gl =1/(W'1y + Wi (-)'1f), where 1y and 1p are unit vectors
with dimensions (N x 1) and (Fx 1).

3.2.1. Dynamic cost inefficiency and its decomposition

Table 2 presents the firm average values for dynamic cost inef-
ficiency (CI), dynamic technical inefficiency (TI), dynamic allocative
inefficiency (AI), and the directional vectors for materials (x;), la-
bor (x,), and investments (I), in case of the conventional (g,T(,g,T)
and endogenized (g, g;) models. On average, dynamic cost inef-
ficiency in Europe amounts to 7.054 million dollars in 2011, 8.623
million dollars in 2014 and 8.461 million dollars in 2017. These val-
ues imply that the potential dynamic average cost saving in Europe
is equal to 15.7% (=7.054/44.896 x 100) of total cost in 2011, 15.0%
(=8.623/57.405 x 100) in 2014, and 13.5% (=8.461/62,829 x 100) in
2017. In absolute terms, the potential cost saving is largest in West-
ern Europe, and smallest in Southern Europe. These are relevant
figures deserving further analysis of the sources of cost inefficiency.
Before discussing these sources we remark that, throughout the re-
sults section, to test the differences in dynamic inefficiencies be-
tween regions we perform the adapted Li test proposed by Simar
and Zelenyuk (2006), which is an extension of the nonparametric
test for the equality of two densities of Li (1996). To test the dif-
ferences in directional vectors between regions we use the stan-
dard Li (1996) test. Regarding dynamic inefficiency (cost, technical
and allocative), the differences between regions reported in Table
2 show that at the critical 5% level the results for firms in Southern
Europe are generally different from those of its Western and East-
ern counterparts. As for the directional vectors, both for the con-
ventional g" = (gf,gl) and endogenous g* = (g;, g;) models, the
differences are mostly significant in the last two years, 2014 and
2017.
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Averages and standard deviations of the firm data, 2011, 2014 and 2017 (million US dollar, constant prices of

Southern®

Western®

Whole Europe

Table 1

2010).
Variable Eastern?
2011
Capital (K) 11.084 (34.342)
Materials (x1) 11.428 (23.133)
Labor (x;) 1.858 (4.035)

Investments (I)
Revenue (y)
2014

0.985 (1.562)
19.539 (41.403)

Capital (K) 9.353 (26.365)
Materials (x;) 13.790 (25.499)
Labor (x3) 2.223 (4.246)

Investments (I)
Revenue (y)
2017

0.611 (0.701)
22.623 (46.536)

Capital (K) 11.566 (33.666)
Materials (x;) 15.648 (30.614)
Labor (x3) 2.345 (4.335)

Investments (I)
Revenue (y)

No. of firms per year

2.149 (7.930)
26.529 (56.236)
27

23.410 (180.769)
16.518 (113.276)
5.010 (29.981)
1.862 (11.283)
31.138 (200.662)

27.360 (209.047)
23.071 (157.181)
6.777 (43.515)
1.985 (10.850)
42.994 (287.930)

29.514 (203.548)
24.388 (158.620)
6.739 (39.249)
3.644 (20.094)
44,855 (279.329)
91

11.603 (29.284)
34.299 (64.054)
10.380 (22.675)
2.789 (5.411)
78.715 (177.596)

15.965 (32.389)
50.979 (107.107)
11.640 (23.452)
6.252 (17.853)
92.899 (191.732)

25.469 (53.413)
49.324 (87.277)
11.833 (23.436)
4511 (8.811)
95.743 (178.885)
25

19.019 (145.278)
18.665 (94.763)
5.354 (25.815)
1.858 (9.294)
37.266 (177.626)

21.968 (167.504)
26.198 (133.642)
6.767 (36.118)
2.472 (11.485)
47.873 (244.228)

25.418 (164.306)
27.097 (132.372)
6.800 (32.876)
3.514 (16.765)
50.291 (236.494)
143

Note: Standard deviations are in parentheses.

3 Bulgaria, Croatia, Czech Republic, Hungary, Poland, Romania, Slovakia, Slovenia.

b Jtaly, Portugal, Spain.

¢ Belgium, France, Germany, Sweden.

Table 2

Dynamic cost inefficiency and components, including directional vectors. Average values.

Normalized directional vector, model (9)

Endogenous directional vector, model (16)-(17)

Region (e}

gh=g T Al g4 g g I Al*
2011
Europe 7.054 0.370 1.571  5.482 0.640 0.305 -0.070 5.810 1.244
Eastern 7.952 0.362 1.293  6.659 0.799 0.137 -0.079  7.882 0.070
Southern 3.932 0.370 1618 2314 0.577 0.365 -0.063  3.349 0.583
Western 17.446 0379 1.703  15.743 0.697 0.266 -0.090 12531 4915
Significance ¢ a - c - a - - -
2014
Europe 8.623 0.375 2415  6.208 0.440 0.136 0.596 6.277 2.346
Eastern 8.352 0.364 2.185  6.166 0.582 0.027 0.466 8.326 0.025
Southern 4.624 0.376 1.990 2.633 0.378 0.162 0.691 3.968 0.656
Western 23474 0382 4.211 19.263 0.512 0.163 0.389 12472 11.001
Significance ¢ ab c ac ac ac c
2017
Europe 8.461 0.363 2961  5.500 0.425 0.209 0.156 6.716 1.745
Eastern 7.652 0.336 2.248  5.403 0.730 0.074 -0.016  6.620 1.031
Southern 5.302 0.368 2.861  2.442 0.519 0.401 -0.162  5.035 0.268
Western 20.833  0.372 4.096  16.737 -0.244  -0.342  1.499 12.938  7.896
Significance - abc - c abc ac ab - a, b

a Denotes a significant difference between Eastern and Southern Europe at the critical 5 percent level.
b Denotes a significant difference between Eastern and Western Europe at the critical 5 percent level.
¢ Denotes a significant difference between Southern and Western Europe at the critical 5 percent level.

Notes: CI, TI and Al are expressed in million US dollars.

For Europe as a whole in 2011, the conventional approach (un-
der the normalized directional vectors, g7) attributes 1.571million
dollars to technical inefficiency (22.3% of total cost inefficiency, CI)
and 5.482 million dollars to allocative inefficiency (77.7%). These
figures remain stable in the following years. In 2014, technical in-
efficiency accounts for 29.3% (2.415 million dollars out of 8.263
million dollars) and allocative inefficiency accounts for the remain-
ing 70.7%. In 2017 these numbers are 2.961 million dollars (35.0%)
and 5.500 million dollars (65.0%), respectively. The results of the
conventional method show then that, on average, allocative inef-
ficiency is the largest component of dynamic cost inefficiency in
all regions. Therefore, by following the conventional cost efficiency
approach, all we know is that rather than focusing on engineer-
ing planning errors that result in technical inefficiency, firms’ man-
agers should focus on changing the amount of inputs demanded to
meet the optimal quantities (input-mix) that minimize cost. How-
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ever, how inputs should be changed to reach the cost minimizing
benchmark cannot be discerned, because the directional vector is
exogenous. This relevant information is obtained by resorting to
our new approach.

Solving the endogenous model we learn that for the whole Eu-
rope the elements of the optimal directional vector in 2011 cor-
responding to materials, labor and investments are, on average:
g5, =0.640, g, = 0.305 and gf =—0.070. A negative direction states
that, to match the optimal input demands, firms would have to ex-
pand the input or, alternatively, contract investment. Since the sign
of the average input directions is positive, our results suggest the
contraction of materials and labor. On the contrary, the sign for
the average investment direction is negative, prescribing a mild re-
duction in investments, most likely because of the financial crisis
that started in 2008 and was at its peak in 2011. In 2014, the aver-
age directional vectors in Europe still suggest the same reduction
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in both inputs, and the increase in investments. This last result,
which also holds for Europe as a whole in 2017, suggests that by
2014 the financial crisis was overcome and therefore achieving the
optimal amount of capital stock K required constant investments in
European regions—except Southern Europe that presents a relevant
negative value for investment in 2017.

As expected, the need for all these technological changes shows
up in the decomposition of dynamic cost inefficiency as technical
inefficiency, with allocative inefficiency playing a minor role. This
simply reflects that most of the firms lay inside the input set, and
therefore monotonic adjustment are feasible in terms of technical
efficiency improvements that reduce cost inefficiency. The values
of dynamic allocative inefficiency only concern the inefficiency of
firms that are technically efficient; i.e. firms that are on the pro-
duction frontier, which also must change the inputs according to
the optimal directions.

On-line appendices A1, A2 and A3 present the kernel density
plots of all dynamic inefficiency components in 2011, 2014 and
2017 per region. These plots have been constructed using the pro-
cedure outlined in Simar and Zelenyuk (2006). In short, a Gaus-
sian kernel is used, and the reflection method is employed to
overcome the issue of a zero-bounded support of the inefficiency
scores (Silverman, 1986). Bandwidths are based on Sheather and
Jones’s (1991) method—for better visualization of the differences in
distributions, we cut off the top 5% of observations with the high-
est inefficiency values. The kernel density plots of the inefficiency
components show that the distributions of all inefficiency compo-
nents in Eastern and Southern Europe tend to have a higher kurto-
sis than the distributions of Western Europe. This suggests that the
inefficiency values are more dispersed for Western Europe than for
the other two regions.

Attempting now to compare our inefficiency results with those
of previous literature, we should note that research into the eco-
nomic efficiency of dietetic food industry is very scarce. Most of
the studies focus only on the technical efficiency dimension, ex-
pressed in terms of conventional technical efficiency scores (% re-
ductions a la Farrell, 0 < TE < 1), and not in monetary terms as
in the current paper (exact dollar reductions). That makes a di-
rect comparison impossible. However, we can express our results
as efficiency scores bounded between 0 and 1. The Farrell equiv-
alent technical efficiency scores may be calculated for the exoge-
nous model as follows: TET =(C,—TIT)/C,, where TI is the tech-
nical inefficiency under g = (g}, gl), while for the endogenous
model TE* =(C,—TI*)/C,, where TI* is the technical inefficiency un-
der g* = (g, g). We find that, on average, technical efficiency for
Europe as a whole in 2011 is 0.965 for the exogenous model and
0.870 for the endogenous model, in 2014 they are 0.957 and 0.891,
respectively, while in 2017 they are 0.953 and 0.893, respectively.
This makes our findings similar to the studies for other food man-
ufacturing industries (without distinguishing the dietetic food sec-
tor) that find relatively high efficiency scores of 0.987 for Greek
industry (Rezitis & Kalantzi, 2016), and moderate values of 0.787
for Czech Republic (Rudinskaya, 2017). Smaller values of efficiency
are reported in the study by Kapelko, Harasym, Orkusz and Pi-
wowar (2022), which shows rather high average inefficiency scores
of 0.508 for 2009-2017 in the same dietetic food industry.

3.2.2. Optimal resource allocation in the dietetic food industry

We now discuss the differences in the managerial prescriptions
resulting from the conventional and endogenous models, including
the contradictions associated to the former, considering the sign of
the optimal directional vectors. On-line appendices A4, A5 and A6
present the standard Gaussian kernel plots for each input direc-
tion in 2011, 2014 and 2017 per region. The kernel density plots of
the endogenous directions show that the adjustments in the two
inputs and investment may be positive or negative. In 2011, 2014
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and 2017 the distributions of the endogenous directional vector for
materials gy and labor g5 are mostly positive, while in the distri-
bution of investment g; we observe many negative values, mostly
centered around zero. It is noteworthy that the dispersion in the
values of the endogenous directional vectors increases over the pe-
riod.

In relation to these distributions of the optimal endogenous di-
rections, we have classified in Table 3 the recommended changes
in the use of inputs in 2011, 2014 and 2017. We shade in gray
those changes that are consistent with the assumptions of the con-
ventional model forcing input reductions and investment increases,
g'=(gl.g)) eRY, xR, ; eg, the case of (xL,I]) as the projec-
tion of firm C on the production frontier in Fig. 1. The table shows
that for the whole Europe about 76% of the firms should decrease
their amount of materials in 2011, 2014 and 2017 to minimize cost
(presented in the second to fourth columns, < 0), while the re-
maining 24% were supposed to increase its use in at least one
of the three years (columns identified with >0 under either 2011,
2014 or 2017), which goes against the prescriptions of the stan-
dard model. For example, 8% of the firms were supposed to in-
crease materials in 2017, 10% in 2014 and 2% in 2011 (while reduc-
ing it in the other two remaining years, respectively). This simply
shows that it is quite possible to underuse inputs with respect to
the cost minimizing benchmark and, therefore, it makes no sense
to force their reduction through gI. Indeed, this situation is aggra-
vated for labor, where less than half the firms, 48%, should reduce
employment in all three years, while as many as 7% of the firms
should hire more people in the three years (last three columns
before Total). Where there is almost total disagreement between
the endogenous and standard models is in investment, because
just 1% of the firms should increase their investing efforts in the
three years to minimize cost given the optimal dynamic adjust-
ment of the quasi-fixed capital input (again reported in the last
three columns before Total). Moreover, as reported in the second
to fourth columns, almost one third of the firms, 31%, are pre-
scribed to reduce investment in all three years. In sum, from the
new model we conclude that, opposite to the standard assump-
tion, 24% of the firms were underusing materials in at least one
year, 52% underused labor, while 99% were overinvesting.

The relatively high underuse of labor is found in all regions, but
particularly in Eastern Europe and Southern Europe. Only 41% of
the firms in Eastern Europe and 36% in Southern Europe would
find advantageous to reduce the labor input in all three years. The
underuse suggests frictions in the labor market which withhold
firms from achieving a cost minimizing size of their labor force
(Wijnands & Verhoog, 2016). Such frictions could take the form of,
for example, insufficient labor supply, both in absolute numbers
and required abilities (quality), inflexible labor contracts prevent-
ing firms from hiring or terminating employees in the short term,
or other transaction costs (Kapelko & Oude Lansink, 2017, Euro-
pean Commission, 2016). As for the capital input, as stated above
almost all firms face overinvestment, with as many as 31% aim-
ing at disinvestments in all three years, which implies that capital
amortization should not be balanced with new investments. This
also suggest the existence of frictions in the capital market result-
ing from credit constraints, uncertainty about future market condi-
tions or rapid technological progress, all giving rise to a high value
of the option to wait (European Commission, 2016). Credit con-
straints can be particularly relevant in the agribusiness, where co-
operatives are often the dominant organizational form, with slow
reactions when adjusting to changing market condition, which pre-
vents them to reduce capital in a timely manner, as happened in
2011 after the 2008 financial crash. Regarding the materials input,
the reduction in the amount used in all three years is dominant.
This implies that firms used materials in excess over the whole
period. Moreover, the relatively high overuse of materials occurs in
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Table 3

Optimal allocation of inputs and investments in 2011, 2014 and 2017 (% of firms).
Year 2011 2014 2017 2011 2014 2017 2011 2014 2017 2011 2014 2017 2011 2014 2017 2011 2014 2017 2011 2014 2017 2011 2014 2017 Total
Recommended Change <0 <0 <0 <0 <0 >0 <0 >0 >0 <0 >0 <0 >0 <0 <0 >0 >0 <0 >0 <0 >0 >0 >0 >0
Europe
Materials 76% 8% 0% 10% 4% 0% 2% 0% 100%
Labor 48% 17% 6% 14% 6% 1% 1% 7% 100%
Investment 31% 20% 2% 5% 17% 5% 19% 1% 100%
Eastern
Materials 92% 4% 0% 4% 0% 0% 0% 0% 100%
Labor 141% 3% 7% 15% 4% 4% 0% 26% 100%
Investment 37% 26% 0% 0% 18% 4% 15% 0% 100%
Southern
Materials 70% 10% 0% 12% 5% 0% 3% 0% 100%
Labor 54% 19% 2% 15% 8% 0% 1% 1% 100%
Investment 26% 21% 3% 7% 17% 3% 23% 0% 100%
Western
Materials 80% 4% 0% 12% 4% 0% 0% 0% 100%
Labor 36% 28% 16% 8% 0% 0% 4% 8% 100%
Investment 40% 12% 0% 4% 20% 12% 8% 4% 100%
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Change in dynamic cost inefficiency decomposition and in directional vectors between 2011 and 2017. Average values.

Normalized directional vector, model (9)

Endogenous directional vector, model (16)-(17)

Region ACI

Agh=Agl  ATIT AAIT Agy Ag:, Ag; AT AAF
Europe 1.407 —0.007 1390 0.018 -0.214  -0.095 0.226 0.906 0.502
Eastern -0.301  -0.026 0.955 —-1.256 -0.068 -0.063  0.062 -1.262  0.961
Southern 1.370 —0.002 1.243  0.127 —-0.058  0.036 -0.099 1.686 -0.316
Western 3.387 —0.007 2393  0.994 -0.942 -0.608 1.589 0.406 2.981
Significance - abc - - ac ac - - bc

a Denotes significant difference between Eastern and Southern Europe at the critical 5 percent level.
b Denotes significant difference between Eastern and Western Europe at the critical 5 percent level.
¢ Denotes significant difference between Southern and Western Europe at the critical 5 percent level.

Notes: ACI, ATI and AAI are expressed in million dollars.

all regions, particularly in Eastern Europe, where 92% of the firms
should reduce their use in all three years. Markets for commodi-
ties were characterized by high volatility in the past decade which
adds to the business risk of agribusiness firms (Kapelko & Oude
Lansink, 2017, European Commission, 2016).

We stress the finding that the optimal recommendations im-
plied by the endogenized directional vectors may differ from those
of the conventional model (shaded in gray). For Europe as a whole,
the differences are particularly noticeable for labor and capital in-
vestments (for materials 76% of the firms were supposed to reduce
its use in accordance with the conventional model). Indeed, less
than half of the firms, 48%, see a reduction of their labor force as
the recommended change in all three years, while for investments
the proportion of firms which should increase their capital stock
is non-existent, i.e.,, 99% of the firms should disinvest in at least
one year, and 31% in all three years. By years, 2011 and 2014 are
the periods when most disagreement is observed regarding invest-
ment, most probably because of the effects of the 2008 financial
crisis that was at full swing in the first two years, signaling a re-
duction in investments to reach minimum cost. On the contrary,
2017 is the year where the increase in labor was mostly prescribed,
probably because firms were recovering from the same crisis and
needed additional labor to produce larger output at minimum cost.
The results for the different regions are generally similar.

3.2.3. Change in dynamic cost inefficiency and decomposition

The cross-section differences between the endogenous and con-
ventional model also emerge when looking at the evolution of the
inefficiencies. Table 4 presents the cumulative change in dynamic
cost inefficiency, and its decomposition into technical and alloca-
tive inefficiencies together with the changes in directional vectors
between 2011 and 2017, computed as the value in the final year
minus the value in the initial year. The results show that dynamic
cost inefficiency in the European dietetic food industry increased
by 1.407 million dollars in 2017 compared to 2011. The average dif-
ferences are positive for all regions, except Eastern Europe, show-
ing a slight reduction in cost inefficiency. However, these changes
in cost inefficiency and its components are not statistically dif-
ferent across regions, suggesting that the overall trend is the in-
crease of cost inefficiency. Although Table 4 only reports cumula-
tive changes between 2011 and 2017, looking at Table 2 we ob-
serve that most of the increase in cost inefficiency took place in
the first period between 2011 and 2014, while cost inefficiency re-
duced substantially in the second period from 2014 to 2017. The
net effect, however, is that of cost inefficiency increments.

The decomposition shows that worsening dynamic technical in-
efficiency was the main contributor to declining cost inefficiency
for Europe as a whole, both under the conventional and endoge-
nous models. The decline in technical efficiency amounts 1.390 and
0.906 million dollars on average for each European firm, represent-
ing 98.8% (=1.390/1.407 x 100) and 64.34% (=0.906/1.407 x 100) of
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the increase of cost inefficiency, respectively. In Eastern Europe,
where cost inefficiency improved, technical inefficiency change was
also the main driver, whereas in Western Europe the opposite took
place. In this regard, it is worth remarking that for Eastern Europe
technical and allocative inefficiencies contributed in opposite ways
depending on the approach. That is, in the exogenous model, forc-
ing input reductions and investment increases, firms experienced
declining technical inefficiency that is counterbalanced by alloca-
tive inefficiency improvements. On the contrary, the opposite is
observed in the endogenous approach taking firms directly to the
cost minimizing benchmark.

Appendix A7 presents the kernel density plots for the changes
in dynamic cost inefficiency, dynamic technical inefficiency, and
dynamic allocative inefficiency between 2011 and 2017 for each re-
gion—on this occasion, for better visualization we cut off the 5%
of the observations with the lowest and the largest values of the
changes. Again, the kernel density plots suggest a higher kurtosis
of the distributions of all inefficiencies for Eastern and Southern
Europe rather than for Western Europe. Hence, the distributions
for Western Europe are more spread out. The values at which the
distributions of the changes in dynamic technical inefficiency and
dynamic cost inefficiency peak are around zero for the endoge-
nized directional vector, which is generally in line with the aver-
age values presented in Table 4. Furthermore, the kernel density
plots suggest that the distributions of the changes in technical in-
efficiency and cost inefficiency are right skewed for all regions. Ap-
pendix A8 presents the kernel density plots for the changes in the
optimal directions between 2011 and 2017 for each region. Again,
as for the plots for kernel densities for directional vectors in each
year, both positive and negative adjustments for the two inputs
and investment are possible.

Finally, regarding the evolution of each individual firm within
the distributions of technical and allocative inefficiencies corre-
sponding to the endogenous model (TI* and AI*), Table 5 reports
the transition matrices of the firms’ dynamic technical and alloca-
tive inefficiencies from 2011 to 2017. By rows, in 2011 there were
22 firms that were technically efficient and 127 that were alloca-
tively efficient. Out of these totals, 6 firms were both technically
and allocatively efficient, thereby minimizing cost. Recall that in
the endogenous model, the 121 technically inefficient firms are
projected to the cost minimizing benchmarks, becoming alloca-
tively efficient. Therefore, these 121 firms show up in the group
of allocatively efficient firms in Table 5, while adding the 6 firms
that are both technically and allocatively efficient, yields the total
127 firms that are reported as allocatively efficient. In the same
vein, the 22 firms that are technically efficient are deemed alloca-
tive inefficient unless they minimize cost, and therefore 16 firms
are reported as allocatively inefficient in 2011. Focusing now on
the transitions, out of the 22 firms that were technically efficient
in 2011, about one third (7) continued to be technically efficient in
2017, whereas 15 became inefficient, showing up in the group of
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Table 5
Transition matrix of dynamic technical and allocative inefficiencies (number of transitions).
TI* in 2017 Al* in 2017
Efficient  Inefficient  Total  Efficient Inefficient  Total
TI* in 2011 Efficient 7 15 22 18 4 22
Inefficient 14 107 121 110 11 121
Total 21 122 143 128 15 143
Al* in 2011 Efficient 17 110 127 115 12 127
Inefficient 4 12 16 13 3 16
Total 21 122 143 128 15 143

18 allocatively efficient firms in 2017. Also, only about one tenth
(14 firms) of the 121 firms that were technically inefficient in 2011
succeeded in becoming technically efficient in 2017. The bottom
part of the table shows that out of the 127 firms that were alloca-
tively efficient in 2011 (and therefore technically inefficient except
for the 6 firms minimizing profit), 17 became technically efficient,
while 115 continued being allocatively inefficient. Clearly, we could
read Table 5 by columns to establish the complementary transi-
tions, i.e., how the different groups of technically and allocatively
efficient and inefficient firms observed in 2017 were performing
in 2011. The results in Table 5 suggest that in the period between
2011 and 2017 there have not been significant changes in the dis-
tributions of efficient and inefficient firms from the technical and
allocative perspectives. This implies that the performance of the
firms in the industry remains stable. Indeed, in 2017 there were
also just 6 firms that minimized cost, 2 of which were also effi-
cient in 2011.

Due to the space limitation, we omit here the analysis of the
changes including the intermediate year. Nevertheless, all results
for the changes between 2011 and 2014, and 2014 and 2017 (av-
erage values, kernels and transition matrices) are presented in on-
line Appendices A9 and A10.

4. Conclusions

The objective of this paper was to develop the endogenous ap-
proach to economic efficiency measurement within the context
of the dynamic cost inefficiency model introduced by Silva et al.
(2015), and demonstrate how it can be used to determine opti-
mal resource allocation and inform managerial decision making.
The consideration of an endogenous directional vector in the dy-
namic cost inefficiency model is critical because it solves known
problems of the exogenous approach, resulting from the subjectiv-
ity of the choice of different directions, while ensuring that firms’
adjustments are monotonic. This approach rules out contradictions
in the prescribed changes in input quantities which may occur in
the conventional model which decomposes cost inefficiency into
technical and allocative inefficiency. This inconsistency of the stan-
dard model is solved by endogenizing the directional vector, imply-
ing that firms simultaneously address their technical and allocative
inefficiencies, resulting in monotonic changes of inputs and invest-
ment. In this study we develop the theory behind the endogenous
directional vector approach for the dynamic cost inefficiency model
and apply it to a dataset of European dietetic food firms.

The results suggest an average potential for cost saving of 7.054
million dollars in 2011, 8.263 million dollars in 2014 and 8.461 mil-
lion dollars in 2017, representing 15.7%, 15.0% and 13.5% of total
cost in these years, respectively. From 2011 to 2017 dynamic cost
inefficiency increased on average by 1.024 million dollars showing
that firms in the sample endured a worsening in their economic
performance. The largest average inefficiency growth is observed
in Western Europe (3.387 million dollars on average) while firms
in Eastern Europe fared better with a slight reduction in cost inef-
ficiency to the tune of 0.301 million dollars. Interestingly, this neg-
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ative trend took place between 2014 and 2017, since cost efficiency
improved in the first period from 2011 to 2014.

The main take away from our study is that the solutions to the
model with endogenized directional vectors may yield very differ-
ent recommendations from those of the conventional model. The
conventional model always recommends contraction of inputs and
expansion of investments for firms to become technically efficient.
Yet our endogenous results show that, for Europe as a whole, 24%
of the firms should increase their used amounts of materials in
at least one of the three years. This percentage increases to 52%
for labor. In particular, the relative underuse of labor in the last
year is completely missed by the conventional model. For invest-
ments, the disparity between the conventional and the endoge-
nous directional vector model is even greater. Only 1% of the in-
efficient firms should increase investments throughout the whole
period, while the model indicates that 31% of the firms should re-
duce their long-term capital stock in all three years. The underuse
of labor and overinvestment is observed across all regions. The dif-
ference between the conventional and the exogenous models can
also be observed in the sources of dynamic cost inefficiency. For
Europe as a whole, both technical inefficiency and allocative in-
efficiency contribute to the growth in cost inefficiency under the
two approaches, yet for some regions like Eastern Europe, the con-
ventional model signals that technical inefficiency increments are
counterbalanced by allocative inefficiency decreases, while the op-
posite is observed in the endogenous model. Results also show that
there is a clear path dependency in the performance of firms re-
garding technical and allocative inefficiencies. That is, firms that
were efficient in one of the two dimensions in 2011 also more
likely remained efficient in the same dimension in 2017.

Our proposal, however, also presents some particularities that
may be seen as limitations. For example, by endogenizing the di-
rectional vector, cost inefficiency is categorized as either techni-
cal or allocative. This is because technical inefficient firms are con-
sidered allocatively efficient, since their projection on the produc-
tion frontier does not need to be followed by a further projec-
tion toward the cost minimizing firm, i.e., this benchmark is fea-
sible and allocatively efficient by definition. By contrast, a tech-
nically efficient firm is, except for the cost minimizing firm, al-
locative inefficient, because the associated projection is from an
already technically efficient firm onto the cost minimizing fron-
tier. Some authors do not accept the view that the conventional
decomposition of economic efficiency into technical and allocative
efficiency is actually an artificial construct; artificial because the
decomposition is based on a subjectively chosen exogenous direc-
tional vector. These authors criticize the endogenous directional
vector approach for attributing all inefficiency to either technical
or allocative inefficiency, e.g., Petersen (2018; 1074). From a sta-
tistical perspective, future research could explore the potential for
using a first stage bootstrap approach to correct for sample biases
in the measurement of cost inefficiency. Empirically, the consid-
eration of labor as a variable input rather than a quasi-fixed in-
put can also be questioned in those cases where the labor mar-
ket presents rigidities, e.g., large dismissal costs when terminating
contracts. Also, it would be relevant to distinguish multiple cat-
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egories of quasi-fixed inputs, i.e., factors with different economic
lifetime such as buildings and machinery. A further avenue for fu-
ture research could be the exploration of the role of market struc-
ture in assessing economic and endogenous inefficiency. In markets
where firms have market power, the assumption of exogenous out-
put and input prices is unlikely to hold.
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