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Abstract: Analyzing the dominant forms and extent of land cover changes in the Mount Elgon region
is important for tracking conservation efforts and sustainable land management. Mount Elgon’s
rugged terrain limits the monitoring of these changes over large areas. This study used multitemporal
satellite imagery to analyze and quantify the land cover changes in the upper Manafwa watershed
of Mount Elgon, for 42 years covering an area of 320 km2. The study employed remote sensing
techniques, geographic information systems, and software to map land cover changes over four
decades (1978, 1988, 2001, 2010, and 2020). The maximum likelihood classifier and post-classification
comparison technique were used in land cover classification and change detection analysis. The
results showed a positive percentage change (gain) in planted forest (3966%), built-up (890%), agri-
culture (186%), and tropical high forest low-stocked (119%) and a negative percentage change (loss)
in shrubs (−81%), bushland (−68%), tropical high forest well-stocked (−50%), grassland (−44%),
and bare and sparsely vegetated surfaces (−14%) in the period of 1978–2020. The observed changes
were concentrated mainly at the peripheries of the Mount Elgon National Park. The increase in
population and rising demand for agricultural land were major driving factors. However, regreen-
ing as a restoration effort has led to an increase in land area for planted forests, attributed to an
improvement in conservation-related activities jointly implemented by the concerned stakeholders
and native communities. These findings revealed the spatial and temporal land cover changes in the
upper Manafwa watershed. The results could enhance restoration and conservation efforts when
coupled with studies on associated drivers of these changes and the use of very-high-resolution
remote sensing on areas where encroachment is visible in the park.

Keywords: change detection; nature conservation; encroachment; deforestation; land cover
changes (LCCs); Landsat; maximum likelihood classifier; Mount Elgon

1. Introduction

Land Cover and Land Use have been used interchangeably. Land Cover refers to the
attributes of the Earth’s land surface and immediate subsurface (inclusive of biota, soil,
topography, surface, and groundwater) together with humans, mainly built-up/artificial
surfaces [1,2]. The current activities that occur in the land arising from human activities
(such as agriculture, wildlife areas, parks, and grazing land) are the representation of land
use [3]. By implication, the land cover is the visual result of the interaction of human activi-
ties within the current ecosystems. Land Cover Change (LCC) refers to the representation
of the replacement of one land cover type by another in the same space [4]. Changes in
land cover are detectable by earth observation technologies [4]. In recent decades, land
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cover change analysis has obtained a priority focus in global and regional monitoring
studies of fragile ecosystems, especially forests, mountains, and water bodies [5,6]. Natural
covers including forests, woodlands, grasslands, marshlands, and water bodies have been
reported by several studies to have been either converted or reclaimed into agriculture,
bare land, and built-up and/or urbanized centers [7–10].

The causes and driving factors of land use and land cover changes vary. Geist et al. [11]
described the strongly interlinked causes of land use/cover changes, clustering them into:
biophysical, demographic, economic and technological, and institutional and cultural fac-
tors. Specifically, the nature of slopes, elevation, geology, soil, and climatic conditions have
also been reported as crucial factors [12–14]. Population growth, expansion of arable land,
livestock grazing, and extraction of fuelwood are among the proxy variables [15–18]. Other
underlying factors of land cover changes include human-induced bush fires, household
behavior, policies, distance to settlements, and road infrastructure [14,16,19].

There are several methods of monitoring land cover changes. Change detection is
the process of identifying and detecting differences in the state of a given phenomenon by
remotely observing it through time and quantifying temporal effects using multitemporal
datasets [20]. Originally, field surveys and the use of available records and maps were
performed. However, these conventional techniques proved to be expensive and time-
consuming [21] and have been replaced by the use of remote sensing and Geographical In-
formation Systems (GIS). The most used change detection techniques include: on-screen dig-
itization of change [22], multi-temporal composite image change detection [23], vegetation
index differencing [24], principal component analysis [25,26], post-classification [27–29],
and machine learning classifiers such as Support Vector Machine [30,31].

Mount Elgon in Uganda is designated as a man and biosphere reserve. On the higher
altitudes (≈2000 m above sea level), Mount Elgon hosts montane forest and a national
park with diverse flora and fauna, whereas human settlements and farmland exist on the
lower altitudes (<2000 m above sea level) and on the foot slopes of the mountain [32,33].
Being one of the largest extinct volcanoes with highly fertile and productive soils combined
with favorable climatic conditions for agriculture, Mount Elgon is one of the most densely
populated rural regions in East Africa [18,34,35]. This has led to continuous encroachment
into the national park and clearance of vegetation on fragile steep slopes for subsistence
farming and settlements [36,37]. For instance, Manjiya County (in Bududa district) lost 41%
of humid primary forest between 2002 and 2019 [38]. In turn, these losses have led to land
degradation, frequent manifestation of landslides, and flash floods including casualties
among the local community [39,40].

Most studies in and around Mount Elgon have concentrated on forest conservation [37],
human activities [41], and natural hazards and disasters, especially landslides and soil
erosion [42], disaster drivers and modeling [43], and coping strategies [44]. Land use and
land cover change studies in Mount Elgon are limited (e.g., [39,45]). Mugagga et al. [39]
analyzed land use changes and the implications thereof for landslide occurrence on critical
slopes of Mount Elgon, whereas Mugagga et al. [45] investigated the impact of land use
change on carbon stocks and its implications to climate variability in mountain environ-
ments. The main aim of this study was (1) to quantify spatial-temporal land cover changes
and (2) analyze the patterns of land cover flows in the upper Manafwa watershed, at
the slopes of Mount Elgon, Uganda, while focusing on the level of conservation at the
proxy of the park boundary on the foot slopes of Mount Elgon, from 1978 to 2020, using
multi-temporal Landsat satellite imagery.

2. Materials and Methods
2.1. Study Area

The upper Manafwa catchment is situated on the upper slopes of Mount Elgon
between latitudes of 00◦56′36′′ N and 01◦07′19′′ N and longitudes of 34◦20′38′′ E and
34◦30′33′′ E. Its total area is 320 km2, covering districts of Bududa, Manafwa, Namisindwa,
and Sironko, Eastern Uganda (Figure 1). The watershed experiences extensive loss of forest
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cover, coupled with visible forms of land degradation, especially in terms of soil erosion
processes and landslides. Moreover, this catchment is a site for the Manafwa watershed
restoration project (MWARES), an initiative aimed at promoting sustainable agriculture
through building resilience and stimulating stewardship among community members. This
formed the basis for selecting this study area, and the output of this study would therefore
inform specific actions for the project.

Figure 1. The location and extent of the upper Manafwa watershed with the elevation and drainage
system, on Mount Elgon in Eastern Uganda.

Mount Elgon is an extinct volcanic agglomerate of Miocene age that rises up to 4321 m
above sea level, located on the Uganda-Kenya border [46]. The study area generally lies
at an altitude range between 1800 and 3800 m above sea level [47]. More than 30% of the
landscape has steep slopes ranging between 10◦ and 20◦, increasing to steeper than 50◦

occasionally [48]. The morphology consists of soft thin ash bands that are eroded, forming
cliffs of 100–120 m, volcanic cones, interlocking spurs, V-shaped valleys (some with river
streams flowing in them), and ridges both gently undulating and rugged [49,50].

The strongly weathered granites of the Basement Complex dominate the geology of the
area with a magmatic carbonatite intrusion, biotite granites, and agglomerate lava [51]. Soils
are mainly andosols, nitisols, laterite, and vertisols, with a high clay content [40,52]. The
soils are relatively young and fertile, being high in calcium, sodium, and potassium [49,53].
The area experiences a bi-modal rainfall pattern of between 1500 mm and 2000 mm per
annum and the mean average temperature ranges between 15 ◦C and 23 ◦C [45]. These are
favorable conditions that attract settlement and intensive farming on the slopes of Mount
Elgon (Figure 2). The vegetation on Mount Elgon and the surrounding environment is
zoned altitudinally with montane forest types, Afro-Alpine and moorland cover (above
3500 m), heath zone (35,000–3000 m), low canopy and mixed bamboo (3000 m to 2500 m),
tropical montane forest (2500 m–1800 m), and the farmlands at the foot slopes [32,45].
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Figure 2. Selected photographic view of the land use and land cover in the study area during ground
visits to the sample locations: (a) agriculture at the periphery of the park, (b) built-up and agriculture,
(c) intensively cultivated slopes with planted forests and landslide scars, and (d) the heterogeneity of
land cover types and park encroachment.

The major perennial crops grown are arabica coffee (cash crop) and bananas (staple
foodstuff). During the rainy season, annual crops (maize, beans, tomatoes, yams, cabbages
and onions) are cultivated either as standalone or intercropped with bananas and coffee
(Figure 2c,d). The settlements are located on relatively gentle slopes and on ridge tops,
as seen in Figure 2b. The study area is among the highly populated areas in Sub Saharan
Africa and has a very high annual population growth (3.6%) that exceeds the national
average of 3% [18,43]. These demographic characteristics combined with the fact that
40% of the total land area was established as a national park leaves the population with
inadequate space for settlement and agriculture [32,54].

2.2. Data Collection and Preparation

A combination of multitemporal Landsat satellite images was used in this study.
Figure 3 illustrates the steps followed to achieve study objectives. Five Landsat images,
each representing a decade from 1978 to 2020, were acquired from the United States Geolog-
ical Survey (USGS) Earth explorer website (https://earthexplorer.usgs.gov/ (accessed on
15 December 2020)). Path and Raw of 170/059 and a cloud cover of less than 30% were
used in the search criteria. For comparability purposes, images within the dry season
(January to March) were acquired, when cloud cover is minimal and the distinction be-
tween subsistence agriculture and natural vegetation is much clearer.

https://earthexplorer.usgs.gov/
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Figure 3. Flow chart for analysis of the land cover change detection in upper Manafwa watershed.

It should be noted that Landsat images of the study area for the specific years 1980
and 1990 could not be found and those of the year 2000 were characterized by high cloud
cover. Therefore, images of the most adjacent year (+1 or −1 year to the respective decades)
were taken. The satellite imagery considered in this study included: Landsat 8 Operational
Land Imager (OLI) and Thermal Infrared Sensor (TIRS) image (for March, 2020); two
Landsat 7 Enhanced Thematic Mapper Plus images (for March, 2010 and February, 2001;
Landsat 4–5 Thematic Mapper image (for February, 1988); and Landsat 1–2 Multi-Spectral
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Scanner (MSS) image (for February, 1978). Particularly, Landsat images were prioritized
over other images in this study because of its rich historic database (10 million Landsat
scenes) back dating up to 1972 [55]. The images are also medium resolution (30 × 30 m)
per pixel [56] and are easily integrated across Landsat missions (1,2,3,5,7,8, and 9). We did
not consider replacing Landsat images with sentinel or other satellite images for recent
scenes, to avoid temporary misregistration errors due to residual geolocation errors and
differences in spectral characteristics with Landsat [57]. The study also considered major
changes that could be visible in satellite images after every decade at most.

Ancillary data were acquired for validation, that is, aerial photographs of 1960s and
a topographic map of Budadiri (sheet number 54/4) for 1962, at a scale of 1:50,000 from
the Department of Surveys and Mapping (see Supplement Figure S1). Field survey and
expert interviews were also undertaken in the study area. Ground control points (15) for
geometric correction and reference points for ground truthing were collected using TDC600
GPS during field surveys. Training datasets (separate from validation data), averaging
45 training samples per land cover class, were randomly created in the image using visible
land cover classes presented in Table 1. Signature files and .ecd files were generated for
training maximum likelihood and SVM models, respectively. The study adopted the
following steps as used in land cover change studies: data collection, image pre-processing
and development of classification scheme, training, image classification, ground truthing
and accuracy assessment, change detection, and land cover flows (Figure 3). A combination
of ArcGIS 10.6.1, QGIS, software packages, and Google Earth Pro was used in various
stages of image preparation and analysis for this study.

Table 1. Land Cover Classification scheme used in this study.

Land Cover Class Description

Built-Up
All built areas and artificially paved surfaces including (rural and urban) residential and service
areas, industrial and commercial areas, transportation and communication routes, mine, dump,

and construction sites, and green urban/mixed urban

Agriculture Area of land under seasonal and perennial (food or cash) crop cultivations: mixed farms of bananas,
coffee, maize, beans, cabbages, and any other vegetables.

Planted forest
Forests of planted broad-leaved woody trees and/or evergreen needle-shaped leaved trees with top

layer trees <65% cover and second layer mixed with coffee and banana plants. Undergrowth of
small trees, shrubs, and grasslands with Closed to Open cover of 40–100−40%, respectively.

Bushland Natural and human-planted vegetation dominated by undergrowth of thickets intermixed with a
bunch of grasses growing together as an entity but not exceeding an average height of 4 m.

Grassland Extensively used grasslands with or without the presence of farm structures such as fences, shelters,
enclosures, and watering places

Bare and sparsely
vegetated surfaces

Lands with exposed soil and sand, the vegetation cover never exceeds 10% during anytime of the
year and stony (5–40%). Includes rock outcrops, bedrock exposures, and accumulation of rock

without vegetation, cliffs, and active erosion surfaces.

Shrubs Mixture of perennial woody shrubs and dotted trees without any defined main stem being less than
5 m tall. The shrub foliage can be either evergreen or deciduous; with or without grass species.

Tropical high forest
low-stocked

Degraded or encroached part of the mixed natural forest with indigenous trees, top layer trees less
than 20% cover, and second layer mixed with shrubs and bush, consisting of seasonal broadleaf tree

communities with an annual cycle of leaf-on and leaf-off periods.
Tropical high forest

well-stocked
Primary mixed natural forest with tree canopy >70%, almost all broadleaf trees remain green all

year around. Well-stocked and canopy is never without green foliage.

2.3. Image Processing and Classification Scheme

Radiometric and atmospheric correction was performed using the Top of Atmosphere
Reflectance (TOA) method, Equation (1) [58]. Landsat tools for Windows Version 1.0.34
software (USGS) 64bits was used to automatically extract variables for radiometric and
atmospheric correction from the Meta data file (MTL):

P(∞) =
πA, (∞)

D◦(∞)COSθ
(1)
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where A = TOA reflectance, D◦ = solar spectral irradiance that includes Earth–Sun distance
correction, and θ = solar zenith angle.

Geometric correction was performed on individual bands through georeferencing
the datasets with 15 Ground Control Points (GCPs) of known features validated from the
topographic map and in the field. Nine GCPs were spread-out at the edges of the study
area and six within the study area. The datasets were then re-projected to EPSG 32636
(https://epsg.io/32636 (accessed on 5 July 2020)). Harmonization of Landsat 1–5 images
to Landsat 8 was performed using the resampling technique—Nearest Neighbor Analysis
(NNA) in ArcGIS. Finally, composite images for each decade were generated by stacking
all bands of Landsat (composite bands tool; ArcGIS). Gap filling was performed in QGIS
3.4.3 using gap mask data as a correction layer in Gap Mask package. The scan line error
for Landsat 7 image of 2010 was also corrected (see Figure 4). Image enhancement was
performed using histogram equalization and the bilinear interpolation resampling method
to improve spectral clarity and visualization.

The Land Cover Classification Scheme (LCCS) for the study was developed in line
with the LCCS of the Food and Agricultural Organization (FAO) [59], Anderson et al. [60]
and the National Forestry Authority (NFA) [61]. Nine dominant land cover classes were
adopted based on physiographic knowledge of the study area (Table 1). The delineated
classes were: built-up, agriculture, planted forest, bushland, grassland, bare and sparsely
vegetated surfaces, tropical high forest low-stocked, and tropical high forest well-stocked.

Figure 4. A view of the scan line corrector (SLC) failure of Landsat 7 image acquired in 2010:
(a) SLC-Off and (b) SLC-Off correction.

2.4. Landsat Image Classification and Accuracy Assessment

Several methods for image classification exist [6,62] and each presents its own advan-
tages and disadvantages. In order to choose the most appropriate method for the watershed,
a comparative analysis was undertaken between Support Vector Machine (SVM) and su-
pervised classification for one recent satellite image (2020). From the results of accuracy
assessment, the Maximum Likelihood (ML) method performed slightly better (90.35%) than
SVM (88.46%); thus, ML was used. Furthermore, supervised classification is commonly
used because it is simple and quick to implement, allows a clear interpretation of the
outcomes, and mostly delivers a satisfactory accuracy [6].

The accuracy of the final change maps was assessed following the recommended
best practices and formulae proposed by [63,64]. Using a stratified random sampling
technique [64], a total of 387 sample units were generated and distributed appropriately, as
illustrated in Table 2 [64]. The same procedure was followed for all other change maps of
2010, 2001, 1988, and 1978. The user’s, producer’s, and overall accuracy were computed
following Equations (2)–(6) [63].

Wi =
a
b

(2)

https://epsg.io/32636
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Prop = ∑3 Wi
a
b

(3)

Users =
d
◦

r
(4)

Producers =
d
◦

c
(5)

Overall = ∑ d
◦

(6)

where a is the number of pixels per strata and b is the total number of pixels in the study
area, d

◦
is the correctly classified pixels in the diagonal, r is the sum of row pixels, and c is

the sum of column pixels.

Table 2. Allocation of sample sites to strata for validation data.

Class Wi Ui
Number of

Validation Sites

Built-up area 0.049 0.92 25

Agriculture 0.300 0.83 102

Planted forest 0.059 0.92 30

Bushland 0.020 0.88 20

Grassland 0.099 0.95 40

Bare and sparsely vegetated surfaces 0.058 0.68 30

Shrub 0.014 0.76 20

Tropical high forest low-stocked 0.187 1.00 60

Tropical high forest well-stocked 0.213 1.00 60

Total number of validation sites 387
Wi—mapped area proportions, Ui—values of user’s accuracies for year = 2020, and column 4 contains the
appropriate sample allocation used in this study.

2.5. Change Detection and Land Cover Flows

Change detection analysis was performed using the post-classification comparison
(PCC) technique based on supervised classification products [65]. The method involved
overlaying independently classified coincident thematic maps and comparing their cor-
responding classes to determine change transitions starting with the latest year [29,65,66].
In this study, five registered and independently classified images (2020, 2010, 2001, 1988,
and 1978) covering four decades (1978–2020) were used to calculate major changes in land
cover. Using the back dating approach, the classified 2020 image was used as a reference to
classify older images [67]. In order to ensure that the changes are not arising from noise,
especially for the older images, the 2020 image was superimposed on older images to
identify changes, hence creating respective land cover maps for the older years (2010, 2000,
1988, and 1980). The aerial photographs of 1960s were instrumental in reducing errors
especially for the 1978 and 1988 image classification. Equation (7) was used to determine
the Magnitude of Change, MoC (km2):

Magnitude of Change, MoC
(

km2
)
= Yf− Yi (7)

where Yi = Class Area (km2) at the initial year, Yf = Class Area (km2) at the final year, and
n = number of years of the time period.

The classified land cover maps were used to establish the nature of land cover flows
between the land cover classes. Land cover flows were established using the raster calcula-
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tor function in ArcGIS Pro using Equation (8). The resultant statistics were used to establish
land cover flows “from 1978” and “to 2020”.

Land cover flow
(

km2
)
= (y1 ∗ (n + 1)) + (y2) (8)

where y1 = area of all land cover classes of the initial year, y2 = area of all land cover classes
of the final year, and n = number of land cover classes.

3. Results
3.1. Accuracy Assessment of Land Cover Classification

Overall, the classified maps of 2020, 2010, 2001, 1988, and 1978 achieved very high
accuracy values of 90%, 89%, 87%, 86%, and 84%, respectively (Table 3).

Table 3. Classification accuracy assessment of the land cover maps obtained from Landsat satellite
data at the upper Manafwa watershed for the selected years (2020–1978).

Year 1978 1988 2001 2010 2020
Land Cover Classes UA PA UA PA UA PA UA PA UA PA

Built-Up 86 79 89 82 78 81 84 85 87 88
Agriculture 69 83 79 97 75 76 78 95 78 95

Planted forest 73 88 92 80 91 86 95 92 96 100
Bushland 79 77 90 75 75 82 83 97 85 97
Grassland 79 80 89 84 83 99 87 88 92 93

Bare and sparsely vegetated surfaces 73 87 94 93 74 74 96 93 100 93
Shrub 91 97 87 75 81 83 92 75 95 84

Tropical high forest low-stocked 68 66 91 95 92 71 100 94 100 94
Tropical high forest well-stocked 76 98 76 99 90 98 93 99 93 100

Overall Accuracy 84% 86% 87% 89% 90%

NOTE: UA is User’s Accuracy and PA is Producer’s Accuracy.

3.2. Land Cover Change from 1978 to 2020

Table 4 illustrates the details of land cover area (km2 and percentage) for the period
from 1978 to 2020. In 1978, tropical high forest well-stocked was the dominant land
cover type, covering 139.4 km2 (43.6%) of the total land area. This cover was followed by
grassland 49.7 km2 (15.6%) and agriculture 34.0 km2 (10.6%). The lowest land cover in
1978 was planted forest with the cover of 1.6 km2 (0.5%). The results showed a significant
increase of 10.63% and decrease of 13.24% in grassland cover between 1988 and 2001, and
2001 and 2010, respectively. These variations indicate high conversion rates of shrubs to
grassland and grassland to agriculture and other classes. Specifically, agriculture increased
by 11.10% while shrubs significantly decreased by 5.94% between 2001 and 2010. These
changes are attributed to the conservation policy change in Uganda during the same period.
The policies and legislation frameworks called for zonation and re-demarcation of the park,
which consequently affected enforcement [37,68].

After 1978, land cover changes were visible in 1988, 2001, 2010, and 2020 across all
the land cover types, as shown in Figure 5. It is worth noting that the percentage change
from 1978 to 2020 was as follows: planted forest (3966%), built-up (890%), agriculture
(186%), tropical high forest low-stocked (119%). Furthermore, the negative percentage
change was recorded by shrubs (−81%), bushland (−68%), tropical high forest well-stocked
(−50%), grassland (−44%), and bare and sparsely vegetated surfaces (−14%) in the period
of 1978–2020.

By 2020 when the study ended, agriculture was the dominant land cover type with
30.43% of the total land area (Table 4 and Figure 5). This was followed by tropical high forest
well-stocked (21.64%), tropical high forest low-stocked (18.96%), grassland (8.66%), planted
forest (5.98%), bare and sparsely vegetated surfaces (5.91%), built-up (4.96%), bushland
(2.01%), and shrubs with the lowest cover of 1.46%. Figure 6 illustrates the classified land
cover maps for 1978, 1988, 2001, 2010, and 2020 for the upper Manafwa watershed.
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Table 4. The area coverage (km2 and percentage) of different land cover categories in the upper
Manafwa watershed during 1978, 1988, 2001, 2010, and 2020.

Land Cover Class
Area (km2 and %)

1978 1988 2001 2010 2020
km2 % km2 % km2 % km2 % km2 %

Built-Up 1.60 0.50 2.42 0.76 3.12 0.98 9.60 3.00 15.84 4.96
Agriculture 33.95 10.63 52.69 16.49 56.18 17.58 91.72 28.71 97.22 30.43

Planted forest 0.47 0.15 1.70 0.53 1.57 0.49 3.09 0.97 19.11 5.98
Bushland 20.13 6.30 25.59 8.01 14.72 4.61 19.84 6.21 6.41 2.01
Grassland 49.67 15.55 40.44 12.66 74.39 23.29 32.11 10.05 27.66 8.66

Bare and sparsely vegetated surfaces 22.07 6.91 22.95 7.18 16.37 5.12 25.11 7.86 18.88 5.91
Shrubs 24.52 7.67 12.20 3.82 27.02 8.46 7.69 2.41 4.66 1.46

Tropical high forest low-stocked 27.67 8.66 37.79 11.83 20.64 6.46 50.06 15.67 60.56 18.96
Tropical high forest well-stocked 139.41 43.64 123.69 38.72 105.48 33.02 80.27 25.12 69.13 21.64

Total 319.48 100 319.48 100 319.48 100 319.48 100 319.48 100

Figure 5. The amount of land cover (km2) for the period from 1978 to 2020 for the upper Man-
afwa watershed.

The decadal land cover changes for the period from 1978 to 2020 are well illustrated in
Table 5. The land cover change pattern from 1978 to 2020 indicates a general decrease in
natural and indigenous vegetation cover. Specifically, tropical high forest well-stocked lost
70.28 km2, followed by grasslands (22.01 km2), shrubs (19.86 km2), bushland (13.72 km2),
and bare and sparsely vegetated surfaces (3.19 km2). Agriculture recorded the highest
land cover gain (63.27 km2) followed by tropical high forest low-stocked (32.89 km2),
planted forest (18.64 km2), and built-up (14.24 km2) in the period from 1978 to 2020.
It is worth noting that the tropical high forest low-stocked was the only natural cover
class with land cover gain over the time period of 1978–2020 (Table 5). The land cover
types supporting human population growth and income-generating activities increased,
especially agriculture, planted forest, and built-up areas.
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Figure 6. The classified land cover maps for 1978 (a), 1988 (b), 2001 (c), 2010 (d), and 2020 (e) of upper
Manafwa watershed.

Table 5. The decadal land cover changes for the period from 1978 to 2020 showing the area
changes in km2.

Land Cover Class
Status Area (km2) Status
1978 1978–1988 1988–2001 2001–2010 2010–2020 1978–2020 2020

Built-up 1.60 0.82 0.7 6.48 6.24 14.24 15.84
Agriculture 33.95 18.74 3.49 35.54 5.50 63.27 97.22

Planted forest 0.47 1.23 −0.13 1.52 16.02 18.64 19.11
Bushland 20.13 5.46 −10.87 5.12 −13.43 −13.72 6.41
Grassland 49.67 −9.23 33.95 −42.28 −4.45 −22.01 27.66

Bare and sparsely vegetated
surfaces 22.07 0.88 −6.58 8.74 −6.23 −3.19 18.88

Shrubs 24.52 −12.32 14.82 −19.33 −3.03 −19.86 4.66
Tropical high forest low-stocked 27.67 10.12 −17.15 29.42 10.50 32.89 60.56
Tropical high forest well-stocked 139.41 −15.72 −18.21 −25.21 −11.14 −70.28 69.13

Note: The negative (−) sign shows decrement in cover between decades.

3.3. Change Detection and Land Cover Flows

Figure 7 shows land cover flows for 1978–1988, 1988–2001, 2001–2010, and 2010–2020.
There were a total number of 34, 61, 58, and 63 land cover flows for the years 1978–1988,
1988–2001, 2001–2010, and 2010–2020, respectively. The highest land cover flows (>6) were
in shrubs and grassland for 1978–1988; grassland, bushland, agriculture, and tropical high
forest low-stocked for 1988–2001; grassland and shrubs for 2001–2010, and tropical high
forest well-stocked, tropical high forest low-stocked, grassland, bushland, and agriculture
for the period of 2010–2020. These land cover flows amounted to 58.61, 149.16, 145.96, and
132.02 km2 land cover transitions in between the classes for the years 1978–1988, 1988–2001,
2001–2010, and 2010–2020, respectively. Specifically, the highest transitions (above 15 km2)
included the following: conversion of 15.62 km2 of tropical high forest well-stocked into
tropical high forest low-stocked from 1978 to 1988, and conversion of agriculture area of
20.09 km2 into grassland in 1988–2001; tropical high forest well-stocked lost 34.59 km2

to tropical high forest low-stocked, whereas agriculture expanded and gained 26.41 km2
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from grassland between 2001 and 2010, and the outstanding conversions in 2010–2020 were
grassland to agriculture (15.64 km2) and tropical high forest low-stocked to tropical high
forest low-stocked (20.34 km2). It is worth noting that bare and sparsely vegetated surfaces
did not experience any conversion in 1978–1988 as compared to other classes during the
four years considered by the study.

Figure 7. Land cover flows in years of (a) 1978–1988, (b) 1988–2001, (c) 2001–2010, and (d) 2010–2020
for the upper Manafwa watershed. The width of the lines represents the land conversion area (km2),
the number after the label is the start and end years, and the height of the bars represent the size of
the land cover class in the start and end years for each decade considered in this study.

Table 6 shows the land cover change flow matrix for the changed areas in their equiva-
lent percentages from 1978 to 2020, in comparison to their total land area. The classes with
the highest transitions (>90%) include shrubs with 99.51%, closely followed by bushland
(98.26%), planted forest (96.38%), and tropical high forest low-stocked (91.08%). Although
tropical high forest well-stocked revealed a 54.51% transition to other classes, it should
be noted that 41.20% of it was to tropical high forest low-stocked. Agriculture (27.29%)
and bare and sparsely vegetated surfaces (39.03%) revealed the lowest transitions in the
same period. From 1978 to 2020, the percentage area of land cover classes that did not
change included 72.71% of agricultural area, followed by bare and sparsely vegetated
surfaces (60.96%), built-up (46.45%), tropical high forest well-stocked (45.48%), and grass-
land (13.76%), with the rest below 10% (Table 6). This indicates that natural land cover
classes were less persistent and presented more changes, especially shrubs, bushland, and
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tropical high forest low-stocked as compared to planted forest, built-up, and agriculture.
Furthermore, it is only agriculture that received more than 35% of the transitions from
almost all other classes, that is 88.51% from planted forest, 62.85% from grassland, 53.21%
from shrubs, 43.28% from tropical high forest low-stocked, and 39.92% from built-up in the
period of 1978 to 2020.

Table 6. The land cover change flow matrix (percentage) in the upper Manafwa watershed between
1978 and 2020.

Class
Innitial State—1978 (%)

BU AG PF BL GL BSVS SH TFLS TFWS

Final State
2020 (%)

BU 46.45 13.63 4.09 7.97 9.4 1.79 6.75 5.26 0.16
AG 39.92 72.71 88.51 62.85 53.54 6.38 53.21 43.28 4.52
PF 0.83 2.99 3.61 15.82 6.80 0.13 25.06 10.52 1.36
BL 0 0.02 0 1.74 0.04 0 1.96 6.86 2.56
GL 12.11 8.90 3.78 8.27 13.76 27.39 5.85 13.63 2.82

BSVS 0.70 1.74 0 0.08 8.45 60.96 1.03 0 0.37
SH 0 0.01 0 0.32 0.08 0 0.49 8.05 1.52

TFLS 0 0 0 2.95 0.22 0 0.09 8.92 41.20
TFWS 0 0 0 0 7.72 3.34 5.56 3.48 45.48

Total 100 100 100 100 100 100 100 100 100
Class Change 53.56 27.29 96.38 98.26 86.25 39.03 99.51 91.08 54.51

BU—Built-up, AG—Agriculture, PF—Planted forest, BL—Bushland, GL—Grassland, BSVS—Bare and sparsely
vegetated surfaces, SH—Shrubs, TFLS—Tropical high forest low-stocked, TFWS—Tropical high forest well-
stocked. NOTE: The highlighted diagonal numbers in bold represent the equivalent percentages of land cover
proportions that did not change from 1978 to 2020.

Figure 8 illustrates spatially the resultant (final) land cover flows registered in the
upper Manafwa watershed in the ranges of 1978–1988, 1988–2001, and 2010–2020 (output of
Equation (8)). The park boundary from the National Forestry Authority [69] was overlayed
to illustrate the level and impact of land cover flows at the park and community, as shown
in Figure 8. Most of the land cover flows occurred at the fringes of the park boundary
in 1978–1988 and 1988–2001. Specifically, tropical high forest well stocked was converted
into tropical high forest low-stocked in these periods. Inside the park, tropical high forest
well-stocked and grassland recorded gains from tropical high forest low-stocked and bare
and sparsely vegetated surfaces in 1988–2001 and 2001–2010. Agriculture and grasslands
experienced land cover inflows from shrubs and bushland in 1988–2001 and 2001–2010.
Interestingly, tropical high forest low-stocked recorded more gains from tropical high forest
well-stocked inside the park, and the reverse also occurred in other parts of the park in
2010–2020. However, tropical high forest low-stocked revealed more gains in general from
tropical high forest well-stocked, whereas built-up and agriculture revealed more gains
outside the park area in 2010–2020. It is worth noting that the outstanding flows were
mostly from other land cover types to agriculture and tropical high forest low-stocked, as
also seen from the Sankey diagram in Figure 7. These changes were specifically observed
in the North East and South Western parts of the study area. The land cover classes of
agriculture, built-up, and planted forest have either encroached or threatened to encroach
the national park, as seen from the boundary line. These observations are also illustrated in
Figure 2a,d, where new farms were established at the proxy of the park after fires in the
dry season. Furthermore, napier grass (pennisetum purpureum) was also planted within the
boundary line. These grasses indirectly replace the natural grassland cover (as napier grass
is frequently harvested for the zero grazed animals).
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Figure 8. The geospatial distribution of land cover change flows for (a) 1978–1988, (b) 1988–2001,
(c) 2001–2010, and (d) 2010–2020. The colors represent the “into” (final) land cover gains by each class
at end year (1988, 2001, 2010, and 2020). The grey color represents the persistent land cover area (that
did not change) in the years 1978, 1988, 2001, 2010, and 2020.

4. Discussion

The results on the accuracy assessment show that the five maps and the nine land
cover classes considered by this study were in good agreement and in the excellent accuracy
category according to Pontius [70], Sousa et al. [71], and Hailu et al. [72]. The low user’s
and producer’s accuracy for some classes was possibly due to the heterogeneousness and
resultant extent of the classes [30]. Nonetheless, results on overall accuracy were above
80%, signifying an acceptable classification accuracy.

The land cover change results from 1978 to 2020 indicate that most of the tropical high
forest high-stocked, grassland, shrubs, bushland, and bare and sparsely vegetated surfaces
were converted to agriculture, tropical high forest low-stocked, planted forest, and built-up
areas. Previous studies in the Mount Elgon region (on both the Kenyan and Ugandan sides)
have documented an increasing human pressure on land due to the expansion of settlements
and agriculture [68,73]. While this study focused on the upper Manafwa watershed and
the national park boundary, the trends found in the current study are in agreement with
those observed by previous studies in the broader Mount Elgon region [18,36,39]. Studies
elsewhere by Alam et al. [74] (Kashmir Valley, India), Bantider et al. [75] (Wello escarpment,
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Burka, Ethiopia), and Liu et al. [76] (Gannan Prefecture, Gansu province, China) also
documented the increase in population as a key factor to the expansion of built-up areas
that threatened other land cover types [74–76].

The trend of land cover change from 1978 to 2020 in the upper Manafwa watershed
highlights the influence of socioeconomic forces on natural land cover conversion. Accord-
ing to previous studies, forest cover on Mount Elgon in general experienced widespread
encroachment and deforestation between the 1980s and early 2000s owing to popula-
tion pressure, political instability, and laxity in the implementation of environmental
policies [46,68,77]. Although there were efforts toward curbing deforestation and encroach-
ment, a large stance of tropical high forest well-stocked cover was hence lost into tropical
high forest low-stocked, shrubs, bushland, and agricultural land [8,37]. These land cover
out-flows arose especially in areas where the community members frequented the park
(illegally) to access firewood, bamboo shoots (maleewa), medicinal plants, and other forest
products [36,37,78]. Over time, the continued access and illegal extraction of some park
resources led to the decline in forest cover and, therefore, accelerated land cover changes in
the park area [40,46].

Farmland expansion, intensive pasture harvesting from the park for zero grazed ani-
mals, and seasonal human-induced fires have reduced grasslands into bare and sparsely
vegetated surfaces [68]. The human-induced fires on higher altitudes especially in the park
have led to the seasonal occurrence of bare patches on grasslands, shrubs, and bushland
during the dry season. These patches have been transformed into farmland in the long
run [36,79]. Furthermore, there were conflicts over access, use, and control of the park, com-
bined with political instability and inadequate laws and policies on conservation [46,80].
Enforcement of the law and limited monitoring of the national park also had a significant
implication to land cover changes [18]. These conflicts and laxity on conservation area man-
agement led to rapid land cover out-flows from well-stocked to low-stocked tropical high
forest cover in the 1970s through 1990s. Similar dynamics have been reported elsewhere,
for instance, studies in the Ethiopian highlands have also documented the continuous
disappearance of forests [5,22] as a result of conflict.

In order to restore heavily degraded landscapes in Mount Elgon, small-scale regreening
activities have been undertaken by government agencies, Community-Based Organizations
(CBOs), and with the communities [81,82]. These activities combined with tree planting
campaigns have led to an increase in planted forest cover within the upper Manafwa
watershed (see Figures 2c and 6e). The land cover gains of tropical high forest well-stocked
has been attributed to the several recent policy and socioeconomic reforms implemented
jointly by the government with adjacent communities to the park [18]. The enactment
of laws and policies in the early 2000 that were geared toward conservation, i.e., the
National Environment Act cap 153, Forest Policy and the National Environment (Hilly and
Mountainous Area Management) Regulations, 2000 played a critical role in streamlining
conservation in the Mount Elgon region [37,68].

The contribution of bilateral organizations and regional bodies in the implementation
of conservation-related programs and projects have also been instrumental. For instance,
the Mount Elgon Regional Ecosystem Conservation Program (MERECP), implemented by
the International Union for Conservation of Nature (IUCN) together with the East African
Community (EAC), has been documented to have been pivotal in enhancing conservation
in the entire Mount Elgon area [83,84]. International conservation organizations have also
funded and/or implemented short-term conservation-related projects in the Mount Elgon
region such as the World Wide Fund for Nature (WWF) and United Nations Development
Program (UNDP) [33,85]. Furthermore, the introduction of several socioeconomic develop-
ment projects into the community and the use of collaborative conservation approaches
have also been echoed to have a positive impacts toward regreening of the park and com-
munity landscapes [86,87]. For instance, the Manafwa Watershed Restoration (MWARES)
Project trains farmers to become good stewards to their land and sustainably utilize their
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natural resources through capacity building on soil and water conservation practices using
the Integrated Farm Plan (PIP) approach [87].

In order to take more informed decisions and actions, subsequent studies should
thoroughly analyze the drivers of these land cover changes. Integrating biophysical and
socioeconomic drivers with these results will further facilitate an understanding of the
dynamics of land use and cover changes in the Mount Elgon region and Manafwa water-
shed in particular. Given the spectral characteristics of Landsat imagery and associated
shortcomings, follow-up studies could incorporate very-high-resolution Earth observa-
tion technologies such as Unmanned Aerial Vehicle (UAV) drones to understand the
current forms of land use changes and degradation along the critical zones of the park and
its periphery.

5. Conclusions

This study investigated land cover changes using Landsat satellite images of 1978,
1988, 2001, 2010, and 2020 for the upper Manafwa watershed, at the slopes of Mount
Elgon, Uganda, using supervised classification. In 1978, the dominant land cover classes
(>10%) were tropical high forest well-stocked (43.64%), grassland (15.55%), and agriculture
(10.63%). By 2020, the major land cover classes (>10%) included agriculture (30.43%),
tropical high forest well-stocked (21.63%), and tropical high forest low-stocked (18.96%).
Although there were several land cover transitions observed between 1978 and 2020, shrubs
recorded the highest losses (99.51%), closely followed by bushland (98.26%), planted forest
(96.38%), and tropical high forest low-stocked (91.08%). Agriculture and bare and sparsely
vegetated surfaces recorded the lowest transitions to other classes (27.29% and 39.03%,
respectively). The trend of land cover flows found in this study, especially the areas of
deforestation and loss of natural vegetation cover, provides resourceful information for
policy makers and responsible authorities to further take appropriate decisions and actions
to revert the situation and reduce encroachment into the national park.

Landsat satellite images provide crucial information on change detection. Despite the
emergence of new image classification methods such as SVM, the maximum likelihood
method still provides reliable results. However, near-real-time monitoring systems of
human disturbances in conservation areas and the use of very-high-resolution images
should be incorporated by further studies to monitor changes and actions taken to minimize
forest encroachment.
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