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Chemical and mechanical thinning processes have long been used in stone and pome fruit

production. During the thinning of apple flowers, growers use chemicals to regulate the tree

load. Hand thinning is applied after the June drop to prune trees with excess crop load. The

process of thinning can be unpredictable especially in biennial bearing cultivars. Thus, in-

centives to optimise chemical usage and to reduce expensive manual labour is ever

increasing. Ground based machine vision systems have grown in popularity in orchard

management due to the level of detail as well as plant coverage they can inspect with.

Additionally, unmanned aerial vehicles (UAV) -based remote sensing technology is becoming

a popular non-invasive quality inspection solution. This work proposes a framework for

combining UAV and ground based RGB image data to detect flowering intensity in a Dutch

Elstar apple orchard. The framework, based on point cloud reconstruction, presents auto-

matic point cloud handling techniques as well as automated unsupervised flowering in-

tensity estimation methods. Two linear regression models based on unsupervised machine

learning methods were trained and validated from the framework that estimate flowering

intensity in the orchard with both models having R2 > 0.65, RRMSE < 20% and p-stat < 0.005

for the correlation between the image derived flower index and the flower cluster number

counted in field. The proposed methods provide a novel strategy for guiding flower thinning

using simple RGB images and location data only. Moreover, the proposed methods also

reveal the flexibility of intra-tree inspection by checking its sub-volumes.

© 2022 The Author(s). Published by Elsevier Ltd on behalf of IAgrE. This is an open access

article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Nomenclature

UAV unmanned aerial vehicles

RGB red, green, blue

SVM support vector machines

CNN convolutional neural networks

SD2
bio biological standard deviation

SD2
obs observed variance

SE standard error

WT west-top observation volume of a tree

WM west-middle observation volume of a tree

WB west-bottom observation volume of a tree

ET east-top observation volume of a tree

EM east-middle observation volume of a tree

EB east-bottom observation volume of a tree

RTK real time kinematic positioning

GPS global positioning system

PC point cloud

IE images taken from Eastern side using a ground

vehicle (.TIFF)

IW images taken fromWestern side using a ground

vehicle (.TIFF)

IU images taken from a UAV (.jpg)

GV ground vehicle sensing platform

PCE point cloud constructed from IE only

PCW point cloud constructed from IW only

PCU point cloud constructed with IU only

SOM spatial orientation model

PCA principle component analysis

MSAC M-estimator sample consensus

RANSAC random sample consensus

FDM flower detection model

PCHyb hybrid point cloud constructed by merging PCE

and PCW

LOOCV Leave-one-out cross validation method

UI user interface

Model-T flower cluster prediction model for the top

volume of a tree

Model-MB flower cluster prediction model for the sum

of the middle and bottom volumes of a tree

R2 coefficient of determination

RMSE root mean square error

RRMSE RMSE relative to mean
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1. Introduction

During the process of growing apples, the trees undergo an

annual flowering phase in the spring. During this phase, the

quantity of flowers can be an indicator to the fruit set (the

number of flowers successfully pollinated and becoming

fruits) ultimately indicating the resulting yield. At this stage of

the cycle the grower would like to perform tree load man-

agement to guarantee desired fruit set, which is the man-

agement of, in this case, the number of flowers per tree (Zhang

et al., 2021). This is where the process of mechanical and

chemical thinning, is performed - to control the number of

flowers per tree and ultimately the fruit set. Thinning is
usually carried out over a rather large period including bloom

and post bloom (Greene & Costa, 2013). It is an established

method used to control the tree load in order to ensure fruits

of a marketable size on a regular basis. A higher than optimal

tree load results in higher quantity of a smaller size fruits

which is unfavourable for the grower since it leads to less

sellable product. Excessive fruit load in apple trees may also

result in suboptimal sugar levels, fruit colour and even storage

life (Forshey, 1986). Thinning is usually implemented up to the

point where fruits are at 18 mm diameter in size. According to

Greene and Costa (2013), manual and chemical thinning

techniques are used nowadays for stone and pome fruits, but

in the case of pome-fruits, specifically apples, the method of

choice is mostly chemical thinning to lower labour costs for

manual thinning.

Flower and fruit thinning remain unpredictable processes,

especially in biennial bearing apple species that can alternate

irregularly between high and low bearing seasons (Greene &

Costa, 2013). In addition to irregular annual flowering, the

fact that individual trees in the orchard vary in flowering in-

tensity, unpredictability is understandable. Since this varia-

tion in flowering intensity occurs often, hand thinning, in

addition to spraying is still necessary to ensure the correct

dosage per tree. It is this unpredictability, the manual esti-

mation of errors and the use ofmanual labour that holds great

potential for improvement. It is therefore beneficial to the

grower to know exactly how the intensity of tree flowering or,

if possible, howmany flower clusters are present per tree. The

grower could with this information, for instance, optimise the

fruit set per tree, optimise the amount of chemicals used and

reduce significantly the manual labour involved in estimating

the clusters during flowering and thinning labour. If flower

intensity information of individual trees can accurately be

accumulated, flowering in terms of spatial variability could

also bemapped (allocating for instance each treewith a flower

intensity score) and used tomake better thinning decisions for

individual trees (Farjon et al., 2020). These tree load maps

could for instance be used in conjunction with a variable rate

sprayer for the thinning process (Krikeb et al., 2017).

Rapid technological advancements have made it more

accessible to gather flowering and other plant information in

orchards, such as water stress, nutritional status and tree

height, in a non-destructive way with the use of machine

vision systems on a range of platforms, such as handheld

devices, ground vehicles and unmanned aerial vehicles (UAV)

(Aggelopoulou et al., 2011; Bargoti & Underwood, 2017; Lopez-

Granados et al., 2019; Zhang et al., 2021). With regard to the

sensors equipped to the platform within the research focus-

sing on flowers in orchard, only red, green, blue (RGB) and

multispectral sensors have been employed, due to the distinct

colour feature of flowers against the background (Liakos et al.,

2017; Tubau Comas et al., 2019). Theses platforms have their

own pros and cons depending on specific application scenario.

Though the monitoring conducted with handheld devices is

inferior to others when it comes to the data collection effi-

ciency, the data quality, especially the image resolution,

enable more features available (Wu et al., 2020). Ground

vehicle platforms are also often used in orchard management

because of their convenience and data collection efficiency

(Dias et al., 2018a; 2018b). For a particular research purpose,
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ground vehicle platforms can also provide a unique circum-

stance that benefits the data collection. For instance, with the

help of the artificial lights equipped on the ground vehicle,

image collection at night is available which reduces the effects

of sunlight significantly (Wang et al., 2021). Current achieve-

ments in sensor miniaturization enable successful use of

UAVs for orchard management, however, only a few re-

searchers have conducted systematic research into flowering

intensity estimation (Zhang et al., 2021). UAVs can not only

provide efficient and reliable monitoring for orchards but also

a detailed spatial and temporal solution. Research has

demonstrated the use of UAVs in flowering intensity estima-

tion and the ground vehicle in flower detection (Horton et al.,

2017; Sun et al., 2021). Yet comparison of these two platforms

has been subject to considerable discussion. For example,

when the spatial information of fruit trees is retrieved, such as

the flower cluster number per tree, with 3D point clouds

derived from UAV and ground vehicles, the two platforms

often show different spatial scales and occlusions because of

the different data acquisition locations. Thus there remains a

paucity of evidence on which platform is more suitable for

flowering intensity estimation in orchards.

Extensive research has been carried out on flower detec-

tion, classification and estimation in orchards with machine

vision technology. Flower estimation studies have been

mostly restricted to estimation at picture level rather than at

tree level (Dias et al., 2018a, 2018b; Wu et al., 2020). In recent

studies, the detection of flowers has been investigated in two

ways, pixel-based and object-based detection methods

(Vanbrabant et al., 2020). For pixel-based methods, the first

step is the extraction of the pixels of interest. Once these

pixels are extracted, flower detection is conducted by the

calculation of flower pixel amount or a different fraction.

Thresholding techniques are most commonly used within

pixel-based methods, where the targeted objects are

segmented by transforming a grayscale images into a binary

one (Aggelopoulou et al., 2011). This is effective for images

with high levels of contrast, and significant outcomes have

been observed from previous studies (Horton et al., 2017).

Krikeb et al. (2017) reported a R2 of 0.97 for the correlation

between the threshold derived flower areas to the flowering

intensity scored given by an expert. A R2 of 0.86 was observed

between the flower intensity and the apple yield for both RGB

and multispectral image based detection (Liakos et al., 2017).

One disadvantage of thresholding is that the threshold

adjustment is needed for a new environment or dataset. By

contract, more advanced machine learning techniques are

more robust and have attracted interest in the flower detec-

tion community. More specifically, the machine learning

derived pixel-based methods consist of support vector ma-

chines (SVM) (Dias et al., 2018b; Xiao et al., 2014), K-means

(Tubau Comas et al., 2019), convolutional neural networks

(CNN) (Dias et al., 2018b). For example, a model based on the

combination of CNN and SVM proved to be successful with

precision and recall rates of 90% (Dias et al., 2018b). Object-

based detection is generally conducted with two steps,

image segmentation and object classification. Image seg-

mentation algorithms first aggregate pixels into spectrally

homogenous objects, and then each of the objects is classified

to accomplish the detection (Dias et al., 2018a; Vanbrabant
et al., 2020). For the object-based CNN, an image patch is

evaluated directly to detect if there is a flower (Chen et al.,

2019; Yuan & Choi, 2021). Since object-based methods do the

classification at object level, different classes of targeted ob-

jects can be determined and labelled during image annotation

process. Based on this approach, not only flowers can be

detected, but also the specific flowering stage can also be

classified (Koirala et al., 2020; Yuan & Choi, 2021).

Earlier studies demonstrated the capability of using ma-

chine vision technology for flower detection at picture level.

To assist the growers to decide how many flowers needed to

be removed for each individual tree, flower quantification at

tree level is required to support flower management within

the orchard. To our knowledge, there are only five studies

focussing on the correlation between the flower estimation

derived from image and the exact flower number counted in

situ. Three studies were conducted with ground vehicles

(Ho�cevar et al., 2014; Koirala et al., 2020; Wang et al., 2021) and

two with UAVs (Tubau Comas et al., 2019; Vanbrabant et al.,

2020). Two reported R2 values of the correlation between the

image based flower index and the exact cluster number

counted in situ were 0.56 and 0.59 because of the camera

capture view, using only top-view and one-side view of the

trees, respectively (Ho�cevar et al., 2014; Tubau Comas et al.,

2019). Simple capture view limits the estimation ability of

machine vision, especially for the complex-structured fruit

trees with more flower occlusion. Fruit trees are larger and

have a more complex architecture compared to common

agricultural crops, such as cotton, i.e., plant height and flower

numbers for fruit trees and cotton, respectively, are 3e4 m

versus <1 m and 350e2100 flowers versus 15e20 flowers

(Vanbrabant et al., 2020). By contrast, Koirala et al. (2020)

employed a dual-view imaging approach for mango panicle

estimation at tree level capturing two images from each side

of the trees to represent the total number of flowers per tree.

Although the highest R2 of the correlation between the panicle

count on images and in-field human counts per tree yielded

from the rotational region CNN was 0.86, a high bias was also

observed. In addition, the proposed method could not be

applied to the flower estimation of apple or pear trees since

apple flower estimation suffers from higher flower occlusion

and it is much more difficult to label each apple flower cluster

in the picture. Wang et al. (2021) reported a CNN-based apple

flower estimation, but the ground truth used was part of the

tree where a coloured square section marker was used to

delineate and limit one counting area from a tree. RGB dense

point cloud datasets derived from multi-view images have

potential to retrieve tree spatial information, such as the

geometric traits, as shown in several studies (Lopez-Granados

et al., 2019; Sun et al., 2019; Torres-S�anchez et al., 2018).

Vanbrabant et al. (2020) has demonstrated its performance of

addressing the pear flower occlusion problems, but the errors

in their study could not be explained because of the limitation

in ground truth.

This paper aims to develop and evaluate an approach for

automated apple flower cluster estimation at tree level. The

presented research contributes to the following:

1. Comparison of the capability of four conventional

classification algorithms, manual threshold, Otsu

https://doi.org/10.1016/j.biosystemseng.2022.05.004
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segmentation, K-means and Hierarchical clustering, for

flower cluster segmentation;

2. Comparison of the accuracy of UAV and ground vehicle

derived point clouds for flowering intensity estimation;

3. Examine the effects of point cloud density on the

flowering intensity estimation accuracy;

4. Evaluate the possibility of combining UAV and ground

vehicle derived point clouds for flowering intensity

estimation.
2. Materials and methods

2.1. Study area and field data

The study area for this project was an apple orchard in Rand-

wijk, Netherlands (51.938, 5.7068 in WGS84 UTM 31U) (Fig. 1).

Apple trees in this orchardwere planted in 2007with four-years

trees. In total 14 rows were designed, while for each row 101

treeswere planted. The average tree heightwas around 2.3m in

2018. Row 5 (100 trees) of the orchard is unique from the rest of

the orchard with the aim being to intensely monitor the

phenotypical change in the row. Hand thinning is needed each

year, but the amount of mechanical thinning is very variable.

Detailed information about the orchard can be found in Table 1.

Ground truth data, flower cluster and floridity, for Row 5 were

established by an expert in the orchard. Flower cluster number

was counted and recordedmanually for 31 random trees in row

5. More specific, for each individual tree, the exact flower

cluster number was counted in the top, middle and bottom

parts of the tree and documented accordingly. Floridity was

determined by giving each tree a flowering intensity rating

between 1 and 9 where 1 being no flowers and 9 being extreme

flowering intensity. Floridity refers to the intensity atwhich the

tree is flowering while flower clusters are the clustered

arrangement of inflorescence.

High within-sample variability can be observed in an or-

chard with high natural or biological variability (Anderson

et al., 2021). To illustrate the within-sample variability in

this study, the biological or intrinsic variability, biological

standard deviation (SD2
bio), was calculated by decomposing the

estimator variance:

Var¼ SD2
obs ¼ SD2

bio þ SE2 (1)

where SD2
obs represents the observed variance within the

collected samples, and SE represents the standard error.

The ground truth, cluster number and floridity, was ac-

quired on the 24th of May 2018 when trees were fully

blooming. And the trees generally scored floridity between 5

and 8.5. Afterwards, an inventory of the collected ground truth

was created (Table 2), based on Eq. (1). As mentioned before,

floridity is a manually assessed score and was given by the

expert in the orchard. The variability within the samples

cannot reflect the natural variability. Thus no biological vari-

ability, SD2
bio, was calculated for floridity, but the standard

deviation and the standard error were provided.

In row 5 of the Randwijk orchard, 100 trees were equipped

with observation tape (Fig. 2), which was used by the expert as

a frame of reference to compartmentalize trees and ground
truth flower count. The observation tape runs throughout the

entire row and serves the purpose of maintaining consistency

in the counting of flower clusters and floridity of the tree. The

tape divides each tree into the top, middle, and bottom

observation windows. The tape was placed through the mid-

dle of the tree as to additionally divide the trees into East and

West halves. Each tree in the row therefore has six observa-

tion volumes namely west-top, west-middle, west-bottom,

east-top, east-middle and east-bottom (Fig. 2C). The expert

used these observation volumes as a guide for assigning

floridity and flower clusters scores to the trees and to be able

to compare results of different instances and the changes that

occur. Only cluster number was counted in detail for these

observation volumes. Floridity was assessed from East and

West sides and the average was marked as the flowering in-

tensity for each tree. The inventory of the cluster variability

within sub-observation volumes was calculated in Table 3.

2.2. Platforms and image acquisition

Images of row 5 were acquired using two platforms with on-

board cameras. A ground vehicle equipped with three RGB

cameras as well as a real time kinematic positioning (RTK)

system, drove through row 5 taking pictures (1 m from the

trees) at three different heights (0.75 m, 1.30 m and 1.85 m

from the ground respectively). These three cameras were

equally spaced vertically to capture, in combination, the full

height variation of the trees. The images were taken at a rate

of 11 frames per second. The ground vehicle drove through the

orchard on the East andWest side of row 5. This platform path

allowed pictures to be taken from the Eastern and Western

side of the trees. The second camera platform was a UAV

equippedwith a camera and a global positioning system (GPS),

taking images of the orchard at a height of approximately 10m

above the orchard canopy. This camera setup offeredmultiple

vantage points of any given tree in the row. Refer to Table 4 for

more details regarding the platforms and Fig. 3 for a summary

of the data collected. At the time of data acquisition (24 April

2018), weather conditions were cloudy.

2.3. Methods

The approach proposed followed themethodology presented in

Fig. 4. To utilise both data sources and merge them, it was

decided to assess the trees through the use of photogrammetric

point clouds (PCs). It was decided that a PC of row 5 could offer

great insight into the spatial variability of the flowering in-

tensity of the trees by allowing not only inter-tree analysis but

also intra-tree analysis. This approach proposes to create three

separate PCs from three vantage points, handle and analyse

them separately and ultimately combine their results at the

statistical analysis stage of the framework. Two software,

Agisoft Metashape Professional (Agisoft LLC, St. Petersburg,

Russia) version 1.6.2 build 10247 and MATLAB R2019b (Math-

Works Inc., Natick, MA, USA), were used for the manual and

automatic analysis indicated in the framework. This approach

allows all three PCs to undergo the same empirical operations

without any spatial or colour-space differences influencing

their results. It also allowed for the trees in the three PCs to be

subdivided and therefore inspected in a more flexible way.

https://doi.org/10.1016/j.biosystemseng.2022.05.004
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Fig. 1 e The study area and the subject row of this study (row 5). The orchard is delineated with red line and the row 5 is

marked with a blue rectangle.

Table 1 e Orchard information and management
activities for 2018.

Size 0.47 ha

Variety Elstar

Rootstock M9

Row spacing 3.0 m

Tree spacing 1.1 m

Flower thinning chemical ATS (ammonium thiosulphate)

Fruit hand thinning threshold 110 fruits tree�1

Rows 14
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2.3.1. Image pre-processing
During the pre-processing phase, raw images and positioning

data from the respective camera platforms were manually

processed. The altitude of the images was determined by the

altitude of the study area and adjusted according to the known

height the image was taken. The location data (RTK & GPS)

along with the images were loaded into Agisoft Metashape

software. Using Agisoft Metashape, location data and image

data were used to create point clouds of the row of trees. Two

main stages were involved in this process: aligning the images
Table 2 e Calculated floridity and cluster variance within trees

N (#trees)a Average (# or #cluster/tree) SDobs (

Floridity 100 6.8

Total cluster 32 194

a
“#” represents number; “e” represents no value.
and building the dense cloud. Aligning the photos automati-

cally identified image features, created image pairs and

reconstructed camera locations. Moreover the 3D structure of

the scene was initialised. Based on the tie points, the images

were loaded again and the geometry between the tie points

was calculated during the second stage. Detailed processing

parameters applied during these two stages are summarised

in Table 5. From Fig. 5 it can be seen that the output of the pre-

processing phase consists of three versions of point clouds of

the same row of trees. Then these point clouds were trans-

ferred to .ply format, which is compatible with MATLAB, for

the automatic processing in the following two models, spatial

orientation model and flower detection model. Density in-

formation per point cloud can be found in Table 5. Density

difference between the ground vehicle sensing platform (GV)

and UAV point clouds can be described as considerable.

2.3.2. Spatial orientation model
The input to the spatial orientation model (SOM) (Fig. 6),

three point clouds, undergo a process whereby the main goal

was to divide each tree in the point clouds into six observa-

tion volumes. These volumes and their properties can then
.

# or # cluster/tree) SDbio (#cluster/tree) SE (#cluster/tree)

0.7 ea 0.1

64 63 11

https://doi.org/10.1016/j.biosystemseng.2022.05.004
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Fig. 2 e Yellow observation tape used for counting purposes. A. Front view; B. Top view; C. Observation volumes. WT: west-

top volume of a tree, WM: west-middle volume,WB: west-bottom volume, ET: east-top volume, EM: east-middle volume, EB:

east-bottom volume. Note: directional indicator is valid for B only.

Table 3 e Calculated cluster variance within different sub-observation volumes.

N (volumes) Average
(cluster volume�1)

SDobs

(cluster volume�1)
SDbio

(cluster volume�1)
SE (cluster volume�1)

Top 32 56 30 29 5

Middle 32 75 23 22 4

Bottom 32 62 21 21 4

Total 96 65 26 26 3
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be used to detect the floridity and flower cluster counts. As

previously mentioned, the aimwas to empirically handle the

PCs and fuse the results of the flower detection model. The

spatial orientation model therefore prepared the observation

volumes to be used in the detection phase later in the

process.

The first function in the SOM was to down sample the PCs

in order to limit computational time and allow for the PCs to

be handled more computationally efficient by the succeeding

algorithms. The PCs were down sampled randomly from their

original count as to not influence the spatial distribution of the

input data. To further smooth the point cloud from outliers

and reduce the amount of measurement errors and density

variations a statistical outlier removal filter was applied

(Rodrı́guez et al., 2018; Sultani&Ghani, 2015). More specific, all

points inconsistent with all neighbours were trimmed out by

calculating and comparing the mean distances with the in-

terval defined by mean and standard deviation. The global

orientation of the PC entering the SOMmight be distorted. In a
Table 4 e Camera platform specifications and data size.

Aerial vehicle

Vehicle type DJI™ Phantom 3 PRO, Shenzhen, China (quad

Camera type FC300X, Shenzhen, China (RGB)

Sensor resolution 4000 � 3000

Frequency Variable

Positioning system GPS (geotag per image)

Acquired images 362
similar fashion to Dong et al. (2020), the global alignment

function made use of principle component analysis (PCA) to

align the component of highest spatial variance (in this case

the length of the PC) to the X-axis. An important function of

the SOM was removing the ground beneath the trees (Fig. 7).

The ground data points that fall within a specified distance

from the ground plane were removed from the PC to leave

only the trees remaining. This improves the accuracy of suc-

ceeding operations by eliminating the possibility of taking

irrelevant data, ground data points, into account.

With ground data points being removed and only trees left

the PC now served as input to the PCA alignment function.

During this function the PC was aligned in all three spatial

dimensions for the second time to offset the result of the first

PCA alignment due to ground points. Using PCA, the compo-

nent with the highest spatial variance (length) was re-aligned

to the X-axis. The component with the second highest vari-

ance (height) was aligned to the Y-axis. Finally, the compo-

nent with the least spatial variance (depth) was aligned to the
Ground vehicle

-rotor) Tractor (generic)

Intel® RealSense™ Depth Camera D435 (RGB-Depth)

1920 � 1080

11fps

RTK (10 Hz)

10,355

https://doi.org/10.1016/j.biosystemseng.2022.05.004
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Fig. 3 e Example image data. A: UAV imagery. B: Ground vehicle imagery, camera position: 0.75 m. C: Ground vehicle

imagery, camera position: 1.30 m. D: Ground vehicle imagery, camera position: 1.85 m.

Fig. 4 e Schematic of the proposed framework. IE and IW : ground vehicle derived mages taken from Eastern and Western

side of a tree, respectively; IU: images taken from the UAV.

Table 5 e Parameters of the point cloud generation in
Agisoft Metashape and the yielded point cloud density.

PCE
a PCW PCU

Align photos

Accuracy High High High

Generic preselection Disabled Disabled Disabled

Key point limit 40,000 40,000 40,000

Tie point limit 4000 4000 4000

Build dense cloud

Quality High High High

Depth filtering Mild Mild Mild

Calculate point colours Enabled Enabled Enabled

Coordinate system WGS 84/UTM zone 31N (EPSG: 32631)

Data points per tree 3.90 � 105 3.30 � 105 0.30 � 105

Tie points per image 158 141 71

a PCE and PCW: point cloud constructed from the ground vehicle

derived Eastern and Western side images of the trees, respec-

tively; PCU: point cloud constructed from the UAV imagery.
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Z-axis (Fig. 8). At this stage of the model, all three input PCs

were aligned in the same coordinate system and orientation.

Equally important is the distribution of spatial data start from

the origin (0) after this function was applied.

The segmentation function automatically isolated all trees

based on the vertical observation tape in between trees using a

M-estimator sample consensus (MSAC) (Fischler& Bolles, 1981)

algorithm, a variant of the random sample consensus (RAN-

SAC). The MSAC was used to fit rectangular planes to the

observation tape horizontally and vertically (Fig. 9). Four planes

isolated a tree from the rest of the row aswell as divide the tree

into a bottom,middle and top volume based on the observation

tape. The size of these volumes varies from tree to tree

depending on how the observation tape was installed in the

orchard. The resulting individually segmented trees then

passed through to the final function of the SOM. The subject

tree enters the final function of the SOM where the tree was

divided into six observation volumes (Fig. 10). Every tree in the

three input PCs, PCE, PCW and PCU, was processed. The height

layers were defined for every tree and the data points that fall

within those height layers were divided in an East and West

part of the tree. Therefore, at this stage of the framework, for

any given tree in row 5, there were three versions with each six

subsections.
2.3.3. Flower detection model
The aim of the flower detection model (FDM) (Fig. 11) was to

extract data points, based on their colour properties, that

belong to flower clusters. These data points can then be used

to find a correlation between the amount of white data points
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Fig. 5 e Schematic of pre-processing phase with three point clouds as output. IE and IW : ground vehicle derivedmages taken

from Eastern and Western side of a tree, respectively; IU: images taken from the UAV; PCE: point cloud constructed from IE
only; PCW: point cloud constructed from IW only; PCU: point cloud constructed from IU only.

Fig. 6 e Schematic of the spatial orientation model (SOM). PCE and PCW: point cloud constructed from the ground vehicle

derived Eastern and Western side images of the trees, respectively; PCU: point cloud constructed from the UAV imagery.
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and the ground truth flower clusters in the various sub-

sections of the trees.

To segment the data points that belong to white flower

clusters in the flower segmentation function, four different

methods were used:

1. Manual thresholding

2. K-Means clustering

3. Otsu segmentation

4. Hierarchical clustering

Manual threshold segmentationwas achieved bymanually

inspecting a collection of images (45 from GV and 40 from
UAV) from random trees in the orchard. By segmenting all the

images manually, average lower and upper thresholds were

determined for red, green and blue colour bands that explain

the flower cluster pixels. These thresholds were used to

segment data points in the point clouds that belong to flower

clusters by extracting data points that have the colour prop-

erties which match the criteria.

The blue colour band was used for the three automatic

methods to prevent the influence of the yellow observation

tape on the segmentation result. The flower clusters could not

be segmented without including the observation tape when

using the red colour band. The blue and green colour band

showed some collinearity in segmentation and therefor only

https://doi.org/10.1016/j.biosystemseng.2022.05.004
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Fig. 7 e Illustration of the ground plane removal function.

The red plane represents the ground plane.
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blue was used. Using only one colour band also reduces the

computation time for more computationally intense algo-

rithms such as hierarchical clustering.

K-Means clustering is an unsupervised machine learning

algorithm that finds clusters in data bymaximising inter-class

variance while minimising intra-class variance. It is also a

popular point cloud clustering technique that uses features or

attributes from the point clouds (Grilli et al., 2017). The algo-

rithmfinds k number of clusters, where k is predetermined. K-

means clustering was implemented on the colour properties

of the data points from the various subsections to cluster the

data points into classes based on the blue colour band. By

manual inspecting a collection of images, flower colour

feature were found distinguishable in the blue channel.

Moreover, flower points in the point cloud showed highest

brightness compared with the background, in UAV coloured

point clouds. For ground-based point clouds, four components

showed significantly different sensitivity to the changes of
Fig. 8 e Trees fully aligned by PCA alignment function. The

red lines indicate the direction of each principle component.
threshold in blue channel, they are the sky, the flowers, the

ground with no vegetation and the green objects (leaves and

the grass). Therefore, k ¼ 2 was set for PCU, and k ¼ 4 was

determined for ground-based point clouds.

Otsu segmentation is an algorithm that automatically

segments data into two parts by automatically defining a

threshold between two classes. It has also been proven suc-

cessful in segmenting point clouds based on RGB information

(Jia et al., 2019). Otsu segmentationmethod divides the data by

maximizing the inter-class variance.

Hierarchical clustering is a machine learning algorithm

that finds a predefined number of clusters in the data set. It is

an unsupervised clustering method that iteratively splits the

data set into smaller subsets until every subset contains only

one object (Ng & Han, 1994). The hierarchical clustering algo-

rithm iteratively splits the blue colour band data of the subject

point cloud to find distinct classes in the data. With the same

approach to the determination of k for K-means method, Hi-

erarchical cluster number was predefined as 4 and 2 for

ground vehicle and UAV data respectively.

The outcome of flower segmentation consists of only data

points belonging to flower blossoms (Fig. 12). The count of

data points in the resultant subsections is known as the white

index and will be used in the analysis function.

The sub volumes of the trees created in the SOM allow any

combination of sub volumes to be used as “puzzle pieces” to

build a tree comprising of different point cloud origins. The

conclusion can also be made that the Eastern side of PCE was

of higher quality than the Western side since the exposure to

the camera was greater and occluding branches and leaves

prevent the camera from potentially capturing flower blos-

soms on the Western side. The same can be said for PCW. The

tree creation function combined the best sides of PCE and PCW

to create a hybrid combination tree. Therefore, the three

eastern segmented subsections from PCE (east-top, east-

middle and east-bottom) and the three western segmented

subsections from PCW (west-top, west-middle and west-

bottom) were combined for every tree. Each sub volumes

had flower data points only. The output of the tree creation

function is explained in a tabulated form (Table 6).

The analysis function used the PCU and PCHyb trees as well

as ground truth data as inputs to compare the count of the

trees to the floridity and the flower cluster ground truth. The

aim was to find which segmentation algorithm results in the

highest correlation between the white index and ground truth

data. Evaluating if the white index of the trees should have a

linear relation to the floridity and amount of flower clusters,

linear regression was used as the statistical model to find

correlation. The combination of data source, flower segmen-

tation method and section of the tree with the highest corre-

lation was used to train and validate a linear regressionmodel

for predicting flowering intensity. Due to the limited size of

the model, a leave-one-out cross validation (LOOCV) method

was used to validate themodels. LOOCV is a special case of the

resampling procedure K-fold cross validation. It is used to

evaluate the performance of machine learning models with

small data sets. LOOCV is the case where the fold number

equals to the number of observations.
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Fig. 9 e Individual tree segmented from row 5. The height layers, defined by observation tape, of the tree in the yellow

window are shown on the right.

Fig. 10 e Outcome of the SOM model. For each tree, tree points in the six observation volumes are highlighted in different

colour. WT: west-top volume of a tree, WM: west-middle volume, WB: west-bottom volume, ET: east-top volume, EM: east-

middle volume, EB: east-bottom volume.
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3. Results

Two main outcomes of the SOM are the point clouds of indi-

vidual trees and their subdivided observation volumes. The

performance of the individual trees and their subdivided

observation volumes segmentationwas validated for 107 trees

(Fig. 13) and 186 observation volumes (Fig. 14), respectively, by

comparing the segmented data points to manually annotated

ground truth counts. Outliers are determined for both results.

These are trees and observation volumes that could not be

spatially segmented properly. Only trees with spatial seg-

mentation accuracy higher than the 25th percentile were used

for correlation analysis. A simple user interface (UI) enables
the user to select a single tree or its six observation volumes in

the row to inspect visually. With this UI, performance of the

proposedmethod on a series of adjacent trees stretching from

17 to 21 was also demonstrated (Fig. 13). In the case of tree 17,

inconsistent segmentation results are observed, where the

segmentation of East-side is better than that of theWest-side.

For the result of tree subdivided observation volume seg-

mentation (Fig. 14), it is clear that trees created from GV data

can be divided more accurately. This can be attributed to the

poor visibility, in the PCU, of the horizontal yellow observation

tape running through the trees. As this is the feature that was

used to segment the observation volumes, it makes sense that

the performance for PCU was inferior.
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Fig. 11 e Schematic of the flower detection model.

Fig. 12 e Left: coloured point cloud of tree 14. Middle: bottom section of tree 14 with clear flower blossoms present. Right:

flower clusters detected from the middle volume using the Otsu segmentation method.
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Correlations between white index derived from different

segmentation methods and ground truth, flower cluster

number and floridity, for PCHyb and PCu trees are shown in

Table 7. It suggests clearly that for trees in PCHyb the most

effective way to segment flower blossoms from the trees is

with Hierarchical Clustering, with the only exception being in

the top part of the tree where manual thresholding (R2 ¼ 0.67)

supersedes the automatic methods (R2 ¼ 0.24). For PCU, as

hypothesised, optimal method proved to be Otsu segmenta-

tion in the blue colour band. However, when the segmentation

of the top-middle combination is evaluated, Hierarchical
Table 6 e Composition of a tree resulting from the tree
creation function.

PCU
a PCHyb

Top volume ETPCU þ WTPCU ETPCE þ WTPCW

Middle volume EMPCU þ WMPCU EMPCE þ WMPCW

Bottom volume EBPCU þ WBPCU EBPCE þ WBPCW

a WT ¼ west-top volume of a tree, WM ¼ west-middle, WB ¼ west

bottom, ET ¼ east-top, EM ¼ east-middle, EB ¼ east-bottom,

PCE ¼ east side of ground vehicle point cloud, PCW ¼ west side of

ground vehicle point cloud, PCU ¼ UAV point cloud, PCHyb ¼ the

hybrid point cloud constructed from PCE and PCW.
method has a significant performance, with R2 of 0.78 (Table

7). Floridity is a subjective score given by the expert in the

orchards, which is used to describe how intensive the flow-

ering situation is. In general, there is less room for the

improvement of the floridity estimation based on PCU, where

no positive correlation is found. And the segmentation per-

formance at tree level is also poor, with a mean R2 of 0.4. But

the PCU evaluation at upper sub-volumes is significantly good,

for example, R2 for the top and top-middle sub-volume is 0.7

and 0.78, respectively (Table 7).

Results indicate that using Otsu segmentation in the top of

the trees with UAV data gives a higher correlation while using

Hierarchical clustering with ground vehicle data gives the

highest correlation for the middle and bottom of the tree

combined. The high correlation can also be checked in details

with plots (Fig. 15). For both figures, data points evenly

distributed on both sides of the regression line.

To filter out the optimal segmentation methods for flow-

ering intensity estimation, the methods yield the highest

correlation with the flowering data, such as the flower esti-

mation at the top volume of the trees, were summarised

(Table 8). Additional metrics were calculated for further

analysis, such as RMSE and bias. In order to make a compre-

hensive comparison between PCU and PCHyb, the Hierarchical

based method was also included. According to the definition
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Fig. 14 e Accuracy of the observation volume

segmentation. PCE ¼ east side of ground vehicle derived

point cloud; PCW ¼ west side of ground vehicle derived

point cloud; PCU ¼ UAV derived point cloud.
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of floridity, RMSE 0.4 meet the requirement of practical

application when PCHyb-based Hierarchical method was

applied. As the correlation between White index and flower

cluster, Otsu and Hierarchical method generally yielded a

promising results, though a poor correlation was demon-

strated for the cluster estimation at tree level. In addition,

small bias was achieved for each units to be estimated. PCU

based estimation provided better performance for the flowers

from upper sub-volumes, such as top and top-middle, than

that of the PCHyb based.

The flower cluster prediction model was developed using

linear regression as the statistical model. Analysing the re-

sults above, two prediction models were developed: one

model for the middle þ bottom of the tree (Model-MB) and

one model for the top of the tree (Model-T). The best per-

forming method for flower cluster detection in the combined

middle and bottom part of trees proved to be Hierarchical

clustering segmentation in combination with the GV data

(PCHyb). Thus, a linear regression model using Hierarchical

clustering was trained and validated (Model-MB). Similarly, a

linear regression model using Otsu segmentation was

trained and validated for the top of the tree with UAV data

(Model-T). The validation results of both models are shown

in Table 9.

Although the data sets for both models in Table 9 are

limited, the validation suggests that they are statistically sig-

nificant with P-statistic for both models, lower than 0.05. In

terms of relative root mean squared error (RRMSE) both

models perform good with values between 10% and 20%.

Therefore, an important statistical data fusion was made.

Model-MB and Model-T was developed to be used in combi-

nation to predict flowering intensity by using each model in a

different section of the tree. The validation correlation graph

of the twomodels can be seen in Fig. 16. Within the validation

result, three prediction cases yielded a significantly high ac-

curacy, one from the prediction for the middle þ bottom vol-

ume and two from the top volume. In general, a promising

performance was observed for the combination of Model-T

and Model-MB.
Fig. 13 e Accuracy of the tree segmentation. Left: validation for

ranging from tree 17 to tree 21. PCE ¼ east side of ground vehic

derived point cloud; PCU ¼ UAV derived point cloud.
4. Discussion

In terms of flowering intensity estimation at tree level, this

study compared the performance of coloured point clouds

derived from two platforms, ground vehicle and UAV. We

applied different flower segmentation methods and demon-

strated the feasibility of combining UAV and GV imagery to

estimate the apple flower clusters. By comparing the flower

estimation performance at sub-volume level, the pros and

cons of the two point clouds were explored (Table 7). The

potential of improving the estimation performance with

advanced segmentationmethods and larger datasets was also

demonstrated.

The major bottleneck for the use of PCHyb in the pre-

processing phase was attributed to the noise in the middle
107 trees. Right: accuracy of the segmentation to trees

le derived point cloud; PCW ¼ west side of ground vehicle
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Table 7 e The correlation results for different segmentation algorithms on both PCU and PCHyb.

R2 (white index VS) Manual threshold Otsu segmentation
(Blue band)

K-means clustering
(Blue band)

Hierarchical clustering
(Blue band)

PCU PCHyb PCU PCHyb PCU PCHyb PCU PCHyb

Floridity e 0.60 e 0.23 e 0.61 0.21 0.65

Total cluster 0.41 0.50 0.43 0.28 0.20 0.52 0.46 0.61

Top 0.67 0.41 0.70 e 0.33 0.31 0.35 0.24

Middle e 0.40 e 0.20 0.30 0.15 e 0.66

Bottom e 0.51 e 0.36 e e e 0.50

Top þ middle 0.67 0.46 0.67 0.19 0.22 0.44 0.78 0.53

Middle þ bottom e 0.51 e 0.27 e 0.47 e 0.70

Note: only the first row shows the correlation betweenwhite index and floridity, the rest is the correlationwith flower cluster number. Values in

bold font represent the highest correlation yielded in this study, while cells with no data indicate no positive correlation (R2 < 0.1). PCU ¼ UAV

point cloud. PCHyb ¼ ground-based hybrid point clouds.

Table 8 e Correlation between white index and in-situ
flowering data, floridity and flower cluster number.

Methods PCU/PCHyb R2 RMSE bias

Floridity Hierarchical PCHyb 0.65 0.4 0.004

Total cluster Hierarchical PCHyb 0.61 35.3 �1.082

Hierarchical PCU 0.46 29.5 �0.039

Top Otsu PCU 0.70 10.3 �0.026

Middle Hierarchical PCHyb 0.66 9.2 0.769

Bottom Hierarchical PCHyb 0.50 13.9 0.063

Top þ middle Hierarchical PCU 0.78 12.0 0.003

Middle þ bottom Hierarchical PCHyb 0.70 17.4 1.653

Note: only the first row shows the correlation between white index

and floridity, the rest is the correlation with flower cluster number.

PCU ¼ UAV point cloud. PCHyb ¼ hybrid point clouds constructed

from ground vehicle derived point clouds.
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and top part of the trees respectively. The ambiguity that ex-

ists in distinguishing similarly coloured flower blossoms from

clouds in the sky proved challenging. This is also revealed in

Table 7, in which the results concerning the top volume of

PCHyb (R2: 0.24e0.41) are relatively lower than that of the bot-

tom volume (R2: 0.36e0.51). Because of the camera view, white

data points of white clouds in the sky exist in the PCHyb, by

which the white flower data points could not be extracted

precisely. Advanced algorithms need to be tested in follow-up

research to deal with this problem (Xu et al., 2018). In addition,

a potential solution could be segmenting images firstly rather

than a point cloud and using the location of the segmented

pixels to determine the location of the data points in the point

cloud. These data points can then be labelled as flower points.

For the method proposed, however, detailed documentation

of camera parameters and setup is required.

In PCU, on average 71 tie points are present per image

compared to 141e158 for the GV images (Table 5). This resul-

ted in a lower quality or less dense point cloud from the UAV

data. This explains the inferior performance of the various

segmentationmodels on the UAVdata compared to GV data in

Table 7. The results of the top of the tree (R2: 0.33e0.70)

compared to the middle (R2 ¼ 0.30) and bottom (no positive
Fig. 15 e Correlation between white index and flower cluster n

volumes of PCHyb using Hierarchical clustering (R2 ¼ 0.70, root

calculated from top volume of PCU using Otsu segmentation (R2

dotted red lines indicate 95% confidence bounds and solid red l

PCHyb ¼ hybrid point clouds constructed from ground vehicle d
correlation, R2 < 0.1) respectively can be attributed to the same

reasons. Tie points in the top of the trees generated with UAV

data are far more dense than in the middle and bottom.

This study has shown the potential of flower intensity

estimation at tree level with a combination of PCU and PCHyb

(Fig. 16). However, merging point clouds from multiple views
umber. Left: white index calculated from bottom þ middle

mean square error (RMSE) ¼ 17.4). Right: white index

¼ 0.70, RMSE ¼ 10.3). Blue crosses indicate tree numbers,

ine indicates line of best fit. PCU ¼ UAV point cloud.

erived point clouds.
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Table 9 e Validation of linear regression models for flower cluster predictions.

Model e middle þ bottom (Model-MB)

Y ¼ a � X þ b Estimate Standard error t-statistic p-statistic RMSE 21.7

b 87.907 19.72 4.458 0.003 RRMSE 14.03 (%)

a 0.002 5.27e-04 3.649 0.008 R2 0.66

R2 adjusted 0.61

P-statistic 0.0082

Model e top (Model-T)

Y ¼ a � X þ b Estimate Standard error t-statistic p-statistic RMSE 13.1

b 35.032 11.621 3.015 0.029 RRMSE 19.12 (%)

a 0.0392 12.3e-03 3.185 0.024 R2 0.67

R2 adjusted 0.60

P-statistic 0.024

Fig. 16 e Validation of the two flower cluster prediction

models. Model-T: flower cluster prediction model for the

top volume of a tree; Model-MB: prediction model for the

middle þ bottom volumes. The grey trendline is a

reference line for ideal situation (prediction

accuracy ¼ 100%).

Fig. 17 e SURF algorithm for feature matching in tree 1. Left: fe

matching between UAV and ground-based images.
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required semantic features to be visible and accurately

created in 3D space for both point clouds. Using semantic

features such as tree trunks is limited in this study since tree

trunks are hard to recognize or even not visible in UAV im-

ages. Manually inserting reference features in the orchard,

visible to both UAV and GV cameras could be useful in

spatially merging the two point clouds. An alternative

approach to fuse the data between UAV and GV is to use im-

ages from both data sources to build a 3D model by feeding

image data along with location data from both sources into

Agisoft. However, tie points should be found between pairs of

images of both sources. And the feature matching algorithms

should be able to detect enough features to create tie points

between image pairs. In this study, the SURF algorithm could

not positively identify matching features between the UAV

image and the GV image of the same tree, but has shown good

performance for GV images only (Fig. 17). This visually ex-

plains the limitation of using both datasets, UAV and ground

vehicles datasets, in combination for creating a 3D model in

this paper.

Flowering intensity estimation in orchards is still in its

infancy. The majority of pre-existing study focuses on the

estimation at picture level, which lack the information of the
ature matching in ground-based images. Right: feature

https://doi.org/10.1016/j.biosystemseng.2022.05.004
https://doi.org/10.1016/j.biosystemseng.2022.05.004


b i o s y s t em s e n g i n e e r i n g 2 2 1 ( 2 0 2 2 ) 1 6 4e1 8 0178
real flowers in tree and make it difficult to compare the

achievement in this study with. Despite this fact, this study

first collected a unique ground truth with not only the total

cluster number per tree but also the cluster number in sub-

volumes of a tree, overcoming the problems raised by Wang

et al. (2021), and further demonstrated the flower estimation

at tree level. Compared with the relevant research as

mentioned before, the approach proposed ismore comparable

to Vanbrabant et al. (2020), though the image data used in this

study is more complex against them by comparing the

average cluster number per tree (198 vs 150). As they

mentioned, heavy flowering provides more flower occlusion

problems and thus affects the estimation accuracy. The point

clouds derived from UAV showed a decrease in the density

from the top to the bottom. Whereas the method proposed in

this study enable the inspection of the influence of PCs density

to the estimation accuracy by comparing the performance

from different sub-volumes (Table 7), which further enhance

the use of point clouds for fruit tree monitoring. A relative

improvement was achieved in this study, while the highest R2

of the correlation between the image based flower index and

the in-field counts of the cluster number achieved by Tubau

Comas et al. (2019) and Ho�cevar et al. (2014) was 0.56 and

0.50 respectively, compared to 0.7 in this study.

The investigated four flower segmentation methods,

manual threshold, Otsu, K-means and Hierarchical clustering,

have been applied in a variety of flower detection studies

(Bhattarai et al., 2020; Dias et al., 2018b; Liakos et al., 2017;

Tubau Comas et al., 2019). A comparison of these methods

was made and the segmentation results reported from this

study were also proved to be reasonably capable of segment-

ing the flower blossoms (Table 7). In general, the results also

returned low bias (Table 8). Otsu segmentation and Hierar-

chical clustering reported a better performance compared to

the other two methods. Because of the camera view, top vol-

ume of PCU is more representative for the flower number in

top section of the tree (Table 7). Thus the significant correla-

tion returned from Otsu segmentation, with a R2 of 0.7, in-

dicates the capability of it for flower point segmentation.

Hierarchical clustering shows a stable performance, even for

the detection from the bottom volume of PCHyb, with a R2 of

0.5. However, unsupervised clustering methods enable the

model to be robust against lighting and illumination changes.

Different image acquisition locations enable PCU and PCHyb

show different spatial scales and occlusions. This explain the

difference between the floridity and flower cluster estimation

performance based on the two type PCs (Table 7). Since

floridity was scored by the expert whose view is more close to

the camera equipped on the ground vehicle, the floridity

estimation from PCHyb is much better than that of PCU, with a

highest R2 of 0.65 (Table 7). While a comparable performance

of these two PCs was observed for the estimation of flower

cluster.

The approach followed in this paper provides a novel so-

lution to estimate the flowering intensity at tree level and

yielded a relatively good results (Table 8). It relies on high-

quality multi-view imaging, combining UAV and ground

based RGB images, and point cloud reconstruction to facilitate

the estimation. By constructing point clouds and having GPS/

location information available, spatial and even temporal
information is readily available. The final products, 3D point

cloud representations, provide an understanding of the flow-

ering variability of the whole orchard from not only tree level

but also a height based level (Fig. 9 and Table 7). Creating point

clouds from two data sources allows flexibility in selecting the

best 3D represented regions of trees and analyse them with

different segmentation methods based on the height of the

tree (Fig. 10). To further validate the approach proposed in this

study, higher image resolution will be tested when it comes to

the experiment design. Higher resolution RGB cameras could

perhaps result inmore tie points per image, which contributes

to solving the point cloud merging issue discussed above, and

therefore point clouds with higher quality will become avail-

able. Though aerial images from this study yield a 4,000� 3000

resolution, it is far from the advanced RGB camera capable for

UAVs. In addition, data sizewould also be expanded to test the

robustness of themethod proposed. As shown in Tables 2 and

3, the cluster variance within the orchard is relatively high

which limits the robustness of flowering intensity estimation

based on small data size.With larger data size,more advanced

machine learning technique would also be suitable to test for

further improvement of flower estimation, such as the CNN

worked on dense point cloud has been reported for cotton

bloom detection (Xu et al., 2018).
5. Conclusions

A novel framework based on point clouds derived from UAV

and GV images has been designed to automatically estimate

flowering intensity in an apple orchard during the full

blooming phase of the growth season. The possibility of

combing UAV and GV to precisely assess flowering intensity

among apple trees, including the spatial variability of flow-

ering intensity in the orchard and even within an individual

tree, was demonstrated. Multiple camera angles can in this

way be used to complement each other in terms of coverage of

certain parts of a tree. Automatic flower cluster estimation at

the tree level yielded a R2 of 0.7, and RMSE lower than 20 for

the correlation between the image derived flower index, the

white index, and the in-field counts of the cluster number.

The automatic SOM performed well, and high accuracy

was achieved in handling the point clouds and spatially seg-

menting trees and observation volumes. Four flower extrac-

tion methods, manual thresholding, Otsu segmentation, K-

means and Hierarchical clustering, were explored. Otsu Seg-

mentation and Hierarchical clustering method performed the

best for the segmentation in GV and UAV point clouds,

respectively. Both models can however be improved with a

larger data set. Higher diversity in Floridity scores would also

make the linear regression approach for floridity detection

more significant.

UAV imagery can be applied for studying less detailed

features of the fruit trees. But to analyse detailed features,

such as flowering intensity, strict requirements are needed to

guarantee the point cloud quality. Depth information can be

helpful in improving the accuracy of surface reconstructions

in the point cloud, as proven in the study by Dong et al. (2020).

For future studies, flying lower and closer to the tree canopy

could result in higher quality images for the same resolution
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andmore tie points per point cloud. We expect that this could

also benefit in matching features between the GV images and

UAV images and perhaps enable spatial merging of point

clouds, if a proper parametrical setup is made for the

respective cameras. Grey reference strategies could be

implemented to make the model even more robust against

illumination differences between UAV and GV data.
Funding

This work was supported by the Netherlands Organization for

Scientific Research (NWO) under the framework of the project

MARS4Earth [RAAK.PRO03.112].
Declaration of competing interest

The authors declare that they have no known competing

financial interests or personal relationships that could have

appeared to influence the work reported in this paper.
r e f e r e n c e s

Aggelopoulou, A. D., Bochtis, D., Fountas, S., Swain, K. C.,
Gemtos, T. A., & Nanos, G. D. (2011). Yield prediction in apple
orchards based on image processing. Precision Agriculture,
12(3), 448e456. https://doi.org/10.1007/s11119-010-9187-0

Anderson, N. T., Walsh, K. B., & Wulfsohn, D. (2021). Technologies
for forecasting tree fruit load and harvest timingdfrom
ground, sky and time. Agronomy, 11(7). https://doi.org/10.3390/
agronomy11071409

Bargoti, S., & Underwood, J. P. (2017). Image segmentation for fruit
detection and yield estimation in apple orchards. Journal of
Field Robotics, 34(6, SI), 1039e1060. https://doi.org/10.1002/
rob.21699

Bhattarai, U., Bhusal, S., Majeed, Y., & Karkee, M. (2020).
Automatic blossom detection in apple trees using deep
learning. IFAC-PapersOnLine, 53(2), 15810e15815. https://
doi.org/10.1016/j.ifacol.2020.12.216

Chen, Y., Lee, W. S., Gan, H., Peres, N., Fraisse, C., Zhang, Y., &
He, Y. (2019). Strawberry yield prediction based on a deep
neural network using high-resolution aerial orthoimages.
Remote Sensing, 11(13). https://doi.org/10.3390/rs11131584

Dias, P. A., Tabb, A., & Medeiros, H. (2018a). Multispecies fruit
flower detection using a refined semantic segmentation
network. IEEE Robotics and Automation Letters, 3(4), 3003e3010.
https://doi.org/10.1109/LRA.2018.2849498

Dias, P. A., Tabb, A., & Medeiros, H. (2018b). Apple flower
detection using deep convolutional networks. Computers in
Industry, 99, 17e28. https://doi.org/10.1016/
j.compind.2018.03.010

Dong, W., Roy, P., & Isler, V. (2020). Semantic mapping for orchard
environments by merging two-sides reconstructions of tree
rows. Journal of Field Robotics, 37(1), 97e121. https://doi.org/
10.1002/rob.21876

Farjon, G., Krikeb, O., Bar Hiller, A., & Alchanatis, V. (2020).
Detection and counting of flowers on apple trees for better
chemical thinning decisions. Precision Agriculture, 21(3),
503e521. https://doi.org/10.1007/s11119-019-09679-1

Fischler, M. A., & Bolles, R. C. (1981). Random sample consensus:
A paradigm for model fitting with applications to image
analysis and automated cartography. Communications of the
ACM, 24(6), 381e395. https://doi.org/10.1145/358669.358692

Forshey, C. G. (1986). Chemical fruit thinning of apples. New York's
Food & Life Sciences Bulletin, 116, 1e7.

Greene, D., & Costa, G. (2013). Fruit thinning in pome- and stone-
fruit: State of the art. Acta Horticulturae, 998, 93e102. https://
doi.org/10.17660/ActaHortic.2013.998.10

Grilli, E., Menna, F., & Remondino, F. (2017). A review of point
clouds segmentation and classification algorithms. ISPRS e

International Archives of the Photogrammetry, Remote Sensing and
Spatial Information Sciences, 42W3, 339e344. https://doi.org/
10.5194/isprs-archives-XLII-2-W3-339-2017

Ho�cevar, M., �Sirok, B., Gode�sa, T., & Stopar, M. (2014). Flowering
estimation in apple orchards by image analysis. Precision
Agriculture, 15(4), 466e478. https://doi.org/10.1007/s11119-013-
9341-6

Horton, R., Cano, E., Bulanon, D., & Fallahi, E. (2017). Peach flower
monitoring using aerial multispectral imaging. Journal of
Imaging, 3(1). https://doi.org/10.3390/jimaging3010002

Jia, C., Yang, T., Wang, C., Fan, B., & He, F. (2019). A new fast
filtering algorithm for a 3D point cloud based on RGB-D
information. PLoS One, 14, e0220253. https://doi.org/10.1371/
journal.pone.0220253

Koirala, A., Walsh, K. B., Wang, Z., & Anderson, N. (2020). Deep
learning for mango (Mangifera indica) panicle stage
classification. Agronomy, 10(1). https://doi.org/10.3390/
agronomy10010143

Krikeb, O., Alchanatis, V., Crane, O., & Naor, A. (2017). Evaluation
of apple flowering intensity using color image processing for
tree specific chemical thinning. Advances in Animal Biosciences,
8, 466e470. https://doi.org/10.1017/S2040470017001406

Liakos, V., Tagarakis, A., Aggelopoulou, K., Fountas, S., Nanos, G.,
& Gemtos, T. (2017). In-season prediction of yield variability in
an apple orchard. European Journal of Horticultural Science, 82,
251e259.

Lopez-Granados, F., Torres-Sanchez, J., Jimenez-Brenes, F. M.,
Arquero, O., Lovera, M., & de Castro, A. I. (2019). An efficient
RGB-UAV-based platform for field almond tree phenotyping:
3-D architecture and flowering traits. Plant Methods, 15(1).
https://doi.org/10.1186/s13007-019-0547-0

Ng, R. T., & Han, J. (1994). Efficient and effective clustering
methods for spatial data mining. In Proceedings of the 20th
International Conference on Very Large Data Bases (pp. 144e155).

Rodrı́guez, A. S., Rodrı́guez, B. R., Rodrı́guez, M. S., & S�anchez, P. A.
(2018). Laser scanning and its applications to damage detection
and monitoring in masonry structures. Long-Term Performance
and Durability of Masonry Structures: Degradation Mechanisms,
Health Monitoring and Service Life Design, 265e285. https://doi.org/
10.1016/B978-0-08-102110-1.00009-1

Sultani, Z. N., & Ghani, R. F. (2015). Kinect 3D point cloud live
video streaming. Procedia Computer Science, 65, 125e132.
https://doi.org/10.1016/j.procs.2015.09.090

Sun, G., Wang, X., Ding, Y., Lu, W., & Sun, Y. (2019). Remote
measurement of apple orchard canopy information using
unmanned aerial vehicle photogrammetry. Agronomy, 9(11).
https://doi.org/10.3390/agronomy9110774

Sun, K., Wang, X., Liu, S., & Liu, C. (2021). Apple, peach, and pear
flower detection using semantic segmentation network and
shape constraint level set. Computers and Electronics in
Agriculture, 185. https://doi.org/10.1016/j.compag.2021.106150

Torres-S�anchez, J., L�opez-Granados, F., Borra-Serrano, I., &
Pe~na, J. M. (2018). Assessing UAV-collected image overlap
influence on computation time and digital surface model
accuracy in olive orchards. Precision Agriculture, 19(1), 115e133.
https://doi.org/10.1007/s11119-017-9502-0

Tubau Comas, A., Valente, J., & Kooistra, L. (2019). Automatic apple
tree blossom estimation fromUAV RGB imagery. International

https://doi.org/10.1007/s11119-010-9187-0
https://doi.org/10.3390/agronomy11071409
https://doi.org/10.3390/agronomy11071409
https://doi.org/10.1002/rob.21699
https://doi.org/10.1002/rob.21699
https://doi.org/10.1016/j.ifacol.2020.12.216
https://doi.org/10.1016/j.ifacol.2020.12.216
https://doi.org/10.3390/rs11131584
https://doi.org/10.1109/LRA.2018.2849498
https://doi.org/10.1016/j.compind.2018.03.010
https://doi.org/10.1016/j.compind.2018.03.010
https://doi.org/10.1002/rob.21876
https://doi.org/10.1002/rob.21876
https://doi.org/10.1007/s11119-019-09679-1
https://doi.org/10.1145/358669.358692
http://refhub.elsevier.com/S1537-5110(22)00109-X/sref11
http://refhub.elsevier.com/S1537-5110(22)00109-X/sref11
http://refhub.elsevier.com/S1537-5110(22)00109-X/sref11
http://refhub.elsevier.com/S1537-5110(22)00109-X/sref11
https://doi.org/10.17660/ActaHortic.2013.998.10
https://doi.org/10.17660/ActaHortic.2013.998.10
https://doi.org/10.5194/isprs-archives-XLII-2-W3-339-2017
https://doi.org/10.5194/isprs-archives-XLII-2-W3-339-2017
https://doi.org/10.1007/s11119-013-9341-6
https://doi.org/10.1007/s11119-013-9341-6
https://doi.org/10.3390/jimaging3010002
https://doi.org/10.1371/journal.pone.0220253
https://doi.org/10.1371/journal.pone.0220253
https://doi.org/10.3390/agronomy10010143
https://doi.org/10.3390/agronomy10010143
https://doi.org/10.1017/S2040470017001406
http://refhub.elsevier.com/S1537-5110(22)00109-X/sref19
http://refhub.elsevier.com/S1537-5110(22)00109-X/sref19
http://refhub.elsevier.com/S1537-5110(22)00109-X/sref19
http://refhub.elsevier.com/S1537-5110(22)00109-X/sref19
http://refhub.elsevier.com/S1537-5110(22)00109-X/sref19
https://doi.org/10.1186/s13007-019-0547-0
http://refhub.elsevier.com/S1537-5110(22)00109-X/sref21
http://refhub.elsevier.com/S1537-5110(22)00109-X/sref21
http://refhub.elsevier.com/S1537-5110(22)00109-X/sref21
http://refhub.elsevier.com/S1537-5110(22)00109-X/sref21
https://doi.org/10.1016/B978-0-08-102110-1.00009-1
https://doi.org/10.1016/B978-0-08-102110-1.00009-1
https://doi.org/10.1016/j.procs.2015.09.090
https://doi.org/10.3390/agronomy9110774
https://doi.org/10.1016/j.compag.2021.106150
https://doi.org/10.1007/s11119-017-9502-0
https://doi.org/10.1016/j.biosystemseng.2022.05.004
https://doi.org/10.1016/j.biosystemseng.2022.05.004


b i o s y s t em s e n g i n e e r i n g 2 2 1 ( 2 0 2 2 ) 1 6 4e1 8 0180
Archives of the Photogrammetry, Remote Sensing and Spatial
Information Sciencese ISPRS Archives, 42(2/W13), 631e635. https://
doi.org/10.5194/isprs-archives-XLII-2-W13-631-2019

Vanbrabant, Y., Delalieux, S., Tits, L., Pauly, K., Vandermaesen, J.,
& Somers, B. (2020). Pear flower cluster quantification using
RGB drone imagery. Agronomy, 10(3). https://doi.org/10.3390/
agronomy10030407

Wang, X. (Annie), Tang, J., & Whitty, M. (2021). DeepPhenology:
Estimation of apple flower phenology distributions based on
deep learning. Computers and Electronics in Agriculture, 185,
106123. https://doi.org/10.1016/j.compag.2021.106123

Wu, D., Lv, S., Jiang, M., & Song, H. (2020). Using channel pruning-
based YOLO v4 deep learning algorithm for the real-time and
accurate detection of apple flowers in natural environments.
Computers and Electronics in Agriculture, 178. https://doi.org/
10.1016/j.compag.2020.105742
Xiao, C., Zheng, L., Sun, H., Zhang, Y., & Li, M. (2014). Estimation of
the apple flowers based on aerial multispectral image. In
American society of agricultural and biological engineers annual
international meeting 2014 (Vol. 6, pp. 4426e4433). ASABE.

Xu, R., Li, C., Paterson, A. H., Jiang, Y., Sun, S., & Robertson, J. S.
(2018). Aerial images and convolutional neural network for
cotton bloom detection. Frontiers of Plant Science, 8, 2235.
https://doi.org/10.3389/fpls.2017.02235

Yuan, W., & Choi, D. (2021). UAV-based heating requirement
determination for frost management in apple orchard. Remote
Sensing, 13(2). https://doi.org/10.3390/rs13020273

Zhang, C., Valente, J., Kooistra, L., & Guo, L. (2021). Orchard
management with small unmanned aerial vehicles: A survey
of sensing and analysis approaches. In Precision agriculture
(issue 0123456789). US: Springer. https://doi.org/10.1007/
s11119-021-09813-y.

https://doi.org/10.5194/isprs-archives-XLII-2-W13-631-2019
https://doi.org/10.5194/isprs-archives-XLII-2-W13-631-2019
https://doi.org/10.3390/agronomy10030407
https://doi.org/10.3390/agronomy10030407
https://doi.org/10.1016/j.compag.2021.106123
https://doi.org/10.1016/j.compag.2020.105742
https://doi.org/10.1016/j.compag.2020.105742
http://refhub.elsevier.com/S1537-5110(22)00109-X/sref31
http://refhub.elsevier.com/S1537-5110(22)00109-X/sref31
http://refhub.elsevier.com/S1537-5110(22)00109-X/sref31
http://refhub.elsevier.com/S1537-5110(22)00109-X/sref31
http://refhub.elsevier.com/S1537-5110(22)00109-X/sref31
https://doi.org/10.3389/fpls.2017.02235
https://doi.org/10.3390/rs13020273
https://doi.org/10.1007/s11119-021-09813-y
https://doi.org/10.1007/s11119-021-09813-y
https://doi.org/10.1016/j.biosystemseng.2022.05.004
https://doi.org/10.1016/j.biosystemseng.2022.05.004

	Automatic flower cluster estimation in apple orchards using aerial and ground based point clouds
	1. Introduction
	2. Materials and methods
	2.1. Study area and field data
	2.2. Platforms and image acquisition
	2.3. Methods
	2.3.1. Image pre-processing
	2.3.2. Spatial orientation model
	2.3.3. Flower detection model


	3. Results
	4. Discussion
	5. Conclusions
	Funding
	Declaration of competing interest
	References


