
Citation: Azagi, T.; Dirks, R.P.;

Yebra-Pimentel, E.S.; Schaap, P.J.;

Koehorst, J.J.; Esser, H.J.; Sprong, H.

Assembly and Comparison of Ca.

Neoehrlichia mikurensis Genomes.

Microorganisms 2022, 10, 1134.

https://doi.org/10.3390/

microorganisms10061134

Academic Editors: Vladimir
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Abstract: Ca. Neoehrlichia mikurensis is widely prevalent in I. ricinus across Europe and has been
associated with human disease. However, diagnostic modalities are limited, and much is still
unknown about its biology. Here, we present the first complete Ca. Neoehrlichia mikurensis genomes
directly derived from wildlife reservoir host tissues, using both long- and short-read sequencing
technologies. This pragmatic approach provides an alternative to obtaining sufficient material from
clinical cases, a difficult task for emerging infectious diseases, and to expensive and challenging
bacterial isolation and culture methods. Both genomes exhibit a larger chromosome than the currently
available Ca. Neoehrlichia mikurensis genomes and expand the ability to find new targets for the
development of supportive laboratory diagnostics in the future. Moreover, this method could be
utilized for other tick-borne pathogens that are difficult to culture.
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1. Introduction

Ixodes ricinus is the most abundant and widespread tick species in Europe [1,2] and
transmits multiple pathogens of medical and veterinary concern [3]. Two well-established
tick-borne diseases, Lyme borreliosis and tick-borne encephalitis, are frequently reported
in Europe, and several studies have indicated a rise in their incidences and spread over
the last decades [4,5]. Ixodes ricinus also transmits Ca. Neoehrlichia mikurensis, which has
been found all across Europe except for the United Kingdom [6–8]. The number of studies
describing human infections involving Ca. N. mikurensis is accumulating, but whether
these infections result in human disease has not been fully demonstrated [9,10].

One of the major obstacles to investigating how often and under what conditions
Ca. N. mikurensis causes an infectious disease in humans, is its unequivocal detection in
larger cohorts of patients with noncharacteristic disease symptoms [11,12] or in persons
with a (recent) tick bite [13–15]. In other words, supportive laboratory diagnostics to
detect and identify Ca. N. mikurensis infections are currently limited or reserved to
research laboratories. Most importantly, although cultivation of Ca. N. mikurensis has been
described in the literature recently [16], it turns out to be quite difficult, even in dedicated
laboratories [17,18]. Once one or more Ca. N. mikurensis cultures are generally available,
it will become possible to develop more specific and sensitive diagnostic modalities, for
example serological tests, which will undoubtedly improve the abilities to detect (endured)
infection with Ca. N. mikurensis in clinical practices as well as in epidemiological studies.
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Recently, genomic information of three Ca. N. mikurensis isolates from Swedish patients
became available, giving new insights into its genetic make-up [18].

Since genetic material of emerging tick-borne pathogens from confirmed clinical
cases is hard to acquire, our aim was to test whether natural reservoir hosts, a more
available source of tissues with high bacteremia, may be utilized as an alternative source
for whole genome sequencing. Whole genome sequencing of bacterial and viral pathogens
is increasingly used for serotyping and outbreak management [19–21]. Previous studies
have shown the importance of high-quality DNA as a starting point [22]. Moreover,
the use of hybrid assembly strategies, combining long- and short-read sequencing, is
recommended for more complete and accurate reference genome assemblies [19,22–25],
especially when repetitive elements are expected. This approach has already been used
for other members of the Anaplasmataceae in order to assemble high-resolution whole
genomes [26,27]. The long reads provide reliable contigs allowing for repeat regions and
complex sequences to be structurally correct, and polishing with accurate short reads
corrects errors in the assembly [22,23,28]. Once standardized, an approach in which DNA
is extracted following bacterial enrichment, and then sequenced with a hybrid approach,
could be used to obtain fully resolved genomes from both host and patient samples.

In this study, we show that two complete and circular Ca. N. mikurensis genomes
could be obtained without the need for time- and resource-consuming isolation and culture.
These full genomes were directly derived from spleen samples of bank voles (Myodes
glareolus) from the Netherlands, using a hybrid assembly approach combining PromethION
and Illumina NovaSeq 6000 sequencing. Both genomes exhibit a larger chromosome
than the currently available genomes and expand the ability to find new targets for the
development of diagnostics in future studies.

2. Materials and Methods
2.1. Sample Collection and Storage

Rodents were collected in various locations in the Netherlands between August and
October 2018 (Supplementary Table S1). Rodents were trapped using Heslinga live traps
that were filled with hay and baited with a mixture of grains, carrots, and mealworms.
Captured rodents were transported to the laboratory facility where they were anesthetized
using isoflurane, after which the animals were euthanized by cervical dislocation. Species
identification was performed both morphologically and molecularly [29]. For this study,
Myodes glareolus were dissected, and spleen samples were taken and stored at −80 ◦C. All
handling procedures were approved by the Animal Experiments Committee of Wageningen
University (2017.W-0049.003 and 2017.W-0049.005) and by the Netherlands Ministry of
Economic Affairs (FF/75A/2015/014).

2.2. DNA Extraction, Pathogen Detection, and Enrichment

DNA from spleen samples was extracted using the Qiagen DNeasy Blood & Tissue Kit
according to the manufacturer’s manual (Qiagen, 2006, Hilden, Germany), and screened
for the presence of Ca. N. mikurensis DNA using a qPCR targeting a fragment of the groEL
gene (Supplementary Table S2). DNA from two qPCR-positive spleen samples from a
male bank vole (samples 18-2804 and 18-2837, Supplementary Table S1) was extracted,
this time using the Invitrogen genomic DNA mini kit (Qiagen, Germany) in order to
ensure higher genomic DNA yield for NGS. Microbial DNA enrichment was achieved
by selective binding and removal of the CpG-methylated host DNA using the NEBNext®

Microbiome DNA Enrichment Kit (NEB, Frankfurt am Main, Germany). DNA quality was
measured via electrophoresis in Genomic DNA ScreenTape on an Agilent 4200 TapeStation
System (Agilent Technologies Netherlands BV, Amstelveen, The Netherlands), and DNA
quantity was measured using Qubit dsDNA HS Assay Kit on a Qubit 3.0 Fluorometer (Life
Technologies Europe BV, Bleiswijk, The Netherlands).
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2.3. Genome Sequencing (Oxford Nanopore Technologies and Illumina)

The DNA from sample 18-2804 was used to prepare a 1D ligation library using the
Ligation Sequencing Kit SQK-LSK110 according to the manufacturer’s instructions (Oxford
Nanopore Technologies, Oxford, UK). ONT libraries were run on a PromethION flowcell
(FLO-PRO002) at Future Genomics Technologies BV (Leiden, The Netherlands) using the
following settings: basecall model: high-accuracy; basecaller version: Guppy v4.3.4.

Parallel aliquots of both DNA samples (18-2804 and 18-2837) were used to prepare
Illumina libraries using the Nextera DNA Flex Library Prep Kit according to the manu-
facturer’s instructions (Illumina Inc. San Diego, CA, USA). Library quality was measured
via electrophoresis in D1000 ScreenTape on an Agilent 4200 TapeStation System (Agilent
Technologies Netherlands BV, Amstelveen, The Netherlands). The genomic paired-end
(PE) libraries were sequenced with a read length of 2 × 150 nt using the Illumina NovaSeq
6000 system. Image analysis and basecalling were performed by the Illumina pipeline.

2.4. Genome Assembly and Annotation

Three reference genomes were used for the removal of host-derived ONT reads: Ar-
vicola amphibious (GCA_903992535.1), Apodemus sylvaticus (GCA_001305905.1), and My-
odes glareolus (GCA_004368595.1). Contigs were de novo assembled from the unaligned
reads using Flye v2.8.3-b1695 in standard mode and in metagenome mode [30,31].
The “metagenome” contigs were further polished using Medaka v1.4.3 [32]. The fil-
tered reads from the ONT data set were aligned against the Medaka-polished assembly,
which were then subsequently used for a de novo assembly using Flye with polishing
using Medaka (Figure 1).
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Figure 1. Overview of the assembly workflow. Raw ONT reads were filtered followed by a draft
assembly. The assembly was curated using Illumina reads.

Illumina reads of samples 18-2837 and 18-2804 were aligned against the ONT-based con-
sensus sequence of Ca. N. mikurensis (1,236,636 bp; PromethION derived from spleen 18-2804)
using minimap2 v 2.17. Pilon vs. 1.23 [33] was then used to polish the ONT-based consensus
sequence of Ca. Neoehrlichia mikurensis (18-2804_Ehrlichia_flye_medaka_prokka.fna) inde-
pendently with the 18-2837 and 18-2804 set of aligned Illumina reads. Prokka v1.14.6 [34]
was used to annotate the polished genome sequences. BUSCO v5.2.2 [35] was used for
QC of the annotated genome sequences based on the rickettsiales_odb10 lineage dataset.
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The sorted Illumina reads of 18-2837 and 18-2804 and the sorted nanopore reads of 18-2804
were aligned back against both polished genome sequences to allow visualization of the
Bam/Bai files in IGV v2.12.2 [36]. The presence or absence of prophages was determined
using the online tool Phaster [37,38]. Furthermore, SAPP [39] was used for the functional
annotation of protein coding genes using InterProScan [40] with PFAM [41]. The web
version of eggNOG-Mapper v2 [42,43] was used to determine the Clusters of Orthologous
Group (COG) categories for protein encoding regions.

2.5. Pangenomic and Comparative Analyses

The Illumina reads of NL07 were mapped to SE20 using minimap2 v2.7 [44], and samtools
v1.12 [45] was used to index the bam file and sibeliaZ [46] to generate a maf file. The maf file
and bam files were visualized using IGV v2.12.2 and Tablet v1.17.08.17 [47,48], respectively.

The Neoehrlichia pangenome analysis was performed by following the anvi’o pange-
nomic workflow, and the mcl inflation was set to 2, using anvi’o v7 [49]. For the analyses,
the genomes of Ca. N. mikurensis SE24, SE20, SE 26, Ehrlichia chaffeensis Arkansas, Ehrlichia
ruminantium Welgevonden, strain Anaplasma phagocytophilum HZ, and Ca. Neoehrlichia
lotoris RAC-413 were downloaded from NCBI (accessions numbers are listed in Sup-
plementary Table S3). The Anvi’o genome databases were annotated using the NCBI
COG function. A presence–absence Table was used to generate UpSet plots using the R
package UpSetR [50] to visualize unique and shared gene clusters at both the intra- and
interspecies levels.

2.6. Variant Calling

Single-nucleotide polymorphisms (SNPs) and other variants among the reference
genome NL07, the Illumina reads of NL06, and the three published Ca. N. mikurensis
genomes [18] were identified using Snippy v4.6.0 [51].

3. Results

From the 76 M. glareolus captured, 24 spleen samples tested positive for Ca. N. mikuren-
sis DNA in the qPCR analysis (Supplementary Table S1). Four samples with the lowest
Ct-values were selected for genomic DNA extraction and microbial enrichment using
the NEBNext Microbiome DNA Enrichment Kit (New England BioLabs, Ipswich, MA,
USA). The two samples with the highest DNA yield were subjected to genomic sequencing
(sample 18-2804 and 18-2837).

3.1. Genomes Generated in This Study

Two complete and circular Ca. N. mikurensis genomes derived from mice spleen
samples were assembled in this study. The reference genome derived from PromethION
(sample 18-2804) was polished with Illumina data from the same sample, resulting in
a circular genome referred to as NL07 (GenBank accession no. CP089285). In addition,
the PromethION data derived from sample 18-2804 were polished with Illumina data
from sample 18-2837, resulting in a second circular genome referred to as NL06 (Gen-
Bank accession no. CP089286). Both assemblies presented a complete genome with high
BUSCO scores, which increased from 77.1% to >97% after the short reads were used to
polish the long-read assembly and were accurately correct for sequence errors (Table 1,
Supplementary Files S1 and S2). No prophages were identified in either genome.

The two genome assemblies generated in this study were compared for strain varia-
tions (including both indels and nucleotide substitutions), and in total, 250 variants were
found (0.02% difference between genomes). Of these, 153 single nucleotide polymorphisms
(SNPs), 34 insertions, 47 deletions, and 16 complex variants were detected. Out of these, two
missense variants and three deletions were found in regions pertaining to the P44/Msp2
outer membrane protein (Supplementary Table S4).
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Table 1. Specifications of the unpolished and Illumina polished Ca. N. mikurensis consensus
sequences. Note that NL07 was assembled based on PromethION + Illumina data from the same
spleen sample (18-2804), while NL06 was assembled based on PromethION data from 18-2804 and
Illumina data from 18-2837. All further analyses are based on NL07 only.

Sample Name PromethION 18-2804 PromethION + Illumina
18-2804 (NL07)

PromethION 18-2804 + Illumina
18-2837 (NL06)

Assembly size 1,236,636 1,236,870 1,236,136
No. CDS 1152 949 958
No. gene 1193 990 999

No. rRNA 3 3 3
No. tRNA 37 37 37

BUSCO score 77.1% 99.2% 97.8%

As the consensus sequence NL07 presented a higher level of completeness (BUSCO = 99.2%),
and both short and long reads were obtained from the same sample, it was used as our refer-
ence genome for all downstream analyses. This reference genome (NL07) has 949 coding
sequences (CDS) out of 990 genes as well as 3 rRNAs and 37 tRNAs (Table 1). Coding
proteins were classified into functional Clusters of Orthologous Group (COG) categories
(Supplementary Table S5), and the output was summarized into the number of coding
proteins belonging to each COG category (Supplementary Table S6).

3.2. Intraspecies Comparisons

NL07 was compared to three previously published genomes of Ca. N. mikurensis,
namely strains SE20, SE24, and SE26, all of which were obtained directly from patient
materials in Sweden [18]. Of notable importance, when compared to NL07, the published
genomes were on average 124,574 bp smaller. The comparison showed SE26 is the most
similar to NL07 (0.02% difference and 165 SNPs), and SE24 is the most distant (0.028%
and 257 SNPs) (Table 2). Moreover, when compared to the published strains, NL07 shows
mutations that could translate into phenotypic antigenic differences in the coding region of
four P44/Msp2 outer membrane proteins (Table 3, Supplementary Tables S7 and S8). In
terms of completeness, the BUSCO scores of SE20, SE24, and SE26 are lower than NL07
(93.7%, 94%, 94.3%, and 99.2%, respectively, Supplementary Files S2–S5), which suggests
missing conserved genes in the previously published assemblies.

Table 2. Genetic variation between NL07 and SE20 and SE24 and SE26. The Table shows the total
amount of variants between NL07 and a given strain (Variant total), the number of multiple nucleotide
polymorphisms (Complex), the number of deletions (Deletions), the number of insertions (Insertions),
the number of single nucleotide polymorphisms (SNPs), the assembly size (Genome size), and the
percentage in difference between NL07 and a given strain in the aligned regions (% difference).

Strain Variant Total Complex Deletions Insertions SNPs Genome Size (NL07 = 1,236,870) % Difference

SE20 336 16 30 53 237 1,112,315 0.027
SE24 349 13 31 48 257 1,112,301 0.028
SE26 247 21 27 34 165 1,112,271 0.020

When investigating the 124,574 bp that were absent in the published genomes from
patient samples, we found three main expansions that contain 31 genes belonging to
26 known protein domains as well as repeats of the outer membrane protein domain
PF01617 (Supplementary Tables S10–S12, Supplementary Figure S1). All but one of the
missing genes were most closely related to Ca. Neoehrlichia lotoris. The remaining gene
was most similar to a domain participating in biotin metabolism found in Ehrlichia chaffeensis
(Supplementary Tables S10 and S11). The Clusters of Orthologous Group (COG) categories
assigned to these protein-coding genes are related to various essential processes needed for
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bacterial survival (Table 4), with the most abundant involved in replication, recombination,
and repair (seven protein-coding domains) as well as translation, ribosomal structure, and
biogenesis (five protein-coding domains).

Table 3. P44/Msp2 family outer membrane protein variants between NL07 and Ca. N. mikurensis
SE20, SE24, and SE20 assemblies. The effects of the SNPs are presented as synonymous (functionally
silent) or nonsynonymous. Nonsynonymous variants, which lead to either a stop codon or a change
in protein sequence, are in bold.

Strain Type Nucleotide Position Effect

SE20

complex 917/999 stop_gained c.917_919delTACinsAAT p.LeuLeu306
snp 258/903 synonymous_variant c.258C > T p.Pro86Pro
snp 792/903 synonymous_variant c.792T > C p.Pro264Pro
snp 168/852 synonymous_variant c.168G > A p.Pro56Pro
snp 287/852 missense_variant c.287G > A p.Ser96Asn
snp 440/816 missense_variant c.440C > T p.Ala147Val

SE24

complex 917/999 stop_gained c.917_919delTACinsAAT p.LeuLeu306
snp 792/903 synonymous_variant c.792T > C p.Pro264Pro
snp 168/852 synonymous_variant c.168G > A p.Pro56Pro
snp 287/852 missense_variant c.287G > A p.Ser96Asn
snp 253/936 missense_variant c.253C > T p.Pro85Ser

SE26

snp 552/903 synonymous_variant c.552A > G p.Gly184Gly
snp 792/903 synonymous_variant c.792T > C p.Pro264Pro
snp 168/852 synonymous_variant c.168G > A p.Pro56Pro
snp 287/852 missense_variant c.287G > A p.Ser96Asn
snp 433/816 missense_variant c.433G > A p.Glu145Lys

Table 4. Clusters of Orthologous Groups assigned to the protein-coding genes found in NL07 and
missing in the published Ca. N. mikurensis genomes.

COG Categories Description Number of Genes

L Replication, recombination, and repair 7
J Translation, ribosomal structure, and biogenesis 5
H Coenzyme transport and metabolism 3
C Energy production and conversion 2
F Nucleotide metabolism and transport 2
M Cell wall/membrane/envelope biogenesis 2
P Inorganic ion transport and metabolism 2
G Carbohydrate metabolism and transport 1
T Signal transduction mechanisms 1
U Intracellular trafficking, secretion, and vesicular transport 1

The absent genes appear in three main gaps. Upon closer inspection, two of these
gaps contain repeats of an outer membrane protein belonging to the Pfam PF01617 domain
(Figure 2).
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Figure 2. IGV plot indicating (A) the full assembly of NL07, (B) in blue, the regions of the SE20
assembly that align to NL07 and the gaps that SE20 does not encompass, and (C) in blue, the location
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Note that most repeats are present only in NL07.

Mapping the Illumina reads of NL07 to the assembly of SE20 shows that many copies
of this surface antigen are stacked on top of a site (positioned around 743,000–755,000 bp
in SE20) (Supplementary Figure S3). This may be indicative of a collapsed repeat of the
surface antigen explaining part of the discrepancy between genome sizes. Moreover, the
repeats of the PF01617 domain represent 25 different e-values ranging from 1.8 × 10−6 to
3 × 10−74 that may point to antigenic variation (Supplementary Table S12).

3.3. Pangenome Analysis

NL07 was compared to select genomes of the Anaplasmataceae family as well as
the Ca. N. mikurensis strains from Sweden (Table 5). The GC content of our reference
genome (26.85%) is comparable to that of the published strains (26.84%) and close to that
of E. ruminantium and Ca. N. lotoris (27.48% and 27.75, respectively) that shares a similar
genome size (Table 5, Figure 3). Four hundred and sixty-three gene clusters are present
across all genomes (Figure 4). Anaplasma phagocytophilum has the largest genome, and
523 unique gene clusters (Figures 3 and 4). In contrast, NL07 has 13 unique gene clusters
and 13 that it only shares with the Ca. N. lotoris genome, the only other genome with which
it solely shares gene clusters (Figures 3 and 4). Among the shared clusters are one gene
cluster connected to cell motility, two related to cell wall/membrane/envelope biogenesis
of which one is an outer membrane protein, one connected to translation, ribosomal
structure, and biogenesis, and one connected to inorganic ion transport and metabolism
and a TPR-like repeat domain (Supplementary Table S13).

Table 5. Summary of analyzed genomes.

Microorganism Genome Length GC Content Gene Clusters Singleton Gene Clusters

A. phagocytophilum 1,471,282 41.64 1018 523
E. chaffeensis 1,176,248 30.10 886 157

E. ruminantium 1,512,977 27.48 931 203
NL07 1,236,870 26.85 893 13
SE20 1,112,315 26.84 850 0
SE24 1,112,301 26.84 850 0
SE26 1,112,271 26.84 850 0

Ca. N. lotoris 1,268,660 27.75 923 135
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4. Discussion

Two novel and complete Ca. N. mikurensis genomes have been generated in this
study using a reproducible approach for high-quality whole genome assembly directly
from rodent spleens collected in the wild. These genomes expand on our ability to identify
potential targets for the development of reliable diagnostic tools for neoehrlichiosis, which
are currently lacking for this and some other tick-borne bacteria.

The genomes presented in this study are approximately 10% larger than the existing Ca.
N. mikurensis assemblies recently published, which were derived from clinical samples [18].
The discrepancy in chromosome size might be related to genetic divergence rooted in the
provenance of the samples or to the difference in technological platforms and assembly
approaches employed.

Although the genes missing in the variants from Sweden are all involved in essential
processes, one could argue the gene loss is related to pathogenicity gain as has been shown
for other intracellular bacteria [52–55]. In order to investigate this hypothesis, a larger
comparison of host- versus patient-derived genomes must be performed.

The genomes in this study are products of a hybrid assembly approach combining
long and short reads, while the genomes from Sweden are based on short reads alone.
While short reads are highly accurate at the nucleotide level, they lack the ability to reliably
elucidate genome structure [23]. When mapped to the assembly of the Swedish variant
SE20, our short-read data of NL07 revealed a large spike containing a repeat of an outer
membrane protein domain, which has proven to be highly immunogenic in patients infected
with other members of the family Anaplasmataceae [56]. Given that the Swedish variants
were assembled based on short reads alone, it is possible that this domain, which appears
throughout the genome, collapsed into one locus in said assemblies, explaining part of the
discrepancy in genome sizes (Supplementary Figure S2).
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The relatively high copy number of this domain could be related to the adaptive
immunogenic capabilities of Ca. N. mikurensis [57]. In A. phagocytophilum, this domain has
over 113 copies, which has been associated with an increased adaptability to the environ-
ment during infection [58], a phenomenon that has been described in the surface protein
superfamily (Pfam01617) for A. marginale, E. canis, E. chaffeensis, and E. ruminantium [59]. In
A. phagocytophilum, p44/msp2 proteins present strain variability, which could explain why
our analyses show SNPs in this domain, between the genomes generated in this study as
well as between NL07 and the publicly available Ca. N. mikurensis genomes. Thus, we
believe this surface protein family should be studied in depth in order to understand the
evolutionary processes involved and how they affect antigenic variation for this potentially
emerging pathogen.

The genomes presented in this study provide a foundation for future studies that
could explore the antigenic variation of Ca. N. mikurensis. Moreover, we believe that
this approach, in which wildlife reservoir host derived tissues are directly used to obtain
high-quality whole genomes based on hybrid sequencing, should be employed for other
emerging tick-borne pathogens and symbionts.
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