
Journal of Food Composition and Analysis 114 (2022) 104722

Available online 30 June 2022
0889-1575/© 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Broadband acoustic resonance dissolution spectroscopy of natural edible 
salts: Visualization and interpretation for descriptive and 
diagnostic analysis 

Pedram Shoa a,b,*, Seyed Ahmad Mireei b, Abbas Hemmat b, Sara W. Erasmus c, Saskia M. van 
Ruth a,c,* 

a Wageningen Food Safety Research, Wageningen University and Research, P.O. Box 230, 6700 AE, Wageningen, the Netherlands 
b Department of Biosystems Engineering, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran 
c Food Quality and Design Group, Wageningen University and Research, P.O. Box 17, 6700 AA, Wageningen, the Netherlands   

A R T I C L E  I N F O   

Keywords: 
Acoustics 
BARDS 
Composition 
Morphology 
Salt 
T-distributed stochastic neighbor embedding 

A B S T R A C T   

Broadband acoustic resonance dissolution spectroscopy (BARDS) has been recently introduced as a low-cost 
method for the analysis of powdered materials. In this study, ten Iranian natural table salts, each separated 
into five particle size fractions, were analyzed with BARDS. The compositions and crystalline structure of samples 
were investigated with inductively coupled plasma optical emission spectroscopy, flame photometry, and X-ray 
diffraction methods. Moreover, different linear and nonlinear dimensionality reduction methods were used to 
visualize the ten salt types. The analyses revealed the presence of halite, sylvite, and anhydrite in the rock salts, 
and halite, bischofite, and periclase in the sea salts. Subjecting bubble volume spectra to nonlinear dimension-
ality reduction using the t-distributed stochastic neighbor embedding algorithm, the salts were clearly distin-
guished in a two-dimensional space with the distances and positions relative to their composition, crystalline 
structure, and particle morphology. The results of this study provide a roadmap toward unraveling the under-
lying mechanisms behind the BARDS spectra for further applications in characterizing natural edible salts.   

1. Introduction 

Salt is one of the main powdered food materials used as a preser-
vative, stabilizer, texture, and taste enhancer (Lee et al., 2014). 
Table salts can be categorized into refined and unrefined products. 
Refined salt is purified sodium chloride with chemical treatments such 
as sulfuric acid or chlorine which may contain anti-caking agents and 
may be iodized. The unrefined salts exist in two types, rock salts and sea 
salts. Rock table salts are directly extracted from salt mines, crushed, 
and packed for use, whereas sea salts are produced from the evaporation 
of seawater or the brine of salt lakes (Lee et al., 2016). It is noteworthy 
that salt ions in seawater are mainly originated from leaching the land or 
volcanic activations at the seafloor (US Department of Commerce, n.d.). 
Hence, both categories of unrefined salts contain a significant amount of 
trace elements other than sodium (Na) and chloride (Cl), such as mag-
nesium (Mg), potassium (K), or calcium (Ca) (Gonzálvez et al., 2015). 
The type and the percentage of these trace elements can define the 
quality or the geographical origin of the salt (Tan et al., 2012). Thus 

quantitative analyses such as inductively coupled plasma (ICP) spec-
troscopy methods are usually applied for the determination of trace el-
ements in unrefined salts (Gonzálvez et al., 2015; Hwang et al., 2016). 
X-ray diffraction (XRD) can also be used as a crystallographic method for 
delineating the molecule structure of constitutive salt crystals (Kar-
avoltsos et al., 2020). Since the sample preparation for these reference 
analyses, is labor-intensive and time-consuming, and the experimental 
costs of both methods (ICP and XRD) are remarkably high, cost-efficient 
and rapid screening methods are proposed for determining the 
elemental quality or the geographical origin of unrefined salts. 

Near-infrared (NIR) spectroscopy in diffuse reflectance mode has 
been successfully applied to discriminate sea salts, according to their 
quality (traditional vs. flower of salt - ‘fleur de sel’) and geographical 
origin, in conjunction with partial least square discriminant analysis 
(PLS-DA) (Galvis-Sánchez et al., 2011). The concentration of K and Mg 
varied between salts in different geographical origins, while the con-
centration of Ca distinguished the traditional sea salt from the flower of 
salt. In a follow-up study, PLS regression (PLSR) was applied to the NIR 
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and mid-infrared (MIR) spectroscopic data to predict the percentage of 
the trace elements in sea salt and brine samples (Galvis-Sánchez et al., 
2013). 

In another study, laser-induced breakdown spectroscopy (LIBS) was 
used for the classification of sea salts based on their geographical origin. 
It was reported that K, Mg, Ca, and aluminum (Al) concentrations varied 
with the provenance of salts. The concentration of the mentioned ele-
ments was consistent with the relative intensities of the peaks observed 
in the LIBS spectra. By serving the LIBS spectra as the inputs of PLS-DA 
models, different salt samples were classified (Lee et al., 2014; Tan et al., 
2012). In a follow-up study, the classification accuracy was improved 
using soft independent modeling of class analogy (SIMCA) due to its 
higher efficiency with a large number of sample classes (Lee et al., 
2017). 

During the last decade, broadband acoustic resonance dissolution 
spectroscopy (BARDS) has been proposed for the qualitative and quan-
titative analysis of powders (Fitzpatrick et al., 2012). In this method, the 
acoustic profile of a powdered sample is recorded during the dissolution 
in its solvent such as pure water. The profile is the changes in sound 
frequency passing through the solution in a vessel during the dissolution 
process. The frequency change is due to the entrance, growth/genera-
tion, and subsequent elimination of minute air bubbles. Entrained 
bubbles are originated from the collision of solid particles with the liquid 
surface and the entrapment of air between solute particles. However, the 
driving force for the growth/generation of the bubbles in the solution 
during the dissolution process is the reduction of gas solubility in the 
liquid solvent as the consequence of dissolving a solid solute, which is 
known as “The hot chocolate effect” (Crawford, 1982; Fitzpatrick et al., 
2013, 2012). During the dissolution of a substance in its liquid solvent, 
the solution gets oversaturated by those amounts of gas, which have 
been dissolved in the solvent, before the addition of the solute. The gas 
oversaturated liquid will move toward the steady-state condition by 
nucleating air bubbles or growing the entrained bubbles. Those air 
bubbles can impressively reduce compressibility and insignificantly 
lessen the density of the liquid media, hence reducing the velocity of 
sound. As the wavelength of the sound is equal to its velocity divided by 
its frequency in a closed-end sound tube, the sound velocity is propor-
tional to its frequency at each wavelength. Measuring the changes of 
sound frequency passing through the pure solvent and the bubble-filled 
solution makes it possible to track the bubble volume during the 
dissolution process. 

In a previous study, the effect of salt’s composition and particle 
morphology on the acoustic profile has been reported using natural salts 
as well as the artificial mixture of analytical grade edible salts, including 
NaCl, KCl, and MgCl2 (van Ruth et al., 2019). A more comprehensive 
study on the mixture of analytical grade edible salts revealed the 
responsible physicochemical characteristics of a sample to be respon-
sible for the changes in the acoustic spectra. The identified character-
istics were the dissolution rate and gas solubility reduction of the 
powder besides the viscosity and surface tension of the solution. In this 
study, the composition of the salt mixtures was effectively predicted 
using BARDS spectra and multivariate regression methods (Shoa et al., 
2021). Despite the previous studies, a thorough comprehension of the 
effect of compositional differences in combination with crystalline 
structure characteristics on the sound signatures of natural salts gener-
ated by BARDS will help to elucidate the underlying mechanisms that 
determine these sound signatures. This requires analysis of natural salts 
with BARDS but also characterization of the salt’s composition and 
crystalline structures with other analytical techniques. 

To relate features and interpret these high dimensional spectral data, 
an important way forward is to visualize spectral data with unsupervised 
dimensionality reduction (DR) methods (Bishop, 2006). Unsupervised 
DR methods could be categorized into linear and non-linear, random 
projection, and manifold-based methods. It was reported that 
manifold-based methods retain the local data structures and deal well 
with the non-linearity of the data in a more effective manner (Anowar 

et al., 2021; Sorzano et al., 2014). It is noteworthy that the global and 
local structures of data should be preserved after mapping. 

The goal of this study is to examine the ability of the BARDS data 
obtained from various rock and sea salts, in combination with different 
unsupervised DR methods to relate the sound signatures to the differ-
ences in composition, crystalline structure, and the particle morphology 
of salts. The interpretation of spectral data in their raw form as well as in 
the reduced space, regarding the crystalline structure and the chemical 
composition of the natural edible salts, could be considered as the 
novelty aspects of this study. 

2. Materials and methods 

2.1. Salt samples 

Samples from ten different types of rock (seven) and sea (three) salts 
were collected from Iranian salt producers. The ten salt types, shown in  
Fig. 1, originated from Iranian salt mines and lakes. Due to the hygro-
scopic nature of the unrefined salts, all samples were oven-dried at 103̊C 
before the analysis. Salts were ground using a commercial coffee grinder 
(Tristar KM-2270 Tristar, Smartwares Group, Tilburg, the Netherlands). 
For the BARDS measurements, the ground salts were subsequently 
passed through different sieves to obtain five different particle size 
classes with the following codes and the corresponding particle size 
ranges in parenthesis: A (500–650 µm), B (350–500 µm), C (250–350 
µm), D (150–250 µm), and E (63–150 µm). A total number of 50 salt 
samples were analyzed with BARDS. The samples were kept in plastic 
bottles to prevent further reabsorbing ambient humidity. 

2.2. Elemental analysis 

About 50 g of each salt type in intact form was finely ground, to 
obtain a homogeneous sample for analysis. One gram sample from each 
salt type (ground) was dissolved in 100 mL of 1 % HNO3 (using ultra-
pure water R~18 MΩ) and shaken. Subsequent dilutions of 10, 102, 103, 
104, and 105 times were prepared. The concentration of Al, B, Ba, Be, Bi, 
Ca, Cd, Co, Cr, Cu, Fe, Ga, K, Li, Mg, Mn, Na, Ni, Pb, Se, Sr, Te, Ti, and Zn 
were determined for each salt sample in the linear five sets of dilutions, 
using ICP optical emission spectroscopy (ICP-OES) (Optima 7300DV, 
PerkinElmer Inc., USA). Additional analysis for highly concentrated el-
ements of Na and K was performed using the flame photometry-based 
method described in a national regulation of the Netherlands (Land-
bouwkwaliteitsregeling Annex IX, 1994; BWB XP Flame Photometer, 
Instrument Solutions Benelux, Nieuwegein, the Netherlands). Detailed 
descriptions of the photometry method are available in a previous study 
(van Ruth et al., 2019). All samples were measured in duplicates. 

2.3. X-ray diffraction analysis 

To determine the crystalline structure of the salt samples, X-ray 
diffraction (XRD) analysis was performed using an AW-DX 300 (Asen-
ware, China) diffractometer, with Cu Kα radiation (1.54060 Å, 40 kV, 
30 mA), an incidence angle of 1◦, recording in a 2θ range between 10̊ to 
90̊ with a step size of 0.05◦, and measuring time per step of 1 s. About 
one gram of each salt type from the finely ground salts (prepared pre-
viously for ICP-OES analysis) was analyzed. 

2.4. Broadband acoustic resonance dissolution spectroscopy 

A broadband acoustic resonance dissolution spectrometer (BARDS 
Acoustic Science Labs, Cork, Ireland) was used to obtain the acoustic 
profiles of the salt samples (Fig. 2). This spectrometer has a dissolution 
vessel made of borosilicate, suitable for 25 mL solvent which was 
demineralized water in this study. The sound was generated by the 
means of a magnetic stirrer, rotating off-set at the speed of 300 rpm, 
exciting the vessel’s wall. The acoustic sensor was a uni-directional, 

P. Shoa et al.                                                                                                                                                                                                                                    



Journal of Food Composition and Analysis 114 (2022) 104722

3

cardio design, condenser microphone (Sony ECM-CS10), sensible in the 
frequency range of 100 Hz to 16 kHz. The analog output of the micro-
phone was digitized using a sound card at a 44.1 kHz sampling rate 
which was suitable for the reconstruction of acoustic waves up to 
22.1 kHz frequencies, covering the microphone sensitivity range 
(NYQUIST, 1928). The digital signal was transformed from the 
amplitude-time into the power-frequency-time space using a short-term 
Fourier transform (STFT) by performing a fast Fourier transform (FFT) 
on each window of 16384 data points. The output was a spectrogram in 
which the color intensity represents the power of the signal at each 
frequency-time data. 

Acoustic signals were recorded for 30 s to detect the resonance fre-
quencies of the system in absence of bubbles. At the 30 s time-point, 
0.8 g of the solute was automatically added to the vessel (with 25 mL 
of demineralized water) using a sample cap and an electrical motor. One 
of the resonance frequency lines, which was continuous during the first 
30 s of the measurement, dropped to a lower frequency after the addi-

tion of the salt sample. This frequency is related to those sound waves 
passing through the liquid media of the system and reduced by the 
appearance of entrained bubbles. Frequency reduction continued until 
the 300 s, which was found sufficient to assure that all bubbles liberate 
from the solution and the detected frequency curve reached the same 
frequency of the first 30 s. This curve is the lowest variable frequency- 
time course, called the fundamental curve (FC). Fifty time-points were 
pre-defined for each spectrogram. The relative frequency for each time- 
point was manually selected from visually detected FC and saved in an 
Excel file. The frequency spectra were transformed into the bubble 
volume ones using Eq. (1): 

freq
freqw

=
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + 1.49 × 104fa

√
(1)  

where fa is the volume fraction of bubbles in the liquid, freqw is the 
frequency of sound in water with no bubbles (frequency of the first 30 s) 
and freq is the frequency of sound in the bubble-filled water (frequency 
after 30 s) (Crawford, 1982; Del Grosso and Mader, 1972). 

Savitsky-Golay derivative transformation with the number of three 
smoothing points was then applied to the bubble volume (BV) spectra to 
calculate the bubble volume rate (BVR) spectra (Savitzky and Golay, 
1964). 

Measurements were conducted in a conditioned laboratory at the 
stable room temperature of 22̊C and an atmospheric pressure of ~1 atm, 
without any heating or cooling of the solvent. Before performing the 
experiments, gas saturation was stabilized in the solvent using vigorous 
agitation by shaking the solvent bottle for 60 s and then allowing it to 
rest for more than 30 min. All samples were analyzed in triplicate, hence 
a total of 150 measurements were performed. 

2.5. Particle size measurements 

To determine the size distribution of salt particles, a laser diffraction 
analyzer (Mastersizer 3000, Malvern Instruments, Malvern, UK) with 
Aero S dry powder dispersion accessory was utilized. Particles were 
dispersed and traveled through the detection cell by means of airflow 
with the settings of 2 bar pressure, 3 mm of hoper gap, and a feed rate of 
20 % using a vibrational feeder. The calculations were based on the 
theory of diffraction by Fraunhofer. In this method, the intensity of 
scattered light by a particle is directly proportional to its size (Li et al., 

Fig. 1. The ten different Iranian natural table salts, used in this study. The brief name related to each salt is used in further sections. The quality grades were 
determined by the visual inspections by the producers. 

BARDS

Motor

Magnetic stirrer

Sample cup

Microphone

Dissolution 
vessel

Stirrer bar

Jack lead

Spectrogram

Fig. 2. Schematic overview of the data acquisition system for broadband 
acoustic resonance dissolution spectroscopy (BARDS). 
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2019). For modeling, particle type was also selected as a non-spherical 
particle with the Fraunhofer approximation. Measurements were 
recorded once the obscuration was between 0.5 % and 6.0 %. Similar to 
previous studies, the particle size characteristics for salt samples in each 
particle size class, were recorded as Dx (50), the median diameter (van 
Ruth et al., 2019). The average of triplicate measurements was 
demonstrated in further spectral interpretation and visualization 
analysis. 

2.6. Data visualization 

Three different data sets related to spectral types of FC, BV, and BVR 
were created. Samples and variables were arranged along the first and 
second dimensions of a matrix, respectively. The matrix was then mean- 
centered and scaled according to the standard deviation of each vari-
able, named X. For a better interpretation of spectral data, five different 
DR methods were applied to the X including PCA, non-negative matrix 
factorization (NMF), isometric mapping (Isomap), uniform manifold 
approximation and projection (UMAP), and t-distributed stochastic 
neighbor embedding (t-SNE). The PCA linearly projects the data from 
initial variables into lower orthogonal dimensions, each presenting the 
highest possible variation that exists in data. This method was per-
formed using the nonlinear iterative partial least squares (NIPALS) al-
gorithm and full cross-validation (Wold et al., 1987). The NMF also 
linearly maps the original high dimensional variable space into a low 
one. The original data should only have positive amounts and the al-
gorithm produces also positive sample values in the new space. Hence, 
the method represents the data as additive combinations of different 
parts, which is way more interpretable than the PCA (Guimet et al., 
2006). It is assumed that X could be decomposed into two matrices of 
basis functions (W) and encodings (H). Using multiplicative update 
rules, the algorithm minimizes the squared Frobenius norm F (extension 
of Euclidean norm to matrices) as the distance between X and W.H (Lee 
and Seung, 1999): 

F =
∑

i

∑

j
Xij log (WH)ij − (WH)ij (2) 

The Isomap is a nonlinear manifold and neighborhood graph-based 
DR method. Like the multi-dimensional scaling method, it aims to 
maintain the pairwise distances between data points in embedded space 
as it was in the original one. The Isomap calculates the pairwise geodesic 
distances between data points to generate a neighborhood graph, able to 
capture the nonlinear manifold patterns in the data despite the classic 
Euclidian method. By the means of Floyd’s or Dijkstra’s algorithms, the 
shortest path between each pair of data in the neighborhood graph will 
be found to approximate the geodesic distance between them. A matrix 
of these pairwise geodesic distances as dG is created for all data points. 
The algorithm converts the distance matrix into a kernel matrix K using 
a centering matrix ofH = I − 1/n(eeT): 

K = H.dG.H (3)  

where n is the number of data points, I is the identity matrix and e is a 
column vector of ones. By Eigen decomposition of K (K→B.D.BT), a di-
agonal matrix D will represent Eigenvalues and B the corresponding 
Eigenvectors of K. As the goal was data visualization in two dimensions 
top two Eigenvalues and their vectors were served and the rest of them 

were removed (D→D
⌢

2×2and B→B
⌢

n×2). Hence the data points in the new 
space will be calculated as: 

Y = D
⌢1/2

.B
⌢T

(4) 

The t-SNE is a non-linear dimensionality reduction algorithm cate-
gorized in manifold learning methods to visualize high dimensional data 
in the space of two or three embedded dimensions. It reserves the local 
and global structures of the high dimensional data (X) in the projected 

one (Y) by the following procedure. The algorithm first calculates the 
joint probability of each pair of data points in the high dimensional data 
(xi and xj) of N objects as pij which is considered as the similarity be-
tween the pair of objects: 

pij =
pj|i + pi|j

2N
(5)  

pi=j refers to the conditional probability of ith object picking the jth one as 
its neighborhood, proportioned to their probability density following a 
Gaussian distribution centered at xi and variance of σ: 

pj|i =
exp
(
−
⃦
⃦xi − xj

⃦
⃦2/2σ2

i

)

∑
k∕=i(exp − ‖xi − xk‖2

/2σ2
i )

(6)  

a perplexity should be determined by the user as the number of neigh-
bors included in the Gaussian kernel and calculates its bandwidth σ, 
accordingly. The second step is to calculate the similarities between 
pairs of data points in the projected space Y. Instead of Gaussian, it uses 
a Student’s t-distribution with one degree of freedom (same as a Cauchy 
distribution) with a heavy tail to handle modeling far distances. 

qij =
(
1 +

⃦
⃦yi − yj

⃦
⃦2)− 1

∑
k∕=l(1 + ‖yk − yl‖2

)
− 1 (7) 

The similarities (joint probabilities P and Q) should be maintained 
during the projection from X into Y space. Hence the algorithm uses the 
Kullback–Leibler divergence (relative entropy) which measures the 
difference of one probability distribution from another as a loss function: 

KL

(

P‖Q

)

=
∑

i

∑

j
pij log

pij
qij

(8) 

Herein an optimization problem of minimizing the above loss func-
tion could be solved using the gradient descent approach. The result is 
the Y space, visualizing the similarities of objects in X space (Hinton and 
Roweis, 2002; Van der Maaten and Hinton, 2008). 

The UMAP is also a non-linear dimensionality reduction method, 
which could be considered as an updated version of t-SNE. By the means 
of local manifold approximations and local fuzzy simplicial set repre-
sentations, the algorithm creates a topological representation of high 
and low dimensional data sets. The optimization aims to minimize the 
distance between two topological representations (fuzzy sets). Using the 
stochastic gradient descent method minimizes the fuzzy set cross- 
entropy (Eq. 5) as loss function instead of Kullback-Leibler divergence 
used by t-SNE, helping the algorithm to retain the global structure of the 
data more efficiently. 

C =
∑

i∕=j

(

μij log
μij

υij
+
(
1 − υij

)
log

(
1 − μij

)

(
1 − υij

)

)

(9)  

where μ and ʋ are fuzzy simplicial similarities of the high and low 
dimensional spaces, respectively (McInnes et al., 2018). 

All data transformations were implemented with Python 3.7 and the 
following toolboxes including scikit-learn and UMAP (Harris et al., 
2020; McInnes et al., 2018; Pedregosa et al., 2011). 

3. Results and discussion 

3.1. Elemental analysis of salts 

The elemental concentrations and detected compounds of the ten salt 
types are shown in Table 1. For highly concentrated elements of Na and 
K, the concentrations were measured with flame photometry and are 
reported in Table 2. It was observed that K presented in all salt samples 
but its concentration was remarkably higher in the four rock salts, 
namely PBH_HQ, PBH_LQ, IPH_LQ, and IH. Regarding the XRD analysis, 

P. Shoa et al.                                                                                                                                                                                                                                    



Journal of Food Composition and Analysis 114 (2022) 104722

5

halite and sylvite were detected in these four rock salts, which are 
chloride crystalline forms of Na and K. Thus, the percentage of NaCl and 
KCl were calculated from the concentrations of Na and K. The PBH_HQ 
salt had the lowest KCl concentration (5.2 %), while the highest KCl 
concentrations (11.6 % and 11.3 %, respectively) were determined for 
IPH_LQ and IH, followed by PBH_LQ (10.3 %). In fact, the KCl concen-
tration is a key characteristic of Persian blue halite (PBH). Among the 
three quality levels of PBH that were visually evaluated by the pro-
ducers, the medium quality had a very low KCl concentration. Mean-
while, the lowest quality of PBH (PBH_LQ) had the highest KCl 
concentration among three quality levels, revealing the necessity of a 
low-cost quality control method for recognizing samples according to 
their chemical composition. 

Mg is another important element for the evaluation of natural salts, 
as presented in all salt samples of this study. The highest concentration 
of Mg was found in sea salts. For the rock salt samples, XRD was not able 
to recognize any compound containing Mg. Bischofite was detected by 
XRD in three sea salts which is the hydrated form of magnesium chloride 
(MgCl2). In the ArSS, XRD also detected periclase, the oxide form of Mg 
(MgO). Among the three sea salts, USS had the highest amount of MgCl2. 
Between the two Aran sea salts, ArSS was expected to have less Mg in 
chloride form when compared to ArSS_R, due to the presence of MgO. 

Iron (Fe) was also present in PBH_LQ, IBH, IPH_HQ, and IPH_LQ, in 

which a few orange streaks were obvious on the halite crystals. Those 
streaks were likely related to the oxide form of Fe. The Fe compounds 
were not detected by XRD analysis. Calcium was presented at every salt 
sample. Anhydrite (CaSO4) was detected by XRD in PBH_LQ, IBH, 
IPH_HQ, and IPH_LQ. Almost all rock and sea salts contained Al but the 
highest amount of 0.1 mg per gram of salt was recorded for IBH. 

3.2. Spectral interpretation 

Fig. 3 represents a) the FC, b) the BV, and c) the BVR spectra of the 
ten salt types in the particle size class B (350–500 µm). At the entrance 
response point (ERP), i.e., the first data point after powder introduction 
to the solvent (33 s), the frequency (FERP) of rock salts (PBH_HQ, 
PBH_MQ, PBH_LQ, IBH, IPH_HQ, IPH_LQ, and IH) were very similar to 
each other (Fig. 3a). FERP of the sea salts (USS, ArSS, and ArSS_R) was 
remarkably lower than those of the rock salts. The lower FERP at the same 
particle size range represents the higher powder ability of bubble for-
mation at the early stages of the dissolution (Fig. 2). The presence of 
MgCl2 in the sea salts (Table 1) may be the cause of the lower frequency 
(higher bubble volume) at early seconds after the introduction of solute 
to the solvent. It has been stated that the causes of lower FERP between 
two powders in the same particle size range are due to a higher total 
dissolution rate and higher ability of the powder to reduce the gas sol-
ubility in a liquid solvent. It has been found that MgCl2 has a higher 
dissolution rate and more ability to reduce the gas solubility in the 
solvent, compared to NaCl and KCl (Shoa et al., 2021). 

For the time-points after the ERP, the sea salts had spectra with a 
noticeable lower frequency and higher bubble volume compared to the 
rock salts. A previous study reported that the presence of MgCl2 in the 
salt mixture powders considerably increased bubble formation (Shoa 
et al., 2021). Magnesium chloride has a high ability to reduce the gas 
solubility of the solvent, mainly due to its negative dissolution enthalpy. 
The spectrum with the highest bubble volume (lowest frequency) 
referred to USS with the highest Mg content in the form of bischofite 
(MgCl2 (H2O)6). The second and third spectra with the highest bubble 
volume referred to ArSS_R with a slightly lower Mg content in the same 
form of bischofite and then the ArSS, with the lowest Mg content among 
the sea salts. In this salt, Mg was not only in the form of bischofite but 
also appeared as periclase (MgO). Among the seven types of rock salts, 
the IPH_HQ had the highest bubble volume (lowest frequency) at 
time-points after ERP, especially near the overall minimum point of the 
FC spectrum (Fmin). The IPH_HQ salt had the highest Mg content among 
the rock salts, but the composition was not detected by the XRD. The 

Table 1 
Elemental and composition results of each salt, reported from inductively coupled plasma optical emission spectroscopy (ICP-OES) and X-ray diffraction analyses, 
respectively.  

Salt type   Elementsa    Compounds 
Na 
(mg/g) 

K 
(mg/g) 

Mg 
(mg/g) 

Ca 
(mg/g) 

Al 
(mg/g) 

Fe 
(mg/g) 

PBH_HQ 345 ± 9 32.67 ± 0.33 0.41 ± 0.04 0.45 ± 0.03 N.D. N.D.b Halitec Sylvited 

PBH_MQ 366 ± 15 1.06 ± 0.12 0.05 ± 0.00 0.10 ± 0.03 N.D. N.D. Halite 
PBH_LQ 320 ± 1 58.01 ± 1.10 0.20 ± 0.09 1.01 ± 0.10 0.05 ± 0.00 0.02 ± 0.00 Halite, Sylvite, Anhydritee 

IBH 350 ± 22 0.90 ± 0.05 0.25 ± 0.08 2.6 ± 0.88 0.1 ± 0.02 0.02 ± 0.00 Halite, Anhydrite 
IPH_HQ 317 ± 11 0.65 ± 0.09 1.71 ± 0.10 2.24 ± 0.00 0.02 ± 0.00 0.02 ± 0.00 Halite, Anhydrite 
IPH_LQ 314 ± 1 65.10 ± 1.30 0.72 ± 0.03 2.12 ± 0.00 0.01 ± 0.00 0.01 ± 0.00 Halite, Sylvite, Anhydrite 
IH 313 ± 8 59.10 ± 0.20 0.40 ± 0.01 0.75 ± 0.20 0.01 ± 0.00 N.D. Halite, Sylvite 
USS 271 ± 6 2.78 ± 0.09 5.46 ± 1.76 0.66 ± 0.02 0.02 ± 0.00 N.D. Halite, Bischofitef 

ArSS 343 ± 11 1.38 ± 0.33 3.12 ± 0.78 1.33 ± 0.09 N.D. N.D. Halite, Periclaseg Bischofite 
ArSS_R 333 ± 1 1.17 ± 0.47 4.76 ± 0.38 0.25 ± 0.02 0.04 ± 0.01 N.D. Halite, Bischofite  

a Values were averages, calculated over duplicate measurements and wavelength lines. 
b (N.D.) non-detected. 
c NaCl, 
d KCl, 
e CaSO4, 
f MgCl2 (H2O)6, 
g MgO: (Na) sodium; (K) potassium; (Mg) magnesium; (Ca) calcium; (Al) aluminum; (Fe) iron. 

Table 2 
The percentage of sodium chloride (NaCl) and potassium chloride (KCl), 
calculated from the results of flame photometry, assuming all the soluble sodium 
and potassium are in their chloride form. Values are the average of two prepared 
solutions from each salt at each particle size class.   

NaCl (%) KCl (%) 

Salt type Mean STD CV % Mean STD CV % 

PBH_HQ  83.0  3.8  4.6 5.2 0.5 9.9 
PBH_MQ  85.6  3.9  4.6 N.D. – – 
PBH_LQ  76.4  3.0  3.9 10.3 1.2 12.2 
IBH  82.5  1.4  1.6 N.D. – – 
IPH_HQ  79.5  3.7  4.7 N.D. – – 
IPH_LQ  72.3  4.3  5.9 11.3 1.3 12.1 
IH  70.6  6.4  9.0 11.6 0.4 3.9 
USS  83.4  0.8  0.9 N.D. – – 
ArSS  81.2  0.7  0.9 N.D. – – 
ArSS_R  79.9  2.3  2.8 N.D. – – 
Total  79.4  4.6  5.9 9.6 2.6 26.6 

N.D. stands for non-detected and STD for standard deviation. The coefficient of 
variation (CV) for analysis of NaCl was 0.2 % and for KCl was 0.3 %. 
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PBH_LQ salt had the lowest bubble volume spectrum (highest fre-
quency). No relationship was observed between the position of the 
spectra and the NaCl or KCl content of the rock salts. This finding is in 
line with a former study in which no correlation between the NaCl 
content of natural salts and the Fmin or the time needed to reach this 
point (Δt) were reported (van Ruth et al., 2019). 

A sinusoidal shape was obvious in the BVR spectrum of all the salt 
samples (Fig. 3c), except for ArSS_R. The maximum and minimum points 
of the sinusoidal shape temporally coincided at all the salt samples. The 
same sinusoidal shape was also observed in a previous study and 
claimed to be the fingerprint of NaCl in salt mixtures (Shoa et al., 2021). 
Since most salt crystals in this study were NaCl, a similar fingerprint was 
achieved. 

3.3. Visualizing the spectral data 

3.3.1. Principal component analysis overview 
Fig. 4 shows the score plots of the two main principal components 

(PCs) derived from a) the FC, b) the BV, and c) the BVR spectra, 
respectively. The plots show higher discrimination between ten salt 
samples, for the FC and BV dataset, followed by BVR. In Fig. 4a and b, 
the sea salts were located far from rock salts and also from each other, 
especially on the horizontal axes. This is due to the effect of the MgCl2 
content on the bubble formation and hence the FC spectrum, which is 
obvious in Fig. 3a and b. From the left to the right of Fig. 4a and b, the 
sea salt samples are arranged with an increasing Mg content (bischofite). 
This phenomenon was also observed in a previous study on PCA score 
plots related to the mixtures of analytical salts (Shoa et al., 2021). The 
IPH_LQ salt had a high amount of Mg but was located among the other 
rock salts, on the left side of the PC plots, since its Mg content was not in 
the chloride form to have a significant effect on the gas oversaturation of 
the solution. By using BV spectra in Fig. 4b, the sea salts were located 
with more distance from the rock salts and from each other, when 
compared to Fig. 4a, which is related to FC spectra. In this plot, different 
particle sizes of each salt, which were located in smaller clusters, in 
comparison with the plot related to FC spectra. On the vertical axis, 
those samples with a lower K content (IBH and IPH_HQ) were located 
below the ones with higher contents (PBH_HQ, PBH_LQ, IPH_LQ, and 
IH), except for PBH_MQ with a very low K content located almost at the 
top of the other rock salts besides the PBH_LQ (Fig. 4b). The PBH_HQ 
samples in different particle size classes were effectively discriminated 
from PBH_MQ and PBH_LQ. 

3.3.2. Non-negative matrix factorization overview 
Fig. 4d, e, and f depict the plots of the two main factors derived from 

applying NMF to FC, BV, and BVR spectra, respectively. Similar to the 
PCA results, the sea and rock salts were well distinguished from each 
other in these plots. Moreover, the plots related to FC and BV spectra 

were more efficient in separating the salt types when compared to BVR. 
Unlike the PCA results, no relation could be observed between the 
location of sea salts and their Mg or K contents. 

3.3.3. Isometric mapping overview 
Fig. 4g, h, and i illustrate the ten salt samples in two dimensions 

derived from the Isomap transformation of FC, BV, and BVR spectra, 
respectively. Samples were distributed on plots with a three-pronged 
shape. The Isomap transformation of FC spectra (Fig. 4g) did not 
result in satisfactory discrimination of the samples, since it overlaid the 
sea salt ArSS_R with the PBH_LQ, one sample with a significant amount 
of MgCl2 with another by an almost non-determinable amount of MgCl2, 
respectively. This is while the Isomap transformation of the BV spectra 
(Fig. 4h) resulted in a more effective allocation of the rock salts. At the 
upper prong in Fig. 4h, two salts of IBH and IPH_HQ were located with 
almost similar compositions (Table 2), the one with lower Na content 
(IPH_HQ) at the top of another with the higher one. Three salts with a 
considerable amount of KCl (PBH_HQ, IPH_LQ, and IH) were located on 
the lower prong, increasing the KCl content from the tip to the prong 
union upward. On the left prong, the two Persian halite salts of lower 
qualities were located (with non-similar compositions); these two salts 
were also located close together on PCA and NMF plots. At the center of 
Fig. 4h (not obvious in the figure), the three sea salts were located such 
that the USS and ArSS were overlaid and ArSS_R located on top of them. 
Like PCA and NMF, the Isomap transformation of BVR spectra (Fig. 4i) 
did not lead to promising results for the rock salts, but it effectively 
separated rock salt from sea salts. In this plot, a trend of MgCl2 content is 
obvious between sea salts from the top to the bottom of the plot. In 
another study on grouping a musical loops database, Isomap out-
performed the PCA, which is in line with the findings of this study 
(Dupont et al., 2013). 

3.3.4. The t-distributed stochastic neighbor embedding and uniform 
manifold approximation and projection overview 

Since the basic principles of the t-SNE and UMAP algorithms are 
almost similar, their plots are discussed together. Fig. 4j, k, and l show 
the t-SNE mapping and the Fig. 4m, n, and o illustrate the UMAP pro-
jection of FC, BV, and BVR spectral data, respectively. For the best 
performance of the algorithm, the perplexity in t-SNE corresponding to 
the number of nearest neighbors, and the number of iterations were set 
at five and 5000, respectively. The number of neighbors for UMAP was 
also set at five. The mentioned hyperparameters were found heuristi-
cally, by visually evaluating their plots. 

Similar to the previously discussed methods, applying UMAP and t- 
SNE algorithms on BV spectral data, clustered samples with similar 
compositions in a more effective manner, compared to FC or BVR 
spectral data. The comparison of Figs. 4k and n revealed the superiority 
of t-SNE in clustering samples according to their salt types. In Fig. 4k, the 
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Fig. 3. The average spectra of ten Iranian natural table salt types, obtained from three measurements (particle size class B: 350–500 µm), representing (a) funda-
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three sea salts were located on the upper part of the plot in relatively 
dense clusters, reducing their NaCl from right to the left. The positions of 
the sea salts were not associated with their MgCl2 contents. At the bot-
tom of the plot, the HI samples were grouped in a very dense cluster, 
having the highest KCl and lowest NaCl contents. From the right to the 
left of Fig. 4k, the KCl content seems to be increased. On the right side of 
the plot, the IPH_HQ and IBH rock salt types, with almost similar Na, Ca, 
and K contents (Table 2), were located close together. This allocation 
was similar to other DR methods, but for t-SNE the clusters of these two 
salts had a higher distance from others. The PBH_MQ samples with the 
highest NaCl and very low KCl contents did not show a dense cluster. For 
this sample, three particle sizes (B: 350–500 µm, and C: 250–350 µm, 
and D: 150–250 µm) were located close to IPH_HQ and IBH, and the two 
other particle sizes (A: 650–500 µm, and E: 150–63 µm) were located 
near the PBH_LQ samples with almost high KCl content. For most of the 
salts, different particle sizes made a dense small cluster in both t-SNE 
and UMAP algorithms, which was not observed in the results of the other 
DR methods. This means that these two algorithms have successfully 
recognized similarities in different parts of their BV spectral data 
manifold. In some cases, three higher particle size ranges (A: 
500–650 µm, B: 350–500 µm, and C: 250–350 µm) located close 
together, while the others (D: 150–250 µm, and E: 150–63 µm) located 
far from the first three ones. This phenomenon revealed that by 
decreasing particle size, the inter-class variation may increase, causing a 
reduction in the consistency of the method. This finding is also in line 
with the results of a previous study, where the salt samples with finer 
particles dispersed on the PC score plots, far from other samples with 
similar compositions, but with coarser particle size classes (Shoa et al., 
2021). 

It seems that linear mapping of PCA was not efficient for extracting 
useful data from the acoustic spectra to represent the chemical differ-
ences among the salt types. This could be due to the purpose of PCA in 
finding the axis with the highest variation, instead of looking for the 
sample similarities. Similar to the PCA results, the NMF method was not 
able to follow the chemical differences among the samples in its visu-
alizations and hence it could not effectively cluster the same samples. 
Since this method is also basically linear, the idea of an existing 
nonlinear structure in the data related to rock salts is getting more 
probable. The origin of this nonlinearity was likely the consequence of 
variation in particle size rather than chemical composition and crys-
talline structure. It could be due to the fact that they were remarkably 
scattered in the NMF and PCA plots, despite the similarities in the 
chemical composition of the different particle size classes. In the PCA or 
NMF results, the sea salts were not located in the same position with 
either rock salts or each other, while it occurred when using the Isomap 
method (Section 3.3.3). This indicates that the data structure of the rock 
salts was non-linear, while the acoustic data of sea salts were inter-
pretable in linear projections (PCA and NMF). 

A comparison of the five DR methods on the three spectral types of 
data (Fig. 4) revealed that the t-SNE had the best clustering performance 
with the cluster positions more relevant to the salts compositions in 
using the bubble volume spectra. The results confirmed the potential 
application of the BARDS spectrum with t-SNE for authenticating the 
natural edible salts. In fact, the position of an unknown sample relative 
to the authentic products in the reduced space of t-SNE using their BV 
spectrum could be a good index of its authenticity. These results are in 
accordance with another study, that utilized the acoustic features for 
characterizing the weld joints. They compared PCA, Isomap, and t-SNE 
methods and revealed that the t-SNE is more capable of exploring the 
samples based on their weld penetration (Wu et al., 2017). Unlike the 
priority of t-SNE in this study, in another research, the UMAP method 
showed more promising results in visualizing the infant vocalization 
over growth periods (Pagliarini et al., 2022). Although there was a slight 
difference between the explorative ability of t-SNE and UMAP in this 
study, the better discrimination of t-SNE between different classes of 
samples could be due to the more attention of this method to the local 

data structures compared to UMAP. 

4. Conclusions 

This study provides an in-depth understanding of the relationships 
between the BARDS spectra and the natural edible salts characteristics, 
which includes salt composition, crystalline structure, and particle 
morphology. The time-frequency and bubble volume spectra of the salt 
samples were distinct and made it possible to distinguish between salts 
with different compositions. The MgCl2 content had the highest influ-
ence on the acoustic spectra followed by the KCl content. The t-SNE 
dimensionality reduction method unraveled the BARDS spectral data by 
locating the salt samples in two-dimensional space with their distances 
and positions relative to their composition and crystalline structure. This 
study shows that BARDS data had a non-linear structure, which out-
performed the manifold data visualization algorithms over linear ones. 
The projected BARDS data is capable of discriminating natural salts as 
well as different qualities of a certain product, hence its application as a 
low-cost quality control method was demonstrated in this study. 
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