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 Background 
Food insecurity is threatening millions of lives today and many millions more in the 
decades to come. The highest rates of food insecurity are found in sub-Saharan Africa 
(SSA). In 2017, about 22% of the population in SSA was estimated to suffer from 
chronic hunger, although regional differences exist (FAO et al., 2018). One important 
contributor to food insecurity in this region is the low agricultural productivity. For 
example, average maize yields across the African continent were 2.1 Mg ha-1 in 2020, 
compared to a global average of 5.8 Mg ha-1 (FAOSTAT, 2022). The agricultural sector 
in SSA is dominated by smallholder farming systems, which are characterised by large 
yield gaps, i.e. large differences between potential and actual yields (Giller et al., 2021; 
Vanlauwe et al., 2014). These large yield gaps can be attributed to the inherent low soil 
fertility, which has been aggravated by continuous cropping without sufficient additions 
of (organic) fertilisers (Giller et al., 2011; Njoroge et al., 2017; ten Berge et al., 2019). 
With a projected 2.5-fold population increase by 2050, food production in SSA needs 
to increase significantly to reduce large-scale food insecurity (Van Ittersum et al., 2016). 
Although the demand for food can partly be met through imports, food security will 
only be achieved when the agricultural area is expanded and, more importantly, by 
closing existing yield gaps through intensification (Vanlauwe et al., 2014). 
 
In combination with other agronomic practices, the use of mineral fertilisers is 
considered indispensable for closing yield gaps (Chivenge et al., 2022; Van Ittersum et 
al., 2016; Vanlauwe et al., 2015). The average fertiliser use in SSA is about 20 kg ha-1, 
which is very low compared to the global average of 137 kg ha-1, although large 
differences among and within countries in SSA can be found (Sheahan and Barrett, 
2017; Vanlauwe and Dobermann, 2020; World Bank, 2022). The limited use of 
fertilisers has several causes, such as high costs and limited access (Chivenge et al., 
2022). Furthermore, a strong driver for the use of fertilisers is their profitability, which 
depends on the crop response to fertilisation (Njoroge et al., 2017). The crop response 
to fertilisation can be highly variable and recent studies suggest that a poor response to 
fertiliser application is common in SSA (Kihara et al., 2016; Njoroge et al., 2017). 
 
A poor response to fertilisers can have several causes. First, fertiliser recommendations 
in SSA are often national or regional blanket recommendations, which are based on a 
limited number of fertiliser response trials (Chivenge et al., 2022; Rurinda et al., 2020). 
Blanket recommendations do not always take into account differences in soil type, agro-
ecological zone or even crop types (MacCarthy et al., 2018). Furthermore, farming 
systems are highly heterogenous: besides the agroecological environment, differences 
in resource endowment, farm size and management are found (Giller et al., 2011; 
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Zingore et al., 2007a). As a result, strong variation in soil fertility can be found among, 
but also within farms (Zingore et al., 2007b). Blanket fertiliser recommendations 
therefore are not suitable for sustainably increasing yields across the board (Giller et al., 
2011; Tittonell et al., 2008; Zingore et al., 2007b). Secondly, blanket fertiliser 
recommendations often include only nitrogen (N), phosphorus (P) and potassium (K), 
and sometimes only N and P (Chivenge et al., 2022; Vanlauwe et al., 2015; Zingore et 
al., 2007b). In poorly responsive soils, likely multiple nutrients are yield-limiting 
(Njoroge et al., 2017; Vanlauwe et al., 2015). Some blanket fertiliser recommendations 
include the application of manure (Vanlauwe et al., 2015; Zingore et al., 2007b), which 
inevitably contains a range of nutrients. However, the majority of farmers do not own 
sufficient numbers of cattle to produce enough manure for fertilising all fields 
(Shepherd and Soule, 1998; Zingore et al., 2007a).  
 
To close existing yield gaps in SSA, deficiency of potentially multiple nutrients needs to 
be addressed. The aim of this thesis is to develop and evaluate models for fertiliser 
recommendations which can help extension services, farmers and the fertiliser industry 
to make informed decisions about the kinds and quantities of nutrients farmers need to 
apply in order to close yield gaps. 
 

 Micronutrients 
In addition to sufficient amounts of water and sunlight, plants require a range of 
nutrients to complete their life-cycle: macronutrients (nitrogen, phosphorus, 
potassium), secondary nutrients (calcium, magnesium, sulphur) and micronutrients 
(zinc, boron, iron, copper, manganese, molybdenum, nickel and chlorine). In contrast 
to macronutrients, good yields can be obtained without application of micronutrient 
fertilisers. Plants require only small amounts of micronutrients, which can be supplied 
by the soil in most cases. However, micronutrient deficiencies have frequently been 
reported for SSA. 
 
Already several decades ago, it was reported that soil micronutrient levels in SSA are 
too low to sustain good crop production (Kang and Osiname, 1985; Sillanpää, 1982; 
Sillanpää and Vlek, 1985; White and Zasoski, 1999). More recent studies, based on the 
results of large-scale field trials, have also suggested that availability of secondary and 
micronutrients constrain crop production in large parts of SSA (Kihara et al., 2017, 
2016; Wortmann et al., 2019). In addition, based on available soil maps, Vanlauwe et al. 
(2015) conclude that deficiencies of multiple secondary and micronutrients are common 
in SSA. Other evidence comes from a different field: human health. The micronutrient 
zinc (Zn) is not only essential for plants, but also for humans. An estimated 40% of the 



Chapter 1 
 
 

 
4 
 

African population is deficient in Zn, which is associated with the occurrence of several 
diseases, growth and developmental issues and cognitive problems (Das and Green, 
2016; Joy et al., 2014). The low Zn intake in the SSA population can partly be attributed 
to the fact that the crops that are consumed grow on soils which have low levels of 
available Zn (Alloway, 2008; de Valença et al., 2017).  
 
Despite abovementioned studies, it remains unclear which micronutrients are yield-
limiting at which locations in SSA and in particular which soil parameters are associated 
with these deficiencies. As a consequence, micronutrients are not included in blanket 
fertiliser recommendations. Of the several micronutrients essential for plant growth, 
soil availability of zinc and boron (B) is considered the most problematic throughout 
SSA (Kang and Osiname, 1985). To close existing yield gaps, fertiliser recommendations 
therefore have to be developed for Zn and B. Chemical soil testing can play an 
important role in deriving fertiliser recommendations for these micronutrients. 
 

 Soil analysis 
 

 Soil nutrient pools 
Soil nutrients are present in different pools or fractions: in the soil solution, reversely 
bound to the soil solid particles and fixed (Harmsen et al. 2005; Figure 1). The nutrients 
present in the soil solution, also called the actually available pool, are directly available 
for plant uptake. The labile or reactive pool comprise nutrients reversely bound to the 
soil solid particles. The labile pool is in equilibrium with the actual available pool, 
through adsorption/desorption and precipitation/dissolution processes, which are 
strongly governed by soil pH (Groenenberg et al., 2017). The combined labile and 
solution nutrient pool can be regarded as the nutrients that become available for plant 
uptake during a growing season, i.e., the potential availability. The fixed pool consists 
of nutrients present in primary minerals as well as occluded in secondary minerals 
(Groenenberg et al., 2017). Plants cannot take up nutrients from this pool, as this pool 
only becomes available through weathering, which is a slow process.  
 
The world of soil testing is complex and not harmonised. Globally, various extraction 
methods are used to analyse the different soil nutrient pools. The actual availability of 
nutrients is often approximated using mild extractions with water or diluted salts, such 
as 0.01 M CaCl2 (Degryse et al., 2009; Houba et al., 2000). A wide range of soil extraction 
methods are used as a proxy for the potentially available pool, depending on the nutrient 
and soil. For example, the potentially available P pool is assessed through extraction with 
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Figure 1: Schematic overview of the soil nutrient pools. After Mengel et al. (2001). 

 
0.5 M NaHCO3 (P-Olsen), ammonium oxalate or mixtures of chemicals such as the 
Mehlich 3 (M3) or Bray methods (Wuenscher et al., 2015). The potential available pool 
of K and other cations is determined using 1 M NH4-acetate, M3, KCl or BaCl2 (Alva, 
1993; Amacher et al., 1990). Similar to macronutrients, a variety of soil tests exist for 
estimating the potentially available pool of micronutrients. For example, zinc and 
copper are commonly extracted with either DTPA, EDTA, M3, 0.1 M HCl or 0.43 M 
HNO3 (Groenenberg et al., 2017; Pradhan et al., 2015; Tandy et al., 2011). The potential 
availability of boron is assessed with hot water, hot 0.01 M CaCl2 and mannitol 
extractions, among others (Degryse, 2017). The total soil nutrient pool is quantified 
using the aqua regia method or X-Ray Fluorescence (XRF) technologies. This total pool 
is of limited relevance for plant growth as these nutrients are fixed (Marschner and 
Rengel, 2011) and is thus not often determined in routine analysis. 
 

 Bioavailability 
A soil test value should give an indication of nutrient bioavailability. However, 
bioavailability and its quantification are not clearly defined (Harmsen et al., 2005; Kim 
et al., 2015). From a chemical perspective, bioavailability is operationally defined as the 
actual availability (i.e. nutrients in the soil solution) or the potential availability (a 
combination of the solution and labile pool; Figure 2), depending on the field of study 
(Harmsen et al., 2005). These bioavailability pools are quantified through several soil 
tests, which give an indication of the specific nutrient pools at a given time. From a 
biological perspective, bioavailability usually is defined in terms of uptake by organisms 
(Harmsen et al., 2005). As uptake reflects nutrient accumulation in a given time period, 
this can be considered to be a good measure of bioavailability on timescales relevant for 
ecological processes, such as crop growth. 
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“Bioavailability equals the amount of a nutrient taken up in an entire 
growing season, when this nutrient is yield-limiting” 

Ideally, plant nutrient uptake relates well to chemical soil indicators. Relations between 
soil test values and plant uptake may be poor when yield is limited by factors other than 
the availability of the particular nutrient. For example, if biomass production of a crop 
is severely limited because of N deficiency, this will depress uptake of other nutrients 
such as P and hence no good relations between P uptake and P soil tests will be found. 
Throughout this thesis, bioavailability is therefore defined and quantified as the amount 
of a nutrient taken up in an entire growing season, when this nutrient is yield-limiting 
(Janssen et al., 1990). When a nutrient is yield-limiting, the maximum amount of this 
nutrient that a soil can supply, will be taken up by a crop. 
 
Textbox 1: Definition of nutrient bioavailability 
 
 
 
 
Bioavailability, according to the definition of Textbox 1, can be evaluated through 
nutrient omission trials (Dobermann et al., 2003). In these trials, a crop is subjected to 
several fertiliser treatments. In the control treatment, the crop is supplied with all 
nutrients that are potentially yield-limiting. Omission treatments are similar to the 
control, but the nutrient of interest is not fertilised. If all other growing conditions are 
optimal (i.e. water availability, limited pressure by weeds, pests and diseases, etc.), the 
nutrient omitted from the control treatment is expected to be the yield-limiting factor, 
which should translate into a lower yield compared to the fertilised control. 
 

 Crop response curves 
Fertiliser recommendations are typically based on crop response curves. To derive these 
curves, data from nutrient omission field trials can be used. The relative yield of the 
nutrient omission treatment compared to the fertilised control is plotted against soil test 
values that are considered to be a proxy for bioavailability of the nutrient of interest 
(Figure 2). Using this method, several classes can be identified. When the soil test value 
is low, fertilising with the specific nutrient will lead to a large increase in yield. Medium 
soil test values indicate that the crop yield likely still responds to fertilisation, but to a 
lesser extent compared to fertilising at low soil test values. When the soil test value is 
high, i.e. above the critical concentration, fertilisation will not increase yields further. 
Extremely high soil test values (not presented in Figure 2), can be associated with a 
decrease in the relative yield, due to toxicity. 
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Figure 2: Schematic example of the yield response to fertiliser application as dependent on the 
soil test value. 
 
Besides differences among nutrients and crops species, crop response curves and 
corresponding critical soil test concentrations differ among soil types (cf. Lindsay and 
Norvell 1978; Gupta et al. 1985; Farina et al. 1992; Bell 1997; Bai et al. 2013). For a 
given soil test, critical soil concentrations below which fertilisation is recommended, 
depend on e.g. soil texture or pH (Correndo et al., 2021; Jordan-Meille et al., 2012; 
Steinfurth et al., 2022). Consequently, to provide reliable fertiliser recommendations, 
these curves should be derived for a large range of crops grown on a wide range of soil 
types and under various climatic conditions. The interpretation of soil test results 
furthermore is complicated by the various extraction methods employed to estimate soil 
nutrient pools. Although results of different soil test can correlate well, relations may 
differ depending on other soil properties (Buondonno et al., 1992; Hanlon and Johnson, 
1984; Seth et al., 2017; Sharpley, 1989). This implies that critical concentrations in one 
soil extraction method cannot simply be converted to critical concentrations in another 
and that the curves describing the crop response to fertilisation need to be derived 
separately for each soil testing method (Harmsen et al., 2005). 
 
Soil testing for deriving fertiliser recommendation has several limitations. First, a single 
soil test may not be a good proxy for nutrient bioavailability, which is affected by 
multiple soil properties. Indeed, large variation is observed in the degree to which soil 
test values describe nutrient uptake, depending on extraction methods and soils (Aitken 
et al., 1987; Doll and Lucas, 1973; Joshi et al., 2014; Seth et al., 2017; Wuenscher, 2013). 
In addition, several authors have shown that inclusion of other soil properties, such as 
pH, improve relations between soil test values and plant nutrient uptake or 
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concentrations (Duffner et al., 2013; Seth et al., 2017; Sillanpää, 1982; Janssen et al., 
1990). Secondly, measuring soil micronutrient availability in tropical soils is quite 
challenging because of the relatively low concentrations and related risks of 
contamination during lab analysis (Lindsay and Cox, 1985; Wendt, 1995). As a 
consequence, micronutrient concentrations can be below detection limits of the 
particular extraction method and generally available analytical equipment in soil testing 
laboratories. Analysis of micronutrient availability in tropical soil therefore requires the 
use of advanced analytical equipment and specialised laboratories. Furthermore, there 
is no consensus about which soil test is the most suitable for analysing availability of 
micronutrients (Duffner et al., 2013; Giller and Zingore, 2021). 
 
Soil test values can be used to derive fertiliser recommendations of one nutrient at a 
time. However, when a soil test value indicates that availability of a given nutrient is 
suboptimal, fertilisation may not increase yields when another nutrient is even more 
yield-limiting. Fertiliser recommendations should thus be based on more than 
bioavailability of a single nutrient. In addition to soil tests and crop response curves, 
models can play an important role in predicting the interacting effects of bioavailability 
of multiple nutrients on yields. One of the models that is able to generate fertiliser 
recommendations, taking availability of several nutrients into account, is the 
QUantitative Evaluation of the Fertility of Tropical Soils (QUEFTS) tool.  
 

 QUEFTS 
 

 Rationale 
QUEFTS is a widely-used model that can be used to predict yields and the yield 
response to fertilisation (Janssen et al., 1990; Sattari et al., 2014). Although originally 
developed for maize grown in western Kenya, the model has been calibrated and 
validated for various crops and regions (Das et al., 2009; Ezui et al., 2017; Shehu et al., 
2019; Tabi et al., 2008; Xu et al., 2013). QUEFTS has two important assets. Firstly, 
bioavailability of N, P and K is described as a function of multiple soil properties, rather 
than based on a single soil test value. As a result, these functions can theoretically be 
applied to a wide range of soils. Secondly, QUEFTS is unique in taking interactions 
among nutrients into account. Several studies have shown that QUEFTS can be used 
adequately to derive balanced fertiliser recommendation of N, P and K (Maiti et al., 
2006; Mesfin et al., 2021; Xu et al., 2013). Furthermore, fertiliser recommendations 
generated with tools based on the QUEFTS methodology, have been shown to increase 
yields, fertiliser use efficiency and profits for farmers in SSA (Chivenge et al., 2022).  
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Supply N = fN*6.8*SOC   with fN = 0.25*(pH – 3) 
Supply P = fP*0.35*SOC + 0.5*P-Olsen with fP = 1 - 0.5*(pH-6)2 
Supply K = fK*400*Exch-K   with fK = 0.625 (3.4 - 0.4*pH) 

          2+0.9*SOC  

 Model description 
QUEFTS requires four input parameters: soil pH (H2O), soil organic carbon content 
(SOC), P content measured in an Olsen extract (P-Olsen) and content of exchangeable 
K measured in a neutral 1 M ammonium acetate extract (Exch-K). QUEFTS output is 
calculated in four steps (Figure 3). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Schematic overview of QUEFTS, after Sattari et al. (2014) 
 

In Step 1, the potential supply (i.e. bioavailability) of N, P and K are calculated based 
on the four soil chemical parameters (soil supply), as well as N, P and K applied through 
fertilisation (fertiliser supply). The supply functions describe availability of N as a 
function of SOC and pH, availability of P as a function of SOC, pH and P-Olsen and 
availability of K as a function of SOC, pH and Exch-K (Textbox 2). Availability of P 
and K increase with P-Olsen and Exch-K, respectively. The SOC and pH parameters 
have different effects on the availability of the three nutrients. 
  
Textbox 2: QUEFTS soil supply functions (Janssen et al., 1990) 
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In Step 2, interactions among N, P and K are taken into account, by estimating the 
uptake of a given nutrient based on its supply, as well as on the supply of the other two 
nutrients. This is based on the observation that uptake of a nutrient may not further 
increase despite high soil availability in case another nutrient is limiting crop growth. In 
Step 3, with a given uptake, the minimum and maximum yields are calculated, using 
crop physiological limits. Then in Step 4, based on these yield ranges, six yield estimates 
are derived based on uptake of two nutrients (i.e. N and P, N and K, P and N, P and 
K, K and N, K and P). The average value of these six yield estimates is then taken as 
the final yield estimate.  
 

 Extending application of QUEFTS 
The QUEFTS yield estimate is valid under the assumption that yield is a function of 
availability of N, P and K and thus not limited by other factors such as soil depth, water 
availability, presence of pests and diseases, as well as availability of other nutrients 
(Janssen et al., 1990). Given the potential of using QUEFTS for deriving balanced 
fertiliser recommendations, it is relevant to know when and where micronutrient 
availability is limiting yields, as QUEFTS predictions will correspond poorly to reality 
in these locations. Models describing bioavailability of micronutrients can be a useful 
tool for this.  
 
Using the QUEFTS approach, supply functions similar to the ones for N, P and K 
(Textbox 2) could be derived for micronutrients Zn and B. These functions likely 
include soil parameters that are known to affect micronutrient availability in addition to 
a soil test describing relevant nutrient pools. To date, hardly any attempts have been 
made to derive such supply functions. Often, models are derived that predict plant 
concentrations rather than uptake (e.g. Gunkel et al., 2004; Jin et al., 1988; Sillanpää, 
1982), which is mostly relevant from the perspective of toxicity. Although a number of 
studies have focussed on plant uptake (e.g. Aitken et al., 1987; Das et al., 2009; Duffner 
et al., 2013; Maiti et al., 2006; Seth et al., 2017), most of these studies used pot 
experiments, with the exception of Das et al. (2009) and Maiti et al. (2006). Generally, 
results from pot experiments cannot be extrapolated to the field (de Vries, 1980).  
 
Supply functions for Zn and B could provide valuable insights into soil parameters and 
combinations of soil parameters associated with Zn and B deficiency in crops. These 
models can help to assess the need for micronutrient fertilisers as well as yield benefits 
to expect from fertilisation. The information derived from these models can be used to 
complement QUEFTS NPK recommendations. 
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“Developing and evaluating models for predicting soil nutrient 
availability and increasing understanding of the interactive effect of 
nutrient availability on crop yields and nutritional quality in 
sub-Saharan Africa” 

In addition to models describing bioavailability/supply of Zn and B, high resolution 
soil maps present a source of potentially relevant information for developing fertiliser 
recommendations (Chivenge et al., 2022; Vanlauwe et al., 2015). Digital soil mapping 
has taken a flight since the beginning of the 21st century (Arrouays et al., 2020). These 
maps are a relatively low-cost source of soil information that provide estimates of 
uncertainty and can be easily updated (Arrouays et al., 2020). Several digital soil maps 
of macro-, secondary and micronutrients, as well as general soil properties have been 
developed for SSA at 250m spatial resolution (Hengl et al., 2017, 2015). These maps 
could be used as input for the micronutrient bioavailability functions, for broad 
assessment of regions where fertilisation with micronutrients could be beneficial for 
closing yield gaps. Furthermore, soil maps can be used as input for QUEFTS to generate 
regional fertiliser NPK recommendations, which can be used as a more specific 
alternative for the general national blanket fertiliser recommendations. 
 

 Thesis objectives and outline 
 
Tailoring fertiliser recommendations is indispensable for sustainably increasing yields in 
SSA. In order to develop balanced fertiliser recommendations, cost-effective tools are 
needed for predicting nutrient availability and the yield response to fertilisation, taking 
interactions among nutrients into account. The general objective of this thesis therefore 
is to develop and evaluate models for predicting soil nutrient availability and to increase 
the understanding of the interactive effect of nutrient availability on crop yields and 
nutritional quality in sub-Saharan Africa. 
 
Textbox 3: General objective 
 
 
 
 
 
 
 
The focus of this thesis will be on availability of macronutrients N, P and K as well as 
micronutrients Zn and B. To address the general objective, several methods are used, 
including soil statistical modelling, soil mapping and micronutrient fertiliser omission 
field trials. The QUEFTS model and its underlying principles are an important 
component of this thesis. A framework for this thesis is given in Figure 4. 
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The first objective of this thesis is to evaluate a spatial application of the QUEFTS 
model. As soil testing for obtaining field-specific fertiliser recommendations currently 
is not widely (financially) accessible for smallholder farmers, low-costs alternatives are 
needed, such as soil maps. Although QUEFTS can be used to predict nutrient 
availability and develop fertiliser recommendations with field-specific information, it is 
unknown how well the model performs when applied spatially and which method of 
spatial application leads to the most reliable results. To address this objective, available 
soil maps are used as input for the QUEFTS model as an alternative to direct soil 
measurements. The M3 extraction method is commonly used and as a consequence, 
available soil maps are typically based on this method. However, QUEFTS requires 
P-Olsen and Exch-K parameters as input for predicting available of P and K and not 
M3. Therefore, in Chapter 2, transfer functions are derived that relate P-Olsen and 
Exch-K to P and K extracted by the M3 method. This will be done by exploring 
extraction mechanisms of the different methods, identifying soil properties relevant for 
describing the relations and deriving the relations using linear regression on a dataset 
comprised of soil sample information from a wide range of tropical soils. Then in 
Chapter 3, using the transfer functions derived in Chapter 2 and digital soil maps of 
Rwanda, two methods are explored to predict QUEFTS maize yield and yield-limiting 
nutrient estimates on a spatial scale.  

Figure 4: Framework for this thesis. (Image courtesy: www.freepik.com) 
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Correcting deficiencies of N, P and K through fertilisation is ineffective as long as other 
nutrients are yield-limiting. Although there are indications that micronutrients Zn and 
B are limiting yields in SSA, fertiliser recommendations are constrained by (1) analytical 
challenges measuring low micronutrient concentrations and (2) the lack of a proper soil 
test for evaluating bioavailability. The second objective of this thesis therefore is to 
derive generic models describing bioavailability of micronutrients zinc and boron based 
on soil parameters than can be measured in routine analysis. To derive these models, 
data from micronutrient fertiliser omission trials with zinc and boron, from three 
countries in SSA, will be used. Field trial locations were selected based on the suspicion 
of low micronutrient bioavailability. In the omission treatments, micronutrient 
availability is expected to be the yield-limiting factor. Following the definition of 
bioavailability as specified in Textbox 1, plant uptake in the omission treatments is 
expected to provide a good estimate of the amounts of micronutrients that soils can 
provide to the crop during an entire growing season. Chapter 4 focusses on 
bioavailability of zinc and Chapter 5 on boron. In both chapters, plant uptake will be 
related to different soil micronutrient pools assessed with several extraction methods 
and other general soil properties that can be measured easily and at low costs, similar to 
the QUEFTS supply functions for N, P and K (Textbox 2). 
 
Zinc fertilisation can potentially increase Zn concentrations in the edible parts of plants, 
thereby benefitting human health. Therefore, the third objective of this thesis is to 
assess the effect of zinc availability, in combination with availability of other nutrients, 
on maize yield (quantity) and grain Zn concentrations (nutritional quality). In 
Chapter 5, zinc concentrations in maize grains as well as the response in these 
concentrations to zinc fertilisation will be modelled based on several soil properties, 
including zinc extracted with various methods. To this end, data from the micronutrient 
fertiliser omission trials are used. In Chapter 6, the relation between zinc availability 
and grain zinc concentrations is placed in a broader context, taking into account the 
availability of other nutrients, as well as other agronomic practices. This chapter is based 
on the micronutrient fertiliser omission trials, in combination with data from field trials 
in SSA with different designs.  
 
In Chapter 7, the objectives of this study are addressed by placing the main findings of 
chapters 2 to 6 into a broader context. Practical implications of the findings, limitations 
of this study and recommendations for further research are also presented. In addition, 
I will elaborate on two topics related to the work in this thesis which deserve more 
attention in the scientific community, in my opinion. The first topic regards the 
harmonisation and standardisation of soil testing methods. For the second topic, I will 
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review literature evidence for large-scale problems with soil micronutrient availability in 
SSA and discuss to what extent micronutrient fertilisers can contribute to closing 
existing yield gaps. 
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Abstract 
Multi-element soil extractions such as Mehlich 3 (M3) have gained popularity in recent 
years, but comparing outcomes to other soil testing methods is not always 
straightforward. In this study, extraction mechanisms of M3, Olsen and neutral 1 M 
ammonium acetate (AA) soil tests were explored and transfer functions were derived 
between P-Olsen and P-M3 as well as between K-AA and K-M3. Soils from tropical 
and temperate areas were used to derive these P and K transfer functions and were 
evaluated separately. The application of these transfer functions for tropical soils was 
evaluated by using them as input for the Quantitative Evaluation of the Fertility of 
Tropical Soils (QUEFTS). AA and M3 generally extracted similar amounts of K, but 
relations between K-AA and K-M3 were different for tropical and temperate soils. For 
tropical soils, the transfer function did not require additional parameters besides K-M3 
to predict K-AA, but for temperate soils inclusion of clay content and pH was needed. 
This difference between tropical and temperate soils was explained by clay mineralogy. 
The relation between P-Olsen and P-M3 in tropical soils was found to be dependent on 
pH, Al-M3, Fe-M3 and Ca-M3. P-Olsen and K-AA values, calculated with their 
respective transfer functions, were used as input for QUEFTS. The yields predicted 
with measured P-Olsen and K-AA were used as benchmark. For 63 out of 81 soil 
samples, predicted maize yields with transfer functions deviated less than 10% from the 
benchmark. The largest deviations from the benchmark were found for low P-Olsen 
and K-AA values, which corresponds to QUEFTS maize yield predictions up to 3000 
kg ha-1. We conclude that M3 extraction results and soil pH can reliably be transferred 
to, and thus replace P-Olsen and K-AA determinations with the functions developed 
for tropical soils. The transfer functions can be used to generate input for the QUEFTS 
model with minor effects on yield predictions, thus expanding its applicability in cases 
where only M3 extraction results are available. 
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 Introduction 
Multi-element soil extractions have gained popularity in recent years. Their convenience 
and lower costs make them more attractive than the use of separate single element 
extractions (Iatrou et al., 2014). Mehlich 3 (M3) is a multi-element extraction employed 
in several parts of the world (Wuenscher et al., 2015). The M3 extraction contains a 
combination of chemicals (CH3COOH, NH4NO3, NH4F, HNO3 and EDTA) designed 
to extract both macro- and micronutrients, among which phosphorus (P) and potassium 
(K). Single element extraction methods, such as Olsen, Bray, H2O and CaCl2, have been 
developed to quantify available soil P pools (Wuenscher et al., 2015), whereas plant 
available or exchangeable K and other cations have commonly been estimated using 
1 M ammonium acetate (Barbagelata, 2006).  
 
Soil extraction methods are based on different mechanisms and vary in their extraction 
efficiency (Wuenscher et al., 2015). Ultimately, soil nutrient test results should relate to 
bioavailability, i.e. the amount of a nutrient available for plant uptake over a growing 
season. They are also used as input for decision support tools such as the Quantitative 
Evaluation of the Fertility of Tropical Soils (QUEFTS) model, which requires P-Olsen 
and K determined by a 1 M ammonium acetate extraction to estimate the soil’s capacity 
to supply a crop with P and K (Janssen et al., 1990). P-Olsen and Exch. K extraction 
methods are not always routinely measured however, as other extraction methods such 
as M3 are more commonly employed in many countries (Wuenscher et al., 2015). 
Comparing the results of different soil testing methods is often not straightforward and 
requires transfer functions that include specific soil properties to translate the outcome 
of one soil test into another. Exploring the mechanisms behind soil extraction methods 
is needed to understand, describe and effectively apply relations between the nutrient 
pools measured by the different soil extractions. The focus in this study will be on 
comparing P and K in M3 to P-Olsen and K in ammonium acetate extractions, 
respectively.  
 
The mechanisms for extracting soil K are similar for the 1 M ammonium acetate (AA) 
and M3 extraction methods. Extraction solutions differ considerably in pH (2.5 for M3 
vs 7.0 for AA) and shaking time (5 min for M3; variable shaking times for AA), but both 
methods use high concentrations of NH4+ (0.25 M for M3 vs 1 M for AA) and a similar 
solution-to-solid ratio (SSR) of 10 L kg-1 to displace exchangeable cations such as K 
from soil surfaces. For M3, H+ ions present at the extraction solution pH of 2.5, can 
displace additional cations. Relations between K-AA and K-M3 have previously been 
derived in various studies. The transfer functions between K-AA and K-M3 that were 
reported in literature (Table S1) show that regression slopes vary between 0.54 and 1.54 
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across studies. In each study, K-M3 was the only variable used to explain K-AA and the 
regressions showed an average R² value of 0.95, indicating K-M3 explains a substantial 
part of the variation in K-AA. The large variation in regression slopes, however, imply 
limitations for generic application among different soil taxonomic classes.  
 
For P extraction, Olsen and M3 are based on contrasting mechanisms. The high 
concentration of bicarbonate in the Olsen extraction, buffered at pH = 8.5, leads to 
extraction of phosphate through (1) precipitation of Ca as CaCO3, thereby releasing 
Ca-bound phosphates, and (2) displacement of phosphate from the soil surfaces by 
increased competition with HCO3-, CO32- and OH- anions (Olsen et al. 1954).  
 
M3 extracts P through two mechanisms, namely dissolution and complexation 
reactions. The high acidity of the extract (pH = 2.5) causes dissolution of Ca-P 
precipitates and of P bound to Al/Fe (hydr)oxides (Penn et al., 2018). At a solution pH 
of 2.5, the presence of NH4F promotes the release of P from Al (hydr)oxides through 
Al-F complex formation. The pH of the M3 extraction solution increases throughout 
during the procedure, its increase depending on soil pH (Penn et al., 2018). When the 
solution pH of M3 increases above 2.9 during the extraction procedure, fluoride also 
complexes Ca, thereby facilitating the release of P from Ca-P precipitates (Penn et al., 
2018). Phytates, the largest pool of organic P, are desorbed from Al and Fe oxide 
surfaces and solubilised through protonation (Penn et al., 2018; Wang et al., 2017). The 
amount of organic P extracted with M3 can vary strongly from soil to soil (Iatrou et al., 
2014; Mallarino, 2003; Pittman et al., 2005). Weak but significant correlations were 
found between the amount of organic P in a M3 extraction and pH (R2 = 0.32) and 
organic carbon (R2 = 0.16) (Mallarino, 2003). 
 
Besides a difference in composition and contrasting P extraction mechanisms, the 
Olsen and M3 methods also differ in shaking time (5 minutes for M3 vs 30 minutes for 
Olsen), although in both methods no chemical equilibrium is reached (Olsen et al., 1954; 
Penn et al., 2018). An additional difference is the P species that are measured in the 
extracts. In the M3 extraction, often multiple elements are determined, using inductively 
coupled plasma – optical emission spectroscopy (ICP-OES) (Penn et al., 2018). As a 
result, total dissolved P (including organic P) in the extractant is measured. The standard 
Olsen extraction procedure includes a molybdate blue colorimetric determination of 
ortho-phosphate (ISO 11263, 1994; Olsen et al., 1954). Although certain kinds of 
organic P molecules can also be determined by colorimetric methods (Baldwin, 1998; 
Van Moorleghem et al., 2011), it is assumed that P-Olsen represents the inorganic P 
pool.  
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The transfer functions that have been reported in literature to predict P-Olsen based 
on P-M3 alone, show a fivefold variation in regression slopes, which range between 0.14 
and 0.70 across studies (Table S2). The average R² value across studies is 0.74, but shows 
more variation compared to the K transfer functions, as R2 values between 0.45 and 
0.94 are reported. These findings indicate that also for P extractions, transfer functions 
derived on one soil set may not be applicable to another. Several studies furthermore 
have shown that inclusion of additional soil properties such as pH, CaCO3 content, 
organic matter, Fe and Al can improve relations between P-Olsen and P-M3 
(Buondonno et al., 1992; Elrashidi et al., 2003; Iatrou et al., 2014; Schick et al., 2013; 
Sen Tran et al., 1990). In addition, categorization of soils based on pH and CaCO3 
content has resulted in different transfer functions for each category (Iatrou et al., 2014; 
Sen Tran et al., 1990) with a higher goodness-of-fit (R²) compared to models fitted on 
the entire dataset (Buondonno et al., 1992; Zbiral and Nemec, 2002; Table S2). 
 
The above review of transfer functions between P-Olsen and P-M3 and between K-AA 
and K-M3 shows that P and K transfer functions mostly have been derived for soils 
from temperate regions such as North America and Europe (Table S1 and Table S2). 
Due to prolonged weathering, soils from tropical climatic regions generally differ from 
temperate soils in properties such as clay mineralogy and types and amounts of Fe and 
Al hydroxides (De Campos et al., 2018), which are known to affect P and K availability 
and may exert significant influence on relations among soil P and K tests (Buondonno 
et al., 1992; Sharpley, 1989). As a consequence, transfer functions that have been 
developed based on temperate soils may not be applicable to soils from tropical areas. 
The first aim of this study, therefore, was to develop P and K transfer functions for 
soils from (sub)tropical regions. We compared these with transfer functions for 
temperate soils. The second aim of this work was to evaluate the application of the 
transfer functions for tropical soils. To this end, P-Olsen and K-AA values, estimated 
based on M3 data with the developed transfer functions, were used as input for 
QUEFTS and compared with yields predicted with measured P-Olsen and K-AA values 
as the benchmark.  
 
We hypothesize that K-M3 will be the only parameter needed to explain K-AA, but that 
the relation between P-Olsen and P-M3 requires additional variables. As the partitioning 
of total soil P in the soil solution is highly pH dependent (Sims and Pierzynski, 2005) 
and soil pH affects P extraction efficiency of Mehlich 3 (Penn et al., 2018), we expect 
that soil pH will be an important factor in explaining the relation between P-Olsen and 
P-M3. Due to their contrasting mechanisms, M3 and Olsen are expected to extract 
different amounts of P bound as Ca-phosphates and adsorbed to Al and Fe 
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(hydr)oxides. We therefore hypothesize that Al, Fe and Ca in M3 can describe additional 
variation in the relation between P-Olsen and P-M3. We expect that organic carbon 
(Corg) can potentially also play a role in the P transfer function as organic P is determined 
in M3 extractions, but to a limited extent in Olsen. Finally, we expect that the 
uncertainty associated with predictions of P-Olsen and K-AA using the transfer 
functions will have an acceptable effect on yield predictions by the QUEFTS model, as 
Corg and pH are the most important determinants of the predicted yields (Janssen et al., 
1990).  
 

 Materials and Methods 
 

 Data availability 
Three sets of soil samples and soil data were used for deriving the transfer functions. 
The first set consisted of 90 top soils (0-20 and 0-30 cm) that were sampled in several 
countries in sub-Saharan Africa, including Burundi, Congo, Ethiopia, Gabon, Kenya 
and Zambia. Soil properties of these samples were analysed for the purpose of this study 
(see section 2.2). The second dataset was a subset of the World Soil Reference 
Collection (WSRC, 2020) of the International Soil Reference and Information Centre 
(ISRIC). From the WSRC, 51 soil samples from Ghana, Indonesia, Suriname and Russia 
were selected that included the required analytical data. The third dataset consisted of 
soil data from the Wageningen Evaluating Programmes for Analytical Laboratories 
(WEPAL, 2020). The WEPAL data were generated by several laboratories participating 
in this evaluation program. Laboratories remained anonymous as WEPAL only 
provided mean values and standard deviations for each soil parameter. The WEPAL 
dataset included analytical data from 81 soils, originating from several African, South 
East Asian and European soils. 
 
Both the WSRC and WEPAL datasets contained information on P-Olsen, pH-H2O, 
Corg, K-AA and P, K, Al, Ca and Fe in M3. Additional soil data, such as clay content, 
CaCO3 and Fe and Al measured in acid ammonium oxalate (AO), were also part of 
these datasets.  
 

 Soil analysis 
 
Soil samples 
The soil samples from Burundi, Congo, Ethiopia, Gabon, Kenya and Zambia that were 
obtained, were air-dried and passed through a 2 mm sieve before chemical analysis. Soil 
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pH was measured in a suspension of the soil in water, prepared at a solution-to-solid 
ratio (SSR) of 2.5 L kg-1 and after shaking for 2 h on a linear shaker at 180 strokes min-1. 
For Corg determination, soil samples were colloid grinded (50 µm) before analysis 
(NEN-16179, 2012). Corg was then determined spectrophotometrically at 585 nm after 
chromic acid wet oxidation (Heanes, 1984). To determine P-Olsen, 2.5 g of soil was 
extracted with 50 mL of a freshly prepared solution of 0.5 M NaHCO3 (pH = 8.5), 
followed by shaking in a horizontal shaker at 180 strokes min-1 for 30 min. After 
filtration over a Whatman 110 mm filter paper, a subsample was diluted 5 times with 
0.15 M HCl and placed in an ultrasonic bath to remove excess CO2. Afterwards, the 
inorganic P concentrations were determined with the molybdenum-blue method (Kuo, 
1996) and measured by a fully automated segmented flow analyser (SFA). Exchangeable 
K was extracted by adding 20 mL of a freshly prepared solution of 1 M NH4 acetate 
(pH = 7.0) to 2 g of soil and shaking for 2 h in a horizontal shaker at 180 strokes min-1. 
After extraction, suspensions were centrifuged for 15 min at 3000 rpm and filtered with 
a Whatman 110 mm filter paper. A subsample was taken and diluted 5 times with 0.14 M 
HNO3 for measurement of K on ICP-OES. The shaking time of 2 h for the K-AA 
extraction was chosen in correspondence with the extraction time of the percolation 
method, that was originally used for calibration of QUEFTS (Houba et al., 1995; Van 
Reeuwijk, 2002). For 18 soil samples, we compared extractable K by using both the 
percolation method and the batch extraction procedure as described above and no 
significant differences in the amount of K were observed (data not presented). A M3 
extraction solution was freshly prepared as a mixture of 0.2 M CH3COOH, 0.25 M 
NH4NO3, 0.015 M NH4F, 0.013 M HNO3 and 0.001 M EDTA. The pH of the 
extraction solution was adjusted to 2.5 using concentrated HNO3. The samples were 
extracted at a SSR of 10 L kg-1 and shaken for 5 minutes in a horizontal shaker at 180 
strokes min-1 (Mehlich, 1984). Afterwards, suspensions were passed through a 
Whatman 110 mm filter paper, diluted 10 times with 0.14 M HNO3 and analysed for P, 
K, Al, Ca and Fe on ICP-OES.  
 
WSRC soils 
The soil samples in the WSRC dataset were analysed between 2017 and 2019 by the 
Kellogg Soil Survey Laboratory in Lincoln, Nebraska, USA (USDA, 2014). Analyses 
were performed on air-dried samples that were passed through a 2 mm sieve. Soil pH 
was determined in water at a SSR of 1 L kg-1 after an extraction time of 1 h (USDA, 
2014; p. 276). Corg was calculated as the difference between CaCO3 and total C of a 
given soil. Total C was determined in the soil fraction < 180 µm with an elemental 
analyser (USDA, 2014; p. 464). CaCO3 was only determined in samples with a pH-CaCl2 
> 6.95. After addition of 3 M HCl, samples were placed in a rotating shaker for 10 min 
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at a rate of 140 rpm. The samples were shaken again at the last 10 min of a 1h interval. 
Bottle stoppers were pierced with a hypodermic needle connected to a manometer to 
measure CO2 development. The amount of carbonate was then calculated as percent 
CaCO3 (USDA, 2014; p. 370). P-Olsen was determined in 1 g soil extracted with 20 mL 
of 0.5 M NaHCO3 at pH 8.5. After shaking for 30 min at 200 oscillations min−1, samples 
were centrifuged at 2000 rpm for 10 min. The P concentration was then determined 
spectrophotometrically after adding molybdenum-blue colour reagent to an aliquot of 
the centrifuged sample (USDA, 2014; p. 336). K-AA was determined by extracting 2.5g 
of soil with 50 mL of 1 M ammonium acetate at pH 7.0. Extraction was done with a 
mechanical vacuum extractor and total extraction time was around 13 hours. Samples 
were then shaken manually, and a subsample was submitted for analysis on the atomic 
absorption spectrophotometer (AAS) (USDA, 2014; p. 230). Nutrients in M3 were 
measured on the ICP-OES after extracting samples at a SSR of 10 L kg-1, shaking for 5 
minutes at 200 oscillations min−1, centrifugation for 10 min at 2000 rpm and filtration 
with a Whatman no. 42 filter (USDA, 2014; p. 345). Fe and Al were determined in 
ammonium oxalate using a mechanical vacuum extractor and measured on ICP-OES. 
A quantity of 0.5 g soil was extracted with 50 mL of 0.2 M ammonium oxalate solution 
buffered at pH 3.0 for a total period of around 13 hours. Afterwards, samples were 
shaken manually, diluted 10 times with reverse osmosis water, vortexed and submitted 
for analysis on the ICP-OES (USDA, 2014; p. 432). Clay content was determined using 
the pipette method (USDA, 2014; p. 48).  
 
WEPAL soils 
The soil samples in the WEPAL dataset were analysed by several labs, with potentially 
different soil-to-solution ratios (SSR) and extraction times for a given soil parameter as 
method details were not specified.  
 

 Data selection 
The soils in this study were categorised based on their geographical location as 
“temperate” or “tropical”. These categories are inexhaustive and soil classification based 
on climatic zone has been criticised for being non-scientific (Hartemink, 2015). For the 
majority of soils however, soil taxonomic class and dominant clay mineralogy were not 
known; classification based on these soil properties therefore was not possible. The aim 
of this study furthermore was to derive functions that are generally applicable rather 
than being applicable to certain soil taxonomic classes only. In addition, weathering and 
climate are important controlling factors in the formation of clay minerals (Grim, 1968); 
commonalities within the categories of temperate and tropical soils are therefore 
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expected. Despite its limitations, classification based on climatic zones was therefore 
considered most suitable for the purposes of this study.  
 
From the WSRC dataset, only soils that were sampled within a depth of 0-60 cm were 
included, as layers beyond this depth were not considered relevant for agricultural 
production. Exact sampling location and sampling depth of the WEPAL soils were 
unknown and no selection based on this criterion was made.  
 
To derive the K transfer functions for tropical and temperate soils, QUEFTS criteria 
for soil chemical parameters were used to select the soils that were included in the 
analysis: Corg below 70 g kg-1 and exchangeable K below 30 mmol kg-1 or 1173 mg kg-1 
(Janssen et al., 1990). The pH limits were set between 4.0 and 8.0, as most agricultural 
soils will have pH values within this range. After applying the selection criteria to the 
114 samples available for tropical soils, a dataset with 101 samples remained (medians: 
Corg = 15.0 g kg-1, pH = 5.61, K-AA = 2.6 mmol kg-1 or 103 mg kg-1; Figure S1). K-M3 
concentrations in the tropical dataset ranged between 20 and 710 mg kg-1. This dataset 
included samples from Africa (not specified; n = 1), Burundi (n = 23), Congo (n = 1), 
Gabon (n = 6), Ghana (n = 7), Indonesia (n = 2), Ivory Coast (n = 3), Kenya (n = 26), 
Mali (n = 1), Philippines (n = 1), Suriname (n = 2), Thailand (n = 2) and Zambia (n = 
26). For temperate soils, a total of 67 out of 86 samples remained after applying the 
selection criteria: South Africa (n = 1), The Netherlands (n = 41), Russia (n = 17), Spain 
(n = 1) and Switzerland (n = 7). K-M3 and K-AA concentrations in the temperate 
dataset ranged between 43-706 and 55-661 mg kg-1 respectively.  
 
To derive the P transfer functions for tropical and temperate soils, QUEFTS criteria 
for soil chemical parameters were used to select the soils that were included in the 
analysis: Corg below 70 g kg-1 and P-Olsen below 30 mg kg-1 (Janssen et al., 1990). The 
pH limits were set between 4.0 and 8.0. After applying the selection criteria to the 119 
samples available for tropical soils, a dataset with 92 soil samples remained (medians: 
Corg = 14.7 g kg-1, pH = 5.61, P-Olsen = 6.1 mg kg-1; Figure S1). M3 concentrations in 
the tropical dataset ranged between 0.6-93.5 (P), 215-2114 (Al), 3-3283 (Ca) and 25-
1171 (Fe) mg kg-1, respectively. This dataset included samples from Burundi (n = 23), 
Congo (n = 1), Gabon (n = 5), Ghana (n = 14), Indonesia (n = 2), Ivory Coast (n = 2), 
Kenya (n = 24) and Zambia (n = 21). For temperate soils, a total of 22 out of 72 samples 
remained after applying the selection criteria: The Netherlands (n = 5), Russia (n = 13) 
and Switzerland (n = 4). Mehlich 3 concentrations in the temperate dataset ranged 
between 3-204 (P), 133-1220 (Al), 101-12335 (Ca) and 67-1703 (Fe) mg kg-1 respectively. 
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 Statistical analysis 
The P and K transfer functions were developed using R software, version 3.4.4. Results 
were visualized using the ggplot2 package (version 2.2.1). Models were evaluated using 
R² and root mean squared errors (RMSE). Model residuals were checked for normality, 
homogeneity and independence.  
 
For the P transfer function, all soil parameters including the dependent variable 
P-Olsen, except pH, were transformed using the natural logarithm to prevent negative 
predicted values and to normalise input data. No data transformations were applied for 
the K transfer function. Before running regressions, input parameters were checked for 
multicollinearity (vif >4), using the vif function (package usdm, version 1.1-18). After 
checking for multicollinearity, model selection was done with stepwise regression 
(forward and backward) using the stepAIC function from package MASS (version 7.3-
50) using the Akaike Information Criterion as selection criterion that compromises 
between goodness of fit and parsimony (Webster and McBratney, 1989). The residuals 
of the selected model were inspected visually and checked for normality using the 
skewness function (package e1071, version 1.6-8) and using the Shapiro-Wilk test 
(function shapiro.test from package stats, version 3.4.4). Homogeneity and 
independence of residuals was visually evaluated by plotting residuals against fitted 
values and explanatory variables. The RMSE was retrieved using function rmse from 
package ModelMetrics (version 1.1.0). The contribution of each soil parameter to R² 
was evaluated using function calc.relimp from package relaimpo (version 2.2-3). 
Regression outliers were identified by checking Cook’s distance (D), which is a 
measurement to identify data points with a high residual value as well as leverage. Data 
points were further inspected when D was greater than 0.5. 
 
Ln(P-Olsen) predictions were back-transformed using Equation 1 (Lark and Lapworth, 
2012):  
 
Equation 1: prediction = exp(ln-prediction + 0.5*variance)  
 
To test whether the K transfer function was different for temperate and tropical 
countries, a regression model was fitted to predict K-AA (mg kg-1) values based on 
K-M3 (mg kg-1), an origin factor (i.e. temperate or tropical) and interaction of both 
predictors. The function lstrends from the package lsmeans (version 2.30-0) was applied 
to this regression model in order to test whether origin had an effect on the relation 
between K-AA and K-M3. Output of the lstrends function consisted of trends (i.e. 
slopes) per origin as well as the confidence intervals of these trends.  
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Additional analysis included exploration of the relations between M3 and ammonium 
oxalate (AO) extraction methods for Fe and Al. The AO extraction is often used as a 
proxy to measure the micro-crystalline or short-range-order oxide minerals in soils 
which are considered the most reactive surfaces for adsorption of anions such as PO4 
(Hiemstra et al., 2010; Schwertmann, 1973). The relation between Fe and Al measured 
in M3 and AO indicates the efficiency of M3 to extract the reactive Fe and Al 
(hydr)oxides, which in turn could explain the extraction efficiency of P in M3. The soils 
that contained information on Fe-AO and Al-AO were used to explore relations 
between Fe-M3 and Fe-AO (n = 55) and between Al-M3 and Al-AO (n = 55).  
 

 Application 
To evaluate application of the transfer functions, the QUEFTS model was used. The 
sensitivity of QUEFTS to deviations between measured and predicted P-Olsen and 
K-AA values was analysed for this purpose. QUEFTS can be used for the evaluation of 
soil fertility, potential crop yield and fertilizer recommendations. QUEFTS requires four 
soil chemical parameters as input, being exchangeable K (K-AA; in mmol kg-1), P-Olsen, 
pH and Corg (Janssen et al., 1990; Sattari et al., 2014). These variables are used to 
calculate the soil supply of N, P and K (step 1), which is then used to calculate the 
potential uptake of nutrients by a crop (step 2). The interactions among nutrients define 
the actual uptake of nutrients (step 3), and the final yield estimate (step 4). Soils that 
were used to derive both the P and K transfer functions (n = 81) were used as input for 
QUEFTS. The most recent QUEFTS version for maize was used (Sattari et al., 2014), 
with potential yield set to 10 Mg ha-1. QUEFTS was run with both measured and 
predicted P-Olsen and K-AA values. For pH and Corg, measured values were used. 
 

 Results 
 

 K transfer function 
The relation between K-AA and K-M3 in tropical soils could be described with a single 
linear relationship. The best model that was fitted for tropical soils, violated 
assumptions however, as model residuals were not normally distributed (p < 0.001). 
Further inspection showed one data point with Cook’s Distance >1 (encircled in 
Figure 1). The high residual value of this data point could not be explained by soil pH 
or Corg. This sample was consequently removed for further analysis. After rerunning the 
regression, K-M3 was the only significant variable for predicting K-AA (Figure 1; 
Equation 2) and residuals showed a normal distribution (p = 0.567). The model 
explained 99% of the variation and RMSE was 11.2 mg kg-1. 
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Figure 1: Relation between K extracted with Mehlich 3 (M3) and ammonium acetate (AA) in 
tropical soils. The line represents the K transfer function. The circled data point was considered 
an outlier based on Cook’s D and was not included in the regression. 
 
Equation 2 (tropical soils): K-AA (mg kg-1) = 0.59 + 1.09*K-M3 (mg kg-1) 
 
The K transfer function was found to be dependent on the origin of the soil (Figure 2). 
In tropical soils, AA extracted significantly more K (p < 0.001) than M3 compared to 
temperate soils. The best model that was fitted for temperate soils selected K-M3, Corg 
and clay content as predictors, but violated assumptions as model residuals were not 
normally distributed (p < 0.001). Further inspection showed two data points with high 
Cook’s D values. The first data point had the highest K-M3, K-AA and Corg values, the 
second data point did not have soil parameters with extreme values. Soil pH could not 
explain the high residual value of these data points and they were consequently removed 
from the dataset. Regressions were re-run and the best model that was fitted on 
temperate soils required K-M3, clay content, Corg and pH to explain K-AA. Although 
residuals were normally distributed (p = 0.062), a regression was run without Corg as 
input parameter, as it contributed only 0.3% to R2. The best model that was fitted 
without Corg, selected K-M3, clay content and pH as predictors (Equation 3). The R² of 
the regression model was 0.996. Residuals showed a normal distribution (p = 0.498) and 
RMSE was 7.70 mg kg-1. K-M3 explained 79% of the R² value, clay content 16% and 
soil pH 6%.  
 
Equation 3 (temperate soils): K-AA (mg kg-1) = 12.97 + 0.99*K-M3 (mg kg-1) +  
0.05*Clay (g kg-1) – 2.52*pH 
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Figure 2: Relations between K extracted with Mehlich 3 (M3) and ammonium acetate (AA), 
grouping based on climatic zone: (sub)tropical or temperate. Lines represent linear model fits 
for both groups. 
 
A simpler model without clay content as predictor was tested, as the laboratory 
procedure to determine soil texture is relatively time-consuming, compared to e.g. soil 
pH. The model that was fitted based on K-M3 and pH as predictors (Equation 4), 
explained 99.4% of the variation. Residuals showed a normal distribution (p = 0.731) 
and RMSE was 9.44 mg kg-1. K-M3 explained 93% of the R² value and soil pH the 
remaining 7%. 
 
Equation 4 (temperate soils): K-AA (mg kg-1) = 15.21 + 1.01*K-M3 (mg kg-1) – 2.12*pH 
 

 P transfer function 
In tropical soils, P-Olsen and P-M3 were strongly correlated (r = 0.87, p < 0.001; Table 
S3). Both parameters were significantly positively correlated with Ca-M3, whereas P-M3 
also showed a significant positive correlation with pH and a significant, negative 
correlation with Corg. For 14 out of 92 samples, Olsen extracted more P than M3. On 
average, these samples had lower pH values (5.22 vs 5.75, p = 0.013), higher Al-M3 
(1565 vs 860 mg kg-1, p < 0.001) and higher Corg values (36 vs 14 g kg-1, p < 0.001) 
compared to the (larger) subset in which P-Olsen concentrations were lower than P-M3. 
No differences in Fe-M3 contents were found (p = 0.317). 
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The best model that was fitted to explain P-Olsen, violated assumptions: model 
residuals were not normally distributed (p = 0.006). Further inspection showed two 
outliers based on Cook’s D, that were characterised by having the lowest Ca-M3 and 
pH values in the dataset. The sample with the highest residual value (a soil from 
Indonesia) was removed from the dataset and regressions were rerun. The new dataset 
contained 90 samples from SSA, as well as one Indonesian sample from the same soil 
profile as the sample that was removed. Although residuals of the model excluding the 
first Indonesian soil sample were normally distributed (p = 0.200, skewness = -0.35), 
regressions were also run without the second Indonesian sample, as this could be 
considered an outlier based on geographical location. The model without both 
Indonesian samples performed slightly better in terms of R² (0.81 vs 0.80), but not 
RMSE (0.45 vs 0.41). The model predicting P-Olsen in soils from SSA only, used pH, 
and P-M3, Al-M3, Fe-M3 and Ca-M3 as explanatory variables (Equation 5). Residuals 
were distributed normally (p = 0.309, skewness = -0.27), but were positively correlated 
with ln(P-Olsen) predictions (p < 0.001; Figure S2). Further inspection showed one 
outlier based on Cook’s D, although its value was below 0.5, characterised by having 
the lowest Ca-M3 (2.8 mg kg-1) and pH (4.10) values in the dataset. As Cook’s D value 
of the outlier was below 0.5 and no clear patterns between residuals and explanatory 
variables were observed, no attempt was made to further improve the model.  
 
Equation 5: ln(P-Olsen) = 0.77*ln(P-M3) + 0.62*ln(Al-M3) + 0.13*ln(Fe-M3) +  
0.10*ln(Ca-M3) – 0.19*pH – 4.31 
 
The P transfer function described 81% of the variation in P-Olsen and RMSE was 0.45 
(ln mg kg-1). Model predictions are presented in Figure 3. Relative contribution to R² 
was highest for P-M3 (87%), followed by Al-M3 (7%), Ca-M3 (2.6%) and pH (2.5%). 
Fe-M3 contributed less than 1% to the R².  
 
The dataset with temperate soils was considered too small (n = 22) to derive a P transfer 
function for temperate regions. The low number of remaining samples was partly due 
to the high P-Olsen values in the available data: more than half of the samples had 
P-Olsen values above 30 mg kg-1, i.e. the QUEFTS limit for this parameter that was 
used in our data selection (section 2.3). The remaining 22 soil samples in the temperate 
dataset were compared to the tropical dataset for discussion purposes (Table S4). 
Temperate soils had significantly higher P-M3 (p = 0.001), Ca-M3 (p < 0.001) and 
Fe-M3 (p < 0.001) concentrations compared to tropical soils. Al-M3 concentrations 
were lower in temperate soils, but the difference with tropical soils was not significant 
(p = 0.051). 
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Figure 3: Measured versus predicted P-Olsen on (A) a natural log scale and (B) after back-
transformation. Dashed lines represent 10% deviation from the solid 1:1 line. 
 

 Application  
When P-Olsen and K-AA values were predicted using the P and K transfer functions 
and subsequently used as input for QUEFTS, yield predictions for 63 out of 81 soils 
deviated less than 10% from the benchmark scenario in which the measured P-Olsen 
and K-AA values were used as input for QUEFTS (Figure 4). Yield predictions of 10 
observations deviated more than 15% from yield predictions that were based on 
measured P-Olsen and K-AA input. The corresponding soils were characterized by low 
P-Olsen and K-AA values: a maximum of 11.9 mg kg-1 for P-Olsen and 2.9 mmol kg-1 
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for K-AA, compared to the respective maximum values of 30 mg kg-1 and 8.4 mmol 
kg-1 for the complete dataset. Overall, when yield predictions surpassed 3000 kg ha-1, 
deviations were less than 10% (Figure 4). The corresponding soils were characterized 
by higher average P-Olsen (11.0 vs 7.7 mg kg-1, p = 0.037) and K-AA (4.5 vs 2.1 mmol 
kg-1, p < 0.001) values. Average Corg values for these samples also tended to be higher 
(21.2 vs 16.5 g kg-1), but the difference was not significant (p = 0.080).  
 

Figure 4: QUEFTS yield predictions based on measured P-Olsen and K-AA values versus 
QUEFTS yield predictions based on predicted P-Olsen and K-AA values. Dashed lines 
represent 10% deviation from the solid 1:1 line. 
 

 Discussion 
 

 Potassium 
The AA and M3 methods extracted similar amounts of K (the regression slope was 
approximately 1.09 for tropical soils), which suggests a corresponding extraction 
mechanism, most likely NH4+ ↔ K+ ion exchange. The differences between the K 
transfer functions for tropical and temperate soils may be partly methodological. The 
majority of data on temperate soils was obtained from WEPAL (50 out of 67 samples) 
for which exact protocols that were used for K-AA analysis are not known. The 
different extraction times employed in studies described in Table S1 (5, 10 or 30 min) 



2

P and K transfer functions 
 
 

 
37 

  

indicate that methods can differ among laboratories. However, when a comparison was 
made between temperate (n = 50) and tropical soils (n = 9) within the WEPAL dataset, 
the ratio of K-AA/K-M3 was significantly higher in tropical soils compared to 
temperate soils (p < 0.001; data not presented). As K-AA measurements for tropical 
and temperate samples within the WEPAL dataset will have the same variability in 
extraction methods, it is unlikely that possible differences in extraction time are the 
main cause of the different K transfer functions obtained for tropical and temperate 
soils. This difference is more likely related to clay mineralogy, which influences 
bioavailability and exchange rate of cations (Grim, 1968). Relations among several K 
extraction methods were indeed found to be different for kaolinite, smectite and mixed 
clay soils (Sharpley, 1985). Weathering and climate are important factors in the 
formation of clay minerals; (sub)tropical soils generally contain kaolinite as the 
dominant clay mineral, whereas in temperate soils, illite or smectite clay minerals are 
more abundant (Grim, 1968). In tropical soils, AA was relatively more efficient than M3 
in extracting K compared to temperate soils. In temperate soils, K is largely selectively 
bound, particularly to illite clay minerals (Blume et al., 2016), while in tropical soils K is 
more likely bound to general and less selective cation-exchange sites, such as those of 
kaolinite and organic matter. The high NH4+ concentrations in both extracts can rapidly 
displace the relatively weakly-bound K from kaolinite and organic matter. NH4+ also 
displaces selectively-bound K from illite clay minerals, but K-release from those sites is 
characterized by relatively slow exchange kinetics (Sumner and Bolt, 1962). These 
differences may explain the lower K-extraction efficiency of AA in temperate soils 
compared to tropical soils.  
 
In contrast to tropical soils, the best model predicting K-AA in temperate soils required 
clay content and pH in addition to K-M3. It is unclear why clay content was a significant 
variable in this model. Results of the model without clay content (Equation 4) indicate 
that exclusion of this parameter does not affect precision of the predictions, although 
accuracy was lower. Soil pH had a negative coefficient in both models (with and without 
clay content), implying that M3 is relatively more efficient in extracting K than AA when 
soil pH increases. The acid M3 extract (pH 2.5 vs 7.0 for AA) may release additional K 
by partial dissolution of illite, smectite or other K-containing minerals that occur in 
temperate soils. Penn et al. (2018) showed that pH of the M3 solution increased with 
soil pH during the extraction procedure from 2.5 to ~3.1 and dissolution rates of illite 
and smectite clay minerals decrease across this pH range (Amram and Ganor, 2005; 
Köhler et al., 2003). We would thus expect that K-M3 extraction efficiency decreases 
with increasing soil pH, which is in contrast to our findings.  
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The two soils that were excluded in the final models for temperate soils, were Solonetz 
and Solonchak soils from Russia, which both are characterised by having high Na+ 
concentrations(FAO, 2001a), as was also confirmed by additional data present in the 
WSRC dataset. The first soil that was removed from the dataset (Solonchak), was most 
likely identified as an outlier as it had the highest K-AA, K-M3 and Corg values (high 
leverage). The second soil that was removed (Solonetz) did not have soil parameters 
with extreme values. The ratio of K-AA/K-M3 for this soil was extremely high 
compared to the other temperate soils (1.41 vs average ratio of 1.03). As M3 and AA 
most likely have a corresponding mechanism to extract K, i.e. NH4+ ↔ K+ ion 
exchange, the high concentration of Na+ may have interfered with the K extraction in 
M3, that has lower NH4+ concentrations compared to AA (0.25 M vs 1 M). Although 
this may indicate limitations for applying the K transfer function to temperate soils in 
saline soils, in practice these soils are unlikely to be used for intensive agriculture.  
 
The protocol developed for this study is based on an extraction time of 2 h for 
determination of K-AA, which resembles the extraction time in the percolation method 
that was originally used to calibrate QUEFTS (Janssen et al., 1990; Van Reeuwijk, 2002). 
We therefore consider the K transfer function for tropical soils developed in this study 
more suitable for generating K-AA input for QUEFTS than previous relations 
described in literature. 
 

 Phosphorus 
The properties in the P transfer function in this study were able to explain 81% of the 
variance in ln(P-Olsen) predictions, which is within the range reported in Table S2 (R2 
between 0.45 and 0.94, average 0.74). After back-transformation of ln(P-Olsen) values, 
uncertainty increased with P-Olsen levels (Figure 3B), which is a consequence of fitting 
regression models to log-transformed variables. However, in terms of soil P status and 
P fertiliser recommendations, predicting low P-Olsen concentrations accurately is most 
relevant. Though dependent on other soil properties, the critical P-Olsen concentration 
below which P is expected to be yield-limiting is around 10 mg kg-1 for maize (Bai et al., 
2013; Ussiri et al., 1998). The increasing uncertainty with increasing predicted P-Olsen 
concentrations, especially for values above 10 mg kg-1, is therefore not likely to have an 
effect on fertiliser recommendations.  
 
Removal of one Indonesian sample from the dataset was needed to derive a model that 
did not violate the assumption of normality. This soil was classified as an Acrisol and 
was not used for agricultural purposes at the time of sampling. The results of the final 
P transfer function similarly showed a sample with a high Cook’s D value (although 
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below 0.5) due to very low Ca-M3 concentrations and pH. This soil from Congo was 
classified as a Ferralsol and was sampled from a rubber plantation. Acrisols and 
Ferralsols are known for their high P fixation and low nutrient availability (FAO, 
2001b). This may indicate that the P transfer function may not predict P-Olsen 
concentrations well in P fixing soils. A number of other soil samples were also classified 
or could potentially be classified (based on geographical position) as Acrisols or 
Ferralsols, however, but were not found to be outliers. A second reason for the 
Indonesian and Congolese samples being identified as outliers, could therefore be the 
very low Ca-M3 concentrations (19.6 and 2.8 mg kg-1 respectively) or pH (4.16 and 4.10 
respectively). This observation may indicate that the P transfer function has a limited 
applicability to predict P-Olsen in soils with a pH below 4.4 or Ca-M3 concentrations 
below ~50 mg kg-1.  
 
This study has shown that Al-M3 is relevant for describing the relation between P-Olsen 
and P-M3 in tropical soils. This presumably is because Al-M3 is a good proxy for the 
amount of amorphous Al (hydr)oxides as confirmed by the strong similarity between 
Al measured in AO and M3 (r = 0.79, p < 0.001; Figure S3). The relation between Al-M3 
and Al-AO was curvilinear and similar relations have been reported by Sen Tran et al. 
(1990) and Sims et al. (2002). The clear effect of Al-M3 was demonstrated by the fact 
that ratios of P-Olsen/P-M3 above 1 were associated with significantly higher Al-M3 
concentrations compared to soils where the ratio was below 1, which was also reported 
by Buondonno et al. (1992). Thus the Olsen method was apparently more efficient than 
M3 in extracting P from soils with high amorphous Al content. We hypothesize that in 
these soils, saturation of the fluoride ion with Al3+ during the M3 extraction plays an 
important role in the reduced extraction efficiency of P associated with Al hydroxides. 
In the protocol that was used, 20 mL of M3 solution contains 0.3 mmol of F-, which 
can complex maximally 0.1 mmol of Al3+ in 2 g soil. This corresponds to around 1350 
mg Al kg-1 soil. In the 14 tropical soils in this study where P-Olsen concentrations were 
higher than P-M3, Al-M3 concentrations were 1565 mg kg-1 on average, which indicates 
that saturation of the fluoride ions may have limited P-M3 extraction in these soils. As 
the P extraction efficiency of Olsen is not affected by Al concentrations, this method 
can extract more P than M3 from soils with high Al-M3 values. These findings support 
inclusion of Al-M3 or Al-AO when developing P transfer functions for M3 extractions. 
In contrast to Al, M3 and AO were not equally efficient in extracting Fe: Fe-M3 was 
found to be around 10% of Fe-AO (Figure S3), which is in line with results reported by 
Sims et al. (2002). Fe-M3 therefore is not a good proxy for amorphous Fe-oxides, which 
may explain its limited contribution to the P transfer function.  
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As expected, soil pH was an important factor in the P transfer function for tropical 
soils. M3 was relatively more efficient in extracting P compared to Olsen when soil pH 
increased. Buondonno et al. (1992) argued that M3 is very efficient in dissolving 
Ca-bound phosphates that are relatively more abundant in alkaline soils (Sims and 
Pierzynski, 2005) and would consequently lead to higher P-M3 levels when soil pH 
increases. The positive correlation between P-M3 and Ca-M3 that was found in the 
tropical soils in this study confirms this hypothesis. We expect that complexation of Ca 
with fluoride plays an important role in extracting P when soil pH increases. For neutral 
and alkaline soils, the pH of the M3 solution is expected to increase above 2.9 during 
the extraction, which will consequently lead to Ca-F complexation and release of P from 
Ca-P minerals (Buondonno et al., 1992; Penn et al., 2018). Penn et al. (2018) however 
postulated that an increase in M3 solution pH would lead to a decrease in P-M3 
concentrations, as a result of decreased desorption of P from Fe and Al (hydr)oxides. 
Penn et al. (2018), as well as Wuenscher et al. (2015) reported negative correlations 
between P-M3 and soil pH and between P-M3 and CaCO3, which is in contrast to our 
findings (Table S3). These studies used temperate soils in their analysis, however. This 
difference in soil types could indicate that the effect of soil pH on P extraction efficiency 
of M3 is dependent on soil mineralogy, which supports inclusion of proxies for Al, Fe 
and Ca reactive surfaces. Given the differences in P, Al, Ca and Fe-M3 values between 
temperate and tropical soils (Table S4), the applicability of the P transfer function to 
temperate soils may be limited. 
 
In the tropical soils in this study, Corg was not found to be a significant factor in 
explaining the relationship between P-Olsen and P-M3, despite being correlated to 
P-M3 (r = -0.27, p = 0.009; Table S3). Although organic P can be a considerable fraction 
of total P-M3 concentrations (e.g. Iatrou et al., 2014; Pittman et al., 2005), correlations 
with Corg were weak (Mallarino, 2003). Correlations between the amount of organic P 
extracted by M3 and soil pH were stronger however (Mallarino, 2003). The work of 
Iatrou et al. (2014) also showed that the amount of organic P extracted was pH 
dependent. We therefore hypothesize that Corg does not affect P-M3 concentrations 
directly and that the use of soil pH in the regression made inclusion of Corg redundant. 
 

 Application 
The use of the P and K transfer functions for predicting QUEFTS input yielded 
satisfactory results for the majority of soils, as QUEFTS yield predictions deviated less 
than 10% from yield predictions based on measured P-Olsen and K-AA input. 
Extracted data from Figure 6b by Sattari et al. (2014), show that QUEFTS yield 
predictions deviated more than 10% from observed yields for the majority of their 
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fields. The uncertainty introduced by the application of the transfer functions is thus 
less than the general uncertainty associated with QUEFTS predictions. The effect of 
the additional uncertainty introduced by the transfer functions on QUEFTS final yield 
estimate in relation to actual yields, currently is unknown. To gain insights in how the 
transfer functions affect QUEFTS ability to estimate actual yields, QUEFTS yield 
predictions based on M3 will have to be validated with field observations in future 
studies. 
 
Using the transfer functions rather than measured P-Olsen and K-AA inputs had a 
limited effect on QUEFTS yield predictions. This can partly be explained by the high 
accuracy of the K-AA predictions using the K transfer function, but is also due to the 
fact that QUEFTS predictions of N, P and K supply to a crop are also based on soil 
pH and Corg values, besides P-Olsen and K-AA. As a result, only part of the uncertainty 
associated with P-Olsen and K-AA predictions will result in uncertainty in the final yield 
predictions. Furthermore, the uncertainty associated with P-Olsen concentrations, 
especially at higher levels is not propagated within QUEFTS, as yield predictions for 
soils with higher P-Olsen levels are more likely limited by N or K supply, than by P 
supply. In contrast, soils low in P-Olsen (and K-AA) were associated with deviations of 
more than 15% in QUEFTS yield predictions. The prediction uncertainty at low 
P-Olsen and K-AA values is relatively more important in QUEFTS yield predictions, 
as the crop is more likely to be P or K limited. As a result, the largest model deviations 
occur when predicted yields were below 3000 kg ha-1. Sattari et al. (2014) showed that 
QUEFTS yield predications below 3000 kg ha-1 generally have a higher degree of 
uncertainty than predictions above this level. This suggests that QUEFTS yield 
predictions below this level should be interpreted with caution, especially when P-Olsen 
and K-AA inputs are predicted with the transfer functions developed in this study.  
 
To minimise the uncertainty associated with the use of M3 data as input for QUEFTS, 
recalibration of QUEFTS P and K supply functions based on M3 soil data is 
recommended (Sattari et al., 2014). This requires, however, substantial time and capital 
investments, as NPK fertiliser omission trials need to be executed on a wide range of 
soils. Until such recalibrated P and K supply functions become available, the P and K 
transfer functions developed in this study can serve to generate P-Olsen and K-AA 
inputs for QUEFTS, with introduced uncertainties similar to those of current QUEFTS 
yield predictions.  
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 Conclusions 
We conclude that a Mehlich 3 (M3) extraction can be used effectively to predict K 
extracted by 1 M ammonium acetate (K-AA) in tropical soils, using the K transfer 
function developed in this study. The P transfer function that was developed in this 
study to estimate Olsen-P from P extracted by Mehlich 3, is associated with more 
uncertainty than the K transfer function. However, given that M3 extractions are more 
commonly used than Olsen soil tests in several parts of the world, the P transfer 
function can prove useful to estimate P-Olsen values in tropical soils when only M3 
data are available. Log-transformation of input variables furthermore ensures that 
uncertainty in the relevant range up to 10 mg kg-1 P-Olsen is minimised. QUEFTS is a 
decision support tool that can be used for the evaluation of soil fertility, potential crop 
yield and fertilizer recommendations. As QUEFTS requires P-Olsen and K-AA as input 
parameters, its application may be limited when these soil parameters cannot be 
analysed in local laboratories. We conclude that a M3 extraction and soil pH-H2O can 
replace P-Olsen and K-AA determinations for predicting QUEFTS input for tropical 
soils, by using the P and K transfer functions developed in this study. These functions 
thus expand the applicability of the QUEFTS model to cases where only M3 extraction 
results are available.  
 

Acknowledgements 
We want to acknowledge Gerardo Chacón Naranjo for his explorative work which was 
the basis for this study. We want to thank IFDC Burundi and Olam for providing soil 
samples from Burundi and Zambia. We also want to acknowledge Stephan Mantel and 
Ad van Oostrum of ISRIC for providing soil samples from several countries in sub-
Saharan Africa and providing valuable input in discussing the findings of this study. We 
want to thank ISRIC for providing the WSRC dataset with data from Ghana, Indonesia, 
Suriname and Russia. We want to thank WEPAL for providing a dataset with soil 
information from a wide range of temperate and tropical countries. Finally, we want to 
thank the staff of the Chemical Biological Soil Laboratory of Wageningen University 
for providing assistance during the analysis of the soil samples used in this study.  
 
This study was funded by NWO open technology programme, grant number 14688, 
“Micronutrients for better yields”. 
  



2

P and K transfer functions 
 
 

 
43 

  

Supporting Information 
 
Table S1: Transfer functions between K (mg kg-1) in AA and M3 derived from literature. Some 
functions were calculated from study data when relations were not reported or when M3 was 
expressed as a function of K-AA. 

 
Table S2: Transfer functions between P (mg kg-1) in Olsen and M3 derived from literature. Some 
functions were calculated from study data when relations were not reported or when M3 was 
expressed as a function of Olsen. In case multiple functions could be derived from a study, the 
function with the highest R² values was reported. 
Study Origin n Soil type Transfer function R² 

Tropical soils 

Bibiso et al. (2015) Ethiopia 7 Various Olsen = 0.66*M3 + 3.9 0.79 

Mamo et al. (1996) Ethiopia 22 Various Olsen = 0.19*M3 + 8.9 0.81 

 
 

Study Soil origin n Transfer function R² 

Tropical soils 

Bibiso et al. (2015) Ethiopia 7 AA = 1.19*M3 – 14.4 0.97 

Bortolon & Gianello (2010) Brasil 35 AA = 1.00*M3 0.98 

Chilimba et al. (1999) Malawi 30 AA = 0.89*M3 + 0.1 0.81 

Fukuda et al. (2017) Mozambique 326 AA = 0.79*M3 0.96 

Mamo et al. (1996) Ethiopia 22 AA = 1.04*M3 + 56 0.99 

Wendt (1995) Malawi 112 AA = 0.95*M3 – 2.0 0.99 

Temperate soils 

Alva (1993) USA 118 AA = 0.87*M3 – 0.5 0.95 

Barbagelata (2006) USA 117 AA = 1.03*M3 + 2.6 0.97 

Beegle & Oravec (1990) USA 67 AA = 1.19*M3 0.92 

Eckert & Watson (1996) USA NA AA = 1.03*M3 – 6.2 0.86 

Gartley et al. (2002) USA 300 AA = 1.03*M3 + 4.0 0.99 

Hanlon & Johnson (1984) USA 65 AA = 1.09*M3 – 43 1.00 

Mamo et al. (1996) Germany 10 AA = 1.12*M3 – 4.4 0.99 

Mehlich (1984) USA 105 AA = 0.93*M3 0.97 

Michaelson et al. (1987) USA 360 AA = 0.96*M3 + 1.5 0.95 

Nathan et al. (2005) USA 162 AA = 1.11*M3 – 24 0.99 

Schmisek et al. (1998) USA 99 AA = 1.54*M3 – 144 0.94 

Yang et al. (2011) China 294 AA = 0.54*M3 – 11.2 0.90 
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Table S2 (cont). 
Study Origin n Soil type Transfer function R² 

Temperate soils 

Buondonno et al. 
(1992) 

Italy 

66 Noncalcareous Olsen = 0.70*M3 - 0.4 0.71 

54 Calcareous Olsen = 0.37*M3 + 0.2 0.73 

120 All Olsen = 0.50*M3 - 0.1 0.64 

Burt et al. (2002) USA 268 Various Olsen = 0.35*M3 + 2.2 0.87 

Csathó et al. (2005) Hungary 36 Various Olsen = 0.43*M3 - 3.4 0.85 

Elrashidi et al. (2003) USA 20 Alkaline 
Olsen = 0.51*M3 + 
5.49*CaCO3 - 25.2 

0.94 

Eriksson (2009) Baltics 99 Various Olsen = 0.27*M3 + 7.9 0.74 

Iatrou et al. (2014) Greece 200 

Acidic Olsen = 0.19*M3 + 3.4 0.77 

Neutral, CaCO3 
free 

Olsen = 0.26*M3 + 1.9 0.85 

Alkaline, low 
CaCO3 

Olsen = 0.27*M3 + 0.9 0.84 

Alkaline, high 
CaCO3 

Olsen = 0.16*M3 - 0.74* 
pH + 15.5 

0.61 

Ige et al. (2006) Canada 115 Various Olsen = 0.54*M3 + 0.49 0.94 

Mallarino (1995) USA NA 

Acidic  Olsen = 0.47*M3 + 2.1 0.62 

Neutral Olsen = 0.47*M3 + 0.7 0.45 

Alkaline Olsen = 0.45*M3 + 1.8 0.66 

All Olsen = 0.46*M3 + 1.5 0.58 

Mamo et al. (1996) Germany 10 Various Olsen = 0.17*M3 + 11.2 0.53 

Matejovic & 
Durackova (1994) 

Slovakia 56 Various Olsen = 0.14*M3 - 3.0 0.71 

Schick et al. (2013) Baltics 217 Various 
Olsen = 0.13*M3 + 3.0*C  

+ 0.01*Fe - 0.01*Al + 21.6 
0.67 

Schmisek et al. 
(1998) 

USA 97 Alkaline Olsen = 0.68*M3 - 7.9 0.90 

Sen Tran et al. 
(1990) 

Canada 
67 Acidic Olsen = 0.28*M3 - 1.7 0.75 

15 Calcareous Olsen = 0.39*M3 + 1.9 0.88 

Wolf & Baker (1985) USA 91 Noncalcareous Olsen = 0.33*M3 + 2.2 0.79 

Wünscher (2013) 
Austria/ 
Germany 

50 Various Olsen = 0.21*M3 + 19.9 0.70 

Zbiral & Nemec 
(2002) 

Czech 
Republic 

655 Noncalcareous Olsen = 0.25*M3 + 12.1 0.74 

434 Calcareous Olsen = 0.30*M3 + 10.7 0.63 

1098 All Olsen = 0.26*M3 + 11.8 0.69 
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Table S3: Pearson’s correlation coefficients of the untransformed parameters in  
the dataset with tropical soils. Asterisks indicate significance at the 0.05 level.  

P-Olsen P-M3 pH Corg Al-M3 Ca-M3 

P-M3    0.87* -     

pH  0.12    0.32* -    

Corg -0.10  -0.27* -0.47* -   

Al-M3  0.07 -0.13 -0.53*   0.75* -  

Ca-M3    0.30*    0.32*  0.63* -0.05 -0.23* - 

Fe-M3 -0.09 -0.11 -0.35*  0.15 0.05 -0.17 

 
Table S4: Average values of nutrients in Mehlich 3 (in mg kg-1)  
In the temperate (n = 22) and tropical (n = 92) datasets.  

 

 

 

 

 

 

 

 

 

 P-M3 Al-M3 Ca-M3 Fe-M3 

Temperate 37.5 775 3295 372 

Tropics 17.5 967 689 152 

p level 0.001 0.051 <0.001 <0.001 



Chapter 2 
 
 

 
46 
 

 

Figure S1: Histograms of pH (A), Corg (B), P-Olsen (C) and K-AA (D) input data for tropical 
soils. Figures 1A and 1B present input data of both P and K transfer functions, 1C and 1D for 
respectively P and K transfer functions only. Blue lines represent the median for the P transfer 
dataset, red lines the median for the K transfer dataset. 
 

 
Figure S2: Residuals plotted against the predicted variable ln(P-Olsen) 
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Figure S3: Comparisons between (A) Al-AO and Al-M3 and between (B) Fe-AO and Fe-M3. 
Lines represent the (A) 1:1 and (B) 1:10 lines. 
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Abstract 
Using fertilisers is indispensable for closing yield gaps in sub-Saharan Africa. Current 
fertiliser recommendations, however, are often blanket recommendations which do not 
take spatial variation in soil conditions within a region or country into account. Soil 
maps can potentially support fertiliser recommendations at a higher spatial resolution. 
The QUantitative Evaluation of the Fertility of Tropical Soils (QUEFTS) model is a 
decision support tool that predicts crop yields as an indicator of soil fertility and can be 
used to evaluate yield responses to fertilisers. It was designed for field level output and 
runs on field-specific soil information. The aim of this study was to compare two 
methods for developing maps of QUEFTS output, i.e. maize yield and the yield-limiting 
nutrient, with Rwanda as a case study. We used a database containing soil analysis results 
of 999 samples collected across Rwanda. Transfer functions were applied to predict the 
required P-Olsen and Exchangeable K input for QUEFTS based on the soil data. For 
the “Calculate-then-Interpolate” (CI) method, transfer functions and QUEFTS were 
applied to point data, and the final output was then interpolated using random forest 
modelling. For the “Interpolate-then-Calculate” (IC) method, maps of the soil 
parameters were developed first, before applying calculations. Implications of the 
chosen method (i.e. CI or IC) on QUEFTS predictions on a national scale were 
evaluated using set-aside locations. Results showed low precision and accuracy of 
QUEFTS maize yield predictions across Rwanda. The CI method performed better in 
predicting QUEFTS yield and yield-limiting nutrient than the IC method. Correlations 
between mapped yield predictions and predictions on set-aside evaluation locations 
were similar for the CI (r = 0.444) and IC (r = 0.439) methods. The poorer performance 
of the IC method was mostly due to overestimation of yields, which was most likely 
caused by the effect of smoothing on the soil maps used as input for QUEFTS. We 
conclude that the CI method is the preferred method for spatial application of 
QUEFTS.  
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 Introduction 
Agricultural productivity in sub-Saharan Africa should increase in order to sustain its 
growing population. In African soils, often multiple nutrients are depleted and the use 
of fertilisers is indispensable for closing yield gaps (Giller et al., 2011; Ichami et al., 2019; 
Shehu et al., 2019). Current fertiliser recommendations are often blanket 
recommendations that do not take into account spatial heterogeneity of soils and other 
site-specific factors, leading to either a waste of resources or low productivity of land 
(Giller et al., 2011; Vanlauwe et al., 2015). Site-specific fertiliser recommendations based 
on soil testing have been shown to lead to increased revenues over blanket 
recommendations (Njoroge et al., 2015). However, high costs, limited access to soil 
testing services and difficulty in interpreting results (Chianu et al., 2012), as well as 
uncertainties associated with sampling and analytical procedures (Schut and Giller, 
2020) complicate the use of soil testing to increase productivity on a large scale. 
 
Soil maps, in combination with information on crop response to nutrient availability, 
can potentially be used to refine blanket fertiliser recommendations. The QUantitative 
Evaluation of the Fertility of Tropical Soils (QUEFTS) model is a simple yet versatile 
tool that can be used to predict yield and yield response to fertilisers, taking interactions 
among nitrogen (N), phosphorus (P) and potassium (K) into account (Janssen et al., 
1990; Sattari et al., 2014). QUEFTS requires few input parameters: soil pH, soil organic 
carbon (SOC), P measured in an Olsen extract (P-Olsen), exchangeable K measured in 
an ammonium acetate extract (Exch-K) and crop-specific physiological efficiency 
parameters. It has been developed and validated for a wide range of crops and regions 
(e.g. Das et al., 2009; Ezui et al., 2017; Shehu et al., 2019; Tabi et al., 2008) and has 
proven adequate for developing fertiliser recommendations (e.g. Maiti et al., 2006; 
Mesfin et al., 2021; Xu et al., 2013). QUEFTS was designed for field level output and 
runs on field-specific soil information, but can be applied to soil maps as well (Leenaars 
et al., 2018b). In this study, different methods will be explored to arrive at maps of 
maize yield and the yield-limiting nutrient at a country level using QUEFTS.  
 
There are two pathways to develop maps of a target variable: model calculations can be 
applied to soil maps or to the point data underpinning these maps. When models are 
applied to data points, the model output is calculated for each data point, followed by 
spatial interpolation of these points to develop a map of the target variable. When 
models are applied to soil maps, the point data underpinning the maps are interpolated 
before applying model calculations. Both methods were previously described as the 
calculate-then-model and model-then-calculate methods (Kempen et al., 2019; Orton 
et al., 2014) or calculate-then-interpolate and interpolate-then-calculate methods 
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(Heuvelink and Pebesma, 1999). We will refer to both methods as the calculate-then-
interpolate (CI) and interpolate-then-calculate (IC) methods. The IC method is 
computationally more intensive, but application of the CI method may be limited in 
case of missing point data for one or more input parameters, or when only maps are 
available as input data and not the underpinning data points (Orton et al., 2014).  
 
The aim of this work is to evaluate the implications of the chosen method (i.e. CI or 
IC) on QUEFTS predictions on a national scale, using Rwanda as a case study. In our 
case, two consecutive steps of model calculations are needed: First, the transfer 
functions developed in Chapter 2 are used to calculate QUEFTS input parameters 
P-Olsen and Exch K from available data. Second, QUEFTS model calculations are 
made. Minor differences between outcomes of the CI and IC methods have been 
reported for simple linear models (Kempen et al., 2019; Orton et al., 2014; Styc and 
Lagacherie, 2019), but substantial differences for non-linear models (Addiscott and 
Tuck, 1996). Based on Heuvelink and Pebesma (1999), we hypothesise that the IC 
method will result in the most accurate spatial predictions. As QUEFTS is a non-linear 
model involving several interacting calculation steps, we expect that results of the CI 
and IC methods will differ more compared to the work of Kempen et al. (2019), Orton 
et al. (2014) and Styc and Lagacherie (2019). The outcomes of this work will help to 
evaluate whether QUEFTS can be used to develop fertiliser recommendations at scale. 
 

 Materials and Methods 
 

 Data availability 
A geo-referenced dataset containing 999 topsoil (0-20 cm) samples with a good spatial 
coverage across Rwanda (Figure 1) was provided by the International Fertiliser 
Development Center (IFDC). Soils were sampled in 2014 as part of the CATALIST-2 
programme and analysed by the Crop Nutrition Laboratory Services, Nairobi, Kenya. 
The dataset contained pH-H2O measured in a 1:2 soil:water suspension, organic matter 
content (%) determined with the Walkley-Black method and several nutrients measured 
in a Mehlich 3 extraction (mg kg-1). SOC values were calculated from organic matter, 
assuming 50% of organic matter is carbon (Pribyl, 2010). The dataset was randomly 
split into a calibration (n = 699) and evaluation (n = 300) dataset. Part of the data were 
excluded based on selection criteria (Figure 1; sections 2.3 and 2.4). 
 
In addition, 134 covariate layers at 250 m spatial resolution were available for random 
forest modelling that we used for spatial interpolation (section 2.5). These layers were 
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previously prepared for and described in Kempen et al. (2015). Briefly, the covariate 
layers were acquired from six sources: the Africa Soil Information Service (AfSIS), 
ISRIC WorldGrids, USGS Africa Ecosystems Mapping database, Soil and Terrain 
database of Central Africa (SOTERCAF), soil and terrain database for north-eastern 
Africa (SOTERNEA) and the Multipurpose Africover Databases on Environmental 
Resources (MADE). Covariate layers contained information on soil type, terrain, 
climate, land cover, vegetation indices, primary production, spectral reflectance, albedo 
and soil moisture. 

 
Figure 1: Distribution of calibration, evaluation and excluded data points across Rwanda. Note 
that the white areas are lake Kivu (west) and national parks (south-west and east). 
 

 Workflow 
Two methods were used to develop maps with QUEFTS for Rwanda, in a two-step 
approach (Figure 2). In Step 1, QUEFTS input data were derived from available data. 
Besides pH-H2O and SOC (in g kg-1), QUEFTS requires P-Olsen (in mg kg-1) and 
Exch-K (in mmol kg-1) measured in ammonium acetate at pH 7.0, which were not 
available in the dataset and were therefore predicted using transfer functions (section 
2.3). In Step 2, QUEFTS was applied to compute yield and the most yield-limiting 
nutrient (considering N, P and K), based on pH, SOC, P-Olsen and Exch-K data 
(section 2.4). QUEFTS was run for the situation that no fertilisers are applied. For the 
CI method, Steps 1 and 2 were applied to the calibration dataset. The yield and most 
yield-limiting nutrient predictions at these locations were spatially interpolated using 
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random forest modelling (section 2.5). For the IC method, input parameters of the 
transfer function and QUEFTS model were first interpolated (using the calibration 
dataset) to produce maps for each of these parameters. Steps 1 and 2 were subsequently 
applied to the soil maps to derive maps of maize yield and the yield-limiting nutrient. 

 
Figure 2: Two methods of applying P and K transfer functions and QUEFTS to data points: 
Calculate-then-Interpolate (vertical pathway on the left) or Interpolate-then-Calculate (right). 
Black horizontal arrow indicates the process of spatial interpolation of data points to maps. Red 
arrows represent input that is used for either the P and K transfer functions (Step 1) or for 
QUEFTS (Step 2). 
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 Transfer functions for QUEFTS inputs 
P-Olsen and Exch-K were estimated from available Mehlich 3 (M3) data using the 
transfer functions from chapter 2, as presented in Equations 1 and 2. Note that 
Equation 1 was adjusted to estimate Exch-K values in mmol kg-1 instead of mg kg-1.  
 
Equation 1: Exch-K (mmol kg-1) = 0.028*K-M3 (mg kg-1) + 0.015  
 
Equation 2: ln(P-Olsen) = 0.769*ln(P-M3) + 0.620*ln(Al-M3) + 0.131*ln(Fe-M3) +  
0.095*ln(Ca-M3) – 0.191*pH - 4.307  
 
The nutrients in Mehlich 3 (P, Al, Ca and Fe; in mg kg-1) were transformed to natural 
logarithms for application of the P transfer function (Equation 2). The predicted 
P-Olsen values were obtained by back-transformation of the ln(P-Olsen) predictions 
following Lark and Lapworth (2012):  
 
Equation 3: P-Olsen = exp(ln(P-Olsen) + 0.5 * 𝜎𝜎𝜎𝜎����� ),  
 
where ln(P-Olsen) is the predicted value with the P transfer function and 𝜎𝜎𝜎𝜎�����  denotes 
the prediction error variance. The prediction error variance for the CI method, where 
the transfer function was applied to the data points, was computed using Equation 4:  
 

Equation 4: 𝜎𝜎𝜎𝜎�����  = 𝜎𝜎𝜎𝜎��𝑦𝑦𝑦𝑦�� � 𝜎𝜎𝜎𝜎�� 

 
where 𝜎𝜎𝜎𝜎��𝑦𝑦𝑦𝑦�� is the variance of the regression estimate 𝑦𝑦𝑦𝑦� and 𝜎𝜎𝜎𝜎�� the residual variance 
(Hastie et al., 2009 Chapter 3, Eq. 3.22). The prediction error variance is specific for 
each calibration point, its magnitude depending on the values of the input parameters 
of the P transfer function. For the IC method the prediction error variance was 
approximated using a quantile regression forest (Equation 6; section 2.5). 
 
The transfer functions of chapter 2 were derived from data within certain ranges. It is 
currently unknown whether application of the transfer functions to data outside these 
ranges leads to reliable Exch-K and P-Olsen predictions. Limits were therefore applied 
to the data used in this study to select only those data points that fell within the transfer 
function calibration range. All data points fell within the ranges for Al-M3 and Al-Fe, 
though some data points exceeded the maximum calibration values for P-M3 (950 vs 94 
mg kg-1) and Ca-M3 (9800 vs 3283 mg kg-1). Therefore, cut off values of 150 mg kg-1 for 
P-M3 and 3500 mg kg-1 for Ca-M3 were applied, which were somewhat higher than the 
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maximum values in the P transfer dataset, but minimised data exclusion. Although 
K-M3 values in the dataset extended beyond the range of the K transfer function data 
(2960 vs 710 mg kg-1), no limit was applied, as relations between K-M3 and Exch-K are 
expected to be linear also for higher concentrations (Mamo et al., 1996). Finally, pH 
limits of 4.0 – 8.0 were also applied to the data.  
 
For the CI method, applying these limits led to exclusion of 70 calibration and 31 
evaluation data points. This left 629 samples as input for step 2 in the workflow; a 
number of 269 samples remained for evaluation. For the IC method, limits were applied 
to the maps that were developed based on the calibration data. As a consequence of 
applying these limits, no P-Olsen predictions could be made for 2.2% of the total 
number of grid cells.  
 

 QUEFTS 
The latest version of QUEFTS calibrated for maize was used here (Sattari et al., 2014). 
QUEFTS calculates nutrient-limited yield and does not account for other potentially 
yield-limiting factors, such as water availability or presence of pests and diseases. On a 
site level, these factors can be accounted for by reducing the maximum yield (Ymax) 
parameter. In this study however, Ymax was fixed at 10 Mg ha-1 across Rwanda. The 
yield-limiting nutrient was calculated using QUEFTS output and Equation 5 (Heinen, 
pers. comm. 2020):  

Equation 5: DFX =  =  

 
DFX is the dilution factor of nutrient X (i.e. N, P or K), ranging between 0 and 1. UX 
refers to uptake of nutrient X (kg ha-1). UXd refers to the uptake of X in the case this 
nutrient is maximally diluted in the crop, which is calculated as yield (Y) divided by the 
maximum physiological efficiency parameter d for X, corrected with r. Parameter r 
refers to the minimum uptake of a nutrient needed to produce any yield. UXa refers to 
the uptake of X in the case this nutrient is maximally accumulated in the crop, which is 
calculated as yield (Y) divided by the minimum physiological efficiency parameter a for 
X, corrected with r. The crop-specific a, d and r values specified by Sattari et al. (2014) 
for maize were used. The principle behind Equation 5 is to estimate how much the 
shoot concentrations differ from the physiological minimum. The nutrient with the 
lowest dilution factor is considered to be yield-limiting. 
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A second set of limits was applied to the data, according to the limits set for application 
of QUEFTS (Janssen et al., 1990): SOC < 70 g kg-1, P-Olsen < 30 mg kg-1 and Exch-K 
< 30 mmol kg-1. For the CI method, applying these limits left 591 calibration and 251 
evaluation data points. For spatial interpolation of the QUEFTS output, predictions 
were made on locations with values outside set limits. Locations of these grid cells were 
identified using the IC maps and values were set to NULL. As a consequence, for the 
IC method, together with previously applied limits to the P-Olsen and Exch-K maps, 
QUEFTS predictions could not be made for 2.3% of the total number of grid cells. 
 

 Random Forest modelling 
Gridded maps of the yield and the most yield-limiting nutrient for the CI method, and 
P-M3, Al-M3, Ca-M3, Fe-M3, K-M3, pH and SOC for the IC method were developed 
using random forest modelling (Breiman, 2001; Strobl et al., 2009). A model was fitted 
for each variable using the data points included in the calibration dataset and the 134 
covariate layers that served as the explanatory variables.  
 
It is considered good practice to remove redundant covariates (i.e. covariates with 
limited predictive power) prior to modelling, for instance using recursive feature 
elimination (RFE) (Hounkpatin et al., 2018; Poggio et al., 2021). In addition, correlated 
covariates should preferably be removed (Poggio et al., 2021). Redundant covariates 
were not removed in this study, as this would increase the computational load 
substantially without having direct benefits. First, removing redundant covariates can 
have computational advantages when data sets are large, which is not the case here. 
Second, when one aims to understand what drives the model it can be advantageous to 
remove redundant variables so that these do not confound predictive relationships. 
Eliciting and understanding predictive relationships, however, is outside the scope of 
this study. Last, Poggio et al. (2021) show that the effect of removing redundant 
covariates with RFE on model performance is only very marginal. We therefore do not 
expect relevant differences in this study in the performance of models fitted with the 
full covariate stack and models fitted with a reduced stack. 
 
Subsequently, the fitted random forest models were applied to the stack of covariate 
layers to predict each target variable across Rwanda at 250 m spatial resolution. Each 
fitted random forest model was composed of 1000 trees. The number of randomly 
selected candidate covariates for splitting a node was set as the square root of the total 
number of covariates (default setting of the mtry argument of the ranger function in R). 
Model residuals were inspected for presence of spatial correlation (Oliver and Webster, 
2015); variogram analysis, however, indicated residual kriging was not required. 



Chapter 3 
 
 

 
62 
 

Variables P-M3, Ca-M3 and K-M3 were transformed to natural logarithms before fitting 
random forest models, as these maps had better evaluation statistics than maps based 
on models fitted to variables on the original scale. Maps of the log-transformed variables 
were back-transformed using Equation 3. Unlike kriging methods, the random forest 
model does not provide an estimate of the prediction error variance required for back-
transformation of log-scale predictions to the original scale (Lark and Lapworth, 2012). 
The variance was therefore approximated using the values of the 0.05 (Q0.05) and 0.95 
(Q0.95) quantile outputs of a quantile regression forest (Meinshausen, 2006), assuming 
the prediction error is normally distributed:  

Equation 6: variance = ������������������� �� 

For the IC method, the P and Ca maps on log-scale were used directly as input for the 
P transfer function, which requires log-transformed input for the nutrients in M3. 
 

 Evaluation 
To evaluate the maps, grid predictions at the set-aside evaluation locations were 
compared to the observed (predicted for P-Olsen, Exch-K, yield and yield-limiting 
nutrient) values. No grid predictions could be derived at 29 out of 251 evaluation 
locations, which were located outside the prediction area. The remaining 222 evaluation 
locations were used to compute a set of evaluation statistics, including the mean error 
(ME) which is a measure of prediction bias, the root mean squared error (RMSE) as a 
measure for prediction accuracy, and the Modelling Efficiency Coefficient (MEC; 
Janssen and Heuberger, 1995; Equation 7). The MEC is a measure of how well the 
model performs compared to using the mean of the calibration dataset as a predictor:  
 

Equation 7: MEC = 1 - ∑��������∑���������
 

In which P refers to grid predictions extracted on evaluation locations i, Oi refers to 
values observed at evaluation locations i, and Ō to the mean value of the calibration 
data. The MEC is a unitless goodness-of-fit statistic that measures deviation of the 
predicted values from the 1:1 line and allows comparison with similar models from 
other studies. 
 

 Software 
All analyses for this study were done with the statistical software R (version 3.6.3; R 
core team, 2020). Plots were made using the spplot (sp package, version 1.4-2; Bivand 
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et al., 2013; Pebesma and Bivand, 2005) and ggplot (ggplot2 package, version 3.3.2; 
Wickham, 2016) functions. For application of the P and K transfer functions and the 
random forest models, the generic predict function of the stats package (version 3.6.2), 
was used. Random forest models and quantile regression forests were fitted with the 
ranger package (version 0.12.1; Wright and Ziegler, 2017). Spatial data processing was 
done with the sp and raster (version 3.3-13; Hijmans, 2020) packages.  
 

 Results 
 

 Input point data  
Data that were excluded based on P-M3, Ca-M3, pH or QUEFTS limits, were located 
across Rwanda, but tended to be clustered in the north-west and centre (Figure 1). 
Calibration and evaluation data represented the total dataset well in terms of spatial 
coverage. Data distributions of the soil parameters were similar between the calibration 
and evaluation datasets (Table 2); distributions were furthermore relatively similar to 
the total dataset (Table 1), except for Ca-M3 and P-M3, of which most descriptive values 
were lower than the original dataset because of the application of limits. 
 
Table 1: Descriptive statistics of the soil parameters in the original IFDC dataset (n = 999)  

 
 
 
 
 
 
 
 
 
 

 
Table 2: Descriptive statistics of Al, Ca, Fe, P and K in Mehlich 3, pH and SOC of the calibration 
(C; n = 591) and evaluation (E; n = 251) datasets. 

 
pH 
- 

SOC 
(g kg-1) 

Mehlich 3 (mg kg-1) 

P K Al Ca Fe 
Min. 3.2 2.2 0.2 14 342 51 61 
1st Q 4.9 16.8 5.4 83 913 398 125 
Median 5.6 20.6 9.3 153 1140 792 177 
Mean 5.6 21.1 29.6 226 1182 1192 201 
3rd Q 6.2 25.2 22.1 267 1400 1480 260 
Max. 8.5 42.2 950 2960 2590 9800 764 

 
pH 
- 

SOC 
(g kg-1) 

Mehlich 3 (mg kg-1) 

P K Al Ca Fe 

C E C E C E C E C E C E C E 

Min. 4.0 4.0 2.2 9.4 0.2 1.2 14 31 342 379 57 107 61 66 

1st Q 4.9 4.9 16.5 16.5 5.0 5.0 80 79 939 875 389 360 123 128 

Median 5.4 5.4 19.9 20.2 8.2 8.2 142 145 1160 1160 705 691 171 178 

Mean 5.5 5.5 20.7 20.4 13.7 12.7 194 185 1190 1184 913 898 195 195 

3rd Q 6.0 5.9 25.0 23.8 15.9 16.2 246 215 1410 1465 1275 1220 255 248 

Max. 7.9 7.9 42.2 34.4 105 66.2 1070 952 2590 2390 3330 3490 533 449 
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 Soil maps 
For the IC method, the degree to which the individual soil parameters could be 
predicted from available covariates, varied substantially (Table 3). Variation in Ca-M3 
and Fe-M3 was described best, with MEC values above 0.50, followed by pH (MEC = 
0.45), Al-M3 (MEC = 0.39) and SOC (MEC = 0.37). Variation in K-M3 and P-M3 was 
described less well, with MEC values of 0.23 and 0.07 respectively. For most properties, 
ME values were small compared to the mean values in the calibration and evaluation 
sets (Table 2) and relatively small compared to the RMSEs. For some soil properties, 
such as Ca and pH, the ME was relatively large compared to the RMSE. RMSE values 
furthermore are relatively high compared to mean values in the calibration and 
evaluation sets (Table 2), especially for P, K and Ca, indicating predictions are associated 
with large uncertainty. 
 
Table 3: Evaluation statistics for the maps developed with the interpolate-then-calculate (IC) 
method. Statistics for K, P and Ca are given on log-transformed and original scale, after back-
transformation. K, P, Al, Ca and Fe in Mehlich 3 (in mg kg-1). 

 
Table 4: Evaluation statistics for the P-Olsen (mg kg-1) and Exch-K (mmol kg-1) maps developed 
with the interpolate-then-calculate (IC) method. Statistics for P-Olsen are given on log-
transformed and original scale, after back-transformation 

 
 
 
 

 
 Application of transfer functions 

For the CI method, the P and K transfer functions were applied to the calibration data. 
The median predictions were 7.8 mg kg-1 for P-Olsen and 4.0 mmol kg-1 for Exch-K 
(Table 5 and Figure 4). For the IC method, P-Olsen and Exch. K maps were developed 
by applying the transfer functions to maps of the input soil properties. Evaluation of 
the P-Olsen map showed that 16% of the variation in the (modelled) P-Olsen 
observations was explained (MEC = 0.16; Table 4), compared to a MEC of 0.07 for 
P-M3 (Table 3), the main parameter in the P transfer function. P-Olsen predictions had 
a ME of -1.2 mg kg-1, indicating that they were somewhat underestimated. P-Olsen 
predictions were furthermore associated with a high degree of uncertainty, as the RMSE 

 ln(K) ln(P) ln(Ca) K P Al Ca Fe pH SOC 
ME 0.03 0.07 0.07 1.4 0.26 -7.1 123 2.3 0.10 0.03 
RMSE 0.75 1.04 0.73 257 71.6 324 927 72 0.70 4.7 
MEC 0.27 0.24 0.47 0.23 0.07 0.39 0.51 0.53 0.45 0.37 

 ln(P-Olsen) P-Olsen Exch.K 
ME 0.15 -1.2 -0.07 
RMSE 0.70 11.1 7.3 
MEC 0.19 0.16 0.22 
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of 11.1 mg kg-1 is higher than the mean value of P-Olsen predictions (9.8 mg kg-1, 
Table 5). Exch-K predictions were a linear transformation of the K-M3 grid. Not 
surprisingly, the MEC value of Exch-K predictions (0.22; Table 4) was almost identical 
to that of K-M3 (0.23; Table 3). Exch-K predictions were slightly underpredicted with 
an ME of -0.07 mmol kg-1. Similar to P-Olsen, the accuracy of Exch K predictions was 
low, with RMSE being higher than the mean of predicted values (7.3 vs 5.9 mmol kg-1).  
 

 
Figure 3: Spatial plots of pH (A), SOC (B), P-Olsen (C) and Exch-K (D) inputs required by 
QUEFTS, for the interpolate-then-calculate (IC) method. Class boundaries are based on the 
quantile distribution of the grid values, except for the P-Olsen map, where boundaries were 
adjusted to clearly represent values below the critical limit for maize (10 mg kg-1). 
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 Application of QUEFTS 
 
Data distribution 
Spatial predictions show that pH values are 
lowest (between 4.2 and 5.2) in the west and 
highest (between 6.1 and 7.2) in the east of 
Rwanda (Figure 3). Regions with the highest 
SOC values (between 25 and 38 mg kg-1) are 
clustered in the south-west, north-west and 
south-east. For a large proportion of the surface 
area of Rwanda (51%), P-Olsen predictions are 
below the critical value of maize of 10 mg kg-1 

(Bai et al., 2013; Ussiri et al., 1998), whereas for 
Exch-K, only a negligible part of the predictions 
are below the critical value of 2 mmol kg-1 
(0.03%; Chilimba et al., 1999). Smoothing is 
visible for the gridded maps of each of the four 
QUEFTS input parameters: compared to the 
calibration data of the CI method, distributions 
have become narrower as the lowest and highest 
values are under-represented compared to mean 
values (Figure 4). As a consequence of 
smoothing, median values of SOC (20.6 vs 19.9), 
pH (5.53 vs 5.44), P-Olsen (8.8 vs 7.8) and Exch-
K (5.0 vs 4.0) were higher for the gridded maps 
than for the calibration data (Table 5). Similar to 
the QUEFTS input parameters, gridded maps of 
the QUEFTS yield showed smoothing and a 
higher median value than direct QUEFTS 
predictions on the calibration points (4.0 vs 3.4 
Mg ha-1). 
 
 
Figure 4: Density plots of SOC (A), pH (B), P-Olsen 
(C) and Exch-K (D) inputs and yield (E) on 
calibration locations of the calculate-then-interpolate 
(CI) method, and extracted from the interpolate-
then-calculate (IC) maps at calibration locations. 
Vertical lines represent median values. 
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Table 5: Data distributions of QUEFTS input and yield predictions at calibration locations (C;  
n = 591) and extracted from the grids at the calibration locations  

 

Table 6: Data distributions of yield predictions on all, calibration (C) and evaluation (E) point 
locations, as well as the CI and IC predictions of the grids and on evaluation locations.  

 
 
 
 
 
 
 
 

 
Yield predictions 
Yield maps produced with the CI and IC methods show similar patterns, with lower 
yields in the west of Rwanda and higher yields in the east (Figure 5). The low-yielding 
locations in the west are under-represented in both maps however, compared to the 
yield predictions at the calibration locations, while for the IC method, the high-yielding 
locations in the east are overrepresented. The median yield prediction of the maps 
developed with the IC method was substantially higher than for maps developed with 
the CI method (4.5 vs 3.6 Mg ha-1, respectively; Table 6). In addition, despite smoothing 
of each of the four QUEFTS input variables for the IC method (Figure 4), the 
interquartile range in yield predictions was broader compared to the CI method (i.e. 3.0 
- 4.0 vs 3.6 - 5.0 Mg ha-1; Table 6).  
 
The patterns of spatial yield predictions correspond strongly with the distribution of 
pH predictions across Rwanda, and to some extent with Exch-K predictions (Figure 5 
vs Figure 3). The lowest yields (below 2.3 Mg ha-1) are found in areas with low pH, and 
low P-Olsen and Exch-K values. The high yield predictions in the east of Rwanda 
furthermore correspond to high pH, SOC and Exch-K values. 

 SOC 
(g kg-1) 

pH 
( - ) 

P-Olsen 
(mg kg-1) 

Exch-K 
(mmol kg-1) 

Yield 
(Mg ha-1) 

 C Grid C Grid C Grid C Grid C Grid 
Min. 2.2 11.5 4.02 4.40 0.4 1.3 0.4 1.3 0.4 1.2 
1st Q 16.5 18.1 4.91 5.10 5.2 6.7 2.3 3.7 2.3 3.1 
Median 19.9 20.6 5.44 5.53 7.8 8.8 4.0 5.0 3.4 4.0 
Mean 20.7 21.1 5.51 5.53 9.8 9.8 5.5 5.9 3.5 4.0 
3rd Q 25.0 23.9 6.05 5.96 12.5 12.0 6.9 7.1 4.4 4.7 
Max. 42.2 37.7 7.86 7.01 29.8 23.8 29.9 20.8 7.8 7.4 

Yield  
(Mg ha-1) 

Point data CI IC 
All C E Grid E Grid E 

Min. 0.4 0.4 0.8 1.3 1.8 1.2 2.1 
1st Q 2.3 2.3 2.4 3.0 3.0 3.6 3.5 
Median 3.4 3.4 3.3 3.6 3.5 4.5 4.3 
Mean 3.5 3.5 3.5 3.5 3.5 4.3 4.2 
3rd Q 4.4 4.4 4.3 4.0 4.0 5.0 4.9 
Max. 8.2 7.8 8.2 6.0 4.8 7.5 5.9 
n 842 591 251 355,178 251 355,178 251 
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 Yield (Mg ha-1)  Yield-limiting nutrient 
   

 
 
 
 
 
 
 
 

 

 Figure 5: Yield predictions (A) at the calibration 
data (n = 591) and for maps developed with the 
(B) calculate-then-interpolate (CI) and (C) 
interpolate-then-calculate (IC) methods. 
Categories are based on the quantile distribution 
of the calibration points. Note that distributions 
have different minimum and maximum values. 

 Figure 6: Predicted yield-limiting nutrient (A) 
at the calibration locations (n = 591) and for 
maps developed with the (B)  calculate-then-
interpolate (CI) and (C) interpolate-then-
calculate (IC) methods. Percentages indicate 
the proportion of data being yield-limited by 
N, P or K. 
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The IC method overpredicted maize yields (Figure 7, resulting in a ME of 0.8 Mg ha-1, 
compared to a relatively small overestimation of 0.04 Mg ha-1 for the CI method. 
Evaluation statistics furthermore indicate that IC yield predictions are less accurate 
compared to results of the CI method (MEC = -0.03 vs 0.28 and RMSE = 1.54 vs 1.27 
Mg ha-1 respectively). Despite the poor MEC and RMSE results for IC, which are mostly 
caused by overprediction of yields, correlation coefficients of both evaluation plots are 
similar, with 0.444 and 0.439 for the CI and IC methods, respectively (Figure 7). This 
indicates that the IC and CI methods differentiate equally well between higher and lower 
yielding locations. In accordance with the data distribution of the grids, yield predictions 
by the IC method at the evaluation locations furthermore spanned a broader range than 
for those by the CI method (Table 6). 
 

 
Figure 7: Evaluation plots of yield predictions by the (A) calculate-then-interpolate (CI) and (B) 
interpolate-then-calculate (IC) methods. The x-axis represents grid predictions extracted on 
evaluation locations. Lines represent the 1:1 lines.  
 
Yield-limiting nutrient 
For both the CI and IC methods, P was predicted most often as the yield-limiting 
nutrient, for 76% and 65% of the grid cells, respectively (Figure 6). These are higher 
percentages compared to the calibration data, for which P was predicted to be yield-
limiting at 52% of the locations. N and K were yield-limiting at 22% and 26% of the 
calibration locations. The CI method underestimated both N and K as yield-limiting 
nutrient compared to the calibration data, as only 12% of the grid cells were predicted 
to be yield-limiting for each nutrient. The IC method overestimated N as yield-limiting 
(34%), but strongly underpredicted K as yield-limiting (2%). 
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Patterns of P-Olsen predictions strongly overlapped with predictions of the yield-
limiting nutrient (Figure 6 vs Figure 3). Generally speaking, P was identified as yield-
limiting in regions with P-Olsen values below 12.5 mg kg-1, irrespective of soil pH and 
SOC. In areas with P-Olsen values above 12.5 mg kg-1, N tended to be yield-limiting. 
Although K was strongly underpredicted to be yield-limiting, areas with K as yield-
limiting nutrient tended to have SOC values above 22 g kg-1.  
 
Evaluation of QUEFTS yield-limiting nutrient predictions showed that the CI method 
predicted the yield-limiting nutrient correctly at 133 out of 222 (60%) evaluation 
locations, whereas IC predicted the yield-limiting nutrient correctly at 120 out of 222 
(54%) evaluation locations (Table 7 and Table 8). The CI method predicted P as yield-
limiting more accurately than the IC method (110 vs 87 out of 126 locations), whereas 
the opposite was true for N (17 vs 31 out of 56 locations). Both methods perform poorly 
when it comes to predicting K as the yield-limiting nutrient, with only 6 and 2 out of 40 
cases predicted correctly for the CI and IC method, respectively. 
 

Table 7: Confusion matrix of the observed 
vs predicted yield-limiting nutrient at the 
evaluation locations for the CI method.  

 Table 8: Confusion matrix of the observed 
versus predicted yield-limiting nutrient at 
the evaluation locations for the IC method. 

CI 
Predicted  

IC 
Predicted 

N P K Tot. Tot. N P K Tot. Tot. 

O
bs

er
ve

d 

N 17 32 7 56 25% 

O
bs

er
ve

d 

N 31 25 0 56 25% 
P 6 110 10 126 57% P 38 87 1 126 57% 
K 3 32 5 40 18% K 11 27 2 40 18% 

Tot. 26 174 22 222  Tot. 80 139 3 222  
Tot. 12% 78% 10%  59% Tot. 36% 63% 1%  54% 

  

 Discussion 
 

 Comparing methods 
This study showed three main findings: i) the choice of method has large effects on the 
outcomes: yield and yield-limiting nutrient predictions were more accurate for the CI 
method than the IC method, as the latter caused a large overprediction of yields across 
Rwanda, ii) the range in yield predictions was wider for the IC method than for the CI 
method, and iii) large errors were associated with spatial predictions of both methods. 
 
Compared to Kempen et al. (2019) and Orton et al. (2014), differences between the CI 
and IC methods were more pronounced. This confirmed our hypothesis and is most 
likely related to the non-linear nature of QUEFTS (Heuvelink and Pebesma, 1999). In 
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contrast to our findings, Heuvelink and Pebesma (1999) argued that the IC method will 
generally lead to more accurate results than the CI method. They attribute this to the 
optimal use of available information, as each input parameter of the IC method has a 
specific correlation structure with the covariates. The CI method does not take these 
individual correlation structures into account, as only the model output is interpolated. 
Although in this study the IC method performed worse than the CI method, due to an 
overprediction of yields, we hypothesise that the broader range in yield predictions can 
be attributed to the more optimal use of covariate data.  
 
We hypothesise that the CI method performed better than the IC method, because of 
the effects of smoothing and applications of limits (see below). However, although 
spatial yield predictions of the CI method were better compared to the IC method, 
RMSE still was 1.27 Mg ha-1. This level of error corresponds to variability of maize 
yields within smallholder farms (Tittonell et al., 2007; Vanlauwe et al., 2006). This raises 
the question whether spatial application of QUEFTS, can be used to develop fertiliser 
recommendations on a national scale. 
 
Smoothing 
A striking difference between both methods was that IC yields were overestimated 
compared to CI yield predictions (Table 6). We believe this is caused by smoothing: 
data distributions of predictions (i.e. the soil maps) were more narrow than the datasets 
on which the predictions were based. For IC, smoothing as a result of spatial 
interpolation occurred early on in the workflow (Figure 2) and for each of the seven soil 
parameters used as input for the transfer functions and QUEFTS. For the CI method, 
on the other hand, smoothing occurred only once, at the end when the final yield and 
yield-limiting nutrient predictions at the calibration locations were interpolated.  
 
Smoothing led to a smaller range in predictions for the QUEFTS input parameters, but 
also to higher median values for P-Olsen (7.8 vs 8.8 mg kg-1) and Exch-K (4.0 vs 5.0 
mmol kg-1; Table 5). Although smoothing had a limited effect on median pH and SOC 
values, predictions were relatively more centred around the median after spatial 
interpolation. Low pH values (<4.7) are unfavourable for N availability, high pH values 
(>6.8) are unfavourable for K availability and P availability is suboptimal below pH 6 
and above pH 6.7 (Sattari et al., 2014). After interpolation, data distributions were more 
centred around pH 5.0 - 6.5, which could be considered the optimal range for availability 
of each of the three nutrients. In combination with the overestimation of the lowest P-
Olsen and Exch-K values, we hypothesise that smoothing of pH predictions is the main 
reason that yields were overpredicted for the IC method compared to the CI method.  
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The way and extent to which smoothing affects spatial predictions, depends on the 
predictive power of the covariates. In regression, variation in the data is the sum of the 
variation among the regression estimates and the residual variation (Snedecor and 
Cochran, 1989). In case covariate data explain the variation of a soil parameter 
completely, the residual variance equals zero and the variance of the predictions thus 
equals the variance of the data, hence no smoothing will occur. In other words, the 
lower the degree of variation in the target variable that can be explained by the covariates 
(i.e. MEC), the higher the degree of smoothing. The MEC value was 0.37 for SOC, 0.45 
for pH, 0.16 for P-Olsen and 0.22 for Exch-K, while the MEC of the QUEFTS yield 
predictions with the CI method was 0.28. Variation in QUEFTS yield is thus explained 
less well by the covariates than variation in SOC and pH, but better than variation in 
P-Olsen and Exch-K. As SOC and pH play a prominent role in QUEFTS yield 
predictions, we hypothesise that the relatively good predictability of these soil 
characteristics is the reason for the wider range in yield predictions for the IC method. 
 
From an agronomic perspective, predicting low P-Olsen and Exch-K values accurately 
is more relevant than predicting high values accurately. Although depending on other 
soil and agro-ecological properties that control crop yield, the critical P-Olsen 
concentration below which P is expected to be yield-limiting for maize, is 10 mg kg-1 
(Bai et al., 2013; Ussiri et al., 1998). The Exch-K concentration below which K is 
expected to be yield-limiting is 2 mmol kg-1 (Chilimba et al., 1999). Smoothing thus led 
to an overprediction of values in the agronomically relevant range. As a consequence, 
QUEFTS P and K fertiliser recommendations in those regions would be inadequate for 
sustainably increasing yields.  
 
Smoothing can be avoided by using stochastic simulation (Heuvelink and Pebesma, 
1999). Such approach, however, requires a geostatistical modelling framework instead 
of machine learning and was beyond the scope of the current study. 
 
Data limits 
Application of data limits for use of the transfer functions and QUEFTS increased 
differences between outcomes of both methods. For the CI method, application of 
limits led to the exclusion of 108 out of 699 data points for the calibration set (591 
points remaining). For the IC method, maps were developed based on all 699 calibration 
data points and limits were applied to the maps. Application of limits mostly led to 
exclusion of data points with high values. Basing maps based on the complete 
calibration set thus resulted in higher yield predictions for the IC method. Developing 
soil maps based on the subset of 591 calibration points, resulted in a lower 
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overprediction of yields for the IC method, although the average yield still exceeded 
that of the CI method (results not presented). The yield predictions by the IC method 
furthermore still spanned a broader range than the yields predicted by the CI method, 
indicating that it is smoothing rather than application of limits that caused the relatively 
narrow range in CI yields. 
 

 Limitations  
 
Evaluation 
To evaluate the extent to which QUEFTS spatial predictions correspond to reality, 
external evaluation of the yield maps developed in this study is indispensable. To this 
end, a dataset with unfertilised maize yields from a substantial number of replicated, 
geo-referenced field trials is needed. Trial locations should ideally be spread across 
Rwanda, covering a wide range in values for each of the relevant soil properties. Such 
dataset for Rwanda was not available to us and compiling an evaluation dataset from 
literature is complicated by e.g. different study designs or missing information. As more 
data are becoming (publicly) available, evaluation of QUEFTS spatial predictions may 
be possible in the future.  
 
Sources of uncertainty 
In the process of developing maps with QUEFTS, several sources of uncertainty can 
be identified. Although error propagation analysis was considered outside the scope of 
this study, the different sources of uncertainty will be discussed here.  
 
Firstly, soil analysis data contain measurement errors, which can be attributed to varying 
measurement conditions, methods and measuring instruments (Van Leeuwen et al., 
2021). As a consequence, results can differ among laboratories. Uncertainty associated 
with the Mehlich 3 extraction method is of considerable importance for this study, as 
five of the seven soil properties (P, Al, Ca, Fe and K) used as input for QUEFTS were 
determined with this analytical procedure. As part of a different study, a small subset (n 
= 19) of the IFDC samples was analysed at the CBLB laboratory of Wageningen 
University for M3 extractable nutrients using the same protocol as used in chapter 2. 
The M3 measurements by CropNuts were roughly 5% (P), 23% (Al), 10% (Ca) and 17% 
(Fe) higher compared to CBLB results. For K, no significant differences were found. 
Application of the P transfer function to the IFDC data led to an 19% overestimation 
of P-Olsen predictions compared to using CBLB measurements. This confirms that 
inter-laboratory variability for a given method, when used as input for models, can have 
a substantial effect on model output, as also shown by Schut and Giller (2020).  
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Secondly, the accuracy of random forest predictions were modest to poor for most soil 
properties, as RMSE values were relatively high compared to mean values (Table 2 and 
Table 3). Available covariate data generally explained variation in soil properties only to 
a limited extent. In line with Hengl et al. (2017a), variation in P-M3 was described poorly 
compared to other nutrients. Reasons may include historic management which can 
affect P availability (Njoroge et al., 2019), P fixation in tropical soils (de Campos et al., 
2018) and other soil properties which affect P extractability, such as pH (e.g. Penn et 
al., 2018). As P-M3 is the most relevant parameter in the P transfer function, P-Olsen 
predictions were not modelled well (MEC = 0.16). Exch-K predictions were only 
slightly better (MEC = 0.22). Although variation in pH (MEC = 0.45) and SOC (MEC 
= 0.37) was explained better based on covariate data, the combination of uncertainty 
associated with each of the QUEFTS input parameters culminated in a large error in 
yield predictions (RMSE of 1.54 Mg ha-1; Figure 5).  
  
Thirdly, the use of transfer functions is necessary in case required input data are not 
available, but introduce additional uncertainty (Heuvelink and Pebesma, 1999). The 
uncertainty associated with the P and K transfer functions used in this study, can cause 
deviations in QUEFTS yield of more than 10%, compared to using measured P-Olsen 
and Exch-K values (chapter 2). Finally, QUEFTS yield predictions contain uncertainty; 
when observed maize yields were compared to QUEFTS predictions, MEC values of 
0.84 and 0.67 were reported by Tabi et al. (2008) and by Shehu et al. (2019) after partial 
reparameterization of QUEFTS. 
 
Spatial-temporal heterogeneity  
Agronomic practices such as fertiliser application, liming and organic matter 
management impact soil nutrient availability, pH and SOC and can differ between 
farmers depending on socio-economic status and within-farm depending on distance 
from the homestead (Chikowo et al., 2014; Zingore et al., 2007). Njoroge et al. (2019) 
furthermore showed that historic management can impact yields even seven growing 
seasons after changing practices. Management practices typically vary at short spatial 
scales and are difficult to capture with (spatially exhaustive) environmental covariates. 
Hence, it is challenging to capture management effects on soil conditions in digital soil 
mapping models, which contributes to poor performance of the prediction models for 
soil nutrients. Soil maps developed at regional or national level may therefore lack the 
precision to describe short-distance spatial heterogeneity (Vanlauwe et al., 2015) and 
one should be careful to use these to derive information at field level. Maps furthermore 
are not able to capture temporal change and maps of soil parameters that are subject to 
short-term change should be used and interpreted with caution (Hengl et al., 2017b). 
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Data transformation 
Adding half the prediction variance is required to ensure an unbiased estimation of the 
mean (Lark and Lapworth, 2012) when back-transforming a log-transformed variable. 
In some situations, existing soil maps are available, but not the underpinning data 
points. If these maps were created by back-transformation of log-scale predictions, 
variables would be log-transformed a second time in the process of applying the P 
transfer function. As a consequence, distributions of these log-scale predictions will 
have a higher mean than the initial log-scale predictions. In this study, log-scale 
predictions of P-M3 and Ca-M3 were used directly as input for the P transfer function. 
When using log-transformed P-M3 and Ca-M3 grid predictions on the original scale 
(after back-transformation) as input for the P transfer function, the median P-Olsen 
predictions increased from 9.9 to 16.8 mg kg-1. The critical P-Olsen range, below 10 mg 
kg-1 for maize is thus strongly under-represented as a result of this ‘transformation error’ 
and may potentially have a large effect on fertiliser recommendations. The magnitude 
of this error depends on which and how many nutrients were log-transformed twice. 
As P-M3 is the most relevant parameter in the P transfer function (chapter 2), it had a 
substantial effect. When using maps developed with unknown methods as input for the 
P transfer function, or any model that requires log-transformed parameters as input, 
one should take into account that the model output may be substantially overestimated 
as a result of the transformation error. 
 

 Opportunities 
Several developments may improve QUEFTS spatial predictions of yield and most 
yield-limiting nutrient. The large error associated with spatial yield predictions can 
mainly be attributed to the low predictive power of the covariates to explain variation 
in the soil and (for this study modelled) yield observations. As high (50-100 m) 
resolution covariate layers are becoming more and more available, spatial prediction 
models for soil and agronomic variables are likely to be improved (Hengl et al., 2017b; 
Poggio et al., 2021).  
 
QUEFTS spatial predictions can also improve strongly in case P-Olsen measurement 
data become available. Variation in P-Olsen predictions was described least well of the 
four QUEFTS input parameters. This can partly be attributed to the use of a transfer 
function rather than measurements, and due to the uncertainty associated with each of 
the input maps for the P transfer function. Alternatively, Shehu et al. (2019) 
reparametrized QUEFTS using P-M3 instead of P-Olsen, which enables (spatial) 
application of QUEFTS without the use of the P transfer function.  
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QUEFTS spatial predictions can be adjusted to local conditions by using covariate 
layers directly as input. In this study, the QUEFTS maximum yield (Ymax) was assumed 
to be constant at 10 Mg ha-1, but is likely to vary strongly in practice depending on local 
growing conditions. Covariate layers containing information on e.g. rooting depth, 
water availability or expected yield gap, currently not accounted for in this study, could 
be used to adjust the Ymax parameter to local conditions, thereby improving the accuracy 
of QUEFTS predictions (Leenaars et al., 2018a, 2018b; Steinbuch et al., 2016). 
 

 Conclusions  
Spatial predictions of QUEFTS yield and yield-limiting nutrient were more accurate for 
the CI method than the IC method. The IC method overestimated yields, caused by the 
effect of smoothing on the distributions of the QUEFTS input (soil) parameters. Based 
on the results of this study, the CI method would thus be the preferred method for 
spatial application of QUEFTS. However, although the CI method performed better 
than the IC method, yield predictions were associated with large errors in our case study. 
This indicates that QUEFTS should be applied spatially with caution. 
 
The large error of QUEFTS spatial predictions is caused by the low predictive power 
of the covariates to explain variation in the QUEFTS input parameters. When higher 
quality input soil maps become available, spatial application of QUEFTS could provide 
a low-cost, science-based alternative to national blanket recommendations. Evaluation 
with independent geo-referenced field data of measured yields remains necessary 
however, to gain insights in the current performance, as well as opportunities for 
improvement of QUEFTS spatial predictions. 
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Abstract 
Fertilisation of crops with zinc (Zn) is considered important to enhance agricultural 
productivity and combat human deficiencies in sub-Saharan Africa. However, it is 
unclear on which soils Zn fertilisation can lead to higher yields and increase grain Zn 
concentrations. This study aimed to find soil properties that predict where soil Zn is 
limiting maize yields and grain Zn concentrations, and where yields and grain Zn 
concentrations respond positively to Zn fertilisation. Zinc fertiliser omission trials were 
set up at multiple farm locations in Kenya (n = 5), Zambia (n = 4) and Zimbabwe (n = 
10). Grain yields and tissue Zn concentrations were analysed from plots with a full 
fertiliser treatment as compared to plots where Zn was omitted. Zinc uptake (R2 = 0.35) 
and grain Zn concentrations (R2 = 0.26) in plots without Zn fertiliser could be related 
to a limited extent to soil Zn measured in extractions that measure labile Zn. A positive 
maize yield response to soil Zn fertilisation was found at only two out of nineteen 
locations, despite soil Zn levels below previously derived critical concentrations at most 
locations. Neither soil properties nor plant concentrations were able to explain maize 
yield response to Zn fertilisation. However, a positive response in Zn uptake and grain 
Zn concentrations to Zn fertilisation was found at the majority of sites. We conclude 
that soil Zn fertilisation can increase maize grain Zn concentrations, especially in soils 
with low pH and organic carbon content. Predicting a yield response to Zn fertilisation 
based on soil properties remains a challenge.  
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 Introduction  
Maize (Zea Mays) is an important staple crop in sub-Saharan Africa (SSA). It provides a 
significant proportion of the human daily intake of calories and mineral nutrition 
(Goredema‐matongera et al., 2021). The production of maize in SSA is dominated by 
smallholder farming, generally characterized by little use of inputs on soils with low 
fertility (Santpoort, 2020; Ten Berge et al., 2019). As a result, maize yields are often 
limited by multiple nutrient deficiencies, which can be addressed by the use of mineral 
and organic fertilisers (Goredema‐matongera et al., 2021; Ten Berge et al., 2019; 
Vanlauwe et al., 2015). It has been recognized decades ago that soils which have been 
cropped with little or no inputs for prolonged periods lack not only the macronutrients 
but also micronutrients to sustain crop growth (Kang and Osiname, 1985; Rodel and 
Hopley, 1972). Nevertheless, soil fertility and crop nutrition research in SSA has mainly 
focused on macronutrients, i.e. nitrogen (N), phosphorus (P) and potassium (K) (Kihara 
et al., 2017; Stoorvogel et al., 1993; Vanlauwe et al., 2015). Research on micronutrient 
deficiencies in crops has received less frequent attention (Mutsaers et al., 2017).  
 
With regards to maize, studies on yield response to micronutrient fertilisation in SSA 
have often been conducted for only limited sets of locations with either a positive or 
absent yield response (Abbas et al., 2007; Abunyewa and Mercer-Quarshie, 2003; 
Chiezey, 2014; Chilimba et al., 1999; Eteng et al., 2014; Njoroge et al., 2018; Osiname 
et al., 1973; Shehu et al., 2018; Yerokun and Chirwa, 2014). Other studies have focused 
on the effect of micronutrient fertilisation on yields at the regional or global scale in 
order to understand where micronutrients may be yield-limiting. In 1990, Sillanpää 
(1990) published the results of 190 single-micronutrient omission field trials distributed 
over 15 countries. It was found that among all micronutrients, zinc (Zn) was most of 
the time yield-limiting, with a positive yield response to Zn fertilisation for 49% of all 
locations. More recently, maize nutrient omission trials including treatments with a 
mixture of secondary nutrients and micronutrients have been conducted across various 
countries in SSA. Kihara et al. (2017, 2016) concluded that application of secondary and 
micronutrients (calcium (Ca), magnesium (Mg), sulphur (S), boron (B) and zinc (Zn)) 
increased maize yields in several SSA countries by 0.8 Mg ha-1 on average, an increase 
of 25% compared to application of NPK alone. Similar results were found by 
Wortmann et al. (2019), who reported a mean increase in maize yields between 20 and 
30% when S, Zn and B were fertilised. These studies suggest that secondary and 
micronutrient deficiencies limit maize yields across SSA. On the other hand, Rurinda et 
al. (2020) concluded that the overall maize yield response to secondary and 
micronutrients (S, Ca, Mg, Zn, and B) was small, i.e. between 0 and 0.3 Mg ha-1, across 
all studied sites in Nigeria, Tanzania and Ethiopia.  
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The aforementioned studies by Kihara et al. (2017) and Wortmann et al. (2019) suggest 
that deficiencies of secondary and micronutrients limit maize yields across SSA. Since 
mixtures of secondary and micronutrients were used in these studies, it remains unclear 
which particular micronutrients are deficient at which locations. Furthermore, using 
mixtures of nutrients makes it challenging to identify soil properties that explain 
particular nutrient limitations for maize growth (Kihara et al., 2017). Such analyses are 
however indispensable for extending existing science-based fertiliser recommendation 
schemes that currently include only NPK, with secondary and micronutrients (Rurinda 
et al., 2020; Sattari et al., 2014). 
 
Apart from yield quantity (Abbas et al., 2007; Abunyewa and Mercer-Quarshie, 2003; 
Kihara et al., 2017; Manzeke et al., 2014; Njoroge et al., 2017; Sillanpää, 1990), Zn is 
also relevant for human health and insufficient intake can result in severe health issues. 
More than 17.3% of the global population is prone to insufficient Zn intake (Kiran et 
al., 2022) and 50% of all children in SSA are estimated to be at risk of Zn deficiency 
(Black et al., 2008). The risk of human Zn deficiency is considered high especially in 
Eastern and Southern African countries (Joy et al., 2014). Micronutrient deficiencies in 
humans are widespread in regions where crops are grown in soils with low 
micronutrient levels, as soil availability determines plant uptake and therefore 
micronutrient concentrations in the edible parts of plants (Cakmak, 2004; Dimkpa and 
Bindraban, 2016; Gashu et al., 2021; Manzeke et al., 2012). Berkhout et al. (2019) indeed 
found significant relations between soil concentrations of micronutrients such as Zn 
and Cu in SSA, and prevalence of child mortality, stunting, wasting and underweight, 
which are typical health problems associated with micronutrient deficiencies. However, 
current assessments of possible micronutrient deficiencies among humans are based on 
standard food composition tables and consequently do not take into account variability 
in soil properties and associated soil Zn availability, which can significantly affect grain 
Zn concentrations, and subsequent Zn intake by humans (Gashu et al., 2021; Manzeke 
et al., 2012). It has been shown that increasing soil Zn availability through fertilisation 
is a feasible strategy to increase grain Zn concentrations, and thereby reduce the risk for 
human Zn deficiency (Cakmak, 2008; de Valença et al., 2017; Joy et al., 2015; Manzeke 
et al., 2012), also known as agronomic biofortification (Kiran et al., 2022). Next to soil 
Zn availability, the genetic variation among cultivated maize varieties has great 
implications on the Zn uptake from the soil, and the translocation of Zn to the edible 
parts (Brkic et al., 2004; Oikeh et al., 2007). Knowledge on the effect of soil properties 
and maize variety on total Zn uptake and associated grain Zn concentrations, and how 
these factors affect the effectiveness of agronomic biofortification, can enhance target-
based intervention programs to combat human Zn deficiencies. 
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Soil Zn availability for plant uptake decreases with increasing pH, due to precipitation 
and increased adsorption to reactive surfaces such as soil organic matter and metal 
(hydr)oxides (Alloway, 2009; Van Eynde et al., 2022). With increased amounts of soil 
organic matter, the availability of Zn may decrease due to increased adsorption (Van 
Eynde et al., 2022), or increase due to soil organic matter mineralization (Tella et al., 
2016) or formation of soluble organic Zn complexes (Hernandez-Soriano et al., 2013). 
Different chemical extractions have been formulated to evaluate soil Zn availability for 
plant uptake, the associated yield response to Zn fertilisation (Chilimba et al., 1999; 
Duffner et al., 2013; Lindsay and Norvell, 1978; Mertens and Smolders, 2013) and Zn 
concentrations in the edible plant parts (Kihara et al., 2020; Manzeke et al., 2012). For 
example, a soil test with diethylenetriaminepentaacetic acid (DTPA) as chelating agent 
is widely used for near-neutral and calcareous soils (Lindsay and Norvell, 1978), while 
others have used acidic soil extracts such as HCl or Mehlich 3 (M3) for more acidic soils 
(Alloway, 2009; Mehlich, 1984; Mertens and Smolders, 2013). The DTPA and M3 soil 
extracts are currently most often used for Zn fertiliser recommendations and critical 
extractable soil Zn levels have been derived below which a positive maize yield response 
to Zn-fertilisation can be expected. Based on field and greenhouse experiments, these 
critical soil Zn levels range from 1 - 2.5 mg kg-1 Zn-M3 (Chilimba et al., 1999; Cuesta et 
al., 2020; Wendt, 1995), or 0.5 - 1 mg kg-1 Zn-DTPA (Chilimba et al., 1999; Cuesta et 
al., 2020; Lindsay and Norvell, 1978). Alternatively, weak salt extractions such as 0.01 
M CaCl2 have been used for measuring soil available Zn (Houba et al., 2000), assuming 
that these extractions approximate more the directly available pool for plant uptake 
(Duffner et al., 2013; Menzies et al., 2007). Validation of soil extracts such as DTPA, 
M3 or 0.01 M CaCl2 as diagnostic criteria for Zn availability to field-grown maize, 
however, is limited.  
 
Therefore, this study aims to test whether soil properties can be used to predict where 
Zn availability is limiting maize yields (quantity) and grain Zn concentrations (quality), 
and whether the application of Zn fertilisers increases yield quantity and/or quality. 
Using Zn fertiliser omission trials in several African countries, we aimed to test the 
following hypothesis, namely that crop yield, Zn uptake and grain Zn, and their 
response to Zn fertilisation, can be predicted based on soil parameters that have been 
shown before to predict Zn in the soil solution: pH, soil organic matter, the Zn quantity, 
and perhaps metal (hydr)oxides (Van Eynde et al., 2022). Findings from this study will 
help to understand under which circumstances Zn fertilisation can increase maize yields, 
as well as grain Zn concentrations in SSA.  
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 Materials and Methods 
 

 Field trials 
Researcher-managed omission trials with maize were executed at 19 locations in three 
countries: Kenya (5 locations with 5 replications), Zambia (4 locations with 4 
replications) and Zimbabwe (10 locations with 6 replications). Based on soil maps 
(Figure 1), soil Zn levels were expected to be generally low (i.e. below the potentially 
critical level of 2.5 mg kg-1 Zn-M3; Chilimba et al., 1999) at all locations.  
 
The Zn fertiliser omission trials were executed as part of a larger experiment, in which 
zinc, copper and boron fertiliser omissions were studied. The plots with the different 
treatments were laid out as a randomized block design. As the focus of this work is on 
Zn, only details of the relevant treatments are presented. These include a full treatment 
including all nutrients (hereafter denoted as “full”) and a Zn omission treatment 
including all nutrients except Zn (hereafter denoted as “-Zn”).  
 
The maize variety, planting densities, plot sizes, fertiliser application rates and number 
of replications, differed between countries based on the availability of resources and 
local practices. Details of each of these trials are specified below; rainfall data are 
presented in the supplementary information (Figure S1). 

Figure 1: Locations of the field trials in Kenya (A), Zambia (B) and Zimbabwe (C). The maps 
represent soil Zn concentrations in a Mehlich-3 (Zn-M3) extraction (Hengl et al., 2021). 
 
Kenya 
Field trials in Kenya were set up in collaboration with the International Plant Nutrition 
Institute (IPNI), Nairobi, Kenya. They were conducted in the long rainy season in 2018 
(March - August) at five on-farm locations in Siaya county, Western Kenya (Figure 1), 
in the humid cool tropics agroecological zone (Sebastian, 2009). Soils were classified as 
Haplic Acrisols (Hengl et al., 2017). During the ten preceding cropping seasons prior to 
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this experiment, these locations had been used for NPK fertiliser omission trials in 
which no inputs were applied besides chemical N, P and K fertilisers (Njoroge 
Kinyanjui, 2019). Short season maize variety DK8031 was used at all locations. Two 
seeds were planted per hole with a plant spacing of 25 cm × 75 cm and were thinned 
to one plant per hole after emergence, resulting in a final plant density of 53,333 plants 
ha-1. Plot sizes were 4.5 m × 4.5 m, with five replicates per treatment at each location. 
Weeding and pest control was done when needed. The following fertiliser application 
rates (in kg ha-1) were used: 350 N, 180 P, 120 K, 59 Ca, 20 Mg, 31 S, 5 Zn, 5 copper 
(Cu) and 5 B. Nitrogen was applied as urea in three equal splits, with a basal application 
at planting, and two topdressings at stages V6 and V10 of plant growth. Phosphorus 
and Ca were applied as TSP, K as muriate of potash (KCl), Mg and S as MgSO4, Zn as 
ZnSO4, Cu as CuSO4 and B as Solubor. The P and K fertilisers plus those supplying 
secondary and micronutrients were applied together in the planting hole during 
planting. At physiological maturity, a net plot of three rows of 3 m length (6.75 m²) was 
harvested from the inside of each plot, omitting border plants to avoid edge effects. 
 
Zambia 
Field trials in Zambia were set up in collaboration with students in agricultural sciences 
from the Foundations for Cross-cultural Education (FCE) training centre in Zambia. 
Micronutrient omission trials were conducted from November 2018 - April 2019 at the 
FCE training centre and at three on-farm locations in surrounding villages in the Masaiti 
district, Copperbelt, Central Zambia (Figure 1). These locations are situated in the 
semiarid cool tropics agroecological zone (Sebastian, 2009) and the soils were classified 
as Haplic Ferralsols (Hengl et al., 2017). At each location, legumes were cultivated in 
the preceding season. At the training centre, compost had been added annually to the 
field to conserve soil fertility. At the three on-farm locations, no organic or chemical 
inputs had recently been applied and crop residues had usually been burned in the fields. 
At each location, the open pollination maize variety Afric1 (Klein Karoo, South Africa) 
was used. Three seeds were planted per hole with a plant spacing of 60 cm × 75 cm. 
Two weeks after emergence the plants were thinned to two plants per hole, resulting in 
a final plant density of 44,444 plants ha-1. Plot sizes were 4.5 m × 4.2 m. Weeding and 
pest control was done when needed. The following fertiliser application rates (kg ha-1) 
were used: 180 N, 35 P, 100 K, 26 Ca, 2.3 Mg, 5.6 S, 3 Zn and 3 B. Nitrogen was applied 
as urea, as one basal application with the other elements during planting, and two 
topdressings. Boron was applied as borax, mixed with the urea and applied only during 
the two topdressings at stages V6 and V10 of plant growth. Phosphorus and Ca were 
applied as TSP, K as muriate of potash (KCl), Mg as MgSO4 and Zn as ZnSO4. Copper 
was not applied given the high soil concentrations found during preliminary lab analysis. 
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At physiological maturity, a net plot of 4 rows by 5 plants (9 m²) was harvested from 
the inside of each plot, omitting border plants to avoid edge effects. 
 
Zimbabwe 
Field trials in Zimbabwe were set up in collaboration with the Department of Plant 
Production Sciences of the University of Zimbabwe (UZ), Harare, Zimbabwe. 
Micronutrient fertiliser omission trials were conducted from November 2019 – April 
2020 at nine on-farm locations in several villages in the Goromonzi district as well as 
one location on UZ campus (Figure 1). All locations are situated in the semiarid cool 
tropics (Sebastian, 2009) and soils were classified as Haplic Lixisols or Haplic Acrisols 
(Hengl et al., 2017). Maize was cultivated in the preceding growing season at each 
location. The farming systems were characterised by low NPK inputs, and at best 
received cattle manure once every 4 years at a dose of 2 - 4 Mg ha-1. At each location, 
the hybrid maize variety SC637 (SeedCo) was used. Two seeds were planted per hole 
with a plant spacing of 25 cm × 90 cm. Two weeks after emergence, plants were thinned 
to one plant per hole, resulting in a final plant density of 44,444 plants ha-1. Plot sizes 
were 5.4 m × 4 m. Weeding and pest control was done when needed. The following 
fertiliser application rates (kg ha-1) were used: 180 N, 80 P, 120 K, 61 Ca, 20 Mg, 26 S, 
5 Zn, 5 Cu, 3 B and 0.3 Mn. Nitrogen was applied as ammonium nitrate, one basal 
application and two topdressings at 4 and 8 weeks after emergence. Phosphorus and Ca 
were applied as TSP, K as muriate of potash (KCl), Mg as MgSO4, Zn as ZnSO4, Cu as 
CuSO4, Mn as MnCl2 and B as Solubor. Fertilisers were applied together in the planting 
hole during planting. At physiological maturity, a net plot of 3 rows by 2 m (5.4 m²) was 
harvested from the inside of each plot, omitting border plants to avoid edge effects. 
 
Field data and sample collection  
Field-dry stover and grain biomass were measured for each plot during harvest. A 200g 
subsample was taken from each plot for further analysis. Dry matter contents of these 
subsamples were used to convert field-dry biomass measurements to dry weights. 
Throughout the manuscript, the grain yield data are reported using a standardized 
moisture content of 13%. Composite topsoil samples (0-20 cm) from each block were 
collected during harvest. Soil samples were taken between the rows, as fertilisers were 
applied in the planting hole. Soil and field-dry plant samples were shipped to the soil 
chemical laboratory CBLB (Wageningen, the Netherlands) for further analysis.  
 

 Plant analysis 
Stover and grain samples were dried at 70 ºC until dry weight was reached, and ground 
to < 1 mm size before analysis. Stover and grain samples were analysed for N, P, K, S, 
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Mg, Ca, iron (Fe), Zn, B, Cu and manganese (Mn) concentrations. Plant N 
concentrations were measured after a 0.8 M H2SO4/Se/H2O2 digestion (Novozamsky 
et al., 1983) using a Segmented Flow Analyser. All other elements were measured after 
microwave digestion with concentrated HNO3 (Novozamsky et al., 1983) using 
Inductively Coupled Plasma - Optical Emission Spectrometry (ICP-OES, Thermo 
Scientific iCAP6500) or High Resolution Inductively Coupled Plasma - Mass 
Spectrometry (HR-ICP-MS, Element 2, Thermo Scientific), depending on their 
concentrations.  
 

 Soil analyses  
Soil samples were air-dried and sieved over 2 mm prior to further analysis. Relevant soil 
properties were chosen based on previously obtained knowledge about the processes 
controlling soil Zn availability (Van Eynde et al., 2022): reactive surfaces for adsorption 
(i.e. soil organic matter, dissolved organic matter and micro-crystalline metal 
(hydr)oxide nanoparticles) and soil pH. 
 
Total soil organic carbon (SOC) content was analysed using a wet oxidation method 
according to the Kurmies procedure and measured with a spectrophotometer (Walinga 
et al., 2008). An ammonium oxalate (AO) extraction with a solution-to-solid ratio of 20 
L kg-1 and an equilibration time of 4 hours (ISO, 2012) was used to measure micro-
crystalline Fe and Al. The concentrations of Fe and Al were analysed using ICP-OES. 
For further data analysis, the sum of Al and Fe hydroxides in ammonium oxalate (AlFe-
AO; in mmol kg-1) was used. Soil pH was measured with a glass electrode in a 0.01 M 
CaCl2 soil extract, with a solution-to-solid ratio of 10 L kg-1 and an equilibration time 
of 2 h (Houba et al., 2000). The dissolved total carbon and dissolved inorganic carbon 
concentrations were measured in the same CaCl2 extract after centrifugation and 
filtration with a 0.45 µm membrane filter, with a Segmented Flow Analyzer (SFA-TOC, 
San++, Skalar) equipped with an IR detector that measures the amount of CO2 (g) after 
an internal acidification and destruction step. The dissolved organic carbon (DOC) 
concentrations were calculated as the difference between total and inorganic carbon. 
 
Soil Zn was measured in a 0.43 M HNO3 extraction, a Mehlich 3 (M3) extraction, a 
diethylenetriamine pentaacetate (DTPA) extract and a 0.01 M CaCl2 extraction. The first 
three tests are expected to approximate the Zn quantity or labile content, while the latter 
was considered to be an estimation of the intensity or the actual availability. The HNO3 
soil extraction was done using a solution-to-solid ratio of 10 L kg-1 and an equilibration 
time of 4 h (ISO, 2016). After centrifugation and filtration over a 0.45 µm membrane 
filter, Zn-HNO3 was measured in the supernatant with ICP-OES. The Zn-M3 was 
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measured with ICP-OES in a centrifuged and filtered (0.45 µm) M3 extract. The M3 
extract consisted of 0.1 M CH3COOH, 0.25 M NH4NO3, 0.015 M NH4F, 0.013 M 
HNO3 and 0.001 M EDTA (Mehlich, 1984). Samples were extracted for 5 min with a 
solution-to-solid ratio of 10 L kg-1. For the Zn-DTPA analysis, soils were extracted with 
a solution-to-solid ratio of 2 L kg-1 and an equilibration time of 2 h, using a solution 
consisting of 0.005 M DTPA, 0.1 M triethanolamine and 0.01 M CaCl2 that was buffered 
at a pH of 7.3 (Lindsay and Norvell, 1978). Suspensions were centrifuged, filtered over 
a 0.45 µm membrane filter and analysed for Zn using ICP-OES. In the same 0.01 M 
CaCl2 soil extraction as described before for DOC analysis, Zn-CaCl2 was measured in 
an acidified (0.14 M HNO3) subsample of the supernatant with HR-ICP-MS.  
 

 Data analysis 
Data analysis was done using the R software, version 4.0.2 (R Core Team and R 
Development Core Team, 2020). Results were visualized with the ggplot2 package 
(Wickham, 2016). 
 
Treatment effects 
The effect of fertiliser treatment (i.e. full and -Zn) on maize yields, Zn uptake and grain 
Zn concentrations was assessed with linear mixed effect models (LME) using the lme 
function from the nlme package (Pinheiro et al., 2013) with the REML method, and 
tested by analysis of variance (function Anova). Homogeneity of variances was tested 
with the Levene’s test, using the leveneTest function from the car package (Fox and 
Weisberg, 2019). Normality of model residuals were checked with the Shapiro-Wilk test 
using the shapiro.test function from the stats package (R Core Team and R 
Development Core Team, 2020). This analysis was done for each location, taking all 
replications into account with treatment as fixed factor, and block as random factor (i.e. 
random = ~1|block). At country level, the differences between locations were also 
assessed using the same LME model but now with location as additional fixed factor. 
 
Treatment effects on plot-level were assessed by calculating the empirical cumulative 
distribution (ecdf function) of the response in yield, Zn uptake and grain Zn 
concentrations to Zn fertilisation. To do so, the fertiliser response was calculated based 
on the data for each block as follows: 
 
Equation 1: Response = (YFull) / (Y-Zn)      
 
in which Y represents grain yield, Zn uptake or grain Zn concentrations in the full and 
the -Zn treatments. 



Zinc availability in tropical soils

4

 
 
 

 
91 

  

Determination of yield-limiting nutrient  
Zinc uptake depends on the soil Zn availability and on the availability of other nutrients. 
In situations where Zn is the most yield-limiting factor, Zn uptake by a crop equals the 
amount of Zn that a soil can supply during a growing season (Janssen et al., 1990) and 
good relations are expected between soil properties and Zn uptake. 
 
Whether Zn is the most yield-limiting nutrient can be assessed based on the yield 
response to Zn fertilisation, or by the degree of Zn dilution in the maize crop (Janssen 
et al., 1990; Sattari et al., 2014; Witt et al., 1999). The latter refers to the internal 
efficiency (IE) of Zn in maize, which is the grain yield produced per amount of nutrient 
taken up in the above-ground plant biomass in kg dry weight kg-1 Zn (Witt et al., 1999). 
The IE ranges between a crop- and nutrient-specific physiological minimum and 
maximum. When the IE for Zn is close to its maximum, Zn is maximally diluted in the 
crop, and is most likely yield-limiting. The maximum and minimum IE can be derived 
from the relation between grain yield (kg ha-1) and nutrient uptake (kg nutrient ha-1), 
using data from large numbers of field trials (Witt et al., 1999). For the macronutrients 
N, P and K, these parameters have been derived for maize (Janssen et al., 1990; Sattari 
et al., 2014). In order to derive the physiological minimum and maximum Zn 
concentrations for maize, data from field trials in Nigeria (Rurinda et al., 2020) and 
Zimbabwe (Kurwakumire et al., 2015) were combined with data collected for this study. 
From these combined data, the upper and lower 2.5% of the datapoints were excluded 
and then the minimum Zn uptake (r) needed to produce any grain, and the maximum 
(d) and minimum (a) slopes or IE values were derived (Witt et al., 1999). 
 
Using the IE parameters for N, P, K and Zn in combination with yield and nutrient 
uptake measurements, the relative dilution of each nutrient can be calculated as follows 
(Heinen, pers. comm. 2020): 
 

Equation 2: Relative dilution = 
�� � ����

���� � ����
=  �� � �

�  � �
�
� � ��

   

 
with Ui the uptake of nutrient i, Ui,D and Ui,A the uptake of nutrient i at maximum 
dilution and accumulation respectively, Y the actual yield, d the maximum IE and a the 
minimum IE and r the minimum nutrient uptake require to produce any yield. The 
principle behind Equation 2 is to estimate how the actual nutrient uptake differs from 
the uptake that belongs to the maximum physiological efficiency for the measured yield, 
relative to the maximum range in uptake. The nutrient with the lowest value obtained 
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based on Equation 2, is expected to be the most yield-limiting nutrient. Based on this 
analysis, a subset was created with only the -Zn plots for which Zn was found to be the 
most yield-limiting nutrient. This subset was subsequently used to derive soil-plant 
relations between yield, Zn uptake and grain Zn concentrations and soil properties. 
 
Soil-plant relations  
Relations between soil properties and yield, Zn uptake and grain Zn concentrations in 
the -Zn treatments as well as their response to Zn fertilisation were assessed using LME 
models based on maximization of the log-likelihood (method ML). Soil properties pH, 
Zn-HNO3 Zn-DTPA, Zn-M3, Zn-CaCl2, AlFe-AO and SOC were used as fixed effects, 
whereas the effect of agroecological zone and maize variety were included as random 
effects, represented by a single variable namely country (i.e. random = ~1|Country). 
The soil properties were included in the models. Since DOC data were not available for 
the soils in Zimbabwe, this soil property was not included in the analysis. The effect of 
potentially competing cations such as Cu-M3 and Ca-M3 on Zn uptake and Zn grain 
concentrations was also tested. The selection of variables was done based on the LME 
model with the lowest Akaike's Information Criterion (AIC) value (Webster and 
McBratney, 1989) using the dredge function from the MuMIn package (Barton, 2020). 
Normality and homogeneity of variances of the residuals from the final LME model 
were checked with the Shapiro-Wilk test using the shapiro.test function from the stats 
package (R Core Team and R Development Core Team, 2020). The dependent and 
independent variables were log10 transformed when a normal distribution of the 
residuals was not found with the Shapiro-Wilk test. Since the Zn measurements in the 
DTPA, M3 and HNO3 extracts were strongly correlated (see results), the model 
selection analysis was done with each of these Zn pools separately as input in addition 
to the other soil properties (i.e. pH, SOC, Fe and Al, Zn-CaCl2), and final models were 
compared using the anova function. The final LME models were checked for 
multicollinearity between the independent variables, using the vif function from the car 
package in R (Fox and Weisberg, 2019). The variance explained by the regression 
models was calculated using the r2 function from the performance package in R 
(Ludecke et al., 2021), which reports the variance of the fixed effects (R2fixed) and the 
variance explained by both the fixed and random effects (R2total). The relative 
contribution of different variables in the LME models to the total variation of the 
dependent variable, was tested using the r2beta function from the r2glmm package 
(Jaeger, 2017) or the calc.relimp function from the relaimpo package (Gromping, 2006) 
in case no contribution of country as random factor was found in the model. 
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 Results 
 

 Soil properties  
The soil properties are given in Table 1. The soils in this study are characterized by low 
SOC contents which do not exceed 20 g kg-1. In addition, the field trials covered a 
limited range in soil pH between 4 and 6.1. Within countries, the range in pH values 
was even more limited, with the Kenyan locations covering pH 4.4 - 5.4 and the 
Zambian locations covering pH 4.5 - 5.7. The pH values of the locations in Zimbabwe 
ranged between 4.0 and 6.1, covering the entire range in pH values reported in this 
study. The soils in this study were characterized by low Zn levels. Lowest soil Zn levels 
were found in Zambia and Zimbabwe, and the highest in Kenya. For the majority of 
soils, Zn levels were below the critical values reported in literature (Figure 2), pointing 
towards potential Zn deficiency for maize grown in these soils. 
 
Table 1: Soil properties per country, means and the minimum-maximum range are presented.  

Soil property 
Kenya Zambia Zimbabwe 

    Mean Min-Max      Mean Min-Max      Mean Min-Max 
pH-CaCl2     4.9 4.4 - 5.4      5.0 4.5 - 5.7      4.6 4.0 - 6.1 
SOC (g kg-1)     14 9 - 20      8 6 - 11      7 4 - 15 
DOC (mg L-1)     18 6 - 72      2 0.3 - 5      - - 
Fe-AO (mmol kg-1)     34 23 - 53      7 4 - 13      9 2 - 30 
Al-AO (mmol kg-1)     47 27 - 83      30 19 - 44      18 6 - 45 
Zn-HNO3 (mg kg-1)     5.8 2.3 - 13.0      1 0.3 - 2.1      2.3 0.4 - 9.7 
Zn-DTPA (mg kg-1)     2.0 0.8 - 4.6      0.3 0.1 - 0.7      0.9 0.2 - 3.6 
Zn-M3 (mg kg-1)     3.0 1.3 - 6.4       0.7 0.3 - 1.4      1.6 0.2 - 6.0 
Zn-CaCl2 (µg kg-1)     674 245 - 1193      69 8 - 280      467 9 - 2989 
P-Olsen     10.4 2.1 - 38.2      2.1 1.0 – 3.9      9.9 3.1 - 25.5 

 
 

 Crop responses to Zn fertilisation 
 
Yield 
Maize yields ranged between 1.9 and 9.8 Mg ha-1, and were highest in Kenya, followed 
by Zimbabwe and Zambia (Figure 3). Variation in maize yields was relatively large 
within locations and treatments, ranging up to 2.7 Mg ha-1 in Kenya. Across countries, 
Zn fertilisation led to an average yield increase of 0.03 Mg ha-1 or 4 % compared to the 
-Zn treatment, however, this effect was not significant (p = 0.97). Fertilisation with Zn 
significantly increased maize yields at two out of 19 locations: one location in Zambia 
and one in Zimbabwe (Figure 3). Zinc fertilisation however also reduced maize yields, 
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at one location in Kenya and one in Zambia. Within each of the countries, significant 
differences in maize yields among locations were found (Figure 3).  
 

Figure 2: Relations between the yield response and Zn in M3 (A), DTPA (B), HNO3 (C) or 0.01 
M CaCl2 (D) extracts. Above dotted horizontal lines, Zn fertilisation increased yields; below 
these, it decreased yields. Grey areas in A and B represent the range of critical values of Zn-M3 
and Zn-DTPA below which it is expected that Zn fertilisation leads to an increase in maize yields 
(Chilimba et al., 1999; Cuesta et al., 2020; Lindsay and Norvell, 1978; Wendt, 1995).  
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Figure 3: Yields in the full (white) and the -Zn (grey) treatments, presented per country. The 
boxplots show the median (line), first and third quartiles (hinges), the minimum and maximum 
based on the interquartile range (whiskers) and outliers (markers). Asterisks indicate a significant 
treatment effect. Letters indicate significant differences among farms within a country.  
 
The effect of Zn fertilisation was also assessed by calculating the yield response for each 
block (Equation 1). The cumulative distribution of this yield response shows that yield 
responded positively to Zn fertilisation in 47 blocks (48%), while for 52 blocks (52%) a 
negative response was found (Figure 4A). The majority of blocks (61%) had a yield 
response ratio between 0.8 and 1.2, which could be considered natural variation, given 
the relatively large variation in yields within locations (Figure 3). Similar results were 
found for the response in total aboveground biomass (Figure S2). 
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Figure 4: The cumulative proportion of 
blocks in all three countries for the Zn 
fertiliser response of yield (A), Zn uptake 
(B) and grain Zn concentration (C). A 
response ratio >1 indicates a positive 
response of maize to Zn fertilisation. 
Horizontal lines and accompanying 
numbers in the figures show the 
cumulative proportion of all blocks with 
a response ratio of 1 (solid) and 0.8 or 1.2 
(dashed).  
 
 
 
 

 
Zn uptake 
Zinc fertilisation led to an average increase in Zn uptake of 177 g ha-1 or 175% 
compared to the -Zn treatment (p < 0.05). It significantly increased maize Zn uptake at 
ten out of the 19 locations: one location in Zambia and nine in Zimbabwe (Figure 5). 
In Kenya, Zn uptake was rather constant among the five locations, and ranged between 
200 and 300 g ha-1 (Figure 5). In Zambia and Zimbabwe, a wider range in Zn uptake 
was found and significant differences among locations and treatments were found 
(Figure 5). The effect of Zn fertilisation was also assessed by calculating the response 
ratio of Zn uptake for each block (Equation 1). The cumulative distribution of this 
response ratio shows that a positive response in Zn uptake was found for 79% of all 
blocks (Figure 4B). 
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Figure 5: Zn uptake in the full (white) and the -Zn (grey) treatments, presented per country. 
Boxplots are similar as shown in Figure 3.  
 
Grain Zn 
Zinc grain concentrations ranged from 9 to 27 mg kg-1 across countries and treatments 
(Figure 6). Similar to Zn uptake, grain Zn concentrations varied less in Kenya compared 
to Zambia and Zimbabwe. Across countries, grain Zn concentrations increased 2.4 mg 
kg-1 or 20% as an effect of Zn fertilisation (p < 0.05). Zinc fertilisation significantly  
increased maize grain Zn concentrations at nine out of the 19 locations: one in Zambia 
and eight in Zimbabwe (Figure 6). Except for one location in Zimbabwe, these were 
the same locations at which Zn fertilisation increased Zn uptake (Figure 5). The effect 
of Zn fertilisation was also assessed by calculating the response ratio of grain Zn 
concentration for each block (Equation 1). The cumulative distribution of this response 
ratio shows that a positive response in grain Zn concentrations was found for 77% of 
all blocks (Figure 4C). For the 23% of bocks with a negative response, the ratio varied 
between 0.8 and 1, which can be considered natural variation. 
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Figure 6: Zn uptake in the full (white) and the -Zn (grey) treatments, presented per country. 
Boxplots are similar as shown in Figure 3. 
 

 Determination of yield limiting nutrient  
Before studying the soil-plant relations in the next section, we analysed in which plots 
Zn was the most yield-limiting nutrient since good relations between soil properties and 
Zn uptake are expected especially in these situations. Based on literature data and results 
of this study, the maximum and minimum IE of Zn for maize were 71 and 8 kg grain g-1 
Zn uptake (Figure S3). Using these parameters, as well as those for N, P and K that 
have been previously derived (Janssen et al., 1990), the most yield-limiting nutrient was 
determined (Equation 2; Figure 7A). Including both full and -Zn treatments, Zn was 
identified as the most yield-limiting nutrient in 85 blocks (42%), followed by P (67 
blocks or 33%), N (33 blocks or 16%) and K (13 blocks or 6%). Of the 101 plots that 
did not receive any Zn fertiliser, Zn was the most yield-limiting nutrient in 61 blocks 
(60%) (Figure 7A). These plots were mainly located in Zimbabwe (38) followed by 
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Kenya (13) and Zambia (10). For the other -Zn plots, N, P or K was found to be more 
yield-limiting than Zn, despite the applied NPK fertilisers. Of the 47 blocks where a 
positive yield response to Zn fertilisation was observed, zinc was identified as the most 
yield-limiting nutrient in 34 blocks. In the other 27 blocks for which Zn was identified 
as the most yield-limiting nutrient, a negative yield response was observed. So the degree 
of Zn dilution in the maize crop was not consistently associated with a positive yield 
response to Zn fertilisation. 
 
The maximum dilution of Zn in maize was found to be large, as shown by the steep 
line in Figure 7A: at a relatively low Zn uptake, yields up to 8 Mg ha-1 were found. Low 
Zn concentrations in maize were found, i.e. below 10 mg kg-1 (Figure 7B), without 
finding a clear yield response to Zn fertilisation (Figure 7B). 
 

 Soil-plant relations and fertiliser response 
For the analyses below, two different subsets are used: the -Zn plots for which Zn was 
identified as the most yield-limiting nutrient based on the analysis in the previous section 
(n = 61) and all the -Zn plots (n = 101).  
 
Yield 
The best model predicting grain yields for the 61 -Zn plots in which Zn was found to 
be the most yield-limiting nutrient, included solely pH as fixed variable. Grain yields 
increased with pH, but the model explained limited variation, as illustrated by low R2 of 
0.06 and this model was not significantly different from the model with only the 
intercept (p = 0.06).  
 
The locations at which Zn fertilisation decreased or increased grain yields could not be 
separated from the other locations based on soil properties and nutrient concentrations 
in the maize crop. No relations between maize yield response to Zn fertilisation and soil 
Zn test concentrations in the M3, DTPA, HNO3 or CaCl2 soil extracts were found 
(Figure 2). In the critical range of Zn-M3 and Zn-DTPA concentrations, an equal 
number of plots showed a positive or a negative response to Zn fertilisation (Figure 2). 
Linear mixed effects modelling was used to assess which soil properties explain the 
maize yield response to Zn fertilisation at the block level. Based on model selection with 
pH, SOC, FeAl-AO, and Zn pools as input parameters, a model with these soil 
properties was not significantly different from a model with only an intercept (p = 0.06). 
The residuals of this model were significantly correlated with the grain yield in the -Zn 
treatments (Pearson correlation coefficient of -0.47, p < 0.05) The plots with low yields 
in the -Zn treatments, showed a higher response to Zn fertilisation (Figure 8). 



Chapter 4 
 
 

 
100 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7: (A) Relation between grain yield and aboveground Zn uptake. The lines represent the 
maximum dilution and accumulation of Zn in the maize crop. The colours refer to the most 
yield-liming nutrient, shapes indicate whether datapoints belong to the full or -Zn treatment. (B) 
The yield response in relation to stover Zn concentrations for the 101 blocks. Above the dotted 
horizontal lines, Zn fertilisation increased yields; below these lines, it decreased yields. 
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Figure 8: Yields obtained in the full treatment in relation to the yields in the -Zn treatment. The 
solid black line represents the 1:1 line, the grey line shows the local polynomial regression line 
using the loess method in R (Vanlauwe et al., 2016). 
 
Zn uptake 
The best model predicting Zn uptake in the 61 -Zn plots where Zn was identified as 
the most yield-limiting nutrient, included solely Zn-HNO3 as a significant variable; none 
of the other soil parameters explained additional variation. Zinc uptake increased with 
soil Zn-HNO3 concentrations (Figure 9 and Table 2). The Zn-HNO3 explained 35% of 
the variation in Zn uptake (Table 2). Model residuals were normally distributed (p = 
0.90). The effect of country, representing agroecological zone and/or variety, did not 
explain any variation in Zn uptake, as illustrated by the identical total and fixed R2 (Table 
2). Inclusion of possibly competitive nutrients, such as Cu, K or Ca, did not have a 
significant effect on Zn uptake. When the model was applied to all 101 -Zn plots, model 
coefficients for the intercept and the slope for Zn-HNO3 were similar to those of the 
model based on the subset of plots for which Zn was found to be the most yield-limiting 
nutrient (Figure 9). The relation between Zn uptake and soil Zn-M3 or Zn-DTPA was 
also significant, in contrast to Zn-CaCl2 (Figure 9). Based on AIC criteria, the model 
with Zn-HNO3 as input variable explained more variation than Zn-M3 or Zn-DTPA. 
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Figure 9: Relations between Zn uptake and Zn measured in the Mehlich 3 (A), DTPA (B), HNO3 
(C) and CaCl2 (D) extraction for the -Zn plots. Shapes indicate whether Zn (circles) or N, P or 
K (triangles) was identified as the most yield-limiting nutrient. Dotted lines show output of a 
LME model with country as random factor and the respective soil Zn measurement as fixed 
variable (n = 61). R2 values represent the explained variation by the soil Zn measurement. 
 
With linear mixed effects models, we assessed the relation between the Zn uptake 
response to fertilisation and soil properties, using country as random variable. The 
analysis was done for all 101 -Zn plots. The final model explained the Zn uptake 
response ratio based on pH and SOC (Figure 10), with pH having a larger contribution 
in explaining the variation. Model residuals were normally distributed (p = 0.23). The 
response in Zn uptake to Zn fertilisation was largest in soils with low pH and SOC 
contents. Country as a random factor contributed to the model, illustrated by a higher 
total than fixed R2 value (Table 2). With similar pH and SOC levels, the response in Zn 
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uptake to Zn fertiliser is the highest in Zimbabwe, followed by Kenya and Zambia 
(Figure 10). This means that underlying variables such as maize variety and/or agro-
ecological zone have an effect on the Zn uptake response to Zn fertilisation. Using only 
the 61 plots for which Zn was identified as the most yield-limiting nutrient instead of 
all 101 plots, gave a model with similar coefficients for pH and SOC. 
 
Table 2: Relations between soil properties, uptake, grain Zn concentrations and their response 
to Zn fertilisation. R2total, refers to the models including country as a random variable; R2fixed to 
the model with fixed variables only. The p-values for all models are < 0.001. The models for the 
yield and the yield response are only discussed in the text, as they were not significant. 

Dependent variable Model R2total / R2fixed RMSE 
Zn uptake (g ha-1)  
(n = 611) 

log10(Y) = 3.70 + 0.36 log10(Zn-HNO3) 0.35 / 0.35 0.20 

Zn uptake response  
(n = 97) 

log10(Y)= 1.73 – 0.23pH – 0.46log10(SOC) 0.44 / 0.33 
 

0.23 

Grain [Zn] (mg kg-1) 
(n = 611) 

log10(Y) = 1.71 + 0.12 log10(Zn-HNO3) 0.56 / 0.26 0.06 

Grain [Zn] response  
(n = 98) 

log10(Y) = 0.42 – 0.04pH – 0.16 log10(SOC) 0.30 / 0.27 0.07 

1Data from the -Zn plots in which Zn was the most yield-limiting nutrient. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10: The Zn uptake response to fertilisation plotted against pH, with size of the data points 
indicating SOC content. An uptake response above 0 (dotted line) indicates a positive response 
in Zn uptake by maize when Zn fertiliser is applied, i.e. a higher uptake in the full treatment. 
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Grain Zn  
Grain Zn concentrations in the -Zn plots on which Zn was the most yield-limiting 
nutrient (Section 3.2) were positively related to Zn-HNO3 (Table 2; Figure 11). 
Including country as a random variable, the model explained 56% of the variation in 
grain Zn concentrations. Model residuals were normally distributed (p = 0.50). A model 
with Zn-M3 or Zn-DTPA instead of Zn-HNO3 as independent variable performed 
similarly, albeit with a higher AIC value (difference of ~2-3). In contrast to the model 
for Zn uptake, country as random variable increased the explained variation in grain Zn 
concentrations (Table 2), indicating that agro-ecological zone, maize variety, or country-
dependent management factors affected within-plant Zn allocation to the grain. For 
similar soil Zn-HNO3 levels, highest grain Zn concentrations were found in Kenya, 
followed by Zambia and Zimbabwe. When using all -Zn plots to calibrate the model 
for grain Zn concentrations, similar coefficients for the intercept and slope were found. 
When relating the grain Zn concentration response to fertilisation to soil properties 
(n = 101), a similar model was found as for the response in Zn uptake, namely a negative 
contribution of SOC and soil pH to the response in grain Zn concentrations (Table 2). 
Model residuals were normally distributed (p = 0.40). There was a contribution of 
country as random variable, with the highest increase in Zn grain concentrations for 
Zimbabwe, followed by Kenya and Zambia, i.e., the same order as found for Zn uptake.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 11: Grain Zn concentrations plotted against Zn-HNO3 in the -Zn plots. Shape indicates 
whether Zn (circles) or N, P or K (triangles) was identified as the most yield-limiting nutrient. 
The black solid line shows the overall relation between grain Zn concentrations and Zn-HNO3, 
whereas dashed lines represent this relation with different intercepts for each of the countries. 
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 Discussion  
 

 Zn fertilisation does not result in higher maize yields 
Field trials on 19 locations in three different countries showed that Zn fertilisation led 
to significant increases in maize yields at only two locations. These two locations did 
not differ from the other locations in terms of soil properties, nutrient uptake or tissue 
nutrient concentrations. A clear positive yield response above 20% to Zn fertilisation 
was only observed for a minority of all replicates.  
 
The lack of yield responses to fertilisation was not expected, given that the majority of 
these locations had soil Zn levels below the critical values reported in literature. Critical 
soil Zn levels, below which a positive maize yield response to Zn fertilisation is 
expected, have been derived previously from field and greenhouse experiments 
(Chilimba et al., 1999; Cuesta et al., 2020; Lindsay and Norvell, 1978; Wendt, 1995). 
Both positive and negative yield responses were found for soils that had soil Zn 
concentrations below these critical levels (Figure 2). In addition, no extraction method 
was capable of predicting the yield response to Zn fertilisation. This result points 
towards the challenges associated with the use of soil extractions as diagnostic criteria 
for nutrient deficiencies and corresponding fertiliser recommendations (Schut and 
Giller, 2020). 
 
The relative dilution of Zn dilution in maize was also found to be a poor indicator of 
yield response to Zn fertilisation. For the majority of the -Zn plots, Zn was found to be 
highly diluted in the maize crop, approaching its maximal IE, indicating Zn may have 
been yield-limiting. This was however not the case, since no positive response to Zn 
fertilisation was observed. One explanation may be that other factors and/or nutrients 
may be still more yield-limiting than Zn, despite low soil Zn levels and despite the 
applied fertilisation with a range of macro-and micronutrients. Another explanation can 
be that this IE approach may not be suitable for Zn. Generally, it has been shown that 
Zn deficiency in maize rapidly decreases with increasing Zn availability, after which the 
yields remain constant with increasing Zn supply (Singh and Banerjee, 1987). This may 
suggest that a critical threshold may exist, above which Zn uptake does not determine 
maize grain yields but that Zn uptake is merely driven by grain (and stover) yields, 
despite strong Zn dilution in the crop. Our results have shown that Zn can indeed be 
highly diluted in the crop, resulting in tissue Zn concentrations below 10 mg kg-1 which 
is lower than previously reported critical tissue concentrations (Reuter and Robinson, 
1997; Singh and Banerjee, 1987). It must be noted that these critical tissue 
concentrations are often derived based on measurements of plant parts during the 
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growing season and not after harvest. Tissue concentrations measured in this study 
were, however, found to be a poor indicator of a positive yield response to Zn 
fertilisation (Figure 7).  
 
The most important diagnostic criteria of Zn deficiency for maize growth that can be 
derived from this study, is the yield in the control treatment that received optimal 
fertilisation with macro-and micronutrients except Zn. This effect of yield in the control 
treatment on the yield response has been previously observed when soil fertility 
treatments were tested in the field (Ichami et al., 2019; Vanlauwe et al., 2016). Generally, 
the plots with yields below ~6 Mg ha-1, had the highest probability for a positive yield 
response to Zn fertilisation (Figure 8). Kihara et al. (2017) reported a similar trend for 
the results from field trials in various SSA countries, where the yield response to 
secondary and micronutrients decreased with increasing maize yields in the plots that 
received only NPK fertilisers. Combining literature data from field trials in SSA 
countries (Kihara et al., 2017, 2016; Rurinda et al., 2020) shows that the yield level below 
which there is a high probability that maize shows a positive response to secondary and 
micronutrients also points at a diagnostic threshold value of around 6 Mg ha-1 (Figure 
S5), similar to what has been found in this study (Figure 8). In addition, previous studies 
with Zn omission trials in SSA that reported a positive yield response of maize to Zn 
fertilisation, are also characterized by relatively low yields compared to the yields in this 
study (i.e. below 6 Mg ha-1) in the plots receiving no Zn fertiliser (Abbas et al., 2007; 
Eteng et al., 2014; Manzeke et al., 2014; Nziguheba et al., 2009).  
 
The quantities of NPK fertilisers given to all treatments in this study, ranging between 
180-350 kg N ha-1, 35-180 kg P ha-1 and 100-120 kg K ha-1, were relatively high in 
comparison with Kihara et al. (2016). These high NPK doses, in combination with a 
range of secondary and other micronutrients, were applied in order to assure that other 
nutrients than Zn were not yield-limiting and that possible Zn deficiencies would 
become visible. However, these high quantities of NPK fertilisers could also have 
masked the incidence of micronutrient deficiencies, such as Zn. For example, the work 
of Manzeke et al. (2014) in Zimbabwe showed that maize yields responded less to Zn 
fertilisation when larger quantities of N and P were applied. The application of relatively 
high amounts of macro- and secondary nutrient fertilisers in our study may have led to 
healthier crops, whose root systems were able to explore a larger soil volume. This may 
have led to sufficient Zn uptake even when Zn was not fertilised and despite low soil 
Zn availability as previously suggested by Pasley et al. (2019) based on field trials in 
Kenya and Zimbabwe. Others have also demonstrated the significant response in root 
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traits and associated increased Zn uptake, due to macronutrient fertilisation (Ma et al., 
2014), but the underlying processes are still unclear.  
 
It has been stated that the supply of secondary and micronutrients is vital for enhancing 
agricultural productivity in SSA (Kihara et al., 2017; Wortmann et al., 2019). However, 
these conclusions are based on an average positive maize yield response to secondary 
and micronutrient fertilisation. One may argue whether it is justified to use an average 
yield response as a basis for such recommendations (Vanlauwe et al., 2016), given the 
large variation in yield responses found in these studies (Figure S6) as well as for the 19 
locations in this study and the relatively low chance of a positive yield response to Zn 
fertilisation (Figure 4). In addition, caution should be made when such averages are used 
to calculate the economic return of micronutrient fertiliser application (Kihara et al., 
2020), given the high probability for absent or even negative yield responses as 
illustrated by our results (Figure 4). 
 

 Soil Zn availability 
Soil Zn availability was measured using four different extraction methods: DTPA, 0.43 
M HNO3, M3 and 0.01 M CaCl2. The first three extraction methods are considered to 
approximate the available Quantity (Q), which represents the directly available Zn in 
the soil solution as well as the Zn adsorbed to the soil solid particles, which can become 
available throughout a growing season (Groenenberg et al., 2017; Lindsay and Norvell, 
1978; Mehlich, 1984; Robson, 1993). The CaCl2 solution is more related to the Intensity 
(I) or the Zn in the solution phase, which represents the Zn directly available for plant 
uptake (Houba et al., 2000). The Zn concentrations measured in DPTA, HNO3 and M3 
soil extracts were strongly correlated (Figure S2). The Zn measured in CaCl2 can be 
derived from the Zn measured in HNO3 and soil pH (Van Eynde et al., 2022). 
 
The results from our study have shown that Q-tests, and more specifically the HNO3 
extraction, performs best in quantifying the soil available Zn for the unfertilised plots, 
based on the significant relation with Zn uptake (Figure 9). In terms of practical 
applications, this is a promising result, since soil Zn data available for SSA mostly 
comprises Q-tests (Hengl et al., 2021) rather than I-tests (Keskinen et al., 2019).  
 
In literature, contrasting results have been found on whether I-or Q-tests are the best 
approximation of the soil available Zn content. Based on a review, Kim et al. (2015) 
recommended the use of I-tests to quantify bioavailability of relatively mobile metals 
such as Zn in contaminated soils, in line with other studies (Impellitteri et al., 2003; 
Nolan et al., 2005). For low Zn soils, both Q-tests (Tian et al., 2008) and I-tests (Duffner 
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et al., 2013; Menzies et al., 2007) have been found to be related to plant Zn 
concentrations and uptake. Due to the low pH and SOC contents of the soils in this 
study, the adsorption affinity for Zn in the solid phase is relatively low as illustrated by 
the fact that a large proportion of the Zn measured in the HNO3 is also extracted by 
the CaCl2 solution (Table 1). This low adsorption affinity for Zn also explains the 
significant response in Zn uptake and grain Zn concentrations since fertilised Zn is 
readily available as it stays in solution (see next section). In terms of Zn adsorption 
affinity, the soils from this study differ from the typical calcareous soils that are often 
associated with Zn deficiency, as investigated for example by Duffner et al. (2014, 2013). 
Their soils are characterized by a pH above 6, and by higher Zn-HNO3 concentrations 
(up until 20.8 mg kg-1) and lower Zn-CaCl2 concentrations (mostly below 0.1 mg kg-1) 
than found for the soils from this study (Table 1). In soils with high Zn adsorption 
affinity, Duffner et al. (2013) found that Zn-CaCl2, in combination with pH-CaCl2, 
related better with Zn shoot concentrations in wheat than Zn-DTPA. We hypothesize 
that the relatively low adsorption affinity for Zn in the soils in this study explains why 
Q-tests relate better with Zn uptake than I-tests, similar to what has been found and 
discussed previously for phosphorus by Nawara et al. (2017). The low adsorption 
affinity may imply that not the concentration in the soil solution (~Zn-CaCl2) is limiting 
Zn uptake by maize, but the buffering capacity of the soil to provide Zn to maize during 
the whole growing season, as reflected by Zn-HNO3 (or DTPA or M3).  
 
Soil Zn-HNO3 explained only 35% of the variation in the total Zn uptake for the plots 
receiving no Zn fertiliser (Figure 9). The relatively low explanatory power for Zn uptake 
may be attributed to the fact that Zn was not the most yield-limiting factor in many 
cases, as illustrated by the absence in yield response to Zn fertilisation and the IE 
analysis. In addition, soil Zn concentrations from samples taken at lower depth could 
have given more information about Zn availability, in line with the previously suggested 
hypothesis about the maize root system. No clear effect of country or maize variety was 
found on Zn uptake. However, differences in Zn uptake among maize varieties have 
been reported earlier (Bender et al., 2013). 
 

 Response in Zn uptake  
Our data show that the Zn uptake response to fertilisation decreases with pH and SOC 
content. Previous studies have shown the importance of pH and SOC for the solid-
solution partitioning of Zn in similar soils from SSA countries, with SOC being the 
most important adsorption surface and a strong increase in Zn adsorption with 
increasing pH (Groenenberg et al., 2017; Van Eynde et al., 2022). Our results indicate 
that the highest increase in Zn uptake can be expected in soils with a low adsorption 
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capacity (i.e. where fertiliser-Zn remains mainly in solution). However, for the response 
in Zn uptake, a contribution of country as a random factor was found, with the highest 
response in Zimbabwe (Figure 10 and Table 2). There may be several explanations for 
this observation, as country represents differences in both maize variety as well as in 
agro-ecological zone. At low Zn availability (i.e. in the unfertilised plots), the three 
different varieties may explore the same volume of soil for Zn, and effectively 
translocate this Zn supply from the root to the shoots. In a situation of excess Zn (i.e. 
in the fertilised plots), varieties can differ in the reduction of active Zn transport from 
roots to shoots, and may be less effective in coping with relatively higher Zn tissue 
concentrations (White and Broadley, 2011). Next to variety, the agro-ecological zone 
may play a role in the Zn uptake response ratio. Not only soil properties, but weather 
events associated with the different agroecological zones may also affect the fertiliser 
use efficiency. Analysis of the rainfall data (Figure S1) shows that the cumulative rainfall 
surplus is the highest in Kenya (348 mm), and the lowest in Zimbabwe (144 mm). The 
latter may result in a higher nutrient use efficiency of fertiliser Zn due to reduced 
leaching in these soils with relatively low Zn adsorption capacity, explaining the higher 
Zn uptake response ratio in Zimbabwe. 
 

 Grain Zn concentrations 
Soil Zn availability (Zn-HNO3) only explained 26% of the variation in grain Zn 
concentrations in the -Zn plots, compared to 35% of the variation in Zn uptake. In 
contrast to Zn uptake, maize variety and/or agro-ecological zone, represented by the 
random country variable, significantly contributed to the model. Although the effect of 
variety and agro-ecological zone cannot be separated, both effects are feasible. Strong 
variation in maize grain Zn concentrations, between 4 and 96 mg kg-1, have been found 
among genotypes (Prasanna et al., 2020). In addition, environmental factors can also 
affect grain Zn concentrations. For example, it has been shown that the maximum grain 
Zn concentration can be increased by increasing N availability (Manzeke et al., 2020). 
 
Gashu et al. (2021) collected around 2000 maize samples in Malawi and Ethiopia and 
found that grain Zn concentrations increased with increasing soil pH and SOC content. 
With regard to SOC, our results are in agreement with those from Gashu et al. (2021). 
In our study, Zn-HNO3 was the most important variable explaining grain Zn 
concentrations and Zn-HNO3 was strongly correlated with SOC (r = 0.75; not 
presented). However, the relationships between grain Zn and soil properties found by 
Gashu and other authors (Bevis and Hestrin, 2021; Gashu et al., 2021) were not always 
clear and straightforward, as opposite trends were found. Based on our findings in this 
study, we question the general feasibility of using soil properties as proxy for grain Zn 
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concentrations and the associated likelihood of human Zn deficiencies, since soil 
properties only explained 26% of the variation in grain Zn concentrations. Giller and 
Zingore (2021) posed the same question after reading the study by Gashu et al. (2021), 
particularly with regard to challenges associated with estimating soil bioavailable Zn and 
the effect of management practices that may weaken the relation between soil and grain 
Zn concentrations. Our analyses raise additional challenges with regard to this question. 
First of all, soil-plant relations in terms of Zn uptake may only be significant when Zn 
is the most yield-limiting nutrient (Janssen et al., 1990). Secondly, we have shown that 
there is a strong effect of variety and/or agro-ecological zone on grain Zn 
concentrations. Thirdly, tissue concentrations such as grain Zn, may also depend on the 
relative dilution of Zn in the maize, and thus on the availability of other nutrients that 
affect biomass production. These factors may all lead to a weak relationship between 
soil properties and grain Zn concentrations, thus challenging the assignment of areas 
with high risk of Zn deficiency in humans due to low grain Zn concentrations based 
only on soil properties. 
 

 Agronomic biofortification 
Goredema‐matongera et al. (2021) argued that the application of soil Zn fertilisers may 
benefit the crop by increasing its yield, but without increasing grain Zn concentrations, 
because of the low soil Zn content for most countries in SSA. Based on our results, we 
argue that the opposite is true, and that the application of Zn fertilisers may be beneficial 
for grain Zn content while it does not increase yields despite low soil Zn levels. Our 
results have demonstrated that the application of 5 kg ha-1 Zn fertiliser can lead to an 
average increase of 20% in grain Zn concentrations. This finding is in line with a review 
of Joy et al. (2015), who found an average increase in maize grain Zn concentration of 
28% with fertilisation of ~16 kg ha-1 Zn. However, despite Zn fertilisation, grain Zn 
concentrations were still below the target level of 38 mg kg-1 of the HarvestPlus program 
(Bouis and Welch, 2010). We have shown that soil properties affect the effectiveness of 
agronomic biofortification through soil fertilisation. The increase in grain Zn 
concentrations by fertilisation was the largest for soils with low pH and SOC content, 
similarly as found for Zn uptake. Next to soil properties that are related to the 
adsorption of fertiliser-Zn, country as random variable was also found to affect 
agronomic biofortification, with the largest increase in grain Zn concentrations found 
in Zimbabwe (Table 2). Similarly as discussed for uptake, this result can be explained 
by variety and/or agro-ecological zone effects. Finally, the effectiveness of agronomic 
biofortification may also depend on the availability of other nutrients, such as nitrogen 
(Manzeke et al., 2020; Pasley et al., 2019) and phosphorus (Amanullah et al., 2020). 
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 Conclusions 
Zinc fertilisation did not lead to higher yields. It requires further research to find out 
why a fertiliser-induced increase in Zn uptake does not generally lead to higher maize 
yields, despite Zn being strongly diluted in the crop. Conclusions regarding the use of 
micronutrient fertilisers should not be based on average yield responses, given the large 
variability that was observed in this study and previous work.  
 
The application of Zn fertilisers can be a feasible strategy to combat human Zn 
deficiencies in communities that are heavily reliant on maize as a staple crop since we 
found that Zn fertilisation improved Zn uptake and grain Zn concentrations. However, 
grain Zn concentrations were still below target values, pointing towards the use of more 
efficient fertiliser strategies such as foliar application when improvement of the 
nutritional quality is the main objective.  
 
Existing critical levels based on commonly used soil tests, such as DTPA and Mehlich 3, 
failed to predict Zn deficiencies and a positive yield response of maize to Zn 
fertilisation. Other soil extractions such as a 0.43 M HNO3 or 0.01 M CaCl2 were also 
not able to predict maize yield responses to Zn fertilisation. Soil tests could reasonably 
predict Zn uptake, albeit that only 35% of the variation was explained. Soil tests that 
measured the Zn quantity performed better in predicting Zn uptake than soils tests that 
measure the Zn intensity. We explained this observation by the relatively low adsorption 
affinity for Zn of the soils used in this study. The response in both grain Zn 
concentrations and Zn uptake to Zn fertilisation was explained by the soil properties 
associated with the Zn adsorption affinity of these soils, namely soil organic carbon and 
pH. Grain Zn concentrations were found to be less related to soil properties than 
aboveground Zn uptake, with only 26% explained by the soil Zn levels estimated by a 
0.43 M HNO3 extraction. An effect of variety and/or agroecological zone was found 
to contribute to the variation in grain Zn levels, but not Zn uptake. Our results show 
that the identification of areas in which crop and human Zn deficiencies may be 
problematic, based on soil properties, remains challenging. 
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Figure S1: Precipitation surplus for individual farms in Kenya, Zambia and Zimbabwe, for the 
125 days after sowing. The precipitation surplus was calculated as the difference between the 
daily precipitation and the average dekadal actual evapotranspiration. Data were extracted from 
the WaPOR portal of the Food and Agriculture Organisation (WaPOR, 2022).  
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Figure S2: The cumulative 
proportion of blocks for the 
aboveground biomass response to 
fertilisation with Zn. A response 
> 1 indicates a higher biomass for 
the full treatment. Horizontal 
lines and accompanying numbers 
show the cumulative proportion 
of all blocks with a response ratio 
of 1 (solid) and 0.8 or 1.2 (dashed). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S3: Maize yields plotted against Zn uptake. Data from this study was combined with 
available literature data on maize trials in SSA. Kurwakumire et al. (2015) executed trials in three 
locations in Zimbabwe, with an NPKS fertiliser treatment alone or in combination with lime, 
manure and micronutrients. Data from Rurinda et al. (2020) belong to the TAMASA trials in 
Nigeria. For each dataset, all fertiliser treatments were included. Lines represent the maximum 
and minimum internal efficiency (IE) of 71 and 8 Mg grains produced per g Zn uptake, 
respectively. The intercept represents the minimal Zn uptake needed to produce any yield (6.1 g 
ha-1). Minimum and maximum IE parameters were derived based on the data in this figure, 
excluding the upper and lower 2.5 % of the datapoints based on their internal efficiency.  
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Figure S4: Maize yields in NPK + secondary + micronutrient fertiliser (NPKSMN) treatments 
plotted against maize yields obtained with only N, P and K fertilisers at the same locations. Data 
from TAMASA trials in Nigeria, Ethiopia and Tanzania (Rurinda et al., 2020) and AfSIS trials 
in Mali, Kenya, Malawi, Tanzania and Nigeria (Kihara et al., 2016; 2017). 
 

Figure S5: (A) Cumulative distributions of maize yields observed in the control (no fertiliser), 
NPK and NPK in combination with secondary (S) and micronutrients (MN) treatments for the 
Tamasa trials (Nigeria, Tanzania, Ethiopia; Rurinda et al., 2020) and the AfSIS trials (Kenya, 
Malawi, Nigeria and Tanzania; Kihara et al., 2017). (B) The grain yield response, calculated as 
yield in the NPK or the NPK+S+MN treatment divided by yield in the control treatment.  
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Abstract 
Boron (B) deficiency is a global problem. Low soil B availability has been associated 
with strongly weathered and coarse-textured soils, as well as soils low in organic matter. 
Despite widespread occurrence of these soils in sub-Saharan Africa (SSA), a limited 
number of studies have addressed potential yield-limitations by B availability. As a 
result, it is currently unknown on which soils B fertilisation can improve yields. This 
study aims to increase the understanding on the soil properties that control 
bioavailability of B to field-grown maize in SSA. The experimental setup consisted of B 
fertiliser omission trials at fifteen on-farm sites within three African countries. Locations 
were selected based on suspicion of low B availability. Maize was fertilised with several 
nutrients (NPK, S, Mg, Ca, Cu, Zn) at adequate rates to ensure B was the yield-limiting 
nutrient. A similar treatment including B fertilisers was added as a control. Boron was 
applied during planting at rates of 5 kg ha-1 in Kenya and 3 kg ha-1 in Zimbabwe. In 
Zambia, B was fertilised through split application of 3 kg ha-1. Data collection and 
analysis included biomass production of stover and grains and nutrient concentrations 
in both plant fractions. In soils, several extractable B pools (hot water, 0.01 M CaCl2, 
0.43 M HNO3) were measured, as well as other parameters considered potentially 
relevant for B availability. Results indicated low soil and plant B concentrations 
compared to values reported in literature. Soil B concentrations in the different 
extraction methods were strongly correlated, with hot water extracting ~2 times as 
much B as 0.43 M HNO3 and ~7 times as much B as 0.01 M CaCl2. Yields varied 
strongly within and among sites, as well as within fertiliser treatments. Yields were 
significantly reduced through B fertilisation at six sites, likely because the high 
application rates of B induced toxicity. The yield response could not be predicted based 
on available soil parameters. Similarly, B uptake in the B omission plots, considered to 
be a proxy for B availability, was poorly described based on soil parameters. Given the 
large variability in yields and absence of a positive yield response, no critical plant and 
soil B concentrations could be derived. The validity of critical plant and soil B 
concentrations reported in literature is discussed. Furthermore, a number of 
recommendations are given for future research to overcome the identified challenges 
associated with studying B availability in tropical soils. 
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 Introduction 
Boron is an essential micronutrient for plants. It is required for various processes in the 
plant metabolism, such as root elongation, flower and seed formation and membrane 
functioning (Gupta, 2007). The occurrence of boron (B) deficiency is believed to be 
widespread globally since positive yield responses to B fertilisation have been reported 
for a wide variety of crops in at least 80 countries (Shorrocks, 1997). Low soil B 
availability has been associated with strongly weathered and coarse-textured soils, as 
well as soils low in organic matter content (Shorrocks, 1997). In sub-Saharan Africa 
(SSA), these particular soils associated with low B availability are widespread (Hengl et 
al., 2015). However, the number of studies addressing B deficiency in maize grown in 
SSA is limited (Sillanpää 1990; Shorrocks 1997; Wendt and Rijpma 1997; Vanlauwe et 
al. 2015; Tamene et al. 2016), despite maize being an important staple crop (Goredema‐
matongera et al., 2021). A large number of fertiliser response trials across several 
countries in SSA indicate that fertilisation with secondary and micronutrients, including 
B, can lead to higher maize yields in some cases (Kihara et al., 2017; Rurinda et al., 2020; 
Wortmann et al., 2019). However, the incidence of B deficiency could not be separated 
from the other secondary and micronutrients, as they were applied as a mixture. It is 
therefore currently unknown where B fertilisation can improve maize yields in SSA. 
 
Understanding the soil, environmental and biotic factors that determine bioavailability 
of B, as well as the yield responses to B fertilisation in field trials, is key to deciding 
when to apply B fertilisers. Boron bioavailability in soils is, however, still poorly 
understood. Generally, B adsorption on the soil reactive surfaces such as organic matter, 
iron and aluminium oxides and clay minerals increases with pH and these processes are 
well described by Goldberg (1997). However, the work of Van Eynde et al. (2020) 
shows that adsorption plays only a minor role in controlling B availability in soils, as 
most of the reactive B was found in solution. Besides adsorption/desorption processes, 
atmospheric deposition, weathering of soil minerals and mineralisation of organic 
matter are believed to be the primary sources of B found in the soil solution (Kot et al., 
2016; Park and Schlesinger, 2002), but the relevance of each of these processes may be 
different depending on the soil system (Van Eynde et al., 2020). 
 
This study aims to increase the understanding on the soil properties that control the 
bioavailability of B to field-grown maize in SSA. Using B fertiliser omission trials at 
several sites within three African countries, we address the following research questions: 
(i) Which soil parameters determine bioavailability of B? (ii) Which soil parameters 
determine the yield response to B fertilisation? and (iii) Which critical soil and plant B 
concentrations indicate B deficiency in maize? 
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 Material and methods 
Boron fertiliser omission trials were executed as part of a larger experiment. Below we 
present the relevant methodology for this chapter. For a full overview of the materials 
and methods of the larger experiment, we refer to chapter 4. 
 

 Field trials 
Boron fertiliser omission trials were conducted at 15 on-farm locations in three 
countries: Kenya (5 farms with 5 replications each), Zambia (4 farms with 4 replications 
each) and Zimbabwe (6 farms with 6 replications each). In Zimbabwe, the B fertiliser 
omission treatment was included in six out of ten farms of the larger experiment; farm 
names correspond to names used in chapter 4. Most farms are characterised by a history 
of low input use, except for Kenya, where chemical N, P and K had been applied in 
previous seasons. Within the individual countries, most farms were located in relatively 
close proximity of each other (< 5 km). Farms were selected based on low B availability 
as indicated by soil analysis. Layout of the experimental plots was based on a 
randomised block design. In each country, the treatment structure included a full 
fertiliser treatment with NPK, S, Mg, Ca, Zn, Cu and B and a B omission treatment, 
which was similar to the full treatment, except that B was omitted. Maize variety, 
planting densities, plot sizes, fertilizer application rates and number of replications, 
differed between countries based on the availability of resources and local practices.  
 
In Kenya, B was applied as Solubor at a rate of 5 kg B ha-1 in the planting hole together 
with the other fertilisers, right before sowing. Boron application rates of 5 kg ha-1 are 
not uncommon for maize (e.g. Rurinda et al. 2020; Gotz et al. 2021). However, negative 
yield effects to application of 5 kg B ha-1 were observed in Kenya. Boron was therefore 
applied at a lower rate of 3 kg ha-1 in Zambia and Zimbabwe, to reduce the risk of B 
toxicity. In Zambia, two applications of 1.5 kg B ha-1 in the form of Borax were co-
applied with urea during two topdressings at stages V6 and V10 of plant growth. In 
Zimbabwe, B was applied as Solubor in the planting hole together with the other 
fertilisers, right before sowing. 
 

 Data collection 
Field-dry stover and grain biomass in each plot was weighed during harvest. Dry matter 
content of subsamples was determined to convert biomass weights to dry weights. 
Grain yield was expressed at a standardised moisture content of 13%. A range of plant 
essential elements was analysed in both stover and grain biomass samples using a 0.8 M 
H2SO4/Se/H2O2 digestion for N and a microwave digestion with concentrated HNO3 
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for the other elements (Novozamsky et al., 1983). Boron uptake was derived from dry 
matter production of stover and grains, multiplied by their respective B concentrations.  
 
Pooled topsoil (0-20 cm) samples were collected per block during harvest. Soil samples 
were taken between the rows, as fertilisers were applied in the planting hole.  
 
As rainfall is known to potentially affect B leaching and associated availability (Degryse, 
2017), daily precipitation was derived from satellite data (WAPOR, 2020). To estimate 
whether rainfall may have affected plant B uptake, the sum of precipitation in the 100 
days after the first B fertiliser application was used. 
 

 Soil analysis 
All soils were air-dried and passed through a 2 mm sieve prior to analysis. Soil B 
availability was assessed using hot water (B-HW), 0.01 M CaCl2 (B-CaCl2), 0.43 M 
HNO3 (nitric acid; B-HNO3) and Mehlich-3 (B-M3) soil extractions. Solutions were 
freshly prepared for each extraction. For the HW method, soils were extracted with 0.01 
M CaCl2 with a solution-to-solid ratio of 2 L kg-1 and a boiling time of 10 min (Aitken 
et al., 1987). Suspensions were heated in Teflon destruction tubes in a Mars 6 
Microwave Digestion System (CEM corporation). The ramping time was set to 5 min 
before holding the suspensions at a temperature of 105±5 °C for 10 min. Tubes were 
removed immediately from the microwave when the program was finished and 
suspensions were decanted in 50 mL Greiner tubes for centrifugation. For the CaCl2 
method, soils were extracted with 0.01 M CaCl2 at a solution-to-solid ratio of 10 L kg-1 
and an equilibration time of 2 h (Houba et al., 2000). After centrifugation and filtration, 
extracts were acidified with concentrated HNO3 before analysis. A HNO3 soil 
extraction was done using a solution-to-solid ratio of 10 L kg-1 and an equilibration time 
of 4 h, according to the ISO standard (ISO, 2016). Lastly, soils were extracted with a 
M3 solution, consisting of 0.1 M CH3COOH, 0.25 M NH4NO3, 0.015 M NH4F, 0.013 
M HNO3 and 0.001 M EDTA, with a solution-to-solid ratio of 10 L kg-1 and an 
equilibration time of 5 min (Mehlich, 1984). Boron concentrations were measured using 
high resolution Inductively Coupled Plasma - Mass Spectrometry (ICP-MS, Element 2, 
Thermo Scientific) in all four soil extracts, after centrifugation and filtration of the 
suspensions over a 0.45 µm membrane filter.  
 
Several other soil properties affecting B adsorption were determined. Soil pH was 
measured with a glass electrode in a distilled water extract, with a solution-to-solid ratio 
of 2.5 L kg-1, after shaking for 2 h on a linear shaker at 180 strokes min-1. Soil organic 
carbon (SOC) content was spectrophotometrically determined after the Kurmies wet 
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oxidation method (Walinga et al., 2008). Soil contents of Al and Fe hydroxides were 
determined with an ammonium oxalate soil extraction (ISO, 2012). For further data 
analysis, the sum of Al and Fe hydroxides in ammonium oxalate (AlFe-AO; in mmol 
kg-1) was used. Clay content was determined with various methods (see chapter 4). Soil 
calcium, in the form of carbonates, calcium clays and free ions are also known to affect 
B adsorption (Goldberg, 1997). Calcium concentrations in M3 (Ca-M3) were analysed 
as a proxy for soil calcium levels. Concentrations were measured using Inductively 
Coupled Plasma - Optical Emission Spectrometry (ICP-OES).  
 

 Analytical limits 
The determination limits for the different methods were calculated as the average value 
of the blanks + three times its standard deviation, across different analytical series 
(Keskinen et al., 2019). Determination limits for B were found to be 0.78 µg kg-1 for 
hot water (n = 10 blanks), 4 µg kg-1 for 0.01 M CaCl2 (n = 28), 0.03 mg kg-1 for 0.43 M 
HNO3 (n = 14) and 0.78 mg kg-1 for Mehlich 3 water (n = 4). The determination limit 
for the B-M3 procedure is higher compared to B-HW, B-CaCl2 and B-HNO3 
procedures, as the M3 extract needs to be diluted more for ICP-MS measurements 
because of its high salt content. 
 
None of the samples had B concentrations below the determination limits for HW, 
CaCl2 or HNO3, but all of the samples were below the determination limit for M3. Even 
if the determination limit was calculated as the average value of the blanks + two instead 
of three times its standard deviation (0.52 mg kg-1), all measured B-M3 concentrations 
were below this detection limit. No reliable B-M3 results were therefore obtained for 
the soils used in this study, and B-M3 was consequently not used in further data analysis.  
 

 Data analysis 
Data was analysed using R software, version 4.0.2 (R Core Team and R Development 
Core Team, 2020). Results were visualized with the ggplot2 package (Wickham, 2016).  
 
Treatment effects 
The effect of fertiliser treatment (i.e. full and B omission) on maize grain yields (Mg 
ha-1) and B uptake (g ha-1) was assessed with linear mixed effect models (LME) using 
the lme function from the nlme package (Pinheiro et al., 2013). These analyses were 
done for each farm, with treatment as fixed factor, and block as random factor 
(random= ~1|Block). At country level, differences between farms were also assessed 
using an LME model with farm as additional fixed factor. Significance of factors, as well 
as their interaction, were tested with the Anova function from the car package (Fox and 
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Weisberg, 2019). Individual differences were analysed with Tukey’s post hoc test, using 
the glht function from the multcomp package, version 1.4-17 (Hothorn et al., 2008). 
Normality of model residuals were checked with the Shapiro-Wilk test using the 
shapiro.test function from the stats package, version 4.1.0 (R Core Team and R 
Development Core Team, 2020). Homogeneity of variances was tested with Levene’s 
test, using the leveneTest function from the car package. In case assumptions of 
normality of residuals or homogeneity were violated, data transformation was applied.  
 
The effect of fertiliser treatment was also assessed on block-level by calculating the yield 
response as:  
 
Equation 1: Yield response = (Yield Full) / (Yield B omission)    
 
with Yield Full representing the yield (Mg ha-1) in the full treatment, and Yield B 
omission the yield (Mg ha-1) in the treatment where B was not fertilised.  
 
Soil-plant relations  
Boron uptake in the B omission plots was used as a proxy for B bioavailability, as the 
uptake of a nutrient equals soil supply when it is yield-limiting (Janssen et al., 1990). The 
relation between soil properties and B uptake in the B omission treatment, as well as 
the yield response, was assessed using LME modelling with method specified as 
maximum likelihood (ML). In these models, soil properties were used as fixed effects 
and the effect of agroecological zone and maize variety was represented by including 
country as a random factor (random= ~1|Country). Although this model treats all 
blocks within a country as pseudo-replicates, it was considered suitable given the large 
variability in soil and plant parameters within farms. 
 
Based on Van Eynde et al. (2020) and Goldberg (1997), the soil properties considered 
relevant for B bioavailability were included in the modelling: pH, B-CaCl2, B-HNO3, 
B-HW, SOC, Ca-M3 and AlFe-AO. Although multicollinearity was observed among 
the explanatory soil parameters, no variable selection was made, since all of the variables 
are potentially relevant for controlling B availability. Model selection was done based 
on the Akaike's Information Criterion (AIC) value (Webster and McBratney, 1989) 
using the dredge function from the MuMIn package (Barton, 2020). The yield response 
was modelled on a log10-scale (Marcillo and Miguez, 2017), where each of the 
independent parameters was also log-transformed, except pH. Boron uptake was 
modelled on a normal scale. 
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Normality and homogeneity were checked with the Shapiro-Wilk and Levene’s test. The 
r2 function from the performance package in R (Ludecke et al., 2021) was used to 
calculate the variance explained by the fixed factors only (marginal R2) and the variance 
explained by both the fixed and random effects (conditional R2). Throughout this 
manuscript, these will be referred to as fixed and total R² respectively. The relative 
contribution of each variable in the final LME model, was tested using the r2beta 
function from the r2glmm package (Jaeger, 2017). 
 

 Results 
 

 Soil parameters 
The soils of the field trial locations generally had low SOC contents with no values 
exceeding 20 g kg-1 (Table 1). The Zambian and most of the Zimbabwean farms had 
the lowest SOC contents, which ranged from 4 - 11 g kg-1, whereas the Kenyan farms 
had higher SOC contents, between 9 and 20 g kg-1. The field trials covered a limited 
range in soil pH, with most of the values between 5.0 and 6.5, with the exception of 
two blocks in Zimbabwe (both on Farm 10). Within countries, the range in pH values 
was even more limited, with the Kenyan farms covering pH 5.1 - 6.3 and the Zambian 
farms covering pH 5.7 - 6.4. The pH values of the farms in Zimbabwe ranged between 
5.0 and 7.0, covering the entire range in pH values reported in this study. 
 
Table 1: Soil characteristics of the farms. Values represent averages per farm, except for clay 
content, which was analysed on farm level. 

 Farm pH 
- 

SOC 
(g kg-1) 

B-HNO3 

(mg kg-1) 
B-CaCl2 

(µg kg-1) 
B-HW 

(mg kg-1) 
Ca-M3 

(mg kg-1) 
AlFe-AO 

(mmol kg-1) 
Clay 
(%) 

K
en

ya
 

1 5.9 15.6 0.34 74 0.67 1266 91 29 
2 5.7 15.8 0.18 34 0.34 1139 103 30 
3 5.6 11.3 0.21 50 0.29 537 51 29 
4 5.6   9.9 0.14 40 0.21 369 60 35 
5 5.3 16.2 0.26 75 0.65 622 97 40 

Z
am

bi
a 1 6.2 10.3 0.11 16 0.21 591 52 - 

2 6.1   8.3 0.08 17 0.05 307 34 - 
3 5.9   6.3 0.07 14 0.10 188 37 - 
4 6.3   6.5 0.09 16 0.11 243 25 - 

Z
im

ba
bw

e 

4 5.6 13.0 0.32 132 0.91 1112 69 35 
6 5.6   5.2 0.10 48 0.07 123 11 7 
7 5.5   5.8 0.10 50 0.17 94 17 6 
8 5.3   4.8 0.11 50 0.12 83 22 2 
9 5.4   6.2 0.09 41 0.09 155 14 8 
10 6.2   4.7 0.36 93 0.50 444 21 2 
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Figure 1: Relations between B concentrations in HW and CaCl2 (A), HW and HNO3 (B) and 
CaCl2 and HNO3 (C) soil extracts. Points represent individual blocks, colours indicate country. 
The two highest points in Figure 1A and B belong to Farm 5 in Zimbabwe (chapter 4), where 
only Zn and no B omission treatment was included. Data were included for discussion purposes. 
 
The soils had B concentrations ranging between 0.03 - 1.27 mg kg-1 for B-HW, 0.05 - 
0.22 mg kg-1 for B-CaCl2 and 0.04 - 0.55 mg kg-1 for B-HNO3 (Figure 1). Boron 
availability was lowest for the Zambian and some of the Zimbabwean soils; the 
Zimbabwean soils generally covered the widest range. Boron concentrations in HW 
were highest, followed by HNO3 (~45% of HW) and CaCl2 (~14% of HW). Boron 
concentrations in the different extracts were strongly correlated, but correlations were 
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relatively poor at lower concentrations (i.e. below ~0.1 mg kg-1 B-CaCl2; Figure 1). 
Despite these strong correlations, the fractions of soil B exhibited different relations 
with different other soil properties. Of the three extraction methods, B-HW correlated 
best with SOC (r = 0.63, p < 0.001), AlFe-AO (r = 0.61, p < 0.001) and Ca-M3 (r = 
0.76, p < 0.001). In contrast to B-HW, B-HNO3 was also correlated with pH (r = 0.29, 
p = 0.010), in addition to SOC (r = 0.44, p < 0.001), AlFe-AO (r = 0.43, p < 0.001) and 
Ca-M3 (r = 0.66, p < 0.001). The B-CaCl2 was only significantly correlated with SOC (r 
= 0.26, p = 0.022) and Ca-M3 (r = 0.44 , p < 0.001). Clay data were only available for 
the Kenyan and Zimbabwean farms, on farm level, and could thus not be used to derive 
correlations with other soil parameters. The ratio between B-HW/B-HNO3 increased 
with SOC (r = 0.63, p < 0.001), AlFe-AO (r = 0.66, p < 0.001) and Ca-M3 (r = 0.60, 
p < 0.001) concentrations. Similarly, the ratio between B-HW/B-CaCl2 increased with 
SOC (r = 0.56, p < 0.001), AlFe-AO (r = 0.62, p < 0.001) and Ca-M3 (r = 0.54, 
p < 0.001) concentrations, as well as pH (r = 0.29, p = 0.011). 
 

 Yield response 
Maize yields in the majority of farms ranged between 4 and 8 Mg ha-1. Within each of 
the countries, significant differences in maize yields among sites were found (Figure 2). 
Unexpectedly, fertilisation with B led to significantly lower yields on six out of fifteen 
sites (Farms 1 and 3 in Kenya, Farms 3 and 4 in Zambia and Farms 6 and 8 in 
Zimbabwe), indicating potential B toxicity. Visual symptoms of toxicity (or deficiency) 
were not observed in the field. A negative yield response (i.e. below 1) to B fertilisation 
was found for 48 out of 72 blocks (67%) across all sites, although the majority of blocks 
(n = 52, 72%) had a yield response between 0.8 and 1.2 (Figure 3). We consider this 
natural variation as a variation of 20% from the mean yield response roughly 
corresponds to the variation in yield response within a site and treatment (Figure 2). 
 
Using LME modelling, variation in the yield response to B fertilisation could not be 
explained based on any soil parameter and rainfall data. Further inspection of the data 
showed three outliers in the yield response (< 0.6). In each of these farms (Farms 2 and 
3 in Zambia and Farm 8 in Zimbabwe), the low yield response to B in one of the blocks 
coincided with a relatively low yield for the full treatment. At Farm 3 in Zambia and 
Farm 8 in Zimbabwe, the negative effect of B fertilisation on yield was significant 
(Figure 2), although not at Farm 2 in Zambia. Regressions were rerun after removing 
the three outliers in yield response to B, but again no soil parameter or rainfall was 
retained in the final model to explain the variation in the yield response to B. In addition, 
model residuals were not normally distributed (p = 0.015). Further inspection showed 
that the residuals were strongly correlated with yields in both treatments. 
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Figure 2: Boxplots of maize yield for individual farms, grouped per country. The boxplots show 
the median (line), first and third quartiles (hinges), the minimum and maximum based on the 
interquartile range (whiskers) and the outliers (points). Letters indicate significant differences 
among sites within a country, asterisks indicate a significant difference between treatments. 
 
Although auto-correlated with the yield response, to normalise model residuals and gain 
insights in additional explanatory variables, it was decided to rerun the regression using 
yield of the B omission treatment as an explanatory variable for the yield response. This 
resulted in a model with normally distributed residuals (p = 0.091). This model described 
the yield response based on yields in the B omission treatment, B-CaCl2, AlFe-AO, 
B-HNO3, pH and Ca-M3. Fixed and total R² were both 0.32, indicating that limited 
variation in the yield response was described. In this model, yield in the B omission 
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treatment explained 68% of R². When rainfall was added as an explanatory variable, it 
was found to be the most important parameter in explaining the yield response, 
followed by yield in the B omission treatment, B-HW and B-CaCl2. Residuals were 
normally distributed (p = 0.716). Fixed and total R² were 0.538 and 0.944, indicating 
that country as a random effect was significant when rainfall was included in the LME 
model. Despite more variation in the yield response explained by the model including 
rainfall, it was not significantly different from the model without (p = 0.064). Running 
a regression with data from farms where B application did not lead to a significant yield 
reduction (n = 43), resulted in a model with yield in the B omission treatment as most 
important variable, followed by B-CaCl2, Ca-M3 and B-HNO3. The model was not an 
improvement in terms of R² and RMSE compared to the model based on all data (not 
presented); inclusion of rainfall also did not further improve this model. Each of the 
three models included B-CaCl2 with a negative coefficient, as well as either B-HW or 
B-HNO3 with a positive coefficient. However, the contribution of the soil parameters 
generally was limited, given the large explanatory value of yield in the B omission 
treatment (Figure 4). 
 

 
Figure 3: Cumulative distribution of the yield response per block (n = 72). A value of 1 indicates 
no yield difference between both treatments, a value below 1 a negative yield response (higher 
yield for the B omission treatment) and a value above 1 a positive yield response (higher yield 
for the full treatment). Dashed lines indicate yield responses of 0.8 and 1.2. 
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Figure 4: Yield response (full/B omission) per block plotted against yield in the B omission 
treatment. Size of the data points indicates whether B-HW concentrations were below or above 
the median value within each respective country. The dashed line represents the correlation 
between the yield response and yield in the B omission treatment (n = 72, r = -0.44, p < 0.001).  
 
No clear trends between the yield response and soil B concentrations were found 
(Figure 5A, B and C). The variation in yield responses was large at low B concentrations, 
so it was not possible to derive critical soil B concentrations based on B-HW, B-CaCl2 
and/or B-HNO3 soil extracts. Exclusion of the six farms where B application led to a 
significant yield reduction, strongly reduced the variation in yield response for soils with 
low soil B concentrations (Figure 5D, E and F). No positive yield responses (> 1.2) to 
B fertilisation were found when B-HW was above 0.69 mg kg-1, B-CaCl2 was above 
0.085 mg kg-1 and B-HNO3 was above 0.35 mg kg-1 (Figure 5). However, below these 
concentrations, negative yield responses (< 0.8) were still found. 
 
 
 
Figure 5 (next page): The yield response per block (n = 72) plotted against B concentrations in 
(A) hot water, (B) CaCl2 and (C) HNO3. Similar plots are presented in D, E and F without data 
from the farms where boron led to a negative yield response (n = 43). Grey marked areas 
represent natural variation in the yield response.  
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 Plant B concentrations 
Both stover and grain B concentrations significantly increased as a result of B 
fertilisation (Table 2). Across countries, median grain B concentrations increased from 
1.25 to 1.92 mg kg-1, while median stover B concentrations increased from 3.71 to 6.60 
mg kg-1. Grain B concentrations were less affected by B fertilisation compared to stover 
B concentrations (1.54-fold increase for grain vs 1.75-fold increase for stover). 
Differences among countries were observed, however: in Kenya and Zimbabwe stover 
B concentrations increased relatively more than grain B concentrations, while the 
opposite was observed for Zambia.  
 
Table 2: B concentrations and concentration response to fertilisation (Full/B omission). Values 
represent medians, range between brackets. Within countries, average concentrations were all 
significantly different between the full and B omission treatments, with p-values below 0.001. 

 
Across countries, grain B concentrations ranged between 0.69 - 1.88 (B omission) and 
1.37 - 4.89 mg kg-1 (full treatment; Figure 6A; Table 2). Boron concentrations in stover 
were generally 2-6 times larger than in grains and ranged between 2.44 - 6.50 
(B omission) and 3.36 - 20.00 mg kg-1 (full treatment; Figure 6B; Table 2). The highest 
stover B concentrations were associated with relatively low stover biomass production, 
indicating that the high concentrations may be a result of B accumulation in the crop 
(Figure 6B). For grain B concentrations, a similar trend was visible, but less clear than 
for stover B concentrations (Figure 6A). The seven highest stover B concentrations 
(>11 mg kg-1) were found in the full treatment for farms Farm 6 and 8 in Zimbabwe. 
The ten highest grain B concentrations (>2.49 mg kg-1) were found in these same farms. 
These were farms with a significant negative yield response to B fertilisation (Figure 2). 
In Kenya and Zambia however, no clear differences in plant B accumulation were found 
between farms where B fertilisation led to a significant yield reduction and farms where 
it did not. 
 

 Grain [B] (mg kg-1) Stover [B] (mg kg-1) Response 

Country Full B omission Full B omission Grain Stover 

Kenya 1.77 
(1.5 - 2.2) 

1.27 
(1.0 - 1.6) 

6.40 
(3.5 - 10.5) 

3.68 
(2.4 - 4.6) 

1.40 
(1.0 - 2.0) 

1.74 
(1.1 - 2.6) 

Zambia 2.08 
(1.7 - 2.4) 

1.06 
(0.7 - 1.7) 

6.65 
(4.7 - 10.6) 

4.50 
(3.7 - 6.5) 

1.86 
(1.2 - 3.1) 

1.45 
(0.9 - 1.9) 

Zimbabwe 2.07 
(1.4 - 4.9) 

1.29 
(0.9 - 1.9) 

7.00 
(3.4 - 20) 

3.59 
(2.7 - 5.0) 

1.55 
(0.9 - 4.1) 

1.85 
(0.9 - 5.7) 

All 1.92 
(1.4 - 4.9) 

1.25 
(0.7 - 1.9) 

6.60 
(3.4 - 20) 

3.71 
(2.4 - 6.5) 

1.54 
(0.9 - 4.1) 

1.75 
(0.9 - 5.7) 
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Figure 6: Boron concentrations in (A) grain and (B) stover, plotted against the biomass 
production of each fraction. Points represent individual blocks.  
 
No clear patterns between grain and stover B concentrations of the B omission plots 
and the yield response were found (results not presented). It was therefore not possible 
to derive critical plant concentrations that are indicative of potential B deficiency. 
 

 B uptake 
Across countries, B fertilisation led to a significant increase in B uptake for most farms 
(Figure 7). No increase in B uptake was observed in Farm 1 in Kenya, Farm 3 and 4 in 
Zambia and Farm 4 in Zimbabwe (Figure 7). Except for Farm 4 in Zimbabwe, the 
absence of an uptake response for those farms can be explained by the lower yields (and 
stover biomass production) in the full treatment (Figure 2), which translates into lower 
B uptake. Boron fertilisation led to an average increase in B uptake of 21 g ha-1 for 
Kenya, 9 g ha-1 for Zambia and 35 g ha-1 for Zimbabwe. Given the fertilisation rates of 
5 kg ha-1 for Kenya and 3 kg ha-1 for Zambia and Zimbabwe, the fertiliser use efficiency 
is low (0.3-1.2%). 
 
Equation 2: B uptake = 38.1 + 78.5*B-HNO3 – 0.9*SOC – 150.6*B-CaCl2 
 
Boron uptake (g ha-1) in the B omission plots was used as a proxy for B availability. The 
final model based on model selection included a positive effect of B-HNO3, and a 
negative effect of B-CaCl2 and SOC to describe the variation in B uptake (Equation 2). 
Fixed and total R² of this model were both 0.21, RMSE was 9.8 g ha-1 and residuals 
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were normally distributed (p = 0.563). The B-HNO3 was the most important parameter 
in describing variation in B uptake (56% of R²), followed by SOC (25%). Uptake of B 
generally increased with B-HNO3 concentrations and decreased with SOC (Figure 8). 
However, much of the variation in B uptake remained unexplained. Adding rainfall as 
an explanatory variable did not improve the description of B uptake in the B omission 
treatment (results not presented). 

 
 
 
 

 
 
 
 
 

 
 
 
 

Figure 7: Boxplots of B uptake for individual farms, grouped per country. Boxplots show 
medians (line), first and third quartiles (hinges), minimum and maximum values based on the 
interquartile range (whiskers) and outliers (points). Letters indicate significant differences among 
sites within a country, asterisks indicate significant differences between treatments within a farm. 
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Figure 8: B uptake of the B omission plots plotted against B-HNO3, with size of the data points 
indicating whether SOC concentrations were below or above the median, within each respective 
country. Data points represent individual blocks. 

 Discussion 
 

 Yield response 
Despite low soil and plant B concentrations, B fertilisation did not increase maize yields. 
In line with our results, several studies report that B fertilisation mainly increases maize 
B concentrations, but not biomass production (Andrić et al., 2016; Jin et al., 1988; 
Lordkaew et al., 2011; Mozafar, 1987). Although B is beneficial for human health 
(Nielsen, 2014), it is unclear where and to what extent B intake is insufficient in SSA 
and whether fertilising maize with B could alleviate this. More importantly, farmers will 
be reluctant to use fertilisers when this does not lead to increased yields. 
 
In the majority of plots, a negative yield response to B fertilisation was observed, with 
a significant yield reduction at 6 out of 15 farms. Both deficiency and toxicity can occur 
in the same growing season (Goldberg, 1997). In unfertilised situations, B toxicity is 
rare (Gupta et al., 1985). When fertilising, added B to soils will largely remain in solution 
as adsorption is limited, especially in acidic soils (Degryse, 2017; Van Eynde et al., 2020). 
As the range between deficient and toxic levels of soil available B is very narrow, this 
can easily lead to toxicity, especially when large quantities of B are applied (Gupta et al., 
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1985). In this study, B was fertilised as 5 kg ha-1 basal application in Kenya, 3 kg ha-1 
split application in Zambia and 3 kg ha-1 basal application in Zimbabwe, all applied in 
or close to the planting hole. Previously, application of 5 kg B ha-1 did not result in 
notable maize yield reductions in SSA (Rurinda et al., 2020) and ~5 kg ha-1 was found 
to be the optimal B application rate for field-grown maize in Brasil (Gotz et al., 2021). 
On the other hand, B application rates used in this study were considerably higher than 
the 0.5 to 1 kg ha-1 applied in several other field trials with maize in SSA (Kihara et al., 
2017; Lisuma et al., 2006; Vanlauwe et al., 2015; Wendt and Rijpma, 1997; Wortmann 
et al., 2019). Wendt and Rijpma (1997) furthermore also noted potential B toxicity in 
maize grown in Malawi at a B application rate of 3 kg ha-1, despite soil testing values 
indicating B deficiency. The B fertiliser application rates used in our field trials likely 
were too high and resulted in significant reductions in yields. Based on our findings and 
those of Wendt and Rijpma (1997) we conclude that application rates of 3 kg ha-1 are 
too high for maize in acidic soils. Given the low B requirements of maize, we 
recommend a maximum B application rate of 1 kg ha-1 for soluble B fertiliser sources. 
Based on Degryse (2017) and Abat et al. (2014), we furthermore recommend to apply 
B either through broadcasting of B-enriched macronutrient fertilisers, which enables a 
good distribution of the low quantity of B across a field, or in the planting hole as a 
slow-release fertiliser, which prevents B toxicity as well as losses through leaching. 
 
The efficiency of B fertilisers in terms of expected yield gains depends on several factors, 
such as the method, chemical form, amounts and timing of application (Abat et al., 
2014; Degryse, 2017). Data showing a timing effect of B fertilisation on maize yields are 
limited and ambiguous. As B application is known to have a stronger effect on 
reproductive than vegetative growth-factors (Lordkaew et al., 2011), application of B at 
a later growth-stage could be more effective in increasing yields, as shown for wheat 
(Sarkar et al., 2007). However, Gotz et al. (2021) showed that B application at V6 
growth-stage led to lower maize yields compared to application at sowing in one soil, 
but not in another. For future research, we recommend to study the effect of B 
fertilisation at different times in the maize growing season, as well as the differences in 
the effects between single and split application of B gifts. 
 
It is unclear why B application was toxic at some sites, but not at others, within the 
same country. The yield response to B fertilisation, whether positive or negative, could 
not be described based on available soil parameters alone. Although the strong negative 
yield responses likely were affected by the high B application rates, after removing data 
from farms with a negative response to B fertilisation, soil parameters still could not 
describe the yield response well. We have several hypotheses for this. First, the limited 
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explanatory power of soil variables may be due to the natural variation in the data. The 
majority of data points (72%) had a yield response that could be considered natural 
variation (i.e., deviating less than 20% from no effect). For these plots, no consistent 
relation between soil parameters and the yield response is expected. Second, factors 
other than soil properties may play an important role for the assessment of the yield 
response to B fertilisation. High rainfall is associated with leaching of B, especially in 
sandy soils (Degryse, 2017). High amounts of rainfall after B fertilisation could therefore 
potentially ameliorate the effect of B toxicity, while B may become toxic in locations 
with little rainfall. Our data neither disprove nor confirm the effect of rainfall on the 
incidence of B toxicity in maize. Generally, we were not able to derive models describing 
the yield response without adding the auto-correlated yields in the B omission plots. In 
addition, as rainfall data were collected per farm, only 5 (Kenya), 4 (Zambia) and 6 
(Zimbabwe) observations per country were available. Rainfall also did not differ 
strongly within a country, as most farms were located in relatively close proximity of 
each other. For future research, we recommend to study the effect of water availability 
in combination with B fertilisation to gain insight in the best timing for B application in 
regard to expected rainfall. 
 

 B uptake 
Soil B availability, quantified as B uptake in the B omission plots, was not described 
well, as only 20% of the variation in B uptake was explained by B-HNO3, B-CaCl2 and 
SOC. The sources of soil available B for crop uptake are believed to be desorption from 
the reactive surfaces, mineralisation of soil organic matter, weathering of soil minerals 
and atmospheric deposition with precipitation, in particular close to coastal areas (Park 
and Schlesinger, 2002; Shorrocks, 1997). As each of the B omission trials were located 
far away from any coast and since weathering is regarded as a slow process in 
comparison with mineralisation of soil organic matter (Kot et al., 2016), the latter is 
expected to be the primary source of available B in the soils from this study. At the 
same time, SOC may adsorb B. Our regression model showed that higher levels of SOC 
were associated with lower levels of B uptake, which is in contrast to what was expected 
and points to adsorption rather than mineralization processes that control B availability 
(Van Eynde et al., 2020). However, SOC contributed relatively little to variation in B 
uptake in comparison with B-HNO3. The two were positively correlated (r = 0.44), 
whereas higher levels of B-HNO3 were associated with higher levels of B uptake. These 
findings confirm that bioavailability/uptake of B is still poorly understood, and no 
straightforward identification of processes that control soil available B could be 
obtained from our results. 
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We hypothesise that B availability was poorly described based on soil parameters 
because of three constraining factors. First, B does not appear to have been yield-
limiting in these field trials, as positive yield responses to B fertilisation were absent on 
a site level. In this situation, B uptake does not equal B availability, as other nutrients or 
biophysical factors constrain biomass production and therefore B uptake (Janssen et al., 
1990). Secondly, although B deficiency is associated with soils low in organic matter 
content (Shorrocks, 1997), as the ones in our study, the sites described in this study only 
covered a limited range in SOC (between 4 and 20 g kg-1). Inclusion of soils with a wider 
range in SOC might have revealed stronger (and possibly positive) trends between SOC 
and B uptake. For the same reason, soil pH was likely not identified as a significant 
factor in describing B availability. Most soils in this study had pH values between 5.0 
and 6.5, which is a narrow range in which pH-dependent adsorption of B furthermore 
plays a limited role (Goldberg, 1997). Thirdly, B available for crop uptake may also 
depend on water availability (Degryse, 2017). Boron is relatively immobile within plants 
and a constant supply of soil B is therefore required (Kaur and Nelson, 2015; Mozafar, 
1987). Drought can cause B deficiency as uptake of water and thus uptake of B by the 
roots is limited (Bell, 1997; Gupta et al., 1985); rainfall is thus expected to be positively 
correlated with B uptake. Based on the results described in this study, we cannot 
disprove or confirm this hypothesis. Rainfall was not a significant factor in the model 
describing B uptake, but this may have been due to data limitations as discussed above. 
 

 Critical concentrations 
In this study, no critical soil B concentration could be derived that indicates potential B 
deficiency in maize. Based on field trials in India, critical B-HW concentrations were 
estimated to be 0.50 mg kg-1 (Kumar et al., 2018). In the USA, B application to maize is 
recommended only when B-HW levels are below 0.25 mg kg-1 (WARD Laboratories, 
2020). In this study, positive yield responses to B fertilisation were associated with 
B-HW concentrations below 0.69 mg kg-1. This observed threshold value is thus higher 
than the critical concentration reported in literature, which may be due to differences in 
soil type, maize variety and/or HW protocol used. However, B fertilisation did not lead 
to significant yield increases, despite many of the soils having B concentrations below 
this threshold. In line with our results, Wendt and Rijpma (1997) reported that B 
fertilisation significantly increased maize yields at only two out of eight locations in 
Malawi, while each of the locations had low (<0.32 mg kg-1) B-HW concentrations. So 
this critical concentration is not a reliable indicator for B deficiency that can be generally 
applied. These findings could indicate that a single soil extraction method is not 
sufficient to identify whether B fertilisation is required. Furthermore, since B is prone 
to leaching, B concentrations in the subsoil often exceed those in the topsoil (Gupta et 
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al., 1985). Maize roots can reach a depth of 50 cm approximately 5 weeks after sowing 
(Hund et al., 2009). In practice and as well as in this study, often only the topsoil is 
sampled for analysis. For future studies, we recommend to also analyse subsoil samples 
(25-50 cm), as B concentrations in this soil layer may be more relevant for diagnosis of 
B deficiency. 
 
The Mehlich 3 (M3) extraction method is sometimes used to evaluate B availability. In 
this study, B concentrations did not exceed the determination limit of the M3 procedure 
(0.52 mg kg-1). To our knowledge, no critical B-M3 values for maize have been derived 
in field trials.  
 
Critical plant B concentration indicating potential B deficiency in maize could not be 
derived in this study either. Critical maize B concentrations ranging between 7 and 12 
mg kg-1 have been reported (de Souza Lima et al., 2007; Gupta, 2007; Joshi et al., 2014; 
Kumar et al., 2018; Sakal and Singh, 1995; Singh and Sinha, 1987). In this study, all plant 
concentrations in the B omission treatment were below 7 mg kg-1. In the full treatment 
however, part of the samples also had concentrations below this level, which may 
indicate that the low B concentrations in this study are a physiological characteristic of 
the varieties used rather than symptoms of B deficiency. Gramineous species such as 
maize are known for their generally low B concentrations (Lordkaew et al., 2011). 
Establishing a universal critical plant B concentration may be difficult, given the 
variation among maize varieties and plant parts (Andrić et al., 2016; Mozafar, 1987). 
Although Lordkaew et al. (2011) and Gotz et al. (2021) showed that silk B 
concentrations were a reliable indicator for B deficiency, both studies arrived at different 
critical concentrations, indicating that these concentrations are not universal. 
Furthermore, although deficiency of several plant-essential nutrients can be derived 
from maize earleaf concentrations to some extent, this does not apply to B (Kovács and 
Vyn, 2017).  
 
Establishment of critical plant concentrations is complicated by the fact that B is highly 
immobile within plants and that soil supply of B is not constant (Bell, 1997); plant 
concentrations therefore do not give a clear representation of the (actual) nutritional 
status of the crop. Timing of fertilisation may also affect plant B concentrations. As an 
effect of fertilisation, stover B concentrations increased relatively more than grain B 
concentrations in Kenya and Zimbabwe, but not in Zambia. We consider this difference 
is due to the timing of B application, as B was fertilised right before sowing in Kenya 
and Zimbabwe, but later in the growing season in Zambia. Gotz et al. (2021) showed 
that post-harvest soil B concentrations were significantly higher when 4 (and 12) kg ha-1 
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B was applied at growth stage V6 compared to application at sowing. Similarly, they 
also found higher B concentrations in maize leaves when B was applied at stage V6. We 
therefore hypothesise that, as B leaches easily and is not mobile within plants, B 
concentrations of plant tissues that are formed within a few weeks after fertilisation are 
most strongly affected by B application.  
 

 Soil B pools 
Hot water extractable B is seen as a good measure for B availability, and good relations 
with yield and plant B concentrations have been reported for maize and other crops 
(Aitken et al., 1987; Chaudhary and Shukla, 2004; de Souza Lima et al., 2007; Jin et al., 
1988). To date, it is unclear which soil B pool is represented by the HW extraction 
method. The B-CaCl2 can be viewed as a measure of B present in the soil solution, while 
B-HNO3 may represent both the concentration in solution as well as B not directly 
available for plant uptake but reversibly bound to the soil solid phase (Groenenberg et 
al., 2017; Van Eynde et al., 2020). The latter may be interpreted as the B pool that 
becomes available for plant uptake during a growing season. Interestingly, B-HW 
concentrations were roughly twice as high as B-HNO3 and seven times as high as 
B-CaCl2, which may indicate that the HW method extracts B that is not (directly) 
available for plant uptake. The HW method was relatively more efficient in extracting 
B compared to HNO3 with increasing SOC levels. We hypothesise that as suspensions 
are heated to boiling in the HW method, B from organic matter is disclosed, which is 
not extracted by the acidic (pH ≈ 0.5 - 1.0) HNO3 extract. Although the difference 
between the HW- and HNO3-extractable B seems to point at B not bound to external 
functional groups in soil organic matter, and possibly to B in undecomposed biomass, 
the exact nature of this source of B, and whether it is mineralised during the growing 
season, remains unclear. As organic matter is an important source of plant available B 
(Kot et al., 2016), B-HW could be a better proxy for the B pool that becomes available 
for plant uptake during a growing season compared to B-HNO3 and B-CaCl2. For future 
studies, we recommend to explore which soil B pools are extracted with the HW 
method and whether these pools have relevance for plant B uptake. 
 
Boron concentrations in HW, CaCl2 and HNO3 methods were strongly correlated 
(Figure 1). Novozamsky et al. (1990), also found a good correlation between B-HW and 
B-CaCl2 in 100 Dutch soils (R² = 0.74). They however found that CaCl2 extracted 
around 27% of B compared to HW, in comparison to the 14% found in this study. 
These differences may be due to differences in hot water protocol (not clearly specified 
in Novozamsky et al. 1990) or soil properties such as organic matter content, pH or 
phosphate loading (Van Eynde et al., 2020). 
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Both B-HNO3 and B-CaCl2 were significant parameters in describing the yield response 
as well as B uptake, but with opposite coefficients, despite being positively correlated. 
This may imply that the interplay of these two B soil pools is relevant to understand B 
uptake and the yield response to B fertilisation. The B-HNO3 contributed positively 
and B-CaCl2 negatively to the yield response and B uptake. This suggests that soils with 
higher B-CaCl2/B-HNO3 ratios, and thus a larger proportion of fertiliser B remaining 
in solution, may have a higher chance of inducing B toxicity in fertilised plots (i.e. lower 
yield response). As B in solution is prone to leaching, high ratios of B-CaCl2/B-HNO3 
may also imply that a large proportion of the soil B is easily leached and thus not 
available for plant uptake. However, we note that the models describing B uptake and 
the yield response explained limited variation. Furthermore, no models could be derived 
for the yield response without including the auto-correlated yield in the B omission 
treatment. These interpretations should thus be handled with care. 
 
As discussed above, B-HW could be a good proxy for the B that becomes available for 
plant uptake during a growing season, as it potentially extracts mineralizable B. This 
method therefore deserves further attention for understanding B availability. However, 
we do not consider the hot water extraction method suitable for routine analysis of soil 
B availability. The HW method is not standardised (Degryse, 2017) and protocol details 
are often not explicitly specified in studies, which complicates interpretation of results. 
For example, soils are extracted with distilled water, CaCl2 (Bingham, 1982) or BaCl2 
(Wear, 1965) and sometimes with the addition of activated charcoal to obtain a clear 
extract for colorimetric determination. Although correlations between extraction 
methods are high, a hot CaCl2 solution extracts more B than pure hot water (Chaudhary 
and Shukla, 2004; Jeffrey and McCallum, 1988; Joshi et al., 2014). Activated charcoal 
also affects measurements as B concentrations decrease strongly with higher charcoal 
additions (McGeehan et al., 1989; Sahrawat et al., 2012). Many studies do not report 
cooling time, although B re-adsorbs to the soil during cooling over time (Jeffrey and 
McCallum, 1988; McGeehan et al., 1989). Both colorimetric and ICP determinations 
are used for analysis in the B-HW method, with colorimetric determinations generally 
resulting in higher B concentrations than ICP analysis (Gestring and Soltanpour, 1981; 
Jeffrey and McCallum, 1988; Sahrawat et al., 2012). As ICP measures total B in solution, 
B determined colorimetrically is likely to be overestimated due to interferences 
(Gestring and Soltanpour, 1981; Jeffrey and McCallum, 1988). Sahrawat et al. (2012) 
indeed found that ICP results were more reproducible than those of colorimetric 
determination. Furthermore, as ICP devices do not require colourless extracts for 
accurate measurements, charcoal additions are not needed (McGeehan et al., 1989). We 
therefore recommend ICP-AES or ICP-MS for the analysis of B-HW. 
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Standardisation and adjustments of the HW method are needed to reduce the 
uncertainty of the results. Alternatively, we would like to propose the standardised 0.01 
M CaCl2 or 0.43 M HNO3 methods as an alternative for routine analysis of soil B 
concentrations. A clear advantage of these methods is the temperature of the extraction. 
As suspensions do not have to be heated, disposable plastics can be used in the 
procedure, preventing potential B contamination from glassware. In addition, the set-
up needed for hot water B analysis restricts the number of samples that can be analysed 
simultaneously (Mahler et al., 1984), which is not the case for the CaCl2 or HNO3 
procedures. A second advantage is shaking time of 2 h for CaCl2 or 4 h for HNO3. 
During 5 or 10 min shaking with hot water, no equilibrium is reached (Mahler et al., 
1984; McGeehan et al., 1989). Consequently, any time spent on additional steps, such 
as bringing suspensions to boil, cooling down, filtration, adds variability in the results. 
We furthermore recommend to determine B concentrations in the CaCl2 and HNO3 
extracts with ICP-OES of ICP-MS, rather than with colorimetric methods, given the 
uncertainty associated with the latter. 
 

 Conclusions 
The results of this study indicate that it is difficult to describe B availability/uptake and 
yield response to fertilisation based on soil parameters. As a result, it remains unclear to 
what extent maize yields in SSA can be improved through the use of B fertilisers. Our 
results highlight the need for better understanding of the relevant B pools for plant 
uptake and extraction methods representing these. In regards to critical plant 
concentrations, we question the feasibility of using these as an indicator for B deficiency 
in maize. Critical soil B concentrations have been derived in other studies and may 
provide a more reliable indicator for B deficiency. Our results however indicate that 
more validation of these critical soil concentrations is needed. We present a number of 
recommendations for future studies that aim to derive critical soil B concentrations 
indicating B deficiency. First, B fertiliser should be applied at rates of 1 kg ha-1 to prevent 
toxicity, especially when applied banded. Second, we recommend to study the effect of 
timing and method of B application on maize yield response and the incidence of B 
toxicity. Third, we recommend to collect detailed data on precipitation and 
evapotranspiration during the growing season and use these to elucidate the effect of 
soil water availability on B uptake and the yield response to B fertilisation. Sampling and 
analysis of B concentrations in subsoil was also recommended. Lastly, to ensure 
transferability of results, we emphasise either to use standardised protocols like 0.01 M 
CaCl2 or 0.43 M HNO3 for measuring soil B concentrations or to provide extensive 
details of other (hot water) protocols used. 
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Abstract 
Human zinc deficiency is considered widespread in sub-Saharan Africa. Increasing zinc 
(Zn) concentrations in the edible parts of plants is considered a feasible strategy to 
alleviate this problem. The HarvestPlus program has set a target concentration of 38 
mg kg-1 for maize grains, which is considered adequate for reducing human Zn 
deficiency. While the low dietary Zn intake is a concern, increasing yields is prioritised 
over increasing Zn concentrations in crops. However, trade-offs between maize yields 
and grain Zn concentrations have been observed. The aims of this study are (i) to 
confirm whether this trade-off is found in current farming systems in sub-Saharan 
Africa (SSA) and (ii) to explore whether genotypic and management options, relevant 
for the African context, can increase both yields and grain Zn concentrations across 
several environments. Data from several field experiments that focussed on the effects 
of variety, N fertilisation, Zn fertilisation and NPK fertilisation on maize yields across 
different sites in Kenya, Zambia and Zimbabwe were analysed. We demonstrated a 
general trade-off between maize yields and grain Zn concentrations across all sites. Due 
to the nature of the dataset, it was impossible to separate the roles of genotype, 
environment and management in this trade-off. However, the data provided insights 
into current options for increasing yields and grain Zn concentrations. The 
commercially available varieties used in this study, seem to provide no option for 
increasing both yields and grain Zn concentrations by selecting a particular variety. This 
highlights the need for improved maize varieties. The results furthermore suggest that 
environmental factors, in particular soil organic carbon and availability of P and K, are 
positively related with grain Zn concentrations. Application of N increased yields, but 
had contrasting effects on grain Zn concentrations depending on the maize variety and 
site, indicating interactions between management, genotype and environment. Our 
results furthermore suggest that maize grown on soils with low Zn availability, may 
require Zn fertilisation to prevent dilution of grain Zn concentrations at high N 
application rates. We conclude that attaining grain Zn concentrations above the 
HarvestPlus target of 38 mg kg-1, with the current commercially available maize varieties 
and presented management options, is not possible without compromising yield levels. 
Our results however imply that increasing soil organic matter content and balanced 
application of N, P and K fertilisers could increase grain Zn concentrations. As these 
practices likely also increase yields, they could be a viable option to bypass the trade-off 
between maize yields and grain Zn concentrations. 
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 Introduction 
Human zinc intake needs to increase in sub-Saharan Africa (SSA) in order to alleviate 
widespread and severe health problems related to zinc deficiency. An estimated 40% of 
the African population does not have sufficient intake of zinc (Zn). Zinc deficiency can 
lead to several diseases, growth and developmental issues and cognitive problems (Joy 
et al. 2014; Das and Green 2016). The prevalence of Zn deficiency can be attributed to 
unbalanced diets, rich in staple cereal crops and low in animal products, as well as low 
Zn availability in soils leading to low Zn concentrations in the crops that grow on them 
(Joy et al. 2014; de Valença et al. 2017; Cakmak and Kutman 2018). Increasing Zn 
concentrations in edible parts of staple crops such as maize can contribute to reaching 
a sufficient dietary intake of Zn in African countries (Joy et al. 2015). However, Zn 
concentrations in cereals are inherently low and have declined even further as a result 
of long-term breeding efforts to increase yields (Cakmak and Kutman 2018). In the past 
two decades, Zn concentrations of staple crops have increasingly received agronomists’ 
attention. Agronomically, Zn concentrations above 20 mg kg-1 are considered adequate 
for optimal cereal production (Alloway 2008; Cakmak and Kutman 2018). The 
HarvestPlus biofortification program, however, has set a target of 38 mg Zn kg-1 maize 
grains in order to alleviate Zn malnutrition (Bouis and Welch 2010).  
 
While low grain Zn concentrations are a concern, closing the large yield gaps faced by 
African smallholder farmers, a key contributor to food insufficiency (Van Ittersum et 
al. 2016), is prioritised. Although micronutrient bioavailability-induced yield limitations 
occur (Kihara et al. 2017; Wortmann et al. 2019), main solutions for closing yield gaps 
are considered to be fertilisation with macro- (and secondary) nutrients, improved 
varieties, as well as good agronomic practices (Tittonell and Giller 2013; Ichami et al. 
2019). Farmers are unlikely to engage in management practises which can increase grain 
Zn concentrations if yields no not also increase. Approaches that improve grain yields 
and increase grain Zn concentrations simultaneously may therefore be best suited in 
helping African farmers address these two key concerns.  
 
Efforts for increasing grain Zn concentrations have mainly focussed on biofortification 
through breeding for higher grain Zn concentrations, fertilisation with Zn or a 
combination of both strategies (de Valença et al. 2017). Breeding for cultivars with 
higher Zn concentrations is thought to be more cost-effective than a fertiliser based 
approach (Joy et al. 2015). Sufficient genetic variation has been demonstrated to 
increase maize grain Zn concentrations through breeding, but genetic trade-offs 
between yield and grain Zn concentrations have been demonstrated (Bänziger and Long 
2000; Garcia-Oliveira et al. 2018).  
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Maize is considered very sensitive to low soil Zn bioavailability (Alloway 2008). Several 
studies have shown that the use of Zn fertilisers can increase yields (Wendt and Rijpma 
1997; Chilimba et al. 1999; Eteng et al. 2014; Vanlauwe et al. 2015; Kihara et al. 2017), 
grain Zn concentrations (Joy et al. 2015; Kihara et al. 2020, chapter 4) or both (Manzeke 
et al. 2014, 2020; Liu et al. 2017). However, fertilisation with Zn does not always result 
in increased yields (Uyovbisere and Lombin 1990; Wendt and Rijpma 1997; Chilimba 
et al. 1999; Lisuma et al. 2006; Kihara et al. 2016; Rurinda et al. 2020; chapter 4), likely 
depending on the soil Zn availability status. Based on soil testing, it is currently difficult 
to assess whether Zn availability is yield-limiting (chapter 4). Economically, Zn 
fertilisation is an unattractive option for farmers if yields do not increase.  
 
Nitrogen (N) fertilisation, either with or without Zn, has been found to increase yields 
and grain Zn concentrations in cereals (Kutman et al. 2011; Losak et al. 2011; Xue et al. 
2014, 2019). In cereals, Zn in the grain is associated with proteins (Cakmak and Kutman 
2018). In maize, N fertilisation leads to a small increase in grain protein content and 
large increase in biomass i.e. carbohydrates, which could potentially lead to dilution of 
grain Zn concentrations (Bänziger and Long 2000). A recent global meta-analysis by 
Zhao et al. (2022) however showed that maize grain Zn concentrations are maintained 
when yields increase as an effect of N fertilisation, as the dilution effect is counteracted 
by increased remobilisation of Zn from the stover during grain filling. This meta-
analysis also revealed that limited data from SSA are available on grain Zn 
concentrations in relation to N fertilisation. Given the low soil Zn availability in large 
parts of SSA (Alloway 2008), application of N without addition of Zn could potentially 
also lead to excessive growth and dilution of grain Zn concentrations (de Valença et al. 
2017; Cakmak and Kutman 2018; Zhang et al. 2021). 
 
A trade-off between maize yields and grain Zn concentrations has been reported. The 
first aim of this study is to confirm whether this trade-off is found in current farming 
systems in SSA. The second aim of this work is to explore whether genotypic and 
management options, relevant for the African context, can increase both yields and 
grain Zn concentrations across several environments. Data from several field 
experiments focussing on the effects of variety, N fertilisation, Zn fertilisation and NPK 
fertilisation on maize yield across different sites in Kenya, Zambia and Zimbabwe were 
analysed. The outcomes of this study will help to develop an integrated approach for 
increasing yield levels while at the same time increasing grain Zn concentrations in 
maize.  
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 Materials and Methods 
 

 Field trials 
 
Embu, Kiboko, Harare 
The first set of researcher-managed field trials was executed in Embu and Kiboko in 
Kenya, and in Harare, Zimbabwe. These trials focused on the effect of N fertilisation 
and maize variety on plant uptake and soil depletion of N and other nutrients. Complete 
details of these trials are described in Pasley et al. (2019). Briefly, experiments consisted 
of a split-plot design, replicated four times, with N rate as the main plot and variety as 
the sub-plot. In each site, six varieties were used, with one duplicated variety in Embu 
and Kiboko as well as in Embu and Harare. Of the six varieties, three were improved 
in regards to high tolerance to stress (drought, heat and/or nutrient), whereas the other 
three were not. All varieties were commercially available and commonly used by farmers 
in Kenya and Zimbabwe. Fertiliser application rates were 0, 30, 60, and 90 kg N ha-1 in 
Embu and 0, 40, 80, and 160 kg N ha-1 in Kiboko and Harare. A basal application of P 
at a rate of 20 kg ha-1 was also applied. Plant and soil samples were taken in the 2013 
short rainy season in Kiboko, the 2014/2015 season in Harare and the 2015 short rainy 
season in Embu. Soil samples were collected per sub-plot in most cases. 
 
Sidindi 
The second set of researcher-managed on-farm field trials was executed in Sidindi, 
western Kenya. These trials (executed from 2013-2018) focused on the spatial and 
temporal patterns of maize yield responses to N, P and K omission. Complete details 
of the trials in are described in Njoroge et al. (2019). Data on yields and grain Zn 
concentrations were available for 10 farms collected in the 2016 and 2018 long rainy 
seasons. In 2016, nutrient omission experiments included five treatments namely: a 
control (no fertiliser), PK, NK, NP and NPK, with nutrients applied at the rates of 150 
kg N ha-1, 40 kg P ha-1 and 60 kg K ha-1. Treatments were not replicated on-farm. In 
2018, all five plots at each farm received NPK applied at the rates of 150 kg N ha-1, 40 
kg P ha-1 and 60 kg K ha-1. Short season maize variety DK8031 was planted at all farms 
and in both years. 
 
Kenya, Zambia, Zimbabwe 
The third set of researcher-managed on-farm field trials was executed on 19 locations 
in Kenya (5 farms, 5 replications each), Zambia (4 farms, 4 replications each) and 
Zimbabwe (10 farms, 6 replications each). Complete details of these trials, which 
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focussed on availability of several micronutrients, are described in chapter 4. The trials 
were laid out as a randomized block design. For this study, only the Zn omission 
treatment was included. Briefly, nutrients N, P, K, S, Ca, Mg, Cu and B were applied at 
relatively high rates to prevent yield-limitations. Fertiliser application rates differed 
among countries. The maize varieties also differed among countries: DK8031 was 
planted in Kenya, Afric1 in Zambia and SC637 in Zimbabwe. 
 

 Plant and soil analysis 
Plant samples were analysed for the following nutrient contents: N, P, K, S, Zn, Cu and 
Mn. Soil samples were analysed for the following parameters: pH-H2O, soil organic 
carbon (SOC), nutrient availability as determined by a Mehlich 3 (M3) extraction and 
clay content. For details on analytical methods, see Pasley et al. (2019), Njoroge et al. 
(2019) and chapter 4. Median values for each of the soil properties of the N application 
trials are presented per site in Table 1. 
 
Table 1: Soil characteristics for Embu, Kiboko and Harare (0-30 cm), values represent medians.  

 - g kg-1 % Mehlich 3 (mg kg-1) 

Site pH SOC Clay P K Zn Cu Mn 

Embu 5.1 28 39 16 343 14.8 1.1 270 

Kiboko 7.8 12 24 77 387 2.1 3.9 70 

Harare 5.7 13 42 15 101 11.9 10.0 135 

 
 Data analysis 

 
Data cleaning 
Data with Harvest Indices (HI) below 0.25 were removed from the dataset, as these 
crops were considered to have failed and therefore unsuitable for addressing the 
objectives of this study. Yield was expressed at a standardised moisture content of 13%. 
Grain concentrations, as well as nutrient uptake are expressed based on dry weight. 
Nutrient uptake was calculated as the sum of stover and grain biomass, multiplied with 
their respective nutrient concentrations. 
 
Analyses 
To test for differences in yield and grain Zn concentration among varieties within each 
site, linear mixed effect models (LME) were fitted, with N application rate, maize variety 
and their interaction as fixed factors and N application rate nested in block as a random 
factor (random = ~1|Block/N rate) to account for the split-plot design. In case the 
interaction among the main factors was not significant, the model was rerun without 
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the interaction factor. This analysis was done separately for Embu, Kiboko and Harare. 
In addition, correlations among soil parameters, yield and grain Zn concentrations were 
explored. The soil factors earlier associated with Zn availability, i.e. Zn-M3, pH and 
SOC (Chilimba et al. 1999; Alloway 2008; chapter 4), were used for this analysis.  
 
Software 
Statistical software R, version 3.6.3 (R core team 2020) was used for all analyses. Plots 
were made with the ggplot function from the ggplot2 package, version 3.3.2 (Wickham 
2016). LMEs were fitted using the lme function from the nlme package (Pinheiro et al. 
2013). Significance of factors was tested with the Anova function from the car package 
(Fox and Weisberg 2019). Individual differences were analysed with Tukey’s post hoc 
test, using the glht function from the multcomp package, version 1.4-17 (Hothorn et al. 
2008). Normality of model residuals were checked with the Shapiro-Wilk test using the 
shapiro.test function from the stats package, version 4.1.0 (R Core Team and R 
Development Core Team 2020). Homogeneity of variances was tested with Levene’s 
test, using the leveneTest function from the car package. In case assumptions of 
normality of residuals or homogeneity were violated, the data were transformed using 
log10-transformation. Correlations were explored using the rcorr function from the 
Hmisc package, version 4.5-0 (Harrell Jr and Others 2021).  
 

 Results 
 

 Overview 
Maize yields ranged between 0.5 and 10.4 Mg ha-1 across field trials, while grain Zn 
concentrations ranged between 1.7 and 55 mg kg-1 (Figure 1). Across all data, yields and 
grain Zn concentrations were negatively correlated (r = -0.16, p = 0.001), suggesting an 
overall trade-off. However, the trade-off was not present within individual sites, as 
negative correlations were not significant (all p-values above 0.17). Some clustering per 
site was visible. Generally, data from Embu covered the entire range in grain Zn 
concentrations, whereas grain Zn concentrations in the other sites showed less 
variation. Yield levels in most sites covered the entire range, except for Embu, where 
most yields did not surpass 7 Mg ha-1. Only 15 out of 301 datapoints for which Zn was 
not applied, met the HarvestPlus grain Zn target concentration of 38 mg kg-1 (Figure 1). 
These 15 datapoints all corresponded to maize crops grown in Embu, and consisted of 
four different varieties and three N application rates (30, 60 and 90 kg ha-1). In all 15 
cases, yields did not surpass 6.3 Mg ha-1 and were relatively low compared to the 
maximally obtained yield in these trials. 
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Figure 1: Maize yields plotted against grain Zn concentrations per site or country. The green line 
represents the adequate Zn concentration for optimal growth of maize, the red line the 
HarvestPlus grain Zn target concentration for maize. 
 

 Genetic factors 
To compare the trade-off between yields and grain Zn concentrations among different 
maize varieties, data from the N application trials in Embu, Kiboko and Harare were 
used. Analysis was done per site, as there was limited overlap in varieties. Differences 
in grain Zn concentrations and yields were found among varieties in Embu, but not in 
Harare and Kiboko (Table 2; Figure 2). Although the ANOVA output (Table 2) 
suggested that maize variety was a significant factor affecting yields in Kiboko, post hoc 
analysis did not identify significant differences among maize varieties. 
 
In Embu, four varieties had significantly higher grain Zn concentrations compared to 
the other two (Figure 2). Two of those four varieties were improved, the two others 
were not. However, these four varieties had significantly lower yield levels compared to 
the variety with the lowest grain Zn concentrations (DUMA43). Furthermore, the 
variety with the highest grain Zn concentrations (WH403) had the lowest yields. These 
results point towards a trade-off between yields and grain Zn concentrations. 
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Table 2: Results of the ANOVA analysis, with p-values for main and interaction effects. When 
interactions were not significant, only significance of main factors was tested.  

 
 
 
 
 
 
 
 
 
 

aOne variety was left out of this analysis, because grain Zn concentrations deviated strongly in one N 
treatment. When this variety was included, only the interaction factor was significant, not the main factors. 
bDue to HI restrictions, limited data were available for the 0N treatment (n=3, only one variety). To test 
the interaction between N rate and variety, data from the 0N treatment were removed.  

Site Factor    Yield Grain [Zn] 

Embu 
N rate     0.08    < 0.001 
Variety     < 0.001    < 0.001 
N rate * variety     n.s.    n.s. 

Harare 
N rate     <0.001    0.86 
Variety     0.90    0.48 
N rate * variety     n.s.    n.s.a 

Kiboko   
N rate     < 0.001    0.01 
Variety     0.01    0.98 
N rate * variety     n.s.b    n.s.b 

Figure 2: Yields (bars) and grain Zn concentrations (points) per variety for Embu, Harare and
Kiboko (all N rates). Letters indicate significant yield differences within sites, asterisks indicate
significant differences in grain Zn concentrations within sites. Error bars represent standard error.
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 Environmental factors  
To explore whether soil characteristics explain grain Zn concentrations and yields, 
correlations among these factors were explored using data from the Embu, Kiboko and 
Harare trials. For the Sidindi trials, no corresponding soil data were available. Data from 
the Kenya, Zambia and Zimbabwe trials were presented in chapter 4. 
 
Yields were positively correlated with pH and negatively correlated with Zn-M3 and 
SOC (Figure 3A-C). These correlations most likely do not indicate causality, as yields 
were strongly determined by N application rate (section 3.4). In addition, the soil 
parameters, mainly pH and SOC, showed strong clustering per site. Correlations could 
consequently be affected by other site-related factors, such as variety or climate. Grain 
Zn concentrations were only (positively) correlated with SOC (Figure 3D-F). When 
correcting for yield levels, which may affect grain Zn concentrations through dilution, 
SOC levels were also positively related with grain Zn concentrations. 
 
To exclude the effect of maize variety on relations between soil parameters, yields and 
grain Zn concentrations, data from two duplicated varieties (H513 and DUMA43) were 
investigated, using the same N application treatment (0 kg ha-1). For variety H513, 
grown in Embu and Kiboko, data from the 0N treatment in Kiboko had been removed 
based on HI restrictions, so no comparison was possible. For variety DUMA43, grown 
in Embu and Harare, no differences in yield (p = 0.798) and grain Zn concentrations 
(p = 0.832) were found. Differences in Zn-M3 and pH between sites were limited 
(Table 1). Although SOC levels differed between sites, data were insufficient to draw 
conclusions on the effect of soil parameters on grain Zn concentrations. 
 
Identical N treatments were used in Kiboko and Harare and differences among varieties 
were absent (Figure 2). This allows for a comparison between these sites, with regards 
to a potential effect of soil characteristics on yield and grain Zn concentrations. The soil 
in Kiboko was alkaline (pH 7.8) and Zn-M3 levels were low (Table 1; Figure 3). The 
soil in Harare was acidic (pH 5.7) and was characterised by relatively high Zn-M3 levels; 
SOC contents were similar in both sites. This suggests that soil Zn availability was 
higher in Harare and higher grain Zn concentrations would therefore be expected 
compared to Kiboko. However, average grain Zn concentrations in Kiboko (24 mg 
kg-1) were higher than Harare (12 mg kg-1), whereas yield levels were similar (Figure 2). 
In addition, Zn uptake was higher (p < 0.001) for the maize crops grown in Kiboko 
(between 171 and 247 g ha-1, depending on the N application rate) compared to Harare 
(between 91 and 215 g ha-1). These findings do not point towards the relevance of the 
tested soil characteristics, but rather to other factors affecting grain Zn concentrations. 
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Figure 3: Correlations between Zn-M3, pH and SOC and yield (A, B and C), as well as grain Zn 
concentrations (D, E and F). 
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Figure 4: Yields (circles) and grain Zn concentrations (squares) plotted against N application rate.
For each site, two representative varieties are presented. Error bars represent standard errors. 
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 Management factors 
To analyse the effect of N fertilisation on yields and grain Zn concentrations, data were 
analysed per site, as different N application levels were applied and most varieties were 
not duplicated. Main effects of N application rate on yields were positive in Kiboko 
(p < 0.001), Harare (p < 0.001) and Embu (p = 0.08; Table 1, Figure 4). 
 
The effect of N application rate on grain Zn concentration was less straightforward. 
Main effects of N application treatment on grain Zn concentrations were significant for 
Embu and Kiboko, but not Harare (Table 1). Contrasting effects of N treatment on 
grain Zn concentrations were found in Embu. For four varieties, an increasing trend of 
grain Zn concentrations with N application rate was found, whereas for the other two 
varieties, grain Zn concentrations remained constant (a representative variety of both 
groups presented in Figure 4). In Kiboko, generally a negative trend of grain Zn 
concentrations with N application rate was found. 
 
The response to N application of varieties DUMA43 and H513 was tested in two 
locations. For variety H513, contrasting trends were observed: an increase in both yields 
and grain Zn concentrations with N application rate was visible in Embu (Figure 4A), 
whereas a trade-off between both parameters was visible in Kiboko (Figure 4C). The 
response to N application of variety DUMA43 seems consistent, as yields increase and 
grain Zn concentrations are maintained at a similar level in both Embu (Figure 4A) and 
Harare (Figure 4B). 
 

 Discussion 
This study confirmed the existence of a general trade-off between maize yields and grain 
Zn concentrations (Bänziger and Long 2000; White and Broadley 2011) in commercially 
available varieties grown under different environmental and management conditions in 
SSA. Combinations of high yields (> 6.3 Mg ha-1) and grain Zn concentrations above 
HarvestPlus target grain Zn concentrations (38 mg kg-1) were not observed. This is in 
line with findings of Manzeke et al. (2014, 2020), who reported grain Zn concentrations 
up to 35-40 mg kg-1, corresponding with relatively low maize yields (below 4 Mg ha-1).  
 
As our dataset comprised several varieties, grown on several soils and under different 
fertiliser treatments, there can be multiple causes for this observed trade-off: genotype, 
environment and/or management. Due to the nature of the dataset, it is impossible to 
separate the roles of these three mechanisms. However, these data provide a good 
overview of current options for increasing yields and grain Zn concentrations. 
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 Genetic factors 
The set of commercially available varieties used in this study, seem to provide no option 
for increasing both yields and grain Zn concentrations by selecting a particular variety. 
The similarity in yields and grain Zn concentrations among varieties in Harare and 
Kiboko indicate that the genetic factors play a relatively minor role. Findings from the 
Embu trials show that selection of variety can matter when it comes to increasing grain 
Zn concentrations: four varieties had higher grain Zn concentrations (above 30 mg kg-1) 
compared to the other two varieties (~13-14 mg kg-1). However, the varieties with high 
grain Zn concentrations had relatively low yields. The relatively low yields in Embu 
likely are caused by the N application rates, which did not exceed 90 kg ha-1. However, 
increasing N application rates could lead to a reduction in grain Zn concentrations due 
to dilution, as shown for variety H513 grown in Kiboko. 
 

 Environmental factors 
The trade-off between yields and grain Zn concentrations was absent within individual 
sites. The clustering of data per site in Figure 1 indicates that environmental factors, 
such as soil and/or climate, affect the trade-off between yield and grain Zn 
concentrations, as also shown by Bänziger and Long (2000). None of the soil factors 
earlier associated with Zn availability (i.e. Zn-M3, pH and SOC), were related with both 
high yields as well as high grain Zn concentrations (Figure 3). However, the clustering 
in soil parameters hampers drawing meaningful conclusions from statistical relations. 
For instance, the negative correlation between yield and SOC can most likely be 
explained by the low N application rates in Embu, where the highest SOC levels were 
found (Figure 3C, Table 1). However, our results suggest that grain Zn concentrations 
increased with SOC levels, in agreement with Gashu et al. (2021) and chapter 4. In 
contrast to the findings of chapter 4, Manzeke et al. (2012) and Kihara et al. (2020), 
grain Zn concentrations were not related with extractable soil Zn. This may have been 
because soil Zn availability was not a limiting factor, as most soil Zn-M3 concentrations 
were above critical levels (Chilimba et al. 1999; Cuesta et al. 2021), except for Kiboko. 
 
Results of Kiboko and Harare may indicate that other soil factors are relevant in the 
trade-off between yield and grain Zn concentrations. In Kiboko, consistently higher 
grain Zn concentrations and plant uptake were observed compared to Harare, despite 
similar yield levels (Figure 2). We cannot exclude the role of genetic factors in these 
findings, as no identical variety was grown in both locations, but the role of 
environmental factors in these results seem likely. The higher grain Zn concentrations 
and plant uptake in Kiboko cannot be explained by soil Zn availability, which was much 
lower in Kiboko than Harare (Table 1). 
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We hypothesise that the higher Zn uptake and grain concentrations in Kiboko can be 
explained by two mechanisms: facilitation by P and/or K and competition with Cu 
and/or Mn. We hypothesise that maize Zn uptake was higher in Kiboko than Harare 
due to higher levels of P-M3 and K-M3 (Table 1). The higher availability of soil K and 
P in Kiboko may have enabled a larger root system (de Valença et al. 2017), which can 
explore a larger volume of soil and therefore access more Zn, as well as other nutrients. 
This hypothesis is supported by a study with rice, where soil K concentrations were 
positively correlated with root length and diameter (de Almeida Carmeis Filho et al. 
2017). Alternatively, the higher levels of Cu-M3 and Mn-M3 in Harare compared to 
Kiboko (Table 1) may have reduced Zn uptake through competition (Singh and 
Steenberg 1974; Adiloglu 2007; Alloway 2008). 
 

 Management factors 
 
N application 
Application of N increased yields, but had contrasting effects on grain Zn 
concentrations (Figure 4). Grain Zn concentrations can increase (Embu), remain 
constant (Embu and Harare) or decrease (Kiboko) with increasing N application rates. 
Our results are not in line with a recent meta-analysis, showing that maize grain Zn 
concentrations generally are not affected by N fertilisation (Zhao et al. 2022). Several 
studies reported that N fertilisation increased maize grain Zn concentrations (Losak et 
al. 2011; Xue et al. 2014, 2019; Manzeke et al. 2020), whereas others report the opposite 
(Feil et al. 2005; Miner et al. 2018). Our results provide several insights in the 
mechanisms that could explain the contrasting effects of N fertilisation on grain Zn 
concentrations. 
 
First of all, N application can reduce grain Zn concentrations through increased 
biomass production, i.e. a dilution effect. This dilution effect has been shown for many 
nutrients, including Zn (e.g. Raymond et al. 2009; Hertzberger et al. 2021; Zhang et al. 
2021). The results of Kiboko (Figure 4C) provide support for a dilution effect of grain 
Zn concentrations. However, the dilution effect was not observed in Embu and Harare 
(Figure 4A and B). For Embu, these results may be explained by the low N application 
rates, which did not exceed 90 kg ha-1. However, the absence of a dilution effect in 
Harare, which had similar N application rates as Kiboko, points towards the relevance 
of additional factors. 
 
Second, genetic factors may influence the effect of N application on grain Zn 
concentrations. This was shown for Embu. For four varieties, an increasing trend 
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between N application and grain Zn concentrations was found, whereas two other 
varieties maintained grain Zn concentrations. For variety DUMA43, the same trends in 
yields and grain Zn concentrations across N application rates were observed when 
grown in Harare, indicating this may be a variety characteristic (Figure 4).  
 
Third, environmental factors, in particular soil Zn availability, could explain relations 
between N application rates and grain Zn concentrations. Dilution of grain Zn 
concentrations can be observed when biomass production increases strongly, which is 
not compensated for by a higher Zn uptake (Zhao et al. 2022). In Kiboko, the trade-off 
between yield and grain Zn concentrations as an effect of N application was clearly 
present, in contrast to Embu and Harare (Figure 4). Soil Zn availability in Kiboko was 
lower compared to Embu and Harare (Table 1) and Zn-M3 levels were close to critical 
values reported in literature. Soil Zn availability may thus have constrained Zn uptake 
in Kiboko, leading to a dilution effect of grain Zn concentrations at higher N levels. 
These findings could imply that N fertilisation should be complemented with Zn 
fertilisers in soils with low Zn availability, to avoid this trade-off. 
 
Zn fertilisation 
Although not covered in this study, application of Zn fertilisers is another management 
option that has the potential to increase both maize yields and grain Zn concentrations. 
Zinc fertilisation has been shown to increase maize grain concentrations to a maximum 
of 23-27 mg kg-1 (Joy et al. 2015; Liu et al. 2017; Kihara et al. 2020; Manzeke et al. 2020, 
chapter 4). This is well below the HarvestPlus target concentration of 38 mg kg-1. Zinc 
fertilisation can thus help to increase both yields and grain Zn concentrations, in 
particular when soil Zn availability is limiting, but its contribution is minor. 
 

 Conclusions 
In this study, we demonstrated that attaining grain Zn concentrations above the 
HarvestPlus target of 38 mg kg-1, with the current commercially available maize varieties 
and presented management options, is not possible without compromising yield levels. 
However, increasing grain Zn concentrations, even if below the HarvestPlus target, can 
contribute to reducing human Zn deficiency in SSA (Manzeke-Kangara et al. 2021). Our 
results suggest that grain Zn concentrations increase with soil organic matter contents 
and are potentially affected by soil P and K availability. Our results furthermore indicate 
that maize grown on soils with low Zn availability, may require Zn fertilisation to 
prevent dilution of grain Zn concentrations at high N application rates. 
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Our results imply that improved maize could play a key role in increasing grain Zn 
concentrations without compromising yields. Recently, improved maize varieties with 
grain Zn concentrations close to the target value have been released in Latin America 
(Virk et al. 2021). However, we question whether the use of improved maize varieties 
with high grain Zn concentrations is a viable option for reducing Zn deficiency in the 
general SSA population on the short term. First, it is unknown whether these varieties 
bypass the trade-off between yield and grain Zn concentrations. Second, genotype and 
environmental interactions on grain Zn concentrations in maize have been 
demonstrated (Oikeh et al. 2003; Akhtar et al. 2018) and these improved varieties may 
perform differently under variable circumstances present in smallholder farming 
systems. Furthermore, farmers may not be willing to adopt improved varieties as local 
varieties can have more desirable traits (Tittonell and Giller 2013). Lastly, dissemination 
and adoption of new farming techniques historically has been slow in SSA (Frankema 
2014). It therefore could take many years before the introduction of improved varieties 
will have an effect of human Zn deficiency. 
 
As farmers are incentivised by economic returns, options for increasing grain Zn 
concentrations are more likely to be implemented when they also lead to higher yields. 
Our results imply that management could play a role in increasing both maize yields and 
grain Zn concentrations. Options include increasing soil organic matter contents 
and/or optimising N, P and K fertilisation. In contrast to using Zn fertilisers, these 
management practices likely will also improve yields, especially in nutrient-depleted soil 
with low SOC contents (Manzeke et al. 2012; Tittonell and Giller 2013; Njoroge et al. 
2017). Future studies should confirm if these management options indeed have the 
potential to increase both maize yields and grain Zn concentrations, in several maize 
varieties and under various field conditions relevant for the SSA context. 
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 Overview 
The use of fertilisers is indispensable for closing yield gaps in sub-Saharan Africa (SSA). 
To increase yields and prevent soil nutrient mining or nutrient losses to the 
environment, fertilisers need to be applied in balanced ratios. This refers to supplying 
amounts of nutrients sufficient for crop needs, while optimising the use efficiency of 
several plant-essential nutrients (Ezui et al., 2016). Balanced fertiliser recommendations 
need to take into account crop nutrient requirements as well as that soils supply part of 
these nutrients. Blanket fertiliser recommendations, which are common in SSA, are 
uniform recommendations for a country or region, that often include only 
macronutrients N, P and K. However, large heterogeneity in soil properties and 
therefore soil nutrient supply, is found within countries and regions. Furthermore, 
nutrients other than NPK have also been reported to limit yields in SSA, in particular 
zinc (Zn) and boron (B) (Kang and Osiname, 1985; Sillanpää and Vlek, 1985; 
Wortmann et al., 2019). Zinc is also essential for human health and widespread Zn 
deficiency in the SSA population has been reported (Joy et al., 2014). Increasing grain 
Zn concentrations through fertilising crops with Zn is seen as a viable option to reduce 
human Zn deficiency (de Valença et al., 2017). 
 
Current blanket fertiliser recommendations are unsuitable for sustainably increasing 
yields across a country (Tittonell et al., 2008; Vanlauwe et al., 2015) and do not address 
nutritional quality (i.e. Zn contents) of yields. Site-specific, balanced fertiliser 
recommendations are seen as the way forward to close yield gaps (Chivenge et al., 2022; 
Ezui et al., 2016). However, obtaining site-specific fertiliser recommendations based on 
soil testing currently is not (economically) feasible for most small-holder farmers 
(Malima et al., 2020). Therefore cost-effective tools are needed for predicting nutrient 
availability and the yield response to fertilisation, taking into account interactions of 
several plant essential nutrients that may limit yields. The main objective of this thesis 
was to develop and evaluate models for predicting soil nutrient availability and to 
increase the understanding of the interactive effect of nutrient availability on yields and 
nutritional quality in SSA. The focus was on availability of macronutrients N, P and K 
(chapter 2, 3 and 6) as well as micronutrients Zn and B (chapter 4, 5 and 6). The 
QUEFTS model (Janssen et al., 1990) and its underlying principles were an important 
component of this thesis.  
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 Main findings 
 

 Spatial application of QUEFTS 
In order to tailor blanket fertiliser recommendations to specific regions, agro-ecological 
zones or soil types, the QUEFTS model could potentially be used in combination with 
high resolution digital soil maps, which have been developed for SSA (Hengl et al., 
2017a, 2015). The first objective of this thesis therefore was to evaluate a spatial 
application of QUEFTS (chapter 2 and 3). 
 
Transfer functions 
To use soil maps as input for QUEFTS instead of observational (point) data, some 
modifications were needed. Besides soil organic carbon (SOC) and pH, QUEFTS 
requires P-Olsen and exchangeable K (Exch-K) measured in a neutral 1 M ammonium 
acetate extraction as input. The Mehlich 3 (M3) method is commonly used in SSA 
laboratories for evaluating nutrient availability, which consequently has led to the 
development of digital soil maps based on M3 data (Hengl et al., 2017a). Using a range 
of soil samples from various countries in SSA, transfer functions describing relations 
between P-Olsen and P-M3 as well as between Exch-K and K-M3 were derived (chapter 
2). This provided insights into the mechanisms for extracting P and K and the suitability 
of the M3 method for estimating the availability of these nutrients. 
 
We demonstrated that K-M3 relates well with Exch-K evaluated with the ammonium 
acetate extraction method, which we attributed to similar extraction mechanisms, being 
NH4+ ↔ K+ ion exchange. Likely due to the contrasting extraction mechanisms of the 
Olsen and M3 methods, the results for P were less straightforward. Not only were 
multiple parameters needed to translate P-M3 to P-Olsen test results, the P transfer 
function was less accurate than the K transfer function. Our results furthermore showed 
that the P extraction efficiency of M3 is strongly reduced at high amorphous Al-
(hydr)oxide contents. We presented support for our hypothesis that saturation of the 
fluoride ion in M3 with Al was the cause of this reduction. Our results show that (i) 
K-M3 can be used reliably to estimate Exch-K and (ii) P-M3 cannot be used to estimate 
P-Olsen without the use of additional soil parameters.  
 
Our results highlighted the need for specific transfer functions for tropical soils. We 
showed that K transfer functions were significantly different between temperate and 
tropical soils, which we attributed to clay mineralogy. Although not tested for P, 
differences in the transfer functions between temperate and tropical soils are also 
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expected, given the effect of climate and weathering on soil properties such as Al-oxides 
(Mendez et al., 2022).  
 
We demonstrated that the use of site-specific M3 soil data as input for the QUEFTS 
model, by applying the P and K transfer functions, added limited uncertainty to the final 
QUEFTS yield estimate when compared to using measured P-Olsen and Exch-K values 
as input. This was caused by the relatively large contribution of pH and SOC to the 
QUEFTS model output and log-transformation of the P transfer input variables, which 
ensured that uncertainty in the agronomically relevant range up to 10 mg kg-1 P-Olsen 
was minimised. 
 
Spatial application of QUEFTS 
In chapter 3, the transfer functions and QUEFTS were applied to soil maps for Rwanda, 
using two methods. For the first method, the transfer functions and QUEFTS were 
applied to data points and model outputs (yield and the yield-limiting nutrient) were 
spatially interpolated to develop a map of the target variable (Calculate-then-Interpolate; 
CI). For the second method, all individual model input parameters were first 
interpolated, after which model calculations of the target variables were applied to these 
maps (Interpolate-then-Calculate; IC). 
 
The first main finding includes stark differences in outcomes between both methods. 
We attributed this to the non-linear nature of QUEFTS, as less pronounced differences 
between both methods were reported for linear models in literature. Generally, 
QUEFTS predictions using the CI method were more accurate as the IC predictions 
were overestimated due to smoothing of the model input parameters. Smoothing caused 
an overestimation of the lowest P-Olsen and Exch-K values, and moved spatial pH 
predictions towards an optimum. The CI method was less sensitive to smoothing, as 
only the final model output was spatially interpolated. Although IC method 
overestimated yields, the CI and IC methods were equally able to distinguish between 
lower and higher yielding regions. 
 
Secondly, we demonstrated that application of QUEFTS to currently available soil maps 
of Rwanda, leads to spatial yield predictions associated with large uncertainty. For the 
CI method, which had the best results, 28% of the variation observed in QUEFTS 
yields modelled at the soil observation locations was explained by the yield maps. More 
importantly, the RMSE of yield predictions (1.3 Mg ha-1) was larger than yields observed 
in small-holder farming systems when no fertilises are used (Manzeke et al., 2014; 
Tittonell et al., 2008). The uncertainty associated with QUEFTS spatial predictions 
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using the IC method, was mainly caused by the low accuracy of spatial P-M3 and K-M3 
predictions. Despite the uncertainty associated with the spatial yield estimates, the yield-
limiting nutrient was estimated correctly in 54% (IC) and 60% (CI) of the evaluation 
locations. Furthermore, we demonstrated that spatial patterns in QUEFTS yield and 
yield-limiting nutrient predictions clearly corresponded to predictions at the underlying 
point data.  
 

 Micronutrient bioavailability functions 
Of the several micronutrients required for plant-growth, yield-limitations of Zn and B 
are considered most problematic in SSA (Kang and Osiname, 1985). The second 
objective of this thesis therefore was to derive generic models describing bioavailability 
of micronutrients Zn and B based on soil parameters that can be measured in routine 
analysis. Based on the underlying principles of QUEFTS, bioavailability was defined as 
the uptake of a nutrient during an entire growing season, when this nutrient is yield-limiting. To derive 
micronutrient bioavailability models, data from Zn and B fertiliser omission trials were 
used. Plant uptake in the omission treatments was related to chemical soil parameters 
which were expected to be relevant for controlling bioavailability of Zn and B, including 
several micronutrient pools. We assessed the actually available micronutrient pool, using 
the 0.01 M CaCl2 extraction method and the potentially available pool, using the 0.43 M 
HNO3, M3 and DTPA extraction methods. We also evaluated the hot water method 
for B; it is unknown which pool is represented by this method. 
 
We showed that the potentially available soil Zn and B pools, in particular the pool 
extracted with 0.43 M HNO3, were significantly related to uptake of these nutrients by 
a maize crop (chapter 4 and 5). The variation in uptake that could be described based 
on soil parameters, was however limited to 35% for Zn and 21% for B. This may have 
been caused by the fact that Zn and B were not yield-limiting in the micronutrient 
fertiliser omission trials, as demonstrated by a lack of yield response to fertilisation with 
these nutrients. The absent yield responses, in combination with low levels of soil Zn 
and B, also demonstrated that current critical Zn and B soil test concentrations reported 
in literature for maize grown in tropical soils, are no reliable indicator for deficiency. 
 
Our results provide valuable insights into Zn availability and fertiliser response in soils 
with a low adsorption affinity for Zn. Many studies have focussed on Zn availability in 
alkaline soils, which are notorious for their strong Zn binding capacity and consequently 
low Zn availability (Cakmak and Kutman, 2018; Catlett et al., 2002). In contrast, few 
studies have investigated Zn availability in relation to plant uptake in acidic soils with 
low organic carbon contents, which are widespread in SSA. We found that the 
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potentially available pool (Zn in 0.43 M HNO3, M3 or DTPA) was a better proxy for 
plant uptake than the actually available pool (Zn in 0.01 M CaCl2) in soils with a low 
adsorption affinity for Zn (chapter 4). This implies that Zn uptake is limited by the 
buffering capacity of these soils rather than by the concentration of Zn in the soil 
solution. We furthermore demonstrated that the response in Zn uptake to Zn 
fertilisation decreased with increasing pH and SOC levels, showing that the fertiliser use 
efficiency of Zn is higher in low adsorption affinity soils.  
 
We found a weak relation between plant B uptake and chemical soil parameters 
(chapter 5). This points towards the relevance of other factors, such as soil water 
content, transpiration, chemical weathering or mineralisation of organic matter as 
sources of plant available B. We also provided some insights into the pool of B that is 
extracted with the hot water method, commonly used for assessment of B availability. 
The hot water method extracted roughly twice the amount of B compared to 0.43 M 
HNO3, indicating that the hot water method could overestimate the potentially available 
B pool. Our results suggest that the hot water extracts B from undecomposed biomass, 
which likely is not extracted by 0.43 M HNO3 and 0.01 M CaCl2. 
 

 Biofortification 
In addition to the use of improved Zn-accumulating varieties (genetic biofortification), 
Zn concentrations in the edible parts of plants can be increased through adding Zn 
fertilisers (agronomic biofortification). The effects of Zn availability and fertilisation on 
maize grain Zn concentrations however, are not consistent and depending on soil 
characteristics and quantities of other nutrients applied (Manzeke et al., 2014; Obaid et 
al., 2022). The third objective of this thesis was to assess the effect of Zn availability, 
in combination with availability of NPK, on maize yield (quantity) and grain Zn 
concentrations (nutritional quality).  
 
We demonstrated that soil Zn availability, in particular Zn extracted with 0.43 M HNO3, 
is related with grain Zn concentrations (chapter 4). However, limited variation in grain 
Zn concentrations was described based on Zn-HNO3 alone (26%). When allowing for 
differences in maize variety/agro-ecological zone, up to 56% of the variation in grain 
Zn concentrations was described based on Zn-HNO3. This shows that (i) relations 
between maize grain and soil Zn concentrations are possibly variety-dependent, and/or 
(ii) that agro-ecological factors, such as management, climate or soil type can affect grain 
Zn concentrations. Our results also indicate that higher grain Zn concentrations can be 
expected in soils with higher SOC content, as we found a strong positive correlation 
between Zn-HNO3 and SOC (chapter 4) and a positive correlation between SOC and 
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grain Zn concentrations (chapter 6). Additionally, our data suggest that at low soil Zn 
availability, grain Zn concentrations can be diluted when yields increase (as an effect of 
N fertilisation).  
 
Fertilisation with 5 kg Zn ha-1 increased grain Zn concentrations in the majority (77%) 
of blocks, with an average increase of 20% (2.4 mg kg-1) across countries (chapter 4). 
This increase was negatively related with pH and SOC, showing that the effectiveness 
of agronomic biofortification is high in soils with a low adsorption affinity for Zn. 
Adding Zn fertiliser increased grain Zn concentrations up to 27 mg kg-1 and the largest 
increases were observed in locations with the lowest grain Zn concentrations in the Zn 
omission plots. This could indicate that, once a physiological maximum grain Zn 
concentration is reached, Zn fertilisation will not further increase grain Zn 
concentrations. Findings from chapter 6 support this hypothesis: grain Zn 
concentrations at locations with high soil Zn-M3 concentrations (>11 mg kg-1) were 
not higher compared to locations with lower Zn-M3 levels (~2 mg kg-1).  
 
The HarvestPlus target of 38 mg Zn kg-1 in maize grains is considered adequate for 
combatting human Zn deficiency (Bouis and Welch, 2010). We demonstrated that 
attaining this target, by applying Zn (chapter 4) or N fertilisers (chapter 6) to current 
commercially available maize varieties, is not possible without compromising yields.  
 
Several of our findings indicate that a good nutritional status of the crop can benefit 
grain Zn concentrations when soil Zn availability is low. In chapter 4, we showed that 
Zn fertilisation did not increase maize yields, despite soil and plant concentrations 
pointing towards Zn deficiency. This could be an effect of the high gifts of NPK, 
secondary and micronutrients that were applied. In line with these results, we found 
higher maize grain Zn concentrations on soils with higher P and K levels (chapter 6). 
 

 Soil testing for fertiliser recommendations  
Our results also provided insights in the reliability of chemical soil tests for assessing 
soil nutrient availability, in particular the M3 and hot water methods. In order for a 
given chemical soil extraction method to be suitable for deriving fertiliser 
recommendations, the results of this method results should be a good proxy for plant 
uptake and/or yield response to fertilisation and results should be reproducible across 
laboratories and over time (Olsen et al., 1954). The M3 and hot water extraction 
methods do not comply to both criteria. Although beyond the original aims of this 
study, I would like to elaborate on some our findings, as they have implications for the 
transferability of found results.  
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In chapter 3, we presented results on inter-laboratory variation in P, Al, Ca and Fe 
concentrations extracted with M3. Our findings confirm the work of Shahandeh et al. 
(2017) and Liu (2019) who showed that Mehlich 3 extractable P, Al, Fe and Ca are very 
sensitive to small errors/variations in the protocol used. We showed that inter-
laboratory variation in M3 results caused a 19% difference in P-Olsen predictions when 
applying the P transfer function. We also showed that many variations of the hot water 
protocol are in use and that these variations have an impact on the results (chapter 5). 
 

 Limitations of this study and future research 
 

 Spatial application of QUEFTS 
There are several important limitations regarding our study into the spatial application 
of QUEFTS. First, we were not able to evaluate the maps with yield data from field 
trials. Evaluation of QUEFTS spatial predictions was done with modelled yields and 
yield-limiting nutrients based on soil data from set-aside locations. Although this 
provides a clear overview of the spatial performance of QUEFTS, the use of external 
data can provide valuable insights into areas and associated covariates or soil properties 
affecting accuracy of spatial predictions. For future studies, I strongly recommend to 
evaluate the outcomes of QUEFTS spatial predictions with field data.  
 
Second, the use of P-Olsen predictions based on M3 data, rather than using measured 
values, likely affected results of the IC method more than results of the CI method. The 
use of M3 data increases the number of input parameters for QUEFTS to eight, 
compared to four when using P-Olsen measurements. Our analysis indicated that 
smoothing of soil input parameters was an important driver for the overestimation of 
yield predictions using the IC method. Hence, increasing the number of input 
parameters makes outcomes of the IC method more sensitive to smoothing effects. The 
use of the P transfer function also has larger implications on the outcomes of the IC 
method, as uncertainty of the transfer function is multiplied with the uncertainty caused 
by smoothing of the input maps. This is not the case for the CI method, as only the 
final input is interpolated. Some P-Olsen data are available for SSA (Batjes, 2010). I 
recommend to develop P-Olsen maps based on direct measurements and evaluate 
whether they are associated with significantly less uncertainty than P-Olsen predictions 
based on M3 data and whether this results in more accurate spatial predictions using 
the IC method. Alternatively, P-Olsen maps can be developed based on M3 data using 
the CI method. This is expected to result in more accurate spatial P-Olsen predictions 
compared to using the IC method, since smoothing-effects are reduced to a minimum. 
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Third, we were not able to draw reliable conclusions on the suitability of QUEFTS for 
developing fertiliser recommendations at scale as we only evaluated QUEFTS spatial 
yield and yield-limiting nutrient predictions. The yield-limiting nutrient was estimated 
correctly relatively often, indicating that QUEFTS potentially can be used to develop 
regional fertiliser recommendations. However, we did not actually develop fertiliser 
recommendations, which I would recommend for future studies. This would provide 
valuable insights into whether QUEFTS spatial fertiliser recommendations are a step 
forward compared to using blanket fertiliser recommendations currently in place.  
 
QUEFTS spatial predictions can greatly benefit from improving the quality of the P-M3 
and K-M3 maps, which were associated with high uncertainty. I expect that P-M3 and 
K-M3 are difficult to map partly because of the strong impact of soil management on 
nutrient availability and consequent small-scale spatial heterogeneity (Chikowo et al., 
2014; Njoroge et al., 2019; Zingore et al., 2007a). This heterogeneity is not fully captured 
by the 250m resolution covariates used in this study. As more high resolution (30-100m) 
covariate layers are becoming available, soil maps will likely improve in terms of 
precision and accuracy (Hengl et al., 2017b; Poggio et al., 2021). For future research, I 
recommend to evaluate whether spatial P-M3 and K-M3 predictions will improve when 
using covariate data at a resolution of 30-100m compared to 250m. I also suggest to 
explore options for including mapped variables as covariates, such as pH or soil type, 
which are known to affect nutrient availability. Although these maps will contain 
uncertainty themselves, they could improve spatial P-M3 and K-M3 predictions.  
 
I furthermore recommend to map the maximum yield parameter for future spatial 
applications of QUEFTS. Several studies have already demonstrated the use of maps 
of maximum yields, yield gaps, or factors relevant for good productivity such as rootable 
depth and water availability (Leenaars et al., 2018; Steinbuch et al., 2016; Van Wart et 
al., 2013). Such a maximum yield map enables finetuning of QUEFTS spatial yield 
predictions to local conditions. 
 

 Micronutrient bioavailability functions 
Based on available data, no satisfactory models could be derived that described 
micronutrient uptake or the yield response to fertilisation based on soil parameters. A 
lack of good relations, even if a nutrient is yield-limiting, can be caused by several 
factors. In addition to short-scale (within-farm) spatial heterogeneity in soil properties 
and errors in soil sampling and analyses, our results may have been affected by several 
important limitations of the data, as well as the underlying hypothesis that plant uptake 
is a good proxy for bioavailability of micronutrients.  
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We solely relied on chemical soil parameters for estimating micronutrient uptake and 
response to fertilisation. Nutrient supply is affected by several other (soil) properties 
which were not included in our analyses. Texture, soil type, bulk density and rooting 
depth significantly affect nutrient and water availability, which can all impact plant 
nutrient uptake, yields and fertiliser response (Correndo et al., 2021; Kihara et al., 2017; 
Leenaars et al., 2018). Rainfall/water availability furthermore is known to affect B 
leaching (Degryse, 2017). Although some of these data were available, they were not 
taken into account during the analyses. This was due to incomplete data, because data 
were only available on farm-level or showed limited variation within each country. For 
future studies I recommend to collect data on soil texture, rootable depth and 
precipitation, in addition to soil chemical parameters, as they may explain additional 
variation in micronutrient fertiliser responses and plant micronutrient uptake.  
 
The micronutrient fertiliser omission trials covered a limited range in soil pH, SOC and 
texture. The trials furthermore covered only three soil types, which did not differ within 
a country, except for Zimbabwe where trials were executed on two different soil types. 
I therefore recommend to ensure a larger variability in soil properties of field trial 
locations when aiming for derivation of micronutrient bioavailability functions. Another 
important constraint was the use of different maize varieties for each of the countries. 
Although this choice was made because of locally available resources, this may have 
affected our results, as we were not able to distinguish between the effects of maize 
variety and differences in climatic or soil factors which were not measured. For future 
studies, I therefore highly recommend to use more than one maize variety, replicated in 
each of the locations. 
 
The high rates of NPK, secondary and micronutrients provided to the maize crops in 
this study, may have masked deficiency of micronutrients. Optimal or balanced 
fertilisation could lead to healthier crops, with larger root systems that are able to 
explore a larger soil volume (de Valença et al., 2017; Pasley et al., 2019). This could 
explain why a positive yield response to Zn and B fertilisation was absent, despite soil 
test values for Zn (in M3 and DTPA) and B (in hot water) being below critical 
concentrations for maize reported by Chilimba et al. (1999), Cuesta et al. (2021) and 
Kumar et al. (2018). Compared to these literature studies, generally higher fertiliser rates 
and/or more nutrients were fertilised in this study. Our findings stress the need for 
more extensive evaluation of critical soil test values for deriving micronutrient fertiliser 
recommendations for maize. The hypothesis that optimal or balanced fertilisation could 
induce changes in the rooting system, thereby reducing the need for micronutrient 
fertilisation, also deserves further attention. I recommend to study the effect of fertiliser 
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regime on root architecture and plant nutrient uptake, in several maize varieties. This 
may provide valuable insights regarding fertilisation as well as breeding strategies for 
rooting systems that facilitate optimal nutrient use efficiency.  
 
I would like to put forward two more hypotheses for the poor relations found between 
soil parameters and maize Zn and B uptake. First, I question whether plant uptake is a 
good measure for bioavailability of micronutrients. In order to be a good proxy for 
bioavailability, plant uptake of micronutrients should relate to yield to some extent, 
especially when these nutrients are yield-limiting. Our data showed that a fertilisation 
induced increase in plant uptake of Zn and B did not result in higher maize yields, 
despite soil and plant concentrations pointing towards deficiency of these nutrients. We 
also demonstrated in this study that the internal efficiency of maize ranged between 8 
and 71 kg grain g-1 Zn uptake (chapter 4), a factor 9 difference between the extremes. 
In contrast, the difference between minimum and maximum internal efficiency for 
macronutrients is a factor 2.5 for N, 3 for P and 4 for K (Janssen et al., 1990). In other 
words, there is a much larger plasticity in plant micronutrient than macronutrient 
concentrations. Deficiency of N, P and K has clear impacts on maize yields (e.g. 
Njoroge et al., 2017; Pasley et al., 2019; Shehu et al., 2018) but less drastic yield effects 
are observed when Zn and B are not sufficiently available to plants (Awio et al., 2021; 
Mozafar, 1987; Vanlauwe et al., 2015). Obviously, Zn and B can be strongly diluted in 
the crop without affecting maize yields, as shown in chapters 4 and 5. This could imply 
that uptake of Zn and B, above a critical threshold, do not define crop yields. This 
hypothesis is supported by the work of Kovács and Vyn (2017), who demonstrated that 
relations between Zn and B earleaf concentrations and maize yields were very poor 
compared to N, P and S. If plant uptake or plant concentrations indeed are not a reliable 
indicator for micronutrient bioavailability, this would imply that deriving models of the 
yield response to micronutrient fertilisation is a more viable option for deriving 
bioavailability models.  
 
The second hypothesis refers to the use of maize as a test crop. It has been suggested 
that maize is not susceptible to B deficiency (Lordkaew et al., 2011) and maize may thus 
not have been an ideal test crop to assess B availability. In contrast to B, maize is 
considered highly sensitive to Zn deficiency (Alloway, 2008). Although good relations 
have been found between soil test values and Zn uptake, those studies involved rice and 
wheat as test crops (Das et al., 2009; Duffner et al., 2013; Maiti et al., 2006; Seth et al., 
2017). However, several studies showed that (grain) Zn uptake in maize is less 
responsive to Zn and N fertilisers compared to rice and wheat (Cakmak and Kutman, 
2018; Zhao et al., 2022). Furthermore, Zn concentrations in these crops seem to be less 
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plastic compared to maize, as the minimum and maximum internal efficiency differ by 
a factor 7 for wheat and 5 for rice (Das et al., 2009; Maiti et al., 2006), compared to 9 
for maize. These physiological properties of maize may complicate finding a clear yield 
response to Zn fertilisation in field trials and consequently could constrain derivation 
of models describing soil Zn availability. 
 

 Biofortification 
With regards to biofortification, the study design imposed difficulties in drawing strong 
conclusions about the effect of Zn availability in combination with availability of NPK 
on maize yields and grain Zn concentrations. As the main purpose of the micronutrient 
fertiliser omission trials was to derive Zn (and B) bioavailability functions, only Zn and 
B fertiliser omission treatments were included. In order to gain insights into the 
interactive effect of Zn and N, P and K availability on maize yields and grain Zn 
concentrations, a full factorial design, including omission and different fertiliser 
applications rates of Zn, N, P and K is required. The current study design also 
complicated identification of relevant soil factors affecting grain Zn concentrations. The 
random factor ‘country’ explained large variation in the relation between soil and grain 
Zn concentrations (chapter 4). However, in each of the countries, a different maize 
variety was grown. We therefore do not know whether the country factor represents 
differences among maize variety, or soil (or environmental) factors which we did not 
measure. In chapter 6, relations between soil and plant were difficult to derive due to a 
potential confounding effect of maize variety and clustering in soil data. In addition to 
using multiple maize varieties (section 3.2), I recommend to explore interactions among 
Zn, N, P and K, using a full factorial fertiliser omission design in future studies. In case 
interactions are found, this could have an impact on fertiliser recommendations. Such 
a design would also allow to disentangle the individual and interacting roles of different 
nutrients in root architecture. 
 

 Practical implications 
 

 Soil testing for fertiliser recommendations  
The M3 method is popular because it can be used to extract multiple nutrients 
simultaneously by combining several extraction mechanisms and can be applied to a 
wide range of soils (Wuenscher et al., 2015). These attributes make it a convenient and 
cost-effective method (Chilimba et al., 1999). The hot water method has been used for 
decades, as it was found to be a good proxy for B availability (Wear, 1965). Soil M3 data 
are widely available for SSA and are thus presumably used for assessment of soil nutrient 
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availability (e.g. Njoroge et al., 2017) and likely fertiliser recommendations. In my 
opinion, several changes are needed to use the M3 and hot water chemical soil tests for 
reliably assessing nutrient availability or deriving models describing availability, as well 
developing fertiliser recommendations. 
 
First, the suitability of the hot water and M3 methods for evaluating yield responses to 
fertilisation requires more evaluation in field trials. The use of these methods for 
estimating P, K, Zn and B availability to maize grown in tropical soils, has been 
demonstrated in a limited number of studies (i.e. Chilimba et al., 1999; Cuesta et al., 
2021; Kumar et al., 2018). Our work however showed that the critical concentrations 
derived in these studies, were no reliable estimators for Zn and B deficiency (chapter 4 
and 5). We also showed that high soil amorphous Al contents reduce the P extraction 
efficiency of M3 (chapter 2), which could imply that P-M3 is not a reliable (universal) 
estimator of plant available P.  
 
Second, standardisation of the M3 and hot water methods is needed. Variation in soil 
test results complicates their use for the development of accurate fertiliser 
recommendations (Schut and Giller, 2020; Van Leeuwen et al., 2021). We demonstrated 
that the M3 and hot water extraction methods are prone to errors, partly due to 
variations in the protocols used (chapter 3 and 5), highlighting the need for detailed 
reporting of used methods, standardisation of protocols, as well as quality control of 
lab results. This is internationally recognised and several initiatives are currently 
addressing this issue (Harmsen 2007; GLOSOLAN 2022; WEPAL 2022; ISO 
standards). Additionally, insights are needed into the nutrient pools that are extracted 
with M3 and hot water, as understanding the extraction mechanisms is essential for 
standardisation of methods (Harmsen, 2007).  
 
I hypothesise that part of the uncertainty associated with the M3 and hot water methods 
is caused by the fact that no stable chemical equilibrium is reached within the 5 to 10 
min extraction time (Mahler et al., 1984; McGeehan et al., 1989; Penn et al., 2018). Until 
the M3 and hot water methods are properly evaluated in field trials and protocols are 
standardised, I propose to use alternatives for these methods to assess availability of 
cations, P, Zn and B.  
 
For determining exchangeable cations, I consider the ammonium acetate method 
(extraction time of ~2 h) more suitable than M3. Although M3 is a reliable alternative 
for Exch-K (chapter 2), poor results have been reported for cations that are usually also 
extracted with ammonium acetate, such as calcium (Michaelson et al., 1987) and sodium 
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(Fukuda et al., 2017), though not in all studies (Mamo et al., 1996; Wendt, 1995). The 
Olsen method seems a good alternative for P-M3. No stable chemical equilibrium is 
reached in the extraction time of 30 min (Olsen et al., 1954), but the P extraction 
mechanism is clear and the extraction efficiency likely does not depend on other soil 
properties. However, Schut and Giller (2020) report a relatively large interlaboratory 
variation in P-Olsen concentrations, especially in the agronomically relevant range, 
compared to methods for pH, SOC or even P-M3. This could be due to differences in 
extraction time or analytical methods, i.e. colorimetric or ICP analysis (Olsen et al., 
1954; chapter 4), again highlighting the need for standardisation of protocols. 
 
With regard to Zn availability in tropical soils, the standardised 0.43 M HNO3 extraction 
seems to be a promising method. The method has an extraction time of 4 h and has 
been shown to be a good proxy for the Zn reactive pool (Groenenberg et al., 2017; Van 
Eynde et al., 2022). In addition, Zn-HNO3 explained more variation in Zn uptake and 
grain Zn concentrations compared to Zn in DTPA or M3 (chapter 4). However, the 
0.43 M HNO3 extraction method has been shown to overestimate the reactive Zn pool 
in calcareous soils (Gao et al., 2022; Groenenberg et al., 2017). Although this problem 
likely did not affect our results, given the low pH soils of the field trial locations, this 
implies that HNO3 results may not be equally reliable for all soils. Future research 
should focus on the wider suitability of the HNO3 extraction method as a proxy for Zn 
availability, in particular in relation to other soil properties such as pH.  
 
Boron concentrations in hot water, 0.43 M HNO3 and 0.01 M CaCl2 generally correlated 
well, although discrepancies were found at lower concentrations (chapter 5). Given the 
issues with reproducibility of the hot water method results, the use of either 0.43 M 
HNO3 or 0.01 M CaCl2 for assessing B availability seems preferable. However, neither 
method was a good predictor of B uptake in our study. Since much is still unknown 
about relations between soil B tests and plant uptake or fertiliser response in maize, I 
consider it premature to dismiss or recommend any extraction method at this point. 
 

 Field-scale application of QUEFTS 
QUEFTS is a useful tool: yield estimates can correspond well to observed yields in field 
trials (Das et al., 2009; Maiti et al., 2006; Sattari et al., 2014; Tabi et al., 2008) and several 
studies have shown that the model can be used adequately to derive balanced N, P and 
K fertiliser recommendations (Maiti et al., 2006; Mesfin et al., 2021; Xu et al., 2013). We 
showed that using site-specific M3 soil data as input for the QUEFTS model, by 
applying the P and K transfer functions, added limited uncertainty to the final QUEFTS 
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yield estimate (chapter 2). The P and K transfer functions derived in this study thus 
broaden the (spatial) applicability of QUEFTS when only M3 data are available. 
 
Apart from QUEFTS, the transfer functions enable evaluation of soil P and K 
availability based on M3 data. The suitability of M3 for estimating P and K availability 
to maize grown in tropical soils, has only been demonstrated by Chilimba et al. (1999) 
and in combination with other soil parameters by Shehu et al. (2019). In contrast, the 
suitability of the P-Olsen and Exch-K methods have been proven useful for assessing 
availability and fertiliser response to P and K in many studies (Bai et al., 2013; Chilimba 
et al., 1999; Das et al., 2009; Farina et al., 1992; Maiti et al., 2006; Sattari et al., 2014; 
Ussiri et al., 1998). The good relation between Exch-K and K-M3 implies that critical 
concentrations for K in ammonium acetate can be reliably translated into K-M3 results. 
The P transfer function can provide a reasonably good estimate of P-Olsen values.  
 
Several studies have reported poor validation results for QUEFTS yield predictions with 
field-specific data (e.g. Njoroge Kinyanjui, 2019; Shehu et al., 2019). I would like to 
discuss some additional findings, not presented in previous chapters, which provide 
insights in potential causes for the poor performance of QUEFTS yield predictions 
using field-specific data. 

Figure 1: QUEFTS yield predictions based on (A) measured soil parameters and default fertiliser 
recovery fractions, and (B) measured N, P and K uptake, plotted against observed yields in the 
micronutrient omission trials (full and -Zn treatments; chapter 4). Lines represent the 1:1 line. 
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In Figure 1 (courtesy of Elise Van Eynde), QUEFTS yield predictions of the 
micronutrient fertiliser omission trials are compared to observed yields. In Figure 1A, 
QUEFTS predictions are based on soil information (i.e. pH, SOC, P-Olsen and 
Exch-K), as well as fertiliser gifts multiplied by the default recovery fractions (Janssen 
et al., 1990). Within each respective country, relations between predicted and observed 
yields seem absent. In Figure 1B, the measured uptake of N, P and K is used as input 
for QUEFTS; the first step in the QUEFTS procedure, using soil data, is skipped. In 
this scenario, there is good agreement between predicted and observed yields. These 
results are in line with Njoroge Kinyanjui (2019) and imply that either or both the supply 
functions and fertiliser recovery fractions cannot be applied universally. 
 
Based on these findings, I recommend to model the recovery fractions of N, P and K 
fertilisers based on soil properties, as demonstrated for Zn in chapter 4. The recovery 
fractions show large variation in the field (e.g. Shehu et al., 2019; Tabi et al., 2008). 
Tailoring the recovery fractions to local conditions leads to better results compared to 
using default values (Ezui et al., 2016). Modelling recovery fractions based on soil 
properties would also benefit QUEFTS spatial fertiliser recommendations, as soil maps 
can be used to customise recovery fractions to specific regions. In addition, recalibrating 
the P supply function, which is associated with relatively large uncertainty (Tabi et al., 
2008) could strongly improve the general (spatial) applicability of QUEFTS. Given the 
widespread availability of M3 data in SSA, deriving a P supply function based on P-M3 
rather than P-Olsen data seems obvious. A P supply function based on M3 data makes 
the use of the P transfer function obsolete, which could reduce uncertainty in QUEFTS 
(spatial) predictions. For deriving future P supply functions, I recommend to test 
proxies for soil Al(hydr)oxide contents, as we demonstrated its relevance in the 
extraction of P-M3 (chapter 2). 
 

 Spatial application of QUEFTS 
We demonstrated that spatial patterns in QUEFTS yield and yield-limiting nutrient 
predictions corresponded to predictions at the underlying point data. Application of 
QUEFTS to soil maps can thus provide valuable insights in spatial patterns, which can 
serve as a basis for further research or interventions (Arrouays et al., 2020; Giller and 
Zingore, 2021; Hengl et al., 2017a). 
 
Our results show that the method chosen to develop maps with non-linear models 
should be selected with care. For QUEFTS, based on the Rwandan case study, the CI 
method seems to results in the most reliable spatial predictions of maize yields and the 
yield-limiting nutrient in an unfertilised situation. In order to apply the CI method, all 
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input data for QUEFTS and/or the transfer functions is required for each data point 
underpinning the maps. This implies that chemical soil analyses of all these parameters 
is necessary when one aims to develop maps with QUEFTS with the CI method. In 
case of missing data, the IC method can be an alternative. The IC method can 
distinguish between lower and higher yielding regions to the same extent as the CI 
method and could thus be used for this purpose. However, as the IC method 
overestimated yield predictions, maps developed with this method should be interpreted 
with care, in particular when used for the development of agronomic interventions. 
 
The use of the IC method, in combination with the use of the P and K transfer 
functions, led to a smoothing-induced overestimation of the lowest and an 
underestimation of the highest spatial P-Olsen and Exch-K predictions. The use of 
these maps, as they are, or as input for QUEFTS, will therefore likely lead to an 
underestimation of P and K fertiliser requirements in certain regions and an 
overestimation in other regions. Although P-Olsen and Exch-K maps can serve to 
identify differences among regions in P and K availability, caution is required when 
using these maps as a basis for developing fertiliser recommendations. 
 

 Micronutrient fertiliser recommendations 
 
Method of application 
Our results suggest that the fertiliser use efficiency of soil applied Zn is high in soils 
with low pH and SOC content, common in SSA (Hengl et al., 2015). This has several 
implications for Zn fertiliser recommendations, mainly in regards to biofortification, as 
yields may not increase in most cases. First, a high fertiliser efficiency reduces the 
required amount of fertilisers needed to attain a similar response (Alloway, 2008). The 
5 kg Zn ha-1 used in this study was sufficient to increase grain Zn concentrations and 
rates could potentially be decreased on soils with low Zn adsorption affinity. Second, 
as soil fertilisation has a high efficiency, no alternative methods such as foliar application 
are required. The foliar application of Zn has shown to be slightly more effective in 
increasing maize grain Zn concentrations compared to soil application, but the largest 
effects of foliar application are expected in calcareous, Zn fixing soils (Joy et al., 2015). 
However, foliar Zn application mostly affects grain Zn concentrations, but not yields 
(Awio et al., 2021; Joy et al., 2015). As foliar sprays require additional labour and 
equipment compared to soil application (Joy et al., 2015), the latter method for Zn 
fertilisation is preferred in non-calcareous soils. 
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Biofortification 
Our results showed that reaching the HarvestPlus target Zn concentration of 38 mg 
kg-1 in maize grains requires development of improved Zn-accumulating varieties. Our 
data also suggest that relations between soil Zn availability and grain Zn concentrations 
could be variety-dependent. This implies that grain Zn concentrations and yield 
performance of improved Zn-accumulating varieties should be tested in soils with 
varying levels of Zn availability. Although not sufficient to reach the HarvestPlus target 
concentration, we showed that Zn fertilisation can raise grain Zn concentrations up to 
27 mg kg-1. Together with a high expected Zn fertiliser efficiency in soils with a low Zn 
adsorption affinity, Zn fertilisation could contribute to alleviating human Zn deficiency 
(Manzeke-Kangara et al., 2021). Our results furthermore suggested that providing 
balanced NPK fertilisation and increasing soil organic matter contents have the 
potential to increase grain Zn concentrations in maize. As these practises likely will also 
increase yields, these are economically feasible management options for increasing grain 
Zn concentrations. Additionally, in low Zn soils (Zn-M3 levels below ~2 mg kg-1), high 
gifts of N(PK) may require co-application of Zn fertilisers to prevent dilution of grain 
Zn concentrations due to increased biomass production. Areas at risk of Zn dilution in 
high yielding systems, could potentially be identified based on Zn-M3 maps.  
 
Necessity for fertilisation 
The lack of a yield response to fertilisation with Zn and B, despite very low soil 
concentrations, demonstrated in this thesis, raises the question how problematic 
micronutrient deficiencies are across SSA. I hereby would like to review some of the 
evidence that crop micronutrient deficiencies are widespread across SSA and are 
limiting maize yields in particular. In chapter 4 and 5, we mentioned several studies that 
provided clear evidence that Zn and B availability were limiting maize yields. However, 
the geographical areas covered by these studies usually was limited. A few recent studies 
(Kihara et al., 2017; Rurinda et al., 2020; Wortmann et al., 2019) looked into the extent 
to which secondary and micronutrients are limiting maize yields in SSA, together 
covering hundreds of field trials in Ethiopia, Burkina Faso, Ghana, Kenya, Malawi, Mali, 
Niger, Nigeria, Rwanda, Tanzania, Uganda, and Zambia. Rurinda et al. (2020) showed 
that adding a combination of secondary and micronutrients to NPK, increased maize 
yields to a limited extent (between 0 and 0.3 Mg ha-1) compared to fertilising NPK alone. 
In Kihara et al. (2017), secondary and micronutrients added an extra 0.8 Mg ha-1 (25%) 
to maize yields obtained with NPK fertilisation alone. Wortmann et al. (2019) showed 
that a combination of secondary and micronutrients increased median maize yields with 
15% in Eastern and Southern Africa compared to NPK alone, but no median increase 
was observed in Western Africa. Although the data of Kihara et al. (2017) and 
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Wortmann et al. (2019) could indicate that deficiencies of Zn and B occur in maize, 
both studies have important limitations which hamper the conclusions that can be 
drawn. First of all, both studies, as well as Rurinda et al. (2020), have assessed only the 
effect of mixtures of secondary and micronutrients on maize yields. Although this setup 
provides valuable information about the extent to which a limited yield response to 
NPK fertilisation can be expected, the results do not provide answers as to which of 
the nutrients is limiting yields, and in which soils. Another important limitation of 
Kihara et al. (2017), although using spatially exhaustive data, is a lack of on-farm 
replication of the mixed secondary and micronutrient fertiliser treatment. We observed 
a within-farm variability of 20% in yields for a given fertiliser treatment (chapter 4 and 
5). This raises the question whether individual farmers will indeed observe a clear yield 
increase when they apply secondary and micronutrients. 
 

 
Figure 2: Density plots of maize yields in the control (no fertiliser), NPK and NPK + secondary 
(S) and micronutrients (MN) treatments. Data from the TAMASA (Rurinda et al., 2020) and 
AfSIS trials (Kihara et al., 2017). Lines represent median values. 
 
The data of Rurinda et al. (2020) and Kihara et al. (2017), presented in Figure 2 (courtesy 
of Elise van Eynde), show that median maize yields increase from 2.0 Mg ha-1 in the 
unfertilised control to 4.5 Mg ha-1 in the NPK fertiliser treatment. Adding secondary 
and micronutrients further increases the median yield to 4.9 Mg ha-1, which could be 
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considered marginal compared to the yield increase by NPK fertilisation alone. These 
findings are in line with the work of Awio et al. (2021), who showed that additional rice 
yield gains due to fertilisation with secondary and micronutrients compared to NPK 
alone, if present, were small. Wortmann et al. (2019) conclude that the magnitude of the 
median yield response to a blend of secondary and micronutrients indicates that 
fertilisation of these nutrients will likely not be profitable, unless well-targeted. 
However, as micronutrients are required in relatively small quantities, they could be 
easily blended in with commerically available NPK fertilisers, potentially at low 
(additional) cost (Joy et al., 2015). The use of such blends would address micronutrient 
deficiencies in case present and could improve the use efficiency and return on 
investment of NPK fertilisers (Vanlauwe et al., 2015). In addition, fertiliser blends 
containing Zn can potentially increase grain Zn concentrations (chapter 4), thereby 
contributing to alleviation of human Zn deficiency (Joy et al., 2015). Development and 
distribution of such blends could be a viable, cost-effective option for improving yields 
and grain Zn concentrations, until areas with micronutrient deficiencies can be clearly 
identified based on field trials, soil testing, models or maps.  
 
Kihara et al. (2016) showed that application of NPK + manure leads to similar or larger 
yields compared to fertilising with NPK + secondary and micronutrients. Farmers 
owning cattle apply most of the available manure close to the homestead, whereas 
chemical fertilisers are spread evenly across the fields (Zingore et al., 2007b). This 
suggests that crop deficiencies of micronutrients in some farming systems could be 
alleviated through better distribution of available manure.  
 

 Concluding remarks 
Based on the results of this thesis, I conclude that Zn and B yield-limitations in maize 
grown in SSA are not as widespread as earlier assumed. However, adding Zn fertilisers 
to maize benefits grain Zn concentrations and can potentially contribute to reducing 
human Zn deficiency. Based on our findings, available pH, SOC and Zn-M3 soil maps 
can potentially be used to identify areas associated with (i) low maize grain Zn 
concentrations (ii) strong grain Zn concentration responses to Zn fertilisers and (iii) an 
elevated risk of Zn dilution in maize grains in high yielding farming systems. This could 
provide a basis for targeted biofortification strategies. 
 
The general absence of yield responses to Zn and B fertilisation, as observed in the 
current and literature studies, implies that increasing the use of NPK fertilisers should 
receive priority over micronutrient fertilisation on the short term for closing yield gaps 
in SSA. On the long term however, with structural applications of only chemical NPK 
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fertilisers, problems with Zn deficiency could emerge due to soil Zn depletion. For 
deriving balanced N, P and K fertiliser recommendations, the QUEFTS model can be 
used. The P and K transfer functions which we developed, broaden application of 
QUEFTS in SSA, where M3 data is widely available. Although QUEFTS spatial yield 
predictions were associated with large uncertainty, our findings highlighted that soil 
maps can be used as input for QUEFTS to identify differences in expected yields among 
regions. The yield-limiting nutrient was estimated correctly relatively often, indicating 
that QUEFTS can potentially be used for deriving regional fertiliser recommendations 
at low costs, based on soil maps. 
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Summary 
To feed the growing population in sub-Saharan Africa (SSA), yield levels currently 
attained in small-holder farming systems need to increase. In combination with other 
agronomic practices, the use of mineral fertilisers is indispensable for closing yield gaps. 
In order to increase yields and prevent soil nutrient mining or nutrient losses to the 
environment, fertilisers need to be applied in balanced ratios. Balanced fertiliser 
recommendations need to take into account crop nutrient requirements as well as that 
soils supply part of these nutrients to the crop. In SSA, fertiliser recommendations are 
often national or regional blanket recommendations, that do not take into account 
heterogeneity in soil fertility, resource availability, agro-ecological zones and/or crops. 
Blanket fertiliser recommendations often only include N, P and K, whereas other 
nutrients can also be yield-limiting. Zinc (Zn) and boron (B) are hypothesised to be 
yield-limiting in large areas of SSA. Zinc is not only essential for crops, but also for 
human health. A large part of the African population is estimated to be Zn deficient, 
which can partly be attributed to low soil Zn availability and consequently low Zn 
concentrations in crops that grow on them. Increasing grain Zn concentrations through 
adding Zn fertilisers is seen as a viable option to reduce human Zn deficiency.  
 
Current blanket fertiliser recommendations are unsuitable for sustainably increasing 
yields across a country and do not address nutritional quality (i.e. Zn content) of yields. 
Site-specific, balanced fertiliser recommendations are seen as the way forward to close 
yield gaps. However, obtaining site-specific fertiliser recommendations based on soil 
testing currently is not (economically) feasible for most small-holder farmers. Therefore, 
cost-effective tools are needed for predicting nutrient availability and the yield response 
to fertilisation, taking into account interactions among several plant-essential nutrients 
that may limit yields.  
 
One of such tools is the widely-used QUantitative Evaluation of the Fertility of Tropical 
Soils (QUEFTS) model. QUEFTS can be used to predict yields and the yield response 
to fertilisation. The model has two important assets. First, bioavailability of N, P and K 
is described as a function of multiple soil properties, rather than based on a single soil 
test value. As a result, these functions can theoretically be applied to a wide range of 
soils. Based on QUEFTS definition of bioavailability, i.e. the amount of nutrient uptake 
in an entire growing season when the nutrient of interest is yield-limiting, similar 
bioavailability models could be derived for Zn and B. Plant uptake of Zn and B would 
be predicted based on multiple soil parameters, thereby also bypassing analytical 
challenges regarding measurement of low micronutrient concentrations in tropical soils. 
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A second asset of QUEFTS, is that it is unique in taking interactions among nutrients 
into account and has proven useful for deriving balanced fertiliser recommendation of 
N, P and K. Available soil maps could be used as input for QUEFTS, thereby potentially 
refining national blanket fertiliser recommendations at low-costs.  
 
The general objective of this thesis was to develop and evaluate models for predicting 
soil nutrient availability and to increase the understanding of the interactive effect of 
nutrient availability on crop yields and nutritional quality in sub-Saharan Africa. The 
focus of this thesis was on availability of macronutrients N, P and K as well as 
micronutrients Zn and B. To address the general objective, several methods were used, 
including soil statistical modelling, soil mapping and micronutrient fertiliser omission 
field trials. The QUEFTS model and its underlying principles were an important 
component of this thesis. The specific research objectives were: (1) to evaluate a 
spatial application of the QUEFTS model, (2) to derive generic models describing 
bioavailability of micronutrients zinc and boron based on soil parameters that can be 
measured in routine analysis and (3) to assess the effect of zinc availability, in 
combination with availability of other nutrients, on maize yield (quantity) and grain Zn 
concentrations (nutritional quality). These objectives were addressed in chapters 2-6. 
 
Some modifications were needed for the spatial application of QUEFTS. The Mehlich 3 
(M3) soil extraction method is commonly used in SSA and available soil maps are 
typically based on this method. However, QUEFTS requires P in an Olsen extract and 
exchangeable K (Exch-K) measured in an ammonium acetate extract as input, in 
addition to pH and soil organic carbon. In chapter 2, transfer functions were derived 
that relate K-M3 to Exch-K and P-M3 to P-Olsen. Soil samples from several countries 
in SSA were analysed for properties that could explain relations among the different 
extraction methods. Transfer functions for both nutrients were derived through 
statistical modelling. The results of this chapter show that (i) M3 can be used reliably to 
estimate Exch-K, likely due to similar extraction mechanisms of both methods, (ii) 
additional parameters are needed to translate P-M3 to P-Olsen and (iii) M3 may not be 
a reliable estimator for plant available P, particularly in soils with high amorphous Al 
contents. We showed that K transfer functions were significantly different between 
temperate and tropical soils, which we attributed to clay mineralogy. This highlighted 
the need for specific transfer functions for tropical soils. We also demonstrated that 
using site-specific M3 soil data as input for QUEFTS, by applying the P and K transfer 
functions, added limited uncertainty to QUEFTS final yield estimate when compared 
to using measured P-Olsen and Exch-K data. The P and K transfer functions thus 
broaden the applicability of QUEFTS when only M3 data is available.  
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In chapter 3, we applied the transfer functions and QUEFTS to digital soil maps of 
Rwanda, using two methods. For the first method, models were applied to data points 
and the final model output was spatially interpolated to develop a map of the target 
variable (Calculate-then-Interpolate; CI). For the second method, all model input was 
interpolated to develop individual soil maps, after which the models were applied 
(Interpolate-then-Calculate; IC). We demonstrated that (i) both methods showed strong 
differences in outcomes, which was attributed to the non-linear nature of QUEFTS, (ii) 
the IC method overestimated yields across Rwanda, due to a smoothing-induced 
increase in spatial predictions of soil parameters and (iii) application of QUEFTS to 
currently available soil maps led to spatial predictions associated with large uncertainty, 
irrespective of the method. Despite the uncertainty associated with the spatial yield 
estimates, the yield-limiting nutrient was estimated correctly in 54% (IC) and 60% (CI) 
of the evaluation locations. We furthermore demonstrated that spatial patterns in 
QUEFTS yield and yield-limiting nutrient predictions clearly corresponded to 
predictions at the underlying point data. This implies that spatial application of 
QUEFTS can be used to identify differences among regions. Our results show that the 
CI method is preferred when applying QUEFTS to soil maps, implying that chemical 
soil data for all relevant input parameters at each calibration location should be 
collected. The smoothing-induced overestimation of spatial P-Olsen, Exch-K and 
consequent yield predictions by the IC method, implies that maps developed with this 
method should be interpreted with care, especially when used for the development of 
fertiliser recommendations. Of the soil parameters, P-M3 and K-M3 maps were 
associated with the largest uncertainty. Improving the quality of these maps, by using 
covariate data at a higher spatial resolution (30-100m) than used in the current study 
(250m), could potentially benefit spatial P-Olsen, Exch-K and QUEFTS yield and yield-
limiting nutrient predictions.  
 
In chapter 4 and 5, using data from micronutrient fertiliser omission field trials with 
maize in Kenya, Zambia and Zimbabwe, we attempted to derive models describing 
bioavailability of Zn and B. Despite soil and plant concentrations pointing towards 
potential yield-limitation of both nutrients, a positive yield response to fertilisation with 
either Zn or B was generally absent. This shows critical soil Zn and B concentrations 
reported in literature, require more validation in field trials. Soil Zn and B levels, 
determined with the 0.43 M HNO3 extraction method, were related with uptake of these 
nutrients. Zinc extracted with the 0.43M HNO3, DTPA and M3 extraction methods 
was a better proxy for Zn uptake than the 0.01 M CaCl2 extraction method, indicating 
that the capacity of the soils to buffer micronutrients was more relevant for describing 
bioavailability than the actually available pool of these nutrients. However, chemical soil 
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parameters generally described limited variation in Zn (35%) and B (21%) uptake. The 
weak relations likely have been caused by the fact that Zn and B were not yield-limiting, 
as demonstrated by a lack of yield response to fertilisation with these nutrients. Our 
results showed that the Zn uptake response to Zn fertilisation was high in low pH, low 
soil organic carbon soils, indicating that a high Zn fertilisation efficiency can be 
expected in soils with a low adsorption affinity for Zn. Our results provided insights 
into the B pool that is extracted with the hot water method, commonly used for 
assessing B availability. The hot water method extracted twice the amount of B 
compared to 0.43 M HNO3, indicating that this method could overestimate the 
potentially available B pool. Our results suggest that the hot water method extracts B 
from undecomposed organic matter, which is not extracted by the 0.01 M CaCl2 and 
0.43 M HNO3 methods. 
 
With regards to human health, we showed that fertilising with 5 kg Zn ha-1 increased 
grain Zn concentrations in 77% of the blocks, despite not increasing maize yields 
(chapter 4). The average increase in grain Zn concentrations was 20% (2.4 mg kg-1) 
compared to the situation where Zn was not fertilised. Similar to Zn uptake, high 
responses in grain Zn concentrations to Zn fertilisation were associated with low soil 
pH and organic carbon contents. In both chapter 4 and 6, we showed that soil Zn 
concentrations generally explained limited variation in grain Zn concentrations. We also 
demonstrated different relations between maize grain and soil Zn concentrations for 
each of the three countries where micronutrient fertiliser omission trials were executed 
(chapter 4). As different maize varieties were grown in each of the three countries, we 
could not identify whether the different relations could be attributed to a variety-effect 
or other agro-ecological factors. The HarvestPlus target of 38 mg Zn kg-1 in maize grains 
is considered adequate for combatting human Zn deficiency. Attaining this target, by 
applying Zn (chapter 4) or N fertilisers (chapter 6) to current commercially available 
maize varieties, is not possible without compromising yield levels. Our results also 
suggest that (i) higher grain Zn concentrations can be expected in soils with higher 
organic matter content and (ii) high availability of N, P and K, either due to fertilisation 
or a high native soil fertility, may mask yield-limitations by Zn. Increasing soil organic 
matter contents and applying balanced/optimal NPK fertilisation likely will also 
increase yields. Additionally, we showed that increasing yields through application of 
N(PK), could lead to a dilution of grain Zn concentrations on soils with low Zn 
availability, implying that co-application of Zn to macronutrients on these soils may be 
required. These findings provide a basis for developing management strategies that can 
increase grain Zn concentrations, as well as yields.  
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In chapter 7, I summarised the main findings of this thesis, discussed their limitations 
and provided recommendations for future research. I also discussed the practical 
implications of my work. I put special attention on the question whether micronutrient 
availability indeed is limiting (maize) yields in SSA and reviewed literature studies that 
have claimed this. I concluded that Zn and B yield-limitations in maize grown in SSA 
are not as widespread as earlier assumed, but that addition of Zn fertilisers to maize can 
contribute to reducing human Zn deficiency in the African population by increasing 
grain Zn concentrations. The general absence of yield responses to Zn and B 
fertilisation implies that increasing the use of NPK fertilisers should receive priority 
over micronutrient fertilisation to close existing yield gaps in SSA. For deriving balanced 
N, P and K fertiliser recommendations, the QUEFTS model can be used. The P and K 
transfer functions which we developed, broaden application of QUEFTS in SSA, where 
M3 data is widely available. Although QUEFTS spatial yield predictions were associated 
with large uncertainty, our findings highlighted that soil maps can be used as input for 
QUEFTS to identify differences in expected yields among regions. The yield-limiting 
nutrient was estimated correctly relatively often, indicating that QUEFTS can 
potentially be used for deriving regional fertiliser recommendations at low costs, based 
on soil maps. Additionally, based on our findings regarding Zn availability and fertiliser 
response, available pH, SOC and Zn-M3 maps can potentially be used to identify areas 
associated with (i) low maize grain Zn concentrations (ii) strong grain Zn concentration 
responses to Zn fertilisers and (iii) Zn dilution in maize grains in high yielding farming 
systems. This could provide a basis for targeted biofortification strategies. 
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