

Propositions

1. Sigma B, a general stress-responsive sigma factor, has only a very minor role in the stress defense of *Bacillus cereus*.

(This thesis)

- 2. The production of lichenysin by *Bacillus licheniformis* is an underestimated risk. (This thesis)
- 3. Storytelling is a prerequisite skill for scientists while disseminating research findings.
- 4. Newspaper articles covering breakthrough discoveries in basic science should refrain from overhyping foreseen applications.
- 5. To practice "Simplicity is the ultimate sophistication." (attributed to Leonardo da Vinci) requires a lot of effort.
- 6. Emotional first aid is important to prevent psychological damage.

Propositions belonging to the thesis, entitled

Bacterial stress management - novel roles of Sigma B in the Bacillus general stress response

Kah Yen Claire Yeak

Wageningen, 25 October 2022

Bacterial Stress Management

Novel Roles of SigB in the Bacillus General Stress Response

Kah Yen Claire Yeak

Thesis committee

Promotor

Prof. Dr T. Abee Personal chair at the Laboratory of Food Microbiology Wageningen University & Research

Co-promotor

Dr M.H.J. Wells-Bennik Principal Scientist NIZO, Ede

Other members

Prof. Dr M. Kleerebezem, Wageningen University & Research
Prof. Dr C. O'Byrne, National University of Ireland, Galway, Ireland
Prof. Dr I.v.d. Fels-Klerx, Wageningen University & Research
Dr I. L. Bergval, National Institute for Public Health and the Environment, Bilthoven

This research was conducted under the auspices of the Graduate School VLAG (Advanced Studies in Food Technology, Agrobiotechnology, Nutrition and Health Sciences)

Bacterial Stress Management

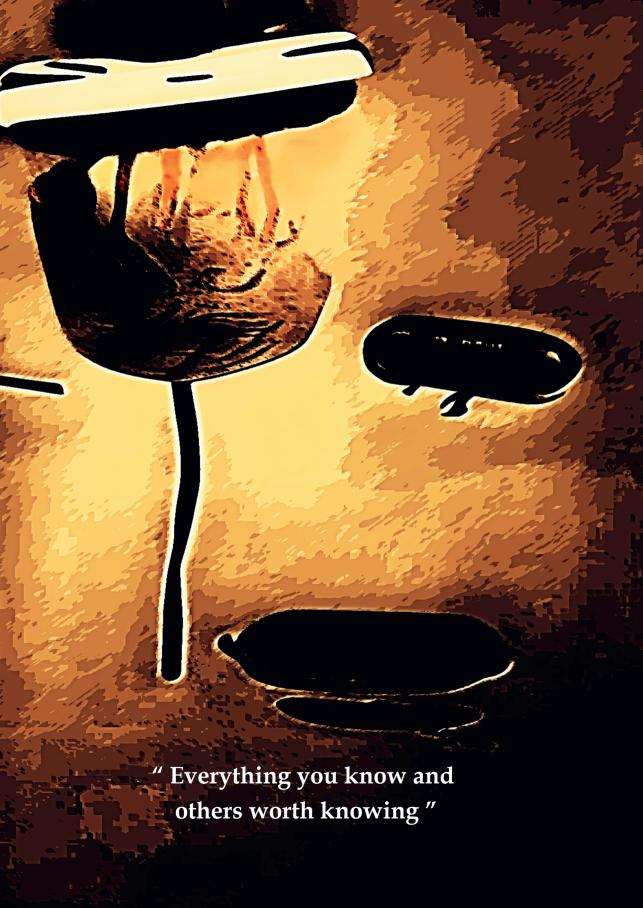
Novel Roles of SigB in the Bacillus General Stress Response

Kah Yen Claire Yeak

Thesis

submitted in fulfillment of the requirements for the degree of doctor at Wageningen University
by the authority of the Rector Magnificus,
Prof. Dr A.P.J. Mol
in the presence of the
Thesis Committee appointed by the Academic Board
to be defended in public
on Tuesday 25th October 2022
at 1:30 p.m. in the Omnia Groot Auditorium.

Kah Yen Claire Yeak Bacterial Stress Management - Novel Roles of SigB in the *Bacillus* General Stress Response 285 pages PhD thesis, Wageningen University, Wageningen, The Netherlands (2022)


With references, with summary in English

DOI: https://doi.org/10.18174/574343

ISBN: 978-94-6447-326-1

Table of contents

Chapter 1	General introduction	7
Chapter 2	Prediction and validation of novel SigB regulon members in <i>Bacillus subtilis</i> and regulon structure comparison to Bacillales members	53
Chapter 3	SigB modulates expression of novel SigB regulon members via Bc1009 in non-stressed and heat-stressed cells revealing its alternative roles in <i>Bacillus cereus</i>	99
Chapter 4	The role of SigB in biosurfactant synthesis and the effect of biosurfactant on SigB general stress response in <i>Bacillus licheniformis</i>	173
Chapter 5	Lichenysin production by <i>Bacillus licheniformis</i> food isolates and toxicity to human cells	199
Chapter 6	General discussion	237
Appendix	Summary (English) Layman Summary for general audiences (English, Malay, Chinese and Portugese) Acknowledgments About the author List of publications Overview of completed training activities	263

CHAPTER 1

General Introduction

Kah Yen Claire Yeak

1.1 Bacteria and natural habitat

The world we live in nurtures many visible and invisible life forms. Those invisible include microorganisms belonging to the three life domains: Bacteria, archaea, and eukarya. Bacteria are single-cell microbes, diverse in appearance, size, and function. They are one of the oldest life forms that inhabit all corners of the earth, like soil and seawater, but they are also intricately linked with higher forms of life, for instance, plants and animals. Archaea are also unicellular organisms and share similar characteristics as bacteria and eukarya, while eukarya are bigger, multicellular organisms, including plants, fungus, and animals.

Some bacteria exist in extreme habitats such as volcanoes, hot springs, the Antarctic region, deep ocean sediments, or salterns. Others that live in more "standard environments" like soil or water still face many challenges such as temperature change, lack of nutrients, change in alkalinity, acidity, salinity, etc. (Merino et al., 2019). Over millions of years of evolution, many bacteria have acquired robust stress management strategies to cope with the changes in their surroundings and thrive under extreme conditions (Merino et al., 2019).

The total number of bacteria on earth is enormous, but only a tiny fraction of this titanic amount has been discovered, explored, and studied by scientists since the first discovery of bacteria \sim 350 years ago, by the father of microbiology, Antonie v. Leeuwenhoek (Lane, 2015). Within the human body alone, the total number of bacterial cells is almost identical to the total number of human cells (\sim 3.8 x 10¹³) (Sender et al., 2016).

1.2 Beneficial and pathogenic bacteria

Out of those discovered and studied, some have beneficial roles for humans, but some are harmful to humans. Bacteria that have beneficial roles are essential, for instance, in maintaining skin and gut health in humans to prevent skin infection and the development of other chronic diseases such as colorectal cancer, gastrointestinal disorder, etc. (Hills et al., 2019). The human intestine hosts a vast number of bacterial species (500-1000) that serve to help in digestion, provide essential nutrients, maintain cells growth, regulate immune systems and produce neuroactive substances that act on the brain-gut axis (Bermúdez-Humarán et al., 2019; Dimidi et al., 2019). Some typical intestine bacteria are lactic acid bacteria (De Filippis et al., 2020) or bifidobacteria that are well-known to produce health-promoting metabolites, e.g., fatty acids (Arboleya et al., 2016).

Many bacteria residing on human skin also exert beneficial roles, e.g., suppressing inflammation, activating immune responses, inducing the expression of antimicrobial proteins on the skin, or producing antimicrobial peptides that give protection from pathogenic bacteria (Schommer and Gallo, 2013). Some well-known species are *Corynebacterium* spp. and

Propionibacterium spp. but there are at least 19 phyla in the bacterial skin microbiome (Schommer and Gallo, 2013).

On the contrary, some bacteria are pathogenic and harmful and can cause many human diseases. Some of the widely known deadly bacterial diseases are tuberculosis (caused by *Mycobacterium tuberculosis*), cholera (caused by *Vibrio cholera*), methicillin-resistant *Staphylococcus aureus* infection, pneumonia (caused by *Streptococcus pneumoniae*), meningitis (commonly caused by *S. pneumoniae*, *Haemophilus influenza*, *Listeria monocytogenes*, and *Escherichia coli*), etc. Most fatal cases are related to bacteria that cause systemic infections, especially ESKAPE (*Enterococcus faecium*, *S. aureus*, *Klebsiella pneumoniae*, *Acinetobacter baumannii*, *Pseudomonas aeruginosa*, and *Enterobacter* species) pathogens, that are resistant to antibiotic treatments (De Oliveira et al., 2020). Other than that, foodborne pathogens like *Salmonella*, *Campylobacter*, toxigenic *E. coli*, *L. monocytogenes*, *Bacillus cereus*, and *Clostridium botulinum* are a few culprits of foodborne outbreaks that cause different diseases that impact human health (Bintsis, 2017).

All the species mentioned above belong to different bacterial genera and are mainly vegetative microbes. Some bacteria genera can also form endospores (turning into a dormant state) as an ultimate survival mechanism, making them more challenging to deal with as spores are more resistant to external stresses, e.g., pH and temperatures. To date, there are 25 genera known to be endospore-forming, including the low GC bacteria *Bacillus*, *Clostridium*, *Thermoactinomyces*, *Sporolactobacillus*, and *Sporosarcina* (Wohlgemuth and Kämpfer, 2014). The largest and the most well-studied is the genus of *Bacillus*, comprising both beneficial and pathogenic species.

1.3 Three well-known Bacillus species

The genus *Bacillus* is Gram-positive endospore-forming rod-shaped bacteria. The taxonomic development of this genus changed over time and is now classified based on the DNA sequence of the gene encoding for the 16S ribosomal RNA, which is conserved within species (Cohn, 1872; Soule, 1932; Fritze, 2004). Of all *Bacillus* spp., the *Bacillus subtilis* and *Bacillus cereus* groups have gained the most attention in the scientific literature.

B. subtilis group members are typically non-pathogenic and include Bacillus licheniformis, Bacillus pumilus, Bacillus amyloliquefaciens, Bacillus mojavensis, Bacillus vallismortis, Bacillus sonorensis, Bacillus atrophaeus, the two sub-species B. subtilis subsp. subtilis and B. subtilis subsp. spizizenii (Fritze, 2004) and B. subtilis itself. Many of these have practical industrial applications.

The thoroughly investigated Gram-positive spore-forming *B. subtilis* has served as a model organism for decades. It is considered mainly harmless to humans and is broadly used in food fermentation (e.g., Natto, Soybean) (Kimura and Yokoyama, 2019) and for the production of

enzymes (amylases, xylanases, lichenase, β -galactosidase, cellulases, alkaline serine proteases) that are applied in different industries: food and feed, detergent, textile, leather, paper and pharmaceutical, as recently reviewed in Su et al. (2020). Nonetheless, it is also a major food spoiler (André et al., 2017; Moschonas et al., 2021).

B. cereus group (also known as B. cereus sensu lato group) includes Bacillus anthracis, Bacillus thuringiensis, Bacillus mycoides, Bacillus pseudomycoides, Bacillus weihenstephanensis, Bacillus cytotoxicus, Bacillus wiedmannii, Bacillus toyonensis, and B. cereus itself (Fritze, 2004; Liu et al., 2015; Ehling-Schulz et al., 2019). They are all pathogenic and exert varying degrees of pathogenic capacity. Since 2018, B. weihenstephanensis has been regarded the same as B. mycoides because they can hardly be distinguished based on the nucleotide identity of their whole genome sequences (Liu et al., 2018). Additionally, nine new species have been added to the B. cereus group but can only be differentiated from each other via whole-genome sequencing. These are Bacillus paranthracis, Bacillus pacificus, Bacillus tropicus, Bacillus albus, Bacillus mobilis, Bacillus luti, Bacillus proteolyticus, Bacillus nitratireducens and Bacillus paramycoides (Liu et al., 2017).

B. cereus has been excessively studied. It is a human pathogen that can cause foodborne diarrhea and intoxication when contaminated foods are ingested, or under certain circumstances, it can cause severe local infections such as endophthalmitis and septicemia (Ehling-Schulz et al., 2006; Guinebretière et al., 2010). Some *B. cereus* strains (also called *B. cereus sensu stricto*) are more toxigenic than others, depending on the presence of different virulence genes in isolates (Rossi et al., 2018).

Within the *B. cereus* group, *B. cereus*, *B. thuringiensis* (used as biopesticide), and *B. anthracis* (causative agent for anthrax) are the most studied and are renowned for their distinct phenotypic traits (Okinaka and Keim, 2016). In the *B. subtilis* group, *B. subtilis* (a Gram-positive spore-forming model organism) and *B. licheniformis* (an enzyme production workhorse) have gained the most attention from scientists, making them the most well-studied species in the genus of *Bacillus*.

1.3.1 Bacillus subtilis - a Gram-positive spore-forming model organism

Bacillus subtilis is a soil bacterium that can be isolated from the upper layer of soils, sediments, plants, or water. The organism is motile and aerobic, but can also grow in the absence of oxygen by using nitrate or nitrite as a terminal electron acceptor (Nakano and Zuber, 1998). The type strain (168) originated from Marburg and is very well characterized to date. It is one of the first bacteria from which the entire genome was sequenced (Kunst et al., 1997). The genome size of strain 168 is around 4.2 Mb and encodes 4244 proteins (Wipat and Harwood, 1999; Barbe et al., 2009). Knowledge of its physiology, morphology, nutritional requirements for growth, and methods for genome engineering is also well-developed. Detailed information on gene and protein functions, metabolic pathways, and regulatory networks are easily

accessible on the Subtiwiki platform, developed by the Stuelke research group at the University of Goettingen (www.subtiwiki.uni-goettingen.de) (Borriss et al., 2018; Pedreira et al., 2021).

As this species is generally safe, many well-established tools are exploited to modify the genome of *B. subtilis* for various purposes. Due to its natural competence and easy modification, it has gained broad interest among scientists in fundamental and applied sciences (Barák, 2021). In fundamental research, *B. subtilis* is used to study different cellular mechanisms and sporulation processes, and it is used as a heterologous expression model to understand important pathogens like *S. aureus* and *L. monocytogenes* (Barák, 2021).

To further decipher the cardinal demand of cellular life, the genome has been successfully reduced by 40% in the Minibacillus project (Reuß et al., 2016; Michalik et al., 2021), and more than 100 *B. subtilis* strains with sequentially reduced genomes are made available for investigations in basic science or industrial applications (Michalik et al., 2021; Pedreira et al., 2021). In the applied research field, *B. subtilis* has been employed as a cell factory to produce vaccines, vitamin B6, riboflavin, antibiotics, and valuable enzymes with particular functions, like lipases, proteases, etc. Some strains are also widely used in food fermentation or as probiotics; their applications were recently reviewed (Su et al., 2020). In short, *B. subtilis* is pivotal for microbiological researchers in academia and industry.

1.3.2 Bacillus cereus - a foodborne pathogen

B. cereus is a motile facultative anaerobe found in soil and water and can be isolated from various food products. The best-defined strain is the type strain ATCC (American Type Culture Collection) 14579, which has a genome size of ~ 5.4 Mb and encodes 5255 proteins (Ivanova et al., 2003). It also harbors a ~ 15 kb linear plasmid, pBClin15, that can lead to prophage activity (Stabell et al., 2009; Madeira et al., 2016).

B. cereus is a foodborne pathogen that can cause emetic disease and diarrhea. These symptoms are usually mild and are resolved within 1-2 days (Ehling-Schulz et al., 2019). As its endospores are highly resistant to a wide range of treatments like heat, UV light, drying, and cleaning chemicals, contamination of foods by *B. cereus* and the outgrowth in foods remains a concern for the food industry (André et al., 2017; Gauvry et al., 2017). Foods are either contaminated via ingredients or if the organism is present in food processing installations as vegetative cells or biofilms may release spores.

B. cereus strains can harbor various toxin genes (Ehling-Schulz et al., 2006; Guinebretière et al., 2010; Rossi et al., 2018). Strains harbor the *ces* gene cluster on a mega-plasmid can produce the emetic toxin cereulide. Such strains are regarded as emetic strains. Strains containing genes that encode enterotoxins like hemolysin BL (Hbl), non-hemolytic enterotoxin (Nhe), and cytotoxin K (CytK) are referred to as the diarrheal strains. These virulence genes belong to the

virulence regulon and are controlled by the pleiotropic transcriptional regulator PlcR (Gohar et al., 2008). Different combinations of toxin genes may be present in different strains (Ehling-Schulz et al., 2006; Guinebretière et al., 2010).

The cereulide toxin can be produced in food products under favorable conditions, and when ingested, this will incur vomiting after 1 h to 6 h. The emetic disease rarely leads to severe complications in adults, but in rare cases, it has led to acute liver failure and can be lethal for young children or immunocompromised adults (EFSA Panel on Biological Hazards (BIOHAZ), 2016; Ehling-Schulz et al., 2019). When high numbers of vegetative cells or spores of *B. cereus* are ingested, the organism can multiply in the human intestines and produce enterotoxins leading to diarrhea typically 8 h to 16 h after ingestion of contaminated food (EFSA Panel on Biological Hazards (BIOHAZ), 2016; Ehling-Schulz et al., 2019).

As the emetic or diarrhea diseases are usually non-lethal and resolve within 1-2 days, most of the foodborne illnesses caused by *B. cereus* are not reported to the local authorities, making the actual foodborne burden caused by this organism hard to estimate.

1.3.3 Bacillus licheniformis – the industrial workhorse

Bacillus licheniformis belongs to the *B. subtilis* group, is frequently isolated from soil, and is ubiquitously found in the environment in oil wells, compost, and plant materials (Rey et al., 2004). The organism grows preferably aerobically but is a facultative anaerobe in the presence of nitrogen sources. It can grow over a wide range of temperatures from 10°C to 58°C and optimally at 50°C (Warth, 1978; Baranyi and Tamplin, 2004). It is widely described as a mesophile but behaves more like a facultative thermophile as it can grow at a temperature of 10°C. The genome of the *B. licheniformis* type strain ATCC 14580 (or DSM13) was sequenced and published in 2004. The genome is ~ 4.2 Mb and encodes 4179 proteins (Rey et al., 2004).

Alternative to the cell factory *B. subtilis*, *B. licheniformis* is also frequently engineered to produce many valuable compounds with multifaceted properties. For instance, 1) biocontrol agents to remove biofilms (Ruiz et al., 2017; Galié et al., 2018; Sarwar et al., 2018); 2) detergent for household cleaning (Shaligram and Singhal, 2010); 3) skin penetration agent or foaming agent for cosmetics (Varvaresou and Iakovou, 2015); 4) drug coating agents to deliver drugs (Sen, 2010; Santos et al., 2018); or 5) bioactive compounds to treat cancers (Wu et al., 2017). Additionally, the organism is also applied directly in the agricultural industry to eliminate plant pathogens (Sachdev and Cameotra, 2013), for soil bioremediation or petroleum recovery (Golyshin et al., 1999; Mulligan, 2005; Alvarez et al., 2020), as animal feed additives, or as a probiotic (Huang et al., 2011; Wang et al., 2016; Elshaghabee et al., 2017; Nitschke and Silva, 2018; Bampidis et al., 2019; Lee et al., 2019).

In sporadic cases, *B. licheniformis* has been reported to cause illness, e.g., septicemia (Blue et al., 1995; Haydushka et al., 2012), peritonitis (Park et al., 2006), or endocarditis (Santini et al.,

1995). In addition, the bacterium has occasionally led to foodborne illness (Salkinoja-Salonen et al., 1999; Mikkola et al., 2003). The causative agent for foodborne illness has been linked to the production of a secondary metabolite-biosurfactant, lichenysin, a lipopeptide that exerts toxicity to mammalian cells (Madslien et al., 2013).

1.4 Transcriptional and translational regulation

As introduced above, *Bacillus* spp. can grow and survive in diverse environments, ranging from root nodules to composting materials, from sediments to oil wells, from soil and water to gastrointestinal tracts of animals, air and many other extreme surroundings (Fira et al., 2018; Merino et al., 2019). To live in these diverse habitats, *Bacillus* spp. require distinct repertoires of genes under different environmental conditions to grow and adapt to environmental stresses.

Bacillus spp. (also other bacteria) can adapt to environmental changes by altering their gene expression. These adaptations are governed by distinct transcription initiation proteins, namely, the sigma (σ) factors (Souza et al., 2014). They are prerequisites to guide the specific binding of RNA polymerase core enzyme to the promoter (a specific nucleotide consensus sequence on the DNA) to initiate transcription (Figure 1). The promoter is located upstream of the start codon (ATG) of genes that they regulate and ranges from 12 to 19 base pairs (Madigan et al., 2021). Although promoter sequences are not entirely identical, they contain conserved nucleotides at the regions of -35 and -10 upstream of the ATG start codon (Madigan et al., 2021). The -35 and -10 regions are recognized by specific Sigma factors and are also known as the promoter binding motif (PBM) (Figure 1). This is called an operon when a group of genes shares the same PBM and is recognized and regulated by the same transcription factor. When the same transcription factor regulates several operons (e.g., a specific sigma factor), these are known as a regulon (Madigan et al., 2021).

Each sigma factor has designated functions to regulate specific cell responses in *Bacillus* cells, but some have overlapping roles in managing multiple stresses. To date, there are 15 sigma factors described for the model organism for *Bacillus* spp., *B. subtilis*. Each of them recognizes a specific PBM and serves to either control the expression of housekeeping/reference genes or is involved in the regulation of other cellular responses (see Table 1). SigA is the housekeeping sigma factor and is constitutively active under the growth at optimal physiological conditions, whereas the alternative sigma factors are responsible for adaptive responses like morphological development and/or the management of stress (Haldenwang, 1995; Paget, 2015). These alternative Sigma-factor-mediated stress responses are important for bacterial transcriptional regulation and grant cells the ability of quick and reversible adaptations in various ecological niches.

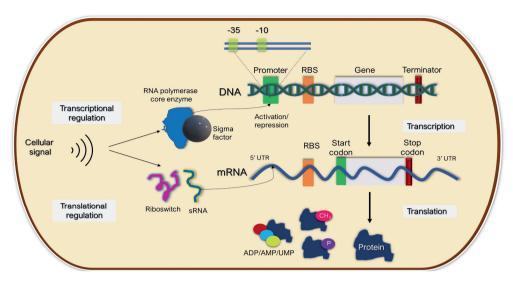


Figure 1- Bacterial transcriptional and translational regulation.

However, the quick adaptational stress responses do not solely rely on transcriptional regulations but also at the level of protein synthesis (translational regulation), which results in the production of proteins that calibrate responses to stresses (Tollerson and Ibba, 2020). Translational regulation is an intricated process, which involves regulation at initiation (control the number of available ribosomes, sequester ribosome binding site, ensure efficient mRNA folding, multiply ribosomes), elongation (programmed translational arrest and regulate translational rate), and termination (ensure immediate termination of ribosomes to maintain cellular homeostasis), reviewed in Tollerson and Ibba, (2020). Other than that, cells are also subjected to post-transcriptional regulation by small RNAs, RNA binding proteins, or riboswitches (Mandin and Guillier, 2013; Madigan et al., 2021); post-translational control (e.g., methylation, phosphorylation, attachment/removal of small molecules like adenosine monophosphate (AMP), adenosine diphosphate (ADP), and uridine monophosphate (UMP) (Madigan et al., 2021); or the coupling of transcriptional and translational control. All these regulation mechanisms are sophisticated, with the ultimate goal to provide cells with adequate resources to manage stresses with different survival strategies and ensure cell survival in diverse conditions.

Table 1: Sigma factors and functions in Bacillus subtilis

7	Promoter Sequ	ence			Reference
	-35	spacer	-10	Function	
SigA	TTGACA	14	TATAAT	Housekeeping/ early sporulation	(Moran et al., 1982)
SigB	GTTTWW	12-15	GGGWAW	General stress response, fungal biocontrol, regulation of biofilm aging, and dispersal	(Petersohn et al., 1999a; Rodriguez Ayala et al., 2020; Vohradsky et al., 2021)
SigC	AAATC	15	TAXTGYT TZTA	Postexponential gene expression	(Johnson et al., 1983; Haldenwang, 1995)
SigD	TAAA	15	GCCGATA T	Regulation of flagella, motility, chemotaxis, and autolysis	(Helmann, 1991; Haldenwang, 1995)
SigE	KMATATT	13-14	CATACA MT	Transcription of sporulation genes (early mother cell)	(Haldenwang, 1995; Sierro et al., 2008)
SigF	YGYWTA	15	GGMAWA MTA	Transcription of sporulation genes (early forespore)	(Sun et al., 1991; Haldenwang, 1995; Sierro et al., 2008)
SigG	GHATR	18	GGCATXH TA	Transcription of sporulation genes (late forespore)	(Nicholson et al., 1989; Haldenwang, 1995; Sierro et al., 2008)
SigH	AGGTATT	14-17	GAATT	Transcription of early stationary phase genes (sporulation, competence)	(Predich et al., 1992; Haldenwang, 1995; Sierro et al., 2008)
SigK	MACM	16-17	CATANNT A	Transcription of sporulation genes (late mother cell)	(Zheng et al., 1992; Haldenwang, 1995; Sierro et al., 2008)
SigL	TGGCACN	5	TTGCA	utilization of arginine, acetoin, and fructose, required for cold adaptation	(Débarbouillé et al., 1991; Haldenwang, 1995; Sierro et al., 2008)
SigM	n.d.	n.d.	n.d.	Maintenance of cell wall integrity in response to environmental and antibiotic stress	(Luo and Helmann, 2012; Diehl et al., 2020)
SigN	ATTTACGT	13	GATATAA	Not yet determined	(Burton et al., 2019)
SigV	CATAACTGT GAAAC	17	CGTCTAT AAATAGG	Resistance to lytic enzymes	(Zellmeier et al., 2005)
SigW	TGAAACN	16	CGTA	Adaptation to cell envelope stress, e.g., membrane-active compounds, antimicrobial peptides, and alkaline pH	(Cao et al., 2002; Sierro et al., 2008; Nicholson, 2012)
SigX	TGTAACN	17	CGAC	Resistance to cationic antimicrobial peptides. Control biofilm architecture	(Sierro et al., 2008; Ogura, 2022; Tzipilevich et al., 2022)
SigY	n.d.	n.d.	n.d.	Maintenance of the Sp prophage that contains genes necessary to produce and resist killing by the antibiotic sublancin	(Mendez et al., 2012)
SigZ	n.d.	n.d.	n.d.	Not yet determined	(Sorokin et al., 1997; Luo et al., 2010)

1.5 Survival strategies and stress responses of Bacillus spp.

Bacillus spp. can cope with stress by applying different strategies, depending on the type of stressors present. These stress responses can generally be grouped into five categories: 1) switching metabolic state to survive harsh conditions; Cells can switch to extreme slowgrowth states to endure profound nutrient deprivation or highly unfavorable living condition like high salt, or become dormant, or shift into cannibalism mode to kill sister cells to initiate sporulation (González-Pastor, 2011; Ikryannikova et al., 2019); 2) evolve to survive in harsh environments via gene mutations; e.g to low/high atmospheric pressure, high ultraviolet radiation, and unfavorable growth temperatures (Wassmann et al., 2010; Zeigler and Nicholson, 2017); 3) activate temporary stress adaptation mechanisms to combat stress and allow for survival, which on certain occasions can involve the 4) production of toxic compounds that inhibit other organisms and thereby promote survival (Petersohn et al., 1999b; Mendez et al., 2012; Bartolini et al., 2019a) and 5) forming endospores as the ultimate survival mechanisms to survive adverse conditions in a dormant state. The endospores are highly stress-resistant and can survive for an extended period without nutrients. Once the surrounding environments become hospitable, spores will germinate and return to their vegetative state. The entire sporulation process has been studied for > 180 years and has recently been reviewed by Riley et al. (2021).

Some common examples of stress adaptation mechanisms are temporal adaptations to oxidative stress (Zuber, 2009; Schäfer and Turgay, 2019; Tran and Bonilla, 2021), antibiotic stress (Butcher and Helmann, 2006; Shen et al., 2020), cell envelope stress (Guariglia-Oropeza and Helmann, 2011; Helmann, 2016), glucose, phosphate, and oxygen starvation, or other general stresses like heat, acid, alkaline or osmotic stresses (Antelmann et al., 2000; Bernhardt et al., 2003; Méndez et al., 2004; Voigt et al., 2007; Rodriguez Ayala et al., 2020; Gao et al., 2021). These adaptations are governed by the master regulator of general stress, the alternative Sigma factor B (SigB). SigB is one of the most prominent and well-characterized alternative Sigma factors in *Bacillus* spp., which regulates the General Stress Response (GSR), and the SigB-mediated GSR is deemed to be an essential component of the survival strategy for *Bacillus* spp.

1.6 The master regulator of general stress - Sigma factor B (SigB)

SigB was discovered > 40 years ago by William Hadenwang and Richard Losick (Haldenwang and Losick, 1979) and not much later shown to be induced by general stress (Moran et al., 1981). It was found that upon SigB activation, the transcription of a group of genes is elicited, followed by the translation of proteins that can protect cells in the presence of specific stress. Many studies following the discovery of SigB have since been conducted in *B. subtilis*, revealing

different stress conditions that can activate SigB, and a large group of genes (> 300) that are under the control of SigB have been identified (Richter and Hecker, 1986; Hecker et al., 1988, 2007; Benson and Haldenwang, 1993; Boylan et al., 1993; Völker et al., 1994; Hecker and Völker, 1998, 2001; Petersohn et al., 2001; Price et al., 2001a; Brigulla et al., 2003; Nannapaneni et al., 2012). These proteins have a non-specific but critical protective role for bacteria under stress conditions and are referred to as the general stress protein (GSP).

SigB-GSR has been extensively studied in *B. subtilis* and has also been well-characterized in other gram-positive species like *B. licheniformis* (Hoi et al., 2006; Voigt et al., 2007, 2013, 2014), *B. cereus* (Periago et al., 2002; van Schaik et al., 2004; van Schaik, 2005; Schaik et al., 2007; de Been et al., 2010; Scott and Dyer, 2012), *L. monocytogenes* (Wemekamp-Kamphuis et al., 2004; Abram et al., 2008; Hain et al., 2008; Shin et al., 2010; Ondrusch and Kreft, 2011; Dorey et al., 2019b, 2019a; Crespo Tapia et al., 2020; Guerreiro et al., 2020a, 2020b) and *S. aureus* (Gertz et al., 2000; Pané-Farré et al., 2006, 2009; Pförtner et al., 2014; Michalik et al., 2017). SigB-GSR and the different transduction routes in activating SigB in these species were recently reviewed in Pané-Farré et al. (2017) and Rodriguez Ayala et al. (2020). Additionally, SigB operon with the same structure as in *B. subtilis* has also been reported to be present in *Bacillus halodurans*, *Bacillus clausii*, *Oceanobacillus iheyensis*, *Clostridium difficile*, *Listeria innocua*, *and Listeria welshimeri* (Hecker et al., 2007).

Other than the well-known bacterial species described above, SigB has been found and investigated in other more distantly related bacterial species. This includes the high GC-grampositive bacteria *Streptomyces coelicolor*, which harbors 9 homologs of SigB (Cho et al., 2001; Viollier et al., 2003; Fernández Martínez et al., 2009; Sevcikova et al., 2021), the pathogenic bacteria, *Mycobacterium tuberculosis*, that cause tuberculosis in humans (Hu and Coates, 1999; Lee et al., 2008; Fontán et al., 2009; Pisu et al., 2017; Hurst-Hess et al., 2019), and the gramnegative *Ralstonia eutropha*, and the Cyanobacteria *Synechocystis* species.

The wide distribution of SigB across species confirms the unique role of SigB in assuring bacterial cell survival in a natural environment, marking the importance of obtaining the complete picture of the SigB-dependent survival mechanisms in bacteria.

1.7 The SigB-mediated General Stress Response (GSR)

The SigB-mediated GSR is well-characterized in *B. subtilis*. It has been found that SigB GSR is induced when cells are exposed to two groups of stressors: either 1) physical (also refer as environmental) stressors when cells face challenging external conditions or 2) metabolic (also refer as energy or nutritional) stressors when cells are deprived or starved of nutrients.

Physical stressors include temperature: (heat or cold shock), pH (acid or alkaline shock) (Gaidenko and Price, 1998), high salt (osmotic shock), ethanol, certain antibiotics (e.g.,

vancomycin and bacitracin) (Mascher et al., 2003), oxidative or nitrosative stress (e.g., hydrogen peroxide, sodium nitropruside) (Tran et al., 2019), blue light, an elevated level of manganese (Guedon et al., 2003).

Metabolic stressors include the deprivation of glucose, phosphate, oxygen, red light and compounds that deplete energy-carrying molecules in cells (adenosine triphosphate ATP and/or guanosine triphosphate GTP). For instance, azide, carbonyl cyanide m-chlorophenylhydrazone (CCCP), nitric oxide (NO), mycophenolic acid, and decoyinine (Voelker et al., 1995; Zhang and Haldenwang, 2005). Moreover, unlike vancomycin and bacitracin, the antibiotic rifampin (also known as rifampicin), which blocks the β subunit of prokaryotic RNA polymerase (inhibit RNA synthesis), is classified as a metabolic stressor. This is because rifampin induces SigB via the same pathway as all other metabolic stressors in *B. subtilis* (Bandow et al., 2002).

1.7.1 SigB signaling cascades

Two major and well-known stress sensing signaling cascades mediated by SigB in *B. subtilis* are 1) the physical/environment signaling cascade monitored by a large protein complex called the stressosome, which is assembled by three SigB regulatory proteins RsbR, RsbS, and RsbT (where Rsb refers to the Regulator of SigB); and 2) the metabolic/energy/nutritional signaling cascade that is controlled by two other SigB regulatory proteins RsbQ and RsbP. Therefore, the physical/environment signaling cascade is often referred to as the RsbRST pathway, whereas the metabolic/energy/nutritional signaling cascade is referred to as the RsbQP pathway.

The ~1.8 MDa stressosome (RsbRST protein complex) and the RsbQP complex are activated in the presence of physical (environmental) and metabolic (energy/nutritional) stressors mentioned above, respectively. All components involved in these two signaling cascades are illustrated in Figure 2. Other than the two distinct RsbRST and RsbQP pathways, an Rsb-independent pathway is likely to exist as both low temperature (15°C) and high temperature (54°C) have been reported to induce SigB independently from the regulators that mediate SigB activation, i.e., RsbP/RsbU (Brigulla et al., 2003; Holtmann et al., 2004). In addition, SigB-dependent cross-protection for cells against nitrosative stress only requires SigB but not RsbP/RsbT regulators (Tran et al., 2019).

Interestingly, *B. cereus* does not use the above-mentioned SigB signaling cascades. Instead, *B. cereus* has evolved to exploit a completely different GSR sensing module, namely the RsbKMY two-component system, which was first discovered by de Been et al. (2010), and an additional methyltransferase (RsbM) was later found to be an essential regulator of the RsbKMY system (Chen et al., 2012, 2015, 2017) (see Figure 3 for SigB gene cluster arrangement in *B. subtilis* vs. *B. cereus*). RsbK is a transmembrane protein that consists of signal-receiving domains and is responsible for sensing the physical cues and transferring this signal

to its cognate response regulator, RsbY (Figure 2). It has been reported that both physical and metabolic stressors can induce SigB via the RsbKYM system in *B. cereus* (van Schaik et al., 2004).

1.7.1.1 RsbRST (stressosome)-mediated cascade

In unstressed conditions (e.g., during exponential growth with sufficient nutrients and without external stressors), SigB is inactive as a transcription factor due to the binding of the anti-sigma factor protein – RsbW serine kinase - and thus cannot bind to the core RNA polymerase. On top of that, RsbW phosphorylates the anti-anti sigma factor RsbV and keeps it in its inactive state. The structural insight of SigB regulation by RsbV and RsbW has recently been updated (Pathak et al., 2020). Together, the RsbV, RsbW, and SigB are key downstream elements of both stressosome-mediated or RsbQP-mediated signaling cascades, and these are the components shared between the two pathways (RsbRST, RsbQP) in *Bacillus* spp.

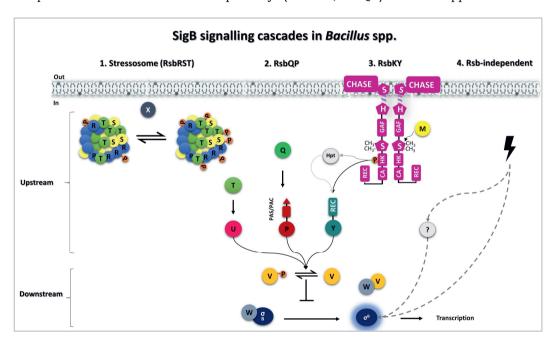


Figure 2- SigB signaling cascades in Bacillus species

The activation of RsbV by dephosphorylation leads to its binding to RsbW, which is subsequently released from SigB and renders SigB in its active form. This can be mediated by different protein phosphatases 2C (PP2C). In the presence of physical stressors, RsbV is dephosphorylated by the PP2C phosphatase RsbU, and in the presence of metabolic stressors, this is mediated by the PP2C phosphatase RsbP, as reviewed by Pané-Farré et al. (2017) and Rodriguez Ayala et al. (2020). The dephosphorylation of RsbV by either RsbU or RsbP increases its affinity to RsbW, thus uncoupling RsbW from the RsbW-SigB complex, thereby

leading to the transcription of SigB and genes under the control of SigB. Different upstream signaling protein components regulate the activities of these two PP2C phosphatases. RsbU is activated by the stressosome component RsbT kinase, whereas RsbP is regulated by the α/β hydrolase RsbQ, as reviewed by Pané-Farré et al. (2017) and Rodriguez Ayala et al. (2020).

Without physical stress, RsbT forms a complex with the two scaffold proteins RsbR and RsbS, in which RsbS contains a domain that acts as a sulfate transporter and anti-sigma factor antagonist (STAS) (Sharma et al., 2011; Pané-Farré et al., 2017) and RsbR contains a conserved C-terminal STAS domain and a diversified N-terminal domain (Chen et al., 2003; Pané-Farré et al., 2017), forming the stressosome complex. The stressosome complex can be heterogeneous because different RsbR paralogs (RsbRA, RsbRB, RsbRC, and RsbRD) can assemble with RsbS and RsbT into a fully functional stressosome. The heterogeneous stressosome acts as a protein signaling hub to sense the presence of physical stressors in the environment. Upon sensing physical stress signals, RsbT phosphorylates the STAS domains of RsbR (at position T171), its paralogs, and RsbS (at position S59) (see reviews of Pané-Farré et al. (2017) and Rodriguez Ayala et al. (2020)). The phosphorylation of RsbR and RsbS thus triggers a conformational change and releases RsbT from the stressosome. The free RsbT then switches its binding partner to the PP2C phosphatase RsbU and forms the RsbT: RsbU complex, leading to the dephosphorylation of RsbV and activation of SigB. Following the transient activation of SigB, the level of the stressosome resetter RsbX protein (also a PP2C phosphatase) also increases. RsbX possesses antagonistic activity toward RsbT and plays a critical role in resetting the RsbR-P and RsbS-P back to their resting states via dephosphorylation, and also blocks SigB activation in unstressed conditions (see reviews of Pané-Farré et al. (2017) and Rodriguez Ayala et al. (2020)).

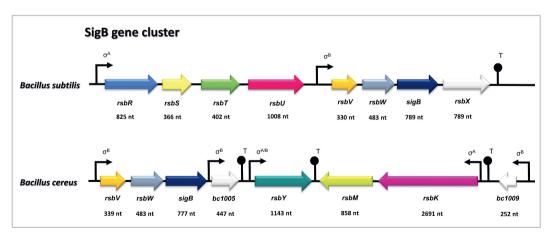


Figure 3- SigB gene cluster in Bacillus subtilis and Bacillus cereus

As the N-terminal domain of RsbR is diverse, it has long been hypothesized that the different RsbR paralogs hold a distinct role in sensing a specific physical stressor via its N-terminal domain. So far, there is no solid evidence that specific RsbR paralogs are more important than the other, but it appears that RsbRB, RsbRC, and RsbRD are redundant, and a functional stressosome can be formed solely with RsbRA. Vice versa, RsbRB, RsbRC, and RsbRD can substitute the role of RsbRA (Cabeen et al., 2017). To date, the function of each RsbR paralog and the exact mechanism in perceiving stress signals is still unclear. Only the YtvA paralog, a flavin mononucleotide that contains a light-oxygen-voltage domain, is known to be sensing blue light (Akbar et al., 2001; Losi et al., 2003; Jurk et al., 2013). It is also the only stressosome component with a confirmed specific activation signal (Gaidenko et al., 2006; Pané-Farré et al., 2017).

1.7.1.2 RsbQP-mediated cascade

When cells encounter metabolic stress, or when the ATP: ADP ratio falls, the α/β hydrolase RsbQ acts as an activator and transfers the metabolic stress signal to the Per-Arndt-Sim (PAS) domain of the PP2C phosphatase, RsbP, activating its C-terminal phosphatase domain. The activated RsbP then interacts with RsbU and leads to the sequential activation of the downstream elements: RsbV, RsbW, and SigB itself. Although it is found that RsbQP is indispensable in sensing metabolic stress in *B. subtilis*, the exact signal (or ligands) that is received either directly by RsbQ or via a so far unknown molecule remains elusive (Nadezhdin et al., 2011).

1.7.1.3 Rsb-independent cascade

Another uncharacterized SigB signaling cascade may exist based on experimental observations. As mentioned above, it has been shown that low temperature at 15°C can trigger SigB activation and SigB-dependent gene transcription independently from RsbV (Brigulla et al., 2003), and exposure to high temperatures (54°C for *B. subtilis*) is proposed to induce SigB directly (Holtmann et al., 2004). Recently, SigB was found to be the prerequisite for cross-protection against nitrosative stress, but the regulators RsbP or RsbU are not needed (Tran et al., 2019; Tran and Bonilla, 2021). These observations point to the possibility that SigB can be activated via so far undetermined regulators or direct activation by particular stressors.

1.7.1.4 RsbKMY- mediated cascade

Without stress signals, the S-helix of RsbK is methylated by the negative regulator RsbM, preventing the phosphate transfer from RsbK to RsbY (Chen et al., 2015). The unphosphorylated RsbY keeps the level of phosphorylated RsbV high, and as a consequence, RsbW remains bound to SigB, and SigB stays inactive (Figure 2). In contrast, in the presence of stress signals, the histidine residue auto-phosphorylates, and the phosphate group is transferred to the C-terminal receiver (REC) domain of RsbY directly (Chen et al., 2015) or via a putative phosphotransferase protein (de Been et al., 2010; Chen et al., 2012). RsbY is also a

PP2C phosphatase and becomes activated to dephosphorylate RsbV as described for the RsbRST cascade in *B. subtilis*. The dephosphorylated RsbV causes the release of RsbW from SigB, thereby leading to the transcription of SigB and subsequent transcription of genes belonging to this regulon in *B. cereus*.

However, the SigB GSR in *B. cereus* is not entirely analogous to *B. subtilis*. The SigB expression following stress imposition is transient in *B. subtilis* but lasts longer when growing cultures of *B. cereus* are exposed, namely from the exponential growth phase to the beginning of the stationary phase (Chen et al., 2017). In *B. subtilis*, the RsbX phosphatase is responsible for resetting the SigB level to its baseline after stress exposure by dephosphorylating the stressosome proteins (RsbR and RsbS). The reversion of the phosphorylated stressosome back to its ground state will recapture RsbT and cause the SigB-mediated transcription to cease. In *B. cereus*, it is unknown how cells control the level of SigB after its activation. Although RsbM negatively regulates SigB, it only prohibits SigB activation before stress (Chen et al., 2017). Thus, the extended activation of SigB may be attributed to the higher translation efficiency of RsbV than RsbW in *B. cereus* (Chen et al., 2017). As more RsbV proteins are produced, the formation of RsbV: RsbW complexes is promoted. Accordingly, the newly synthesized SigB is then "free" from its anti-sigma factor and fosters the continuum of SigB transcription.

Nonetheless, the SigB, RsbV, and RsbW expression levels gradually decrease until the early stationary phase, but decline rapidly upon entry into the stationary phase due to 1) down-regulated transcription and 2) possible enhanced proteolysis of components involved in the SigB signaling cascade by so far unidentified proteases (Chen et al., 2012, 2017).

1.7.1.5 SigB signaling in other *Bacillus* species, firmicutes, and bacteria

As set out in the previous paragraphs, there are at least four known SigB signaling cascades for *Bacillus* spp., the RsbRST, RsbQP, and Rsb-independent pathways are present in *B. subtilis*, and the RsbKMY is uniquely found in *B. cereus*. Therefore, the RsbRST or RsbQP pathways are referred to as the *B. subtilis* SigB signal sensing module and the RsbKMY as the *B. cereus* SigB signal sensing module in this thesis. These modules have also been found in other *Bacillus* spp. and firmicutes and explored to different extents in different species.

Other than *B. subtilis*, closely related species like *B. licheniformis* and *B. halodurans* and other firmicutes, including *O. iheyensis*, *L. innocua*, *L. monocytogenes*, *Moorella thermoacetica*, and *Thermoanaerobacter tengcongensis* are known to contain the *B. subtilis* RsbRST SigB sensing module (Pané-Farré et al., 2005). The RsbRST stressosome pathway was conserved in these species and has been extensively investigated in *B. licheniformis* and *L. monocytogenes*, revealing a highly similar SigB GSR to *B. subtilis* in these two species. However, the RsbQP metabolic stress sensing module is considered unique for *B. subtilis*. It has not been investigated in other species hitherto, even though a homologous system has been reported in *Geobacillus* and *Paenibacillus* spp. and in other more distant bacteria like *Streptomyces*,

Rhizobium, and *Pseudomonas* (Nadezhdin et al., 2011). The functionality of the predicted RsbQP-like systems in these species is yet to be explored. Thus far, there are no reports of direct SigB activation by either physical or metabolic stress in other species than *B. subtilis*.

Of the species known to have the SigB-mediated GSR, this stress response has been investigated extensively in the pathogenic organism *L. monocytogenes* that causes severe listeriosis in humans, including the role of SigB in pathogenicity and virulence. In *L. monocytogenes*, SigB is induced strongly by acidic stress but also responsive to ethanol, osmotic, heat, oxidative stress, blue light, and metabolic stresses (upon entering into the stationary phase) (Ondrusch and Kreft, 2011; Dorey et al., 2019b, 2019a, 2019a; Guerreiro et al., 2020b). The SigB-GSR and its activation via the sequential RsbRST (stressosome) signaling cascade in this species is almost identical to *B. subtilis* (Oliveira et al., 2021). However, it uses the RsbRST (stressosome)-mediated pathway instead of the RsbQP module for sensing metabolic (energy/nutritional) stress. Moreover, *L. monocytogenes* also employs SigB to control the production of a subset of virulence genes that are coregulated by the positive regulatory factor A (PrfA) (Ollinger et al., 2009) and uses the stressosome to uniquely configure stress within host cells post-infection (Dessaux et al., 2021).

On the other hand, the unique RsbKMY module of *B. cereus* has also been identified in other *B. cereus* group members (*B. thuringiensis*, *B. weihenstephanensis*, *B. anthracis*, and the high GC firmicutes, *Geobacillus* Y412MC10 and *Paenibacillus* JDR-2), and orthologs of the RsbK sensor kinase have been predicted for more distantly related bacteria: Actinobacteria, Proteobacteria, Cyanobacteria and Bacteroidetes (de Been et al., 2011). However, no detailed studies of the RsbKMY module in response to stress have been conducted in species other than *B. cereus*. Moreover, unlike *B. subtilis*, ATP depletion causes only minor SigB induction in *B. cereus* and is likely not the main trigger for SigB-GSR in species that employ the *B. cereus* SigB sensing module. The SigB signaling modules and stressors that trigger these modules in *Bacillus* spp., firmicutes, and other bacteria are summarized in Table 2.

1.7.2 SigB regulon

As mentioned above, the activation of SigB leads to the transcription of genes encoding specific or general stress proteins that can subsequently protect cells from the stressors. This includes genes directly and indirectly regulated by SigB, also known as the SigB regulon members. Direct SigB regulon members are genes that have a SigB PBM (with the consensus sequence of GTTTAA- N₁₃₋₁₅- GGGTAT), which allows for the direct binding of SigB to the upstream regions of genes for regulation. In contrast, indirect SigB regulon members are genes that do not have a SigB PBM. However, genes that do not contain a SigB PBM can still be regulated by SigB indirectly, for instance, via a regulator that is a SigB regulon member. Therefore, in this thesis, SigB regulon members with a SigB PBM are defined as the SigB direct regulon members, and those that do not have a SigB PBM as SigB indirect regulon members.

1.7.2.1 SigB regulon in B. subtilis

In the pre-genome sequencing era, SigB regulon members were unraveled through transposon mutagenesis and proteomics analysis of wild-type (wt) strain versus the *sigB* null mutant in response to various physical or metabolic triggers. Following the publication of the wholegenome sequence for the *B. subtilis* 168 type strain, the list of SigB regulon members was further expanded via transcriptomics and advanced proteomics analyses (Petersohn et al., 1999b, 1999a, 2001; Price et al., 2001b; Waters et al., 2014; Arrieta-Ortiz et al., 2015; Schumann, 2016), and via the combination of omics and predictive models (Nannapaneni et al., 2012). Over the years, the number of genes known to be regulated by SigB in *B. subtilis* has increased markedly. To date, more than 300 genes are thought to be SigB-dependent in *B. subtilis* (Nannapaneni et al., 2012; Rodriguez Ayala et al., 2020). These genes are activated or negatively regulated by SigB upon its activation via either RsbRST or RsbQP or the Rsb-independent pathway directly under stressful conditions.

Table 2: SigB signaling cascades found in *Bacillus* species, firmicutes, and other bacteria. *- indicates supported with experimental evidence.

Stressor	RsbRST	RsbQP	RsbKMY	Rsb-
/species Stressor	 Heat Acid Alkaline Osmotic (Salt) Antibiotics (Vancomycin, bacitracin) Oxidative (hydrogen peroxide) Nitrosative (sodium nitropruside) Blue light High manganese level 	 Entry into stationary phase Glucose starvation Phosphate starvation ATP depletion (Azide, CCCP, Nitric oxide, Mycophenolic acid, Decoyinine, Rifampin) Red light 	 Heat Ethanol Osmotic ATP depletion (minor induction) 	 Low temperature (15°C) High temperature (54°C) Nitrosative
Species	*B. subtilis, *B. licheniformis, B. halodurans, B. amyloliquafaciens B. pumilus B. coagulans B. clausii O. iheyensis *L. monocytogenes *L. innocua L. welshimeri M. theroacetica T. tengcongensis	*B. subtilis Geobacillus spp. Paenibacillus spp. Streptomyces Rhizobium Pseudomonas	*B. cereus B. thuringiensis B.weihenstephanensis B. anthracis Geobacillus Y412MC10 Paenibacillus JDR-2 Actinobacteria Proteobacteria Cyanobacteria Bacteroidetes	*B. subtilis

The explicit function of each regulon member has not been designated fully. However, it is known that some of these genes (encoding for general stress proteins) respond universally to common physical stressors (i.e., heat, ethanol, salt, acid) and serve a generic role in protecting cells from damage, but not directed against a specific stimulus. Some characteristic examples of *B. subtilis* include DNA protection enzymes, chaperones (aid in degrading misfolded proteins), proteins that repair the cell envelope, transporters, exporters, osmoprotectants, etc. (reviewed by Rodriguez Ayala et al. (2020), see Appendix 1A for complete SigB regulon list for *B. subtilis*).

As the SigB regulon is relatively large, the expression of the entire regulon concomitantly would impose a tremendous energy burden on the cells. If SigB is continuously expressed, cells might cease to grow or even die. Therefore, the SigB-GSR is a tightly regulated process, and a subset of selected SigB-dependent genes are induced based on the type of stressors present. The sturdy governance of SigB-GSR in cells ensures that the activation of SigB does not reduce the robustness of cells, and cells generate just enough proteins to protect them from more severe stress.

1.7.2.2 SigB regulon in B. licheniformis

Within the *Bacillus* genus, the SigB regulon has also been elucidated in *B. licheniformis* and *B. cereus*, but to a somewhat lesser extent than in *B. subtilis*. Of the two, the SigB regulon in *B. licheniformis* is comparable to the SigB regulon of *B. subtilis*. Many SigB-dependent genes in *B. subtilis* were also proven to be induced or negatively regulated by SigB in *B. licheniformis* in response to physical stresses like heat, ethanol, salt, and hydrogen peroxide (Schroeter et al., 2011, 2013; Voigt et al., 2013). Both organisms thus appear to have a highly similar general stress management system. Additionally, the SigB regulon in *B. licheniformis* contains members not present in *B. subtilis*, e.g., some endonuclease and solute symporter genes (see Table S5 in Voigt et al. (2013)).

Albeit similar to *B. subtilis*, the size of the SigB regulon known to date for *B. licheniformis* is smaller than that of *B. subtilis*, likely due to two reasons: 1) fewer stressors have been used to study the SigB-GSR in *B. licheniformis*, e.g., it is not known whether acid, blue light, red light, and acid induce SigB GSR; and 2) *B. licheniformis* has evolved to employ a different system to deal with starvation (i.e., glucose, phosphate, and nitrogen starvation) because SigB GSR is not induced by these metabolic stresses in this organism (Hoi et al., 2006; Voigt et al., 2007, 2014). Moreover, the RsbQP SigB sensing module responsible for sensing metabolic stress in *B. subtilis* is missing in *B. licheniformis*. Thus far, the number of SigB regulon members revealed in *B. licheniformis* is around 200 (supplementary tables in Voigt et al. (2013) (Appendix 1B).

1.7.2.3 SigB regulon in B. cereus

The phylogenetically more distant *B. cereus* has a much smaller SigB regulon than *B. subtilis* and *B. licheniformis*. The last updated SigB regulon comprises only 32 members (de Been et al.,

2010), which is substantially smaller than that of *B. licheniformis* and *B. subtilis* (see Appendix 1C). This may be attributed to biological and technical factors.

Biologically, *B. cereus* has evolved to use a completely different SigB upstream sensing module (RsbKMY) than *B. licheniformis* (RsbRST) and *B. subtilis* (RsbRST and RsbQP). Thus, the SigB responses to general stress may also differ from the other species. Technically, fewer studies on SigB GSR have been conducted in *B. cereus* than in *B. subtilis*. It is known that the physical stressors, heat, ethanol, and salt all induce SigB GSR, with heat being the most potent SigB-GSR trigger in *B. cereus* (Periago et al., 2002; van Schaik et al., 2004; Schaik et al., 2007; de Been et al., 2010). However, ATP depletion in cells (e.g., by the addition of CCCP) only induces SigB slightly and hence has been concluded not to be the crucial stressor that leads to induction of SigB in *B. cereus* (van Schaik et al., 2004). The SigB-GSR has not been investigated in *B. cereus* using other stressors than heat, ethanol, salt, and CCCP. Although SigB has recently been reported to regulate glucose starvation and oxidative stress in *B. cereus* as in *B. subtilis* (Gao et al., 2021), no global transcriptomics or proteomics studies have been performed to elucidate the SigB regulon in *B. cereus* further.

Moreover, *B. cereus* has a divergent SigB regulon compared to other species in the *B. cereus sensu lato* group, in which the expression of a standard set of genes was reprogrammed to adapt to niche-specific survival strategies or to support different pathogenic roles (Scott and Dyer, 2012). It has been reported that the SigB regulons of 20 *B. cereus sensu lato* group members (*B. cereus, B. anthracis, B.mycoides, B. pseudomycoides, B. thuringiensis, B. weihenstephanensis and B. cytotoxicus*) show differences in the SigB PBM, and each organism shares a core SigB regulon which consists of only around 20 genes (Scott and Dyer, 2012).

The most recent SigB regulon members of *B. subtilis, B. licheniformis,* and *B. cereus* are listed in Appendixes 1A, 1B, and 1C, respectively, and the SigB consensus sequences (PBM) are listed in Table 3. In *B. subtilis,* the majority but not all SigB-dependent genes contain a SigB PBM (Petersohn et al., 1999a; Nannapaneni et al., 2012). Some direct or indirect regulon members are under dual or multiple control by SigB and other regulators. However, no SigB PBM search has been performed for SigB regulon members in *B. licheniformis,* and in *B. cereus,* only 23 out of 32 SigB regulon members were shown to contain a SigB PBM (de Been et al., 2010).

Table 3: SigB promoter binding motif (PBM) in B. subtilis, B. licheniformis and B. cereus

Species	Promoter Sequence			Reference
	-35	spacer	-10	
B. subtilis	GTTTWW	12-15	GGGWAW	(Petersohn et al., 1999a; Rodriguez Ayala et al., 2020; Vohradsky et al., 2021)
B. licheniformis	AGGTTTA A	14	GGGTAA	(Brody and Price, 1998)
B. cereus	AKGKTTA	13	GKGTA	(van Schaik et al., 2004; Scott and Dyer, 2012; Rodriguez Ayala et al., 2020)

1.7.3 SigB alternative functions in Bacillus species

1.7.3.1 Sporulation initiation and spore properties control

The relation between SigB and sporulation is sophisticated. At first, SigB was thought to be in charge of the switch from vegetative growth to spore formation in B. subtilis (Haldenwang and Losick, 1979; Moran et al., 1981). However, its role in sporulation was excluded when it was found that the deletion of the sigB gene did not affect sporulation and was not directly involved in the sporulation process (Binnie et al., 1986; Duncan et al., 1987). A potential link between SigB and the sporulation process was not confirmed until techniques used to decipher gene, and protein function became more mature and advanced. Findings at the beginning of 2000 indicated that SigB GSR and sporulation are not independent of each other (Méndez et al., 2004; van Schaik and Abee, 2005). In B. subtilis, Mandez et al. (2004) showed that SigB activity is needed for spore production at a low temperature, and in B. cereus de Vries et al. (2005) demonstrated that the deletion of sigB delays sporulation initiation and affects spore maturation. Moreover, further extended studies have been conducted in B. subtilis, revealing the molecular mechanism by which SigB is involved in the sporulation process. The ectopic expression of SigB (defect in regulation by RsbW) is shown to induce the expression of Spo0E phosphatase, which subsequently renders the sporulation master regulator (Spo0A) in its inactive state and thus prohibiting sporulation initiation (Reder et al., 2012b). In addition to this negative regulation, the SigB promoter preceding the spo0E gene is also repressed by the Rok protein (repressor of comK), forming a positive feedback loop in sporulation regulation through SigB (Reder et al., 2012a). Therefore, the influence of SigB on sporulation is now wellrecognized.

1.7.3.2 Biofilm formation and motility

Another survival strategy, biofilm formation, is also linked with the SigB GSR. Cells lacking SigB form weaker biofilms than wt cells and are less motile; as a result, cells in such biofilms are less resistant to stresses and fail to disperse from the biofilm (Bartolini et al., 2019b). This regulatory circuit is established through SigB interaction with the master regulator of biofilm formation, SinR, via RsbP (metabolic SigB signaling module, see Figure 4). SigB downregulates SinR and provides an adaptation mechanism for the cells to either activate SigB or trigger sporulation within the biofilm (Nadezhdin et al., 2020). Although SigB is shown to modulate the distribution of sporulated cells via RsbQP, this control is deemed indirect because there is no SigB promoter found preceding the *sinR* gene, as reviewed by Rodriguez Ayala et al. (2020) and Arnaouteli et al. (2021).

Moreover, SinR is crucial for the swimming and swarming motility properties of *B. subtilis*, and the absence of SinR reduces cell motility. Bartolini et al. (2019b) also demonstrated that SigB regulates flagellum-dependent motility in *B. subtilis* cells, with cell motility being reduced in mutants lacking *sigB* or *sinR*. Therefore, the loss of motility within the biofilm indirectly impacts the dispersal of motile cells from the biofilm (Bartolini et al., 2019b).

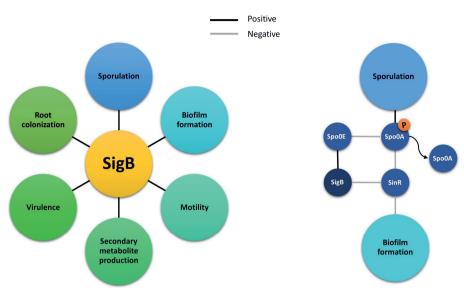


Figure 4- Influence of SigB in other processes in Bacillus species. (Black)- positive; (Grey)- negative

Similar to *B. subtilis*, it has only recently been discovered that the deletion of the sigB gene also impacts the ability of *B. cereus* cells to form biofilm under stress conditions, namely, low temperature and acidic pH (Gao et al., 2021). Wild-type cultures formed 2-3 fold more biofilms than the $\Delta sigB$ mutant at 16°C or 20°C. This apparent difference was not observed at optimal culturing temperatures (25°C, 30°C, or 37°C). When the pH of culturing medium was slightly acidic (pH 6.5), $\Delta sigB$ formed 30% less biofilm than wt cells, and at pH 5.5, $\Delta sigB$ formed 60% less biofilm than wt cells. Neither pH values close to the minimum pH growth boundary (pH 4.5) nor at a slightly alkaline pH of 7.5 affect biofilm formation (Gao et al., 2021).

Another *Bacillus* species well-known for its biofilm-forming capacity is *B. licheniformis* (Gopal et al., 2015). This may also occur in milk powder processing environments, such as evaporators, which operate at temperatures ranging from 50°C to 70°C (Wang et al., 2021). However, it is yet to be explored whether SigB also plays a role in biofilm development in this species.

1.7.3.3 Role in root colonization

In the natural environment, bacteria are exposed to stressful conditions such as changes in pH or temperature, the presence of reactive oxygen species, antibiotics, toxic compounds, disinfectants, conditions of nutrient deprivation, and changes between light and dark. Therefore, ecologically, *Bacillus* spp. form biofilm to protect cells from these environmental stresses (Jefferson, 2004; Caro-Astorga et al., 2020).

When starvation occurs in soil, predominant soil bacteria like *Bacillus* spp. can colonize plant roots and access nutrients available in the plant rhizosphere (Jefferson, 2004). As SigB is

known to be triggered under nutrient-deprived conditions, it is not surprising that SigB is also indirectly involved in root colonization. Although this has not been reported for *B. subtilis*, it has been recently uncovered that SigB in *B. cereus* controls such plant colonization, e.g., on wheat roots (Gao et al., 2021). The absence of SigB in *B. cereus* has been reported to affect colonization efficacy, which directly impacts cell survival (Gao et al., 2021). Therefore, this recent discovery further demonstrated the diverse roles of SigB.

1.7.3.4 Virulence

Moreover, a role of SigB in virulence has been reported for some *Bacillus* spp. and other related firmicutes like *L. monocytogenes* and *S. aureus*. Firstly, *B. thurigiensis*, which produces insecticidal toxins, is widely used for insect pest control. SigB is active during the infectious cycle of *B. thurigiensis*, which is critical for its pathogenicity towards insects and is required to adapt to the gut environment of the insect (Henry et al., 2020). Secondly, SigB appeared to play a role in the virulence of *B. anthracis*, which causes anthrax. When $10^4 - 10^8$ spores from *B. anthracis* were fed to a group of mice, spores of the wt strain caused a higher number of deaths in mice than spores of the $\Delta sigB$ strain (1 log₁₀ unit higher in wt than in $\Delta sigB$, but the exact LD₅₀ value is not known) (Fouet et al., 2000).

Of the pathogenic *Bacillus* species, the role of SigB has been investigated the most in *B. cereus*. However, there is no evidence that SigB contributes to the virulence of this bacterium. The production of virulence factors and the nonhemolytic enterotoxin Nhe did not differ between the wt cells and $\Delta sigB$ mutant (van Schaik et al., 2004). Other pathogenic *Bacillus* spp. belonging to the *B. cereus sensu lato* group (i.e., *B. mycoides, B. pseudomycoides, B. weihenstephanensis*, and *B. cytotoxicus*) also contain a SigB ortholog and a distinctive SigB regulon (Scott and Dyer, 2012), but the exact role of SigB in these species has not been studied.

The role of SigB in virulence is evident for the firmicutes *L. monocytogenes* and *S. aureus* (O'Byrne and Karatzas, 2008; Liu et al., 2019). In *L. monocytogenes*, SigB influences adhesion to and invasion of host cells, survival within host cells, replication and survival in the gastric environment (resistance to bile), and resistance to host-cell phagosomes and antibiotics (nisin, lacticin, ampicillin, penicillin G and V, and tetracycline (Zhou et al., 2012)). In total, around 20% of the genes (51/304) that belong to the SigB regulon play a role in the virulence of *L. monocytogenes*, many of which are regulated by the virulence regulator PrfA but co-regulated by SigB. Some SigB regulon genes involved in glycolysis and glycerol metabolism also contribute to the pathogenicity in *L. monocytogenes* via interaction with PrfA, highlighting that SigB regulates specific metabolic functions that can contribute to infection (reviewed by Liu et al., 2019).

In *S. aureus*, SigB is involved in the production of virulence factors that, for instance, affect host cell invasion/internalization, antibiotic resistance (oxacillin, vancomycin, methicillin, betalactams antibiotics), persistence, and also biofilm formation and membrane transport

(reviewed by Guldimann et al., 2016; Jenul and Horswill, 2019). SigB moreover positively regulates the main virulence factor in *S. aureus*, called SarA. In addition, the expression of virulence factors like adhesins, exoproteins, toxins, and small-colony variants (important for chronic infections) are reported to be SigB-dependent (Bischoff et al., 2004; Moisan et al., 2006).

As this thesis focussed on *Bacillus* spp., the detailed role of SigB in virulence control of *L. monocytogenes* and *S. aureus* are not further discussed. Various comprehensive reviews on the role of SigB in these two pathogenic firmicutes are available (O'Byrne and Karatzas, 2008; Guldimann et al., 2016; Jenul and Horswill, 2019; Liu et al., 2019).

1.7.3.5 Influence on secondary metabolite production

It is clear that the SigB is critical for stress response and survival of *Bacillus* spp. and that the various defense mechanisms are closely intertwined. In addition, SigB can play a role in obtaining competitive advances over other microbes in the environment. For instance, there are some indications that SigB can influence the production of metabolites with antibacterial or antifungal effects that allow for better access to substrates, e.g., by increasing swarming (Bartolini et al., 2019a).

Secondary metabolites are biochemical products produced by plants, fungi, or bacteria that are derived from primary metabolism but may not be directly required for growth, development, or reproduction (Zähner, 1979). For example, amino acids crucial for growth are synthesized in primary metabolisms and later become the building blocks of complex secondary metabolites via a condensation step. Secondary metabolites have different ecological roles closely associated with the habitat of microorganisms or protecting them in harsh environments, e.g., protein complexes to transport nutrients and facilitators to compete for substrates or agents that may allow for interactions between organisms. To date, several secondary metabolite groups are well-known, like terpenoids and steroids, alkaloids, enzyme cofactors, fatty acids polyketides, and non-ribosomal peptides (NRP). Most of them are synthesized by plants, but many fungi and soil bacteria, including *Bacillus* species, produce a myriad of these compounds too. Among these, polyketides and NRPs possess versatile bioactive properties like antibacterial, antifungal, anticancer, or immunosuppressing activity (Martínez-Núñez and López, 2016; de Frias et al., 2018).

Polyketides and NRPs can either be linear or cyclic. They are synthesized and assembled by large enzymatic domains via a thiotemplate mechanism, which includes the initiation, elongation, and termination of peptides (Marahiel et al., 1997; Rajendran and Marahiel, 1999). These enzymatic domains are widely distributed across proteobacteria, cyanobacteria, actinobacteria, and firmicutes (Wang et al., 2014). For example, as much as 31 % of firmicutes harbor either the polyketide or the NRP synthetase gene clusters, and 70% are NRP synthetases, mainly present in the genus of *Paenibacillus* and *Bacillus* of this phylum (Aleti et al., 2015).

Renowned NRPs include the lipopeptides (surfactants) such as surfactin, iturin, fengycin, locillomycin, and lichenysin, produced by *Bacillus* spp (Luo et al., 2015). These lipopeptides are amphiphilic and contain a hydrophobic fatty acid chain linked to a hydrophilic cyclic peptide composed of several amino acids. For example, the well-known lipopeptide surfactin, produced by *B. subtilis*, contained a heptapeptide amino sequence of Glu-Leu-Leu-Val-Asp-Leu-Leu (Zhao et al., 2017) and was the first discovered by Arima et al. (1968).

It has been reported that the surfactin production in *B. subtilis* is influenced by SigB (Bartolini et al., 2019a). Upon deletion of the *sigB* gene in *B. subtilis*, cells produced lower amounts of surfactin and had a reduced efficacy in fungal control (Bartolini et al., 2019a). This report is another example of the involvement of SigB in physiological and ecological processes. No other similar studies on the relation between SigB and the production of NRP compounds are available for other *Bacillus* spp. such as *B. cereus* or *B. licheniformis*.

1.8 Aim of this thesis and outline

The master regulator of stress SigB plays a vital role in the adaptive stress response repertoire of *Bacillus* spp. This relates to various regulatory aspects, including 1) stressors that induce SigB; 2) signaling cascades that activate SigB; 3) genes/proteins regulated by SigB; and 4) alternative roles of SigB. The SigB general stress response (GSR) has been best characterized in the model organism *B. subtilis*, but to a lesser extent in the foodborne pathogen *B. cereus* and the industrial workhorse *B. licheniformis* and has not been examined for other Bacillales members. The function of SigB is not restricted to solely regulating the adaptive stress response in *B. subtilis*, but also other cellular functions or secondary process, as presented above (Figure 4). Similarly, this has not been explored in other *Bacillus* species.

Further understanding of the mechanisms underlying SigB GSR, SigB regulon functions, and alternative functions of SigB in *Bacillus* spp. may reveal novel specific triggers and adaptive responses to particular stresses that govern the persistence of the different species in particular niches

This thesis aimed to dissect the SigB GSR of *B. subtilis* further and explore the roles of SigB in *B. cereus* and *B. licheniformis*. In addition to these three species, an *in silico* approach was used to characterize the composition and key players in SigB GSR in other Bacillales members.

The description of research topics investigated in this thesis are outlined below:

Chapter 1 introduces the genus of *Bacillus* and focuses on three prominent species: *B. subtilis*, *B. cereus*, and *B. licheniformis*. Their characteristics and beneficial and pathogenic potentials are presented. Comprehensive knowledge known to date concerning the master regulator of stress – SigB, its activation pathways, its regulon members, and its alternative function in addition to the adaptive stress response is described.

Chapter 2 extends the study on the SigB regulon in *B. subtilis* using a SigB promoter binding motif derived from all promoter sequences of the up-to-date knowledge on SigB regulated genes. Novel SigB regulon members with putative promoters were predicted, and the regulation of selected promoters was validated in *B. subtilis* wild-type versus $\Delta sigB$ mutants by use of a translational fusion of the selected promoters to the *lacZ* reporter gene. Novel SigB-regulated genes under the dual control of SigB and other regulators are described. Moreover, the presence and absence of SigB signaling cascades and SigB regulon members in other Bacillales members were predicted via comparative genomics.

Chapter 3 deciphers the core function of SigB and investigated the role of a SigB-dependent putative phosphocarrier protein (Bc1009) in *B. cereus* ATCC14579 via gene expression and omics studies in wild-type, $\Delta sigB$ and $\Delta bc1009$ mutants. Clean sigB and bc1009 knockout mutants were constructed, and changes in proteome/genome profiles upon exposure to heat

stress at 42°C were compared to the wild-type cells. Novel SigB-dependent differentially expressed genes/proteins were identified. Comparison of expression data of the SigB and Bc1009 mutants with the wild type identified a subgroup of SigB-dependent genes/proteins regulated via Bc1009, with putative functions in stress response, cell motility, signal transduction, transcription, amino acid transport and metabolism. Phenotypic assays confirmed roles in heat resistance and motility. Notably, differential expression of SigB and Bc1009 dependent genes/proteins was also observed at 30°C non-stressed condition in both knockout mutants compared to wt, and functionality was confirmed in motility assays. Finally, the role of *B. cereus* SigB in regulating other cellular functions directly or via Bc1009, in non-stressed and stressed conditions is discussed.

Chapter 4 examines the potential involvement of SigB in the production of the biosurfactant (lichenysin) in *B. licheniformis*, and conversely, studies the role of lichenysin as a SigB stressor in *B. licheniformis* wild type and $\Delta sigB$ mutant. The total lichenysin yield in wild-type and $\Delta sigB$ mutant was quantified, showing that $\Delta sigB$ mutant produced less lichenysin than wild-type cells, but the lower production was shown to be not regulated by SigB directly in gene expression studies. However, the presence of lichenysin induced sigB and sigB- regulated genes mildly, contributing to slightly higher cell survival when exposed to lethal ethanol conditions. This modest protection was also seen for *B. licheniformis* when exposed to a lichenysin-like compound (surfactin) produced by *B. subtilis*.

Chapter 5 focuses on growth and lichenysin production by different food isolates of *B. licheniformis*. This bacterium showed robust growth under conditions such as high salt concentrations and high temperatures. Lichenysin production was investigated in a laboratory medium (Luria-Bertani) and a food matrix (milk) at optimal temperature (37°C) and high temperature (55°C). The amount produced per isolate, temperature, and condition was quantified using RP-HPLC-ESI-MS. Lichenysin toxicity toward human Caco-2 cells and pig ileum organoids was assessed and compared to the toxicity of the similar compound – surfactin - produced by *B. subtilis*. The relevance of *B. licheniformis* in foods in relation to potential food safety hazards is discussed.

Finally, **Chapter 6** discusses the fundamental and novel role(s) of SigB and SigB GSR in *Bacillus* species with respect to the results obtained in this thesis and provides outlooks and broader perspectives on persistence in environmental niches and their impact on food quality and safety.

Appendix 1A SigB regulon - B. subtilis

Supplementary Table S1: SigB regulon genes in *B. subtilis* (Pedreira et al., 2021). The expression of all genes/proteins that are SigB-dependent, with or without a SigB promoter binding motif.

Locus Tag Gene Description		Description	Function	
BSU00870	radA	branch migration transferase	negative effector of activity	
		<u> </u>	the DisA-dependent checkpoint arrests spore outgrowth until the	
BSU00880	disA	DNA integrity scanning protein	germinating spores genome is free of damage	
BSU00850	mcsB	protein arginine kinase	modulator of protein dependent repression	
BSU00860	clpC	AAA unfoldase	unknown	
		transcription repressor of class III heat shock		
BSU00830	ctsR	genes	unknown	
BSU00840	mcsA	modulator of protein dependent repression	control of proteinactivity	
BSU02940	усеН	similar to toxic anion resistance protein	unknown	
BSU02890	yceC	similar to toxic amon resistance protein	unknown	
BSU02910	yceE	general stress protein	required for survival of ethanol stress and at low temperatures	
BSU02910 BSU02900	yceD	general stress protein	required for survival of ethanol stress and at low temperatures	
BSU02920			resistance to Mn2+ intoxication	
	yceF	general stress protein	survival of ethanol stress	
BSU02930	yceG	general stress protein		
BSU04700	rsbU	protein serine phosphatase	unknown	
BSU04730	sigB	RNA polymerase factor	biocontrol of fungal growth	
BSU04720	rsbW	anti sigma factor	unknown	
BSU04670	rsbR	stressosome sensor protein	control of protein activity	
BSU04680	rsbS	part of the stressosome	control of protein activity	
BSU04740	rsbX	protein serine phosphatase	unknown	
BSU04710	rsbV	antagonist of protein	control of SigB activity	
BSU04690	rsbT	PP2C activator	part of the stressosome	
BSU39050	katE	catalase	detoxification (degradation) of hydrogen peroxide	
BSU39040	yxiS	general stress protein	unknown	
BSU04220	ydaG	putative pyridoxamine 5'-phosphate oxidase	unknown	
BSU04190	ydaD	general stress protein	unknown	
BSU04210	ydaF	similar to acetyltransferase	unknown	
BSU04200	ydaE	lyxose isomerase	unknown	
BSU16640	ylxP	general stress protein	protection against paraquat stress	
BSU16630	infB	translation initiation factor IF-2	unknown	
BSU16620	rplGA	similar to ribosomal protein	unknown	
BSU16600	nusA	transcription termination factor of RNA	transcription termination factor	
		polymerase	transcription termination factor	
BSU16590	ylxS	similar to ribosome maturation protein	unknown	
BSU16650	rbfA	ribosome-binding factor A	ribosome-binding factor A	
BSU16610	ylxR	nucleoid-associated protein	unknown	
BSU02840	ycdG	general stress protein	unknown	
BSU02830	ycdF	general stress protein	unknown	
BSU13170	guaD	guanine deaminase	unknown	
BSU07900	yfkH	general stress protein	survival of stress conditions	
BSU07880	yfkJ	general stress protein	unknown	
BSU07890	yfkI	general stress protein	protection against paraquat stress	
BSU30790	menE	o-succinylbenzoate-CoA ligase	o-succinylbenzoate-CoA ligase	
BSU30780	menC	O-succinylbenzoate synthase	O-succinylbenzoate synthase	
BSU05490	mhqO	hydroquinone-specific dioxygenase	resistence to methyl-hydroxyquinone	
BSU05500	mhqP	may be involved in protection against methyl-	unknown	
		hydroquinone		
BSU13640	spo0E	Spo0A-P phosphatase	initiation of sporulation	
BSU30650	dps	iron storage protein	unknown	
BSU09140	yhcM	general stress protein	unknown	
BSU40570	yybO	similar to permease	unknown	
BSU38620	aag	hypoxanthine-DNA glycosylase	unknown	
BSU38610	yxzF	general stress protein	unknown	
BSU35670	gtaB	major vegetative UTP-glucose-1-phosphate	biosynthesis of teichoic acid	
BSU09690	nhaX	uridylyltransferase general stress protein	unknown	
BSU03910	gabD	succinate-semialdehyde dehydrogenase	utilization of gamma-amino butyric acid	
BSU06590		(NADP)	unization of gamma-amino butyric acid	
	yerD	general stress protein		
BSU02110	ybyB	general stress protein	survival of ethanol stress	
BSU33610	rnr	RNase R	nonspecific degradation of rRNA	
BSUmiscRNA55	ssrA	tmRNA	tmRNA	
BSU33620	yvaK	general stress protein	unknown	
BSU33600	smpB	tmRNA-binding protein	tmRNA-binding protein	
BSU33630	secG	preprotein translocase subunit	preprotein translocase subunit	
BSU04430	ydbD	general stress protein	survival of ethanol stress	
BSU04440	dctB	C4-dicarboxylate binding protein	sensing of C4-dicarboxylates	

Locus Tag	Gene name	Description	Function		
BSU12170 forE1		partner subunit of formate:menadione oxidoreductase protein	unknown		
BSU12160	forC1	formate:menadione oxidoreductase	unknown		
3SU11130	ipi	intracellular proteinase inhibitor	intracellular proteinase inhibitor		
3SU11500	spx	transcriptional regulator Spx	required for protection against paraquat stress		
3SU02100	сурС	long chain-fatty acid beta-hydroxylating cytochrome P450	required for protection against paraquat stress		
3SU12150	yjgB	general stress protein	survival of ethanol stress		
3SU08600	csbB	lipoteichoic acid glycosyltransferase	required for protection against paraquate stress		
3SU08610	yfhO	required for lipoteichoic acid glycosylation	glycosyltransferase		
SSU07550		general stress protein	survival of ethanol stress		
	yflT				
SU04220	ydaG	putative pyridoxamine 5'-phosphate oxidase	unknown		
3SU28340	ysnF	general stress protein	survival of ethanol stress		
3SU33200	yvrE	glucoco-lactonase	unknown		
3SU40450	yycD	general stress protein	survival of ethanol stress		
BSU11120	yitT	general stress protein	protection against paraquat stress		
BSU11130	ipi	intracellular proteinase inhibitor	intracellular proteinase inhibitor		
BSU00160	yaaH	general stress protein	spore cortex lytic protein		
3SU27020	yraA	general stress protein	unknown		
3SU09530	yhdN	general stress protein	detoxification of methylglyoxal		
BSU09540	plsC	acyl-ACP:1-acylglycerolphosphate acyltransferase	acyl-ACP:1-acylglycerolphosphate acyltransferase		
BSU38940	yxjI	unknown	unknown		
BSU24770	yxj1 mgsR	transcriptional regulator of a subset of the	controls a subset of general stress genes		
BSU39840	yxbG	general stress regulon general stress protein	unknown		
BSU04370	ydaS	general stress protein	unknown		
BSU29780	ytxG	general stress protein	unknown		
BSU29770	ytxH	general stress protein	unknown		
BSU29760	brxC	monothiol bacilliredoxin	removal of bacillithiol from oxidized cytosolic proteins		
BSU34540	clpP	ATP-dependent Clp protease proteolytic	ATP-dependent Clp protease proteolytic subunit		
BSU07760	yfkT	subunit (class III heat-shock protein) general stress protein	germination		
BSU07790	yfkQ	part of the germinant receptor of unknown specificity	part of the germinant receptor		
BSU07770	yfkS	D protein for the germinant receptor of unknown specificity	unknown		
BSU07780	yfkR	part of the germinant receptor of unknown	part of the germinant receptor		
DOI 1400 40		specificity			
BSU40040	yxaA	putative glycerate kinase	putative glycerate kinase		
BSU40030	yxaB	general stress protein	biofilm formation		
BSU30930	ytaB	general stress protein	survival of ethanol and salt stresses		
BSU17250	ymaE	unknown	unknown		
BSU17240	ymzB	general stress protein	survival of ethanol and salt stresses		
BSU09450	yhdF	similar to glucose 1-dehydrogenase	unknown		
BSU38940	yxjI	unknown	unknown		
BSU38930	ухjJ	general stress protein	unknown		
BSU40000	yxnA	general stress protein	unknown		
BSU04340	ydaP	general stress protein	putative pyruvate oxidase		
BSU04290	ydaL	general stress protein	synthesis of extracellular polysaccharide		
BSU04270	ydaJ	lipoprotein	unknown		
BSU04280	ydaK	general stress protein	unknown		
BSU04300	ydaM	general stress protein	synthesis of extracellular polysaccharide		
BSU04310	ydaN	general stress protein	synthesis of extracellular polysaccharide		
BSU23830	yqjL	general stress protein	unknown		
BSU38430	gspA	general stress protein	unknown		
BSU38630	katX	catalase	detoxification (degradation) of hydrogen peroxide		
BSU38180	ywzA	general stress protein	unknown		
BSU23329	ypuC/1	part of the ypuC pseudogene	unknown		
BSU23340	уриВ	unknown	unknown		
BSU06660	opuE	proline transporter	proline transporter		
BSU29110	phoP	two-component response regulator (OmpR family)	regulation of phosphate metabolism		
BSU29100	phoR	two-component sensor kinase	regulation of phosphate metabolism		
BSU24020	bmrR		regulation of multidrug resistance		
		transcriptional activator operon			
BSU24010	bmr	general stress protein	multidrug resistance		
BSU27760	csbX	general stress protein	unknown		
BSU27750	bofC	general stress protein	control of protein processing		
BSU33410	yvgO	general stress protein	survival of ethanol stress		
BSU29420	ytkK	similar to 3-oxoacyl- acyl-carrier protein	unknown		
BSU29410	ytkL	reductase general stress protein	unknown		
BSU35310	hpf	general stress protein	unknown		
BSU13160	ohrB	general stress protein	unknown		

Locus Tag	Gene name	Description	Function		
BSU10430	yhxD	general stress protein	survival of salt and ethanol stresses		
BSU07930	yfkD	unknown	unknown		
BSU07920	chaA	Ca2+ exchanger	calcium export via proton antiporter		
BSU36960	ywlB	general stress protein	unknown		
BSU05790	ydhK	general stress protein	survival of stress conditions		
BSU23300	yunk ypuD	putative intramembrane metalloprotease	putative intramembrane metalloprotease		
BSU08490					
	yfhD	general stress protein	survival of ethanol stress and low temperatures		
BSU08510	yfhF	general stress protein	survival of ethonol stress and at low temperatures		
BSU08500	yfhE	general stress protein	unknown		
BSU28500	trxA	thioredoxin	unknown		
BSU35970	ywsB	general stress protein	survival of ethanol and salt stresses		
BSU08580	yfhL	general stress protein	survival of ethanol and salt stresses		
BSU08570	yfhK	general stress protein	survival of ethonol stress and at low and high temperatures		
BSU08590	yfhM	general stress protein	survival of ethanol stress		
BSU28830	ysdB	control of SigW activity	survival of heat stress		
BSU03130	nadE	NH3-dependent NAD+ synthetase	NH3-dependent NAD+ synthetase		
BSU04370	ydaS	general stress protein	unknown		
BSU04380	ydaT	general stress protein	survival of ethanol stress and low temperatures		
BSU35180	csbA	general stress protein	protection against paraquat stress		
BSU36670	csbD	general stress protein	unknown		
BSU38830	aldY	aldehyde dehydrogenase (NAD)	unknown		
BSU37210	ywjC	general stress protein	unknown		
BSU24760	rsbRD	probably part of the stressosome	control of protein activity		
BSU24760 BSU24000					
BSU24000 BSU24020	bmrU	general stress protein	unknown		
	bmrR	transcriptional activator	regulation of multidrug resistance		
BSU24010	bmr	general stress protein	multidrug resistance		
BSU24740	corA	general stress protein	unknown		
BSU25300	cdd	cytidine deaminase	cytidine deaminase		
BSU25289	yqzL	unknown	unknown		
BSU25280	recO	mediator of protein binding to ssDNA	unknown		
BSU25290	era	GTP-binding protein	ribosome assembly		
BSU24500	yqhP	unknown	unknown		
BSU24490	yqhQ	general stress protein	survival of stress conditions		
BSU24750	yqhB	similar to magnesium exporter	unknown		
BSU07850	yfkM	glyoxalase III-like enzyme	paraquat and ethanol stresses		
BSU04400	gsiB	general stress protein	response to water deficits		
BSU30700	rpmEB	general stress protein	unknown		
BSU38720	yxkO	ADP/ATP-dependent NAD(P)H-hydrate dehydratase	unknown		
BSU07670	yflI	unknown	unknown		
BSU07690	yflG	methionine aminopeptidase	methionine aminopeptidase		
BSU07680	yflH	general stress protein	unknown		
BSU00890	yacL	general stress protein	survival of salt and ethanol stresses		
BSU00910	ispF	2-C-methyl-D-erythrol-2	unknown		
BSU00900	ispD	2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase	MEP pathway of isoprenoid biosynthesis		
BSU11500	spx	transcriptional regulator Spx	required for protection against paraquat stress		
BSU11490	yjbC	general stress protein	survival of paraquat stress		
BSU36670	csbD	general stress protein	unknown		
BSU36680	ywmF	unknown	unknown		
BSU18530	yoaA	similar to spermidine/spermine N-	unknown		
DOLLAGESS		acetyltransferase	1		
BSU18520	yoxB	general stress protein	unknown		
BSU18510	yoxC	general stress protein	survival of ethanol stress		
BSU18350	dacC	Class C penicillin-binding protein 4A	carboxypeptidase		
BSU18360	galM	aldose-1-epimerase	aldose-1-epimerase (mutarotase)		
BSU13010	ykgB	6-phosphogluconolactonase	pentose phosphate pathway		
BSU13020	ykgA	similar to arginine-guanidine removing enzyme	unknown		
BSU19240	yocK	general stress protein	general stress protein		
BSU31380	yuzA	general stress protein	unknown		
BSU00520	ctc	general stress protein	translation under stress conditions		
BSU00540	fin	RNA polymerase-binding protein	control of sporulation		
BSU00530	spoVC	general stress protein	spore coat formation		
BSU00520	ctc	general stress protein	translation under stress conditions		
BSU39810	csbC	general stress protein	unknown		
	iolW	scyllo-inositol dehydrogenase	utilization of scyllo-inosose		
BSU33530					
BSU30070	opuD	glycine betaine and arsenobetaine transporter	glycine betaine transporter		
BSU30060	ytfP	putative NAD(FAD)-utilizing dehydrogenase	unknown		
BSU25020	sodA	superoxide dismutase	unknown		
BSU02590	ycbP	general stress protein	unknown		
			under over		
BSU04039	yczO	unknown	unknown		
	yczO ydaC yflA	similar to N-methyltransferase general stress protein	unknown unknown		

Locus Tag Gene		Description	Function		
BSU09390	ygxB	general stress protein	unknown		
BSU10810	visP	farnesyl diphosphate phosphatase	control of protein activity		
BSU11839	yjzE	general stress protein	unknown		
BSU14210	ykuT	mechanosensitive channel	unknown		
BSU14660	ykzI	general stress protein	unknown		
BSU19150	yocB	general stress protein	survival of stress conditions		
BSU30640			unknown		
	ytkC	similar to autolytic amidase	4		
BSU33850	yvbG	unknown	unknown		
BSU33400	yvgN	glyoxal reductase	unknown		
BSU35699	yvzE	putative UTP-glucose-1-phosphate uridylyltransferase	unknown		
BSU35830	ywtG	general stress protein	unknown		
new30363103036		.' Data Dat W''			
529c new30354753036	SR7P	antisense RNA to RNase Y interaction	control of protein RNase Y activity		
308c	S1134	antisense RNA	antisense RNA		
BSU00160	yaaH	general stress protein	spore cortex lytic protein		
BSU00170	yaaI	general stress protein	survival of ethanol stress		
BSU05150	ydeC	similar to transcription factor (AraC family)	unknown		
BSU05140	ydzE	unknown	unknown		
BSU07735	yflB	stress protein	unknown		
BSU07750	yflA	general stress protein	unknown		
BSU07720	yflD	stress protein	unknown		
	ywiE	minor cardiolipin synthetase	unknown		
BSU37240	-	1 0			
BSU37220	ywjB	unknown	unknown		
BSU37230	ywjA	similar to ABC transporter (ATP-binding protein)	ABC transporter (ATP-binding protein)		
BSU31279	yuzH	unknown	unknown		
BSU31280	yugU	general stress protein	survival of stress conditions		
BSU30690	ytiB	similar to carbonic anhydrase	unknown		
BSU30670	luxS	S-ribosylhomocysteine lyase	unknown		
BSU23329	ypuC/1	part of the ypuC pseudogene	unknown		
BSU23340	уриС/1	unknown	unknown		
BSU23330	ypuC/2	part of the ypuC pseudogene	unknown		
BSU13169	ykzN	unknown	unknown		
BSU13160	ohrB	general stress protein	unknown		
BSU14680	ykzC	unknown	unknown		
BSU14670	yktC	inositol monophosphatase and 5'- nucleotidase with preference for GMP and IMP	nucleotidase		
BSU40529	yyzH	unknown	unknown		
BSU40259	yyzG	unknown	unknown		
BSU40210	yydC	unknown	unknown		
BSU36720	ywmE	general stress protein	survival of ethanol stress		
BSU06400	yebE	unknown	unknown		
BSU06400	yebG	unknown	unknown		
new37081333708	S1384	new RNA feature	unknown		
785 BSU35980	ywsA	unknown	unknown		
BSU12220	yjiC	UDP-dependent glycosyltransferase	synthesis of bacillaene		
BSU12210		cytochrome P450			
	yjiB	3	oxidation of fatty acids		
BSU04190	ydaD	general stress protein	unknown		
BSU04200	ydaE	lyxose isomerase	unknown		
BSU02890	yceC	similar to tellurium resistance protein	unknown		
BSU02910	yceE	general stress protein	unknown		
BSU02900	yceD	general stress protein	required for survival of ethanol stress		
BSU02920	yceF	general stress protein	resistance to Mn2+ intoxication		
new_3460206_34	S1290	antisense RNA	antisense RNA		
62957	31290	anuscuse riva	andschet man		

Appendix 1B SigB regulon - B. licheniformis

Supplementary Table S2: SigB regulon members in *B. licheniformis* (Voigt et al., 2013). The expression of all genes/proteins that are SigB-dependent, with or without a SigB promoter binding motif.

Locus Tag	Gene	Description/Function
BLi00560	sigB	RNA polymerase sigma factor SigB
BLi00512	ydaG	BLAST putative general stress protein [Bacillus subtilis]
BLi02651	yqgZ	(mgsR) BLAST transcriptional regulator, controlls a subset of stress genes; thioredoxin-like-superfamily; ArsC-Spx Hit
BLi04064	gspA	general stress protein A
BLi03887		similar to hemolysin; BLAST TlyC domain
BLi04197	yqhB	
	katE2	sigB dep. Catalase 3
BLi00779	yflT	hypothetical protein; BLAST heat stress induced protein [Bacillus subtilis subsp. subtilis str. 168 100%], Yff superfamily (heat induced protein)
BLi03885	none	BLAST CBS domain-containing protein [Bacillus licheniformis ATCC 14580 100%], CBS_pair superfamily
BLi02579	bmrU	multidrug resistance protein cotranscribed with bmr; BLAST DAGK_cat superfamily
BLi04196	katE1	sigB dep. Catalase 2
BLi03883	ydbD	similar to manganese-containing catalase; BLAST general stress protein, putative manganese-containing catalase
		Mn-catalase domain
BLi01012	yhdF	Short-chain dehydrogenase/reductase SDR YhdF
BLi00747	none	putative 5-methylcytosine-specific restriction enzyme
BLi02212	none	putative symporter YidK
BLi01416	ykzA	organic hydroperoxide resistance protein OhrB, sigmaB regulon
BLi00815	yfkM	BLAST general stress protein YfkM [Bacillus licheniformis ATCC 14580 100%], GATase1_PfpI_like domain, GAT_
		superfamily
BLi02649	yqhA	similar to positive regulator of sigma-B activity; BLAST putative sulphate transporter YqhA [Bacillus licheniformi ATCC 14580 100%]
BLi01046	nhaX	putative regulatory gene for nhaC; BLAST stress response protein, NhaX [Bacillus licheniformis ATCC 14580 100%] AANH_like superfamily
BLi02221	yjgD	hypothetical protein
BLi03886	yqxL	BLAST Mg2+ transporter protein, CorA-like [Bacillus licheniformis ATCC 14580 100%], CorA domain
BLi00520	ydaP	pyruvate oxidase
BLi02834	yrhK	hypothetical protein
BLi01417	none	hypothetical protein
BLi02222	yjgC	similar to formate dehydrogenase; BLAST iron-sulfur binding domain-containing protein [Bacillus subtilis] 97% Molybdopterin-binding superfamily
BLi00509	ydaD	short chain dehydrogenase
BLi00576	none	close homolog to Des membrane phospholipid desaturase; BLAST fatty acid desaturase
BLi02246	yocK	similar to general stress protein
BLi00510	ydaE	hypothetical protein
BLi01401		BLAST transferase [Bacillus licheniformis ATCC 14580] 100%
BLi01401	ykgA	
	ykzI	hypothetical protein
BLi04360	yybO	Major facilitator superfamily
BLi02648	comGA	late competence protein ComGA
BLi03884	yqjF	hypothetical protein
BLi00805	none	Putative uncharacterized protein
BLi00534	gsiB	general stress protein
BLi01145	cotJA	CotJA
BLi00231	ybyB	hypothetical protein
BLi02908	none	Putative uncharacterized protein
BLi02352	none	Putative uncharacterized protein
		CwlC
BLi01974	cwlC	
BLi03201	ytlA	Putative sulfonate transport system substrate-binding protein YtlA
BLi02966	none	Putative uncharacterized protein
BLi01146	cotJB	CotJB
BLi04356	none	spore coat protein F
BLi00341	ycdF	similar to glucose 1-dehydrogenase
BLi01491	ykzB	unknown Blast
BLi02120	dctB	possible C4-dicarboxylate binding protein
BLi00530	ydaT	hypothetical protein
BLi00719	none	hypothetical protein
BLi03203	ytlD	YtID
BLi03203	opuCA	glycine betaine/carnitine/choline ABC transporter (ATP-binding protein)
BLi00804	ytcB	NAD-dependent epimerase/dehydratase
BLi01950	yraD	YraD
BLi04028	ywcE	Spore morphogenesis and germination protein ywcE
BLi00802	none	Spore coat biosynthesis protein
BLi01776	pyrE	orotate phosphoribosyltransferase
BLi02647	comGB	late competence protein ComGB / DNA transport protein ComGB
BLi03099	none	Small acid-soluble spore protein (Beta-type SASP)
BLi03888	nrgA	ammonium transporter
BLi00720	none	hypothetical protein
	none	Orotidine 5'-phosphate decarboxylase

Locus Tag	Gene	Description/Function
BLi00674	none	Putative uncharacterized protein
BLi04093	none	Putative transcriptional regulator
		hypothetical protein
BLi02272	none	7
BLi03202	ytlC	Putative sulfonate transport system ATP-binding protein YtlC
BLi03835	ywtD	Gamma-DL-glutamyl hydrolase
BLi00527	ydaS	hypothetical protein
		., .
BLi00198	none	Arginase
BLi02026	none	BLAST Trp repressor binding protein, putative [Bacillus licheniformis ATCC 14580] 100%; FMN_red superfamily
BLi00978	yhcN	hypothetical protein
BLi02691	yqfT	YafT
		•
BLi02270	yozR	(yozR/gerT) Spore germination protein gerT
BLi02188	yvmB	YvmB; BLAST transcriptional regulator 98%
BLi03735	hisB	imidazoleglycerol-phosphate dehydratase
BLi02963	none	Putative uncharacterized protein
BLi04167	none	putative transcriptional regulator of anaerobic genes
BLi00879	sspK	acid-soluble spore protein K
BLi03644	none	close homolog to Abh transcriptional regulator of transition state genes (AbrB-like)
BLi03911	ywnB	BLAST putative oxidoreductase [Bacillus subtilis subsp. subtilis str. 168 100%], NADB Rossmann superfamily
BLi03653	yvbG	YvbG
BLi03167	ytdP	similar to transcriptional regulator (AraC/XylS family)
BLi01050	sspB	Small acid-soluble spore protein (Beta-type)
BLi03207		
	dps	stress- and starvation-induced gene controlled by SigB
BLi04314	none	Putative uncharacterized protein
BLi01661	ykpC	hypothetical protein
BLi04094	mmgD	citrate synthase 3
BLi01622	none	hypothetical protein
BLi03468	none	Putative uncharacterized protein
BLi03737	hisG	ATP phosphoribosyltransferase catalytic subunit
BLi01774		dihydroorotate dehydrogenase 1B
	pyrD	
BLi01269	cotY	CotY
BLi01985	none	hypothetical protein
BLi03128	ytxJ	similar to general stress protein
BLi03516	uxaC	glucuronate isomerase
BLi04317	none	Putative uncharacterized protein
BLi01220	yjzB	Putative uncharacterized protein yizB
BLi04313	none	Putative uncharacterized protein
BLi02482	ypuA	YpuA
BLi00528	ansB	aspartate ammonia-lyase
BLi00803	none	Putative uncharacterized protein
BLi00349	none	ABC transporter, ATP-binding protein; ABC_DR_subfamily_A; P-loop NTPase superfamily; CcmA-Domain
BLi00709	none	putative transposase; BLAST DUF772 superfamily
BLi00446	ybfA	Putative DNA binding protein YbfA
BLi00786		BLAST membrane protein SdpI [Bacillus licheniformis ATCC 14580 100%], DUF1648 superfamily
	yvaZ	
BLi03765	yvjB	Peptidase S41A, C-terminal protease
BLi02494	spoVAA	SpoVAA
BLi01951	none	YraE
BLi02124	ydeT	similar to transcriptional regulator (ArsR family)
BLi00243	none	putative nucleoside-diphosphate-sugar epimerases; BLAST NADB_Rossmann superfamily, Epimerase domain
BLi00824	yfkD	Conserved protein YfkD
BLi04246	iolF	inositol transport protein
BLi01490	tnrA	TnrA
BLi04318	none	Putative Type I restriction-modification system M subunit
BLi02093	none	SAM dependent methyltranferase
BLi01488	none	Putative uncharacterized protein
BLi00725	none	Putative alanine racemase
BLi00980	yhcQ	Putative uncharacterized protein yhcQ
BLi03832	ywtG	similar to metabolite transport protein
BLi00026	yaaI	similar to isochorismatase; putative isochorismatase hydrolase YaaI
BLi00025	ydhD	BLAST glycoside hydrolase family protein [Bacillus licheniformis ATCC 14580] 100%; spore germination protein [Bacillus pumilus] 97%
BLi03129	ytxH	similar to general stress protein
BLi00451	yclG	Pectin lyase-like protein
BLi04316	none	HsdS
BLi01047	yheI	ABC transporter YheI
BLi00433		hypothetical protein
	none	
BLi03474	yfiZ	ABC transport system permease protein
BLi04121	none	hypothetical protein
BLi00950	none	Putative metallopeptidase
BLi01828	ylqH	Putative uncharacterized protein ylqH
BLi00550	ydcC	Conserved membrane protein YdcC
BLi04299	yvfS1	YvfS1
BLi03311	ydfR	Putative uncharacterized protein ydfR
BLi04122	none	putative transcriptional regulator
		similar to ferrichrome ABC transporter (permease); BLAST putative iron-siderophore ABC transporter (permease
BLi00464	yclO	

Locus Tag	Gene	Description/Function			
BLi01631	ykuP	similar to flavodoxin			
BLi01739	murG	N-acetylglucosaminyl transferase			
BLi04119	none	BLAST lantibiotic immunity protein, MFS type transporter [Bacillus licheniformis ATCC 14580] 100%			
BLi00270	none	hypothetical protein, (possible membrane protein [Bacillus sp.]; Score 274 / 54%; Duf_421-superfamily)			
BLi00985	yhcU	Putative uncharacterized protein yhcU			
BLi03229	glgC	glucose-1-phosphate adenylyltransferase			
BLi02663	none	SpoVAFA			
BLi01292	none	Hypothetical DNA-binding protein, putative transcriptional regulator			
BLi02424	yphA	BLAST putative integral inner membrane protein [Bacillus subtilis] 100%			
BLi00539	ydbL	YdbL			
BLi00594	none	hypothetical protein			
BLi03712	yvdC	YvdC			
BLi01051	none	hypothetical protein			
BLi04033	none	Putative uncharacterized protein			
BLi01112	yfmD	Putative transport system permease protein			
BLi04300	yvfS2	YvfS2			
BLi00171	cwlD	N-acetylmuramoyl-L-alanine amidase (germination)			
BLi02422	none	Putative uncharacterized protein			
BLi02423	seaA	involved in spore envelope assembly			
BLi04034	none	Putative uncharacterized protein			
BLi03713	ydhJ	Putative Metal-dependent phosphohydrolase, HD region			

Appendix 1C SigB regulon - B. cereus

Supplementary Table S3: SigB regulon members in *B. cereus* (de Been et al., 2010). The expression of all genes/proteins that are SigB-dependent, with a SigB promoter binding motif.

Locus Tag	Gene	Description/Function			
BC0861	bc0861	Hypothetical			
BC0862	yfkM	Protease I			
BC0863	katE	Catalase			
BC0995	n.i.	Hypothetical			
BC0996	n.i.	Hypothetical			
BC0998	yflT	General stress protein			
BC0999	bc0999	Hypothetical			
BC1000	bc1000	Hypothetical			
BC1001	bc1001	Hypothetical			
BC1002	rsbV	Anti-sigma factor antagonist			
BC1003	rsbW	Anti-sigma B factor			
BC1004	sigB	Sigma factor B			
BC1005	bc1005	bacterioferratin			
BC1006	rsbY	PP2C phosphatase			
BC1007	rsbM	Methyltransferase			
BC1008	rsbK	Histidine sensor kinase			
BC1009	bc1009	Hpt like phosphptransferase protein			
BC1010	bc1010	Hypothetical			
BC1011	bc1011	Hypothetical			
BC1012	bc1012	Hypothetical			
BC1154	hemH-2	Ferrochelatase			
BC1155	katA	Catalase			
BC2108	sigZ	Sigma factor Z			
BC2638	bc2638	Spore germination protein			
BC3129	corA	Mg2+ and Co2+ transporter			
BC3130	bc3130	Hypothetical			
BC3131	bc3131	Hypothetical			
BC3132	bc3132	General stress protein 17M			
BC4640	ytfJ	Hypothetical			
BC4641	bc4641	Hypothetical			
BC5390	cwlJ	Cell wall hydrolase cwlJ			
BC5391	gerQ	spore coat protein			

1.9 References

- Abram, F., Su, W.L., Wiedmann, M., Boor, K. J., Coote, P., Botting, C., et al. (2008). Proteomic analyses of a
 Listeria monocytogenes mutant lacking sigma B identify new components of the Sigma B regulon and highlight a
 role for Sigma B in the utilization of glycerol. Appl. Environ. Microbiol. 74, 594–604. doi:10.1128/AEM.01921-07.
- 3. Akbar, S., Gaidenko, T. A., Kang, C. M., O'Reilly, M., Devine, K. M., and Price, C. W. (2001). New family of regulators in the environmental signaling pathway which activates the general stress transcription factor sigma(B) of *Bacillus subtilis. J. Bacteriol.* 183, 1329–1338. doi:10.1128/JB.183.4.1329-1338.2001.
- 4. Aleti, G., Sessitsch, A., and Brader, G. (2015). Genome mining: Prediction of lipopeptides and polyketides from *Bacillus* and related Firmicutes. *Comput. Struct. Biotechnol. J.* 13, 192–203. doi:10.1016/j.csbj.2015.03.003.
- Alvarez, V. M., Guimarães, C. R., Jurelevicius, D., de Castilho, L. V. A., de Sousa, J. S., da Mota, F. F., et al. (2020). Microbial enhanced oil recovery potential of surfactin-producing *Bacillus subtilis* AB2.0. *Fuel* 272, 117730. doi:10.1016/j.fuel.2020.117730.
- André, S., Vallaeys, T., and Planchon, S. (2017). Spore-forming bacteria responsible for food spoilage. Res. Microbiol. 168, 379–387. doi:10.1016/j.resmic.2016.10.003.
- 7. Antelmann, H., Scharf, C., and Hecker, M. (2000). Phosphate starvation-inducible proteins of *Bacillus subtilis*: proteomics and transcriptional analysis. *J. Bacteriol.* 182, 4478–4490. doi:10.1128/jb.182.16.4478-4490.2000.
- 8. Arboleya, S., Watkins, C., Stanton, C., and Ross, R. P. (2016). Gut bifidobacteria populations in human health and aging. *Front. Microbiol.* 7, 1204. doi:10.3389/fmicb.2016.01204.
- Arima, K., Kakinuma, A., and Tamura, G. (1968). Surfactin, a crystalline peptidelipid surfactant produced by Bacillus subtilis: Isolation, characterization and its inhibition of fibrin clot formation. Biochem. Biophys. Res. Commun. 31, 488–494. doi:10.1016/0006-291X(68)90503-2.
- 10. Arnaouteli, S., Bamford, N. C., Stanley-Wall, N. R., and Kovács, Á. T. (2021). *Bacillus subtilis* biofilm formation and social interactions. *Nat. Rev. Microbiol.* 19, 600–614. doi:10.1038/s41579-021-00540-9.
- 11. Arrieta-Ortiz, M. L., Hafemeister, C., Bate, A. R., Chu, T., Greenfield, A., Shuster, B., et al. (2015). An experimentally supported model of the *Bacillus subtilis* global transcriptional regulatory network. *Mol. Syst. Biol.* 11, 839. doi:10.15252/msb.20156236.
- Bampidis, V., Azimonti, G., Bastos, M., Christensen, H., Dusemund, B., Kouba, M., et al. (2019). EFSA Panel (FEEDAP) Safety and efficacy of B-Act® (*Bacillus licheniformis* DSM 28710) as a feed additive for turkeys for fattening, turkeys reared for breeding and minor poultry species for fattening or raised for laying. *EFSA J. Eur. Food Saf. Auth.* 17, e05536. doi:10.2903/j.efsa.2019.5536.
- 13. Bandow, J. E., Brötz, H., and Hecker, M. (2002). *Bacillus subtilis* tolerance of moderate concentrations of rifampin involves the sigma(B)-dependent general and multiple stress response. *J. Bacteriol.* 184, 459–467. doi:10.1128/jb.184.2.459-467.2002.
- 14. Barák, I. (2021). Special Issue "Bacillus subtilis as a model organism to study basic cell processes." Microorganisms 9, 2459. doi:10.3390/microorganisms9122459.
- Baranyi, J., and Tamplin, M. L. (2004). ComBase: A common database on microbial responses to food environments. J. Food Prot. 67, 1967–1971. doi:10.4315/0362-028X-67.9.1967.
- Barbe, V., Cruveiller, S., Kunst, F., Lenoble, P., Meurice, G., Sekowska, A., et al. (2009). From a consortium sequence to a unified sequence: the *Bacillus subtilis* 168 reference genome a decade later. *Microbiol. Read. Engl.* 155, 1758–1775. doi:10.1099/mic.0.027839-0.
- 17. Bartolini, M., Cogliati, S., Vileta, D., Bauman, C., Ramirez, W., and Grau, R. (2019a). Stress-responsive alternative sigma factor SigB plays a positive role in the antifungal proficiency of *Bacillus subtilis*. *Appl. Environ*. *Microbiol*. 85. doi:10.1128/AEM.00178-19.
- 18. Bartolini, M., Cogliati, S., Vileta, D., Bauman, C., Rateni, L., Leñini, C., et al. (2018). Regulation of biofilm aging and dispersal in *Bacillus subtilis* by the alternative sigma factor SigB. *J. Bacteriol.* doi:10.1128/JB.00473-18.
- Bartolini, M., Cogliati, S., Vileta, D., Bauman, C., Rateni, L., Leñini, C., et al. (2019b). Regulation of biofilm aging and dispersal in *Bacillus subtilis* by the Alternative Sigma Factor SigB. *J. Bacteriol.* 201. doi:10.1128/JB.00473-18.
- 20. Benson, A. K., and Haldenwang, W. G. (1993). The sigma B-dependent promoter of the *Bacillus subtilis sigB* operon is induced by heat shock. *J. Bacteriol.* 175, 1929–1935. doi:10.1128/jb.175.7.1929-1935.1993.
- Bermúdez-Humarán, L. G., Salinas, E., Ortiz, G. G., Ramirez-Jirano, L. J., Morales, J. A., and Bitzer-Quintero, O. K. (2019). From probiotics to psychobiotics: live beneficial bacteria which act on the brain-gut axis. *Nutrients* 11, E890. doi:10.3390/nu11040890.
- 22. Bernhardt, J., Weibezahn, J., Scharf, C., and Hecker, M. (2003). *Bacillus subtilis* during feast and famine: visualization of the overall regulation of protein synthesis during glucose starvation by proteome analysis. *Genome Res.* 13, 224–237. doi:10.1101/gr.905003.
- 23. Binnie, C., Lampe, M., and Losick, R. (1986). Gene encoding the sigma 37 species of RNA polymerase sigma factor from *Bacillus subtilis. Proc. Natl. Acad. Sci. U. S. A.* 83, 5943–5947. doi:10.1073/pnas.83.16.5943.
- 24. Bintsis, T. (2017). Foodborne pathogens. AIMS Microbiol. 3, 529–563. doi:10.3934/microbiol.2017.3.529.

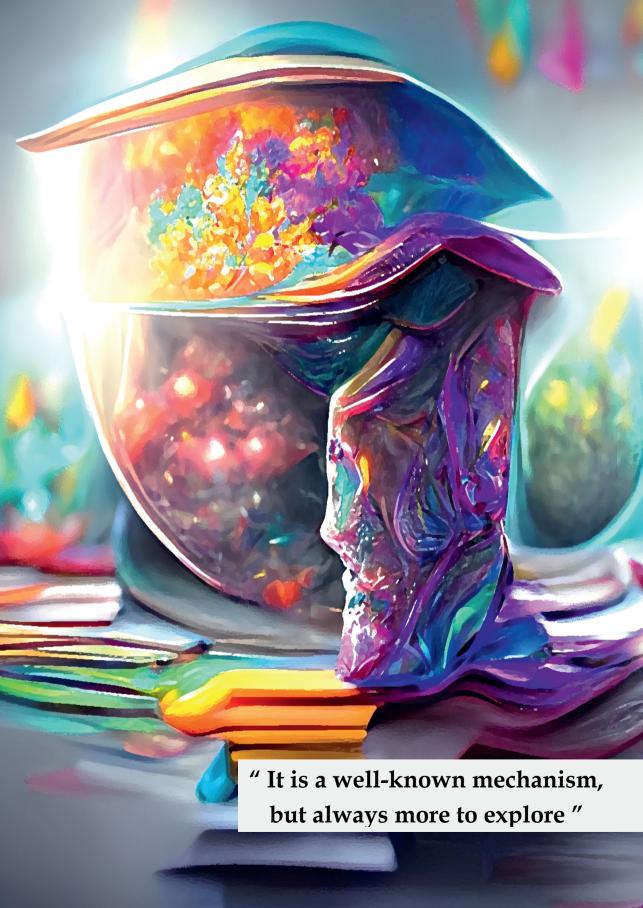
- 25. Bischoff, M., Dunman, P., Kormanec, J., Macapagal, D., Murphy, E., Mounts, W., et al. (2004). Microarray-based analysis of the *Staphylococcus aureus* σB Regulon. *J. Bacteriol.* 186, 4085–4099. doi:10.1128/JB.186.13.4085-4099.2004.
- 26. Blue, S. R., Singh, V. R., and Saubolle, M. A. (1995). *Bacillus licheniformis* Bacteremia: five cases associated with indwelling central venous catheters. *Clin. Infect. Dis.* 20, 629–633. doi:10.1093/clinids/20.3.629.
- 27. Borriss, R., Danchin, A., Harwood, C. R., Médigue, C., Rocha, E. P. C., Sekowska, A., et al. (2018). *Bacillus subtilis*, the model Gram-positive bacterium: 20 years of annotation refinement. *Microb. Biotechnol.* 11, 3–17. doi:10.1111/1751-7915.13043.
- 28. Boylan, S. A., Redfield, A. R., Brody, M. S., and Price, C. W. (1993). Stress-induced activation of the sigma B transcription factor of *Bacillus subtilis*. *J. Bacteriol*. 175, 7931–7937. doi:10.1128/jb.175.24.7931-7937.1993.
- Brigulla, M., Hoffmann, T., Krisp, A., Völker, A., Bremer, E., and Völker, U. (2003). Chill Induction of the SigB-dependent general stress response in *Bacillus subtilis* and Its contribution to low-temperature adaptation. *J. Bacteriol.* 185, 4305–4314. doi:10.1128/JB.185.15.4305-4314.2003.
- 30. Brody, M. S., and Price, C. W. (1998). *Bacillus licheniformis* sigB operon encoding the general stress transcription factor sigma B. *Gene* 212, 111–118. doi:10.1016/s0378-1119(98)00140-1.
- 31. Burton, A. T., DeLoughery, A., Li, G.-W., and Kearns, D. B. (2019). Transcriptional regulation and mechanism of SigN (ZpdN), a pBS32-Encoded Sigma Factor in *Bacillus subtilis. mBio*. doi:10.1128/mBio.01899-19.
- 32. Butcher, B. G., and Helmann, J. D. (2006). Identification of *Bacillus subtilis* sigma-dependent genes that provide intrinsic resistance to antimicrobial compounds produced by Bacilli. *Mol. Microbiol.* 60, 765–782. doi:10.1111/j.1365-2958.2006.05131.x.
- 33. Cabeen, M. T., Russell, J. R., Paulsson, J., and Losick, R. (2017). Use of a microfluidic platform to uncover basic features of energy and environmental stress responses in individual cells of *Bacillus subtilis. PLOS Genet.* 13, e1006901. doi:10.1371/journal.pgen.1006901.
- 34. Cao, M., Kobel, P. A., Morshedi, M. M., Wu, M. F. W., Paddon, C., and Helmann, J. D. (2002). Defining the *Bacillus subtilis* sigma(W) regulon: a comparative analysis of promoter consensus search, run-off transcription/macroarray analysis (ROMA), and transcriptional profiling approaches. *J. Mol. Biol.* 316, 443–457. doi:10.1006/jmbi.2001.5372.
- 35. Caro-Astorga, J., Frenzel, E., Perkins, J. R., Álvarez-Mena, A., de Vicente, A., Ranea, J. A. G., et al. (2020). Biofilm formation displays intrinsic offensive and defensive features of *Bacillus cereus*. *Npj Biofilms Microbiomes* 6, 1–15. doi:10.1038/s41522-019-0112-7.
- Chen, C.-C., Lewis, R. J., Harris, R., Yudkin, M. D., and Delumeau, O. (2003). A supramolecular complex in the environmental stress signalling pathway of *Bacillus subtilis. Mol. Microbiol.* 49, 1657–1669. doi:10.1046/j.1365-2958.2003.03663.x.
- 37. Chen, J.-C., Chang, C.-F., Hsu, D.-W., Shu, J.-C., Chen, H.-Y., Chen, C.-Y., et al. (2017). Temporal regulation of σB by partner-switching mechanism at a distinct growth stage in *Bacillus cereus. Int. J. Med. Microbiol. IJMM* 307, 521–532. doi:10.1016/j.ijmm.2017.09.005.
- 38. Chen, J.-C., Liu, J.-H., Hsu, D.-W., Shu, J.-C., Chen, C.-Y., and Chen, C.-C. (2015). Methylatable signaling helix coordinated inhibitory receiver domain in sensor kinase modulates environmental stress response in *Bacillus cereus*. *PloS One* 10, e0137952. doi:10.1371/journal.pone.0137952.
- 39. Chen, L.-C., Chen, J.-C., Shu, J.-C., Chen, C.-Y., Chen, S.-C., Chen, S.-H., et al. (2012). Interplay of RsbM and RsbK controls the σB activity of *Bacillus cereus. Environ. Microbiol.* 14, 2788–2799. doi:10.1111/j.1462-2920.2012.02788.x.
- 40. Cho, Y. H., Lee, E. J., Ahn, B. E., and Roe, J. H. (2001). SigB, an RNA polymerase sigma factor required for osmoprotection and proper differentiation of *Streptomyces coelicolor. Mol. Microbiol.* 42, 205–214. doi:10.1046/j.1365-2958.2001.02622.x.
- 41. Cohn, F. (1872). "Untersuchungen über Bakterien.," in *Beiträge zur Biologie der Pflanzen 1, 1875 (Heft 1), J. U. Kern's Verlag (Max Müller), Breslau.*, 127–224. Available at: https://www-ncbi-nlm-nih-gov.ezproxy.library.wur.nl/Taxonomy/Browser/wwwtax.cgi?lvl=0&id=135461.
- 42. Crespo Tapia, N., Dorey, A. L., Gahan, C. G. M., den Besten, H. M. W., O'Byrne, C. P., and Abee, T. (2020). Different carbon sources result in differential activation of *sigma B* and stress resistance in *Listeria monocytogenes*. *Int. J. Food Microbiol.* 320, 108504. doi:10.1016/j.ijfoodmicro.2019.108504.
- 43. de Been, M., Francke, C., Siezen, R. J., and Abee, T. (2011). Novel *sigma B* regulation modules of Gram-positive bacteria involve the use of complex hybrid histidine kinases. *Microbiol. Read. Engl.* 157, 3–12. doi:10.1099/mic.0.045740-0.
- 44. de Been, M., Tempelaars, M. H., van Schaik, W., Moezelaar, R., Siezen, R. J., and Abee, T. (2010). A novel hybrid kinase is essential for regulating the sigma(B)-mediated stress response of *Bacillus cereus. Environ. Microbiol.* 12, 730–745. doi:10.1111/j.1462-2920.2009.02116.x.
- 45. De Filippis, F., Pasolli, E., and Ercolini, D. (2020). The food-gut axis: lactic acid bacteria and their link to food, the gut microbiome and human health. *FEMS Microbiol. Rev.* 44, 454–489. doi:10.1093/femsre/fuaa015.

- 46. de Frias, U. A., Pereira, G. K. B., Guazzaroni, M.-E., and Silva-Rocha, R. (2018). Boosting secondary metabolite production and discovery through the engineering of novel microbial biosensors. *BioMed Res. Int.* 2018, e7021826. doi:https://doi.org/10.1155/2018/7021826.
- De Oliveira, D. M. P., Forde, B. M., Kidd, T. J., Harris, P. N. A., Schembri, M. A., Beatson, S. A., et al. (2020). Antimicrobial resistance in ESKAPE pathogens. Clin. Microbiol. Rev. 33, e00181-19. doi:10.1128/CMR.00181-19.
- 48. de Vries, Y. P., Hornstra, L. M., Atmadja, R. D., Schaik, W. van, de Vos, W. M., and Abee, T. (2005). Deletion of sigB in *Bacillus cereus* affects spore properties. *FEMS Microbiol. Lett.* 252, 169–173. doi:10.1016/j.femsle.2005.08.042.
- Débarbouillé, M., Martin-Verstraete, I., Klier, A., and Rapoport, G. (1991). The transcriptional regulator LevR of Bacillus subtilis has domains homologous to both sigma 54- and phosphotransferase system-dependent regulators. Proc. Natl. Acad. Sci. U. S. A. 88, 2212–2216. doi:10.1073/pnas.88.6.2212.
- 50. Dessaux, C., Pucciarelli, M. G., Guerreiro, D. N., O'Byrne, C. P., and García-Del Portillo, F. (2021). Activation of the *Listeria monocytogenes* stressosome in the intracellular eukaryotic environment. *Appl. Environ. Microbiol.* 87, e0039721. doi:10.1128/AEM.00397-21.
- 51. Diehl, A., Wood, T. M., Gebhard, S., Martin, N. I., and Fritz, G. (2020). The cell envelope stress response of *Bacillus subtilis* towards Laspartomycin C. *Antibiot. Basel Switz.* 9, E729. doi:10.3390/antibiotics9110729.
- 52. Dimidi, E., Cox, S. R., Rossi, M., and Whelan, K. (2019). Fermented foods: definitions and characteristics, impact on the gut microbiota and effects on gastrointestinal health and disease. *Nutrients* 11, E1806. doi:10.3390/nu11081806.
- 53. Dorey, A. L., Lee, B.-H., Rotter, B., and O'Byrne, C. P. (2019a). Blue light sensing in *Listeria monocytogenes* Is temperature-dependent and the transcriptional response to it is predominantly SigB-dependent. *Front. Microbiol.* 10, 2497. doi:10.3389/fmicb.2019.02497.
- 54. Dorey, A., Marinho, C., Piveteau, P., and O'Byrne, C. (2019b). Role and regulation of the stress activated sigma factor sigma B (σB) in the saprophytic and host-associated life stages of *Listeria monocytogenes*. *Adv. Appl. Microbiol.* 106, 1–48. doi:10.1016/bs.aambs.2018.11.001.
- Duncan, M. L., Kalman, S. S., Thomas, S. M., and Price, C. W. (1987). Gene encoding the 37,000-dalton minor sigma factor of *Bacillus subtilis* RNA polymerase: isolation, nucleotide sequence, chromosomal locus, and cryptic function. *J. Bacteriol.* 169, 771–778. doi:10.1128/jb.169.2.771-778.1987.
- 56. EFSA Panel on Biological Hazards (BIOHAZ) (2016). Risks for public health related to the presence of *Bacillus cereus* and other *Bacillus* spp. including *Bacillus thuringiensis* in foodstuffs. *EFSA J.* 14, e04524. doi:10.2903/j.efsa.2016.4524.
- 57. Ehling-Schulz, M., Guinebretiere, M.-H., Monthán, A., Berge, O., Fricker, M., and Svensson, B. (2006). Toxin gene profiling of enterotoxic and emetic *Bacillus cereus*. *FEMS Microbiol*. *Lett.* 260, 232–240. doi:10.1111/j.1574-6968.2006.00320.x.
- 58. Ehling-Schulz, M., Koehler, T. M., and Lereclus, D. (2019). The *Bacillus cereus Group: Bacillus* species with Pathogenic potential. *Microbiol. Spectr.* 7, 10.1128/microbiolspec.GPP3-0032–2018. doi:10.1128/microbiolspec.GPP3-0032-2018.
- 59. Elshaghabee, F. M. F., Rokana, N., Gulhane, R. D., Sharma, C., and Panwar, H. (2017). *Bacillus* As potential probiotics: status, concerns, and future perspectives. *Front. Microbiol.* 8. doi:10.3389/fmicb.2017.01490.
- Fernández Martínez, L., Bishop, A., Parkes, L., Del Sol, R., Salerno, P., Sevcikova, B., et al. (2009). Osmoregulation in *Streptomyces coelicolor*: modulation of SigB activity by OsaC. *Mol. Microbiol.* 71, 1250–1262. doi:10.1111/j.1365-2958.2009.06599.x.
- 61. Fira, D., Dimkić, I., Berić, T., Lozo, J., and Stanković, S. (2018). Biological control of plant pathogens by *Bacillus* species. *J. Biotechnol.* 285, 44–55. doi:10.1016/j.jbiotec.2018.07.044.
- 62. Fontán, P. A., Voskuil, M. I., Gomez, M., Tan, D., Pardini, M., Manganelli, R., et al. (2009). The *Mycobacterium tuberculosis* sigma factor sigmaB is required for full response to cell envelope stress and hypoxia in vitro, but it is dispensable for in vivo growth. *J. Bacteriol.* 191, 5628–5633. doi:10.1128/JB.00510-09.
- 63. Fouet, A., Namy, O., and Lambert, G. (2000). Characterization of the operon encoding the alternative sigma(B) factor from *Bacillus anthracis* and its role in virulence. *J. Bacteriol.* 182, 5036–5045. doi:10.1128/JB.182.18.5036-5045.2000.
- 64. Fritze, D. (2004). Taxonomy of the genus *bacillus* and related genera: the aerobic endospore-forming bacteria. *Phytopathology* 94, 1245–1248. doi:10.1094/PHYTO.2004.94.11.1245.
- Gaidenko, T. A., and Price, C. W. (1998). General stress transcription factor ςB and sporulation transcription factor ςH each contribute to survival of *Bacillus subtilis* under extreme growth conditions. *J. Bacteriol.* 180, 3730– 3733.
- 66. Galié, S., García-Gutiérrez, C., Miguélez, E. M., Villar, C. J., and Lombó, F. (2018). Biofilms in the food industry: health aspects and control methods. *Front. Microbiol.* 9. doi:10.3389/fmicb.2018.00898.

- 67. Gao, T., Li, Y., Chai, Y., Wang, Q., and Ding, M. (2021). SigB regulates stress resistance, glucose starvation, MnSOD production, biofilm formation, and root colonization in *Bacillus cereus* 905. *Appl. Microbiol. Biotechnol.* doi:10.1007/s00253-021-11402-y.
- 68. Gauvry, E., Mathot, A.-G., Leguérinel, I., Couvert, O., Postollec, F., Broussolle, V., et al. (2017). Knowledge of the physiology of spore-forming bacteria can explain the origin of spores in the food environment. *Res. Microbiol.* 168, 369–378. doi:10.1016/j.resmic.2016.10.006.
- Gertz, S., Engelmann, S., Schmid, R., Ziebandt, A. K., Tischer, K., Scharf, C., et al. (2000). Characterization of the sigma(B) regulon in Staphylococcus aureus. J. Bacteriol. 182, 6983–6991. doi:10.1128/JB.182.24.6983-6991.2000.
- Golyshin, P. M., Fredrickson, H. L., Giuliano, L., Rothmel, R., Timmis, K. N., and Yakimov, M. M. (1999). Effect
 of novel biosurfactants on biodegradation of polychlorinated biphenyls by pure and mixed bacterial cultures.
 New Microbiol. 22, 257–267.
- 71. González-Pastor, J. E. (2011). Cannibalism: a social behavior in sporulating *Bacillus subtilis. FEMS Microbiol. Rev.* 35, 415–424. doi:10.1111/j.1574-6976.2010.00253.x.
- 72. Gopal, N., Hill, C., Ross, P. R., Beresford, T. P., Fenelon, M. A., and Cotter, P. D. (2015). The prevalence and control of *bacillus* and related spore-forming bacteria in the dairy industry. *Front. Microbiol.* 6. doi:10.3389/fmicb.2015.01418.
- Guariglia-Oropeza, V., and Helmann, J. D. (2011). Bacillus subtilis σ(V) confers lysozyme resistance by activation
 of two cell wall modification pathways, peptidoglycan O-acetylation and D-alanylation of teichoic acids. J.
 Bacteriol. 193, 6223–6232. doi:10.1128/JB.06023-11.
- 74. Guedon, E., Moore, C. M., Que, Q., Wang, T., Ye, R. W., and Helmann, J. D. (2003). The global transcriptional response of *Bacillus subtilis* to manganese involves the MntR, Fur, TnrA and σB regulons. *Mol. Microbiol.* 49, 1477–1491. doi:10.1046/j.1365-2958.2003.03648.x.
- 75. Guerreiro, D. N., Arcari, T., and O'Byrne, C. P. (2020a). The σB-Mediated general stress response of *Listeria monocytogenes*: life and death decision making in a pathogen. *Front. Microbiol.* 11, 1505. doi:10.3389/fmicb.2020.01505.
- Guerreiro, D. N., Wu, J., Dessaux, C., Oliveira, A. H., Tiensuu, T., Gudynaite, D., et al. (2020b). Mild stress
 conditions during laboratory culture promote the proliferation of mutations that negatively affect sigma b activity
 in *Listeria monocytogenes*. J. Bacteriol. 202, e00751-19. doi:10.1128/JB.00751-19.
- 77. Guinebretière, M.-H., Velge, P., Couvert, O., Carlin, F., Debuyser, M.-L., and Nguyen-The, C. (2010). Ability of *Bacillus cereus* group strains to cause food poisoning varies according to phylogenetic affiliation (groups i to vii) rather than species affiliation. *J. Clin. Microbiol.* 48, 3388–3391. doi:10.1128/JCM.00921-10.
- 78. Guldimann, C., Boor, K. J., Wiedmann, M., and Guariglia-Oropeza, V. (2016). Resilience in the face of uncertainty: sigma factor B fine-tunes gene expression to support homeostasis in gram-positive bacteria. *Appl Env. Microbiol* 82, 4456–4469. doi:10.1128/AEM.00714-16.
- 79. Hain, T., Hossain, H., Chatterjee, S. S., Machata, S., Volk, U., Wagner, S., et al. (2008). Temporal transcriptomic analysis of the *Listeria monocytogenes* EGD-e sigmaB regulon. *BMC Microbiol.* 8, 20. doi:10.1186/1471-2180-8-20.
- Haldenwang, W. G. (1995). The sigma factors of Bacillus subtilis. Microbiol. Rev. 59, 1–30. doi:10.1128/mr.59.1.1-30.1995.
- 81. Haldenwang, W. G., and Losick, R. (1979). A modified RNA polymerase transcribes a cloned gene under sporulation control in *Bacillus subtilis*. *Nature* 282, 256–260. doi:10.1038/282256a0.
- 82. Haydushka, I. A., Markova, N., Kirina, V., and Atanassova, M. (2012). Recurrent sepsis due to *Bacillus licheniformis*. J. Glob. Infect. Dis. 4, 82–83. doi:10.4103/0974-777X.93768.
- 83. Hecker, M., Heim, C., Völker, U., and Wölfel, L. (1988). Induction of stress proteins by sodium chloride treatment in *Bacillus subtilis. Arch. Microbiol.* 150, 564–566. doi:10.1007/BF00408250.
- 84. Hecker, M., Pané-Farré, J., and Uwe, V. (2007). SigB-dependent general stress response in *Bacillus subtilis* and related gram-positive bacteria. *Annu. Rev. Microbiol.* 61, 215–236. doi:10.1146/annurev.micro.61.080706.093445.
- 85. Hecker, M., and Völker, U. (1998). Non-specific, general and multiple stress resistance of growth-restricted *Bacillus subtilis* cells by the expression of the sigmaB regulon. *Mol. Microbiol.* 29, 1129–1136. doi:10.1046/j.1365-2958.1998.00977.x.
- 86. Hecker, M., and Völker, U. (2001). "General stress response of *Bacillus subtilis* and other bacteria," in *Advances in Microbial Physiology* (Academic Press), 35–91. doi:10.1016/S0065-2911(01)44011-2.
- 87. Helmann, J. D. (1991). Alternative sigma factors and the regulation of flagellar gene expression. *Mol. Microbiol.* 5, 2875–2882. doi:10.1111/j.1365-2958.1991.tb01847.x.
- 88. Helmann, J. D. (2016). *Bacillus subtilis* extracytoplasmic function (ECF) sigma factors and defense of the cell envelope. *Curr. Opin. Microbiol.* 30, 122–132. doi:10.1016/j.mib.2016.02.002.
- Henry, S., Lereclus, D., and Slamti, L. (2020). The alternative sigma factor SigB is required for the pathogenicity of *Bacillus thuringiensis*. J. Bacteriol. 202, e00265-20. doi:10.1128/JB.00265-20.
- 90. Hills, R. D., Pontefract, B. A., Mishcon, H. R., Black, C. A., Sutton, S. C., and Theberge, C. R. (2019). Gut Microbiome: profound implications for diet and disease. *Nutrients* 11, E1613. doi:10.3390/nu11071613.

- 91. Hoi, L. T., Voigt, B., Jürgen, B., Ehrenreich, A., Gottschalk, G., Evers, S., et al. (2006). The phosphate-starvation response of *Bacillus licheniformis*. *PROTEOMICS* 6, 3582–3601. doi:10.1002/pmic.200500842.
- 92. Holtmann, G., Brigulla, M., Steil, L., Schütz, A., Barnekow, K., Völker, Ü., et al. (2004). RsbV-independent induction of the SigB-dependent general stress regulon of *Bacillus subtilis* during growth at high temperature. *J. Bacteriol.* 186, 6150–6158. doi:10.1128/JB.186.18.6150-6158.2004.
- 93. Hu, Y., and Coates, A. R. (1999). Transcription of two sigma 70 homologue genes, *sigA* and *sigB*, in stationary-phase *Mycobacterium tuberculosis*. *J. Bacteriol*. 181, 469–476. doi:10.1128/JB.181.2.469-476.1999.
- 94. Huang, X., Suo, J., and Cui, Y. (2011). Optimization of antimicrobial activity of surfactin and polylysine against *Salmonella enteritidis* in milk evaluated by a response surface methodology. *Foodborne Pathog. Dis.* 8, 439–443. doi:10.1089/fpd.2010.0738.
- Hurst-Hess, K., Biswas, R., Yang, Y., Rudra, P., Lasek-Nesselquist, E., and Ghosh, P. (2019). Mycobacterial SigA and SigB cotranscribe essential housekeeping genes during exponential growth. mBio 10, e00273-19. doi:10.1128/mBio.00273-19.
- 96. Ikryannikova, L. N., Kurbatov, L. K., Soond, S. M., and Zamyatnin, A. A. (2019). Harnessing the potential of killers and altruists within the microbial community: a possible alternative to antibiotic therapy? *Antibiot. Basel Switz.* 8, E230. doi:10.3390/antibiotics8040230.
- 97. Ivanova, N., Sorokin, A., Anderson, I., Galleron, N., Candelon, B., Kapatral, V., et al. (2003). Genome sequence of *Bacillus cereus* and comparative analysis with *Bacillus anthracis*. *Nature* 423, 87–91. doi:10.1038/nature01582.
- 98. Jefferson, K. K. (2004). What drives bacteria to produce a biofilm? FEMS Microbiol. Lett. 236, 163–173. doi:10.1016/j.femsle.2004.06.005.
- Jenul, C., and Horswill, A. R. (2019). Regulation of Staphylococcus aureus Virulence. Microbiol. Spectr. 7, 7.2.29. doi:10.1128/microbiolspec.GPP3-0031-2018.
- Johnson, W. C., Moran, C. P., and Losick, R. (1983). Two RNA polymerase sigma factors from *Bacillus subtilis* discriminate between overlapping promoters for a developmentally regulated gene. *Nature* 302, 800–804. doi:10.1038/302800a0.
- 101. Jurk, M., Schramm, P., and Schmieder, P. (2013). The blue-light receptor YtvA from *Bacillus subtilis* is permanently incorporated into the stressosome independent of the illumination state. *Biochem. Biophys. Res. Commun.* 432, 499–503. doi:10.1016/j.bbrc.2013.02.025.
- 102. Kimura, K., and Yokoyama, S. (2019). Trends in the application of *Bacillus* in fermented foods. *Curr. Opin. Biotechnol.* 56, 36–42. doi:10.1016/j.copbio.2018.09.001.
- 103. Lane, N. (2015). The unseen world: reflections on Leeuwenhoek (1677) 'Concerning little animals.' *Philos. Trans. R. Soc. B Biol. Sci.* 370, 20140344. doi:10.1098/rstb.2014.0344.
- 104. Lee, J.-H., Karakousis, P. C., and Bishai, W. R. (2008). Roles of SigB and SigF in the *Mycobacterium tuberculosis* sigma factor network. *J. Bacteriol.* 190, 699–707. doi:10.1128/JB.01273-07.
- 105. Lee, N.-K., Kim, W.-S., and Paik, H.-D. (2019). Bacillus strains as human probiotics: characterization, safety, microbiome, and probiotic carrier. Food Sci. Biotechnol. 28, 1297–1305. doi:10.1007/s10068-019-00691-9.
- 106. Liu, Y., Du, J., Lai, Q., Zeng, R., Ye, D., Xu, J., et al. (2017). Proposal of nine novel species of the *Bacillus cereus* group. *Int. J. Syst. Evol. Microbiol.* 67, 2499–2508. doi:10.1099/ijsem.0.001821.
- 107. Liu, Y., Lai, Q., Göker, M., Meier-Kolthoff, J. P., Wang, M., Sun, Y., et al. (2015). Genomic insights into the taxonomic status of the *Bacillus cereus* group. *Sci. Rep.* 5, 14082. doi:10.1038/srep14082.
- 108. Liu, Y., Lai, Q., and Shao, Z. (2018). Genome analysis-based reclassification of *Bacillus weihenstephanensis* as a later heterotypic synonym of *Bacillus mycoides. Int. J. Syst. Evol. Microbiol.* 68, 106–112. doi:10.1099/ijsem.0.002466.
- 109. Liu, Y., Orsi, R. H., Gaballa, A., Wiedmann, M., Boor, K. J., and Guariglia-Oropeza, V. (2019). Systematic review of the *Listeria monocytogenes* σB regulon supports a role in stress response, virulence and metabolism. *Future Microbiol.* 14, 801–828. doi:10.2217/fmb-2019-0072.
- 110. Losi, A., Quest, B., and Gärtner, W. (2003). Listening to the blue: the time-resolved thermodynamics of the bacterial blue-light receptor YtvA and its isolated LOV domain. *Photochem. Photobiol. Sci.* 2, 759–766. doi:10.1039/B301782F.
- 111. Luo, C., Liu, X., Zhou, H., Wang, X., and Chen, Z. (2015). Nonribosomal peptide synthase gene clusters for lipopeptide biosynthesis in *Bacillus subtilis* 916 and their phenotypic functions. *Appl. Environ. Microbiol.* 81, 422– 431. doi:10.1128/AEM.02921-14.
- 112. Luo, Y., Asai, K., Sadaie, Y., and Helmann, J. D. (2010). Transcriptomic and phenotypic characterization of a Bacillus subtilis Strain without Extracytoplasmic Function σ Factors. J. Bacteriol. 192, 5736–5745. doi:10.1128/JB.00826-10.
- 113. Luo, Y., and Helmann, J. D. (2012). Analysis of the role of *Bacillus subtilis* $\sigma(M)$ in β -lactam resistance reveals an essential role for c-di-AMP in peptidoglycan homeostasis. *Mol. Microbiol.* 83, 623–639. doi:10.1111/j.1365-2958.2011.07953.x.

- 114. Madeira, J.-P., Omer, H., Alpha-Bazin, B., Armengaud, J., and Duport, C. (2016). Deciphering the interactions between the *Bacillus cereus* linear plasmid, pBClin15, and its host by high-throughput comparative proteomics. *J. Proteomics* 146, 25–33. doi:10.1016/j.jprot.2016.06.022.
- 115. Madigan, M. T., Bender, K. S., Buckley, D. H., Sattley, M. W., and Stahl, D. A. (2021). *Brock Biology of Microorganisms sixteenth global edition*. Pearson Education Limited Available at: www.pearsonglobaleditions.com.
- 116. Madslien, E. H., Rønning, H. T., Lindbäck, T., Hassel, B., Andersson, M. A., and Granum, P. E. (2013). Lichenysin is produced by most *Bacillus licheniformis* strains. *J. Appl. Microbiol.* 115, 1068–1080. doi:https://doi.org/10.1111/jam.12299.
- 117. Mandin, P., and Guillier, M. (2013). Expanding control in bacteria: interplay between small RNAs and transcriptional regulators to control gene expression. *Curr. Opin. Microbiol.* 16, 125–132. doi:10.1016/j.mib.2012.12.005.
- 118. Marahiel, M. A., Stachelhaus, T., and Mootz, H. D. (1997). Modular peptide synthesis involved in nonribosomal peptide synthesis. *Chem. Rev.* 97, 2651–2674. doi: 10.1021/cr960029e.
- 119. Martínez-Núñez, M. A., and López, V. E. L. y. (2016). Nonribosomal peptides synthetases and their applications in industry. *Sustain. Chem. Process.* 4, 13. doi:10.1186/s40508-016-0057-6.
- 120. Mascher, T., Margulis, N. G., Wang, T., Ye, R. W., and Helmann, J. D. (2003). Cell wall stress responses in *Bacillus subtilis*: the regulatory network of the bacitracin stimulon. *Mol. Microbiol.* 50, 1591–1604. doi:10.1046/j.1365-2958.2003.03786.x.
- 121. Méndez, M. B., Orsaria, L. M., Philippe, V., Pedrido, M. E., and Grau, R. R. (2004). Novel roles of the master transcription factors Spo0A and σB for survival and sporulation of *Bacillus subtilis* at low growth temperature. *J. Bacteriol.* 186, 989–1000. doi:10.1128/JB.186.4.989-1000.2004.
- 122. Mendez, R., Gutierrez, A., Reyes, J., and Márquez-Magaña, L. (2012). The extracytoplasmic function sigma factor SigY is important for efficient maintenance of the Spβ prophage that encodes sublancin in *Bacillus subtilis. DNA Cell Biol.* 31, 946–955. doi:10.1089/dna.2011.1513.
- 123. Merino, N., Aronson, H. S., Bojanova, D. P., Feyhl-Buska, J., Wong, M. L., Zhang, S., et al. (2019). Living at the extremes: extremophiles and the limits of life in a planetary context. *front. Microbiol.* 10. Available at: https://www.frontiersin.org/article/10.3389/fmicb.2019.00780 [Accessed March 1, 2022].
- 124. Michalik, S., Depke, M., Murr, A., Gesell Salazar, M., Kusebauch, U., Sun, Z., et al. (2017). A global *Staphylococcus aureus* proteome resource applied to the in vivo characterization of host-pathogen interactions. *Sci. Rep.* 7, 9718. doi:10.1038/s41598-017-10059-w.
- 125. Michalik, S., Reder, A., Richts, B., Faßhauer, P., Mäder, U., Pedreira, T., et al. (2021). The *Bacillus subtilis* minimal genome compendium. *ACS Synth. Biol.* 10, 2767–2771. doi:10.1021/acssynbio.1c00339.
- 126. Mikkola, R., Kolari, M., Andersson, M. A., Helin, J., and Salkinoja-Salonen, M. S. (2003). Toxic lactonic lipopeptide from food poisoning isolates of *Bacillus licheniformis. Eur. J. Biochem.* 267, 4068–4074. doi:https://doi.org/10.1046/j.1432-1033.2000.01467.x.
- 127. Moisan, H., Brouillette, E., Jacob, C. L., Langlois-Bégin, P., Michaud, S., and Malouin, F. (2006). Transcription of virulence factors in *Staphylococcus aureus* small-colony variants isolated from cystic fibrosis patients is influenced by SigB. *J. Bacteriol.* 188, 64–76. doi:10.1128/JB.188.1.64-76.2006.
- 128. Moran, C. P., Lang, N., Banner, C. D., Haldenwang, W. G., and Losick, R. (1981). Promoter for a developmentally regulated gene in *Bacillus subtilis*. *Cell* 25, 783–791. doi:10.1016/0092-8674(81)90186-0.
- 129. Moran, C. P., Lang, N., LeGrice, S. F., Lee, G., Stephens, M., Sonenshein, A. L., et al. (1982). Nucleotide sequences that signal the initiation of transcription and translation in *Bacillus subtilis. Mol. Gen. Genet. MGG* 186, 339–346. doi:10.1007/BF00729452.
- 130. Moschonas, G., Lianou, A., Nychas, G.-J. E., and Panagou, E. Z. (2021). Spoilage potential of *Bacillus subtilis* in a neutral-pH dairy dessert. *Food Microbiol.* 95, 103715. doi:10.1016/j.fm.2020.103715.
- 131. Mulligan, C. N. (2005). Environmental applications for biosurfactants. *Environ. Pollut. Barking Essex 1987* 133, 183–198. doi:10.1016/j.envpol.2004.06.009.
- 132. Nadezhdin, E., Murphy, N., Dalchau, N., Phillips, A., and Locke, J. C. W. (2020). Stochastic pulsing of gene expression enables the generation of spatial patterns in *Bacillus subtilis* biofilms. *Nat. Commun.* 11. doi:10.1038/s41467-020-14431-9.
- 133. Nadezhdin, E. V., Brody, M. S., and Price, C. W. (2011). An α/β Hydrolase and Associated Per-ARNT-Sim Domain Comprise a Bipartite Sensing Module Coupled with Diverse Output Domains. *PLoS ONE* 6. doi:10.1371/journal.pone.0025418.
- 134. Nakano, M. M., and Zuber, P. (1998). Anaerobic growth of a "strict aerobe" (*Bacillus subtilis*). *Annu. Rev. Microbiol.* 52, 165–190. doi:10.1146/annurev.micro.52.1.165.
- 135. Nannapaneni, P., Hertwig, F., Depke, M., Hecker, M., Mäder, U., Völker, U., et al. (2012). Defining the structure of the general stress regulon of *Bacillus subtilis* using targeted microarray analysis and random forest classification. *Microbiol. Read. Engl.* 158, 696–707. doi:10.1099/mic.0.055434-0.


- 136. Nicholson, W. L. (2012). Increased competitive fitness of *Bacillus subtilis* under nonsporulating conditions via inactivation of pleiotropic regulators AlsR, SigD, and SigW. *Appl. Environ. Microbiol.* 78, 3500–3503. doi:10.1128/AEM.07742-11.
- 137. Nicholson, W. L., Sun, D. X., Setlow, B., and Setlow, P. (1989). Promoter specificity of sigma G-containing RNA polymerase from sporulating cells of *Bacillus subtilis*: identification of a group of forespore-specific promoters. *J. Bacteriol.* 171, 2708–2718. doi:10.1128/jb.171.5.2708-2718.1989.
- 138. Nitschke, M., and Silva, S. S. e (2018). Recent food applications of microbial surfactants. *Crit. Rev. Food Sci. Nutr.* 58, 631–638. doi:10.1080/10408398.2016.1208635.
- 139. O'Byrne, C. P., and Karatzas, K. A. G. (2008). "Chapter 5 The Role of Sigma B (σB) in the stress adaptations of Listeria monocytogenes: overlaps between stress adaptation and virulence," in Advances in Applied Microbiology, eds. A. I. Laskin, S. Sariaslani, and G. M. Gadd (Academic Press), 115–140. doi:10.1016/S0065-2164(08)00605-9
- 140. Ogura, M. (2022). Identification of transposon-inserted mutations including mpB::Tn that abolished glucose induction of sigX encoding extracytoplasmic function-sigma factor in Bacillus subtilis. Biosci. Biotechnol. Biochem. 86, 282–285. doi:10.1093/bbb/zbab211.
- 141. Okinaka, R. T., and Keim, P. (2016). The phylogeny of *Bacillus cereus* sensu lato. *Microbiol. Spectr.* 4, 4.1.08. doi:10.1128/microbiolspec.TBS-0012-2012.
- Oliveira, A. H., Tiensuu, T., Guerreiro, D. N., Tükenmez, H., Dessaux, C., García-Del Portillo, F., et al. (2021).
 Listeria monocytogenes requires the RsbX protein to prevent SigB-activation under non-stressed conditions. J. Bacteriol., JB0048621. doi:10.1128/JB.00486-21.
- Ollinger, J., Bowen, B., Wiedmann, M., Boor, K. J., and Bergholz, T. M. (2009). Listeria monocytogenes sigmaB modulates PrfA-mediated virulence factor expression. Infect. Immun. 77, 2113–2124. doi:10.1128/IAI.01205-08.
- 144. Ondrusch, N., and Kreft, J. (2011). Blue and red light modulates SigB-dependent gene transcription, swimming motility and invasiveness in *Listeria monocytogenes*. *PloS One* 6, e16151. doi:10.1371/journal.pone.0016151.
- 145. Paget, M. S. (2015). Bacterial sigma factors and anti-sigma factors: structure, function and distribution. *Biomolecules* 5, 1245–1265. doi:10.3390/biom5031245.
- 146. Pané-Farré, J., Jonas, B., Förstner, K., Engelmann, S., and Hecker, M. (2006). The sigmaB regulon in *Staphylococcus aureus* and its regulation. *Int. J. Med. Microbiol. IJMM* 296, 237–258. doi:10.1016/j.ijmm.2005.11.011.
- 147. Pané-Farré, J., Jonas, B., Hardwick, S. W., Gronau, K., Lewis, R. J., Hecker, M., et al. (2009). Role of RsbU in controlling SigB activity in *Staphylococcus aureus* following alkaline stress. *J. Bacteriol.* 191, 2561–2573. doi:10.1128/JB.01514-08.
- 148. Pané-Farré, J., Lewis, R. J., and Stülke, J. (2005). The RsbRST stress module in bacteria: a signalling system that may interact with different output modules. *J. Mol. Microbiol. Biotechnol.* 9, 65–76. doi:10.1159/000088837.
- 149. Pané-Farré, J., Quin, M. B., Lewis, R. J., and Marles-Wright, J. (2017). Structure and function of the stressosome signalling hub. *Subcell. Biochem.* 83, 1–41. doi:10.1007/978-3-319-46503-6_1.
- 150. Park, D. J., Yun, J. C., Baek, J. E., Jung, E. Y., Lee, D. W., Kim, M.-A., et al. (2006). Relapsing *Bacillus licheniformis* peritonitis in a continuous ambulatory peritoneal dialysis patient. *Nephrol. Carlton Vic* 11, 21–22. doi:10.1111/j.1440-1797.2006.00539.x.
- 151. Pathak, D., Jin, K. S., Tandukar, S., Kim, J. H., Kwon, E., and Kim, D. Y. (2020). Structural insights into the regulation of SigB activity by RsbV and RsbW. *IUCrJ* 7, 737–747. doi:10.1107/S2052252520007617.
- 152. Pedreira, T., Elfmann, C., and Stülke, J. (2021). The current state of SubtiWiki, the database for the model organism *Bacillus subtilis. Nucleic Acids Res.*, gkab943. doi:10.1093/nar/gkab943.
- 153. Periago, P. M., van Schaik, W., Abee, T., and Wouters, J. A. (2002). Identification of Proteins Involved in the Heat Stress Response of *Bacillus cereus* ATCC 14579. *Appl. Environ. Microbiol.* 68, 3486–3495. doi:10.1128/AEM.68.7.3486-3495.2002.
- 154. Petersohn, A., Antelmann, H., Gerth, U., and Hecker, M. (1999a). Identification and transcriptional analysis of new members of the sigmaB regulon in *Bacillus subtilis. Microbiol. Read. Engl.* 145 (Pt 4), 869–880. doi:10.1099/13500872-145-4-869.
- 155. Petersohn, A., Bernhardt, J., Gerth, U., Höper, D., Koburger, T., Völker, U., et al. (1999b). Identification of sigma(B)-dependent genes in *Bacillus subtilis* using a promoter consensus-directed search and oligonucleotide hybridization. *J. Bacteriol.* 181, 5718–5724.
- 156. Petersohn, A., Brigulla, M., Haas, S., Hoheisel, J. D., Völker, U., and Hecker, M. (2001). Global analysis of the general stress response of *Bacillus subtilis*. J. Bacteriol. 183, 5617–5631. doi:10.1128/JB.183.19.5617-5631.2001.
- 157. Pförtner, H., Burian, M. S., Michalik, S., Depke, M., Hildebrandt, P., Dhople, V. M., et al. (2014). Activation of the alternative sigma factor SigB of *Staphylococcus aureus* following internalization by epithelial cells an in vivo proteomics perspective. *Int. J. Med. Microbiol. IJMM* 304, 177–187. doi:10.1016/j.ijmm.2013.11.014.

- 158. Pisu, D., Provvedi, R., Espinosa, D. M., Payan, J. B., Boldrin, F., Palù, G., et al. (2017). The alternative sigma factors SigE and SigB are involved in tolerance and persistence to antitubercular drugs. *Antimicrob. Agents Chemother.* 61, e01596-17. doi:10.1128/AAC.01596-17.
- 159. Predich, M., Nair, G., and Smith, I. (1992). *Bacillus subtilis* early sporulation genes *kinA*, *spo0F*, and *spo0A* are transcribed by the RNA polymerase containing sigma H. *J. Bacteriol.* 174, 2771–2778.
- 160. Price, C. W., Fawcett, P., Cérémonie, H., Su, N., Murphy, C. K., and Youngman, P. (2001a). Genome-wide analysis of the general stress response in *Bacillus subtilis. Mol. Microbiol.* 41, 757–774. doi:10.1046/j.1365-2958.2001.02534.x.
- 161. Price, C. W., Fawcett, P., Cérémonie, H., Su, N., Murphy, C. K., and Youngman, P. (2001b). Genome-wide analysis of the general stress response in *Bacillus subtilis*. *Mol. Microbiol*. 41, 757–774.
- 162. Rajendran, N., and Marahiel, M. A. (1999). "multifunctional peptide synthetases required for nonribosomal biosynthesis of peptide antibiotics," in *Comprehensive Natural Products Chemistry*, eds. S. D. Barton, K. Nakanishi, and O. Meth-Cohn (Oxford: Pergamon), 195–220. doi: 10.1016/B978-0-08-091283-7.00094-1.
- 163. Reder, A., Albrecht, D., Gerth, U., and Hecker, M. (2012a). Cross-talk between the general stress response and sporulation initiation in *Bacillus subtilis* the σB promoter of spo0E represents an AND-gate. *Environ. Microbiol.* 14, 2741–2756. doi:https://doi.org/10.1111/j.1462-2920.2012.02755.x.
- 164. Reder, A., Gerth, U., and Hecker, M. (2012b). Integration of σB Activity into the Decision-Making Process of Sporulation Initiation in *Bacillus subtilis*. *J. Bacteriol*. 194, 1065–1074. doi:10.1128/JB.06490-11.
- 165. Reuß, D. R., Commichau, F. M., Gundlach, J., Zhu, B., and Stülke, J. (2016). The blueprint of a minimal cell: MiniBacillus. Microbiol. Mol. Biol. Rev. MMBR 80, 955–987. doi:10.1128/MMBR.00029-16.
- 166. Rey, M. W., Ramaiya, P., Nelson, B. A., Brody-Karpin, S. D., Zaretsky, E. J., Tang, M., et al. (2004). Complete genome sequence of the industrial bacterium *Bacillus licheniformis* and comparisons with closely related *Bacillus* species. *Genome Biol.* 5, R77. doi:10.1186/gb-2004-5-10-r77.
- 167. Richter, A., and Hecker, M. (1986). Heat-shock proteins in *Bacillus subtilis*: a two-dimensional gel electrophoresis study. *FEMS Microbiol. Lett.* 36, 69–71. doi:10.1111/j.1574-6968.1986.tb01668.x.
- 168. Riley, E. P., Schwarz, C., Derman, A. I., and Lopez-Garrido, J. (2021). Milestones in *Bacillus subtilis* sporulation research. Microb. Cell 8, 1–16. doi:10.15698/mic2021.01.739.
- 169. Rodriguez Ayala, F., Bartolini, M., and Grau, R. (2020). The stress-responsive alternative sigma factor SigB of *Bacillus subtilis* and its relatives: an old friend with new functions. *Front. Microbiol.* 11. doi:10.3389/fmicb.2020.01761.
- 170. Rossi, G. A. M., Silva, H. O., Aguilar, C. E. G., Rochetti, A. L., Pascoe, B., Méric, G., et al. (2018). Comparative genomic survey of *Bacillus cereus* sensu stricto isolates from the dairy production chain in Brazil. *FEMS Microbiol. Lett.* 365, fnx283. doi:10.1093/femsle/fnx283.
- 171. Ruiz, A., Pinazo, A., Pérez, L., Manresa, A., and Marqués, A. M. (2017). Green catanionic gemini surfactant-lichenysin mixture: improved surface, antimicrobial, and physiological properties. *ACS Appl. Mater. Interfaces* 9, 22121–22131. doi:10.1021/acsami.7b03348.
- 172. Sachdev, D. P., and Cameotra, S. S. (2013). Biosurfactants in agriculture. *Appl. Microbiol. Biotechnol.* 97, 1005–1016. doi:10.1007/s00253-012-4641-8.
- 173. Salkinoja-Salonen, M. S., Vuorio, R., Andersson, M. A., Kämpfer, P., Andersson, M. C., Honkanen-Buzalski, T., et al. (1999). Toxigenic strains of *Bacillus licheniformis* related to food poisoning. *Appl. Environ. Microbiol.* 65, 4637–4645.
- 174. Santini, F., Borghetti, V., Amalfitano, G., and Mazzucco, A. (1995). *Bacillus licheniformis* prosthetic aortic valve endocarditis. *J. Clin. Microbiol.* 33, 3070–3073. doi:10.1128/jcm.33.11.3070-3073.1995.
- 175. Santos, V. S. V., Silveira, E., and Pereira, B. B. (2018). Toxicity and applications of surfactin for health and environmental biotechnology. *J. Toxicol. Environ. Health Part B* 21, 382–399. doi:10.1080/10937404.2018.1564712.
- 176. Sarwar, A., Brader, G., Corretto, E., Aleti, G., Abaidullah, M., Sessitsch, A., et al. (2018). Qualitative analysis of biosurfactants from *Bacillus* species exhibiting antifungal activity. *PLOS ONE* 13, e0198107. doi:10.1371/journal.pone.0198107.
- 177. Schäfer, H., and Turgay, K. (2019). Spx, a versatile regulator of the *Bacillus subtilis* stress response. *Curr. Genet.* 65, 871–876. doi:10.1007/s00294-019-00950-6.
- 178. Schaik, W. van, Voort, M. van der, Molenaar, D., Moezelaar, R., Vos, W. M. de, and Abee, T. (2007). Identification of the σB Regulon of *Bacillus cereus* and Conservation of σB-Regulated Genes in Low-GC-Content Gram-Positive Bacteria. *J. Bacteriol.* 189, 4384–4390. doi:10.1128/JB.00313-07.
- 179. Schommer, N. N., and Gallo, R. L. (2013). Structure and function of the human skin microbiome. *Trends Microbiol.* 21, 660–668. doi:10.1016/j.tim.2013.10.001.
- Schroeter, R., Hoffmann, T., Voigt, B., Meyer, H., Bleisteiner, M., Muntel, J., et al. (2013). Stress responses of the industrial workhorse *Bacillus licheniformis* to osmotic challenges. *PLoS ONE* 8. doi:10.1371/journal.pone.0080956.

- 181. Schroeter, R., Voigt, B., Jürgen, B., Methling, K., Pöther, D.-C., Schäfer, H., et al. (2011). The peroxide stress response of *Bacillus licheniformis*. *PROTEOMICS* 11, 2851–2866. doi:10.1002/pmic.201000461.
- 182. Schumann, W. (2016). Regulation of bacterial heat shock stimulons. *Cell Stress Chaperones* 21, 959–968. doi:10.1007/s12192-016-0727-z.
- 183. Scott, E., and Dyer, D. W. (2012). Divergence of the SigB regulon and pathogenesis of the *Bacillus cereus* sensu lato group. *BMC Genomics* 13, 564. doi:10.1186/1471-2164-13-564.
- 184. Sen, R. (2010). Surfactin: biosynthesis, genetics and potential applications. *Adv. Exp. Med. Biol.* 672, 316–323. doi:10.1007/978-1-4419-5979-9_24.
- 185. Sender, R., Fuchs, S., and Milo, R. (2016). Revised estimates for the number of human and bacteria cells in the body. *PLoS Biol.* 14, e1002533. doi:10.1371/journal.pbio.1002533.
- Sevcikova, B., Rezuchova, B., Mazurakova, V., Homerova, D., Novakova, R., Feckova, L., et al. (2021). Cross-recognition of promoters by the nine sigb homologues present in *Streptomyces coelicolor* A3(2). *Int. J. Mol. Sci.* 22, 7849. doi:10.3390/iims22157849.
- 187. Shaligram, N. S., and Singhal, R. (2010). Surfactin A review on biosynthesis, fermentation, purification and applications. undefined. Available at: /paper/Surfactin-%E2%80%93-A-Review-on-Biosynthesis%2C-Fermentation%2C-Shaligram-Singhal/e1aad5c827bfa258264a8eaf8f49072e0d7825e3 [Accessed January 26, 2021]
- 188. Sharma, A. K., Rigby, A. C., and Alper, S. L. (2011). STAS domain structure and function. *Cell. Physiol. Biochem.* 28, 407–422. doi:10.1159/000335104.
- 189. Shen, J., Liu, Z., Yu, H., Ye, J., Long, Y., Zhou, P., et al. (2020). Systematic stress adaptation of *Bacillus subtilis* to tetracycline exposure. *Ecotoxicol. Environ. Saf.* 188, 109910. doi:10.1016/j.ecoenv.2019.109910.
- 190. Shin, J.-H., Kim, J., Kim, S.-M., Kim, S., Lee, J.-C., Ahn, J.-M., et al. (2010). sigmaB-dependent protein induction in *Listeria monocytogenes* during vancomycin stress. *FEMS Microbiol. Lett.* 308, 94–100. doi:10.1111/j.1574-6968.2010.01998.x.
- 191. Sierro, N., Makita, Y., de Hoon, M., and Nakai, K. (2008). DBTBS: a database of transcriptional regulation in *Bacillus subtilis* containing upstream intergenic conservation information. *Nucleic Acids Res.* 36, D93-96. doi:10.1093/nar/gkm910.
- 192. Sorokin, A., Bolotin, A., Purnelle, H., Hilbert, H., Lauber, J., Düsterhöft, A., et al. (1997). Sequence of the *Bacillus subtilis* genome region in the vicinity of the lev operon reveals two new extracytoplasmic function RNA polymerase sigma factors SigV and SigZ. *Microbiol. Read. Engl.* 143 (Pt 9), 2939–2943. doi:10.1099/00221287-143-9-2939.
- 193. Soule, M. H. (1932). Identity of Bacillus Subtilis. Cohn 1872. J. Infect. Dis. 51, 191-215.
- 194. Souza, B. M., Castro, T. L. de P., Carvalho, R. D. de O., Seyffert, N., Silva, A., Miyoshi, A., et al. (2014). σECF factors of gram-positive bacteria. *Virulence* 5, 587–600, doi:10.4161/viru.29514.
- 195. Stabell, F. B., Egge-Jacobsen, W., Risøen, P. A., Kolstø, A.-B., and Økstad, O. A. (2009). ORF 2 from the *Bacillus cereus* linear plasmid pBClin15 encodes a DNA binding protein. *Lett. Appl. Microbiol.* 48, 51–57. doi:10.1111/j.1472-765X.2008.02483.x.
- 196. Su, Y., Liu, C., Fang, H., and Zhang, D. (2020). *Bacillus subtilis*: a universal cell factory for industry, agriculture, biomaterials and medicine. *Microb. Cell Factories* 19, 173. doi:10.1186/s12934-020-01436-8.
- 197. Sun, D., Fajardo-Cavazos, P., Sussman, M. D., Tovar-Rojo, F., Cabrera-Martinez, R. M., and Setlow, P. (1991). Effect of chromosome location of *Bacillus subtilis* forespore genes on their *spo* gene dependence and transcription by E sigma F: identification of features of good E sigma F-dependent promoters. *J. Bacteriol.* 173, 7867–7874. doi:10.1128/jb.173.24.7867-7874.1991.
- 198. Tollerson, R., and Ibba, M. (2020). Translational regulation of environmental adaptation in bacteria. *J. Biol. Chem.* 295, 10434–10445. doi:10.1074/jbc.REV120.012742.
- 199. Tran, H. T., and Bonilla, C. Y. (2021). SigB-regulated antioxidant functions in gram-positive bacteria. *World J. Microbiol. Biotechnol.* 37, 38. doi:10.1007/s11274-021-03004-7.
- 200. Tran, V., Geraci, K., Midili, G., Satterwhite, W., Wright, R., and Bonilla, C. Y. (2019). Resilience to oxidative and nitrosative stress is mediated by the stressosome, RsbP and SigB in *Bacillus subtilis*. *J. Basic Microbiol*. 59, 834–845. doi:10.1002/jobm.201900076.
- 201. Tzipilevich, E., Pollak-Fiyaksel, O., Shraiteh, B., and Ben-Yehuda, S. (2022). Bacteria elicit a phage tolerance response subsequent to infection of their neighbors. *EMBO J.* 41, e109247. doi:10.15252/embj.2021109247.
- 202. van Schaik, W. (2005). The alternative sigma factor sigmaB and the stress response of *Bacillus cereus*. Available at: https://edepot.wur.nl/121666.
- 203. van Schaik, W., and Abee, T. (2005). The role of σB in the stress response of Gram-positive bacteria targets for food preservation and safety. *Curr. Opin. Biotechnol.* 16, 218–224. doi:10.1016/j.copbio.2005.01.008.
- 204. van Schaik, W., Tempelaars, M. H., Wouters, J. A., de Vos, W. M., and Abee, T. (2004). The alternative sigma factor σb of *Bacillus cereus*: response to stress and role in heat adaptation. *j. bacteriol.* 186, 316–325. doi:10.1128/JB.186.2.316-325.2004.

- 205. Varvaresou, A., and Iakovou, K. (2015). Biosurfactants in cosmetics and biopharmaceuticals. *Lett. Appl. Microbiol.* 61, 214–223. doi:https://doi.org/10.1111/lam.12440.
- 206. Viollier, P. H., Kelemen, G. H., Dale, G. E., Nguyen, K. T., Buttner, M. J., and Thompson, C. J. (2003). Specialized osmotic stress response systems involve multiple SigB-like sigma factors in *Streptomyces coelicolor. Mol. Microbiol.* 47, 699–714. doi:10.1046/j.1365-2958.2003.03302.x.
- 207. Voelker, U., Voelker, A., Maul, B., Hecker, M., Dufour, A., and Haldenwang, W. G. (1995). Separate mechanisms activate sigma B of *Bacillus subtilis* in response to environmental and metabolic stresses. *J. Bacteriol.* 177, 3771–3780.
- 208. Vohradsky, J., Schwarz, M., Ramaniuk, O., Ruiz-Larrabeiti, O., Vaňková Hausnerová, V., Šanderová, H., et al. (2021). Kinetic Modeling and Meta-Analysis of the *Bacillus subtilis* SigB Regulon during Spore Germination and Outgrowth. *Microorganisms* 9, E112. doi:10.3390/microorganisms9010112.
- 209. Voigt, B., Hoi, L. T., Jürgen, B., Albrecht, D., Ehrenreich, A., Veith, B., et al. (2007). The glucose and nitrogen starvation response of *Bacillus licheniformis*. *PROTEOMICS* 7, 413–423. doi:10.1002/pmic.200600556.
- 210. Voigt, B., Schroeter, R., Jürgen, B., Albrecht, D., Evers, S., Bongaerts, J., et al. (2013). The response of *Bacillus licheniformis* to heat and ethanol stress and the role of the SigB regulon. *PROTEOMICS* 13, 2140–2161. doi:https://doi.org/10.1002/pmic.201200297.
- 211. Voigt, B., Schroeter, R., Schweder, T., Jürgen, B., Albrecht, D., van Dijl, J. M., et al. (2014). A proteomic view of cell physiology of the industrial workhorse *Bacillus licheniformis*. *J. Biotechnol*. 191, 139–149. doi:10.1016/j.jbiotec.2014.06.004.
- 212. Völker, U., Engelmann, S., Maul, B., Riethdorf, S., Völker, A., Schmid, R., et al. (1994). Analysis of the induction of general stress proteins of *Bacillus subtilis. Microbiol. Read. Engl.* 140 (Pt 4), 741–752. doi:10.1099/00221287-140-4-741.
- 213. Wang, H., Fewer, D. P., Holm, L., Rouhiainen, L., and Sivonen, K. (2014). Atlas of nonribosomal peptide and polyketide biosynthetic pathways reveals common occurrence of nonmodular enzymes. *Proc. Natl. Acad. Sci. U. S. A.* 111, 9259–9264. doi:10.1073/pnas.1401734111.
- 214. Wang, N., Gao, J., Yuan, L., Jin, Y., and He, G. (2021). Metabolomics profiling during biofilm development of *Bacillus licheniformis* isolated from milk powder. *Int. J. Food Microbiol.* 337, 108939. doi:10.1016/j.ijfoodmicro.2020.108939.
- 215. Wang, Z., He, Z., Beauchemin, K. A., Tang, S., Zhou, C., Han, X., et al. (2016). Comparison of two live *Bacillus* species as feed additives for improving in vitro fermentation of cereal straws. *Anim. Sci. J. Nihon Chikusan Gakkaiho* 87, 27–36. doi:10.1111/asj.12346.
- 216. Warth, A. D. (1978). Relationship between the heat resistance of spores and the optimum and maximum growth temperatures of *Bacillus* species. *J. Bacteriol.* 134, 699–705.
- 217. Wassmann, M., Moeller, R., Reitz, G., and Rettberg, P. (2010). Adaptation of *Bacillus subtilis* cells to archean-like uv climate: relevant hints of microbial evolution to remarkably increased radiation resistance. *Astrobiology* 10, 605–615. doi:10.1089/ast.2009.0455.
- 218. Waters, S. M., Robles-Martínez, J. A., and Nicholson, W. L. (2014). Exposure of *Bacillus subtilis* to low pressure (5 kilopascals) induces several global regulons, including those involved in the SigB-mediated general stress response. *Appl. Environ. Microbiol.* 80, 4788–4794. doi:10.1128/AEM.00885-14.
- 219. Wemekamp-Kamphuis, H. H., Wouters, J. A., de Leeuw, P. P. L. A., Hain, T., Chakraborty, T., and Abee, T. (2004). Identification of sigma factor sigma B-controlled genes and their impact on acid stress, high hydrostatic pressure, and freeze survival in Listeria monocytogenes EGD-e. *Appl. Environ. Microbiol.* 70, 3457–3466. doi:10.1128/AEM.70.6.3457-3466.2004.
- 220. Wipat, A., and Harwood, C. R. (1999). The *Bacillus subtilis* genome sequence: the molecular blueprint of a soil bacterium. *FEMS Microbiol. Ecol.* 28, 1–9. doi: 10.1111/j.1574-6941.1999.tb00555.x.
- 221. Wohlgemuth, S., and Kämpfer, P. (2014). "BACTERIA | Bacterial Endospores," in *Encyclopedia of Food Microbiology (Second Edition)*, eds. C. A. Batt and M. L. Tortorello (Oxford: Academic Press), 160–168. doi:10.1016/B978-0-12-384730-0.00026-4.
- 222. Wu, Y.-S., Ngai, S.-C., Goh, B.-H., Chan, K.-G., Lee, L.-H., and Chuah, L.-H. (2017). Anticancer activities of surfactin and potential application of nanotechnology-assisted surfactin delivery. *Front. Pharmacol.* 8. doi:10.3389/fphar.2017.00761.
- 223. Zähner, H. (1979). What are secondary metabolites? Folia Microbiol. (Praha) 24, 435–443. doi:10.1007/BF02927127.
- 224. Zeigler, D. R., and Nicholson, W. L. (2017). Experimental evolution of *Bacillus subtilis. Environ. Microbiol.* 19, 3415–3422. doi:10.1111/1462-2920.13831.
- 225. Zellmeier, S., Hofmann, C., Thomas, S., Wiegert, T., and Schumann, W. (2005). Identification of σV -dependent genes of *Bacillus subtilis. FEMS Microbiol. Lett.* 253, 221–229. doi:10.1016/j.femsle.2005.09.056.

- 226. Zhang, S., and Haldenwang, W. G. (2005). Contributions of ATP, GTP, and redox state to nutritional stress activation of the *Bacillus subtilis* σB Transcription Factor. *J. Bacteriol.* 187, 7554–7560. doi:10.1128/JB.187.22.7554-7560.2005.
- 227. Zhao, H., Shao, D., Jiang, C., Shi, J., Li, Q., Huang, Q., et al. (2017). Biological activity of lipopeptides from *Bacillus*. *Appl. Microbiol. Biotechnol.* 101, 5951–5960. doi:10.1007/s00253-017-8396-0.
- 228. Zheng, L., Halberg, R., Roels, S., Ichikawa, H., Kroos, L., and Losick, R. (1992). Sporulation regulatory protein GerE from *Bacillus subtilis* binds to and can activate or repress transcription from promoters for mother-cell-specific genes. *J. Mol. Biol.* 226, 1037–1050. doi:10.1016/0022-2836(92)91051-p.
- 229. Zhou, Q., Wang, L., Yin, X., Feng, X., Shang, J., and Luo, Q. (2012). SigB-dependent tolerance to protein synthesis-inhibiting antibiotics in Listeria monocytogenes EGDe. *Curr. Microbiol.* 64, 234–241. doi:10.1007/s00284-011-0058-3.
- Zuber, P. (2009). Management of oxidative stress in *Bacillus. Annu. Rev. Microbiol.* 63, 575–597. doi:10.1146/annurev.micro.091208.073241.

CHAPTER 2

Prediction and validation of novel SigB regulon members in *Bacillus* subtilis and regulon structure comparison to Bacillales members

Kah Yen Claire Yeak $^{1,2},$ Jos Boekhorst $^{1,3},$ Michiel Wels 1, Tjakko Abee 2, Marjon Wells-Bennik $_{1}^{\star}$

¹NIZO, Ede, The Netherlands

²Food Microbiology, Wageningen University and Research, Wageningen, The Netherlands

³Host Microbe Interactomics Group, Wageningen University and Research, The Netherlands

⁴Rijk Zwaan Breeding B.V, Fijnaart, The Netherlands

Abstract

Sigma factor B (SigB) is the central regulator of the general stress response in *Bacillus subtilis* and regulates a group of genes in response to various stressors, known as the SigB regulon members. Genes that are directly regulated by SigB contain a promotor binding motif (PBM) with a previously identified consensus sequence.

In this study, refined SigB PBMs were derived and take different spacer compositions and lengths (N₁₂-N₁₇) into account. These were used to identify putative SigB-regulated genes in the B. subtilis genome, revealing 255 genes: 99 had been described in the literature and 156 genes were newly identified, increasing the number of SigB putative regulon members (with and without a SigB PBM) to > 500 in B. subtilis. The 255 genes were assigned to five categories (I-V) based on their similarity to the original SigB consensus sequences. The functionalities of selected representatives per category were assessed using promoter-reporter fusions in wt and $\Delta sigB$ mutants upon exposure to heat, ethanol, and salt stress. The activity of the P_{rsbV} (I) positive control was induced upon exposure to all three stressors. PyloQ (II) showed SigBdependent activity only upon exposure to ethanol, whereas P_{pucl} (II) with a N₁₇ spacer and P_{ylaL} (III) with a N₁₆ spacer showed mild induction regardless of heat/ethanol/salt stress. P_{JWZA} (III) and Pvaal (IV) displayed ethanol-specific SigB-dependent activities despite a lower-level conserved -10 binding motif. PgiaB (V) was SigB-induced under ethanol and salt stress while lacking a conserved -10 binding region. The activities of P_{ygaO} and P_{ykaA} (III) did not show evident changes under the conditions tested despite having a SigB PBM that highly resembled the consensus. The identified extended SigB regulon candidates in B. subtilis are mainly involved in coping with stress but are also engaged in other cellular processes. Orthologs of SigB regulon candidates with SigB PBMs were identified in other Bacillales genomes, but not all showed a SigB PBM. Additionally, genes involved in the integration of stress signals to activate SigB were predicted in these genomes, indicating that SigB signaling and regulon genes are species-specific.

2.1 Introduction

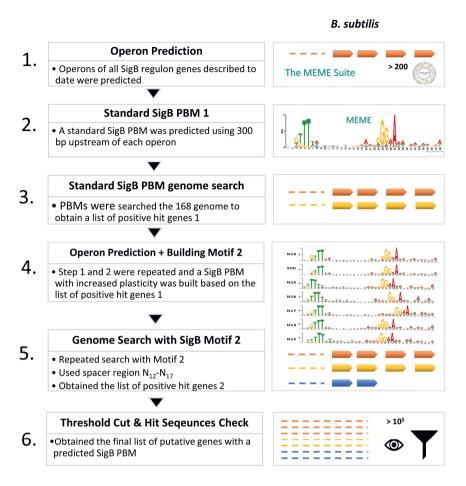
The general stress response (GSR) in bacteria constitutes a vital trait for cells to adapt to and survive conditions such as temperature change, nutrient depletion, or result of the exposure to reactive oxygen species in natural niches.

The GSR in *Bacillus subtilis* and many Bacillales members is under the transcriptional control of the alternative sigma factor B (σ^B or SigB) (Moran et al., 1981). Different environmental or nutritional signals, such as heat, ethanol, salt, and glucose starvation, can induce the SigB-mediated GSR, resulting in the expression of SigB-dependent genes and the production of proteins to protect cells from injuries (Petersohn et al., 1999a, 2001; Price et al., 2001a). The production of these proteins provides general protection to the cells and confers resistance to multiple stresses, allowing for rapid adaption to changing environments, thereby enhancing the survival of vegetative cells in extreme habitats (Nannapaneni et al., 2012).

The genes/proteins with SigB-dependent expression are defined as the SigB regulon members. Those that SigB directly regulates contain a promoter binding motif (PBM) consensus sequence GTTTAA-N_{15 (± 2 bp)} – GGGTAT (Sierro et al., 2008; Coelho et al., 2018; Vohradsky et al., 2021). Those that SigB indirectly controls do not have a SigB PBM and can either be controlled via SigB-dependent genes/proteins or regulated by other transcriptional regulators (Vohradsky et al., 2021). To date, 224 genes have been listed as members of the SigB regulon on Subtiwiki for *B. subtilis* (Petersohn et al., 1999b, 1999a, 2001; Nannapaneni et al., 2012; Waters et al., 2014; Arrieta-Ortiz et al., 2015; Schumann, 2016; Zhu and Stülke, 2018). A recent study by Vohradsky et al. (2021) further expanded the number to 411, with around 30 % of the SigB regulon genes reported to lack a SigB PBM and around 60 - 95% predicted to contain only a partial SigB PBM (i.e., only the -35 or the -10 promoter region, upstream of the AUG start codon).

Over time, more and more SigB regulon genes have been identified. This indicates that SigB regulatory networks are sophisticated and heavily interlinked with various other cellular mechanisms that are regulated by other transcriptional regulators. For example, SigB is indirectly involved in cellular responses such as sporulation and biofilm formation in *B. subtilis* (Reder et al., 2012; Bartolini et al., 2018). SigB-dependent genes may be expressed selectively to serve particular functions under certain conditions, e.g., 36 % of the 411 experimentally confirmed and predicted genes are expressed during spore germination and outgrowth in *B. subtilis* (Vohradsky et al., 2021), and roughly half are needed to cope with physical stresses such as ethanol, butanol, salt, high/low temperature (Nannapaneni et al., 2012). In *B. subtilis*, distinct sets of SigB-dependent genes are expressed under different environmental conditions in nature. This may also hold true for other *Bacillus* species like *Bacillus cereus* and *Bacillus licheniformis*, or other Bacillales members containing SigB. In members of the *B. cereus sensu*

lato group – which contain a common set of genes - it was found that the presence of varying SigB promoters gave rise to a unique SigB regulon structure per species, influencing pathogenesis via different strategies (Scott and Dyer, 2012). It is anticipated that Bacillales members that inhabit different niches have SigB regulon structures that are different from *B. subtilis* and may have developed to be mediated by different SigB activation routes.


Currently, four SigB activation routes are known for Bacillales members; namely, I) the stressosome RsbRST (Rsb= Regulator of SigB); II) the bipartite RsbOP, III) the two-component RsbKY system, and IV) direct activation (here refer to as Rsb-independent), as reviewed in Pané-Farré et al. (2017) and Rodriguez Ayala et al. (2020). The stressosome signaling complex is formed by RsbR and its paralogs (RsbRB, RsbRC, RsbRD, and YtvA), RsbS serine phosphatase, and RsbT serine kinase (Kim et al., 2004; Marles-Wright and Lewis, 2008; Pané-Farré et al., 2017). The stressosome becomes phosphorylated upon exposure to environmental stressors, and RsbT is then released to dephosphorylate the RsbU phosphatase, leading to further dephosphorylation of the RsbV anti-sigma factor antagonist (Yang et al., 1996). The dephosphorylated RsbV uncouples the binding between the anti-sigma factor RsbW and SigB, promoting the transcriptional activation of SigB and subsequently the expression of SigB regulon genes (Benson and Haldenwang, 1993; Alper et al., 1996; Kim et al., 2004), Activation of SigB via RsbQP involves the signal transfer from the α-hydrolase activator RsbQ to the RsbP phosphatase under nutritional stress (e.g., decrease in ATP, glucose starvation). RsbP then dephosphorylates RsbV, resulting in the same sequential SigB activation as activation via the stressosome (Kaneko et al., 2005; Nadezhdin et al., 2011). Thirdly, the RsbKY twocomponent system includes the histidine sensor kinase RsbK and its cognate response regulator, RsbY (de Been et al., 2010). By default, the methyltransferase (RsbM) methylates RsbK and negatively regulates SigB. Upon exposure to environmental/nutritional stressors, RsbK autophosphorylates and activates the RsbY phosphatase (Chen et al., 2012, 2015), and subsequent SigB activation takes place in the same way as for the stressosome and the RsbQP module (de Been et al., 2010; Chen et al., 2015, 2017). Lastly, in low-temperature or nitrosative stress adaptation, SigB is activated independently from its regulators, RsbU, RsbP, and RsbV (Brigulla et al., 2003; Tran et al., 2019).

To better understand the SigB regulon structures and functions in B. subtilis, this study employed B. subtilis 168 as a model, and novel SigB direct regulon members were identified using a newly derived SigB PBM. The functionality of several predicted PBMs was verified using translational fusions to a reporter in a wild type (wt) and $\Delta sigB$ background. The SigB regulons in 18 different B. subtilis strains and 106 Bacillales genomes were also assessed and a Bacillales SigB PBM consensus sequence was obtained. Lastly, the absence and presence of the four SigB activation routes in the 106 Bacillales genomes were predicted.

2.2 Materials and Methods

2.2.1 Sigma B (SigB) promoter binding motif (PBM) reconstruction

To identify novel SigB direct regulon members in B. subtilis 168, the SigB PBM was reconstructed as described by Wels et al. (2006, 2011) with slight modifications. In short, the respective operons of SigB regulon genes known to date in B. subtilis 168 were grouped according to their predicted operons (Supplementary Table S1). In total, 224 genes belonging to the SigB regulon were obtained for B. subtilis 168 on Subtiwiki (Zhu and Stülke, 2018), resulting in a compiled list with a total of 222 genes after removing duplicates. The operon structures of these genes were subsequently assessed, and genes were allocated to the same operon when: 1) adjacent genes were on the same coding strand, 2) the intergenic region between adjacent genes was <50 bp, and 3) no terminator was found between adjacent genes using Transterm (a tool to predict Rho-independent terminator) (Jacobs et al., 2006). Regions 300 bp upstream of each operon and the full intergenic region (if < 300 bp) were then inspected to identify the SigB PBM, and used to derive a standard SigB PBM in MEME Suite (Bailey et al., 2009, 2015). MEME was run using standard settings, with the following exceptions; -mod zoops (zero or one occurrence per sequence), -minw 10 (minimum width of 10), -maxw 50 (maximum width of 50), -dna (DNA molecule). The derived SigB PBM was used to repeat a search on the genome of B. subtilis 168 to obtain a new list of positive hit genes with a putative SigB PBM using the MAST search option in the MEME suite. The respective operons for these positive hit genes were predicted as aforementioned, and then a refined SigB PBM was built with MEME Suite. This refined SigB PBM with increased plasticity was used to search the genome of the 168 strain repeatedly, each with a different promoter spacer length, from N₁₂ to N₁₇. Promoter space length was increased/decreased by deleting or copying the least informative position in the position-specific scoring matrix (PSSM). The p-value indicating the confidence of predicted PBMs was set at 10-5 (illustrated in Figure 1). Each promoter hit sequence was manually curated (Supplementary Table S2). Different spacers were screened in this study as Vohradky et al. (2021) indicated that genes controlled by SigB must contain both -35 and -10 binding motifs in the SigB PBM, and have a spacer length of 15 to 17 bp. Additionally, the similarity of the SigB PBM to the SigB consensus (indicated by the p-value) also took the nucleotide composition of spacers into account in this study. This is because the spacer compositions influence the promoter binding strength and gene expression, and may promote co-recognition by different transcriptional regulators (Liebeton et al., 2014; Gaballa et al., 2018; Han et al., 2019).

Figure 1- Flowchart of SigB promoter binding motif (PBM) reconstruction for *Bacillus subtilis*. All SigB PBMs were predicted using the MEME Suite version 5.0.5 (Bailey et al., 2009, 2015), and MAST was used to screen the genome for a potential SigB PBM, as described by Wels et al. (2006, 2011). The letter N indicates the number of base pairs in the spacer region. STD stands for the standard motif, built based on all the listed SigB regulon genes on Subtiwiki up to October 2020 (Zhu and Stülke, 2018). The p-value cut off threshold, indicating the confidence level of the predicted motif, was set as 10⁵. All final sequences predicted for *B. subtilis* 168 were manually curated and listed in Supplementary Table S2.

2.2.2 Bacteria culture conditions, media, chemicals, and DNA manipulation

All strains of *B. subtilis* and *Escherichia coli* used in this study were cultured in Luria Bertani (LB) medium (Tritium Microbiologie, Eindhoven, The Netherlands) and propagated on LB agar plates unless stated otherwise. All incubations were performed at 37°C, and all liquid cultures were incubated using shaking at 220 rpm. For standard DNA cloning, plasmids were prepared and isolated from TOP10 *E. coli* cells (Thermo Fischer Scientific, Bleiswijk, The Netherlands). Chemically competent *E. coli* cells were transformed via heat shock (Froger and Hall, 2007). *B. subtilis* cells were transformed via natural competence in 1X MC competence medium

(containing 200 μl of 10X MC plus 6.7 μl of 1M MgSO₄, 10 μl of 1% tryptophan, and 1.8 ml of sterile water). A stock solution of 10X MC was prepared with 14.036 g K₂HPO₄.3H₂O, 5.239 g KH₂PO₄, 20 g glucose, 10 ml of 300 mM Na₃C₆H₅O₇, 1 ml of C₆H₈FeNO₇, 1 g of casein hydrolysate, and 2 g of KC₅H₈NO₄ to a total volume of 100 ml H₂O. The amylase activity of *B. subtilis* transformants was tested on 1% starch plates and stained with iodine. For the β- galactosidase assay, *B. subtilis* was cultured in a C-minimal medium supplemented with 1 g/L glucose and 8 g/L potassium glutamate (CE) as described by Commichau et al. (2008). Oligonucleotides and KOD hot-start DNA polymerase were purchased from Merck (Zwijndrecht, The Netherlands). *B. subtilis* chromosomal DNA was isolated using the GeneIlute Bacterial Genomic DNA Kit (Merck). Plasmids were isolated using the GeneJET Plasmid Miniprep Kit (Thermo Fischer Scientific). PCR products were purified using the PCR Purification Kit (Qiagen, Hilden, Germany). All FastDigest restriction enzymes and T4 DNA ligase were purchased (Thermo Fischer Scientific) and used according to the manufacturer's instructions. Bacterial culturing media were purchased (Tritium Microbiologie). DNA sequencing was performed by BaseClear B.V. (Leiden, The Netherlands).

2.2.3 Plasmids and reporter strains construction

The plasmids and strains constructed and used in this study are listed in Supplementary Table S3. First, the *B. subtilis* $\Delta sigB$ mutant was constructed using the long flanking homology recombination method described in Kunst and Rapoport (1995) with the selective marker chloramphenical amplified from pNZ5319 (Lambert et al., 2007). Next, the *cre*-recombinase plasmid pDR244 (purchased from the *Bacillus* Genetic Stock Centre, Columbus, USA) was used to excise the chloramphenical cassette at the *sigB* locus (Koo et al., 2017) to obtain a $\Delta sigB$ clean deletion mutant (BY47).

Plasmids pCY22, pCY23, pCY26, pCY27, pCY31, pCY32, and pCY33 were constructed, containing translational reporter fusions of P_{yaal}, P_{ywzA}, P_{pucl}, P_{gtaB}, P_{ylaL}, P_{ykaA}, and P_{ygaO}, respectively (~ 150 bp upstream fragment), to *lacZ*. These SigB PBMs were selected as representative sequences as predicted in section 2.2.1 and were grouped into five categories irrespective of the spacer lengths: Category I (P_{rsbV}): exact match at -35 and -10 regions; Category II (P_{yloO}, P_{pucl}): exact match either at -35 or -10 region; Category III (P_{ylaL}, P_{ygaO}, P_{ykaA}): conserved GTTT at -35 and NGG at -10 region; Category IV (P_{yaal}): less conserved motif with high p-values; and Category V (P_{gtaB}): with a duplicated -35 or -10 region. The predicted SigB PBM (~ 150 bp in length) upstream of each mentioned gene, including the native ribosomal binding site, was amplified by Polymerase Chain Reaction (PCR) using the corresponding oligonucleotides as listed in Supplementary Table S4. Each amplified fragment was ligated into either pDG1728 (purchased from BGSC) or pAC7 *amyE* integration plasmid (courtesy of Dr. J. Stülke, University of Goettingen, Germany) with the restriction enzymes *EcoRI* and *BamHI* (Weinrauch et al., 1991). Additionally, the plasmid pBP638 (courtesy of Dr. F. Commichau,

Cottbus-Senftenberg University, Germany) was used to study the activity of P_{ytoQ} and the plasmid pNW2205 (P_{rsbV} -lacZ) (courtesy of Dr. N. Stanley Wall, University of Dundee, UK) was used as a positive control in the β -galactosidase-assay.

The constructed plasmids were transferred into chemically competent TOP10 $E.\ coli$ cells using heat shock, and transformants were selected on LB agar supplemented with 100 µg/ml carbenicillin. Plasmids were isolated from the positive $E.\ coli$ colonies, sequenced, and subsequently introduced into $B.\ subtilis$ 168 wt and $\Delta sigB$ mutant (BY47) cells via natural competence. $B.\ subtilis$ transformants were selected on Brain Heart Infusion (BHI) agar supplemented with antibiotics (either 250 µg/ml spectinomycin or 10 µg/ml kanamycin). Activities of the promoters in response to stresses known to trigger SigB activation were investigated.

2.2.4 β-galactosidase reporter assay

The activity of a promoter in vivo was determined using the β -galactosidase assay. B. subtilis strains carrying promoter-lacZ reporter fusions were grown in C-Glc medium (Commichau et al., 2008), supplemented with 250 µg/ml spectinomycin or 10 µg/ml kanamycin. Overnight cultures in C-Glc were used to inoculate fresh C-Glc medium to an optical density of 0.05 at 600 nm (OD₆₀₀), and allowed to grow to OD₆₀₀ \sim 0.35. Cells were then divided into different portions and subjected to either ethanol stress (4% v/v), NaCl (6% v/v), or heat (upshift from 37°C to 48°C) for 10 min. Cell pellets were collected before and after stress treatment and stored at -20°C. Quantitative studies of lacZ expression in B. subtilis were performed as described previously by Stannek et al. (2015). Briefly, cells were thawed and lysed with 400 µl Z-buffer (0.48 mM Na₂HPO₄. 2H₂O; 0.32 mM NaH₂PO₄; 0.08 mM KCl; 8 µM MgSO₄; 0.4 mM ß-mercaptoethanol; 200 µg lysozyme and 200 µg DNAse I) for 1 hour (h) at 37°C. Lyzed cultures were centrifuged at 17,000 g to remove cell debris, and 100 µl of cell-free crude extract per sample was transferred into a new Eppendorf tube. 700 µl of Z-buffer without B- mercaptoethanol was mixed with the 100 µl of crude extracts and incubated for 5 min at 28°C. 800 μl of Z-buffer without β-mercaptoethanol was used as a reference. Subsequently, 200 μl of 4 mg/ml of ortho-nitrophenyl-β-galactoside (ONPG) was added to all the crude extracts and the reference and allowed to react at 28°C. When the cell extract turned visibly yellow, 500 µl of 62.5 mM Na₂CO₃ was added to stop the reaction. The absorption of samples at $\lambda = 420\,$ nm (absorption of O-nitrophenol) was measured. The protein concentration was determined via the Bradford assay (Bradford, 1976; Kruger, 2009) at $\lambda = 595$ nm using the commercial Roti®-Quant Bradford solution (Carl Roth, Karlsruhe, Germany) according to the manufacturer's protocol. The absorbance at A_{595nm} and A_{420nm} is corrected with the blank without cells. The specific β- galactosidase activity (indicating the SigB activity) in Miller Units (MU)/mg protein was calculated using the formula:

$$\frac{\text{Units}}{\text{mg protein}} = \frac{2005.3475 \text{ x A420nm}}{\Delta T \text{ x V x A595}}$$

One unit of β – galactosidase = the amount of enzyme produced to hydrolyze the chromogenic substrates ONPG to one nmol of o-nitrophenol (absorbs light at λ = 420nm) per minute at 28°C. V= 0.1 ml.

2.2.5 Bacillales core genome phylogenetic tree reconstruction, species-specific SigB PBM, and regulon structure prediction

To better understand the SigB regulon structure and function in *B. subtilis* and Bacillales members, a core genome phylogenetic tree of 18 *B. subtilis* strains (other than strain 168) and 106 Bacillales genomes was reconstructed (Supplementary Table S5). Species-specific SigB PBMs and SigB regulons were predicted and a Bacillales SigB consensus was derived as described below.

2.2.5.1 B. subtilis wild isolate strains and Bacillales members selection

The Bacillales members were selected when SigB operon genes have been described (Pané-Farré et al., 2017) and when they have been characterized for other properties (not necessarily related to SigB), such as producing high heat-resistance spores (Berendsen et al., 2016) or acid-tolerance (Patel et al., 2006). The genomes of strains analyzed in this study included strains of *B. subtilis* of different origins (18 plus reference strain 168), *Bacillus amyloliquefaciens* (4), *Bacillus vallismortis* (4), *Bacillus licheniformis* (11), *Bacillus velenzensis* (1), *Bacillus cereus* (33), *Bacillus coagulans* (5), *Bacillus thermoamylovorans* (5), *Bacillus pumilus* (6), *Anoxybacillus* (6), *Bacillus sporothermodurans* (1), *Geobacillus* (14), *Parageobacillus* (7), *Caldibacillus* (2), *Paenibacillus* (2), *Listeria* (3) and *Staphylococcus* (3) which were extracted from the NCBI bacterial genome database, available at (https://www.ncbi.nlm.nih.gov/genome/microbes/).

2.2.5.2 Core phylogenetic tree reconstruction and absence/presence of B. subtilis SigB regulon members in other Bacillales members

Orthologous groups were constructed using OrthAgogue (PMID24115168) (Ekseth et al., 2014). Orthologous protein sequences with exactly one copy in all 125 Bacillales genomes were aligned with Muscle (Edgar, R.C. Nucleic Acids Res 32(5), 1792-97) and a core genome phylogenetic tree was constructed from the concatenated alignments via PhyML (Guindon and Gascuel, 2003; Guindon et al., 2010). Subsequently, all genes belonging to the SigB regulon in *B. subtilis* 168 (Zhu and Stülke, 2018) were selected as genes of interest (GOI) (Supplementary Table S1). The absence or presence of these GOI in other 124 genome sequences was predicted via genome mining (Supplementary Table S5). Locus tags or gene symbols were used to identify the corresponding orthologous group of each GOI. Then, all GOI were clustered using the 1-(Spearman rank correlation of the gene copy number in each genome) as a distance measure, and neighbor-joining as the clustering algorithm (Phylip

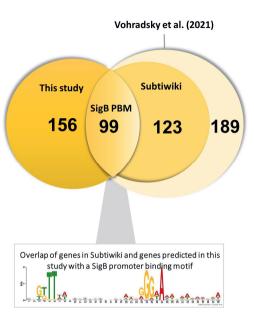

package, (http://evolution.genetics.washington.edu/phylip.html). Lastly, the absence or presence of gene functions in a genome was predicted based on the absence or presence of one or more orthologs in that genome. The phylogenetic tree ("MLST trees") heat map was visualized using iTOL (PMID27095192) (Letunic and Bork, 2016).

2.2.5.3 Species-specific SigB PBMs and SigB regulon structures prediction for other Bacillales genomes

The predicted orthologs of the B. subtilis 168 SigB regulon members in 18 other B. subtilis strains and 106 Bacillales genomes (identified as described in section 2.2.5.2) were established and used to derive a species-specific SigB PBM via procedures reported in section 2.1.1 (for an example illustrated for constructing the B. cereus SigB PBM see Figure 2, step ii and iii). Subsequently, the species-specific SigB PBM was employed to screen for genes with potential SigB PBMs in the respective species. First, operons for the new positive hit genes were predicted, and the promoter regions of these genes were used to build the species-specific SigB PBM 2 (step v, Figure 2). Then, the genome of each species was screened repeatedly with the improved species-specific SigB PBMs with different promoter spacer lengths (N₁₂ to N₁₇) as described in section 2.2.2.1, respectively. The screening thus resulted in a list of genes with putative SigB PBMs per species, forming the predicted SigB regulon for each inspected Bacillales genome. The overall presence/absence of the predicted species-specific SigB regulon members was cross-checked between all 125 genomes that were analyzed (Supplementary Table S6). The genome tree heat map for 125 Bacillales members (including B. subtilis 168) was generated using GENESIS 1.7.7 (Sturn et al., 2003) (Supplementary Figure S1).

2.2.6 Bacillales Sigma B (SigB) sensing modules prediction

To evaluate the ability of various Bacillales to employ different SigB signaling modules, the occurrence of the three known SigB sensing modules (RsbRST, RsbQP, and RsbKY) was evaluated in 125 Bacillales genomes as described in section 2.2.5.2. Briefly, genes encoding the proteins involved in these three known SigB signal transduction pathways for Bacillales (Petersohn et al., 1999a, 1999b, 2001; Price et al., 2001b; Schaik et al., 2007; de Been et al., 2010, 2011; Nannapaneni et al., 2012; Scott and Dyer, 2012; Waters et al., 2014; Schumann, 2016; Pané-Farré et al., 2017), and the SigB regulators *rsbX* and *rsbM* were set as the GOI. The absence/presence of these GOI in 125 genomes was predicted via genome mining to check for the absence or presence of an orthologous protein (section 2.2.5.2) (Supplementary Table S7) and a heat map was generated as mentioned in section 2.2.5.2 and visualized with iTOL.


Figure 2- Flowchart of the reconstruction of species-specific SigB promoter binding motif (PBM) for other species belonging to the order of Bacillales. All SigB PBMs were predicted using the MEME Suite version 5.0.5 (Bailey et al., 2009, 2015), and MAST was used to screen the genome for a potential SigB PBM, as described by Wels et al. (2006, 2011). The letter N indicates the number of base pairs in the spacer region. STD stands for the standard motif, built based on all the listed SigB regulon genes on Subtiwiki up to October 2020 (Zhu and Stülke, 2018). The Bacillales SigB promoter binding motif consensus was acquired from the predicted species-specific SigB PBM from the 125 Bacillales genomes, including the *B. subtilis* 168 strain.

2.3 Results and discussion

2.3.1 Two-step SigB promoter binding motif (PBM) derivation in B. subtilis 168

Based on the analysis of the *B. subtilis* genome 168 using the refined SigB PBM (see section 2.2.1), 255 genes (some belonging to the same operon) with a putative SigB PBM were predicted, indicating that they may be directly regulated by SigB (Supplementary Table S2). Of these, 99 overlap with SigB regulon members described in the literature: 74 were listed as SigB regulon members on Subtiwiki (Zhu and Stülke, 2018) (Figure 3), and an additional 25 were recently reported by Vohradsky et al. (2021). Thus, a total of 156 of the 255 genes with a predicted SigB PBM are novel putative SigB regulated genes that were not identified in earlier studies (Petersohn et al., 1999b, 1999a, 2001; Price et al., 2001a; Nannapaneni et al.,

2012; Waters et al., 2014; Arrieta-Ortiz et al., 2015; Schumann, 2016; Vohradsky et al., 2021). Each of the predicted sequences was manually checked to avoid possible false positives in this prediction (Supplementary Table S2).

Figure 3- Novel SigB regulon genes detected for *Bacillus subtilis*. 255 SigB regulon genes with SigB PBMs were predicted, 99 overlapped with regulon genes already reported in the literature, and 156 were newly identified in this study.

The 255 genes predicted to have a SigB PBM in this study were grouped into five categories (Supplementary Table S2). **Category I (green)** contains 6 out of the 255 predicted genes with SigB PBMs that have an exact matching sequence to the previously reported SigB consensus motif (GTTTAA- $N_{15 (\pm 2 \text{ bp})}$ -GGGTAT) (Sierro et al., 2008; Coelho et al., 2018; Vohradsky et al., 2021), demonstrating that a very small number of the predicted genes have Category I SigB PBM. These are the well-known SigB-regulated genes, i.e., sigB itself, the anti-SigB antagonist rsbV, the serine protein kinase rsbW, the phosphoserine phosphatase rsbX, the general stress gene ctc, and the acetyltransferase yjbC. These genes with the category I SigB PBM and spacer length of N_{14} (except yjbC with N_{13}) have been shown to have extensive differential regulation under various conditions that lead to the induction of SigB (Petersohn et al., 1999b, 1999a, 2001; Price et al., 2001a).

Category II (**orange**) contains 27 out of 255 genes with a -35 binding motif that is identical to the consensus motif GTTTAA and only 1 to 2 base pairs variations in the -10 binding motif, or a -10 binding motif that is identical to the consensus motif GGGTAT and only 1 to 2 base pairs variations in the -35 binding motif. This category of SigB PBMs deviates the least from the SigB consensus and is likely easily recognized by SigB. Many general stress genes, such as the glucose starvation gene *gsiB* have the category II SigB PBMs (Supplementary Table S2). 11 newly identified genes in this category were not listed in Subtiwiki. Of these, *yjlB* was also

recently discovered as SigB dependent by Vohradsky et al. (2021), who identified SigB PBMs with -35 and -10 binding sites with spacers of 13-15 bp (which they referred to as Class I promoters). *pgcA*, *phoH*, and *yqhY* reported by Vohradsky et al. (2021) were not identified in our study, likely due to the use of different settings for the promoter searches. Moreover, the spacer length was up to 50 bp in the study of Vohradsky et al. (2021).

Most of the genes (137 out of 255) detected in this study contain **Category III (yellow)** SigB PBMs, which have the conserved GTTT bases at the -35 binding site and GG at the -10 binding site in the promoter region. Many of these SigB regulon genes ($\sim 50\%$) were identified in earlier studies (Petersohn et al., 1999b, 1999a, 2001; Price et al., 2001a; Nannapaneni et al., 2012), listed as SigB regulon genes in Subtiwiki, or reported by Vohradsky et al. (2021). These findings imply that SigB can recognize the binding motif well as long as the bases at the -35 and -10 binding sites are conserved, and the length of the spacer is between N_{12} and N_{17} .

Category IV (grey) contains 76 genes with low-level conserved SigB PBMs, which have p-values close to the cut-off threshold (section 2.2.1), likely indicating the presence of binding sequences for SigB and other transcriptional regulators. Several genes that are known to be coregulated by SigB and at least one other regulator were found in this group. These include, for instance, secG (preprotein translocase subunit), yaaI (general stress protein), and plsC (acylglycerolphosphate acyltransferase, biosynthesis of phospholipids). The plsC gene is known to be regulated by both SigB and FapR (a fatty acid synthetic gene repressor) to maintain membrane homeostasis (Albanesi and de Mendoza, 2016). Moreover, part of the SigB regulon overlaps with other regulators, it has been reported that SigB regulon members can be controlled by SigB and other regulators, of which 36 have been reported (SigB and/or different regulators at different cellular states) (Zhu and Stülke, 2018; Vohradsky et al., 2021). Therefore, genes that have less conserved SigB PBM or do not have a SigB PBM but show SigB dependency suggested that cells may fine-tune response to integrate multiple signals in various conditions.

Category V (blue) shows 9 out of 255 genes containing SigB PBM that deviated the most from the SigB consensus motif but were shortlisted likely due to the presence of either a duplicated -35 or -10 binding site or an occurrence of a single perfect -35 or -10 binding site (Supplementary Table S2). A previously described SigB regulon member, *gtaB* (Petersohn et al., 1999a, 2001), encoding the UTP-glucose-1-phosphate uridylyltransferase (a general stress protein), was found in this category. The duplicated GTTT region in the SigB PBM of *gtaB* might be the reason why the SigB PBM of *gtaB* had a low p-value (indicating higher similarity to the SigB consensus), suggesting that *gtaB* may be regulated by multiple regulators, with a more versatile promoter sequence. To confirm this hypothesis, the predicted *gtaB* SigB PBM sequence was submitted to the database of transcriptional regulation in *Bacillus subtilis* (DBTBS), and binding sequences of two other regulators SigA and DegU were found (Table 1).

In the study of Vohradsky et al. (2021), this gene was described to have a Class I promoter (i.e., contained both -35 and -10 binding sites), and the SigB PBM was indicated at 96 bp upstream of ATG. However, a manual check on the genome of strain 168 did not find a -35 binding site.

2.3.2 Experimental validation of predicted SigB PBMs

To further validate these *in silico* results, promoters of genes belonging to the five different assigned categories were selected, and their SigB-dependent activities were studied using a promoter-reporter approach in a wild type (wt) and $\Delta sigB$ background.

Eight predicted SigB PBMs (P_{ytoQ} , P_{pucl} , P_{ylaL} , P_{ygaQ} , P_{ykaA} , P_{ywzA} , P_{yaal} , P_{gtaB}) and the well-known P_{rsbV} were selected as representatives from different promoter categories (indicated in bold in Supplementary Table S2). The (putative) functions of these genes are presented in Table 1. SigB-dependent activities of translational promoter-lacZ fusions were determined in wt and $\Delta sigB$ mutants by measuring β - galactosidase activity upon temperature upshift from 37°C to 48°C, exposure to 4% (v/v) ethanol, and exposure to 6% (v/v) NaCl (in three independent experiments) (Figure 4).

2.3.2.1 Category I: P_{rsbV} as the positive control

The rsbV gene is a well-known SigB regulon gene. Thus, P_{rsbV} , which encompasses the sequence (GTTTAA-N₁₄-GGGTAT) that exactly matches the SigB PBM consensus, was used as the positive control and the Category I representative in the experimental validation. Exposure of wt cells containing P_{rsbV} -lacZ to heat, ethanol, and salt resulted in 8-fold, 15-fold, and 6-fold induction of β -galactosidase activity compared to unstressed cells, respectively (Figure 4A). In the $\Delta sigB$ mutant, no P_{rsbV} -dependent β -galactosidase activity was observed in either stressed or unstressed conditions, showing that the observed promoter activity could be attributed to SigB induction, as expected for this positive control.

2.3.2.2 Category II: P_{ytoQ} shows SigB-dependent induction under ethanol stress, P_{pucl} with longer spacer showed very mild SigB-dependent activity

Both ytoQ and pucI are newly identified putative SigB regulon genes in this study. P_{ytoQ} and P_{pucI} , with predicted SigB PBM of (GTTTAA-N₁₄-GGGTGA) and (GTTTAA-N₁₇-GGGAAA), respectively, were used as the Category II representatives. These sequences match the consensus -35 binding site and both contained three conserved GGG bases at the -10 binding site but have spacer lengths of 14 and 17 nucleotides, respectively.

Cells containing the P_{ytoQ} -lacZ (GTTTAA- N_{14} -GGGTGA) showed SigB-dependent LacZ induction only upon exposure to 4% (v/v) ethanol, but not upon temperature upshift from 37°C to 48°C nor upon 6% (v/v) NaCl shock (Figure 4B). This gene is likely also regulated by at least one other regulator because the baseline activity of P_{ytoQ} at T0 before stress exposure was already ~ 100 MU/mg protein. The average P_{ytoQ} -dependent β -galactosidase activity after

ethanol treatment was around 230 MU/mg protein for the wt carrying P_{ytoQ} -lacZ, which was about 130 MU/mg protein more than the activity at T0. The increase was lower (around 40 MU) in the $\Delta sigB$ mutant carrying P_{ytoQ} -lacZ. This difference between the wt and the $\Delta sigB$ mutant may imply that the product of the ytoQ gene is specific in response to stress caused by ethanol. Although the function of the ytoQ gene has not been fully elucidated, it was shown to be important under vitamin B6 starvation in B. subtilis (Rosenberg et al., 2018). Using the transcription regulator database DBTBS (Sierro et al., 2008), we found that the predicted SigB PBM for ytoQ also contained two alternative PBMs: the first was for xre, which is the repressor of a phage-like bacteriocin, and the second was for codY, the repressor involved in response to branched-chain amino acid limitation (see Table 1). These findings indicate that ytoQ may be regulated by SigB, CodY, and Xre under different conditions.

Table 1- Nine selected promoters with predicted SigB promoter binding motifs.

Locus Tag	Description ^a	Gene	Hit sequence	N	Other regulators ^b
BSU	Anti-Sigma	rsbV	GGTTTAA _{CGTCTGTCAGACGA} GGGTATAAAGC	1	ccpA, tnrA
04710	factor antagonist		AACTA	4	
BSU	Allantoin	pucI	TT GTTTAA GCTGTTCAAATACAAAC GGGAAA AT	1	pucR,glnR, tnrA
36470	permease		TGTA	7	
BSU	Hypothetical	ytoQ	TCGTTTAA _{CATCGTGTACATGA} GGGTGAAATT	1	codY, xre
29850	protein		TACAG	4	
BSU	general stress	ywzA	TGTTTAT _{CTTATACAAAAAAG} AGGAATGATAT	1	codY, araR
38180	protein		AAGCA	4	
BSU	unknown	ykaA	CCT GTTTTT TTTCGACAAAA GGCTAT ATAAT	1	ctsR, rocR, sigA
12850			AATTT	2	
BSU	unknown	ylaL	CGTGTTTAT _{CAGCTTTTGCCAAGGC} GGGAATAT	1	sigG
14820			AGCT	6	
BSU	unknown	ygaO	TGTTTAT _{TTATTTTCGTCAA} GGGAATATAAA	1	sigH
08890	lipoprotein		AATTT	4	
BSU	Glucose	gtaB	AGTTTTAATTTAAGGATAAAGCTTGTTTAAA	1	degU
35670	uridylyltransfera		AATGG	4	
	se				
BSU	similar to	yaaI	GTTTTT _{TCATTGCCTAAAAA} GGCTACATATTA	1	codY
00170	isochorismatase		ACTA	4	

^a description based on Subtiwiki (Zhu and Stülke, 2018)

^bpredicted regulators on the DBTBS database (Sierro et al., 2008)

tnrA Global nitrogen regulator. Negatively regulates glnR.

ccpA Catabolite repressor or a positive regulator of genes involved in excretion of excess carbon

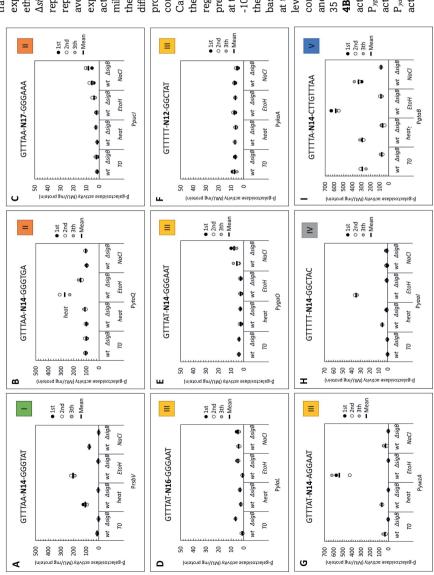
glnR Repressor of glutamine synthesis

xre Repressor of a phage-like bacteriocin, PBSX (phibacin damaged-prophage)

araR Repressor of the L-arabinose metabolic operon rocR Activator of arginine utilization operons

ctsR Repressor of class III heat shock genes

sigG Transcription of sporulation genes


sigH Transcription of early stationary phase genes (sporulation/competence). Not active in lab strains due to a mutation

⁽V117A)

degU Two-component response regulator, regulation of degradative enzyme and other adaptive responses

codY Repressor in response to branched-chain amino acid limitation

Figure 4- β-galactosidase activities of 4F- PykaA-lacZ Category I-V predicted SigB promoters exposure to heat $(37^{\circ}C > 48^{\circ}C)$, 4% (v/v)bases at the -35 region and the GG bases at the -10 region. Category IV (grey): low-4B- PytoQ -lacZ activities; 4C- Ppucl -lacZ ethanol, and 6% (v/v) NaCl in wt cells and $\Delta sigB$ mutant in B. subtilis. Each data point epresents a biologically independent average value for the three independent activities are presented in Miller units per milligram protein. The color-coded box at confidence level of the predicted PBM. Category I (green): the predicted PBM has match at both -35 and -10 predicted PBM has either an exact match at the -35 region, with 1-2 bp variations at ·10, or vice versa. Category III (yellow): conserved motif with borderline p-values; 35 or -10 region. **4A-** P_{rsbv}-lacZ activities; 4D- Pylat-lacZ activities; 4Eand Category V (Blue): with a duplicated the predicted PBM has conserved GTTT the right of each graph indicates indicates 4G-P_{ywzA}-lacZ activities; II (orange): based on 4I- PgtaB 8-Galactosidase compared 9 Pyaal -lacZ activities; belonged, categories Category evel homology ranslationally experiments. promoters he exact activities. replicate, activities; regions.

A mild yet notable SigB-dependent response was observed for pucI (encoding allantoin permease) upon exposure to ethanol and NaCl stresses (Figure 4C). After cells were exposed to 6% (v/v) NaCl, β - galactosidase activities of wt P_{pucI} -lacZ cultures increased around 4-fold compared to the control at T0. However, in the $\Delta sigB$ P_{pucI} -lacZ cultures, this increase was notably higher (\sim 6-fold), suggesting that SigB may partially involve in the negative regulation of pucI. Upon exposure to ethanol stress, β - galactosidase activities of wt P_{pucI} -lacZ cultures did not change compared to the activity at T0, but the $\Delta sigB$ P_{pucI} -lacZ mutant showed \sim 2- fold higher β -galactosidase activities than the wt P_{pucI} -lacZ (see Figure 4C). This result indicated that the mild increase in β -galactosidase activities observed for the $\Delta sigB$ P_{pucI} -lacZ mutant did not result from the exposure to ethanol but the deletion of the sigB gene.

The promoter of pucI was induced by NaCl in wt and further induced in the $\Delta sigB$ mutant, implying that pucI may be co-regulated by other regulators/sigma factors, as found in Table 1. pucI may also have roles in other stress conditions triggered by other undiscovered stressors, or stressors other than heat, ethanol, and salt. It is noteworthy that the predicted SigB PBM of P_{pucI} has an extended spacer (17 nucleotides) between the -35 and -10 binding motifs compared with the consensus spacer. This longer spacer region may affect the promoter strength by influencing the binding of the RNA polymerase, thereby affecting transcription. In transcription initiation, the bacterial RNA polymerase first locates the promoter, and its largest subunit (β -zipper) will interact with the spacer between the -35 and -10 elements to form a holoenzyme complex (Yuzenkova et al., 2011; Lee and Borukhov, 2016).

2.3.2.3 Category III: P_{ylaL} with longer spacer showed very mild SigB-dependent activity, P_{ygaO} and P_{ykaA} did not show evident changes under tested conditions and P_{vwzA} showed ethanol-specific SigB-dependent induction

For category III, P_{ylaL} (GTTTAT- N_{16} -GGGAAT), P_{ygaO} (GTTTAT- N_{14} -GGGAAT), P_{ykaA} (GTTTTT- N_{12} -GGCTAT), and P_{ywzA} (GTTTAT- N_{14} -AGGAAT) were selected based on the conserved GTTT at the -35 binding site and the GG at the -10 binding sites and different spacer lengths. ylaL, ygaO, and ykaA are newly identified in this study as potential SigB regulon candidates, in which ywzA is a known SigB regulon gene, used as a control of Category III.

Mild β-galactosidase activities were observed for P_{ylaL} but were unrelated to the stressors (Figure 4D). In the wt P_{ylaL} -lacZ culture at T0 (before the exposure to heat, ethanol, or salt), no β-galactosidase activity was measured, whereas the $\Delta sigB$ P_{ylaL} -lacZ culture showed higher levels. The same results were observed in wt and the $\Delta sigB$ mutant after exposure to all three stressors, indicating that SigB may negatively affect ylaL. Based on the NCBI BlastP results, YlaL is 99.9% similar to the peptidyl-prolyl cis-trans isomerase and located next to the spore germination gene ylaJ. The predicted SigB PBM sequence for ylaL was also found to have a positive hit to the SigG binding motif with the consensus TGCATAT-N16-GATACTTA (DBTBS) (see Table 1), implying that YlaL may be coregulated by SigB and SigG, and may have a role

in sporulation. The role of isomerase in sporulation was described in *B. subtilis* subs. *spizizenii* (Berendsen et al., 2016), and the involvement of SigB in sporulation control was also reported before. SigB is known to induce the expression of *spo0E*, a suppressor of *spo0A* and *spoIIE* genes required for sporulation initiation (Reder et al., 2012; Rothstein et al., 2017). Similarly, as indicated above for P_{pucl} , the P_{ylal} activities were relatively low, which may be attributed to the long spacer length of 16 nucleotides. Further experiments are thus needed to elucidate the potential regulation of PucI and YlaL by SigB.

 P_{ygaO} and P_{ykaA} did not show evident changes in transcriptional activation in the three tested conditions despite having a relatively conserved SigB PBM (Figures 4E and 4F). Baseline β-galactosidase activities for both promoters were seen before stress imposition at T0, and the P_{ygaO} and P_{ykaA} activities in ΔsigB mutant did not differ from the wt upon exposure to heat, ethanol, or salt stress. Results suggested that ygaO and ykaA are likely controlled by regulators other than sigB (Table 1). Nonetheless, as only the three most commonly used SigB stressors were tested in this study, P_{ygaO} and P_{ywzA} may respond to other environmental or nutritional stressors.

In addition, the promoter activities of ywzA (a known SigB regulon gene predicted with a Category III SigB PBM) were also verified via experiments. The β -galactosidase activity in wt P_{ywzA} -lacZ cultures increased 2-fold after heat treatment compared to cultures without treatment, but the induction after ethanol treatment stood out (20-fold higher) (Figure 4G). No β - galactosidase activities were seen in the $\Delta sigB$ P_{ywzA} -lacZ cultures upon heat and ethanol stress, indicating that SigB was responsible for the increased expression in the wt cultures. Exposure to osmotic stress did not lead to changes in β - galactosidase activities in wt and $\Delta sigB$ P_{ywzA} -lacZ cultures. As the deletion of sigB abolished the activity of P_{ywzA} completely, ywzA is likely not co-regulated by other regulators under the conditions tested. However, alternative binding sites for codY (repressor in response to branched-chain amino acid limitation) and araR (repressor of the L-arabinose metabolic operon) were found for the predicted SigB PBM of ywzA (Table 1).

Of the newly predicted SigB regulon genes described so far (ytoQ, pucI, ylaL, ygaO, and ykaA), none of these five were identified as SigB regulated in previous studies, either via transposon mutagenesis (Boylan et al., 1991, 1992, 1993), gel-based proteomics (Antelmann et al., 2000; Brigulla et al., 2003; Höper et al., 2006; Wolff et al., 2006; Hahne et al., 2010), consensus promoter search (Petersohn et al., 1999b), transcriptional profiling (Petersohn et al., 1999a, 2001), the combination of microarray and machine learning algorithm in defining the SigB regulon structure (Nannapaneni et al., 2012) or SigB modeling (Vohradsky et al., 2021). Our data show that three out of the five have SigB-dependent promoter activity, indicating that these genes might have been overlooked in earlier studies. The predicted P_{ygaO} and P_{ykaA} SigB

PBM with high confidence did not show an apparent SigB-dependent activation, suggesting that they might be induced by other stressors than heat, ethanol, or NaCl or that the control by SigB is affected by the consensus and the spacer of the promoter.

2.3.3.4 Category IV and V: P_{yaaI} and P_{gtaB} showed SigB-dependent activities despite deviating considerably from the consensus

Lastly, P_{yaaI} (GTTTTT- N_{14} -GGCTAC) and P_{gtaB} (GTTTTA- N_{14} -CTTGTTTAA) were included as a representative from category IV and category V, respectively. Both yaaI and gtaB are known SigB regulon genes but were selected for verification in this study because the predicted SigB PBMs deviate considerably from the original SigB consensus (see section 2.2.3).

The P_{yaaI} -LacZ activity in wt was induced the most upon exposure to ethanol stress, with a 35-fold increase, and heat stress resulted in a 4-fold increase compared with untreated wt P_{yaaI} -lacZ cultures, whereas no difference of wt P_{yaaI} -LacZ activity was observed under salt stress (Figure 4H). This result suggested that the general stress gene yaaI plays a vital role in protecting cells from damage caused by ethanol. The deletion of the sigB gene diminished the activity of P_{yaaI} under all three tested conditions, suggesting that the expression of yaaI may be solely-dependent on SigB. However, an alternative binding site for codY was also found for the predicted SigB PBM of yaaI (Table 1), but the interaction of SigB, CodY, and YaaI is yet to be explored.

The β -galactosidase activities of P_{gtaB} were also investigated in wt and $\Delta sigB$ mutant (Figure 4I). Petersohn et al. (2001) reported that the putative SigB PBM for gtaB is located inside the gene coding region, but this study identified that the SigB PBM for gtaB is located upstream of the AUG start codon, containing the sequence GTTTTA-N₁₄-GCTTGTTTAA. This SigB PBM met the selection criteria (section 2.2.1) only because of the duplicated GTTT sequence at both -35 and -10 binding sites, and it was chosen as a target to verify if SigB could bind to this predicted SigB PBM.

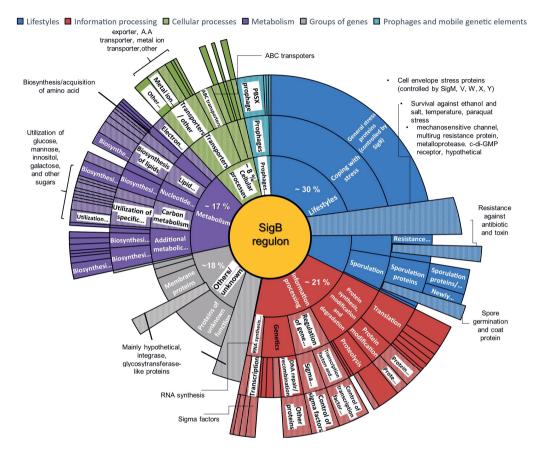
Despite the poor binding motif, the wt P_{gtaB} -lacZ culture displayed SigB-dependent induced β- galactosidase activity upon exposure to ethanol and salt stress (Figure 4I). At T0 before stress exposure, the baseline P_{gtaB} activity in wt cells was already around 290 MU/mg protein, indicating that other transcriptional regulators may co-regulate this gene. A promoter sequence search using the DBTBS database revealed binding sites for two other alternative regulators, SigA and DegU (Table 1). Despite the high baseline activity, an increase in P_{gtaB} -dependent β-galactosidase activity was seen after ethanol (584 MU) and salt shock (333 MU), but no significant increase was observed upon heat treatment. Notably, the P_{gtaB} -lacZ activity in the $\Delta sigB$ mutant at T0 was also ~3-fold lower than in the wt, indicating that SigB might play a role in regulating gtaB even under the control (presumably unstressed) condition. No induction was seen in the $\Delta sigB$ P_{gtaB} -lacZ mutant in response to ethanol, salt, and heat stress.

These results align with available transcriptomics data for B. subtilis 168 wt and $\Delta sigB$ mutant, showing more profound expression of gtaB upon ethanol and salt shocks than upon heat shock (Petersohn et al., 2001). This example demonstrated that SigB recognizes the predicted binding sequence, at least weakly, despite the large deviation from the SigB consensus sequence (GGGTAT) at the -10 binding site.

The identification of putative SigB regulon members (see section 2.3.1), of which nine predicted SigB PBMs of Category I-V were validated in section 2.3.2, suggests that the SigB regulon in *B. subtilis* 168 may be even more extensive than currently thought. The number of theoretical SigB regulon genes was recently estimated to be 411 (Vohradsky et al., 2021), and taken together with the predicted genes in this study, the total number may exceed 500 (Figure 3). This large number of SigB regulon genes aligned with the notion that many SigB-regulated genes are also co-regulated by other transcriptional regulators, interlinking SigB regulation with other cellular processes (Vohradsky et al., 2021). Category III representatives that did not show SigB dependence in this study may respond to other so far unknown stressors or their promoter activities may be affected by the spacer length and/or compositions of the promoter, which requires further confirmation.

2.3.3 Functional distribution of known and predicted SigB regulon genes

The functions of the 156 predicted SigB regulon candidates in this study and all genes listed in Subtiwiki are presented in a functional distribution map (see Figure 5). The list of genes with known functions (data extracted from Subtiwiki) is presented in Supplementary Table S2b. The sunburst map illustrates genes with and without SigB PBM (with shaded regions indicating genes with a predicted SigB PBM in this study, section 2.3.1), and indicates that 30% of the genes encode for proteins involved in lifestyles (e.g., coping with stress, sporulation), 21% in information processing (e.g., protein synthesis and modification, transcription or translational regulation), 17% in metabolism regulation (e.g., biosynthesis of amino acid, lipids, utilization of carbon sources), 8% in cellular processing (e.g., transporter, exporter, homeostasis), 6 % in phage-related function, and 18% constitute proteins with unknown functions.


Many SigB regulon members involved in lifestyle management have generic functions in general stress protection. Some genes are likely regulated by SigB directly as SigB PBMs were predicted; some encode proteins with a role in resistance to toxins or antibiotics, and others are linked to sporulation. Among the ~21% of members involved in information processing, many are well-known SigB-dependent genes such as *ctc*, *rsbV*, *rsbW*, and *sigB* itself that are involved in the regulation of gene expression, and many play a role in protein synthesis, modification, and degradation as well as DNA repair and recombination. Interestingly, most genes involved in cellular processes encompassed a putative SigB PBM, such as ABC transporters, ions transporters, and amino acids transporters. Other metabolic genes

responsible for the biosynthesis of lipid synthesis, acquisition of amino acids, and utilization of different carbon sources also have predicted SigB PBMs (Figure 5). The remaining genes were either prophages and mobile genetic elements, or genes encoding membrane proteins with undefined functions. Further functional investigation of these genes may help to understand better their involvement in stress response regulation in *B. subtilis*.

This study identified an additional 156 SigB regulon candidates with a putative SigB PBM in B. subtilis based on a computational approach using a more plastic SigB PBM. Multiple factors may have limited the detection of such genes in previous studies: 1) The use of a more restricted SigB PBM in earlier studies (Sierro et al., 2008; Coelho et al., 2018); 2) Utilization of the same stressors in global SigB- mediated GSR studies. Ethanol, heat, and salt were used primarily because of their potent SigB triggering response. Although other investigators studied the induction of SigB by acid, cold, antibiotics, reduced ATP, GTP, low oxygen, glucose limitation, blue light, red light, carbonyl cyanide m-chlorophenylhydrazone (CCCP), butanol, pH, low pressure, high-level iron, and oxidative stress, global transcriptomic or proteomic analyses were not performed in all studies (Völker et al., 1999; Petersohn et al., 2001; Bernhardt et al., 2003; Brigulla et al., 2003; Helmann et al., 2003; Mascher et al., 2003; Holtmann et al., 2004; Zhang and Haldenwang, 2005; Gaidenko et al., 2006; Avila-Pérez et al., 2010; Ondrusch and Kreft, 2011; Nannapaneni et al., 2012; Reder et al., 2012; Jurk et al., 2013; Waters et al., 2014; Yu and Ye, 2016; Tran et al., 2019). Therefore, SigB-regulated genes that are specific for other stressors may have not been detected. Moreover, stimuli or stressors that play a role in unexplored ecological niches may trigger SigB as well; 3) Analysis restricted to the SigB induction response. The standard setting in many studies of the global transcriptomics or proteomics SigB stress response focused on the induction pattern of SigB, and thus often checked for the "loss-of-gene-function" in the $\Delta sigB$ mutant. Such approaches may overlook genes that may be negatively regulated by SigB; 4) SigB is likely active without "triggers" in the control condition and co-regulates other cellular mechanisms than the SigB GSR. Several known or predicted SigB candidate genes with SigB PBMs are involved in miscellaneous functions in B. subtilis, for instance, biofilm formation, sporulation, utilization of sugars, biosynthesis of amino acids, and homeostasis. Reder et al. (2012) and Rothstein et al. (2017) reported the negative regulation of SigB in sporulation initiation. Bartolini et al., (2018) demonstrated the role of SigB in regulating biofilm growth rate via the interaction with the SinR transcriptional regulator. SigB was also shown to indirectly affect the expression of surfactin, a cyclic lipopeptide (biosurfactant) (Bartolini et al., 2019).

Other than the functions reported in *B. subtilis*, SigB can influence motility, virulence, and invasiveness in other Bacillales members, e.g., *L. monocytogenes* and *S. aureus* (Kim et al., 2005; Ondrusch and Kreft, 2011; Mitchell et al., 2013), indicating that the structure of SigB regulons between species may diverge due to differences in physiological responses upon exposure to a broad range of stressors. Thus, to obtain a global outlook of the SigB general stress regulon

in other species in the Bacillales order, putative SigB regulons of 18 other *B. subtilis* strains and 106 Bacillales genomes were predicted as described in section 2.2.5.

Figure 5- Functional distribution map for the predicted and existing SigB regulon members. The sunburst map shows five known functional groups and a group with unknown functions, labeled with different colors of the predicted and existing SigB regulon members. The dotted regions in the map refer to genes with either a known SigB PBM or a predicted SigB PBM in each functional category. **Blue-** genes involved in lifestyles (e.g., coping with stress, sporulation) (~30%); **Red-** genes for information processing (e.g., protein synthesis and modification, transcription, or translational regulation) (~21%); **Purple-** genes for metabolism regulation (e.g., biosynthesis of amino acid, lipids, utilization of carbon sources) (~17%); **Green-** genes for cellular processing (e.g., transporter, exporter, homeostasis) (~8%); **Turquoise-** genes for phage-related function (~6%); and **Grey-** genes with unknown functions (~18%). Underlying background data are shown in Supplementary Table S6.

2.3.4 SigB regulon prediction for *B. subtilis* wild isolates and Bacillales genomes

Genomes of 18 *B. subtilis* wild isolates and 106 other Bacillales genomes, including different *Bacillus* species, *Listeria* spp., and *Staphylococcus* spp. (Supplementary Table S5, were mined for the presence of SigB regulon members that had been identified in *B. subtilis* 168 (Supplementary Table S1). Based on the conserved protein sequences, the reconstructed phylogenetic tree heat map in Figure 6 showed that nearly all genes that belong to the SigB regulon in *B. subtilis* 168 had orthologs in 18 other wild *B. subtilis* isolates, except for a small cluster of germination genes (*yfkR*, *yfkS*, *yfkT*) and a group of genes with unknown function (*ykzN*, *ypuB*, *yydC*) (details in Supplementary Table S5). More prominent differences were seen between SigB regulons of *B. subtilis* and other *Bacillus* species and Bacillales genomes, such as *B. licheniformis*, *B. cereus*, and other further related species like *Geobacillus*, *Listeria*, and *Staphylococcus*. Around 25% of the *B. subtilis* 168 SigB regulon genes were absent in *B. licheniformis*, around 50% were missing in *B. cereus*, and three quarters were lacking in *Geobacillus*, *Listeria*, and *Staphylococcus* (Figure 6, Supplementary Table S5).

The prediction results showed that SigB regulates different sets of genes in different species, e.g., in B. cereus, L. monocytogenes, or S. aureus. Therefore, the SigB PBMs are likely speciesspecific and deviate from the SigB consensus of B. subtilis (GTTTAA-N_{15 (+ 2 pp)}-GGGTAT), or have the same PBM but is/are not present in front of the same genes. This assumption was further investigated by reconstructing species-specific SigB PBMs per inspected species (described in section 2.2.5.3), illustrated in Figure 2, in a step-wise approach; 1) orthologous genes of the B. subtilis 168 SigB regulon members in other analyzed species were first predicted, 2) the predicted orthologous genes were grouped into operons, 3) promoters of these operons were used to reconstruct a species-specific SigB PBM, 4) the respective genome of a species was screened for the presence of the constructed species-specific PBM, resulting in a new list of genes with putative SigB PBMs, 5) operons for these genes with putative SigB PBMs were again predicted, and species-specific SigB PBM 2 was constructed, and lastly, 6) the respective genome of a species was repeatedly screened for the presence of the species-specific SigB PBM 2 with different spacers $N_{12} - N_{17}$ (Figure 2). The same procedures were performed for other species included in this study, and each species-specific SigB PBM was used to derive a Bacillales consensus (KTTTW- N₁₂-N₁₇- GGGWAW). The Bacillales consensus is less conserved at the first guanine nucleotide in the -35 region when compared with the B. subtilis SigB consensus and contains more thymine than adenine nucleotides.

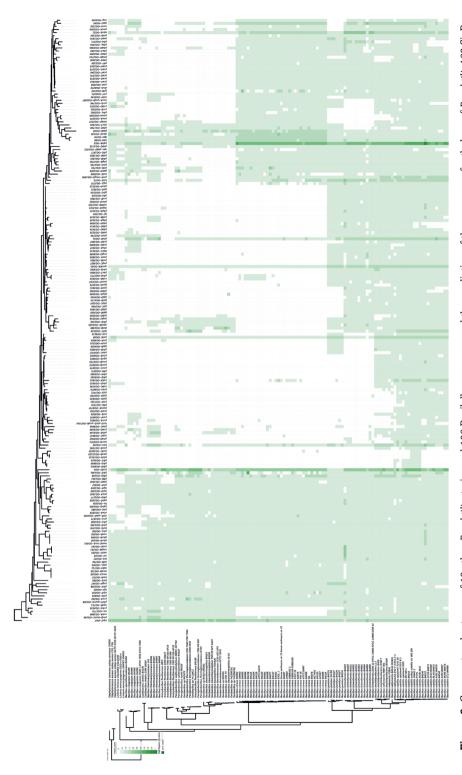


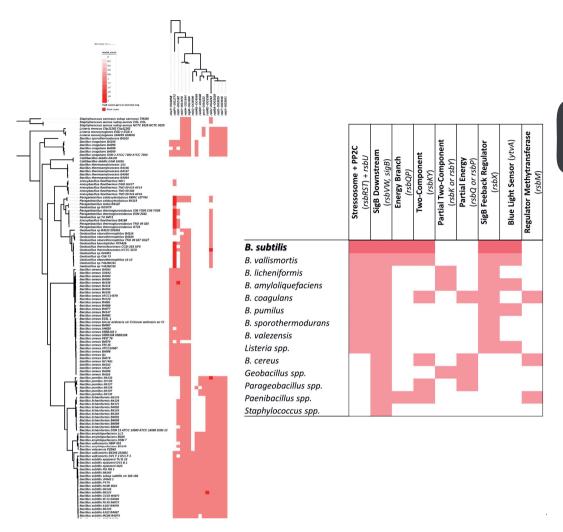
Figure 6-Genome tree heat map of 18 other B. subtilis strains and 106 Bacilalles genomes and the prediction of the presence of orthologs of B. subtilis 168 SigB regulon genes. The phylogenetic genome tree heat map for 19 Bacillus subtilis genomes (including B. subtilis 168) and 106 Bacillales members was generated using protein sequences in each genome. The horizontal genome tree shows the clustering of B. subtilis 168 SigB regulon genes listed in Subtiwiki up to October 2020 (Supplementary Table S1). A green square indicates the presence of a target gene, the intensity of the green color indicates the gene copy number, and white ITOL (PMID27095192) (Letunic and Bork, 2016). The vertical genome tree shows the phylogenetic relationships of all genomes based on the core conserved indicates the absence of a gene. Underlying background data are shown in Supplementary Table S5. The original resolution of the heat map is available upon request (tjakko.abee@wur.nl or kahyen.yeak@wur.nl).

The predicted species-specific SigB regulon members with/without SigB PBM are presented in a heat map (Supplementary Figure S1), showing the 1) absence/presence of predicted genes that are orthologous to the *B. subtilis* 168 SigB regulon members in 124 Bacillales genomes, and 2) the putative species-specific SigB regulon genes with or without a predicted SigB PBM. The complete list of these genes is shown in Supplementary Table S6. Four major observations can be made based on the heat map: 1) many other Bacillales genomes contain genes that are orthologous to the SigB regulon members of *B. subtilis* 168, but they do not necessarily have a SigB PBM; 2) groups of predicted regulon genes with/without SigB PBM are species-specific; 3) A group of genes that are orthologous to the SigB regulon members of *B. subtilis* 168 or the predicted species-specific regulon genes do not have a SigB PBM, and lastly 4) A group of genes with/without SigB PBM that are specific for *Bacillus* species but is absent in other Bacillales genomes.

Overall, the results obtained confirm that SigB plays a role in adaptive stress response in many species, but that the actual cellular responses and genes involved are different for different species. Species-specific SigB regulons may correspond with distinct physiological responses of species when dealing with a broad range of stressors in their environments. Orthologs of SigB-regulated genes with a SigB PBM as found in *B. subtilis* were mainly found in other *Bacillus* species but did not necessarily contain an upstream SigB PBM, and the majority of the *B. subtilis* SigB regulon genes were absent in *Listeria* spp. and *Staphylococcus* spp.

These results are in line with the studies of Scott et al. (2012), who reported on the divergence of the SigB GSR regulons within the *B. cereus sensu lato* group (containing species that are not included in this study: *B. anthracis, B. mycoides, B. pseudomycoides, B. thuringiensis, B. weihenstephanensis and B. cytotoxicus*). Four lineages of the SigB regulon were described in their study, and each lineage has arisen from the selection of a set of genes from the common gene pool, with the "reassignment" of a SigB promoter to these genes to support pathogenesis for different *sensu lato* members. The extra members in addition to the SigB core regulon (consisting of ~20 members) was suggested to serve a distinct function in different habitats and support the phenotype of a specific member, such as enhancing pathogenic potential or increasing competence against other microorganisms in the soil (Scott and Dyer, 2012). Moreover, the SigB PBM predicted for *B. cereus* in this study (shown in Figure 2) is highly similar to the one described in the study of Scott et al. (2012) despite using different species of *B. cereus* group members (in this study, only *B. cereus* genomes were used, Supplementary Table S6).

2.3.5 The Occurrence of SigB sensing modules in other *B. subtilis* strains and Bacillales genomes


Our analysis showed differences between the predicted SigB regulons for various Bacillales genomes. We furthermore examined the presence of the three well-known SigB signaling modules in Bacillales, i.e., RsbRST, RsbQP, and RsbKY (as described in section 2.2.6).

The absence/presence of genes involved in sensing stressors, SigB transduction, activation, and regulation in 19 *B. subtilis* genomes and 106 Bacillales members is presented in Figure 7. The complete datasets relating to the presence of the sensing modules are presented in Supplementary Table S7. The majority of the inspected genomes carried the *sigB* gene. However, it was absent in several species like *B. thermoamylovorans, Parageobacillus thermoglucosidasius*, and *Anoxybacillus*. These species likely evolved to utilize other stress sensing systems and were therefore excluded from further analyses.

All species that contained the *sigB* gene also carried the *rsbV* and *rsbW* genes. These three genes are highly conserved in Bacillales, including the *Geobacillus* and *Paenibacillus* species with high GC content. In general, the complete stressosome system (*rsbRST* and *rsbU*) and its feedback regulator (*rsbX*) were found in *B. subtilis*, *B. vallismortis*, *B. licheniformis*, *B. amyloliquefaciens*, *B. coagulans*, *B. pumilus*, *B. valezensis*, *B. sporothermodurans*, *L. monocytogenes*, and *L. innocua* (Figure 7). In addition, the RsbQP module was found in *B. subtilis*, *B. vallismortis*, and *Paenibacillus* spp. and the two-component system (*rsbKY*) and its regulator *rsbM* were identified in *B. cereus*, *Paenibacillus* spp. and *B. coagulans* (Figure 7).

2.3.5.1 The stressosome RsbRST SigB activation pathway

The RsbRST stressosome system was detected in many species, but only the RsbRA ortholog is conserved (Figure 7). Many species that contain the stressosome genes lacked one or more of either the RsbRB, RsbRC, RsbRD, or the YtvA ortholog. *B. licheniformis, B. pumilus,* and *B. sporothermodurans* did not have the RsbRB and RsbRC orthologs, whereas *B. coagulans* did not have the RsbRC and RsbRD orthologs. Only *B. subtilis, B. vallismortis, B. amyloliquafaciens, B. pumilus, L. monocytogenes,* and *L. innocua* contained the fifth RsbR ortholog, YtvA, which is involved in the sensing of blue light. Even in *B. subtilis,* not every strain contained the genes encoding the same RsbR orthologs. Some of the *B. subtilis* food isolate strains (B4068 and B4073) lost the gene encoding the RsbRC ortholog, and *B. subtilis* B4122 had two gene copies encoding the RsbRD ortholog (Figure 7, Supplementary Table S7).

Figure 7- Genome tree heat map of sensing modules of the SigB general stress for 19 *Bacillus subtilis* genomes and 106 Bacillales members. The heat map of the core genome tree of sensing modules of the SigB general stress for 19 *Bacillus subtilis* genomes and 106 Bacillales members was generated using iTOL (PMID27095192) (Letunic and Bork, 2016). The tree on the left shows the phylogenetic relationships of all genomes based on the core conserved protein sequences in each genome. The tree on the top shows the clustering of genes involved in SigB signal sensing. The red square indicates the presence of a target gene, and the intensity of the red color indicates the gene copy number. White indicates the absence of a gene. Underlying background data are shown in Supplementary Table S7. The insert shows the summary of the general distribution of the three sensing modules for each species belonging to the Bacillales order. Stressosome refers to the *rsbRST* stressosome genes and stressosome downstream elements to *rsbV*, *rsbW* and *sigB*. The energy branch refers to the *rsbQP* genes and the two-component to the *rsbKY* genes. Inspected strains that contain only a single gene of a signaling module, e.g., the presence of an orphan *rsbK* gene without its cognate response regulator gene *rsbY*, or the presence of an *rsbP* phosphatase gene without its partner *rsbQ*, are referred to as having a partial two-component, or a partial energy system, respectively. Other SigB sensors and regulators included the blue light sensor (YtvA), the regulator of SigB methyltransferase Bc1007 (renamed to RsbM by Chen et al., 2012), and the feedback regulator RsbX phosphoserine phosphatase. Underlying background data are shown in Supplementary Table S7

The occurrence of different types and numbers of RsbR orthologs results in the formation of heterogeneous stressosome complexes (Delumeau et al., 2006), thereby affecting specific stress sensing via the turrets (referring to the protein structure of the RsbR and its paralogs) with different ligands (Marles-Wright and Lewis, 2008; Pané-Farré et al., 2017). Moreover, from an evolutionary point of view, different species may be exposed to specific stress conditions in particular ecological niches, putting selective pressures on retaining certain RsbR orthologs for sensing specific stress. Different RsbR orthologs can have distinct functions in mediating stress; RsbRC has for instance been shown to be responsible for a slow progressive stress response upon ethanol stress, whereas RsbRA mediates a fast transient response (Cabeen et al., 2017). However, RsbRC was absent in most genomes carrying genes encoding stressosome members (Figure 7), which implies that its role may not be essential, or that its function is redundant in the presence of RsbRA. In *B. subtilis*, it was shown that RsbRA and RsbRB orthologs are responsible for light sensing, and the role of RsbR can be complemented by RsbRC or RsbRD (van der Steen et al., 2012).

Additionally, the gene *rsbX* was found only in strains that contained the stressosome genes, confirming the reported function of the RsbX in forming a negative feedback loop by dephosphorylating the RsbR and RsbS, resetting the activated stressosome back to its original state (Chen et al., 2004). Therefore, the absence of *rsbX* in other strains that do not contain the stressosome genes was not surprising as this feedback loop was probably not required.

2.3.5.2 The bipartite RsbQP SigB activation pathway

The entire RsbQP module was detected in *B. subtilis, B. vallismortis,* and *Paenibacillus* spp. (Figure 7), indicating that the nutritional stress sensing branch is not restricted to just *B. subtilis*. The *rsbQ* gene was missing in most genomes, but the *rsbP* gene, encoding for a PP2C phosphatase, was distributed more broadly. As *rsbP* and *rsbY* belong to the same OG1773 group, an "*rsbP*" ortholog was also found in the genomes of *B. cereus, Geobacillus* spp, *Paenibacillus* spp, and *Parageobacillus* spp. (see Figure 7).

The finding was in line with the publication of Nadezhdin et al. (2011), who suggested that the predicted RsbQP could be functional in other species, or react with other stressors, but not the same as described for *B. subtilis* (Zhang and Haldenwang, 2005; Avila-Pérez et al., 2010). The observation that RsbQ is generally absent while RsbP is generally present in Bacillales (Supplementary Table S7) suggests RsbP may have other so far unidentified functions, and its interaction partner may not be limited to RsbQ. This speculation can be supported by reports on alternative functions of RsbP in earlier studies, which showed that RsbP is also involved in sensing red light (Avila-Pérez et al., 2010) and that this protein interacted with the stressosome to mediate resilience toward oxidative and nitrosative stress in *B. subtilis* (Guldimann et al., 2016).

2.3.5.3 The two-component RsbKY SigB activation pathway

The two-component system encoded by rsbKY and rsbM was found in B. cereus, Paenibacillus spp., and B. coagulans. This sensing module was well-known to be specific to B. cereus and its group members (de Been et al., 2011), while an entire RsbKYM system in B. coagulans has not been described previously. In addition, the rsbK (bc1008) gene in B. cereus was found to have an ortholog in B. subtilis and other group members like B. licheniformis, B. amyloliquefaciens, B. pumilus, and B. vallismortis (Figure 7, Supplementary Table S7), but no cognate response regulator was detected adjacent to the predicted rsbK gene in these species. The functionality of an RsbK ortholog in B. subtilis and its potential role in the SigB activation pathway remains to be confirmed.

The suggestion of an alternative SigB activation pathway in *B. subtilis* is not new, as extreme heat and chill conditions have been reported to induce SigB either directly, or independently from RsbV (Brigulla et al., 2003; Holtmann et al., 2004), and nitrosative stress triggered SigB in the absence of RsbT or RsbP (Tran et al., 2019). Moreover, the RsbW (the anti-sigma factor) exhibited high cross-phosphorylation activity by other kinases (Shi et al., 2014), which may cause unexpected SigB activation in *B. subtilis*.

2.4 Conclusion

This study generated a SigB PBM that took spacer composition into account and has higher plasticity than the previously reported consensus sequence (Sierro et al., 2008; Coelho et al., 2018; Vohradsky et al., 2021). This was used to identify potential novel candidates that belong to the SigB regulon of B. subtilis. Of the 255 genes with predicted SigB PBMs identified in this study, 99 genes have previously been reported in the literature, indicating the identification of 156 new putative SigB regulon members. The functionality of nine predicted SigB PBMs (including a positive control P_{rsbV}) was further validated via experiments, and results obtained showed that 1) some promoters containing the predicted SigB PBMs are stressor-specific; 2) spacer length likely influences the promoter activity with a spacer length of 14 bp appearing to be optimal; 3) less conserved SigB PBMs are still recognized by SigB (e.g., P_{gtaB}) but may be co-regulated by other transcriptional regulators.

Furthermore, this study demonstrated the diversity of SigB regulons in different species of the Bacillales order. The various SigB regulons are likely linked with distinct strategies required for survival in ecological niches of species. While all Bacillales members can be present in soils, some inhabit salt lakes, hot springs, guts of invertebrates, etc. Thus, the strategies used to cope with stressors found in the soil environments likely overlap between these species but have diverse stress management strategies in other niches. A Bacillales SigB consensus was predicted, with the sequence of KTT at the -35 and the GG at the -10 binding site, respectively.

The SigB stress sensing modules were also species-specific and may even vary between different strains of the same species, likely due to the evolution of Bacillales members in specific habitats, demanding different needs to sense unique stressors.

Overall, the entire SigB regulatory network is sophisticated and not yet fully understood, even for the well-characterized organism *B. subtilis* 168. Knowledge and information gained in this study can be used in further SigB GSR studies to uncover a complete picture of the role of SigB in *B. subtilis* and other species.

2.5 Supplementary Materials

Supplementary Table S1: List of SigB regulon genes described to date October 2020 for *Bacillus subtilis* 168

No	Locus Tag	Gene	No	Locus Tag	Gene	No	Locus Tag	Gene
1	BSU_misc_RNA_55	ssrA	41	BSU04370	ydaS	81	BSU08500	yfhE
2	BSU00160	yaaH	42	BSU04380	ydaT	82	BSU08510	yfhF
3	BSU00170	yaaI	43	BSU04400	gsiB	83	BSU08570	yfhK
4	BSU00520	ctc	44	BSU04430	ydbD	84	BSU08580	yfhL
5	BSU00530	spoVC	45	BSU04440	dctB	85	BSU08590	yfhM
6	BSU00540	fin	46	BSU04670	rsbR	86	BSU08600	csbB
7	BSU00830	ctsR	47	BSU04680	rsbS	87	BSU08610	yfhO
8	BSU00840	mcsA	48	BSU04690	rsbT	88	BSU09140	yhcM
9	BSU00850	mcsB	49	BSU04700	rsbU	89	BSU09390	ygxB
10	BSU00860	clpC	50	BSU04710	rsbV	90	BSU09450	yhdF
11	BSU00870	radA	51	BSU04720	rsbW	91	BSU09530	yhdN
12	BSU00880	disA	52	BSU04730	sigB	92	BSU09540	plsC
13	BSU00890	yacL	53	BSU04740	rsbX	93	BSU09690	nhaX
14	BSU00900	ispD	54	BSU05140	ydzE	94	BSU10430	yhxD
15	BSU00910	ispF	55	BSU05150	ydeC	95	BSU10810	yisP
16	BSU02100	cypC	56	BSU05490	mhqO	96	BSU11120	yitT
17	BSU02110	ybyB	57	BSU05500	mhqP	97	BSU11130	ipi
18	BSU02590	ycbP	58	BSU05790	ydhK	98	BSU11490	yjbC
19	BSU02830	ycdF	59	BSU06400	yebE	99	BSU11500	spx
20	BSU02840	ycdG	60	BSU06410	yebG	100	BSU11839	yjzE
21	BSU02890	yceC	61	BSU06590	yerD	101	BSU12150	yjgB
22	BSU02900	yceD	62	BSU06660	opuE	102	BSU12160	yjgC
23	BSU02910	yceE	63	BSU07550	yflT	103	BSU12170	yjgD
24	BSU02920	yceF	64	BSU07670	yflI	104	BSU12210	yjiB
25	BSU02930	yceG	65	BSU07680	yflH	105	BSU12220	yjiC
26	BSU02940	усеН	66	BSU07690	yflG	106	BSU13010	ykgB
27	BSU03130	nadE	67	BSU07720	yflD	107	BSU13020	ykgA
28	BSU03910	gabD	68	BSU07735	yflB	108	BSU13160	ohrB
29	BSU04039	yczO	69	BSU07750	yflA	109	BSU13169	ykzN
30	BSU04180	ydaC	70	BSU07760	yfkT	110	BSU13170	guaD
31	BSU04190	ydaD	71	BSU07770	yfkS	111	BSU13640	spo0E
32	BSU04200	ydaE	72	BSU07780	yfkR	112	BSU14210	ykuT
33	BSU04210	ydaF	73	BSU07790	yfkQ	113	BSU14660	ykzI
34	BSU04220	ydaG	74	BSU07850	yfkM	114	BSU14670	yktC
35	BSU04270	ydaJ	75	BSU07880	yfkJ	115	BSU14680	ykzC
36	BSU04280	ydaK	76	BSU07890	yfkI	116	BSU16590	ylxS
37	BSU04290	ydaL	77	BSU07900	yfkH	117	BSU16600	nusA
38	BSU04300	ydaM	78	BSU07920	chaA	118	BSU16610	ylxR
39	BSU04310	ydaN	79	BSU07930	yfkD	119	BSU16620	ylxQ
40	BSU04340	ydaP	80	BSU08490	yfhD	120	BSU16630	infB

No	Locus Tag	Gene	No	Locus Tag	Gene	No	Locus Tag	Gene
121	BSU16650	rbfA	162	BSU30640	ytkC	203	BSU38720	yxkO
122	BSU17240	ymzB	163	BSU30650	dps	204	BSU38830	aldY
123	BSU17250	ymaE	164	BSU30670	luxS	205	BSU38930	yxjJ
124	BSU18350	dacC	165	BSU30690	ytiB	206	BSU38940	yxjI
125	BSU18360	galM	166	BSU30700	rpmEB	207	BSU39040	yxiS
126	BSU18510	yoxC	167	BSU30780	menC	208	BSU39050	katE
127	BSU18520	yoxB	168	BSU30790	menE	209	BSU39810	csbC
128	BSU18530	yoaA	169	BSU30930	ytaB	210	BSU39840	yxbG
129	BSU19150	yocB	170	BSU31279	yuzH	211	BSU40000	yxnA
130	BSU19240	yocK	171	BSU31280	yugU	212	BSU40030	ухаВ
131	BSU23300	ypuD	172	BSU31380	yuzA	213	BSU40040	yxaA
132	BSU23329	ypuC/1	173	BSU33200	yvrE	214	BSU40210	yydC
133	BSU23330	ypuC/2	174	BSU33400	yvgN	215	BSU40259	yyzG
134	BSU23340	уриВ	175	BSU33410	yvgO	216	BSU40450	yycD
135	BSU23830	yqjL	176	BSU33530	iolW	217	BSU40529	yyzH
136	BSU24000	bmrU	177	BSU33600	smpB	218	BSU40570	yybO
137	BSU24010	bmr	178	BSU33610	rnr	219	BSU16640	ylxP
138	BSU24020	bmrR	179	BSU33620	yvaK	220	new_3035475_3036308_c	S1134
139	BSU24490	yghQ	180	BSU33630	secG	221	new_3036310_3036529_c	S1136
140	BSU24500	yqhP	181	BSU33850	yvbG	222	new_3708133_3708785	S1384
141	BSU24740	corA	182	BSU34540	clpP			
142	BSU24750	yqhB	183	BSU35180	csbA			
143	BSU24760	rsbRD	184	BSU35310	hpf			
144	BSU24770	mgsR	185	BSU35670	gtaB			
145	BSU25020	sodA	186	BSU35699	yvzE			
146	BSU25290	era	187	BSU35830	ywtG			
147	BSU25300	cdd	188	BSU35970	ywsB			
148	BSU27020	yraA	189	BSU35980	ywsA			
149	BSU27750	bofC	190	BSU36670	csbD			
150	BSU27760	csbX	191	BSU36680	ywmF			
151	BSU28340	ysnF	192	BSU36720	ywmE			
152	BSU28500	trxA	193	BSU36960	ywlB			
153	BSU28830	ysdB	194	BSU37210	ywjC			
154	BSU29100	phoR	195	BSU37220	ywjB			
155	BSU29110	phoP	196	BSU37230	ywjA			
156	BSU29410	ytkL	197	BSU37240	ywiE			
157	BSU29420	ytkK	198	BSU38180	ywzA			
158	BSU29760	ytx.J	199	BSU38430	gspA			
159	BSU29770	ytxH	200	BSU38610	yxzF			
160	BSU29780	ytxG	201	BSU38620	aag			
161	BSU30070	opuD	202	BSU38630	katX			

Supplementary Table S2: The list of newly predicted SigB regulon genes with a SigB PBM in this study a-bold locus tag indicates genes found in this study that are also listed in the Subtiwiki SigB regulon

Locus Taga	Operon	Annotation/Description/Function	Gene	SigB PBM	С
BSU04720	operon_2365	anti- sigma factor B; serine-protein kinase RsbW	rsbW	GGTTTAACGTCTGTCAGACGAGGGTATAAAGCAACTA	I
BSU04730	operon_2365	RNA polymerase sigma-B	sigB	GGTTTAACGTCTGTCAGACGAGGGTATAAAGCAACTA	I
BSU04710	operon_2365	anti-sigma-B factor antagonist	rsbV	GGTTTAACGTCTGTCAGACGAGGGTATAAAGCAACTA	I
BSU04740	operon_2365	protein serine phosphatase, feedback PP2C, dephosphorylates RsbS and RsbR	rsbX	GGTTTAACGTCTGTCAGACGAGGGTATAAAGCAACTA	I
BSU11490	operon_1888	acetyltransferase YjbC, general stress protein, required for survival of salt and paraquat stresses	yjbC	CT GTTTAA ACAAGAAGAAATG GGGTAT ATCTAAAAGT	I
BSU00520	operon_2634	general stress protein, similar to ribosomal protein L25	ctc	AG GTTTAA ATCCTTATCGTTAT GGGTAT TGTTTGTAA	I
BSU09530	operon_2033	general stress protein, broad specificity aldo-keto reductase that converts MG to acetol	yhdN	G GTTTAA CATTTTTTCCAGAG GGGAAA AGATAGTGAA	II
BSU04220	operon_2402	putative pyridoxamine 5'-phosphate oxidase, general stress protein, required for protection against paraquat stress	ydaG	TGTTTAAATCTTCCCCGGATGTGGAAAAGTAACAGCG	II
BSU04400	operon_2388	glucose starvation-inducible protein; general stress protein, prevents enzyme inactivation upon freeze-thaw treatments	gsiB	TT GTTTAA AAGAATTGTGAGC GGGAAT ACAACAACCA	II
BSU13020	operon_1790	general stress protein, survival of salt and ethanol stresses	ykgA	TGGTTTAATGATTTTCATGATGAGGGAATAATAAATG	II
BSU00890	operon_2615	PIN and TRAM-domain containing protein; general stress protein, survival of salt and ethanol stresses	yacL	CGGTTAAAACCTTATGAATACGGGTATATTAATGTT	II
BSU00900	operon_2615	2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase, third step in the MEP pathway of isoprenoid biosynthesis	ispD	CG GTTAAA ACCTTATGAATAC GGGTAT ATTAATGTT	II
BSU00910	operon_2615	2-C-methyl-D-erythrol-2,4- cyclodiphosphate synthase, 5th step in the MEP pathway of isoprenoid biosynthesis	ispF	CGGTTAAAACCTTATGAATACGGGTATATTAATGTT	II
BSU38430 BSU38930	operon_176 operon_144	general stress protein general stress protein, survival of ethanol, paraquat and salt stresses	gspA yxjJ	GTGTTTATTTTTTTGAAAAAGGGTATGTAACTTGTA TTGTGTTCAATTCCGCAAAATAGGGTATAAACCAAACA	II
BSU02590	operon_2519	general stress protein	ycbP	AG GTTTAA CTTTTTACATTTGA GGAATT ATACATAAC	II
BSU36720	operon_283	general stress protein, survival of ethanol stress	ywmE	TGGTTTAAAAACAGTTTGGGCGGGAATGATACCCTAA	II
BSU02830	operon_2499	glucose 1-dehydrogenase 2; general stress protein, similar to glucose 1- dehydrogenase, survival of ethanol stress and low temperatures	ycdF	CTGTTTTCAACTCGGAAAAACAGGGTATTTTCCACTGC	II
BSU02840	operon_2499	oligo-1,6-glucosidase 2; general stress protein, similar to oligo-1,6-glucosidase	ycdG	CTGTTTTCAACTCGGAAAAACAGGGTATTTTCCACTGC	II
BSU14210	operon_1691	MscS family protein; mechanosensitive channel, similar to MscS, general stress protein	ykuT	AC GTTTAA CATGGTCATGTACA GGGTAA CTAGTCTCAA	II
BSU13160	operon_1779	organic hydroperoxide resistance OhrB; general stress protein	ohrB	AT GTTTAA AAAAGATCAGAAA GGGAAA TATAACAACTA	II
BSU13169	operon_1779	hypothetical protein; unknown	ykzN	AT GTTTAA AAAGATCAGAAA GGGAAA TATAACAACTA	II
BSU36470	operon_302	allantoin permease	pucI	TT GTTTAA GCTGTTCAAATACAAAC GGGAAA ATTGTA	II
BSU13920	operon_1720	transcriptional regulator SplA; transcriptional repressor of the spore photoproduct lyase splA-splB operon	splA	CTG GTTTT TTCATAAGTAA GGGTAT AGAAGGACAC	II
BSU23040	operon_1137	ferredoxin	fer	ACGTTTAAAGTCATCATTAAGGGGGGATGTTATGTAGA	II
BSU29850	operon_720	hypothetical protein	ytoQ	TCGTTTAACATCGTGTACATGAGGGTGAAATTTACAG	II
BSU27630	operon_852	hypothetical protein	yrvD	TGTTTAAAACCAGTCTTGATTGGGAAAGTTACCTCAA	II
BSU23900	operon_1082	hypothetical protein	yqjF	TCGTTTAAAAAGGAAGGAAATCGGGAATACCTTTACTC	II
BSU03390	operon_2457	hypothetical protein	yckC	GTGTTTAAAAAGCGTCTATGAAGGGGAAAAAAAAAAAAA	II
BSU12270 BSU33510	operon_1825 operon_473	hypothetical protein copper chaperone CopZ; copper transport protein, metallochaperone	yjlB copZ	CTGTTTAATATAAAGGTAACGGCGAAAAAGAGTGAA TTTTTTATTGTAATACCCTACGGGGGTATGGTAGGAT	II
BSU34640	operon_408	putative lysine decarboxylase;	yvdD	ATGTTTAACACGATATATAGATGCGGAGATGACAAGA	II
BSU18370	operon_1439	probable multidrug resistance protein	yoeA	ATGTTTAAAAACGATTTCAAATAAAGGAGTCCTTTAA	II
BSU29410	operon_751	general stress protein; metal- dependent hydrolase	ytkL	GTTTT CAGCTTTTTAAAAA GGGAAA ATAAAAAAAA	III
BSU02110	operon_2553	GSP, survival of ethanol stress	ybyB	AG GTTTAG CAATTTCCAAAAC GGGAAT GATACAGGAA	III

Locus Tag ^a BSU38620	Operon	Annotation/Description/Function	Gene	SigB PBM CGTTTTTTTTGATCTGCTTCGGGAATGGTACAATGT	C
D3030020	operon_164	hypoxanthine-DNA glycosylas, GSR protect against paraquat stress	aag	COTTITITIONICIGCTICOGGARTGGTACAATGT	111
BSU38610 BSU39840	operon_164 operon_91	general stress protein general stress protein, similar to glucose 1-dehydrogenase; oxidoreductase	yxzF yxbG	CGTTTTTTTTGATCTGCTTCGGGAATGGTACAATGT ATGTTTATCACTGCACATAGCGGGAAGACAAATAGAA	III
BSU38180	operon_193	general stress protein	ywzA	TGTTTATCTTATACAAAAAAGAGGAATGATATAAGCA	III
BSU23300	operon_1122	putative intramembrane metalloprotease	ypuD	CGGTTTTTATTCATGAAAAAAAAGGAATAACTCATATG	III
BSU19150	operon_1366	general stress protein, survival of stress conditions	yocB	AG GTTTGA TCGTTTTTAAGAG AGGAAA AAGAAAACTA	III
BSU10430	operon_1959	general stress protein, similar to alcohol dehydrogenase, oxidoreductase	yhxD	T GTTTTT CTGCTTATGCTCAG GGGTAC ACATACGAAT	III
BSU39810	operon_94	general stress protein, similar to sugar symporter, required for protection against paraquat stress metabolite transport protein CsbC	csbC	AT GTTTCA AATGAGATAGGAAAT GGGTAC TAATCTAT	III
BSU08570	operon_2104	general stress protein, similar to cell division inhibitor	yfhK	GTTTCA CCAGCCTGTCAATCA GGGAAT ACCACTTATA	III
BSU05790	operon_2282	general stress protein, survival of ethanol and paraquat stresses	ydhK	TGTTTGGCTTTGCAAACAAAGGGGAATAGGACAAACT	III
BSU40529	operon_42	hypothetical protein	yyzH	ATGTTTTGAAGTTTTTAAAAAGGGGAAATTCACCTTAT	III
BSU29780	operon_724	general stress protein	ytxG	ATGTTTATGATTGAAGAAAACGGGTAAACAGCAGTAT	III
BSU29770 BSU29760	operon_724 operon_724	general stress protein general stress protein, putative	ytxH ytxJ	AT GTTTAT GATTGAAGAAAAC GGGTAA ACAGCAGTAT AT GTTTAT GATTGAAGAAAAC GGGTAA ACAGCAGTAT	III
BSU04340	operon_2394	bacillredoxin general stress protein, required for survival of ethanol, cold (4°C) and oxidative stress (superoxide/paraquat), putative pyruvate oxidase; thiamine pyrophosphate-containing protein YdaP	ydaP	G GTTTTA AAGCCTTTCTCCTG TGGTAT TGAAAAAAGG	III
BSU04430	operon_2386	general stress protein, manganese catalase	ydbD	TCGTTTATCTTTCTATCGATCGGAAATATAAAAAAGAG	III
BSU38630	operon_163	Catalase X, general stress protein	katX	GTTTTA AAATCTTTCCATTCA GGGAAT ATTGTTACCG	III
BSU09140 BSU24000	operon_2063 operon_1075	general stress protein general stress protein, multidrug resistance protein, similar to diacylglycerol kinase; lipid kinase BmrU	yhcM bmrU	ACGGTTAATTTGTCTAACGAGGGGGAAAATATGAATAC TCGTTTACTGCTTACAGAAAAAGGGGATTATATAACCA	III
BSU30700	operon_665	general stress protein, binds in the stationary phase to the ribosome, replaces RpmE under conditions of zinc limitation;	rpmE	AG GTTTAC GATGTGAAACAGA GGGAAG GATATAAGAA	III
BSU30070	operon_703	glycine betaine and arsenobetaine transporter	opuD	T GTTTTG TTTCACCTGATTGCG GGGTAA TTTTAAGAG	III
BSU04380	operon_2390	general stress protein, survival of ethanol stress and low temperatures	ydaT	CGTTTTTATTTTTCACCTGCGGGTACCATTTTTATA	III
BSU11120	operon_1912	general stress protein, required for protection against paraquat stress	yitT	GTGTTCAAATATTTGTTTTAAGGGAAAACATAATAAA	III
BSU19240 BSU34540	operon_1358 operon_412	general stress protein ATP-dependent Clp protease proteolytic subunit (class III heat-shock protein)	yocK clpP	ATGTTTGACAGAAGGCAAAACGGGAAACAGGATAGAA GTTTGAACCCCTGTATTTTTGGGGAAAATGGGAAAAA	III
BSU40450	operon_48	general stress protein, survival of ethanol stress	yycD	C GTTTCG GACAGTAACAAGGC GGGAAA AATGCAATAA	III
BSU00870	operon_2616	DNA repair protein RadA; branch migration transferase, 6-O-methylguanine-DNA methyltransferase, negative effector of DisA activity, participates in the stabilization and/or processing of holliday junction intermediates	radA	C GTTTAT CTGAAGAACTCCTCAG AGGAAA TATTCATA	III
BSU00880	operon_2616	DNA integrity scanning protein, diadenylate cyclase, delays [SW sporulation] in the case of chromosome damage, the DisAdependent checkpoint arrests [SW DNA replication] during <i>B. subtilis</i> subrilis germinating spores genome is free of damage	disA	C GTTTAT CTGAAGAACTCCTCAG AGGAAA TATTCATA	III
BSU00850	operon_2617	ATP:guanido phosphotransferase, tags proteins for degradation by ClpC and	mcsB	G GTTTTG TGGACCGGGAAAAT GGAAAT AATGAAGGA	III

Locus Taga	Operon	Annotation/Description/Function	Gene	SigB PBM	С
		ClpP protein, modulator of CtsR -			
BSU00840	operon_2617	dependent repression modulator of CtsR-dependent repression, McsA activates kinase	mcsA	G GTTTTG TGGACCGGGAAAAT GGAAAT AATGAAGGA	III
BSU00860	operon_2617	activity of McsB negative regulator of genetic	clpC	G GTTTTG TGGACCGGGAAAAT GGAAAT AATGAAGGA	III
		competenceClpC/MecB transcriptional regulator CtsR;		GGTTTTGTGGACCGGGAAAATGGAAATAATGAAGGA	111
BSU00830	operon_2617	transcriptional regulator CtsR; transcription repressor of class III heat shock genes	ctsR		III
BSU36680	operon_286	hypothetical protein	ywmF	ACGTTTATTTCCGGGGAGAACAGGAAAAATCGCTACA	III
BSU36670 BSU08510	operon_287 operon_2109	general stress protein general stress protein, similar to nucleoside-diphosphate sugar	csbD yfhF	ATGTTTATTGCCTCTCAGATCGGGAAGTTAACAAGTA CGTTTTCTTTTATTACAATGAGGTAAAGTATATTTA	III
BSU11839	operon_1863	epimerase general stress protein	i=E	CCTTTTATTCCCTCTTCAAAGAGGAATTGATAATGTT	III
BSU18360	operon_1440	aldose-1-epimerase	yjzE galM	GGT GTTTT TTTATTTGATAG GGGAAAA TATAAAATG	III
BSU18350	operon_1440	penicillin-binding protein 4A, D-alanyl-	dacC	GGT GTTTT TTTATTTGATAG GGGAAAA TATAAAATG	III
	-	D-alanine carboxypeptidase			
BSU04300	operon_2397	glycosyltransferase YdaM; general stress protein, synthesis of extracellular polysaccharide	ydaM	CT GTTTTC TTAATGTTCAAAAA GGGAAA AAAAAAGCTA	III
BSU04270	operon_2397	lipoprotein, may modify the extracellular polysaccharide synthesized by YdaLYdaM and YdaN	ydaJ	CT GTTTTC TTAATGTTCAAAAA GGGAAA AAAAAAGCTA	III
BSU04280	operon_2397	general stress protein, may act as c-di- GMP receptor, required for extracellular polysaccharide synthesis by [[protein YdaL]]-[[protein YdaM]]- [[protein YdaN]]	ydaK	CT GTTTTC TTAATGTTCAAAAA GGGAAA AAAAAAGCTA	III
BSU04290	operon_2397	general stress protein, synthesis of extracellular polysaccharide	ydaL	CT GTTTTC TTAATGTTCAAAAA GGGAAA AAAAAAGCTA	III
BSU04310	operon_2397	general stress protein, synthesis of extracellular polysaccharide	ydaN	CT GTTTTC TTAATGTTCAAAAA GGGAAA AAAAAGCTA	III
BSU33610	operon_465	RNase R, required for protection against paraquat stress	rnr	AC GTTTT TTCTGATTAAACTG TGGAAA ACTAAAATGA	III
BSU33620	operon_465	general stress protein, carboxylesterase	yvaK	AC GTTTTT TTCTGATTAAACTG TGGAAA ACTAAAATGA	III
BSU25490	operon_989	transcriptional repressor of class I heat- shock genes	hrcA	CC GTTTAT TTGACTCATCAA GGGAAA TTATTAGGCA	III
BSU18690	operon_1410	hypothetical protein	yoaP	G GTTTTA CAGTTAATTGGCAAAA TGGAAA AGAAAAAG	III
BSU23230	operon_1125	hypothetical protein	ypuF	CTTTT TCCTTTTATCCCTTCTA TGGTAC ACTAAAAG	III
BSU18400	operon_1436	hypothetical protein	yoeD	GGTTTTTTAGCTTCCGCGTGAAAAGGGACACTTCCAG	III
BSU14820	operon_1646	hypothetical protein	ylaL	CGTGTTTATCAGCTTTTGCCAAGGCGGGAATATAGCT	III
BSU15650	operon_1595	calcium-transporting ATPase	yloB	TTG GTTTTT TCCCTTGGCACGGATG TGGAAA ATCACA	III
BSU12840	operon_1799	low-affinity inorganic phosphate transporter, proton symporter	pit	CCT GTTTT TTTTCGACAAAA GGCTAT ATAATAATTT	III
BSU12850	operon_1799	ypothetical protein	ykaA	CCT GTTT TTTTCGACAAAA GGCTAT ATAATAATTT	III
BSU35160	operon_384	excinuclease ABC (subunit A), required for transcription-dependent asymmetry in mutation rates of genes in the two orientations	uvrA	GGTTTTTTATACACAAAAACAGCTGGAAATAAAAAAAC	III
BSU35170	operon_384	excinuclease ABC (subunit B), required for transcription-dependent asymmetry in mutation rates of genes in the two orientations	uvrB	G GTTTT TTATACACAAAAACAGC TGGAAA TAAAAAAC	III
BSU08890 BSU08899	operon_2075 operon_2075	hypothetical protein similar to transcription regulator Xre	ygaO ygzD	TGTTTATTTATTTTTCGTCAAGGGAATATAAAAAATTT TGTTTATTTATTTTTCGTCAAGGGAATATAAAAAATTT	III
BSU32380	operon 547	family hypothetical protein	yunE	GTTTTTAAAATCTCATCAACGTGGTATCTTTTTTA	III
BSU32390	operon_547	hypothetical protein	-	GTTTTTAAAATCTCATCAACGTGGTATCTTTTTTA GTTTTTAAAATCTCATCAACGTGGTATCTTTTTTTA	III
BSU32390	operon_547	hypothetical protein	yunF yunD	GTTTTTAAAATCTCATCAACGTGGTATCTTTTTTA GTTTTTAAAATCTCATCAACGTGGTATCTTTTTTTA	III
BSU32400	operon_547	hypothetical protein	yunG	GTTTTTAAAATCTCATCAACGTGGTATCTTTTTTA GTTTTTAAAATCTCATCAACGTGGTATCTTTTTTTA	III
BSU14030	operon_1708	similar to macrolide-efflux protein, MFS transporter	ykuC	CGGTTTATAATATGATAAAGTGGGACCTTTAGGGTA	III
BSU15350	operon_1609	N-formyl-4-amino-5-aminomethyl-2- methylpyrimidine deformylase, thiamine salvage pathway	ylmB	C GTTTCA TCACATTTGAAAC GGCTTT TTTGATTTTA	III
BSU08160	operon_2132	hypothetical protein	yfjB	AGT GTTTT TCCCATAGAGC GGGAAA TTTCTCATTT	III
BSU08150	operon_2132	hypothetical protein	yfjC	AGT GTTTT TCCCATAGAGC GGGAAA TTTCTCATTT	III
BSU08170	operon_2132	hypothetical protein	yfjA	AGT GTTTT TCCCATAGAGC GGGAAA TTTCTCATTT	III
BSU08140	operon_2132	lipoprotein	yfjD	AGT GTTTT TCCCATAGAGC GGGAAA TTTCTCATTT	III
BSU25210	operon_1001	DNA primase, part of the [SW replisome]	dnaG	GG GTTTTT GGCTGTGCCAAAA GGGAAT AATGAAAAAC	III
BSU25230	operon_1001	hypothetical protein	yqxD	GG GTTTTT GGCTGTGCCAAAA GGGAAT AATGAAAAAC	III
BSU23510	operon_1109	tyrosine recombinase XerD, site-	ripX	GTTTAT ATAACTGGAACCATA GGGAAA GGATCGATTA	III

Annotation/Description/Function Gene SigB PBI	GGGAAAGGATCGATTA III ATAGGGAGTTTTATAT III GGGAAAGATTTCTACA III TTAAGGAAATTGATAC III
replication, hypothetical protein yqzk gTTTATATAACTGGAACCATAC ATP Coperon_1360 ATP-dependent DNA helicase RecQ, acts together with RecJ acts together with RecJ PBSX Trophage, phage-like element PBSX KkdA spore coat protein, similar to chloride peroxidase, AB hydrolase superfamily protein YisY response regulator aspartate phosphatase RapA inhibitor, control of the [SW] phosphorelay] response regulator aspartate phosphatase A, dephosphorylates Spo0F-P, control of the phosphorelay D-sorbitol dehydrogenase BSU12240 operon_1827 similar to amino acid ABC transporter yjkA CGGTTTGTTCACTAAAAGCAAATCCGT yjkA CCGGTTTGTTCACTAAAAAGCAAATCCGT phosphorelay brother phosphorelay phosphatase A, dephosphorylates Spo0F-P, control of the phosphorelay brother phosphorelay similar to amino acid ABC transporter yjkA CGGTTTGTTCACTATAATAGCCGT phosphorelay bykA CGGTTTGTTCACTAAAAAGCAGATAAAATCCGT phosphorelay brother phosphorelay phosphorelay bykA CGGTTTGTTCACTAAAAAGCAGATAAAATCCGT phosphorelay brother phosphorelay phosphorelay brother phosphorelay brother phosphorelay phosphorelay brother phosp	ATAGGGAGTTTTATAT III GGGAAAGATTTCTACA III TTAAGGAAATTGATAC III
BSU23519 operon_1109 hypothetical protein BSU19220 operon_1360 ATP-dependent DNA helicase RecQ, acts together with RecJ BSU12500 operon_1809 PBSX prophage, phage-like element PBSX XkdA BSU10900 operon_1926 operon_1926 peroxidase, AB hydrolase superfamily protein YisY BSU12440 operon_1815 response regulator aspartate phosphatase RapA inhibitor, control of the [SW phosphorelay] BSU12430 operon_1815 operon_1815 phosphorelay phosphorelay BSU12430 operon_1815 operon_1815 phosphorelay ph	ATAGGGAGTTTTATAT III GGGAAAGATTTCTACA III TTAAGGAAATTGATAC III
BSU12500 operon_1809 BSU12500 operon_1809 BSU12500 operon_1809 BSU12500 operon_1809 BSU12500 operon_1926 BSU12400 operon_1926 BSU12440 operon_1815 BSU12440 operon_1827 BSU12440 operon_1827 BSU12440 operon_1827 BSU12440 operon_1827	ATAGGGAGTTTTATAT III GGGAAAGATTTCTACA III TTAAGGAAATTGATAC III
acts together with RecJ BSU12500 operon_1809 PBSX prophage, phage-like element PBSX XkdA BSU10900 operon_1926 spore coat protein, similar to chloride peroxidase, AB hydrolase superfamily protein YisY BSU12440 operon_1815 response regulator aspartate phosphatase RapA inhibitor, control of the [SW phosphorelay] BSU12430 operon_1815 response regulator aspartate phosphatase A, dephosphorylates Spo0F-P, control of the phosphorelay BSU06150 operon_2266 D-sorbitol dehydrogenase BSU12240 operon_1827 similar to amino acid ABC transporter axkdA GTGTTTATTTTTTAAAGAAAAG CGGTTTCACTAAAAGAAAAG	GGGAAAGATTCTACA III TTAAGGAAATTGATAC III
BSU10900 operon_1926 spore coat protein, similar to chloride peroxidase, AB hydrolase superfamily protein YisY BSU12440 operon_1815 response regulator aspartate phosphatase RapA inhibitor, control of the [SW phosphorelay] BSU12430 operon_1815 response regulator aspartate phosphatase A, dephosphorylates Spo0F-P, control of the phosphorelay BSU06150 operon_2266 D-sorbitol dehydrogenase sumilar to amino acid ABC transporter yjkA CGGTTTCACTAAAAGAAAGCA CGGTTTTCACTAAAAAGAAAGCA CGGTTTTCACTAAAAAGAAAAG	TTA AGGAAA TTGATAC III
BSU12440 operon_1815 response regulator aspartate phosphatase A, dephosphorylates Spo0F-P, control of the SU12240 operon_2266 operon_1827 similar to amino acid ABC transporter sports of the SU12240 operon_1827 similar to amino acid ABC transporter sports of the SU12240 operon_1827 similar to amino acid ABC transporter sports of the SU12240 operon_1827 similar to amino acid ABC transporter sports of the SU12240 operon_1827 similar to amino acid ABC transporter sports of the CGGTTTGATTAATATAGCCGTTTCATTATAATAGCCGTTTCATTATAATAGCCGTTTCATTATAATAGCCGTTTCATTATAATAGCCGTTTCATTATAATAGCCGTTTCATTATAATAGCCGTTTCATTATAATAGCCGTTTCATTATAATAGCCGTTTCATTATAATAGCCGTTTCATTATAATAGCCGTTTCATTATAATAGCCGTTTCATTATAATAGCCGTTTCATTATAATAGCCGTTTCATTATAATAGCCGTTTCATTATAATAGCCGTTTCATTATAATAATAGCCGTTTCATTATAATAGCCGTTTCATTATAATAGCCGTTTCATTAATAATAGCCATAATAATAGCAATAAAAAAAA	
BSU12440 operon_1815 response regulator aspartate phosphatase RapA inhibitor, control of the [SW lphosphorelay] BSU12430 operon_1815 response regulator aspartate phosphorelay] BSU12430 operon_1815 response regulator aspartate phosphorelay] BSU06150 operon_2266 D-sorbitol dehydrogenase gutb GTGTTAAAAAGCAGATAAAATGCAGBUILZ240 operon_1827 similar to amino acid ABC transporter yjkA CGGTTTGTTCATTATAATAGCC	
BSU12440 operon_1815 response regulator aspartate phosphatase RapA inhibitor, control of the [SW phosphorelay] BSU12430 operon_1815 response regulator aspartate phosphorelay] BSU06150 operon_2266 D-sorbitol dehydrogenase BSU12240 operon_1827 similar to amino acid ABC transporter yjkA CGGTTTGTCACTAAAAGAAAGCA	AC GGGTGT TTGAAAAA III
BSU12440 operon_1815 response regulator aspartate phosphatase RapA inhibitor, control of the [SW phosphorelay] BSU12430 operon_1815 response regulator aspartate phosphatase A, dephosphorylates Spo0F-P, control of the phosphorelay BSU06150 operon_2266 D-sorbitol dehydrogenase gutB BSU12240 operon_1827 similar to amino acid ABC transporter yjkA CGGTTTGTTCATTATAATAGCC	AC GGGTGT TTGAAAAA III
phosphatase RapA inhibitor, control of the [SW phosphorelay] BSU12430 operon_1815 response regulator aspartate phosphatase A, dephosphorylates Spo0F-P, control of the phosphorelay BSU06150 operon_2266 D-sorbitol dehydrogenase gut GTGTTAAAAAGCAGATAAAATC BSU12240 operon_1827 similar to amino acid ABC transporter yjk4 CGGTTTGTTCATTATAATAGCC	ACGGGIGI I IGAAAAA III
BSU12430 operon_1815 response regulator aspartate phosphatase A, dephosphorylates Spo0F-P, control of the phosphorelay BSU06150 operon_2266 D-sorbitol dehydrogenase gut GTGTTAAAAAGCAGATAAAATC BSU12240 operon_1827 similar to amino acid ABC transporter yjkA CGGTTTGTTCATTATAATAGCC	
BSU12430 operon_1815 response regulator aspartate phosphatase A, dephosphorylates Spo0F-P, control of the phosphorelay BSU12240 operon_1827 operon_1827 similar to amino acid ABC transporter yjkA CGGTTTGTCACTAAAAAGGAAAGCA	
phosphatase A, dephosphorylates Spo0F-P, control of the phosphorelay BSU06150 operon_2266 D-sorbitol dehydrogenase gutB BSU12240 operon_1827 similar to amino acid ABC transporter yjk4 CGGTTTGTTCATTATAATAGCC	AC GGGTGT TTGAAAAA III
BSU06150 operon_2266 D-sorbitol dehydrogenase gutB GTGTTAAAAAAGCAGATAAAATC BSU12240 operon_1827 similar to amino acid ABC transporter yjkA CGGTTTGTTCATTATAATAGCC	
BSU12240 operon_1827 similar to amino acid ABC transporter yjkA CGGTTTGTTCATTATAATAGCC	
(membrane protein)	G GGGATG ATGTTACAT III
BSU12250 operon_1827 similar to amino acid ABC transporter yjkB CGGTTTGTTCATTATAATAGCC	G GGGATG ATGTTACAT III
ATP-binding protein BSU27610 operon_853 adenine phosphoribosyltransferase, apt ATTTTCAGGTAATGAAATTGA	AAGC GGGAAA TAAAAA III
BSU27610 operon_853 adenine phosphoribosyltransferase, apt universally conserved protein ATTTTCAGGTAATGAAATTGA	HAGCGGAAATAAAAA III
BSU27620 operon_853 single-strand DNA-specific recJ ATTTTCAGGTAATGAAATTGA	AAGC GGGAAA TAAAAA III
exonuclease RecJ	
BSU37790 operon_213 catabolic NAD-specific glutamate rocG ATGTTTTCAGTCTCTTTTTTTG	GTGGATTCAAAAGCTG III
dehydrogenase RocG, trigger enzyme	
and effector protein for GltC	
BSU12860 operon_1798 serine/ threonine exchanger steT TCGTTTATAGACCATTAAAACA	AGGTATTTCTACAGTT III
transporter SteT	10011 MOOTH A COA CA HI
BSU24290 operon_1061 similar to exodeoxyribonuclease VII yqiC GGTTTTCTTTAGTTATGGTGCA (small subunit)	AGGAATGCTTAGGAGA III
BSU24300 operon_1061 similar to exodeoxyribonuclease VII yqiB GGTTTTCTTTAGTTATGGTGCA	AGGAATGCTTAGGAGA III
(large subunit)	AGGARTGET TAGGAGA III
BSU24280 operon_1061 farnesyl diphosphate synthase yqiD GGTTTTCTTTAGTTATGGTGCA	AGGAATGCTTAGGAGA III
BSU30470 operon_684 hypothetical protein ytzC GCGTTTTTCCGTATTTGAATAA	
BSU40700 operon_28 hypothetical protein yybB CCGGTTTTACTTCAGAGGAAAA	AGGAAACCATTTCTGCA III
BSU27150 operon_884 hypothetical protein yrhK GTTTACATGCCGTTTACGTAAG	GGGTAAGCCAAAATTG III
BSU29700 operon_728 acetoin utilization protein AcuB acuB ATGTTGAAAACGCTTTATAATT	
BSU29710 operon_728 acetoin utilization protein AcuC acuC ATGTTGAAAACGCTTTATAATT	
BSU29690 operon_728 acetoin utilization protein AcuA acuA ATGTTGAAAACGCTTTATAATT	
BSU29190 operon_762 6-phosphofructokinase pfkA CGGTTGAAGATCAATATATCGC	
BSU29180 operon_762 pyruvate kinase, glycolytic enzyme pyk CGGTTGAAGATCAATATATCGC	
BSU01010 operon_2610 transcription nusG CTTTTTTGCCCTCCTTGACACAC termination/antiterminationprotein	AGGAAT I I C I CAATTA III
NusG	
BSU19420 operon_1343 UDP-glucosyltransferase YojK, similar yojK TGCTTTTTGTCTTGAAGACAGC	GGAATATAAACTGGT III
to macrolide glycosyltransferase	
BSU33760 operon_456 sporulation-delaying SdpB membrane sdpB ATGATTATATTAGCTTAGAGGA	AGGTAATCTACATCAA III
protein, required for SdpC toxin	
maturation	
BSU33770 operon_456 killing factor SdpC, toxin, collapses the sdpC ATGATTATATTAGCTTAGAGGA	AGGTAATCTACATCAA III
proton motive force and induces	
autolysis, kills non-sporulating cells, induces activity of SigW	
BSU33750 operon_456 sporulation-delaying protein SdpA, sdpA ATGATTATATTAGCTTAGAGGA	AGGTAATCTACATCAA III
required for SdpC toxin maturation	incommercial in
BSU18830 operon_1396 phosphoenolpyruvate synthase, similar pps GTTTTTTAATGCGACTAGCTAT	TGGAAATTAAGAAAAG III
to rifampicin phosphotransferase	
BSU30380 operon_687 bacitracin export ATP-binding protein bceA CTTTTTGTTCGCCGTATCGAA	AGGAAAAGCCCGGCAT III
BceA, or the export of bacitracin,	
plectasin, mersacidin and actagardine	
BSU30370 operon_687 bacitracin export permease protein bceB CTTTTTGTTCGCCGTATCGAA	AGGAAAAGCCCGGCAT III
BceB, ABC transporter (permease) for the export of bacitracin, plectasin,	
mersacidin and actagardine, sensory	
component of the Bce regulatory &	
Component of the DCC regulatory &	
detoxification system	
detoxification system BSU06220 operon_2261 hypothetical protein ydjJ TTGTTTCAGACTCAGGATAAAA	AGGAAATAGAGAAGAA III
BSU06220 operon_2261 hypothetical protein ydjJ TTGTTTCAGACTCAGGATAAAA BSU29805 operon_722 DNA translocase SftA, translocation of sftA TCTTTCTGGGCCGACCAGCAC	
BSU06220 operon_2261 hypothetical protein bSU29805 operon_722 DNA translocase SftA., translocation of on-segregated chromosomes prior to	
BSU06220 operon_2261 hypothetical protein BSU29805 operon_722 DNA translocase SftA, translocation of non-segregated chromosomes prior to septum closure	GTGGTATACTAAAAACC III
BSU06220 operon_2261 hypothetical protein yadjJ TTGTTTCAGACTCAGGATAAAA BSU29805 operon_722 DNA translocase SftA, translocation of non-segregated chromosomes prior to septum closure BSU17550 operon_1501 hypothetical protein ynaG TTTTTTAAAAACGATTTATCA	GTGGTATACTAAAAACC III AGGAAAGGCAGAATTA III
BSU06220 operon_2261 hypothetical protein BSU29805 operon_722 DNA translocase SftA, translocation of non-segregated chromosomes prior to septum closure	GTGGTATACTAAAAACC III AGGAAAGGCAGAATTA III AGGAAAGGCAGAATTA III

Locus Taga	Operon	Annotation/Description/Function	Gene	SigB PBM	С
BSU16799	operon_1552	germination protein, required for TepA activity	ylzJ	TCTTTATTTTTTTGTCCTTCAAGCCGGGATTGAATGAA	III
BSU16790	operon_1552	translocation-enhancing protein TepA, orphan ClpP- like germination protease, contributes to SASP degradation	tepA	T CTTTAT TTTTTTGTCCTTCAAGCC GGGATT GAATGAA	III
BSU21090	operon_1250	hypothetical protein	yonH	GGT GTTTTG AACCCTTTAAAATCAC TGGTAT ATTTTT	III
BSU19290	operon_1353	hypothetical protein	yozO	CGGTTTTTTTGTGGTTAAAACAGGAAATATAAAACAA	III
BSU16010	operon_1579	hypothetical protein	ylqD	CCTTTTTTTACACGCAAAAAAAGGGTAAACTGATAGAA	III
BSU16020	operon_1579	ribosome maturation factor, 16S rRNA processing protein, RNase	rimM	C CTTTT TTACACGCAAAAAAA GGGTAA ACTGATAGAA	III
BSU16030	operon_1579	tRNA methyltransferase, methylates G37 residue at the N1 position	trmD	C CTTTT TTACACGCAAAAAAA GGGTAA ACTGATAGAA	III
BSU38190	operon_192	galactose-1-phosphate uridylyltransferase	galT	CC GTTTTC TATGAAGAAATAAG GGGAAT AAAAAAATAAA	III
BSU38200	operon_192	galactokinase	galK	CC GTTTTC TATGAAGAAATAAG GGGAAT AAAAAAATAAA	III
BSU24200	operon_1067	extracellular lipoprotein	yqiH	CTC GTTATC TTTCTAACAAC AGGAAA TGATCGGGTC	III
BSU24190	operon_1067	secreted N-acetylmuramoyl-L-alanine amidase	yqiI	CTC GTTATC TTTCTAACAAC AGGAAA TGATCGGGTC	III
BSU14640	operon_1660	hypothetical protein	yktA	CTTTT TATGGCCGGGAATG TGGAAT TGAACAGGCT	III
BSU02030	operon_2560	serine/threonine protein kinase D	prkD	CTTTT TTATTCTCCGTCTAGA AGGTAA ACTATAGTCA	III
BSU01650	operon_2580	hypothetical protein	ybbC	CG GTTTTT TATTGACCTATGCATT CGGATAT AAAGAT	III
BSU01660	operon_2580	N-acetylglucosaminidase, lipoprotein	nagZ	CG GTTTTT TATTGACCTATGCATT CGGATAT AAAGAT	III
BSU01670	operon_2580	N-acetylmuramyl-L-alanine amidase	amiE	CGGTTTTTTATTGACCTATGCATTCGGATATAAAGAT	III
BSU40980	operon_6	hypothetical protein	yyaB	AT GTTTT TTGACTTAAAAAA AGGAAT TTCTTAAAGA	III
BSU36730	operon_282	hypothetical protein	ywmD	CC GTTTTT CTGTCATAATCAA GGCGAA AAAAAGAATGAA	III
BSU08620	operon_2100	hypothetical protein	yfhP	CT GTTTT TGTTGTACACTAA GGGCAC AGTACGATAA	III
BSU29140	operon 766	citrate synthase 2	citZ	GTTTTT ACAACACTCTTAAAG GGGAAA TTTATTGAAA	III
BSU25700	operon_976	lipoprotein	yqeF	T GTTTTT CAGATTGGAAAGAA GGGAAT TTTAAAAAAT	III
BSU18390	operon_1437	integrase/recombinase YoeC	yoeC	AG GTTTT TGATGATTAGTAGG GGGATA AGTATCCAA	III
BSU18800	operon_1399	beta-lactamase	penP	G GTTTGT TACACTAACTGTCAT GGGAAA CATTTCAAA	III
BSU11040	operon 1916	hypothetical protein	yitM	TGTTTTCCTTTTAACAAAAATGGAATTTCTCATACT	III
BSU11070	operon_1916	hypothetical protein	yitP	TGTTTTCCTTTTAACAAAAATGGAATTTCTCATACT	III
BSU11055	operon_1916	hypothetical protein	yitO	TGTTTTCCTTTTAACAAAAATGGAATTTCTCATACT	III
BSU02310	operon_2538	hydrolase YbfO, erythromycin esterase	ybfO	GGTTTTACTTTCATCAGGTGATGAGAGAATCCAGCTA	III
BSU33490	operon_475	copper(I)-transporting ATPase, cadmium transporting ATPase, resistance to cadmium	cadA	TGTTTTCATTGACACTTTCTTGGAAAACAACATATA	III
BSU33630	operon_464	protein-export membrane protein SecG, preprotein translocase subunit	secG	CCTTTGACCTTTTCATATGAATAGGGTAACCAAGATA	IV
BSU09540	operon_2032	acyl-ACP:1-acylglycerolphosphate acyltransferase	plsC	GA GTTTAT GGCCCCGCCGACCAGA GAGGAA ATATAAC	IV
BSU00170	operon_2655	general stress protein, similar to isochorismatase	yaaI	GTTTTT TCATTGCCTAAAA AGGCTAC ATATTAACTA	IV
BSU32130 BSU01640	operon_566 operon_2581	GMP reductase AraC family transcriptional regulator, AraC family DNA-binding domain fused to protein FeuA	guaC btr	ATGTTTGACATCCTAAATAAAACAGAGTACATTATAT TACTTTTACACATAAGTAAGGGTTTTTTTCATGCTA	IV IV
BSU02450	operon_2528	two-component response regulator GlnL, regulation of the glsA-glnT operon	glnL	GC GTTAAA CGCTTTCATAATAG CGGAAG GTATAATTA	IV
BSU02440	operon_2528	two-component sensor kinase, regulation of the [[gene glsA]]- [[gene glnT]] operon	glnK	GCGTTAAACGCTTTCATAATAGCGGAAGGTATAATTA	IV
BSU34200	operon_429	RNA polymerase sigma-54 factor, Sigma-54, Sigma L	sigL	T GTTTTA AATTCTCAATAAAATAA GGGACG GAAAAAA	IV
BSU25430	operon_991	threonylcarbamoyladenosine tRNAmethylthiotransferase MtaB	mtaB	TTTTTCTTGCCCGGGATAAAAGGAATTGAAAAATCA	IV
BSU25440	operon_991	ribosomal RNA small methyltransferaseE	yqeU	TTTTT CTTGCCCGGGATAAA AGGAAT TGAAAAATCA	IV
BSU25460	operon_991	chaperone protein DnaJ, heat-shock activator protein, DnaK	dnaJ	TTTTTCTTGCCCGGGATAAAAGGAATTGAAAAATCA	IV
BSU25450	operon_991	ribosomal protein L11methyltransferase,	yqeT	TTTTTCTTGCCCGGGATAAAAGGAATTGAAAAATCA	IV
BSU31510	operon_606	hypothetical protein	yufK	T GTTTTA AGTCCTCCATAATAAAT GAGGTA GATTATA	IV
BSU17500	operon_1505	hypothetical protein	ynaB	GG GTTTCC TTATGGCTCAACAGATA GGGTAG TAATTA	IV
BSU30220	operon_696	8-amino-7-oxononanoate synthase	bioF	AT TGTTAA CCTTTGAATATAATT GGTTAA CAATTTAG	IV
BSU30230	operon_696	BioA aminotransferase	bioA	AT TGTTAA CCTTTGAATATAATT GGTTAA CAATTTAG	IV
BSU30200	operon_696	biotin synthase	bioB	AT TGTTAA CCTTTGAATATAATT GGTTAA CAATTTAG	IV
BSU30210	operon_696	ATP-dependent dethiobiotin synthetase BioD	bioD	AT TGTTAA CCTTTGAATATAATT GGTTAA CAATTTAG	IV
BSU30240	operon_696	pimeloyl-CoA synthase (6- carboxyhexanoate-CoA ligase)	bioW	AT TGTTAA CCTTTGAATATAATT GGTTAA CAATTTAG	IV
BSU19430	operon_1342	sporulation-specific diadenylate cyclase, synthesis of c-di-AMP	cdaS	CG GTTTCG TTTTCTAAACATTT GGGCAT AAATAAAA	IV

Locus Taga	Operon	Annotation/Description/Function	Gene	SigB PBM	С
BSU33680	operon_460	HTH-type transcriptional regulator, transcription repressor of cat D & E	catR	CC GATTTTC AATAGTCAAAAAT GGGAAC ATCTCTCAAA	IV
BSU37610	operon_224	hypothetical protein	ywzC	TTTTTGAAACGTGATTTTAGGTTATTCACATAGAT	IV
BSU13490	operon_1754	stress-responsive membrane protease	htpX	T GTTTTA TAATTTAAATATAC GGGTTC TTTTGAACTT	IV
BSU01530	operon_2589	N-acetylmuramoyl-L-alanine amidase, spore cortex peptidoglycan synthesis	cwlD	GTTTTTT GATTATCTCTATAAT TGGATA CACGAGCAA	IV
BSU09510	operon_2034	anti-sigma-M factor YhdL	yhdL	AA CTTTAA ACCTTTCTTATGC GTGTAT AACATAGAG	IV
BSU09500	operon_2034	anti-sigma-M factor YhdK	yhdK	AA CTTTAA ACCTTTCTTATGC GTGTAT AACATAGAG	IV
BSU09520	operon_2034	RNA polymerase sigma factor SigM, adapt inhibitors of peptidoglycan synthesis	sigM	AA CTTTAA ACCTTTCTTATGC GTGTAT AACATAGAG	IV
BSU06510	operon_2242	phosphoribosylglycinamide formyltransferase	purN	CCTTTCTCTTTCTGCCCTCGTTCGGGGAGATATTTTG	IV
BSU06530	operon_2242	phosphoribosylglycinamide synthetase	purD	CCTTTCTCTTCTGCCCTCGTTCGGGGAGATATTTTG	IV
BSU06520	operon_2242	phosphoribosylaminoimidazole carboxamide formyltransferase,	purH	CCTTTCTCTTCTGCCCTCGTTCGGGGAGATATTTTG	IV
BSU06500	operon_2242	phosphoribosylaminoimidazole synthetase	purM	CCTTTCTCTTCTGCCCTCGTTCGGGGAGATATTTTG	IV
BSU35680	operon_356	galactosamine-containing minor teichoic acid biosynthesis, membrane protein	ggaB	A TTTTT AAAAGTTTGCTTACAA GGGTTT TTAAAAAAA	IV
BSU34810	operon_398	TPR repeat-containing protein YvcD	yvcD	GCTTTTGTTGAAAAAGGGGGAAATTACCGGTCG	IV
BSU12890	operon_1796	glycosyltransferase YkcC	ykcC	TGGCTTAAAACC CTTTGC AAATATGGGTGAT TGGTAT	IV
BSU12880	operon_1796	mannosyltransferase YkcB	ykcB	TGGCTTAAAACC CTTTGC AAATATGGGTGAT TGGTAT	IV
BSU35660	operon_358	UDP-N-acetylglucosamine 2-epimerase	mnaA	TGTTTTTACACATTTTTATGATATCGGATAAACCATT	IV
BSU29220	operon_760	NAD-dependent malic enzyme	ytsJ	GCGTTTATCTCTATTATGAAAGGCAAAAACAGACGAT	IV
BSU38030 BSU00930	operon_203	hypothetical protein serine O-acetyltransferase	ywdA cysE	TGTTTCTCGACGCGTCATCTGTGGAAATCTTTATCAA CTTTTTTTATTGGGTAGAGGAAATCAGATAGAGAAAC	IV IV
BSU00950	operon_2613 operon_2613	RNase Mini-III, mini-ribonuclease 3	mrnC	CTTTTTTTATTGGGTAGAGGAAATCAGATAGAGAAAC CTTTTTTTATTGGGTAGAGGAAATCAGATAGAGAAAC	IV
BSU00960	operon_2613	23S rRNA(guanosine(2251)-2'-O)- methyltransferase RlmB	yacO	CTTTT TTATTGGGTAGA GGAAAT CAGATAGAGAAAC	IV
BSU00970	operon_2613	ribosome -associated endoribonuclease	yacP	CTTTT TTATTGGGTAGA GGAAAT CAGATAGAGAAAC	IV
BSU00940	operon_2613	cysteine-tRNA synthetase	cysS	CTTTTTTTATTGGGTAGAGGAAATCAGATAGAGAAAC	IV
BSU33550	operon_469	hypothetical protein	yvaC	CGTTTTTGGGCATACTAAAGCGAAGAACTGGAAAAG	IV
BSU29600 BSU22150	operon_737 operon_1189	branched-chain amino acid transporter ATP-dependent helicase YpvA, similar	braB ypvA	TTTTTACTCCTTTATGAAAGCGGTACAAGGTATGAT AGTTTTTATTGTATTCATCAGCGGAAAATGATATTA	IV IV
BSU09900	operon_2004	to ATP-dependent helicase similar to ABC transporter membrane	yhaP	GT CTTTCT TCATTTATATTCTAAAA AGGAAA TCAAAA	IV
BSU09890	operon_2004	protein similar to ABC transporter membrane protein	yhaQ	GT CTTTCT TCATTTATATTCTAAAA AGGAAA TCAAAA	IV
BSU15300	operon_1614	bacillopeptidase F	bpr	TTTTTATCATTTTCATATATATGGAAATTGAATGACA	IV
BSU04990	operon_2356	hypothetical protein	yddJ	CAG GTTAAG GGAAATGGATAAAAGG TGGAAA AGATCA	IV
BSU12030	operon_1848	hypothetical protein	yjdF	T GTTACA CTCTTTTCTGTATA TGGTAA AGAATGAAAA	IV
BSU04250	operon_2399	AsnC family transcriptional regulator protein-DNA complexes	lrpC	ATTTTTACATGCCTTTTCTAGGGAACTGTACTTGTC	IV
BSU10030	operon_1991	Hit-like protein involved in cell-cycle regulation	hit	CT GTTTTC TATTTTCTGCATTTCTG TGGTAC GATGAA	IV
BSU07400	operon_2186	similar to multidrug-efflux transporter	yfm0	TT GTTAAA CGCTATTTTTGTA GCGTTT CTTTTAATGG	IV
BSU32719	operon_528	hypothetical protein	yuzK	GTTTTT GCGGCATCCAACGCAGCAC TGGTAC AATAAA	IV
BSU26920	operon_899	hypothetical protein	yraJ	TAT GTTCTA TCGTTTCTTAAAATGA AGGAAT TGAAGA	IV
BSU38229	operon_190	transcriptional regulator SlrA, negative regulator of the fla-che operon, anti- repressor, antagonist SinR	slrA	CTTTTATTGCCCGCATGTTGCAGGAAAACATTTTATA	IV
BSU06270	operon_2255	hypothetical protein	ydjO	ATTTTCTCTACAGCAGCTGGGGAACACTTGCGCAG	IV
BSU35790	operon_348	mannose-6-phosphate isomerase YvyI	pmi	GCGTTTGTAAGAGGGGCGCACCGGGAAAATGATGATC	IV
BSU25720	operon_974	hypothetical protein	yqeD	CTG GTTTTC AGTTGAACAGCTGAAA TGGCAC CAGTT	IV
BSU12630	operon_1804	phage-like element PBSX protein XkdI	xkdI	CCTGTTAACGGACAGAGAAAAGGAAATGTTTTTGCT	IV
BSU12620	operon_1804	phage-like element PBSX protein XkdH	xkdH	CCTGTTAACGGACAGAGAAAAGGAAATGTTTTTGCT	IV
BSU12570	operon_1804	PBSX phage terminase small subunit	xtmA	CCTGTTAACGGACAGAGAAAAGGAAATGTTTTTGCT	IV
BSU12619 BSU12660	operon_1804 operon_1804	unknown PBSX prophage protein phage-like element PBSX protein	ykzL xkdM	CCTGTTAACGGACAGAGAAAAGGAAATGTTTTTGCT CCTGTTAACGGACAGAGAAAAGGAAATGTTTTTGCT	IV IV
BSU12640	operon_1804	XkdM, phage-like element PBSX protein XkdJ	xkdJ	CCTGTTAACGGACAGAGAAAAGGAAATGTTTTTGCT	IV
BSU12650	operon_1804	phage-like element PBSX protein XkdK	xkdK	CCTGTTAACGGACAGAGAAAAGGAAATGTTTTTGCT	IV
BSU12649	operon_1804	hypothetical protein	ykzM	CCTGTTAACGGACAGAGAAAAGGAAATGTTTTTGCT	IV
BSU12600	operon_1804	phage-like element PBSX protein XkdF phage-like element PBSX protein XkdG	xkdF	CCTGTTAACGGACAGAGAAAAGGAAATGTTTTTGCT CCTGTTAACGGACAGAGAAAAGGAAATGTTTTTGCT	IV
BSU12610 BSU12590	operon_1804 operon_1804	phage-like element PBSX protein XkdG phage-like element PBSX protein XkdE	xkdG xkdE	CCTGTTAACGGACAGAGAAAAGGAAATGTTTTTGCT CCTGTTAACGGACAGAGAAAAGGAAATGTTTTTGCT	IV IV
BSU12590 BSU12580	operon_1804	PBSX phage terminase large subunit	хкаЕ хtmВ	CCTGTTAACGGACAGAGAAAAGGAAATGTTTTTGCT	IV
BSU14630	operon_1661	arginine decarboxylase for biofilm	speA	CGGTTGTCCAATCTTCATTCATCGGATATTGATACTC	IV
	operon_1617	UDPacetylenolpyruvoylglucosamine	murB	TAT GTTATA GAGAAACTTAGACTGG GGGAAA AAAGAA	IV
BSU15230		reductase			
BSU15230 BSU15220	operon_1617	reductase N-acetylglucosamine transferase	murG	TAT GTTATA GAGAAACTTAGACTGG GGGAAA AAAAGAA	IV

Chapter 2

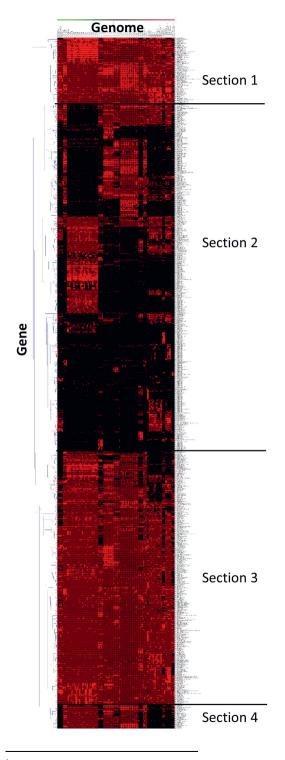
Locus Taga	Operon	Annotation/Description/Function	Gene	SigB PBM	С
BSU35670	operon_357	UTP-glucose-1-phosphate uridylyltransferase, GSP	gtaB	A GTTTTA ATATTAAGGATAAAGCTT GTTTAA AAATGG	V
BSU40000	operon_79	Oxidoreductase, GSP	yxnA	AG GGGTAA GACCCTTCCGGATG GGGTAA TGTACAAAA	V
BSU28190	operon_820	GTP-binding protein	ysxC	CTTTTT CATATCAGAAAGAAA GGGTAT ACTACGAGGA	V
BSU28200	operon_820	class III heat-shock ATP-dependent protease	lonA	CTTTTT CATATCAGAAAGAAA GGGTAT ACTACGAGGA	V
BSU19120	operon_1369	Repressor of cadA and czcD	czrA	C CTTTTT TATTATGACATAAGA GGGTAT ATCAGACCAA	V
BSU34110	operon_435	PP2C phosphatase	rsbP	CACATGAGCACCTCCTGATC GTTTAC ATTGATTGTA	V
BSU34100	operon_435	alpha/beta hydrolase for RsbP activation	rsbQ	CACATGAGCACCTCCTGATC GTTTAC ATTGATTGTA	V
BSU29210	operon_761	acetyl-CoA carboxylase (beta subunit)	accD	GGGTTTAACATTATTTTTGAATGCGCTGTCAACCTTG	V
BSU29200	operon_761	acetyl-CoA carboxylase (alpha subunit)	accA	GGGTTTAACATTATTTTTGAATGCGCTGTCAACCTTG	V

Supplementary Table S3: The list of newly predicted SigB regulon genes with a SigB PBM in this study

Bacillus subtilis	Genotype	References	
168	TrpC2	Kunst et al., 1997; Zeigler et al., 2008; Barbe et al 2009	
BY47	168 ∆sigB	This study	
BY62	168 trpC2 amyE:: PylaL-lacZ aphA	This study	
BY63	168 trpC2 amyE:: PykaA-lacZ aphA	This study	
BY64	168 trpC2 amyE:: PygaO-lacZ aphA	This study	
BY65	168 trpC2 amyE:: PywzA-lacZ spc	This study	
BY66	168 trpC2 amyE:: PyaaI-lacZ spc	This study	
BY67	168 trpC2 amyE:: PrsbV-lacZ spc	This study	
BY69	168 trpC2 amyE:: PytoQ-lacZ aphA	This study	
BY70	168 trpC2 amyE:: PpucI-lacZ aphA	This study	
BY71	168 trpC2 amyE:: PgtaB-lacZ aphA	This study	
BY72	168 ΔsigB amyE:: PrsbV-lacZ spc	This study	
BY82	168 ΔsigB amyE:: PylaL-lacZ aph	This study	
BY83	168 ΔsigB amyE:: PykaA-lacZ aph	This study	
BY84	168 \(\Delta sigB\) amyE:: \(\text{PygaO-lacZ aph}\)	This study This study	
BY85	168 \(\Delta sigB\) amyE:: PywzA-lacZ spc	This study	
BY86	168 \(\Delta sigB\) amyE:: PyaaI-lacZ spc	This study This study	
BY89	168 \(\Delta \text{sigB} \text{ amyE:: PytoQ-lacZ aphA}\)	This study This study	
BY90	168 \(\Delta sigB\) amyE:: \(\text{P} \) ytoQ-tacZ \(\text{apiA}\) 168 \(\Delta sigB\) \(\text{amyE:: } \text{PpucI-lacZ aphA}\)	This study	
BY91	168 AsigB amyE:: PgtaB-lacZ aphA	This study	
D131	100 BilgD umyE 1 glub-lucZ upnA	Tills study	
Escherichia coli	Genotype	References	
TOP10	F-mcrA Δ(mrr-hsdRMS-mcrBC) φ80lacZΔM15 ΔlacX74 nupG recA1 araD139 Δ(ara-leu)7697 galE15 galK16 rpsL(Str ^R) endA1 λ:	Commercially available from Invitrogen	
Plasmid	Construction and description	References	
pDR244	Cre- recombinase plasmid with spectinomycin antibiotic cassette	Koo et al., 2017	
pNZ5319	Cre-lox plasmid with chloramphenicol and erythromycin antibiotic cassettes	Lambert et al., 2006	
pAC7	Translational fusion to lacZ aph, ingetration at the amyE locus	Weinrauch et al. 1991	
pDG1728	Transriptional fusion to lacZ spc ingetration at the amyE locus	Guérout-Fleury et al., 1996	
pBP638	PytoQ-lacZ-PAC7	Rosenberg et al., 2017	
pNW2205	PrsbV-lacZ-pDG1728	Constructed by Manisha Pandey, courtesy Dr. N. Stanley Wall, University Dundee, UK	
pCY22	PyaaI-pDG1728	This study	
pCY23	PywzA-pDG1728	This study	
pCY26	PpucI-lacZ-PAC7	This study	
pCY27	PgtaB-lacZ-PAC7	This study	
pCY31	PylaL- lacZ-PAC7	This study	
	PykaA- lacZ-PAC7	This study	
pCY32			

Supplementary Table S4: Oligonucleotides used in this study

Oligonucleotides	Description	Sequence 5' to 3'
CY51	pNZ5319 <i>cat</i> gene check reverse	TAGGATCCAAGTACAGTCGG
CY316	sigB left flank FWD	TTCTTGGAGCGTCCTGATCTG
CY317	sigB left flank REV cat overhang	TTTAAACGTGCTCCAGTGGCGATCAACTCGCTCCCCATTTAAATA
CY318	pNZ5319 cat check FWD overhang	AATGGGGAGCGAGTTGATCGCCACTGGAGCACGTTTAAAC
CY319	pNZ5319 cat check REV overhang	TTTTCTTCAACCTGGATCATCGTCTTCTCGTAGCGATCGG
CY320	sigB right flank FWD cat overhang	CCGATCGCTACGAGAAGACGATGATCCAGGTTGAAGAAAACGAG
CY321	sigB right flank REV	TGCTTCAGCGCCTTCTAATACA
CY322	sigB genomic DNA check FWD	AGGACTCGTTCTCGGCATCT
CY323	sigB genomic DNA check REV	TCTGGATATGCGTCTCTCGGA
CY414	PrsbV-pNW2205 check forward	CAATTCGATCAGCATCTGGAAAAGG
CY415	PrsbV-pNW2205 check reverse	TCAAATTTTCCTTCAAATCACTAGTTGC
CY328	PywzA EcoRI overhang	TAAGCAGAATTCCCTCGTCTAGCATCTTTTCACAC
CY329	PywzA BamHI overhang	CCGCCGGATCCCTCATCATGCAACACATCCTAT
CY334	PyaaI EcoRI overhang	TATCGAGGATCCAATCGACAGTCTCCTTTCCGT
CY335	PyaaI BamHI overhang	TCTGTGAATTCGCACGCGCTATAATTTCACCA
CY384	amyE genomic integration check FWD	CTGGCTTACAGAAGAGCGGT
CY385	amyE genomic integration check REV	CCCGCTCCGATTAAAGCTACT
CY414	PrsbV-pNW2205 check FWD	CAATTCGATCAGCATCTGGAAAAGG
CY415	PrsbV-pNW2205 check REV	TCAAATTTTCCTTCAAATCACTAGTTGC
CY419	PpucI BamHI overhang	TTTGGATCCATAGCCGGCTCCCCTTTCC
CY420	PpucI EcoRI overhang	TTTGAATTCAAGAAAGAGACGGCTCTGAG
CY421	PgtaB EcoRI overhang	TTTGAATTCGGTCCCGAAAACGGTCATCA
CY422	PgtaB BamHI overhang	TTTGGATCCATTTAAAAGGCACCTTCCTTATGATCGAAAAA
CY423	PylaL BamHI overhang	AAAGGATCCATGATATGACCCCCTTCTCAAAAT
CY424	PylaL EcoRI overhang	AAAGAATTCGCAAGGGAAAGGACTTTCGATATACT
CY425	PykaA BamHI overhang	AAAGGATCCATTAAAAACCCTCCATAGTTTGAATGAAC
CY426	PykaA EcoRI overhang	AAAGAATTCTGAAACAGAAGATAAAAGTTGACAGGAAA
CY427	PygaO BamHI overhang	TTTGGATCCATGACGTCTGTCCCCTTCAC
CY428	PygaO EcoRI overhang	AAAGAATTCTTGGAAGGCTGAGGTTTTACCA


Following supplementary materials contained large confidential data files: available upon request (tjakko.abee@wur.nl) or (kahyen.yeak@wur.nl)

Supplementary Table S2b: functional distribution of SigB regulon candidates

Supplementary Table S5: Presence and absence of *B. subtilis* 168 SigB regulon genes described to date October 2020 in other Bacillales

Supplementary Table S6: Predicted putative species-specific SigB regulon genes in 19 *Bacillus subtilis* genomes and 106 Bacillales members

Supplementary Table S7: Presence and absence of genes involved in SigB sensing modules in Bacillales described to date October 2020

Supplementary Figure S1- Heat map of SigB regulon members with SigB promoter binding motifs in 125 Bacillales.*original resolution picture is available upon request¹. Section 1 of the heat map that predicted SigB regulon genes with/without a putative SigB PBM were found in nearly every inspected species. This includes orthologs of genes with SigB PBMs in B. subtilis such as rsbV, rsbW, and sigB itself. However, in other species, not all genes harbor a SigB PBM (bright red = ortholog present with a predicted SigB PBM, dark red = ortholog present without SigB PBM, black = absence of ortholog). For example, some B. subtilis SigB regulon genes had orthologs in B. cereus, Listeria spp., and Staphylococcus spp., but only the orthologs in B. cereus had a predicted SigB PBM (genes indicated in bright red for B. cereus, and dark red for other species) (Supplementary Table S6). Section 2 presents the predicted species-specific SigB regulon genes, with or without a SigB PBM. Some of these predicted SigB regulon genes were the orthologs of the B. subtilis 168 SigB regulon members, and some are uniquely identified for the different species (Supplementary Table S6). This section of the heat map showed that a group of putative SigB regulon genes with SigB PBMs are unique to B. subtilis and group members (including B. licheniformis, B. pumilus, B. vallismortis, B. valezensis, and B. amyloliquafaciens) but not B. cereus, Geobacillus, L. monocytogenes, and S. aureus (illustrated in black), and vice versa. Section 3 of the heat map presents B. subtilis SigB regulon members contained orthologs in nearly all of the inspected genomes. However, these genes did not have a predicted SigB PBM (dark red), implying that they are either not regulated by SigB or indirectly regulated by SigB. Lastly, Section 4 shows a group of genes that had orthologs in the Bacillus species, but these were utterly absent in more distantly related species such as Geobacillus spp., Listeria spp., and Staphylococcus spp.

¹ tjakko.abee@wur.nl or kahyen.yeak@wur.nl

2.6 References

- Albanesi, D., and de Mendoza, D. (2016). FapR: from control of membrane lipid homeostasis to a biotechnological tool. Front Mol Biosci 3, 64. doi: 10.3389/fmolb.2016.00064.
- Alper, S., Dufour, A., Garsin, D. A., Duncan, L., and Losick, R. (1996). Role of adenosine nucleotides in the regulation of a stress-response transcription factor in *Bacillus subtilis*. J. Mol. Biol. 260, 165–177. doi: 10.1006/jmbi.1996.0390.
- 3. Arrieta-Ortiz, M. L., Hafemeister, C., Bate, A. R., Chu, T., Greenfield, A., Shuster, B., et al. (2015). An experimentally supported model of the *Bacillus subtilis* global transcriptional regulatory network. *Mol. Syst. Biol.* 11, 839. doi: 10.15252/msb.20156236.
- Avila-Pérez, M., van der Steen, J. B., Kort, R., and Hellingwerf, K. J. (2010). Red light activates the sigmaB-mediated general stress response of Bacillus subtilis via the energy branch of the upstream signaling cascade. J. Bacteriol. 192, 755–762. doi: 10.1128/JB.00826-09.
- Bailey, T. L., Boden, M., Buske, F. A., Frith, M., Grant, C. E., Clementi, L., et al. (2009). MEME Suite: tools for motif discovery and searching. *Nucleic Acids Res* 37, W202–W208. doi: 10.1093/nar/gkp335.
- Bailey, T. L., Johnson, J., Grant, C. E., and Noble, W. S. (2015). The MEME Suite. *Nucleic Acids Res* 43, W39–W49. doi: 10.1093/nar/gkv416.
- 7. Bartolini, M., Cogliati, S., Vileta, D., Bauman, C., Ramirez, W., and Grau, R. (2019). Stress-responsive alternative sigma factor sigb plays a positive role in the antifungal proficiency of *Bacillus subtilis. Appl. Environ. Microbiol.* 85. doi: 10.1128/AEM.00178-19.
- 8. Bartolini, M., Cogliati, S., Vileta, D., Bauman, C., Rateni, L., Leñini, C., et al. (2018). Regulation of biofilm aging and dispersal in *Bacillus subtilis* by the alternative sigma factor SigB. *J. Bacteriol.* doi: 10.1128/JB.00473-18.
- Benson, A. K., and Haldenwang, W. G. (1993). Bacillus subtilis sigma B is regulated by a binding protein (RsbW) that blocks its association with core RNA polymerase. Proc. Natl. Acad. Sci. U.S.A. 90, 2330–2334. doi: 10.1073/pnas.90.6.2330.
- 10. Berendsen, E. M., Boekhorst, J., Kuipers, O. P., and Wells-Bennik, M. H. J. (2016). A mobile genetic element profoundly increases heat resistance of bacterial spores. *ISME J* 10, 2633–2642. doi: 10.1038/ismej.2016.59.
- 11. Bernhardt, J., Weibezahn, J., Scharf, C., and Hecker, M. (2003). *Bacillus subtilis* during feast and famine: visualization of the overall regulation of protein synthesis during glucose starvation by proteome analysis. *Genome Res.* 13, 224–237. doi: 10.1101/gr.905003.
- 12. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. *Anal. Biochem.* 72, 248–254.
- Brigulla, M., Hoffmann, T., Krisp, A., Völker, A., Bremer, E., and Völker, U. (2003). Chill induction of the sighdependent general stress response in *Bacillus subtilis* and its contribution to low-temperature adaptation. *Journal* of *Bacteriology* 185, 4305–4314. doi: 10.1128/JB.185.15.4305-4314.2003.
- 14. Cabeen, M. T., Russell, J. R., Paulsson, J., and Losick, R. (2017). Use of a microfluidic platform to uncover basic features of energy and environmental stress responses in individual cells of *Bacillus subtilis*. *PLOS Genetics* 13, e1006901. doi: 10.1371/journal.pgen.1006901.
- 15. Chen, C.-C., Yudkin, M. D., and Delumeau, O. (2004). Phosphorylation and RsbX-dependent dephosphorylation of RsbR in the RsbR-RsbS complex of *Bacillus subtilis. Journal of Bacteriology* 186, 6830–6836. doi: 10.1128/JB.186.20.6830-6836.2004.
- Chen, J.-C., Chang, C.-F., Hsu, D.-W., Shu, J.-C., Chen, H.-Y., Chen, C.-Y., et al. (2017). Temporal regulation of σB by partner-switching mechanism at a distinct growth stage in *Bacillus cereus*. *Int. J. Med. Microbiol*. 307, 521–532. doi: 10.1016/j.ijmm.2017.09.005.
- 17. Chen, J.-C., Liu, J.-H., Hsu, D.-W., Shu, J.-C., Chen, C.-Y., and Chen, C.-C. (2015). Methylatable signaling helix coordinated inhibitory receiver domain in sensor kinase modulates environmental stress response in *Bacillus Cereus. PLoS ONE* 10, e0137952. doi: 10.1371/journal.pone.0137952.
- Chen, L.-C., Chen, J.-C., Shu, J.-C., Chen, C.-Y., Chen, S.-C., Chen, S.-H., et al. (2012). Interplay of RsbM and RsbK controls the σB activity of *Bacillus cereus*. *Environmental Microbiology* 14, 2788–2799. doi: 10.1111/j.1462-2920.2012.02788.x.
- Coelho, R. V., de Avila E Silva, S., Echeverrigaray, S., and Delamare, A. P. L. (2018). Bacillus subtilis promoter sequences data set for promoter prediction in Gram-positive bacteria. Data Brief 19, 264–270. doi: 10.1016/j.dib.2018.05.025.
- Commichau, F. M., Gunka, K., Landmann, J. J., and Stülke, J. (2008). Glutamate metabolism in *Bacillus subtilis*: gene expression and enzyme activities evolved to avoid futile cycles and to allow rapid responses to perturbations of the system. *J Bacteriol* 190, 3557–3564. doi: 10.1128/JB.00099-08.
- 21. de Been, M., Francke, C., Siezen, R. J., and Abee, T. (2011). Novel sigmaB regulation modules of Gram-positive bacteria involve the use of complex hybrid histidine kinases. *Microbiology (Reading, Engl.)* 157, 3–12. doi: 10.1099/mic.0.045740-0.

- 22. de Been, M., Tempelaars, M. H., van Schaik, W., Moezelaar, R., Siezen, R. J., and Abee, T. (2010). A novel hybrid kinase is essential for regulating the sigma(B)-mediated stress response of *Bacillus cereus. Environ. Microbiol.* 12, 730–745. doi: 10.1111/j.1462-2920.2009.02116.x.
- Delumeau, O., Chen, C.-C., Murray, J. W., Yudkin, M. D., and Lewis, R. J. (2006). High-molecular-weight complexes of RsbR and paralogues in the environmental signaling pathway of *Bacillus subtilis. Journal of Bacteriology* 188, 7885–7892. doi: 10.1128/JB.00892-06.
- Ekseth, O. K., Kuiper, M., and Mironov, V. (2014). orthAgogue: an agile tool for the rapid prediction of orthology relations. *Bioinformatics* 30, 734–736. doi: 10.1093/bioinformatics/btt582.
- 25. Froger, A., and Hall, J. E. (2007). Transformation of plasmid DNA into *E. coli* using the heat shock method. *J Vis Exp.* doi: 10.3791/253.
- Gaballa, A., Guariglia-Oropeza, V., Dürr, F., Butcher, B. G., Chen, A. Y., Chandrangsu, P., et al. (2018). Modulation
 of extracytoplasmic function (ECF) sigma factor promoter selectivity by spacer region sequence. *Nucleic Acids Res* 46, 134–145. doi: 10.1093/nar/gkx953.
- Gaidenko, T. A., Kim, T.-J., Weigel, A. L., Brody, M. S., and Price, C. W. (2006). The blue-light receptor YtvA acts in the environmental stress signaling pathway of *Bacillus subtilis*. *J. Bacteriol*. 188, 6387–6395. doi: 10.1128/JB.00691-06.
- 28. Guindon, S., Dufayard, J.-F., Lefort, V., Anisimova, M., Hordijk, W., and Gascuel, O. (2010). New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. *Syst. Biol.* 59, 307–321. doi: 10.1093/sysbio/syq010.
- Guindon, S., and Gascuel, O. (2003). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52, 696–704.
- 30. Guldimann, C., Boor, K. J., Wiedmann, M., and Guariglia-Oropeza, V. (2016). Resilience in the face of uncertainty: sigma factor b fine-tunes gene expression to support homeostasis in gram-positive bacteria. *Appl. Environ. Microbiol.* 82, 4456–4469. doi: 10.1128/AEM.00714-16.
- 31. Han, L., Cui, W., Suo, F., Miao, S., Hao, W., Chen, Q., et al. (2019). Development of a novel strategy for robust synthetic bacterial promoters based on a stepwise evolution targeting the spacer region of the core promoter in *Bacillus subtilis. Microb. Cell Fact.* 18, 96. doi: 10.1186/s12934-019-1148-3.
- 32. Helmann, J. D., Wu, M. F. W., Gaballa, A., Kobel, P. A., Morshedi, M. M., Fawcett, P., et al. (2003). The global transcriptional response of *Bacillus subtilis* to peroxide stress is coordinated by three transcription factors. *J Bacteriol* 185, 243–253. doi: 10.1128/JB.185.1.243-253.2003.
- 33. Holtmann, G., Brigulla, M., Steil, L., Schütz, A., Barnekow, K., Völker, U., et al. (2004). RsbV-independent induction of the SigB-dependent general stress regulon of *Bacillus subtilis* during growth at high temperature. *Journal of Bacteriology* 186, 6150–6158. doi: 10.1128/JB.186.18.6150-6158.2004.
- 34. Jacobs, G. H., Stockwell, P. A., Tate, W. P., and Brown, C. M. (2006). Transterm—extended search facilities and improved integration with other databases. *Nucleic Acids Res* 34, D37–D40. doi: 10.1093/nar/gkj159.
- 35. Jurk, M., Schramm, P., and Schmieder, P. (2013). The blue-light receptor YtvA from *Bacillus subtilis* is permanently incorporated into the stressosome independent of the illumination state. *Biochem. Biophys. Res. Commun.* 432, 499–503. doi: 10.1016/j.bbrc.2013.02.025.
- 36. Kaneko, T., Tanaka, N., and Kumasaka, T. (2005). Crystal structures of RsbQ, a stress-response regulator in *Bacillus subtilis. Protein Sci* 14, 558–565. doi: 10.1110/ps.041170005.
- 37. Kim, H., Marquis, H., and Boor, K. J. (2005). SigmaB contributes to *Listeria monocytogenes* invasion by controlling expression of *inlA* and *inlB*. *Microbiology (Reading, Engl.)* 151, 3215–3222. doi: 10.1099/mic.0.28070-0.
- 38. Kim, T.-J., Gaidenko, T. A., and Price, C. W. (2004). A multicomponent protein complex mediates environmental stress signaling in *Bacillus subtilis*. *J. Mol. Biol.* 341, 135–150. doi: 10.1016/j.jmb.2004.05.043.
- 39. Koo, B.-M., Kritikos, G., Farelli, J. D., Todor, H., Tong, K., Kimsey, H., et al. (2017). Construction and analysis of two genome-scale deletion libraries for *Bacillus subtilis*. *Cell Systems* 4, 291-305.e7. doi: 10.1016/j.cels.2016.12.013.
- Kruger, N. J. (2009). "The Bradford method for protein quantitation," in *The Protein Protocols Handbook* Springer Protocols Handbooks., ed. J. M. Walker (Totowa, NJ: Humana Press), 17–24. doi: 10.1007/978-1-59745-198-7_4.
- 41. Kunst, F., and Rapoport, G. (1995). Salt stress is an environmental signal affecting degradative enzyme synthesis in *Bacillus subtilis*. *Journal of Bacteriology* 177, 2403–2407. doi: 10.1128/jb.177.9.2403-2407.1995.
- 42. Lambert, J. M., Bongers, R. S., and Kleerebezem, M. (2007). Cre-lox-based system for multiple gene deletions and selectable-marker removal in *Lactobacillus plantarum*. *Appl Environ Microbiol* 73, 1126–1135. doi: 10.1128/AEM.01473-06.
- 43. Lee, J., and Borukhov, S. (2016). Bacterial RNA polymerase-DNA interaction—the driving force of gene expression and the target for drug action. *Front. Mol. Biosci.* 3. doi: 10.3389/fmolb.2016.00073.
- Letunic, I., and Bork, P. (2016). Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. *Nucleic Acids Res.* 44, W242-245. doi: 10.1093/nar/gkw290.

- 45. Liebeton, K., Lengefeld, J., and Eck, J. (2014). The nucleotide composition of the spacer sequence influences the expression yield of heterologously expressed genes in *Bacillus subtilis*. *J. Biotechnol.* 191, 214–220. doi: 10.1016/j.jbiotec.2014.06.027.
- 46. Marles-Wright, J., and Lewis, R. J. (2008). The Bacillus subtilis stressosome. Commun Integr Biol 1, 182-184.
- 47. Mascher, T., Margulis, N. G., Wang, T., Ye, R. W., and Helmann, J. D. (2003). Cell wall stress responses in *Bacillus subtilis*: the regulatory network of the bacitracin stimulon. *Mol. Microbiol.* 50, 1591–1604. doi: 10.1046/j.1365-2958.2003.03786.x.
- 48. Mitchell, G., Fugère, A., Pépin Gaudreau, K., Brouillette, E., Frost, E. H., Cantin, A. M., et al. (2013). SigB is a dominant regulator of virulence in *Staphylococcus aureus* small-colony variants. *PLoS One* 8. doi: 10.1371/journal.pone.0065018.
- 49. Moran, C. P., Lang, N., Banner, C. D., Haldenwang, W. G., and Losick, R. (1981). Promoter for a developmentally regulated gene in *Bacillus subtilis*. *Cell* 25, 783–791. doi: 10.1016/0092-8674(81)90186-0.
- 50. Nadezhdin, E. V., Brody, M. S., and Price, C. W. (2011). An α/β hydrolase and associated Per-ARNT-Sim domain comprise a bipartite sensing module coupled with diverse output domains. *PLoS One* 6. doi: 10.1371/journal.pone.0025418.
- 51. Nannapaneni, P., Hertwig, F., Depke, M., Hecker, M., Mäder, U., Völker, U., et al. (2012). Defining the structure of the general stress regulon of *Bacillus subtilis* using targeted microarray analysis and random forest classification. *Microbiology (Reading, Engl.)* 158, 696–707. doi: 10.1099/mic.0.055434-0.
- 52. Ondrusch, N., and Kreft, J. (2011). Blue and red light modulates SigB-dependent gene transcription, swimming motility and invasiveness in *Listeria monocytogenes*. *PLoS ONE* 6, e16151. doi: 10.1371/journal.pone.0016151.
- 53. Pané-Farré, J., Quin, M. B., Lewis, R. J., and Marles-Wright, J. (2017). Structure and function of the stressosome signalling hub. *Subcell. Biochem.* 83, 1–41. doi: 10.1007/978-3-319-46503-6_1.
- Patel, M. A., Ou, M. S., Harbrucker, R., Aldrich, H. C., Buszko, M. L., Ingram, L. O., et al. (2006). Isolation and characterization of acid-tolerant, thermophilic bacteria for effective fermentation of biomass-derived sugars to lactic acid. *Appl. Environ. Microbiol.* 72, 3228–3235. doi: 10.1128/AEM.72.5.3228-3235.2006.
- Petersohn, A., Antelmann, H., Gerth, U., and Hecker, M. (1999a). Identification and transcriptional analysis of new members of the sigmaB regulon in *Bacillus subtilis*. *Microbiology (Reading, Engl.)* 145 (Pt 4), 869–880. doi: 10.1099/13500872-145-4-869.
- Petersohn, A., Bernhardt, J., Gerth, U., Höper, D., Koburger, T., Völker, U., et al. (1999b). Identification of sigma(B)-dependent genes in *Bacillus subtilis* using a promoter consensus-directed search and oligonucleotide hybridization. *J. Bacteriol.* 181, 5718–5724.
- 57. Petersohn, A., Brigulla, M., Haas, S., Hoheisel, J. D., Völker, U., and Hecker, M. (2001). Global analysis of the general stress response of *Bacillus subtilis. J. Bacteriol.* 183, 5617–5631. doi: 10.1128/JB.183.19.5617-5631.2001.
- 58. Price, C. W., Fawcett, P., Cérémonie, H., Su, N., Murphy, C. K., and Youngman, P. (2001a). Genome-wide analysis of the general stress response in *Bacillus subtilis. Mol. Microbiol.* 41, 757–774. doi: 10.1046/j.1365-2958.2001.02534.x.
- 59. Price, C. W., Fawcett, P., Cérémonie, H., Su, N., Murphy, C. K., and Youngman, P. (2001b). Genome-wide analysis of the general stress response in *Bacillus subtilis*. *Mol. Microbiol*. 41, 757–774.
- Reder, A., Gerth, U., and Hecker, M. (2012). Integration of σB activity into the decision-making process of sporulation initiation in *Bacillus subtilis*. J Bacteriol 194, 1065–1074. doi: 10.1128/JB.06490-11.
- 61. Rodriguez Ayala, F., Bartolini, M., and Grau, R. (2020). The stress-responsive alternative sigma factor SigB of *Bacillus subtilis* and its relatives: an old friend with new functions. *Front. Microbiol.* 11. doi: 10.3389/fmicb.2020.01761.
- 62. Rosenberg, J., Yeak, K. C., and Commichau, F. M. (2018). A two-step evolutionary process establishes a non-native vitamin B6 pathway in *Bacillus subtilis*. *Environ*. *Microbiol*. 20, 156–168. doi: 10.1111/1462-2920.13950.
- 63. Rothstein, D. M., Lazinski, D., Osburne, M. S., and Sonenshein, A. L. (2017). A mutation in the *Bacillus subtilis* rsbU gene that limits rna synthesis during sporulation. *Journal of Bacteriology* 199. doi: 10.1128/JB.00212-17.
- 64. Schaik, W. van, Voort, M. van der, Molenaar, D., Moezelaar, R., Vos, W. M. de, and Abee, T. (2007). Identification of the σB regulon of *Bacillus cereus* and conservation of σB-regulated genes in Low-GC-Content gram-positive bacteria. *Journal of Bacteriology* 189, 4384–4390. doi: 10.1128/JB.00313-07.
- 65. Schumann, W. (2016). Regulation of bacterial heat shock stimulons. *Cell Stress Chaperones* 21, 959–968. doi: 10.1007/s12192-016-0727-z.
- 66. Scott, E., and Dyer, D. W. (2012). Divergence of the SigB regulon and pathogenesis of the *Bacillus cereus sensu lato* group. *BMC Genomics* 13, 564. doi: 10.1186/1471-2164-13-564.
- 67. Shi, L., Pigeonneau, N., Ravikumar, V., Dobrinic, P., Macek, B., Franjevic, D., et al. (2014). Cross-phosphorylation of bacterial serine/threonine and tyrosine protein kinases on key regulatory residues. *Front Microbiol* 5, 495. doi: 10.3389/fmicb.2014.00495.

- 68. Sierro, N., Makita, Y., de Hoon, M., and Nakai, K. (2008). DBTBS: a database of transcriptional regulation in *Bacillus subtilis* containing upstream intergenic conservation information. *Nucleic Acids Res.* 36, D93-96. doi: 10.1093/nar/gkm910.
- 69. Stannek, L., Thiele, M. J., Ischebeck, T., Gunka, K., Hammer, E., Völker, U., et al. (2015). Evidence for synergistic control of glutamate biosynthesis by glutamate dehydrogenases and glutamate in *Bacillus subtilis. Environmental Microbiology* 17, 3379–3390. doi: 10.1111/1462-2920.12813.
- Sturn, A., Mlecnik, B., Pieler, R., Rainer, J., Truskaller, T., and Trajanoski, Z. (2003). Client–Server environment for high-performance gene expression data analysis. *Bioinformatics* 19, 772–773. doi: 10.1093/bioinformatics/btg074.
- 71. Tran, V., Geraci, K., Midili, G., Satterwhite, W., Wright, R., and Bonilla, C. Y. (2019). Resilience to oxidative and nitrosative stress is mediated by the stressosome, RsbP and SigB in *Bacillus subtilis*. *J. Basic Microbiol*. 59, 834–845. doi: 10.1002/jobm.201900076.
- van der Steen, J. B., Ávila-Pérez, M., Knippert, D., Vreugdenhil, A., van Alphen, P., and Hellingwerf, K. J. (2012).
 Differentiation of function among the RsbR Paralogs in the General Stress Response of *Bacillus subtilis* with regard to light perception. *J Bacteriol* 194, 1708–1716. doi: 10.1128/JB.06705-11.
- Vohradsky, J., Schwarz, M., Ramaniuk, O., Ruiz-Larrabeiti, O., Vaňková Hausnerová, V., Šanderová, H., et al. (2021). Kinetic modeling and meta-analysis of the *Bacillus subtilis* SigB regulon during spore germination and outgrowth. *Microorganisms* 9, E112. doi: 10.3390/microorganisms9010112.
- Völker, U., Maul, B., and Hecker, M. (1999). Expression of the cB-dependent General Stress Regulon confers multiple stress resistance in *Bacillus subtilis*. J Bacteriol 181, 3942–3948.
- 75. Waters, S. M., Robles-Martínez, J. A., and Nicholson, W. L. (2014). Exposure of *Bacillus subtilis* to low pressure (5 kilopascals) induces several global regulons, including those involved in the SigB-mediated general stress response. *Appl. Environ. Microbiol.* 80, 4788–4794. doi: 10.1128/AEM.00885-14.
- 76. Wels, M., Francke, C., Kerkhoven, R., Kleerebezem, M., and Siezen, R. J. (2006). Predicting cis-acting elements of *Lactobacillus plantarum* by comparative genomics with different taxonomic subgroups. *Nucleic Acids Res* 34, 1947–1958. doi: 10.1093/nar/gkl138.
- Wels, M., Overmars, L., Francke, C., Kleerebezem, M., and Siezen, R. J. (2011). Reconstruction of the regulatory network of *Lactobacillus plantarum* WCFS1 on basis of correlated gene expression and conserved regulatory motifs. *Microb Biotechnol* 4, 333–344. doi: 10.1111/j.1751-7915.2010.00217.x.
- 78. Yang, X., Kang, C. M., Brody, M. S., and Price, C. W. (1996). Opposing pairs of serine protein kinases and phosphatases transmit signals of environmental stress to activate a bacterial transcription factor. *Genes Dev.* 10, 2265–2275. doi: 10.1101/gad.10.18.2265.
- 79. Yu, W.-B., and Ye, B.-C. (2016). Transcriptional profiling analysis of *Bacillus subtilis* in response to high levels of Fe(3.). *Curr. Microbiol.* 72, 653–662. doi: 10.1007/s00284-016-0998-8.
- 80. Yuzenkova, Y., Tadigotla, V. R., Severinov, K., and Zenkin, N. (2011). A new basal promoter element recognized by RNA polymerase core enzyme. *The EMBO Journal* 30, 3766–3775. doi: 10.1038/emboj.2011.252.
- 81. Zhang, S., and Haldenwang, W. G. (2005). Contributions of ATP, GTP, and redox state to nutritional stress activation of the *Bacillus subtilis* σB transcription factor. *J Bacteriol* 187, 7554–7560. doi: 10.1128/JB.187.22.7554-7560.2005.
- 82. Zhu, B., and Stülke, J. (2018). SubtiWiki in 2018: from genes and proteins to functional network annotation of the model organism *Bacillus subtilis*. *Nucleic Acids Res* 46, D743–D748. doi: 10.1093/nar/gkx908.

CHAPTER 3

SigB modulates expression of novel SigB regulon members via Bc1009 in non-stressed and heat-stressed cells revealing its alternative roles in *Bacillus cereus*

Kah Yen Claire Yeak ^{† 1,2}, Marcel H. Tempelaars ^{† 2}, Jia Lun Wu ², Wouter Westerveld ², Alexander Reder ³, Stephan Michalik ³, Vishnu M. Dhople ³, Uwe Völker ³, Jan Pané-Farré ⁴, Marjon Wells-Bennik ¹, Tjakko Abee ^{2*}

¹NIZO, Department of Health, Kernhemseweg 2, PO Box 20, 6718 ZB Ede, The Netherlands ²Food Microbiology, Wageningen University and Research, PO Box 8129, 6700 EV Wageningen, The Netherlands

³Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany

⁴Center for Synthetic Microbiology (SYNMIKRO) & Department of Chemistry, Philipps-University Marburg, Hans-Meerwein-Strasse, C07, 35043 Marburg, Germany.

Abstract

The Bacillus cereus Sigma B (SigB) dependent general stress response is activated via the twocomponent RsbKY system, which involves a phosphate transfer from RsbK to RsbY. It has been hypothesized that the Hpr-like phosphocarrier protein (Bc1009) encoded by bc1009 in the SigB gene cluster may play a role in this transfer, thereby acting as a regulator of SigB activation. Alternatively, Bc1009 may be involved in activation of a subset of SigB regulon members. We first investigated the potential role of bc1009 to act as a SigB regulator but ruled out this possibility as the deletion of bc1009 did not affect the expression of sigB and other SigB gene cluster members. The SigB-dependent functions of Bc1009 were further examined in B. cereus ATCC14579 via comparative proteome profiling (backed up by transcriptomics) of wt as well as $\Delta bc1009$ and $\Delta sigB$ deletion mutants under heat stress at 42°C. This revealed 284 proteins displaying SigB-dependent alterations in protein expression levels in heat-stressed cells, including a subgroup of 138 proteins for which alterations were also Bc1009-dependent. Next to proteins with roles in stress defense, newly identified SigB and Bc1009-dependent proteins have roles in cell motility, signal transduction, transcription, cell wall biogenesis, and amino acid transport and metabolism. Analysis of lethal stress survival at 50°C after preadaptation at 42°C showed intermediate survival efficacy of Δbc1009 cells, highest survival of wt, and lowest survival of $\Delta sigB$ cells, respectively. Additional comparative proteome analysis of non-stressed wt and mutant cells at 30°C revealed 96 proteins with SigB and Bc1009dependent differences in levels, 51 were also identified under heat stress, and 45 showed significant differential expression at 30°C, including proteins with roles in carbohydrate/ion transport and metabolism. Overlapping functions at 30°C and 42°C included proteins involved in motility, and $\Delta sigB$ and $\Delta bc1009$ cells showed reduced motility compared to wt cells in swimming assays at both temperatures.

In conclusion, our results extend the *B. cereus* SigB regulon to >300 members, with a novel role of SigB-dependent Bc1009 in the activation of a subregulon of >180 members, conceivably via phosphotransfer-based interactions with other transcriptional regulatory networks. Many of these SigB regulon and subregulon members have unknown functions, which requires further exploration.

3.1 Introduction

Bacillus cereus is a Gram-positive endospore-forming facultative anaerobe bacterium found in soil, invertebrates, plants, and in fresh and stored foods (Ehling-Schulz et al., 2019). It is a foodborne pathogen that can cause emetic and diarrheal disease due to the production of the emetic toxin cereulide in foods (Lund and Granum, 1997; Ehling-Schulz et al., 2019), and the production of diarrhoeal toxins in the human intestine once foods contaminated with *B. cereus* are ingested. The diarrhoeal symptoms can involve non-hemolytic and hemolytic enterotoxin (Nhe and Hbl), and cytotoxin K (Lund et al., 2000; Ceuppens et al., 2012; Ehling-Schulz et al., 2019).

Environmental transmission of *B. cereus* is strongly supported by the production of highly stress-resistant spores (Ehling-Schulz et al., 2019), while the resistance of vegetative cells to various stress conditions is enhanced by the activation of the so-called general stress response (GSR) (van Schaik et al., 2004a). This includes stresses encountered during food processing and preservation (Desriac et al., 2013; Warda et al., 2016). In Gram-positive bacteria, including *B. cereus*, the GSR is governed by the master regulator of stress, i.e., the alternative sigma factor B (SigB) (van Schaik et al., 2004a; Rodriguez Ayala et al., 2020). In the presence of environmental/nutritional stressors (e.g., temperature shifts and starvation), SigB is triggered to reprogram the transcriptional and translational machinery in the cells, resulting in the production of defense proteins that mediate increased survival (Höper et al., 2005; van Schaik et al., 2007; Pané-Farré et al., 2017; Rodriguez Ayala et al., 2020).

In *B. cereus*, SigB is activated via a two-component system, comprising the signal-receiving sensor kinase RsbK and its cognate response regulator, RsbY phosphatase (de Been et al., 2010a; Abee et al., 2011). In the presence of stressors, RsbK autophosphorylates its histidine residue and initiates the transfer of a phosphate group to the C-terminal receiver (REC) domain of the RsbY protein (de Been et al., 2010b; Chen et al., 2015). The phosphorylated RsbY then dephosphorylates the anti-sigma factor antagonist RsbV, increasing its affinity to the anti-sigma factor RsbW and their subsequent association. The formation of RsbVW complexes releases RsbW from SigB, leading to SigB activation (de Been et al., 2010b; Chen et al., 2015, 2017). Without stressors, the methyltransferase RsbM methylates the S-helix of RsbK and prohibits its phosphate transfer to RsbY (Chen et al., 2015). The unphosphorylated RsbY does not dephosphorylate RsbV; thus, RsbW remains bound to SigB to keep SigB inactive.

In *B. subtilis*, SigB activity is controlled by two pathways, which independently sense energy and environmental stresses. Both pathways converge to the anti-anti-sigma factor RsbV (Haldenwang and Losick, 1979; Haldenwang, 1995; Price et al., 2001; Price, 2010). Sensing energy stress, such as low adenosine triphosphate (ATP) levels, requires the activity of the hydrolase RsbQ and phosphatase RsbP, although the specific signal is unknown (Brody et al.,

2001; Price et al., 2001; Nadezhdin et al., 2011). Environmental stress uses the stressosome complex consisting of the RsbR, RsbS, and RsbT sensor proteins. Once environmental stress is sensed, RsbT is activated and released from the stressosome, activating the phosphatase RsbU. Active RsbU dephosphorylates RsbV, in analogy to *B. cereus* RsbY, promoting the partner switching of RsbW bound to SigB to the anti-anti-sigma factor RsbV, resulting in SigB activation (Marles-Wright and Lewis, 2010; Pané-Farré et al., 2017; Rodriguez Ayala et al., 2020).

B. cereus uses the RsbKY system to sense environmental and nutritional cues (van Schaik et al., 2004a). Temperature upshift induces the strongest SigB GSR in *B. cereus*. Ethanol exposure and osmotic upshock activate SigB moderately, while energy stress (i.e., ATP depletion) activates SigB only mildly (van Schaik et al., 2004a). Upon SigB activation, around 30 genes have been reported to be upregulated by SigB in *B. cereus* (van Schaik et al., 2004a, 2007; de Been et al., 2010b), and these genes are referred to as the SigB regulon members. The reported RsbKY-controlled SigB regulon in *B. cereus* and its group members (Scott and Dyer, 2012) is relatively small in comparison to the stressosome-controlled SigB regulons in *B. subtilis* (Nannapaneni et al., 2012; Rodriguez Ayala et al., 2020) and *Listeria monocytogenes* (Liu et al., 2017, 2019), which both have at least > 300 SigB regulon members described to date. Alternative functions of SigB other than its role in the GSR have also been reported for *B. subtilis*, i.e., biofilm formation, sporulation, and fungal control (Reder et al., 2012a, 2012b; Bartolini et al., 2018, 2019), and for *L. monocytogenes*, i.e., virulence, antibiotic resistance and carbon metabolism (Nadon et al., 2002; Gaballa et al., 2018; Liu et al., 2019).

It has previously been suggested that a Hpr-like phosphocarrier protein encoded by bc1009, located in the SigB gene cluster, may affect the efficacy of the RsbKY stress sensor and SigB activation (de Been et al., 2010a). However, so far, no evidence has been provided to substantiate this suggestion, and alternative roles of B. cereus SigB remain to be identified. Therefore, in this study, we used comparative proteome profiling, backed up by transcriptomics, to determine the B. cereus SigB regulon following quantification of differentially expressed genes/proteins in B. cereus ATCC14579 wt versus sigB ($\Delta sigB$) and bc1009 mutants ($\Delta bc1009$) in non-heat-stressed and heat-stressed cells at 30°C and 42°C, respectively. The approach combined with selected phenotyping experiments provides further insight into the B. cereus SigB regulon composition and the possible roles of Bc1009 in RsbKY-induced SigB activation and the control of SigB regulon members.

3.2 Materials and Methods

3.2.1 Strains, media, and growth conditions

Bacillus cereus ATCC14579 wild-type (wt) strain (laboratory stock) and its isogenic mutant strains ΔsigB and Δbc1009 were used in this study (Table 1). The ATCC14579 strain contains virulence genes encoding Nhe, Hbl and CytK, but not the *ces* gene cluster for cereulide production. The two mutants were constructed as described by Warda et al. (2016). Bacteria were routinely cultured in Brain Heart Infusion (BHI) medium (Becton, Dickinson Difco, Breda, The Netherlands) with incubation at 30°C and 200 rpm, unless otherwise stated. Overnight (ON) cultures were prepared by inoculating strains from -80°C stocks to 50 ml Falcon tubes (Greiner BioOne, Alphen aan den Rijn, The Netherlands) containing 5 ml of BHI and incubating the cultures for 16 -18 hours (h). Optical density at 600 nm (OD₆₀₀) was measured with the spectrophotometer (Amersham Bioscience, Twente, The Netherlands) and used as a measure for cell biomass.

Table 1: Strains and plasmids used in this study

Strain	Description	References
ATCC14579	B. cereus wild type strain	Laboratory collection
FM1004	B. cereus ΔsigB clean KO mutant	This study
FM1009	B. cereus Δbc1009 clean KO mutant	This study
FM1642	B. cereus ΔflgG clean KO mutant	Laboratory collection
Plasmid	Description	References
pAUL-A	Heat-inducable suicide vector for B. cereus group, Erm ^R	Chakraborty et al., 1992

3.2.2 Gene expression study

The differential SigB gene cluster expressions in wt, $\Delta sigB$, and $\Delta bc1009$ cells before and after heat shock (30°C versus an upshift from 30°C to 42°C) were compared via Reverse Transcription Quantification Polymerase Chain Reaction PCR (RT-qPCR) as described below.

3.2.2.1 Cell culture and sample collection

ON cultures were used to inoculate 60 ml of fresh BHI to an OD_{600} of 0.01 and grown to the mid-exponential phase ($OD_{600} \sim 0.4$; time point zero, T0). A volume of 8 ml of the cell culture was collected as the control (T0), and the tube containing the remaining cultures was transferred to a 42°C water bath. Then, 8 ml of heat-treated cultures were collected after 20 minutes (min). The collected cells were centrifuged at 8000 rpm for 5 min, resuspended in 1 ml of Tri-reagent (Merck, Zwihndrecht, The Netherlands), transferred to a lysing matrix B tube (MP Biomedicals, Eschwege, Germany), and stored at -80°C. Four biological replicates were collected and analyzed as described below.

3.2.2.2 RNA isolation

Cell samples in lysing matrix B tubes were homogenized using a Fastprep-24 beat beater (MP Biomedicals) for 30 seconds (s) at 6.0 m/s. The procedure was repeated 6 times with resting intervals of 1 min. After 10 min settling at room temperature (RT), 200 μ l of chloroform was added to the tubes, mixed, incubated for 15 min at RT, then centrifuged at 13,000 rpm for 15 min. The liquid phase (top layer) was transferred to a new Eppendorf tube, adjusted to 1 ml with RNAse-free water, mixed with 1 ml of ice-cold isopropanol, incubated at RT for 10 min, and centrifuged at 13,000 rpm for 15 min. The cell pellet was washed with 75% ice-cold ethanol, air-dried, and resuspended in 90 μ l of RNAse-free water. The extracted RNA was treated with DNaseI to remove DNA, as described in the manufacturer's protocol (Thermo Fischer Scientific, Bleiswijk, The Netherlands) and stored with 0.1 volume of 3 M sodium acetate (pH 5.2) and 2.5 volumes of 100% ethanol (v/v).

3.2.2.3 Reverse Transcription Quantification Polymerase Chain Reaction (RT-qPCR)

All RT-primers were designed using the Primer3 and DNASTAR software to amplify genes in the SigB gene cluster: bc1002 (rsbV), bc1003 (rsbW), bc1004 (sigB), bc1005, bc1006 (rsbY), bc1008 (rsbK) and bc1009 (Figure 1A), and four reference genes nifU, gatB, rpsU and tufA. All primers are listed in Supplementary Table S1. As bc1007 (rsbM) is co-regulated with bc1008 (rsbK) and does not have a SigB promoter binding motif (Figure 1A), it was excluded from the gene expression studies.

The purified RNA samples were precipitated at 13,000 rpm for 15 min, washed with 75% ethanol, air-dried, and resuspended in 200 µl RNAse-free water. For each reaction, 600 ng of total RNA was mixed with 2 µl reverse primer (5 µM), 2 µl dNTP mix (10 mM), and added to 29 µl with RNAse-free water. The reaction mixture was incubated at 65°C for 5 min for primer annealing and then cooled on ice for 1 min. 11 µl of reverse transcriptase master mix containing 8 µl 5x first strand buffer, 2 µl 0.1 M DTT, and 1 µl SuperScript™ III Reverse Transcriptase (Thermo Fischer Scientific) was added to each reaction. cDNA was synthesized at 55°C for 1 h, followed by enzyme inactivation at 70°C for 15 min. The synthesized cDNAs were diluted 10fold, and qPCRs were performed using primers listed in Supplementary Table S1.

For qPCR, each reaction contained: 12.5 μ l Power SYBR Green PCR Master Mix (Thermo Fisher Scientific), 1 μ l forward primer (5 μ M), 1 μ l reverse primer (5 μ M), 5 μ l of cDNA template, and 5.5 μ l of RNAse free water. DNA denaturation was done at 95°C for 10 min, and PCRs were performed for 40 cycles (Denaturation: 95°C, 15 secs; Annealing and elongation: 61°C, 1 min). The cycles of quantification (Cq) values were recorded to compare differential gene expressions. Efficiencies of primers were checked with serial dilutions of the tested sample and calculated via the REST2 qPCR data analysis tool as described (Pfaffl, 2001; Pfaffl et al.,

2002). Cq values of all tested genes were uploaded to the COTTON EST DATABASE to look for stable reference genes. *tufA*, *gatB*, and *rpsU* were selected (Vandesompele et al., 2002; Pfaffl et al., 2004) and used to normalize the gene expression data with the REST2 qPCR program.

All recorded values were first normalized with the expression ratio of the three reference genes gatB, rpsU, and tufA, then normalized with the expression values recorded for wt in the control condition at 30°C. The changes in gene expression of $\Delta sigB$ mutant vs. wt and $\Delta bc1009$ mutant vs. wt were expressed in \log_2 ratios.

3.2.3 Transcriptome analysis

3.2.3.1 Cell culture and sample collection

Wt, $\Delta sigB$, and $\Delta bc1009$ cells were cultured as described in section 3.2.2.1, and RNAs were isolated and purified as mentioned in section 3.2.2.2.

3.2.3.2 cDNA synthesis and labeling

The cDNA synthesis and labeling were performed as reported in van Schaik et al. (2007) and Mols et al. (2013) with slight modification. Briefly, the purified RNA was reversely transcribed using the SuperScript™ IV Reverse Transcriptase kit (Invitrogen, Groningen, the Netherlands) according to the manufacturer's instruction. mRNAs within the synthesized cDNA were treated with 3 µl of 2.5 M NaOH, spun down, incubated at 37°C for 15 min, and neutralized with 15 µl 2 M HEPES free acid. Then, the amino-allyl-labeled dUTP cDNA was synthesized, purified with the CyScribe GFX purification kit, and labeled with the Amersham CyDye Reactive Dye (Cy3 and Cy5) (Sigma).

3.2.3.3 Microarray design, hybridization, and scanning

Microarray design, hybridization, and scanning were performed as described in Mols et al. (2013) with slight modification. Briefly, \sim 100 ng of Cy3 and Cy5-labelled cDNA (in 1:1 ratio) were combined in a total volume of 18 μ l, heated to 98°C for 3 min, mixed with 36 μ l of 2x Hi-RPM Hybridization Buffer (Agilent Technologies, CA, USA) and hybridized onto the DNA MicroArray slides. The array slides were scanned with an Agilent G2505C scanner (Agilent Technologies).

3.2.3.4 Microarray data acquisition and analysis

Images were analyzed and processed with the Agilent Feature Extraction software (version 10.7.3.1). The obtained extracted data files were analyzed using the limma software package (Ritchie et al., 2015) in R (R Core Team, 2014). For Agilent-based arrays, global loess normalization was used when the bulk of genes is not differentially expressed. The analysis was based on a 2-color experimental design using a linear modeling approach by lmfit and empirical Bayes statistics (Phipson et al., 2016).

DNA arrays generated gene expression data for 5283 annotated coding sequences (CDSs) and 69 RNA features (sRNAs). Genes were considered as significantly differentially expressed

when the transcript level ratio between the two conditions (i.e., 30°C vs. $30^{\circ}\text{C} > 42^{\circ}\text{C}$) was ≥ 2 folds (= upregulation of 1 log₂ expression unit) or ≤ 2 folds (downregulation of 1 log₂ expression unit) and the false discovery rate was ≤ 0.05 .

3.2.4 Proteome analysis

3.2.4.1 Cell culture and sample collection

The proteomes of wt, $\Delta sigB$, and $\Delta bc1009$ cells grown before (30°C) and after heat shock (42°C) were analyzed. ON cultures of each strain were used to inoculate 80 ml of fresh BHI to an OD₆₀₀ of 0.01, and cultures were grown to an OD₆₀₀ ~ 0.4 at 30°C and 200 rpm, respectively. Then, 20 ml aliquots of each culture were transferred to 50 ml Falcon tubes, and cells were spun down at 8000 rpm for 5 min at RT. After centrifugation, the cell pellet of one of the four tubes was frozen immediately in liquid nitrogen and used as the T0 control. For the remaining three tubes, cells were resuspended in 20 ml of 42°C-preheated BHI medium and further incubated for another 40 min. Samples were harvested after 20 min (T20) and 40 min (T40), respectively, and stored at -20°C. Four independent biological replicate experiments were performed. T20 was selected for proteome sample collection because SigB expression was shown to be the most abundant at 20 min after heat shock (data not shown), whereas T40 was selected to ensure proteins that required extended expression time were also analyzed and covered.

3.2.4.2 Protein extraction and preparation for Mass-spectrometry analysis

The pellets were each resuspended in 100 µl Tris-HCl (5 mM pH 7.4 containing 5% SDS) and immediately disrupted using a Dismembrator (Retsch, Haan, Germany) at 2600 rpm for 3 min (in a 4,8 ml Teflon vessel precooled in liquid nitrogen with an 8 mm diameter steel ball). Next, the cell powder was resuspended with 400 µl of preheated (95°C) Tris-HCl buffer (5 mM pH 7.4) and the viscous lysate was transferred into a fresh 1.5 ml low bind pre-lubricated Eppendorf tube and shaken for 1 min at 95°C and 1400 rpm. The lysate was cooled to RT and 2 µl of a 1 M MgCl₂ stock solution (final 4 mM MgCl₂) was added. Next, 1 µl of a 1:100 diluted benzonase (Pierce Universal Nuclease No#88702) (Pierce, Rockford, IL, USA) stock solution (final 0.005 U/µl) was added and mixed by short vortexing. The samples were incubated in an ultrasonic bath at RT for 5 min until the viscous lysate was liquefied by complete degradation of DNA and RNA. The raw lysates were centrifuged at 17000 g at RT for 30 min. After centrifugation, the protein lysate was transferred into a fresh 1.5 ml low bind pre-lubricated Eppendorf tube, and the pelleted cell debris was discarded. The protein concentration of the samples was determined using the Micro BCA Protein Assay Kit following the manufacturer's protocol (Pierce, Prod. No. 23235) using a FLUOstar Omega Plate Reader (BMG Labtech, Ortenberg, Germany). Samples were stored at -80°C. Sample preparation for mass spectrometry measurements was performed using the SP3 protocol as described in Blankenburg et al. (2019).

3.2.4.3 Liquid chromatography-mass spectrometry (LC-MS) measurements

Protein samples were measured using the LC-MS/MS platform containing reversed-phase nano liquid chromatography (nano Acquity M-class UPLC) (Waters Corporation, Massachusetts, USA), which was coupled to nanospray ionization tandem mass spectrometry with traveling wave ion mobility using high-definition data-independent (HD-MS^E) acquisition and enabled with hybrid quadrupole orthogonal acceleration time of flight mass spectrometer (Synapt G2Si, Waters Corporation).

The peptide mixture was separated on ACQUITY UPLC® M-Class HSS T3 1.8 um, 75 um x 200 mm column (Waters Corporation) using a mixture of Buffers A (0.1% v/v Acetic acid in water) and B (0.1% v/v acetic acid in acetonitrile) through a linear concentration gradient of Buffer B in 170 min, with a flow rate of 300 nl/min from 5-26% (v/v). The eluents were sprayed at a voltage of 1.85-1.90 kV using PicoTip emitters (Waters Corporation), and other source parameters were set (sampling cone = 40V, source offset = 0 V, source temperature = 80° C, gas flows, cone gas = 50 l/h, nano gas flow = 0.4 bar, purge gas = unchanged, IMS = optimized for wave velocity with a start velocity of 870 m/s to end at 564 m/s that corresponds to the separation of GluFib fragments in the drift time range of 0-200 bins).

The data was acquired using the MassLynx™ software program version V4.1 (Waters Corporation) that automatically switches between MS and MS/MS (HDMS^E) scans in resolution mode at 20000 with 1 second (sec) scan time and the scan range of 50-2000 m/z. Calibration was done by injecting GluFib at an interval of 1 min. The acquired data were analyzed for protein identifications against the Uniprot fasta database of *B. cereus* ATCC14579 strain that contained 5240 sequences via the PLGS v3.3 program (Water Corporation). Spectra were processed using low and high-energy thresholds of 135, 20 counts, and lock mass calibration 785.8456 m/z for GluFib. The workflow search parameters were set as: (protease = trypsin, one missed cleavage, carbamidomethyl for cysteine as fixed, variable modifier = oxidation of methionine). The protein was quantified when 1) the top 3 peptides had no modifications; 2) pass one match had peptide fragment one; and 3) ranked the first three highest peptides. The PLGS independent identification output was imported to ISOQuant 1.8 (Distler et al., 2014) for sample analyses.

3.2.4.4 Proteome data analysis

The quantitative protein data were obtained based on identifying a minimum of two peptides, the protein areas were used, and the data analysis was performed using the tidyverse package (version 1.3.0) in R version 4.0.2 (Wickham et al., 2019). Briefly, the IsoQuant protein intensities were median normalized using the global median as reference. The PCA analysis was carried out using the FactoMineR package (version 2.3) (Lê et al., 2008) with normalized log₂ protein intensities scaled to unit variance. The sample correlation was calculated using Kendall's methodology (Kendall, 1938) and displayed using the ggcorrplot package (version

0.1.3) (Kassambara, 2019). The statistical analysis was carried out using the PECA package (version 1.24.0) (Suomi et al., 2021) by applying a modified T-test for the pairwise comparisons to proteins having valid protein quantity values in at least two replicates, by calculating empirical Bayes moderated T-statistics using the linear modeling approach implemented in the limma package (version 3.44.3) (Ritchie et al., 2015). The raw p-values (p) were multiple tests adjusted (p.fdr) using the Benjamini-Hochberg method (Benjamini and Hochberg, 1995). Finally, volcano plots were generated using the ggplot2 package (version 3.3.2) (Wickham, 2016) using an absolute fold-change cut-off of 1.5 and 0.05 as q-value (adjusted p-value) cut-off.

Mass spectrometric analyses detected between ~1100 to ~1800 proteins, depending on the strain and condition. Proteins were considered to be significantly differentially expressed when the absolute fold change (FC) was ≥ 1.5 folds (log₂ FC ≥ 0.585) (induction/upregulation) or ≤ 1.5 folds (log₂ FC ≤ 0.585) (downregulation), and the false discovery rate was ≤ 0.05 .

3.2.5 Cell survival study

ON cultures were inoculated into 60 ml of fresh BHI to an OD_{600} of 0.01 and grown to the midexponential phase ($OD_{600} \sim 0.4$, T0) at 30°C. A control sample (T0 $_{non-adapted}$) was collected, and the remaining cultures were divided into two portions. One portion was heated at 50°C without preadaptation, and samples were collected after 10, 20, and 30 min. Another portion was preadapted at 42°C for 45 min, a control sample (T0 $_{adapted}$) was collected, and the tube with the remaining culture was heated at 50°C. Samples were taken every 20 min intervals up to 120 min. Preadaptation for 45 min at 42°C was chosen to allow an adequate time for the culture medium to reach 42°C, as a 15 - 60 min preheating treatment showed similar effects upon exposure to this lethal temperature of 50°C (van Schaik et al., 2004a).

At every time point, cultures were 10-fold serially diluted and plated on BHI agar plates. Colony-forming units per ml (CFU)/ml were calculated, and the survival of the heat-adapted and non-heat-adapted cells was expressed in log_{10} CFU/ml reduction (log_{10} CFU/ml T_0 - log_{10} CFU/ml T_x). The experiment was done with biological and technical duplicates, respectively.

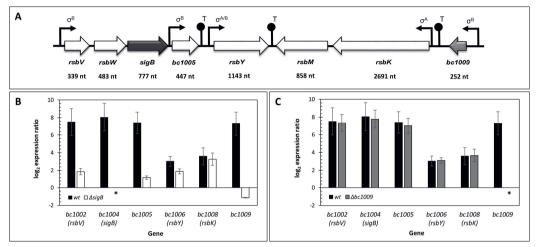
3.2.6 Cell motility assay of wt, $\Delta sigB$, and $\Delta bc1009$ cells

A cell motility assay was performed to check the phenotype for the wt, $\Delta sigB$, and $\Delta bc1009$ cells at the control temperature (30°C) and under the condition with heat stress (30°C \rightarrow 42°C). A flagella deficient strain $\Delta flgG$ (laboratory collection) was used as the negative control. The motility of each strain was tested on a BHI medium with 0.25% agar. Plates were prepared by pouring 50 ml in 120 x18 mm square Petri dishes (Greiner Bio-one). The BHI plates were dried for 15 min in a flow cabinet before use.

All strains were cultured ON at 30°C, 200 rpm. An aliquot of 250 μ l of an ON culture was used to inoculate 20 ml of fresh BHI medium, and the culture was grown to an OD₆₀₀ of ~ 0.4. Of

these cultures, cells were collected from 5 ml via centrifugation at 5500 g for 5 min. The supernatant was discarded, and the cell pellet was resuspended in 5 ml Phosphate-buffered saline (PBS). The motility under heat stress was assessed by first subjecting 5 ml of the cultures to 42°C in a water bath for 30 min, followed by centrifugation and resuspension in PBS. 5 μ l of the resuspended cells were pipetted in the middle of the BHI agar plates, dried in the flow cabinet, and incubated either at 30°C or 42°C. The closed agar Petri dishes were covered with wet tissues to prevent dehydration. After ~ 20 h, all plates were photographed, and the colony diameter was measured using the ImageJ software (Schneider et al., 2012). The colony diameter and maximum plate size in pixels were measured in ImageJ with the 'Rectangle' setting. The colony diameter (in pixels) was divided by the maximum plate size (in pixels) to obtain a colony/plate ratio. This ratio was subsequently multiplied by the known plate size (150 mm) to obtain the colony diameter in mm.

3.3 Results


The bc1009 gene in the SigB gene cluster (Figure 1A) encodes a putative Hpr-like phosphocarrier protein (Bc1009) in *B. cereus*. The potential role of bc1009 acting as a SigB regulator was first examined via gene expression studies, and its SigB-dependent functions were investigated via proteome profiling (complemented with transcriptomic data). The global protein/gene expressions of the $\Delta bc1009$ mutant before and after heat shock were analyzed and compared with the protein/gene expressions of the *B. cereus* wt cells and a marker-free $\Delta sigB$ mutant under the same conditions.

3.3.1 The activity of *bc1009* is dependent on *sigB*, but *bc1009* does not regulate SigB

Changes in expression within the SigB gene cluster: bc1002 (rsbV), bc1003 (rsbW), bc1004 (sigB), bc1005, bc1006 (rsbY), bc1008 (rsbK) and bc1009 of B. cereus wt, $\Delta sigB$ and $\Delta bc1009$ cells upon heat shock (30°C \rightarrow 42°C) were determined via RT-qPCR. Results were first compared for wt versus the $\Delta sigB$ mutant (Figure 1B), and then for wt versus the $\Delta bc1009$ mutant (Figure1C).

Upon heat shock of wt cells, the expression of the three known SigB-dependent genes rsbV (bc1002), bc1005, bc1009, and sigB itself increased > 200-fold ($\sim \log_2 8$) compared to wt cells without heat shock. The rsbY(bc1006) and rsbK(bc1008) genes that encode the two-component system were also expressed ~ 4 - fold ($\sim \log_2 2$) higher in wt cells after heat shock than before heat shock (Figures 1B and 1C). Upon heat shock of the $\Delta sigB$ mutant, rsbV and bc1005 were mildly expressed (< 4- fold) ($\sim \log_2 2$), whereas bc1009 was expressed at a lower level after heat shock in the $\Delta sigB$ mutant (Figure 1B), showing that its heat induction was strictly dependent on SigB. The expression of the histidine kinase encoding gene rsbK is controlled by sigA. The observation that its expression was similar for the $\Delta sigB$ mutant and the wt cultures after heat shock is in line with this. Its cognate regulator partner rsbY was expressed at a lower

level in the $\Delta sigB$ mutant than in wt cultures, indicating partial dependency of its expression on SigB (Figure 1B). Notably, when the bc1009 gene was deleted, the expression of all other genes in the SigB cluster was unaffected and similar to that in wt cultures (Figure 1C). This implied that sigB expression did not rely on bc1009, ruling out a possible role of bc1009 as an additional phosphocarrier in the activation of SigB via the RsbKY system.

Figure 1- SigB gene cluster in *Bacillus cereus* and differential gene expression after heat shock. **1A-** SigB gene cluster arrangement in *B. cereus* ATCC14579. **1B** – Change in expression of genes belonging to the *sigB* gene cluster for wt and $\Delta sigB$ mutant after 20 min of heat shock at 42°C compared to the non-heat-stressed condition at 30°C. N=4, p < 0.001. **1C-** Change in expression of genes belonging to the SigB gene cluster expression for wt and $\Delta bc1009$ mutant after heat shock at 42°C compared to the non-heat-stressed condition at 30°C; **Black** bar- wt; **white** bar- $\Delta sigB$ mutant; **grey** bar- $\Delta bc1009$ mutant. * indicates the absence of gene activity. N=4, p < 0.001.

3.3.2 Comparison of proteomic profiles of $\Delta sigB$ and $\Delta bc1009$ mutants to wt upon heat shock reveals novel SigB-dependent proteins mediated via Bc1009 in *B. cereus*

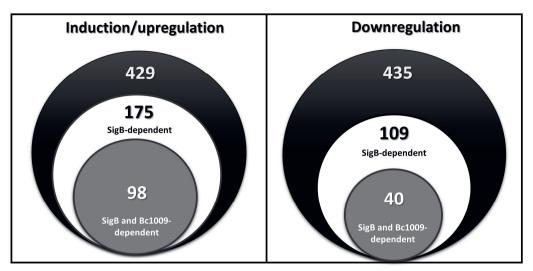
To further explore the role of Bc1009 and SigB in *B. cereus*, we compared the proteome profiles of *B. cereus* cultures of wt, $\Delta sigB$, and $\Delta bc1009$ mutants grown at 30°C with cultures that were heat-shocked at 42°C after growth at 30°C. The proteomics results of wt, $\Delta sigB$, and $\Delta bc1009$ cells obtained in this study are presented below and complemented by transcriptomics results (Supplementary files).

3.3.2.1 Heat-induced changes of proteome profiles in wt cells

After heat shock treatment, ~ 1500 proteins were detected for wt cells. Among these, 429 proteins displayed significantly increased (≥ 1.5 folds, $\log_2 FC \geq 0.585$), and 435 significantly decreased (≤ 1.5 folds, $\log_2 FC \leq 0.585$) levels in wt cells after heat shock compared to control conditions, respectively (Figure 2). The complete list of proteins displaying significantly

different levels is presented in Supplementary Table S2A, and the clusters of orthologous group (COG) functions are presented in Supplementary Figure S1.

As expected, next to previously described SigB regulon members (see below), well-known protein chaperones (GroEL, DnaJ, DnaK), transcription repressors (HrcA, CtsR) that control Clp proteases (ClpC, ClpP, ClpB, ClpY, ClpQ), DNA repair proteins (RadA, MutS) and other well-known heat shock proteins like GrpE, YflT, and FtsH were all present at ≥ 1.5 folds higher levels in wt cultures after heat shock at 42°C compared to control conditions at 30°C. These heat shock proteins were also identified in an earlier study on *B. cereus* heat stress response (Periago et al., 2002), confirming the congruency of the results obtained in this study. Extended information on the *B. cereus* heat shock regulon was acquired (Supplementary Table S2A), and $\sim 20\%$ of the proteins with temperature-dependent changes in level found in wt cultures upon heat shock were also influenced at the gene expression level (Supplementary Table S2B).


3.3.2.2 Impact of SigB and Bc1009 on B. cereus protein profiles after heat shock

SigB-dependent and SigB/Bc1009-dependent heat shock induction of proteins

The protein profiles of $\Delta sigB$ and $\Delta bc1009$ mutants were further compared with wt cells. Out of 429 proteins displaying increased levels after heat shock in wt cells, 175 showed lower levels in the $\Delta sigB$ mutant, indicating that the expression of the encoding genes was inducible via SigB in wt cells (Figure 2). Additionally, for 98 of these 175 proteins, this effect was not only dependent on SigB but also on Bc1009 because they also exhibited lower levels in the $\Delta bc1009$ mutant than in the wt (Figure 2), hereby referred to as SigB (and Bc1009)-dependent proteins. The complete list of the SigB-induced and SigB (and Bc1009)-induced proteins with their functional annotation is listed in Table 2. The \log_2 fold changes of the protein levels are presented in the volcano plot in Figure 3A, and their COG functions in Figure 3B. The top 30 most significant SigB-induced proteins are indicated with numbers in Figure 3A on the right (marked in white), and for half of these, the increase in level was also dependent on Bc1009 (marked in Grey in Figure 3A) (see details in Table 2).

The 175 proteins displaying SigB-dependent increases in level after heat shock include the general stress defense proteins previously described by van Schaik et al. (2007) and De Been et al. (2010), i.e., Bc0861, Bc0862 (YfkM), Bc0863 (KatE), Bc0998 (YflT), Bc0999 (CsbD), Bc1002 (RsbV), Bc1003 (RsbW), Bc1004 (SigB), Bc1005 (bacterioferritin), Bc1010 (hypothetical), Bc1012 (hypothetical), Bc1154 (ferrochelatase), and Bc3132 (general stress protein) (Table 2). In line with these findings, significantly induced transcription was seen for genes that encode these general stress proteins (Supplementary Table S3B). Although the Bc1009 protein was not detected, the complementary transcriptional results showed that the *bc1009* gene was induced (Supplementary Table S3B).

Other newly identified members of the SigB-regulon mainly belong to the COG groups of cell motility, signal transduction mechanisms, transcription, amino acid transport, and metabolisms, or a group without assigned function (Figure 3B). Representatives of the cell motility COG group included many flagella or chemotaxis proteins (FliM, FliN, FliG, YvzB, Bc1637, FlgE, PhnB, McpBH, YoaH, CheV, CheA, Bc0404, MotA, Bc0678, TlpA), and the signal transduction and transcription COG groups contained proteins that are related to sporulation (SigK, YndF, Spo0A, Bc4463). Other strongly induced proteins included Bc0409 (carbamate kinase), Bc0566 (endonuclease/exonuclease phosphatase family protein), and Bc0666 (Immune inhibitor A precursor). Strikingly, a large number of transcriptional regulators were shown to be SigB-dependent, including SigK (sporulation sigma factor), Spo0A (sporulation initiation protein), CggR (central glycolytic regulator), ArsR family transcriptional regulator Bc0613, GntR family transcriptional regulator YvfI, PadR, YdgH, and the MerR family transcriptional regulator Bc3356 (Table 2). The most significantly induced protein - Bc0107 (YacN), a 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase, has a putative role in lipid transport and metabolism. Together with the strongly induced protein Bc4345 that encodes a lipase, this suggests an additional role of SigB in the modulation of membrane lipid composition. Remarkably, a cluster of proteins (Bc5117 - Bc5125) that is likely involved in the transport of nutrients, and Bc0423 (a non-ribosomal peptide synthetase that is involved in secondary metabolite production) also showed significant induction in wt cells and impaired production in $\Delta sigB$ cells after heat shock compared to before heat shock (Figure 3B, Table 2).

Figure 2- Proteomics analyses of *B. cereus* ATCC14579 wt, $\Delta sigB$, and $\Delta bc1009$ mutants in upon heat shock. **Left:** Venn diagram showing 429 significantly induced (upregulated) proteins in *B. cereus* heat-stressed wt cells (**black circle**) compared to the non-heat-stressed wt cells at 30°C (see Supplementary Table S2A). **White circle:** 175 heat-induced proteins in wt that are SigB-dependent, i.e., proteins that show upregulation of > 0.6 log₂ fold change in wt/ $\Delta sigB$ cells upon heat shock compared to the non-heat-stressed condition at 30°C. **Grey circle:** For 98 proteins, the heat-mediated increase in level in the wt is dependent on SigB and Bc1009, i.e., proteins that show upregulation of > 0.6 log₂ fold change in wt/ $\Delta sigB$ and wt/ $\Delta bc1009$ cells upon heat shock compared to the non-heat-stressed condition at 30°C (see Table 2 for the complete list of proteins). **Right:** Venn diagram showing 435 significantly downregulated proteins in *B. cereus* heat-stressed wt cells (**black circle**) compared to the non-heat-stressed wt cells at 30°C (Supplementary Table S2A). **White circle:** 109 downregulated proteins in heat-stressed wt cells vs. non-heat-stressed wt cells are SigB-dependent, i.e., proteins that show downregulation of > 0.6 log₂ fold change in wt/ $\Delta sigB$ cells upon heat shock compared to the non-heat-stressed condition at 30°C. **Grey circle:** For 40 proteins, reduction in level in wt cells upon heat shock was dependent on SigB and Bc1009, i.e., proteins that show downregulation of > 0.6 log₂ fold change in wt/ $\Delta sigB$ and wt/ $\Delta bc1009$ cells upon heat shock vs. non-heat-stressed condition (see Table 3). The underlying transcriptome data supporting this figure are presented in Supplementary Table S2B.

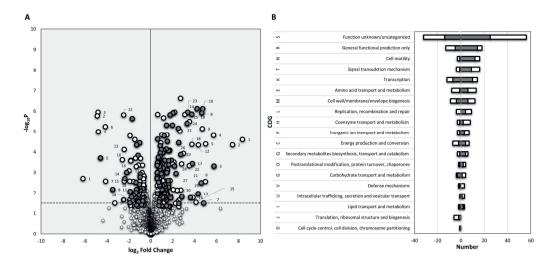


Figure 3- SigB and SigB (and Bc1009)-dependent induced and downregulated proteins in wt cells after heat shock (30°C to 42°C) versus before heat shock and their cluster of orthologous group (COG). 3A- log2 fold change in protein expression. Positive and negative fold change values indicate induced and downregulated proteins, respectively. Numbers indicate the top 30 induced (Table 2) or top 20 downregulated (Table 3) proteins, respectively. The p-value threshold for each protein was < 0.05, N = 4. Grey symbols: induced/downregulated proteins that are SigB (and Bc1009)-dependent; i.e., proteins that show up(or down) regulation of > 0.6 log₂ fold change in wt/ΔsigB and wt/\(\Delta bc1009\) cells upon heat shock vs. non-heat-stressed condition. White symbols: induced/downregulated proteins that are SigB-dependent; i.e., proteins that show up(or down) regulation of $> 0.6 \log_2$ fold change in wt/ $\Delta sigB$ cells upon heat shock vs. non-heat-stressed condition. 3B- cluster of orthologous group (COG) function for both SigBdependent induced (Right) and downregulated proteins (Left) in wt cells upon heat shock. The number on the x-axis indicates the total number of induced/downregulated proteins, and the negative sign indicates downregulation. Grey bar: induced/downregulated proteins after heat shock that are SigB (and Bc1009)-dependent; i.e., proteins that show up(or down) regulation of > 0.6 \log_2 fold change in wt/ $\Delta sigB$ and wt/ $\Delta bc1009$ cells; (White bar); induced/downregulated proteins that are SigB-dependent; i.e., proteins that show up(or down) regulation of > 0.6 log₂ fold change only in $wt/\Delta sigB$ cells respectively, compared to the expression in the non-heat-stressed condition at 30°C. The underlying transcriptome data supporting this figure are presented in Supplementary Table S3B.

Table 2: SigB-dependent induced proteins upon heat shock in B. cereus ATCC14579

Bold: SigB and Bc1009-dependent-induced proteins upon heat shock in *B. cereus*

Not Bold: SigB-dependent-induced proteins upon heat shock in *B. cereus*

log₂ FC: log₂ protein fold change values at either T20 or T40 timepoint

COG: Cluster of orthologous groups, see description in Figure 3. Only SigB or SigB and Bc1009-dependent proteins are listed here

Ocus Tag C0107 C0998	Protein		log2 EC	less EC	COG
	37 BT	Annotation	log2 FC	log2 FC	
	YacN	2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase	8.4		I S
C0990	YflT	General stress protein 17M	7.5		٥
		Lipase; Pimeloyl-ACP methyl ester carboxylesterase (Coenzyme transport &			
C4345	BC4345	metabolism)	5.8	5.5	R
C1004	SigB	RNA polymerase sigma-B factor	5.7	5.5	K
C1004 C1005	BC1005	Bacterioferritin	5.0		P
C1003	DC1003	RNA polymerase sigma-K factor, sporulation sigma	3.0		- 1
C4336	SigK	factor	5.0		K
C0409	BC0409	Carbamate kinase	4.8	1.5	E
C0403	DC0403	Endonuclease/Exonuclease/phosphatase family	4.0	1.5	
C5066	BC5066	protein	4.7	4.2	S
C0863	KatE	Catalase	4.7	1.2	P
C0666	BC0666	Immune inhibitor A precursor	4.7	3.7	S
C0862	YfkM	Protease I	4.6	1.1	R
C4153	BC4153	Phosphohydrolase (MutT/nudix family protein)	4.3		L
C3935	BC3935	hypothetical Cytosolic Protein	4.3	4.1	S
C1010	BC1010	YflT heat induced stress protein family	4.2	0.7	S
C0422	BC0422	Methyl-accepting chemotaxis protein	4.1	0.7	NT
C0612	BC0422	L-lactate permease	3.9		C
C1663	FliN	Flagellar motor switch protein fliN	3.8	3.6	NU
C0613	BC0613	Transcriptional regulator, ArsR family	3.8	3.0	K
C5077	BC5077	Protein with unknown function	3.7	3.8	S
C3110	YndF	Spore germination protein BC	3.6	1.2	S
C3229	YxkD	hypothetical Membrane Spanning Protein	3.5	1.2	S
C0773	YdiE	Fructokinase	3.5		G
C3576	BC3576	Spore germination protein SC	3.4	3.2	S
C5410	YocJ	FMN-dependent NADH-azoreductase	3.3	5.2	I
C0999	BC0999	General stress protein (hyperosmotic & cold)	3.1	3.2	S
C3292	BC3292	hypothetical protein	3.0		S
C1662	FliM	Flagellar motor switch protein fliM	2.8	2.9	N
C1661	BC1661	Flagellar motor switch protein fliN	2.8	2.3	NU
C3406	BC3406	Oxidoreductase	2.8	3.5	R
C1127	BC1127	Malate synthase	2.7	0.0	C
C1002	RsbV	Anti-sigma B factor antagonist	2.7		Т
C1002	RsbW	Anti-sigma B factor Anti-sigma B factor	2.7		T
C1005	BC1025	Glyoxalase family protein	2.6		E
C3132	BC3132	General stress protein 17M	2.6		S
C0102	DC0102	Non-ribosomal peptide synthetase (adenylation	2.0		
C0423	SrfAAH	domain)	2.6	2.6	Q
C2006	TlpA	Methyl-accepting chemotaxis protein, pH sensor	2.6	2.6	NT
C5422	BC5243	O-Antigen ligase - like protein	2.5	2.9	S
C1226	YicH	Acetyl esterase	2.4	2.0	P
C0655	BC0655	-	2.4		T
C5436				2.4	0
C1237		-		2.3	E
C1237	•				R
C1333				0.8	KR
C1349 C1369		-		0.0	M
C1309 C1403		-			E
C1403				2.1	C
				2.1	S
C54 C123 C133 C13 C136 C146	36 37 33 49 69 03	36 BC5436 37 TrpB 33 BC1333 49 BC1349 59 DltD 03 LeuD 03 YvfV	36 BC5436 Peptide methionine sulfoxide reductase 37 TrpB Tryptophan synthase beta chain 33 BC1333 CBS domain containing protein 49 BC1349 Acetyltransferase 69 DltD Protein dltD precursor 03 LeuD 3-isopropylmalate dehydratase small subunit 03 YvfV (S)-2-hydroxy-acid oxidase, iron-sulfur chain	36 BC5436 Peptide methionine sulfoxide reductase 2.3 37 TrpB Tryptophan synthase beta chain 2.3 33 BC1333 CBS domain containing protein 2.2 49 BC1349 Acetyltransferase 2.2 69 DltD Protein dltD precursor 2.1 03 LeuD 3-isopropylmalate dehydratase small subunit 2.1 03 YvfV (S)-2-hydroxy-acid oxidase, iron-sulfur chain 2.0	36 BC5436 Peptide methionine sulfoxide reductase 2.3 2.4 37 TrpB Tryptophan synthase beta chain 2.3 33 BC1333 CBS domain containing protein 2.2 49 BC1349 Acetyltransferase 2.2 0.8 69 DltD Protein dltD precursor 2.1 03 LeuD 3-isopropylmalate dehydratase small subunit 2.1 03 YvfV (S)-2-hydroxy-acid oxidase, iron-sulfur chain 2.0 2.1

No.	Locus Tag	Protein	Annotation	wt 42°C/ ΔsigB 42°C log2 FC	wt 42°C/ Δbc1009 42°C log2 FC	COG
48	BC3980	YkuR	putative N-acetyldiaminopimelate deacetylase,	2.0	1.9	R
49	BC4786	BC4786	peptidoglycan synthesis	1.9	4.8	S
50	BC4788 BC1410	HisF	hypothetical Cytosolic Protein	1.8	1.7	E
			HisF protein		1.7	
51	BC5223	YdaJ	hypothetical protein	1.8		S
52	BC1431	BC1431	Cell wall endopeptidase, family M23/M37	1.8		MS
53	BC4820	BC4820	hypothetical protein	1.8		S
54	BC5141	CggR	Central glycolytic genes regulator	1.8	1.7	K
55	BC1370	DltC	D-alanyl carrier protein	1.7	2.9	IQ
			Methyl-accepting chemotaxis protein, signaling			
56	BC0678	BC0678	domain	1.7	1.4	NT
			homolog of lantibiotic biosynthesis dehydratase C-			
57	BC5123	BC5123	term	1.7	1.7	S
58	BC0597	YueK	Nicotinate phosphoribosyltransferase	1.7	1.7	Н
59	BC5118	BC5118	ABC transporter ATP-binding protein	1.6	1.8	E
60	BC1275	BC1275	Methyltransferase	1.6	1.6	QR
61	BC5155	YvcK	hypothetical Cytosolic Protein	1.6	2.2	S
62	BC5103	YclP	Ferric anguibactin transport ATP-binding protein	1.6	2.0	P
63	BC3203	BC3203	hypothetical protein	1.6	1.5	S
64	BC2303	DhbC	Isochorismate synthase	1.6		HQ
		BC3257	N-acetylmuramoyl-L-alanine amidase, Cell wall or		1.0	TM
65	BC3257		membrane biogenesis	1.5	1.6	
66	BC5122	BC5122	YcaO cyclodehydratase, ATP-ad Mg2+-binding	1.5	1.8	S
67	BC0571	BC0571	Serine/threonine protein phosphatase	1.5		T
68	BC0675	BC0675	hypothetical protein	1.5	1.7	S
69	BC1586	TuaA	Undecaprenyl-phosphate galactosephosphotransferase	1.5		M
70	BC3350	BC3350	TPR-repeat-containing protein	1.5		R
71	BC2850	YkfB	Mandelate racemase/muconate lactonizing enzyme family protein	1.5	1,1	MR
72	BC3165	PucA	Xanthine dehydrogenase subunit	1.5	1.0	0
73	BC3287	BC3287	hypothetical protein	1.4		S
74	BC5255	YknX	periplasmic component of efflux system	1.4	1.6	M
75	BC1857	BC1857	Exonuclease SbcD	1.4	1.8	L
76	BC3278	BC3278	hypothetical protein	1.4	1.0	S
77	BC1658	YvzB	Flagellin	1.4	1.3	N
78	BC2757	BC2757	-	1.4	2.4	E
		BC2757 BC5125	Tryptophan 2,3-dioxygenase		2.4	
79	BC5125		Peptidase family M50	1.4		M
80	BC0419	ThiM	Hydroxyethylthiazole kinase	1.4		H
81	BC1725	DsdA	D-serine dehydratase	1.4		E
82	BC1756	PadR	Transcriptional repressor PadR	1.4	1.0	K
83	BC5168	UvrB	Excinuclease ABC subunit B	1.3	1.4	L
84	BC5243	BC5243	hypothetical protein	1.3	1.6	S
			In operon with BC5120, which is a nitroreductase			
85	BC5119	BC5119	family protein	1.3	1.6	S
86	BC0244	AppD	Oligopeptide transport ATP-binding protein oppD	1.3	0.7	EP
87	BC2147	RapG	Response regulator aspartate phosphatase	1.3	1.0	R
88	BC1637	BC1637	Flagellar hook-associated protein 3	1.2	1.0	N
89	BC4300	YqfG	hypothetical Metal-Binding Protein	1.2	1.3	R
90	BC2285	MmgD	2-methylcitrate synthase	1.2	1.5	С
91	BC2431	BC2431	PhnB protein	1.2		S
92	BC1651	FlgE	Flagellar hook protein flgE	1.2	1.1	N
93	BC2425	BC2425	hypothetical protein	1.2		S
			S-layer protein / Peptidoglycan endo-beta-N-			
94	BC2464	BC2464	acetylglucosaminidase	1.2		G
95	BC2750	BC2750	Protein with unknown function	1.2		L
96	BC0792	YrkD	hypothetical Cytosolic Protein	1.2	1.4	S
97	BC4170	SpoOA	Stage 0 sporulation protein A	1.1	1.3	TK
98	BC3356	BC3356	Transcriptional regulator, MerR family	1.1	0.9	K
99	BC3565	BC3565	hypothetical protein	1.1		Н
100	BC2760	BC2760	Transcriptional regulator, TetR family	1.1	1.1	K

No.	Locus Tag	Protein	Annotation	wt 42°C/ ΔsigB 42°C log2 FC	wt 42°C/ Δbc1009 42°C log2 FC	COG
	_		PaaI family protein, possible transcriptional			
101	BC3852	YlpC	regulator	1.1	0.7	Q
102	BC4791	YtiB	Carbonic anhydrase	1.1	1.0	P
103	BC2862	PrsA	Protein export protein prsA precursor	1.1 1.1	1.0	O N
104	BC4513	MotA	Chemotaxis motA protein			T
105 106	BC3894 BC4371	BC3894 BC4371	DnaK suppressor protein	1.1	1.3 0.9	S
107	BC4371 BC2919	YokD	hypothetical protein Aminoglycoside N3'-acetyltransferase	1.1	0.9	V
107	BC5121	BC5121	hypothetical protein	1.1	1.6	S
109	BC5121	BC5121	ABC transporter permease protein	1.1	1.2	S
110	BC2936	YdgH	Transcriptional repressor Bm3R1	1.0	1.2	K
111	BC3433	BC3433	hypothetical protein	1.0	1.8	S
112	BC3070	BC3070	Signal peptidase I	1.0	1.0	U
113	BC0887	BC0887	Collagen adhesion protein	1.0		M
110	Becoor	DC0001	precursor of the glucomannan utilization protein	1.0		141
114	BC3192	BC3192	ydhR	1.0	2.8	S
115	BC0191	BC0191	hypothetical Membrane Spanning Protein	1.0	1.2	S
116	BC1645	FliG	Flagellar motor switch protein fliG	1.0	1.2	N
117	BC5241	YvbJ	IG hypothetical 16680	1.0	1.1	S
118	BC4938	YutJ	NADH dehydrogenase	1.0		C
119	BC0954	BC0954	tcdA-E operon negative regulator	1.0	1.0	S
120	BC4723	BC4723	Molybdopterin biosynthesis MoeB protein	0.9		Н
121	BC3264	BC3264	hypothetical protein	0.9		L
122	BC2150	YpgQ	metal-dependent phosphohydrolase	0.9	1.0	R
123	BC2846	BC2846	Protein dltD precursor	0.9	1.2	М
124	BC3281	BC3281	hypothetical protein	0.9	2.0	S
125	BC0404	TarH	Methyl-accepting chemotaxis protein	0.9	0.7	NT
126	BC1657	BC1657	Flagellin	0.9	1.1	S
127	BC1882	BC1882	Phage protein	0.9		S
128	BC1247	BC1247	hypothetical protein	0.9	1.1	S
129	BC0295	GroEL	60 kDa chaperonin GROEL	0.9		0
130	BC5120	BC5120	hypothetical Cytosolic Protein	0.9	1.7	S
131	BC3286	BC3286	hypothetical protein	0.9	0.8	С
			Bacitracin resistance protein (Putative undecaprenol			
132	BC1384	YubB	kinase)	0.9		V
133	BC0040	YabB	Methyltransferase	0.9		R
134	BC3550	BC3550	Argininosuccinate lyase	0.9		E
135	BC1302	YvfI	Transcriptional regulator, GntR family	0.9	0.8	K
136	BC3601	YclJ	Two-component response regulator	0.9	0.9	TK
137	BC3699	BC3699	Antigen/ lysozyme like protein	0.8	3.1	M
138	BC0061	YabN	MazG protein	0.8	0.9	R
139	BC3802	YmxH	hypothetical protein	0.8		S
140	BC1924	BC1924	L-lactate dehydrogenase	0.8	1.0	С
141	BC4178	BC4178	Exodeoxyribonuclease VII small subunit	0.8		Е
142	BC1736	YfiN	Export ABC transporter permease protein	0.8		V
143	BC4224	BC4224	Glycine dehydrogenase [decarboxylating]	0.8	1.8	E
144	BC5445	BC5445	Superoxide dismutase [Mn]	0.8		P
145	BC4696	YtmQ	SAM-dependent methyltransferase	0.8	1.7	R
146	BC4246	BC4246	hypothetical protein	0.8		S
147	BC4469	HemB	Delta-aminolevulinic acid dehydratase	0.8	0.7	Н
148	BC1628	CheA	Chemotaxis protein cheA	0.8		NT
149	BC4702	YtjP	Xaa-His dipeptidase	0.8		Е
150	BC4261	BC4261	hypothetical Cytosolic Protein	0.8		S
151	BC1479	YvqK	hypothetical Cytosolic Protein	0.8		S
152	BC0888	CwlH	N-acetylmuramoyl-L-alanine amidase,Cell wall or membrane biogenesis	0.8	0.7	М
153	BC0576	МсрВН	Methyl-accepting chemotaxis protein	0.8	1.9	NT
154	BC4381	YrrK	hypothetical Cytosolic Protein	0.7		L
155	BC3921	YlbP	Acetyltransferase	0.7	0.9	KR
156	BC1654	CheV	Chemotaxis protein cheV	0.7	0.8	NT

				wt 42°C/ ΔsigB 42°C	wt 42°C/ Δbc1009 42°C	
No.	Locus Tag	Protein	Annotation	log2 FC	log2 FC	COG
157	BC4579	DnaI	Primosomal protein dnaI, DNA replication	0.7	2.2	L
158	BC4644	BC4644	PhnB protein	0.7	1.0	S
159	BC3976	BC3976	putative transcriptional regulator	0.7		S
160	BC4668	BC4668	Virulence factor mviM	0.7		R
161	BC4741	BC4741	DNA integration/recombination/invertion protein	0.7	0.6	L
162	BC3857	YloS	Thiamin pyrophosphokinase	0.7		Н
163	BC4832	YdeE	Transcriptional regulator, AraC family	0.6	1.3	KS
164	BC4847	BC4847	D-alanyl-D-alanine carboxypeptidase	0.6		MS
165	BC1659	BC1659	hypothetical protein	0.6	0.6	S
166	BC3713	YmaH	Hfq protein	0.6	0.6	R
167	BC4961	YutE	hypothetical Cytosolic Protein	0.6		S
168	BC4856	MenF	Isochorismate synthase	0.6		HQ
169	BC3372	YqeC	6-phosphogluconate dehydrogenase	0.6	0.6	G
170	BC0570	BC0570	Glycerol-3-phosphate-binding protein	0.6		G
171	BC0203	BC0203	hypothetical protein	0.6	0.7	S
172	BC1313	BC1313	PhaP protein	0.6		S
173	BC4179	YqiB	Exodeoxyribonuclease VII large subunit	0.6		L
174	BC5034	YoaH	Methyl-accepting chemotaxis protein	0.6	0.7	NT
175	BC5124	BC5124	Protein with unknown function	0.6	1.9	S

A total of 98 of the newly identified SigB-dependent proteins are also Bc1009-dependent, including flagella/chemotaxis proteins, transcriptional activator/repressors, ABC transporters, proteins involved in amino acid transport and metabolism, and cell wall/membrane/envelope biogenesis (Figure 3B, and bold-highlighted in Table 2). Similarly, as reported above, the Bc5117-Bc5125 cluster and Bc0423 (non-ribosomal peptide synthetase) also showed reduced levels in $\Delta bc1009$ culture compared to wt cells. Bc0423 was also downregulated at the gene level in both mutants (complementing transcriptomic data are presented in Supplementary Table S3B). Several other proteins that showed significantly different levels in $\Delta sigB$ and $\Delta bc1009$ cultures versus wt do not belong to the COG groups mentioned above. For instance, YocJ (FMN-dependent NADH-azoreductase) was induced > 50-fold (log₂ ~ 5.6) stronger in wt cultures compared to $\Delta sigB$ mutant, and > 10-fold (log₂ ~ 3.3) stronger in wt cultures compared to $\Delta bc1009$ mutant. Similar observations were made for other proteins with unknown functions (Bc4786, Bc5066, Bc3935 cytosolic protein, Bc5077, Bc0666 immune inhibitor A precursor) (see Table 2).

These results were supported by the transcriptomics data (Supplementary Table S3B), which showed differential transcription of genes encoding the reported motility proteins in $\Delta sigB$ and $\Delta bc1009$ cultures, pointing to a role of SigB and Bc1009 in the control of cell motility. Notably, despite the SigB-induced transcription of a group of phage genes, the corresponding encoded proteins were either not detected or not differentially expressed in heat-stressed cells.

SigB-dependent and SigB/Bc1009- dependent downregulated proteins

On the other hand, 109 of 435 proteins that showed lower levels in wt cells after heat shock than before heat shock showed higher levels in the $\Delta sigB$ mutant, indicating that the expression of the encoding genes is likely indirectly regulated by SigB in wt cells (Figure 2). 40 of these 109 proteins also showed higher levels in the $\Delta bc1009$ mutant than in wt, suggesting that the

encoding genes are regulated by SigB and Bc1009 (Figure 2). The complete list of the SigB-dependent and SigB (and Bc1009)-dependent proteins that displayed lower levels after heat shock with their annotated functions is listed in Table 3. The \log_2 fold changes of the levels of these proteins are presented in the volcano plot (Figure 3A), and their COG functions are shown in Figure 3B. The top 20 SigB-dependent proteins with lower reductions of levels after heat shock in $\Delta sigB$ and $\Delta bc1009$ cells compared to wt are indicated by numbers in Figure 3A on the left (marked in white), with five of these being SigB and Bc1009- dependent (marked in Grey in Figure 3A) (see details in Table 3).

Many of the 109 proteins that revealed SigB-dependent reductions in levels in wt cells after heat shock compared to control samples have undefined functions or fall into the COG group of proteins with transcription, cell wall biogenesis, and energy production and conversion functions (Figure 3B, Table 3). For instance, the most prominently downregulated proteins in wt cells (~25 to 75 fold; $\log_2 FC = \sim 4.6 - 6.2$) after heat shock vs. before heat shock include RpsT (SSU ribosomal protein, involved in translation, ribosomal structure, and biogenesis), Bc2026 (oligopeptide-binding protein OppA involved in amino acid transport and mechanism), Bc1699 (ECF-type sigma factor negative effector with unknown function), YkfJ (protein tyrosine phosphatase in signal transduction), and Bc3442 (hypothetical protein). Remarkably, several other proteins involved in transcription were significantly downregulated in wt cells but less so in $\Delta sigB$ and $\Delta bc1009$ cells, such as the ArgR arginine repressor, Sigma-54-dependent transcriptional activator GlcR regulator, TetR family regulator Bc3592, and ArsR family transcriptional regulator Bc4256 (Table 3).

For 40 of these proteins, the reduction in level after heat shock was not only dependent on SigB but also on Bc1009, and for many of them the function has not been defined yet. Those showing significant differential expression with known functions are mainly engaged in transcription, including YitH acetyltransferase, ArgR arginine repressor, Bc2298 transcriptional repressor, Bc4652 IcaR transcriptional regulator, Bc4256 ArsR family transcriptional regulator, BkdR sigma 54-dependent transcriptional activator, and Bc2369 acetyltransferase.

Transcriptional analysis generally supported proteomics data, except for a group of nar genes involved in anaerobic respiration; these showed SigB dependency in wt cells upon heat shock (Supplementary Table S3B), while no differential expression of corresponding proteins was observed (Table 3). Moreover, comparative proteomics and transcriptomics data of wt vs. $\Delta bc1009$ also showed an additional group of Bc1009-induced/downregulated proteins/genes that are not dependent on SigB. As this study focussed on the SigB-mediated responses, these data are not further discussed here, but details are listed in Supplementary Table S4A and S4B, respectively.

The results presented in section 3.3.2 show more than 300 newly identified SigB-dependent proteins, and more than 100 of these require both SigB and Bc1009 for changes in their level in heat-stressed cells, indicating a significant extension of the *B. cereus* SigB regulon and a subregulon additionally requiring the Hpr-like phosphocarrier protein Bc1009. Most of these SigB and Bc1009-dependent proteins are involved in cell motility, signal transduction mechanisms, transcription, amino acid transport and metabolism, and cell wall biogenesis. Other proteins are responsible for DNA replication and repair, protein quality maintenance, and cell wall remodeling, suggesting a role of Bc1009 in adaptive heat stress response in *B. cereus* as well.

Table 3: SigB-dependent downregulated proteins upon heat shock in B. cereus ATCC14579

Bold: SigB and Bc1009-dependent-downregulated proteins under heat shock in *B. cereus*

Not Bold: SigB-dependent-induced proteins upon heat shock in *B. cereus*

log₂ FC: log₂ protein fold change values at either T20 or T40 timepoint

COG: Cluster of orthologous groups, see description in Figure 3.

Only SigB or SigB and Bc1009-dependent proteins are listed here

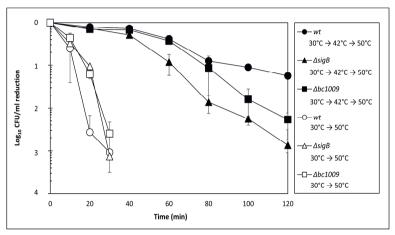
				wt 42°C/ ΔsigB 42°C	wt 42°C/ Δbc1009 42°C	
No.	Locus Tag	Protein	Annotation	log2 FC	log2 FC	coc
1	BC4320	RpsT	SSU ribosomal protein, translation	-6.2		J
2	BC1699	BC1699	ECF-type sigma factor negative effector	-4.9		S
3	BC2026	BC2026	Oligopeptide-binding protein oppA	-4.8		Е
4	BC0450	YfkJ	Protein tyrosine phosphatase	-4.8		T
5	BC3442	BC3442	hypothetical protein	-4.6	-1.2	R
6	BC2675	BC2675	Acetyltransferase	-4.1		K
7	BC4168	BC4168	hypothetical protein	-4.1		S
8	BC0066	YabR	S1-type RNA-binding domain	-3.5	-0.7	J
9	BC3321	YfkO	NAD(P)H-dependent flavin reductase	-3.3		С
10	BC4935	YutM	Fe-S carrier protein, assembly of Fe-S clusters, DNA repair	-2.6		S
11	BC0544	BC0544	iron-sulfur cluster-binding protein	-2.5		С
12	BC4742	BC4742	ABC transporter permease protein	-2.5		V
13	BC0575	BC0575	hypothetical protein	-2.4		S
14	BC4619	BC4619	Protein with unknown function	-2.4		S
15	BC2272	BC2272	Protein export protein prsA precursor	-2.4	-0.6	0
16	BC1650	FlgD	Basal-body rod modification protein flgD	-2.2	-1.7	N
17	BC1970	BC1970	Protein with unknown function	-2.0		Н
18	BC5166	BC5166	hypothetical protein	-1.9		S
19	BC5232	BC5232	Phosphoglycerol transferase	-1.9		M
20	BC1593	YitH	Acetyltransferase	-1.9	-1.3	KF
21	BC4102	YbaC	Alpha/beta hydrolase	-1.9		S
22	BC2421	BC2421	hypothetical protein	-1.9	-0.7	S
23	BC1137	AddB	ATP-dependent nuclease subunit B	-1.8		L
24	BC2084	BC2084	hypothetical Cytosolic Protein	-1.8		S
25	BC1548	BC1548	Endonuclease III	-1.8		L
26	BC0949	BC0949	hypothetical Membrane Spanning Protein	-1.7	-1.7	EH
27	BC3592	BC3592	Transcriptional regulator, TetR family	-1.7		K
28	BC1638	BC1638	Flagellar hook-associated protein 2	-1.7	-1.5	N
29	BC5271	BC5271	UDP-N-acetylglucosamine 4-epimerase	-1.6	-1.4	MC
30	BC0848	BC0848	Transcriptional regulator, AsnC family	-1.6		K
31	BC4448	BC4448	Protein with unknown function	-1.6		S
32	BC0875	BC0875	hypothetical protein	-1.6	-1.2	S
33	BC1991	BC1991	putative murein endopeptidase	-1.4		D
34	BC1520	YpiB	hypothetical Cytosolic Protein	-1.4		S
35	BC0673	BC0673	Flavin-dependent dehydrogenase	-1.4	-1.1	С
36	BC0489	BC0489	Glycosyltransferase involved in cell wall biogenesis	-1.4		M
37	BC2508	BC2508	Collagen adhesion protein	-1.4		M
38	BC4652	YttP	Transcriptional regulator IcaR	-1.3	-0.8	K
39	BC3958	YktC	Myo-inositol-1(or 4)-monophosphatase	-1.3	-1.2	G

				wt 42°C/ ΔsigB 42°C	wt 42°C/ Δbc1009 42°C	
No.	Locus Tag	Protein	Annotation	log2 FC	log2 FC	COG
40	BC3931	BC3931	hypothetical protein	-1.3		S
41	BC5377	YwhC	Membrane metalloprotease	-1.3	-0.7	R
42	BC3609	BC3609	hypothetical protein	-1.3	-0.6	S
43	BC0984	BC0984	DNA-binding protein	-1.3	-1.2	S
44	BC2077	BC2077	YukE protein of unknown function	-1.3	-1.5	S
45	BC5274	YveM	UDP-N-acetylglucosamine 4,6-dehydratase	-1.3	-1.6	MG
46	BC2060	BC2060	hydrolase (HAD superfamily)	-1.2		R
47 48	BC2926	BC2926	hypothetical protein	-1.2 -1.2	-1.6	L
48	BC3437 BC4150	BC3437	hypothetical Cytosolic Protein	-1.2 -1.2	-1.0	S ET
50	BC0405	YqiX ArgR	Arginine-binding protein	-1.2 -1.2	-0.9	K
51	BC2298	BC2298	Arginine repressor, argR	-1.2	-2.9	K
52	BC2298 BC0115	SecE	Transcriptional repressor Protein translocase subunit SecE	-1.1	-2.9	U
53	BC1545			-1.1		S
54	BC1545 BC3953	YpmB YlaI	hypothetical protein	-1.1 -1.1	-1.8	S
		YdaL	hypothetical protein			
55	BC0235	GerM	hypothetical protein	-1.1	-0.7	S
56 57	BC4495	BC4735	Germination protein germ	-1.1		R S
57 58	BC4735	BC4735 BC4006	hypothetical protein	-1.1	0.0	
58	BC4006		hypothetical Cytosolic Protein	-1.1 -1.0	-0.6	S
60	BC5270 BC3791	YvfC YufN	Undecaprenyl-phosphate galactosephosphotransferase	-1.0		M R
			Nucleoside-binding protein			
61	BC5126	BC5126	Transposase	-1.0		L
62	BC2248	YodQ	Acetylornithine deacetylase	-1.0	0.7	E
63	BC0709	BC0709	Ferrous iron transport protein A	-1.0	-0.7	P
64	BC2578	BC2578	Phage protein	-1.0	-0.7	S
65	BC3398	BC3398	Serine transporter	-1.0	-0.8	E
66	BC5401	YpmR	Lipase/Acylhydrolase with GDSL-like motif	-1.0	4.0	E
67	BC4256	BC4256	Transcriptional regulator, ArsR family	-1.0	-1.0	K
68	BC5047	YvdC	IG hypothetical 16995	-0.9	-1.3	R
69	BC0493	UgtP	1,2-diacylglycerol 3-glucosyltransferase	-0.9	-0.8	M
70	BC3595	YvaA	Oxidoreductase	-0.9		R
71	BC0062	YabO	Heat shock protein 15	-0.9		J
72	BC4963	BC4963	hypothetical Cytosolic Protein	-0.9		S
73	BC0163	TruA	tRNA pseudouridine synthase A	-0.9		J
74	BC2770	GlcR	Transcriptional regulator, DeoR family	-0.9		KG
75	BC1641	FlgB	Flagellar basal-body rod protein flgB	-0.8		N
76	BC0563	BC0563	Biotin carboxyl carrier protein	-0.8		С
77	BC4436	RpmA	LSU ribosomal protein L27P	-0.8	-1.3	J
78	BC5327	BC5327	Stage II sporulation protein R	-0.8		S
79	BC0383	FhuD	Ferrichrome-binding protein	-0.8		P
80	BC1804	YbfQ	Rhodanese-related sulfurtransferases	-0.8		R
81	BC1517	AroB	3-dehydroquinate synthase	-0.7		Е
82	BC4830	BC4830	ABC transporter permease protein	-0.7	-0.7	V
83	BC1365	YrdC	Isochorismatase	-0.7		Q
84	BC0851	YraB	Mercuric resistance operon regulatory protein	-0.7		K
85	BC4952	YutI	NifU protein	-0.7		0
86	BC1901	BC1901	Phage protein	-0.7	-1.9	S
87	BC3093	BC3093	hypothetical protein	-0.7		S
88	BC0873	YckJ	Cystine transport system permease protein	-0.7		Е
89	BC3209	BC3209	hypothetical Cytosolic Protein	-0.7	-1.4	S
90	BC4789	LuxS	Autoinducer-2 production protein luxS / Ribosylhomocysteinase	-0.7		Т
91	BC2054	GatA	Glutamyl-tRNA(Gln) amidotransferase subunit A	-0.7		J
92	BC1984	BC1984	hypothetical protein	-0.7	-1.0	S
93	BC0304	BC0304	FrnE protein	-0.7		Q
94	BC1188	YjbD	Arsenate reductase family protein	-0.6		P
95	BC0353	YerQ	hypothetical protein	-0.6		IR
96	BC0371	BC0371	Mandelate racemase/muconate lactonizing enzyme family protein	-0.6		MR
97	BC1648	BC1648	hypothetical Cytosolic Protein	-0.6		S
98	BC4165	BkdR	Sigma-54-dependent transcriptional activator	-0.6	-1.0	KT
99	BC2940	BC2940	Histidinol-phosphate aminotransferase	-0.6		Е

No.	Locus Tag	Protein	Annotation	wt 42°C/ ΔsigB 42°C log2 FC	wt 42°C/ Δbc1009 42°C log2 FC	COG
100	BC1377	BC1377	hypothetical protein	-0.6		S
101	BC2215	YfkC	Mechanosensitive ion channel	-0.6	-2.0	M
102	BC3380	BC3380	Quinone oxidoreductase	-0.6	-0.7	С
103	BC4925	YumB	NADH dehydrogenase	-0.6		С
104	BC5312	AtpB	ATP synthase A chain	-0.6		С
105	BC3548	YueD	Benzil reductase	-0.6	-2.9	IQR
106	BC0449	BC0449	hypothetical protein	-0.6		S
107	BC4724	BC4724	Molybdenum cofactor biosynthesis protein A	-0.6		Н
108	BC2369	BC2369	Acetyltransferase	-0.6	-0.8	K
109	BC1195	YjbI	Globin Family Protein	-0.6		R

3.3.3 Bc1009 and SigB contribute to the survival of severe heat stress

To determine the impact of bc1009 and sigB on survival of severe heat stress, the wt strain and isogenic mutants lacking Bc1009 or SigB were exposed to 50°C, with or without pre-adaptation at 42°C (Figure 4). Pre-adaption of wt, $\Delta sigB$, and $\Delta bc1009$ cultures resulted in a significantly higher survival rate at 50°C than the non-pre-adapted control cells. The wt showed a 1.5 \log_{10} reduction at 120 min. Although the adapted $\Delta sigB$, $\Delta bc1009$, and wt cultures showed similar survival during the first 40 min of exposure, the survival of the $\Delta sigB$ mutant then rapidly declined, resulting in approximately 2 \log_{10} reductions after 120 min compared to the wt. The thermotolerance of adapted $\Delta bc1009$ cells was higher than that of $\Delta sigB$ cells. Survival rates were also similar to wt cells for the first 80 min, but a stronger decrease in survival was observed after 120 min at 50°C with an approximate 1.3 \log_{10} reduction compared to the wt. This points to a modest role of Bc1009 in activating heat stress defense, in line with its role in controlling the expression of a subset of SigB-dependent genes/proteins.


Exposure to 50°C of cultures of wt, $\Delta sigB$ and $\Delta bc1009$ that were not pre-adapted at 42°C showed rapid killing, and a 3 log₁₀ reduction was observed for all three strains already after 30 min (Figure 4).

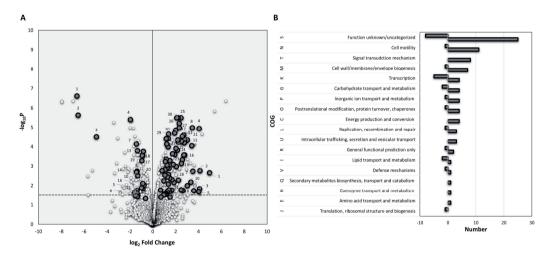
3.3.4 Impact of SigB and Bc1009 on the *B. cereus* protein profile under control conditions at 30°C

The impact of SigB and Bc1009 on the level of motility proteins after heat shock (section 3.3.2), and previous studies on the regulation of *B. cereus* motility at 30°C by MogR and RpoN (Hayrapetyan et al., 2015; Smith et al., 2020), prompted us to perform an additional comparative omics analysis of non-stressed wt, $\Delta sigB$ and $\Delta bc1009$ cells at 30°C.

In total, 96 proteins showed significant differences in level in both $\Delta sigB$ and $\Delta bc1009$ mutants compared to wt cells already at 30°C, indicating that even their basal levels are dependent on SigB and Bc1009. This included 72 proteins with higher levels in the wt compared to the mutants and 24 with lower levels in the wt compared to the mutants (Figure 5A, Table 4). The proteins displaying the largest SigB and Bc1009-dependent differences in levels are indicated

with numbers in Figure 5A on the right and left, respectively. The COG functions of these proteins are shown in Figure 5B, and the complete list of differentially regulated proteins is presented in Table 4 (detailed in Supplementary Table S5A), with the complemented transcriptome data shown in Supplementary Table S5B. Interestingly, ~ 50% (41 of 72 induced and 12 of 24 downregulated) of the differentially expressed proteins that were detected at 30°C were also differentially regulated in heat-stressed cells (bold highlighted in Table 4) and described above (section 3.3.2).

Figure 4- The relative survival of *B. cereus* wt, $\triangle sigB$, and $\triangle bc1009$ mutants upon lethal heat exposure at 50°C. The relative survival at 50°C of heat-preadapted cells (30°C to 42°C for 45 min) of *B. cereus* wt (**filled circle**), $\triangle sigB$ (**filled triangle**), and $\triangle bc1009$ cells (**filled square**) compared to cells that were not preadapted to heat (42°C) (wt- **open circle**; $\triangle sigB$ - **open triangle**; $\triangle bc1009$ - **open square**) for 120 min. N=4.


SigB and Bc1009 dependently induced proteins at 30°C

SigB and Bc1009-dependent induced proteins at 30°C include flagella and chemotaxis proteins, transcriptional regulators like Spo0A and CggR, the Bc5117- Bc5125 cluster (conceivably involved in transporting nutrients), and Bc0423 (Non-ribosomal peptide synthetase) (Table 4). Next to proteins that were also differentially expressed under heat shock (described above in section 3.2.2), an additional group of proteins involved in carbohydrate/ion transport and metabolisms was present at lower levels in ΔsigB and Δbc1009 cells compared to wt cells at 30°C (Figure 5B, Table 4). These were YtzE, Bc2464, and Bc0896- Peptidoglycan endo-beta-N-acetylglucosaminidase, Bc1157- alpha-amylase, CutC- copper homeostasis protein, YclP-ferric transport ATP binding protein, Bc4984 ABC transporter, YtiB carbonic anhydrase, and YvgY copper chaperon associated protein. The remaining uniquely SigB and Bc1009-induced proteins at 30°C mainly have undefined functions or are additional proteins found in the same COG groups described above, including motility (Table 4). Proteomics results were supported by transcriptional data (Supplementary Table S5B).

SigB and Bc1009 dependently downregulated proteins at 30°C

An additional 24 proteins were present at lower levels in wt cells compared to $\Delta sigB$ and $\Delta bc1009$ mutants at 30°C, of which 12 also displayed lower levels in wt cells upon heat shock (section 3.3.2), and 12 were uniquely regulated at 30°C (Table 4). Four SigB and Bc1009-dependent downregulated proteins have putative roles in transcription regulation, including LytR family transcriptional regulator (Bc3587), leucine-responsive regulatory protein LrpC (Bc1363), ArsR family transcriptional regulator (Bc4256) and arginine repressor ArgR (Bc0405), of which the latter two were also upregulated in heat-stressed $\Delta sigB$ and $\Delta bc1009$ mutants compared to wt (section 3.2.2). Remarkably, the arginine repressor ArgR (Bc0405) and Bc0385 thioredoxin reductase were both present at 100-fold lower levels (log₂ fold change \sim 6) in wt cells compared to $\Delta sigB$ and $\Delta bc1009$ mutants (Figure 5, Table 4). However, genes that encode these proteins did not show differential expression (Supplementary Table S5B), suggesting regulation at the post-transcriptional level.

Taken together, this section provides evidence that SigB may be active already during control conditions at 30°C, showing its alternative role in cellular functions other than the SigB GSR, potentially via the putative Hpr-like protein, Bc1009.

Figure 5- SigB-dependent induced and downregulated proteins for $\Delta sigB$ and $\Delta bc1009$ mutants compared to wt cells at 30°C and their cluster of orthologous group (COG). **5A-** log₂ fold change in protein expression. Positive and negative fold change values indicate induced and downregulated proteins, respectively. **Grey symbols:** induced/downregulated proteins that are SigB (and Bc1009)- dependent, i.e., differentially expressed proteins in $\Delta sigB$ and $\Delta bc1009$ mutants compared to wt cells at 30°C; the numbers indicate the top 30 induced proteins (positive x-axis) or top 20 downregulated proteins (negative x-axis), with details listed in Table 4. **White symbols:** induced/downregulated proteins at 30°C that are either only SigB-dependent or Bc1009-dependent, i.e., differentially expressed proteins in $\Delta sigB$ or $\Delta bc1009$ mutants compared to wt cells at 30°C (see details in Supplementary Table S5A). The threshold of the p-value for each protein was < 0.05. N=4. **5B-** cluster of orthologous group (COG) function for SigB (and Bc1009)-induced and downregulated proteins. The number on the x-axis indicates the number of induced/downregulated proteins in respective COG groups. The underlying transcriptome data supporting this figure are presented in Supplementary Table S5B.

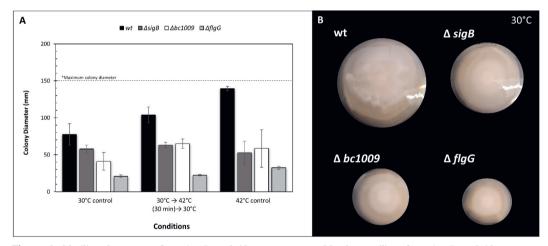
Table 4: Differentially regulated SigB and Bc1009-dependent proteins at 30°C in B. cereus ATCC14579 wt cells versus $\Delta sigB$ and $\Delta bc1009$ mutants

Bold: SigB and Bc1009-dependent-proteins that were also differentially regulated upon heat shock in B. cereus

Not Bold: SigB and Bc1009-dependent proteins uniquely regulated at 30°C in wt cells versus $\Delta sigB$ and $\Delta bc1009$ mutants

log₂ FC: Protein fold change values at T0 time point

COG: Cluster of orthologous groups, see description in Figure 5.


Only SigB and Bc1009-dependent proteins are listed here

No.	Locus Tag	Protein	Annotation	SigB- dependent wt 30°C / \(\Delta\)igB 30°C log2 FC	Bc1009- dependent wt 30°C / \(\Delta bc1009\) 30°C log2 FC	COG
1	BC5408	YfnB	2-haloalkanoic acid dehalogenase	5.0	3.9	R
			Non-ribosomal peptide synthetase (adenylation			
2	BC0423	SrfAAH	domain)	4.1	3.9	Q
3	BC2294		hypothetical Cytosolic Protein	4.1	1.6	S
4	BC2724	OmdAH	LAAC/ Bacteriocin-protection, YdeI or OmpD-Associated	4.1	4.2	S
5	BC1718		DUF family protein of unknown function	4.0	4.9	S
6	BC3071	CutC	Copper homeostasis protein cutC	3.6	3.1	P
7	BC2752	YpeB	hypothetical Membrane Spanning Protein	3.5	3.5	S
8	BC1303	YvfV	(S)-2-hydroxy-acid oxidase, iron-sulfur chain	3.5	3.0	С
9	BC5077		hypothetical protein	3.4	3.2	S
10	BC4830		ABC transporter permease protein	3.3	1.0	V
11	BC0544		iron-sulfur cluster-binding protein	3.0	3.1	С
12	BC1662	FliM	Flagellar motor switch protein fliM	3.0	2.9	N
13	BC5121		protein of unknown function	2.8	1.8	S
14	BC0576	McpBH	Methyl-accepting chemotaxis protein	2.8	1.4	NT
15	BC5243		protein with unknown function	2.8	2.6	S
16	BC4496	RacE	Glutamate racemase	2.7	2.6	M
17	BC3257		N-acetylmuramoyl-L-alanine amidase, Cell wall or membrane biogenesis	2.7	2.4	тм
18	BC3698		Cell wall endopeptidase, family M23/M37	2.6	3.9	M
19	BC0232		hypothetical Membrane Spanning Protein	2.6	1.4	S
20	BC0678		Methyl-accepting chemotaxis protein, signaling domain	2.6	2.0	NT
21	BC5123		homolog of lantibiotic biosynthesis dehydratase C-term	2.5	1.8	s
22	BC4019		hypothetical protein	2.5	1.5	S
23	BC1202		Serine/threonine protein phosphatase	2.5	1.1	T
24	BC1663	FliN	Flagellar motor switch protein fliN	2.5	2.8	NU
25	BC3406	11111	Oxidoreductase	2.5	2.6	R
26	BC5118		ABC transporter ATP-binding protein	2.3	1.9	E
27	BC1688	YmfQ	IG hypothetical 17894	2.3	1.6	S
28	BC4170	SpoOA	Stage sporulation protein A	2.2	1.3	TK
29	BC5125	Spoon	Peptidase family M50	2.2	2.3	M
25	BCJ12J		DegV family fatty acid binding protein, phosphorylation of	2.2	2.3	141
30	BC5198	YviA/degV	fatty acids	2.2	2.0	S
31	BC5190	I VIA/ deg v	YcaO cyclodehydratase, ATP-ad Mg2+-binding	2.2	1.9	S
32	BC5122 BC5117		ABC transporter permease protein	2.2	1.7	S
34	ВСЭТТ		In operon with BC5120, which is a nitroreductase	2.2	1.7	3
33	BC5119		family protein	2.1	1.8	S
34	BC1857	SbcD	Exonuclease SbcD, DNA recombination and repair	2.1	2.8	L
35	BC4512	MotB	Chemotaxis motB protein	2.0	0.7	N
36	BC5103	YclP	Ferric anguibactin transport ATP-binding protein	2.0	1.7	P
37	BC1658	YvzB/ FliC	Flagellin	1.9	2.4	N
38	BC1658 BC5141	CggR	Central glycolytic genes regulator	1.9	2.4	N K
39	BC1168	ClpB	ClpB protein	1.9	1.5	0
		•		1.9	1.8	N N
40	BC1651	FlgE	Flagellar hook protein flgE			
41	BC5128	SmpB	SsrA-binding protein, required for rescue of stalled ribosomes	1.7	1.7	0
42	BC4703	YtzE	Transcriptional regulator, DeoR family	1.7	1.1	KG
43	BC5034	YoaH	Methyl-accepting chemotaxis protein	1.7	1.1	NT
44	BC4403	YrvE	Single-stranded-DNA-specific exonuclease recJ	1.5	1.3	LS

No.	Locus Tag	Protein	Annotation	SigB- dependent wt 30°C / AsigB 30°C log2 FC	Bc1009- dependent wt 30°C / \(\Delta bc1009\) 30°C \(\log2\) FC	COG
45	BC5410	YocJ	FMN-dependent NADH-azoreductase	1.5	1.1	I
46	BC5120		hypothetical Cytosolic Protein	1.5	1.3	S
47	BC1850		Transcriptional regulator	1.5	1.0	K
48	BC1660	YjbJ	Soluble lytic murein transglycosylase	1.4	1.8	M
49	BC4984		ABC transporter substrate-binding protein	1.4	1.1	P
50	BC5255	YknX	periplasmic component of efflux system	1.4	1.1	M
51	BC1654	CheV	Chemotaxis protein cheV	1.4	1.0	NT
52	BC2285	MmgD	2-methylcitrate synthase	1.4	1.3	С
53	BC2464		S-layer protein / Peptidoglycan endo-beta-N- acetylglucosaminidase	1.4	2.0	G
54	BC1639	Flis	Flagellar protein fliS	1.3	1.0	NUO
55	BC0888	CwlH	N-acetylmuramoyl-L-alanine amidase	1.3	1.2	M
56	BC3947	PycA	Pyruvate carboxylase	1.3	1.0	С
57	BC3081	YhjR	hypothetical protein	1.3	1.2	S
		-	S-layer protein / Peptidoglycan endo-beta-N-			
58	BC0896		acetylglucosaminidase	1.2	0.9	G
59	BC1657		hypothetical protein	1.2	1.5	S
60	BC5436		Peptide methionine sulfoxide reductase	1.2	0.9	0
61	BC1659		hypothetical protein	1.2	1.0	S
			Methyl-accepting chemotaxis protein (motility, Signal			
62	BC0404	TarH	transduction)	1.2	1.6	NT
63	BC2431	PhnB	PhnB protein	1.1	0.6	S
64	BC0597	YueK	Nicotinate phosphoribosyltransferase	1.1	1.5	н
65	BC1157		Alpha-amylase	1.1	0.8	G
66	BC1653		hypothetical protein	1.1	0.7	S
67	BC4178		Exodeoxyribonuclease VII small subunit	1.0	0.7	L
68	BC1726		hypothetical Membrane Spanning Protein	1.0	1.8	S
69	BC0675		hypothetical protein	1.0	2.0	S
70	BC5189	SecA	Protein translocase subunit SecA	0.8	1.1	U
71	BC5241	YvbJ	IG hypothetical 16680	0.7	1.3	S
72	BC4791	YtiB	Carbonic anhydrase	0.7	1.3	P
			Thioredoxin reductase, posttranslational modification,			
1	BC0385		protein turnover, chaperones	-6.6	-5.8	0
2	BC0405	ArgR	Arginine repressor, argR	-6.5	-6.5	K
3	BC2355		hypothetical protein	-4.9	-3.2	S
4	BC2077		YukE protein of unknown function	-2.0	-2.0	S
5	BC3587		Transcriptional regulator, LytR family	-1.6	-0.8	K
6	BC1363	LrpC	Leucine-responsive regulatory protein	-1.5	-0.9	K
7	BC3728		hypothetical protein	-1.4	-1.4	L
8	BC1520	YpiB	hypothetical Cytosolic Protein	-1.4	-1.1	S
9	BC5341	AcdA	Acyl-CoA dehydrogenase, short-chain specific	-1.4	-1.5	I
10	BC1359	YhcH	Bacitracin transport ATP-binding protein bcrA	-1.4	-0.6	V
11	BC5101		Perfringolysin O precursor	-1.4	-2.4	S
12	BC3281		hypothetical protein	-1.4	-0.9	S
13	BC1638	Flg	Flagellar hook-associated protein 2	-1.3	-1.5	N
14	BC5002	YusJ	Acyl-CoA dehydrogenase	-1.3	-0.9	I
15	BC1914		Phage protein	-1.3	-0.7	K
16	BC0366		hypothetical protein	-1.0	-0.7	S
17	BC4256		Transcriptional regulator, ArsR family	-1.0	-0.8	K
18	BC5422		hypothetical protein	-0.9	-0.8	S
19	BC5274	YveM	UDP-N-acetylglucosamine 4,6-dehydratase	-0.9	-1.2	MG
20	BC3731	YvgY	COP associated protein	-0.9	-0.7	P
21	BC0679		Cell wall-binding protein	-0.9	-1.3	S
22	BC0858		Modulator of drug activity B	-0.8	-0.7	R
23	BC0157	RpsK	SSU ribosomal protein S11P	-0.8	-0.8	J
24	BC5335	FbaA	Fructose-bisphosphate aldolase	-0.6	-0.7	G

3.3.5 $\Delta bc1009$ and $\Delta sigB$ mutants both show a defective motility phenotype

Based on the observation that many motility/chemotaxis proteins were present at higher levels in both non-stressed and heat-stressed wt cells compared to non-stressed and heat-stressed $\Delta sigB$ and $\Delta bc1009$ mutants, we compared the motility of $\Delta sigB$ and $\Delta bc1009$ mutants with that of wt cells on BHI agar plates with a low agar percentage (0.25%) under three conditions: 1) at 30°C (isothermal); 2) at 30°C, following a heat-shock at 42°C for 30 min; and 3) at 42°C (isothermal). A mutant unable to produce flagella ($\Delta flgG$) was used as a negative control. Results that are presented in Figure 6 show that at 30°C, the colony diameter of $\Delta flgG$ mutant was lowest, followed by that of $\Delta bc1009$, then $\Delta sigB$, and with the wt showing the highest motility (Figure 6 left and right; observed phenotypes). Following a mild heat shock for 30 min at 42°C and subsequent incubation at 30°C, again, the colony diameter of $\Delta flgG$ mutant was lowest, with both $\Delta sigB$ and $\Delta bc1009$ mutants displaying intermediate levels of motility, with the wt displaying the highest motility. Similarly, incubation at isothermal 42°C showed the lowest and highest motility of $\Delta flgG$ mutant and wt cells, respectively, while $\Delta sigB$ and $\Delta bc1009$ cells showed comparable intermediate motility. These results show that SigB-induced motility in non-heat-stressed and heat-stressed cells depends on Bc1009.

Figure 6- Motility phenotype of wt, $\Delta sigB$, and $\Delta bc1009$ mutants. **6A-** the motility of wt, $\Delta sigB$, and $\Delta bc1009$ was compared on Brain Heart Infusion (BHI) agar with 0.25% agar and indicated by the colony diameter (mm) formed on the agar after 24 h incubation. **Black bar:** wt; **Grey bar:** $\Delta sigB$ mutant; **white bar:** $\Delta bc1009$ mutant; **light grey bar:** $\Delta flgG$ mutant (negative control without flagella). The motility of all cells was tested under three different conditions, 1) at 30°C for 24 h; 2) upon heat shock from 30°C to 42°C for 30 min, and back to 30°C for 24 h; and 3) at 42°C for 24 h. The dotted line shows the maximum plate size. **6B-** Colony of wt, $\Delta sigB$, $\Delta bc1009$, and $\Delta flgG$ cells on 0.25% BHI agar at 30°C after 24 h.

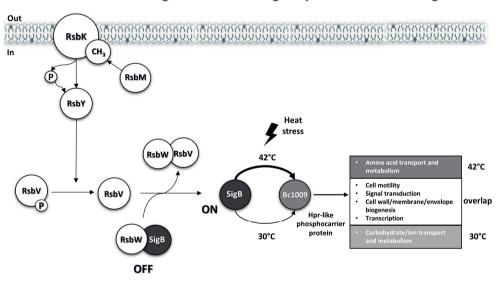
3.4 Discussion

This study investigated the potential of *bc1009* that encodes the Hpr-like phosphocarrier protein Bc1009 in regulating SigB and/or modulating the expression of SigB regulon members. Comparative gene expression analysis of wt, *sigB*, and *bc1009* mutants ruled out a possible role of Bc1009 in regulating SigB expression, as its absence did not affect the expression of *sigB* and other SigB gene cluster members. Further proteomics studies of *B. cereus* wt, *sigB* and *bc1009* mutants provided novel insights into the SigB regulon and a role for Bc1009 in controlling the expression of a subset of genes/proteins in non-heat-stressed cells at 30°C and heat-stressed cells at 42°C.

Proteomics analyses backed up by transcriptomics data in this study revealed at least 284 SigB-controlled proteins upon heat shock in *B. cereus* (175 significantly induced/upregulated and 109 downregulated), including most SigB regulon members that were previously reported by De Been et al. (2010). In the current study, we excluded rsbK and rsbM from the SigB regulon list because the expression of rsbK, with rsbM in the same operon, was shown to be independent of SigB (Figure 1). Notably, a total of 96 SigB-dependent proteins (72 induced; 24 downregulated) were identified at 30°C for non-heat-stressed cells. Of these, 51/96 (53%) proteins overlapped with the results of SigB-dependent proteins that were identified upon heat shock, indicating that an additional 45 members were significantly differentially expressed at 30°C (i.e., differentially expressed proteins in $\Delta sigB$ mutant compared to wt), potentially expanding the SigB regulon members to more than 300 members in *B. cereus*. The presumed size of the SigB regulon in *B. cereus* is thereby comparable with the size of the SigB regulons of *B. subtilis* (Nannapaneni et al., 2012; Rodriguez Ayala et al., 2020; Vohradsky et al., 2021) and *L. monocytogenes* (Liu et al., 2017, 2019). At least 300 SigB regulon members have been described for the latter two species.

The *B. subtilis* SigB regulon contained SigB-dependent members (i.e., genes/proteins) that are either directly or indirectly controlled by SigB, based on the presence or absence of SigB promoter binding motif (PBM), respectively (Haldenwang, 1995; Petersohn et al., 1999; Nicolas et al., 2012). SigB regulon members indirectly controlled by SigB may occur via a cascade effect through a direct SigB-controlled regulator/protein. In this study, we provided evidence that $\sim 70\%$ of the newly identified SigB regulon members in *B. cereus* were regulated via the direct SigB-controlled member, Hpr-like phosphocarrier protein Bc1009. In line with this, all genes/gene clusters encoding newly identified proteins do not contain SigB PBMs (Chapter 2, data not shown). Several of these proteins appeared to contribute to the heat stress response, as proteins with putative functions in heat stress resistance (e.g., DNA recombination and repair, cell wall remodeling, and protein quality maintenance) were present at lower levels in $\Delta bc1009$ and $\Delta sigB$ mutants compared with wt upon heat shock. In line with these findings,

mild heat-induced stress resistance of the $\Delta bc1009$ mutant was lower than that of wt cells but higher than the $\Delta sigB$ mutant when lethal heat stress was imposed.


A group of sporulation-related proteins (with COG functions of transcription/signal transduction) was also found to be inducible via SigB after heat shock (SigK sporulation sigma factor, Bc4463, Spo0A, YndF, Bc3576). The expression of the latter three were dependent on Bc1009, providing further support for the previously reported role of SigB in affecting spore properties in *B. cereus* (de Vries et al., 2005). In addition, studies in *B. subtilis* have also shown that SigB impairs sporulation initiation by inactivating the sporulation master regulator Spo0A via the Spo0E phosphatase (Reder et al., 2012b, 2012a).

Other SigB and Bc1009-dependent proteins have putative functions in cell motility, signal transduction mechanism, transcription, and cell wall/membrane/envelope biogenesis. Approximately ~40% of these proteins were differentially regulated in non-heat-stressed control cells, suggesting that the baseline level of SigB at 30°C without further induction already contributes to the regulation of cellular functions (Figure 7). The significant induction of a large group of motility/chemotaxis proteins and the observed defect in motility phenotypes in $\Delta sigB$ and $\Delta bc1009$ mutants strongly suggests that SigB positively regulates motility in B. cereus. Based on this evidence, SigB can be added to the list of regulators, including MogR (Smith et al., 2020) and RpoN (Hayrapetyan et al., 2015), that play a role in the control of flagella synthesis and motility/chemotaxis in B. cereus. As B. cereus wt, ΔsigB, and $\Delta bc1009$ mutants contained flagella (Supplementary Figure S2), higher motility of wt than the two mutants may be linked to the increased levels of motor switch proteins (FliN, FliM, and FliG) and/or chemotaxis proteins (Bc0422, TlpA, Bc0678, MotA, MotB, TarH, CheA, CheV, McpB/H, and YoaH). In B. subtilis, indirect roles of SigB in surfactin production and swimming and swarming activity have been reported (Bartolini et al. (2018; Bartolini et al., 2019). Interestingly, Bc0423, a homolog of surfactin synthetase, was substantially downregulated in SigB and Bc1009 mutants compared to wt in non-heat-stressed cells at 30°C and heat-stressed cells at 42°C. However, further studies are required to confirm the role of Bc0423 in B. cereus motility in the tested conditions.

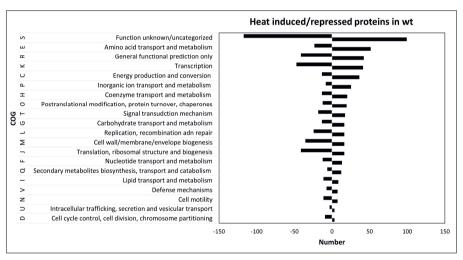
Our data also showed that proteins with putative functions in the modulation of membrane composition were under the control of SigB. This is in line with an earlier report on the putative functions of augmented SigB regulon members predicted for clade A B. cereus sensu lato group, including B. cereus ATCC14579 (Scott and Dyer, 2012). In addition, the expression of the sinI gene (antagonist of sinR, a regulator in biofilm formation) was significantly reduced in the sigB mutant but not in the bc1009 mutant, implying that SigB may play a role in biofilm formation in B. cereus, in line with observations showing that the $\Delta sigB$ mutant of B. cereus 905 forms a weaker biofilm than the wt (Gao et al., 2021). Moreover, SigB has been reported to regulate biofilm aging and cell dispersal in B. subtilis (reviewed in Rodriguez Ayala et al. (2020).

In non-heat-stressed cells of *B. cereus*, proteins that showed SigB-dependent differential expression were involved in carbohydrate/ion transport and metabolisms, while upon a heat shock from 30°C to 42°C, a switch was observed to the expression of proteins involved in amino acid transport and metabolisms (Figure 7). This may indicate a rearrangement of cell resources to cope with heat stress in *B. cereus*. It is conceivable that amino acids are needed to maintain protein quality homeostasis under heat stress (e.g., as building blocks to aid protein repair/degradation). To the best of our knowledge, no known amino acid metabolism regulator has been reported to be SigB-controlled in *B. cereus* (de Been et al., 2011; Scott and Dyer, 2012) or *B. subtilis* (Subtiwiki, (Zhu and Stülke, 2018). However, the global regulator of branched-chain amino acid limitation in *Bacillus* species, CodY, is found to be SigB-dependent upon heat shock in *B. licheniformis* (Voigt et al., 2013). Nonetheless, based on information obtained in this study, SigB does not regulate CodY in *B. cereus*, or *B. subtilis* (Subtiwiki).

Bacillus cereus SigB activation and SigB-dependent Bc1009 subregulon

Figure 7- Activation model of *Bacillus cereus* SigB and the SigB-dependent Bc1009 subregulon. The RsbKY two-component system mediates the SigB general stress response in *B. cereus*. Under heat shock (temperature shift from 30°C to 42°C), SigB is induced (**bold arrow**) via the RsbKY signaling cascade and directly regulates the Hpr-like phosphocarrier protein Bc1009 to mediate amino acid transport and metabolism, cell motility, signal transduction, cell wall/membrane/envelope biogenesis and transcription. At 30°C, the baseline level of SigB also appears to regulate Bc1009 (**non-bold arrow**) to mediate similar functions as described for the heat shock condition, except for amino acid transport and metabolism (which switch to carbohydrate/ion transport and metabolism at 30°C instead, indicated in **dark grey** and **light grey box**, respectively). Upon SigB activation, other SigB regulon members not controlled by Bc1009 are also activated (see main text, Tables 2 and 3, and Supplementary Tables S5A and S5B).

B. cereus SigB (and Bc1009) dependent transcriptional regulators such as ArgR (arginine biosynthesis transcriptional regulator) may also play a role in metabolic shifts. Van Schaik et al. (2005) previously showed that B. cereus failed to utilize a variety of nitrogen sources,


including L-arginine, in the absence of SigB, suggesting that SigB may be linked to the control of nitrogen metabolism. Furthermore, SigB interaction with ArgR has also been described in *L. monocytogenes*, in which SigB is repressed by ArgR when arginine is absent and de-repressed by ArgR when arginine is present, thus forming feedback regulation (Cheng et al., 2017).

SigB may also be indirectly engaged in controlling virulence factors in *B. cereus*. The expression of two genes (bc3103 and bc3104) that encode Hemolysin BL lytic component L1 (Hbl-L1) and L2 (Hbl-L2), and two genes (bc1809 and bc1810) that encode non-hemolytic enterotoxin component NheA and NheB, was de-repressed in the $\Delta sigB$ mutant after heat shock, and the expression of the cytK gene that encodes the cytotoxin CytK was induced in both $\Delta sigB$ and $\Delta bc1009$ mutants under the non-heat-stressed condition in this study. Notably, in *B. anthracis*, a $\Delta sigB$ mutant was found to be less virulent in the mouse model (Fouet et al., 2000; Lereclus et al., 2000), whereas in *B. thurigiensis*, SigB was required for its pathogenicity towards insect larvae and is required for adaptation to the insect gut environment (Henry et al., 2020). We also found that Bc0385 (thioredoxin reductase) was dependent on SigB (and Bc1009). This protein is crucial for resistance against various disinfectant treatments in *B. cereus* (Ceragioli et al., 2010), suggesting further involvement of SigB in controlling other stresses. However, the impact of SigB on emetic and diarrheal toxin production and virulence in *B. cereus* remains to be elucidated.

It is known that the phosphotransferase system (PTS) components in Bacillus regulate carbon utilization and carbohydrate uptake/transport in response to metabolic/environmental challenges (Neira et al., 2021). This system links with the control of chemotaxis and cell motility, which supports the ability to scavenge additional carbon and/or nitrogen sources in the environment (Galinier and Deutscher, 2017). Such regulation is controlled via phosphorylation of target proteins, including transcriptional regulators, signal transduction proteins, transporters, and catabolic enzymes (Galinier and Deutscher, 2017; Neira et al., 2021). Our results provide evidence for an additional level of control exerted by Hpr-like phosphocarrier protein Bc1009, following the stress-induced RsbKY-dependent activation of SigB in B. cereus. Such indirect control of SigB via Bc1009 may be exerted via the phosphogroup transfer that leads to the modulation of other two-component systems or transcriptional regulators, e.g., those involved in chemotaxis/motility and PTS-type carbohydrate transport and utilization. Despite the significant increase in putative SigB regulon members, the number of genes/proteins that SigB directly controls and that contain a SigB PBM is low, i.e., around 30 of 300, an approximate 10 %. The stark contrast between the current and previously reported size of the B. cereus SigB regulon can be explained by the advanced proteomics approach used in the current study and the heat shock conditions used, which constituted a prolonged exposure time of 20-40 min to mild heat versus 10 min in the previous studies (van Schaik et al., 2004b, 2007; de Been et al., 2010b). The established relatively small SigB direct regulon may be related to the use of different stress sensing systems, i.e., RsbKY in *B. cereus* versus RsbRST and/or RsbQP in *B. subtilis* and *L. monocytogenes*. The latter two species have at least 100 SigB direct regulon members with a SigB PBM (Price, 2010; Nannapaneni et al., 2012; Liu et al., 2019).

In conclusion, this study revealed novel SigB regulon members for *B. cereus* and provided evidence that expression of a SigB subregulon is controlled by Hpr-like phosphocarrier protein Bc1009. These subregulon members contribute to heat stress resistance and cell motility and have putative functions in signal transduction, cell wall/membrane/envelope biogenesis, transcription, amino acid/carbohydrate/ion transport and metabolism (Figure 7). Further exploration is required to investigate the possible roles of RsbKY in SigB-dependent or independent activation of Bc1009 upon exposure to other stresses and its impact on fitness and survival efficacy. In addition, identifying Bc1009 phosphotransfer-based interaction partners may shed light on other cellular regulatory networks.

3.5 Supplementary Materials

Supplementary Figure S1: Heat regulon genes/proteins in Bacillus cereus ATCC14579

Supplementary Figure S2: Flagella quick staining of wt cells (A), $\Delta sigB$ cells (B) and $\Delta bc1009$ cells (C). Flagella indicated with yellow arrow.

Supplementary Table S1: Oligonucleotides used in this study

qPCR amplification	Target genes	Sequence 5' to 3'
QPCR_sigB_F	sigB (bc1004)	CAATGTGATGAAGCGCAGGA
QPCR_sigB_R	sigB (bc1004)	CGGTCCGCCTTTTGAATAGC
QPCR_tufA_F	tufA (bc0129)	GCCCAGGTCACGCTGACTAT
QPCR_tufA_R	tufA (bc0129)	TCACGTGTTTGAGGCATTGG
QPCR_BC4306_F	gatB/Yqey (bc4306)	AGCTGGTCGTGAAGACCTTG
QPCR_BC4306_R	gatB/Yqey (bc4306)	CGGCATAACAGCAGTCATCA
QPCR_BC4307_F	rpsU (bc4307)	AAGATCGGTTTCTAAAACTGGTACA
QPCR_BC4307_R	rpsU (bc4307)	TTTCTTGCCGCTTCAGATTTC
QPCR_BC4952_F	nifU (bc4952)	TGGAAAACCCACATATGCAA
QPCR_BC4952_R	nifU (bc4952)	GCGCTCGATACCAGCTTTT
QPCR_BC1002_F	rsbV (bc1002)	TGCCTATTGCAAGCGAAAAA
QPCR_BC1002_R	rsbV (bc1002)	CACCTAAACCGGTGCTATCCA
QPCR_BC1003_F	rsbW (bc1003)	TGCGGATAATGGGGTTAGCTT
QPCR_BC1003_R	rsbW (bc1003)	TTCCGGCAAATGTTCTACTGG
QPCR_BC1005_F	orf4 (bc1005)	CCCACTACGATCCCTTTACCAG
QPCR_BC1005_R	orf4 (bc1005)	TTTCGCTGCCTGTTCTTTTCTC
QPCR_BC1006_F	rsbY (bc1006)	TGCCTGAAATTGATGGACTTGA
QPCR_BC1006_R	rsbY (bc1006)	CGGCCAATTTATTTGCATCC
QPCR_BC1008_F	rsbK (bc1008)	TGGATTGTTTTCCAACATCAGC
QPCR_BC1008_R	rsbK (bc1008)	CAAACTTCTTGCGGTGCATTT
QPCR_BC1009_F	hpt (bc1009)	GAACGCCATTCACTCTACTATTTC
QPCR_BC1009_R	hpt (bc1009)	TGTTGTCATTAAAGCATAAAAATGATG
Mutant construction	Target genes	Sequence 5' to 3'
KO BC1009_Up_BamHI_F	hpt (bc1009)	CACCGGATCCCTTTTAAATAGCATGATAGAACTTGA
KO BC1009_Up_NotI_R	hpt (bc1009)	TGAAGCGGCCGCATCGTAATATTCCTTTCCATATAGTAA
KO_BC1009_DOWN_NotI_F	hpt (bc1009)	CACTGCGGCCGCCTTAGAATGTTTGTTATCCTCT
KO_BC1009_DOWN_SalI_R	hpt (bc1009)	ACTAGTCGACTTACTGCAATCACTTCATCTTCA
KO_BC1004_UP_BamHI_F	sigB (bc1004)	TCGAGGATCCTTATTCTTACGACTTGCCTTGGTTC
KO_BC1004_UP_NotI_R	sigB (bc1004)	ATCTGCGGCCGCCATCATTCTCCACCTGCTCTC
KO_BC1004_DOWN_NotI_F	sigB (bc1004)	TGCAGCGGCCGCATTTTTAGATACATAA
KO_BC1004_DOWN_HindIII_R	sigB (bc1004)	CAGTAAGCTTATTTAATTCCGATTTCAAG
Genomic integration check		
primers	Target genes	Sequence 5' to 3'
KO BC1004_UPFlank_F	sigB (bc1004)	CCCCCACTCATTAACATTACACTTTCT
KO BC1004_DOWNFlank_R	sigB (bc1004)	TATATGATCTTCTCTTAATGGGCTACTT
KO BC1009_UPFlank_F	hpt (bc1009)	GTTTACGAAACCATTTCTTCACATACT
KO BC1009_DOWNFlank_R	hpt (bc1009)	GAATTCGCATACGTCCCATAATACTA

Supplementary Table S2A: Induced and downregulated proteins upon heat shock (30° C to 42° C) in *Bacillus cereus* ATCC14579 wt

					wt 42°C / wt 30°C	
No	Locus Tag	Protein	Annotation	log2 FC_T20	log2 FC_T40	cog
1	BC0075	CysK	Cysteine synthase	1.0	1.2	Е
2	BC0099	CtsR	Transcriptional regulator ctsR	3.6	3.3	K
3	BC0100	McsA	ClpC ATPase	5.2	5.2	S
4	BC0101	McsB	Arginine kinase	4.7	4.7	Е
5	BC0102	ClpC	Negative regulator of genetic competence clpC/mecB	2.4	2.5	0
6	BC0215	Pbp2_opp A	substrate-binding component of an ABC-type oligopetide import system	1.3	1.0	Е
7	BC0218		Pyrroline-5-carboxylate reductase	0.7	1.1	E
8	BC0291	YdiH	AT-rich DNA-binding protein	8.0	0.9	R
9	BC0294	GroES	10 kDa chaperonin GROES	0.9	0.7	0
10	BC0295	GroEL	60 kDa chaperonin GROEL	2.3	2.2	0
11	BC0361	YxkH	Polysaccharide deacetylase	0.9	1.2	G
12	BC0371		Mandelate racemase/muconate lactonizing enzyme family protein	2.1	2.8	MR
13	BC0385	TrxBH	Thioredoxin reductase, posttranslational modification, protein turnover, chaperones	4.2	4.0	0
14	BC0405		Arginine repressor, argR	5.9	5.4	K
15	BC0442	YceC	Tellurium resistance protein terD	0.9	1.3	T
16	BC0491		Formate acetyltransferase, key step in anaerobic glycolysis	0.7	1.4	C
17	BC0492		Pyruvate formate-lyase activating enzyme, key step in anaerobic glycolysis	0.9	1.2	0
18	BC0538		protein with unknown function	1.3	1.5	S
19	BC0558	YuaG	Flottilin	1.0	1.4	S
20	BC0616	YfiY	Iron(III) dicitrate-binding protein	1.0	0.8	P
21	BC0668	YdjL	(R,R)-butanediol dehydrogenase	0.9	1.6	ER

22						
	BC0679		Cell wall-binding protein	0.7	0.7	S, S
23	BC0707		Ferrous iron transport protein B	0.9	2.2	P
24	BC0805		outer surface protein	1.0	2.2	S
25	BC0824		Lactoylglutathione lyase	1.8	3.6	E
		370 34				
26	BC0862	YfkM	Protease I	2.9	2.2	R
27	BC0863	KatE	Catalase	3.6	2.3	P
28	BC0883	AlsS	Acetolactate synthase large subunit	1.2	2.7	EH
29	BC0884	AlsD	Alpha-acetolactate decarboxylase	1.6	3.5	Q
30	BC0998	YflT	General stress protein 17M	7.3	6.8	S
31	BC0999	CsbDH	General stress protein (hyperosmotic & cold)	8.6	8.0	S
32	BC1002	RsbV	Anti-sigma B factor antagonist		2.7	U
33	BC1002	RsbW	Anti-sigma B factor	4.3	3.5	T
34	BC1004	SigB	RNA polymerase sigma-B factor	6.0	5.3	K
35	BC1005		Bacterioferritin	4.4	3.4	P
36	BC1010		hypothetical protein	3.9	2.9	S
37	BC1012		unknown	2.7	2.9	S
38	BC1069	HemH	Ferrochelatase	1.2	1.6	Н
39	BC1115		Transcriptional regulator, AraC family	0.6	1.0	K, S
40	BC1115			2.0	2.0	S
			S-layer homology domain			
41	BC1126		S-layer homology domain	2.3	3.2	S
42	BC1127		Malate synthase	2.7	2.0	С
43	BC1168	ClpB	ClpB protein	1.3	1.5	0
44	BC1181	OppC	Oligopeptide transport system permease protein oppC	3.8	3.7	EP
45	BC1185		Oligopeptide-binding protein oppA	1.1	1.1	Е
46	BC1225	YjcG	2'-5' RNA ligase	1.4	2.3	J
		1,100		0.9		R
47	BC1246		NADH dehydrogenase	0.9	1.3	K
	1		Dihydrolipoamide succinyltransferase component (E2) of 2-			
48	BC1251	OdhB	oxoglutarate dehydrogenase complex	1.4	1.4	С
49	BC1252	OdhA	2-oxoglutarate dehydrogenase E1 component	1.6	1.2	C
50	BC1259		hypothetical protein	1.3	1.2	S
51	BC1285	YwdH	Aldehyde dehydrogenase (NAD(P)+)	0.9	0.9	С
52	BC1305	YvbY	hypothetical protein	0.6	1.2	S
			V1. 1			
53	BC1308	YwcJ	Nitrite transporter	2.8	3.9	P
54	BC1316	PhaR	PhaR protein	1.5	1.4	S
55	BC1415		Glyoxylate reductase (NADP+)	0.8	1.3	CHR
56	BC1448		Nitric oxide dioxygenase	1.1	3.2	C, C
57	BC1498	YpfD	SSU ribosomal protein S1P	1.0	1.3	J
58	BC1515		Nucleoside diphosphate kinase	1.2	2.7	F
59	BC1528	YugP	hypothetical Membrane Spanning Protein	0.6	0.8	R
		PanB				H
60	BC1540		3-methyl-2-oxobutanoate hydroxymethyltransferase	2.0	3.1	
61	BC1542	PanD	Aspartate 1-decarboxylase	2.1	2.7	Н
62	BC1566	YpwA	Thermostable carboxypeptidase 1	0.7	1.3	E
63	BC1576		Thiosulfate sulfurtransferase	0.9	1.7	P
64	BC1603		0	0.6	0.7	K
65	BC1652		hypothetical protein	1.9	2.1	S
66	BC1726		hypothetical Membrane Spanning Protein	2.0	2.1	S
67	BC1814		Transcriptional regulator, TetR family	1.4	2.4	K
68	BC1952		Nitroreductase family protein	2.7	3.8	R
69	BC1964		Homoserine dehydrogenase	1.8	1.8	E
70	BC1994	NadE	NH(3)-dependent NAD(+) synthetase	0.7	8.0	H
			Non-specific DNA-binding protein Dps / Iron-binding ferritin-like			
71	BC2011	Dps1	antioxidant protein / Ferroxidase	1.4	2.0	P
72	BC2011	201	Magnesium and cobalt transport protein corA	1.6	1.4	P
73	BC2051			2.2	2.6	KR
		NC	Ribosomal-protein-alanine acetyltransferase			
74	BC2118	NarG	Respiratory nitrate reductase alpha chain	1.2	2.7	С
75	BC2119	NarH	Respiratory nitrate reductase beta chain	1.0	1.8	С
	BC2136	NasD	Nitrite reductase [NAD(P)H] large subunit	1.9	4.4	С
76	DC2130				0.8	R
	BC2147	RapG	Response regulator aspartate phosphatase	1.1		
76	BC2147		Response regulator aspartate phosphatase Pyrazinamidase	0.8	1.0	0
76 77 78	BC2147 BC2213	RapG YueJ	Pyrazinamidase	0.8	1.0	Q
76 77 78 79	BC2147 BC2213 BC2214	YueJ	Pyrazinamidase Small heat shock protein	0.8 1.7	1.0 1.7	0
76 77 78 79 80	BC2147 BC2213 BC2214 BC2220		Pyrazinamidase Small heat shock protein Alcohol dehydrogenase	0.8 1.7 0.8	1.0 1.7 1.8	O R
76 77 78 79 80 81	BC2147 BC2213 BC2214 BC2220 BC2241	YueJ	Pyrazinamidase Small heat shock protein Alcohol dehydrogenase Succinate-semialdehyde dehydrogenase [NADP+]	0.8 1.7 0.8 0.9	1.0 1.7 1.8 0.9	O R C
76 77 78 79 80 81 82	BC2147 BC2213 BC2214 BC2220 BC2241 BC2295	YueJ	Pyrazinamidase Small heat shock protein Alcohol dehydrogenase Succinate-semialdehyde dehydrogenase [NADP+] Exonuclease SbcD	0.8 1.7 0.8 0.9 1.0	1.0 1.7 1.8 0.9 1.4	O R C L
76 77 78 79 80 81	BC2147 BC2213 BC2214 BC2220 BC2241 BC2295 BC2299	YueJ	Pyrazinamidase Small heat shock protein Alcohol dehydrogenase Succinate-semialdehyde dehydrogenase [NADP+] Exonuclease SbcD hypothetical protein	0.8 1.7 0.8 0.9	1.0 1.7 1.8 0.9	O R C L S
76 77 78 79 80 81 82	BC2147 BC2213 BC2214 BC2220 BC2241 BC2295	YueJ	Pyrazinamidase Small heat shock protein Alcohol dehydrogenase Succinate-semialdehyde dehydrogenase [NADP+] Exonuclease SbcD	0.8 1.7 0.8 0.9 1.0	1.0 1.7 1.8 0.9 1.4	O R C L
76 77 78 79 80 81 82 83	BC2147 BC2213 BC2214 BC2220 BC2241 BC2295 BC2299 BC2313	YueJ	Pyrazinamidase Small heat shock protein Alcohol dehydrogenase Succinate-semialdehyde dehydrogenase [NADP+] Exonuclease SbcD hypothetical protein unknown	0.8 1.7 0.8 0.9 1.0 2.3 1.3	1.0 1.7 1.8 0.9 1.4 3.8 2.3	O R C L S
76 77 78 79 80 81 82 83 84	BC2147 BC2213 BC2214 BC2220 BC2241 BC2295 BC2299 BC2313 BC2355	YueJ AdhA SbcD	Pyrazinamidase Small heat shock protein Alcohol dehydrogenase Succinate-semialdehyde dehydrogenase [NADP+] Exonuclease SbcD hypothetical protein unknown hypothetical protein	0.8 1.7 0.8 0.9 1.0 2.3 1.3 5.0	1.0 1.7 1.8 0.9 1.4 3.8 2.3 5.6	O R C L S L S
76 77 78 79 80 81 82 83 84 85 86	BC2147 BC2213 BC2214 BC2220 BC2241 BC2295 BC2299 BC2313 BC2355 BC2752	YueJ AdhA SbcD YpeB	Pyrazinamidase Small heat shock protein Alcohol dehydrogenase Succinate-semialdehyde dehydrogenase [NADP+] Exonuclease SbcD hypothetical protein unknown hypothetical protein hypothetical Membrane Spanning Protein	0.8 1.7 0.8 0.9 1.0 2.3 1.3 5.0 2.1	1.0 1.7 1.8 0.9 1.4 3.8 2.3 5.6 2.0	O R C L S L S S
76 77 78 79 80 81 82 83 84 85 86 87	BC2147 BC2213 BC2214 BC2220 BC2241 BC2295 BC2299 BC2313 BC2355 BC2752 BC2753	YueJ AdhA SbcD YpeB SleB	Pyrazinamidase Small heat shock protein Alcohol dehydrogenase Succinate-semialdehyde dehydrogenase [NADP+] Exonuclease SbcD hypothetical protein unknown hypothetical protein hypothetical Membrane Spanning Protein Cell wall hydrolase cwlJ	0.8 1.7 0.8 0.9 1.0 2.3 1.3 5.0 2.1	1.0 1.7 1.8 0.9 1.4 3.8 2.3 5.6 2.0	O R C L S L S S M, M
76 77 78 79 80 81 82 83 84 85 86 87	BC2147 BC2213 BC2214 BC2220 BC2241 BC2295 BC2299 BC2313 BC2355 BC2752 BC2752 BC2753	YueJ AdhA SbcD YpeB	Pyrazinamidase Small heat shock protein Alcohol dehydrogenase Succinate-semialdehyde dehydrogenase [NADP+] Exonuclease SbcD hypothetical protein unknown hypothetical protein hypothetical Membrane Spanning Protein Cell wall hydrolase cwlJ Mandelate racemase/muconate lactonizing enzyme family protein	0.8 1.7 0.8 0.9 1.0 2.3 1.3 5.0 2.1 1.5	1.0 1.7 1.8 0.9 1.4 3.8 2.3 5.6 2.0 1.1 2.6	O R C L S L S S M, M MR
76 77 78 79 80 81 82 83 84 85 86 87 88	BC2147 BC2213 BC2214 BC2220 BC2241 BC2295 BC2299 BC2313 BC2355 BC2752 BC2752 BC2753 BC2850 BC2892	YueJ AdhA SbcD YpeB SleB YkfB	Pyrazinamidase Small heat shock protein Alcohol dehydrogenase Succinate-semialdehyde dehydrogenase [NADP+] Exonuclease SbcD hypothetical protein unknown hypothetical protein hypothetical Membrane Spanning Protein Cell wall hydrolase cwlJ Mandelate racemase/muconate lactonizing enzyme family protein hypothetical protein	0.8 1.7 0.8 0.9 1.0 2.3 1.3 5.0 2.1 1.5 3.1	1.0 1.7 1.8 0.9 1.4 3.8 2.3 5.6 2.0 1.1 2.6	O R C L S L S S M, M MR S
76 77 78 79 80 81 82 83 84 85 86 87	BC2147 BC2213 BC2214 BC2220 BC2241 BC2295 BC2299 BC2313 BC2355 BC2752 BC2752 BC2753	YueJ AdhA SbcD YpeB SleB	Pyrazinamidase Small heat shock protein Alcohol dehydrogenase Succinate-semialdehyde dehydrogenase [NADP+] Exonuclease SbcD hypothetical protein unknown hypothetical protein hypothetical Membrane Spanning Protein Cell wall hydrolase cwlJ Mandelate racemase/muconate lactonizing enzyme family protein	0.8 1.7 0.8 0.9 1.0 2.3 1.3 5.0 2.1 1.5	1.0 1.7 1.8 0.9 1.4 3.8 2.3 5.6 2.0 1.1 2.6	O R C L S L S S M, M MR
76 77 78 79 80 81 82 83 84 85 86 87 88	BC2147 BC2213 BC2214 BC2220 BC2241 BC2295 BC2299 BC2313 BC2355 BC2752 BC2752 BC2753 BC2850 BC2892	YueJ AdhA SbcD YpeB SleB YkfB	Pyrazinamidase Small heat shock protein Alcohol dehydrogenase Succinate-semialdehyde dehydrogenase [NADP+] Exonuclease SbcD hypothetical protein unknown hypothetical protein hypothetical Membrane Spanning Protein Cell wall hydrolase cwlJ Mandelate racemase/muconate lactonizing enzyme family protein hypothetical protein	0.8 1.7 0.8 0.9 1.0 2.3 1.3 5.0 2.1 1.5 3.1	1.0 1.7 1.8 0.9 1.4 3.8 2.3 5.6 2.0 1.1 2.6	O R C L S L S S M, M MR S
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90	BC2147 BC2213 BC2214 BC2220 BC2241 BC2295 BC2299 BC2313 BC2355 BC2752 BC2753 BC2850 BC2892 BC2939 BC2940	YueJ AdhA SbcD YpeB SleB YkfB TyrA	Pyrazinamidase Small heat shock protein Alcohol dehydrogenase Succinate-semialdehyde dehydrogenase [NADP+] Exonuclease SbcD hypothetical protein unknown hypothetical protein hypothetical Membrane Spanning Protein Cell wall hydrolase cwl.J Mandelate racemase/muconate lactonizing enzyme family protein hypothetical protein Arogenate dehydrogenase	0.8 1.7 0.8 0.9 1.0 2.3 1.3 5.0 2.1 1.5 3.1 1.7	1.0 1.7 1.8 0.9 1.4 3.8 2.3 5.6 2.0 1.1 2.6 1.6 2.2	O R C L S L S S M, M MR S E E
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91	BC2147 BC2213 BC2214 BC2220 BC2241 BC2295 BC2299 BC2313 BC2355 BC2752 BC2752 BC2753 BC2850 BC2892 BC2939 BC2940 BC2942	YueJ AdhA SbcD YpeB SleB YkfB	Pyrazinamidase Small heat shock protein Alcohol dehydrogenase Succinate-semialdehyde dehydrogenase [NADP+] Exonuclease SbcD hypothetical protein unknown hypothetical protein hypothetical Membrane Spanning Protein Cell wall hydrolase cwlJ Mandelate racemase/muconate lactonizing enzyme family protein hypothetical protein Arogenate dehydrogenase Histidinol-phosphate aminotransferase Chorismate mutase	0.8 1.7 0.8 0.9 1.0 2.3 1.3 5.0 2.1 1.5 3.1 1.7 1.9 3.0	1.0 1.7 1.8 0.9 1.4 3.8 2.3 5.6 2.0 1.1 2.6 1.6 2.2 3.0	O R C L S L S S M, M MR S E E E E, E
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90	BC2147 BC2213 BC2214 BC2220 BC2241 BC2295 BC2299 BC2313 BC2355 BC2752 BC2753 BC2850 BC2892 BC2939 BC2940	YueJ AdhA SbcD YpeB SleB YkfB TyrA	Pyrazinamidase Small heat shock protein Alcohol dehydrogenase Succinate-semialdehyde dehydrogenase [NADP+] Exonuclease SbcD hypothetical protein unknown hypothetical protein hypothetical Membrane Spanning Protein Cell wall hydrolase cwlJ Mandelate racemase/muconate lactonizing enzyme family protein hypothetical protein Arogenate dehydrogenase Histidinol-phosphate aminotransferase	0.8 1.7 0.8 0.9 1.0 2.3 1.3 5.0 2.1 1.5 3.1 1.7	1.0 1.7 1.8 0.9 1.4 3.8 2.3 5.6 2.0 1.1 2.6 1.6 2.2	O R C L S L S S M, M MR S E E

96	BC3132		General stress protein 17M	2.7	2.9	S
97	BC3201	YkoH	Two component system histidine kinase	0.7	1.6	Т
98	BC3272		hypothetical Cytosolic Protein	0.8	1.6	S
99	BC3298		hypothetical Cytosolic Protein	1.5	1.7	S
100	BC3329		ABC transporter ATP-binding protein	3.3	3.0	V
101	BC3353		hypothetical protein	1.4	1.9	S
102	BC3600		Protease HhoA	0.7	1.6	0
103	BC3601	YclJ	Two-component response regulator	0.8	1.4	TK
104	BC3603		Anaerobic ribonucleoside-triphosphate reductase	3.0	5.0	F
105	BC3676		hypothetical protein	0.9	1.5	S
106	BC3760	YckE	6-phospho-beta-glucosidase	0.7	1.2	G
107	BC3772	YmcB	tRNA 2-methylthioadenosine synthase	1.0	1.5	J
108	BC3798	DapG	Aspartokinase	0.8	1.0	Е
109	BC3828	ClpQ	ATP-dependent protease hslV	0.9	1.4	0
110	BC3831	TopA	DNA topoisomerase I	1.9	2.1	L, L
111	BC3856	RpmB	LSU ribosomal protein L28P	6.0	6.3	J
112	BC3870	YlzA	hypothetical protein	0.7	1.0	S
113	BC3891	PyrR	Uracil phosphoribosyltransferase	0.7	8.0	F
114	BC3908		Cell division protein ftsQ	2.2	2.5	M
115	BC3994		Exopolyphosphatase	2.1	2.5	FP
116	BC4054	NagB	Glucosamine-6-phosphate isomerase	1.5	2.2	G
117	BC4055	NagA	N-acetylgalactosamine-6-phosphate deacetylase	2.6	2.9	G
118	BC4093	1.0811	Ribosomal-protein-serine acetyltransferase	1.1	1.8	J
119	BC4099		hypothetical protein	1.2	2.0	S
120	BC4121	NhaC	Tyrosine transporter	1.2	0.9	С
121	BC4124		Transcriptional regulator, MarR family	1.2	1.1	K
122	BC4179	YqiB	Exodeoxyribonuclease VII large subunit	0.6	0.6	L
123	BC4240	- 7-2	Transcriptional regulator	1.8	2.3	K
124	BC4250		5-methyltetrahydrofolatehomocysteine methyltransferase	1.0	3.1	E, E
125	BC4311	DnaJ	Chaperone protein dnaJ	1.0	1.0	0
126	BC4312	DnaK	Chaperone protein dnaK	0.7	0.7	0
127	BC4313	GrpE	GrpE protein	1.0	1.0	0
128	BC4315	HemN	Coproporphyrinogen oxidase, anaerobic	4.3	4.2	Н
	BC4313					H
129		YqeJ	Nicotinate-nucleotide adenylyltransferase	1.0	0.9	
130	BC4354	YfiE	Glyoxalase family protein	5.2	3.4	R
131	BC4369	YrrT	Dimethyladenosine transferase	1.2	1.2	QR
132	BC4392	YrvO	Cysteine desulfhydrase	0.9	0.8	E
133	BC4394	YrvN	ATPase, AAA family	1.0	1.8	L
134	BC4427	PheA	Prephenate dehydratase	0.9	1.0	E
		THEA				
135	BC4449		hypothetical Membrane Spanning Protein	1.5	1.2	L
136	BC4454		hypothetical protein	1.4	1.0	S
137	BC4459		Type I restriction-modification system methylation subunit	1.7	1.2	V
138	BC4510	YhaQ	Sodium export ATP-binding protein	0.8	0.6	R
139	BC4525	YsiA	Transcriptional regulator, TetR family	1.5	1.7	K
140	BC4571	YsdC	Deblocking aminopeptidase	1.0	1.3	G
		YtaG				Н
141	BC4584		Dephospho-CoA kinase	1.7	1.8	
142	BC4607	YtrI	hypothetical protein	1.4	3.4	S
143	BC4613	YtkL	Metal-dependent hydrolase	1.3	1.4	R
144	BC4623		Alanine dehydrogenase	0.8	1.1	Е
145	BC4625		Universal stress protein family	1.1	1.6	T
146	BC4650		Transcriptional regulators, LysR family	2.9	2.3	K
		174-D				
147	BC4653	YtsP	GAF domain-containing proteins	1.0	1.0	T
148	BC4678		Aminopeptidase	0.7	0.9	Е
149	BC4693	YtoP	Deblocking aminopeptidase	1.1	1.4	G
150	BC4702	YtjP	Xaa-His dipeptidase	1.2	1.0	E
151	BC4792	-	Cytochrome d ubiquinol oxidase subunit I	1.6	3.7	С
152	BC4816	BmrU	hypothetical protein	0.8	0.9	IR
		DILLIO				
153	BC4860		hypothetical protein	1.0	0.7	S
154	BC4870		L-lactate dehydrogenase	1.1	1.5	С
155	BC4900	YugI	S1-type RNA-binding domain	8.0	0.7	J
156	BC4915		ComA operon protein 2	1.1	0.8	Q
157	BC4926	YumC	Thioredoxin reductase	1.9	2.2	Ò
158	BC4931	YbbK	hypothetical Cytosolic Protein	0.8	1.4	S
159	BC4936	DapF	Diaminopimelate epimerase	1.1	1.4	E
160	BC4954	YutH	CotS-related protein	0.7	1.2	S
161	BC4958		NAD(P)H dehydrogenase [quinone]	0.7	0.9	R
162	BC4961	YutE	hypothetical Cytosolic Protein	1.0	1.4	S
163	BC4996	Ldh	L-lactate dehydrogenase	0.6	1.0	C
164	BC5008	YqgV	hypothetical Cytosolic Protein	1.1	1.6	S
		1 4g v				
165	BC5028		Two-component response regulator vanRB	1.7	1.9	TK
166	BC5035	YitW	Phenylacetic acid degradation protein paaD	1.0	8.0	R
167	BC5059		unknown	1.6	2.6	K
168	BC5065		Methyl-accepting chemotaxis protein	2.3	1.4	NT
169	BC5080		Methyltransferase	3.9	3.8	QR
		Ol- P				
	BC5152	ClpP	ATP-dependent Clp protease proteolytic subunit	1.1	1.2	OU
170 171	BC5177	YwqN	Trp repressor binding protein	4.3	4.8	R

			Probable Sigma (54) modulation protein / SSU ribosomal protein			
172	BC5190	YvyD	S30P	1.2	1.4	J
173	BC5199	YvyE	Xaa-Pro dipeptidase	1.2	1.1	S
174	BC5234	LytE	N-acetylmuramoyl-L-alanine amidase	1.1	1.9	M, T
175	BC5279	J -	Tyrosine-protein kinase (capsular polysaccharide biosynthesis)	1.3	2.1	Ď
176	BC5322	YwrF	Nitrilotriacetate monooxygenase component B	1.4	2.2	R
177	BC5327	1 4411		1.2	1.1	S
		ViC	Stage II sporulation protein R			KE
178	BC5337	YwjG	hypothetical protein	0.8	1.0	
179	BC5376	YwhD	hypothetical Cytosolic Protein	0.7	0.6	S
180	BC5388	YwfI	IG hypothetical 16794	0.9	1.5	S
181	BC5435	YerP	Acriflavin resistance plasma membrane protein	1.6	1.4	V
182	BC5478		hypothetical Cytosolic Protein	0.9	1.0	S
183	BC1182	OppD	Oligopeptide transport ATP-binding protein oppD	0.9		EP
184	BC1195	YjbI	Globin Family Protein	1.0		R
185	BC1304	YvfW	iron-sulfur cluster-binding protein	1.0		C
		YVIVV				
186	BC1317		Acetoacetyl-CoA reductase	1.3		IQR
187	BC1581		Mg(2+) P-type ATPase-like protein	0.6		P
188	BC1712	FumC	Fumarate hydratase	1.8		С
189	BC1715		Transcriptional regulator	2.3		K, S
190	BC1970		hypothetical protein	3.7		Н
191	BC2087		hypothetical protein	0.6		S
192	BC2121	NarI	Respiratory nitrate reductase gamma chain	0.8		C
193		YcxD				KE
	BC2526		Transcriptional regulator, GntR family	1.1		
194	BC3163	YdeS	Transcriptional regulator, TetR family	0.9		K
195	BC3194		Transcriptional regulator, MarR family	3.2		K
196	BC3438		Transcriptional regulator, PadR family	1.4		K
197	BC3681	YneE	IG hypothetical 18106	1.8		S
198	BC3808	TruB	tRNA pseudouridine synthase B	1.3		J
199	BC3852	YlpC	Paal family protein, possible transcriptional regulator	1.1		Q
200	BC4000	Tipe	Multidrug resistance protein B	1.2		GEPR
201	BC4140	** 1.0	Mg(2+) transport ATPase, P-type	2.8		P
202	BC4199	YqhS	3-dehydroquinate dehydratase	8.0		E
203	BC4309	YqeU	surface protein	0.9		S
204	BC4314	HrcA	Heat-inducible transcription repressor hrcA	0.8		K
205	BC4336	SigK	RNA polymerase sigma-K factor, sporulation sigma factor	3.6		K
		- 8	Lipase; Pimeloyl-ACP methyl ester carboxylesterase (Coenzyme			
206	BC4345	MhpCH	transport & metabolism)	3.8		R
207	BC4343	Milperi				S
			hypothetical protein	1.3		
208	BC4416		Ferrichrome-binding protein	1.3		P
209	BC4458		Type I restriction-modification system specificity subunit	1.8		V
210	BC4463		Stage II sporulation protein B	2.7		S
211	BC4469	HemB	Delta-aminolevulinic acid dehydratase	0.9		H
212	BC4516	SdhB	Succinate dehydrogenase iron-sulfur protein	0.7		С
213	BC4517	SdhA	Succinate dehydrogenase flavoprotein subunit	0.6		С
214	BC4592		Malate dehydrogenase	0.7		C
215	BC4649	EzrA		1.6		D
		EZIA	Septation ring formation regulator			
216	BC4674		Chorismate mutase	2.0		E, E
217	BC4679		hypothetical protein	1.0		S
218	BC4723		Molybdopterin biosynthesis MoeB protein	1.4		Н
219	BC4820		hypothetical protein	1.2		S
220	BC5031		Methionyl-tRNA synthetase	1.2		J
221	BC5155	YvcK	hypothetical Cytosolic Protein	1.3		S
222	BC5205	LevR	Transcriptional regulatory protein levR	1.5		KT, K
223	BC5237	YdaM	N-acetylglucosaminyltransferase	1.0		M
			7.0			
224	BC5333	YwjI	Fructose-1,6-bisphosphatase	0.9		G
225	BC5422		O-Antigen ligase - like protein	1.6		S
226	BC0061	YabN	MazG protein	0.6		R
227	BC0622		L-threonine 3-dehydrogenase	0.8		MG
228	BC0666		Immune inhibitor A precursor	4.6		S
229	BC0786	YfhC	Nitroreductase family	1.4		С
230	BC0792	YrkD	hypothetical Cytosolic Protein	1.4		S
231	BC1323		2-aminoethylphosphonate-binding protein	1.0		P
232	BC1323	HisF	HisF protein	0.6		E
				0.0	0.0	
233	BC0016	YaaE	pyridoxine biosynthesis amidotransferase		0.6	H
234	BC0041	YabC	Corrin/porphyrin methyltransferase		8.0	R
235	BC0103	RadA	DNA repair protein RadA		3.4	0
236	BC0107	YacN	2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase		1.5	I
237	BC0186	YbbP	hypothetical Membrane Spanning Protein		0.9	S
238	BC0265	YdcD	hypothetical Cytosolic Protein		1.0	K
239	BC0464	YfkA	Thioredoxin-like oxidoreductases		2.2	R
		1167	unknown			
240	BC0465				1.0	S
241	BC0466		Fumarate hydratase		0.8	C, C
242	BC0482	NagP	PTS system, N-acetylglucosamine-specific IIBC component		1.1	G, G
243	BC0551	YhbH	Glycosyltransferase		8.0	S
244	BC0580		NAD-dependent malic enzyme		2.5	C
			Formate dehydrogenase alpha chain		1.1	R

246	BC0604		hypothetical protein	0.6	S
247	BC0612		L-lactate permease	1.6	C P
248 249	BC0708 BC0709		Ferrous iron transport protein B Ferrous iron transport protein A	1.5 1.3	P
250	BC0709		Cell wall endopeptidase, family M23/M37	0.7	M, T
251	BC0902		S-layer protein / N-acetylmuramoyl-L-alanine amidase	1.7	M
252	BC0958		Transcriptional regulator	6.0	K
253	BC0991		S-layer homology domain / putative murein endopeptidase	0.9	D
254	BC1049		Bis(5'-nucleosyl)-tetraphosphatase (asymmetrical)	0.9	FGR
255	BC1049		Collagen adhesion protein	1.1	M
256	BC1154		Ferrochelatase	1.8	H
257	BC1104		Serine/threonine protein phosphatase	0.9	T
258	BC1202	YjcH	Acetyl esterase	1.5	P
259	BC1247	1,011	hypothetical protein	1.2	S
260	BC1271		hypothetical protein	1.7	S
261	BC1277		D-alanyl-D-alanine carboxypeptidase	2.3	M
262	BC1333		CBS domain containing protein	1.3	R
263	BC1345	YkvS	hypothetical protein	1.0	S
264	BC1350	11110	hypothetical protein	1.0	S
265	BC1353	YosM	NrdI protein	0.8	F
266	BC1403	LeuD	3-isopropylmalate dehydratase small subunit	1.8	E
267	BC1408	HisH	Amidotransferase hisH	1.0	E
268	BC1422	Sat	Sulfate adenylyltransferase	2.0	P
269	BC1431	Cut	Cell wall endopeptidase, family M23/M37	1.4	M, S
270	BC1490	YpbH	genetic competence negative regulator mecA	1.8	OTN
271	BC1496	YccC	L-asparaginase	0.6	EJ
272	BC1514	HepT	Farnesyltransferase	1.4	H
273	BC1514 BC1619	NfrA	Oxygen-insensitive NADPH nitroreductase	1.5	C
274	BC1613	Hfq	Hfq protein	4.6	R
275	BC1625	MotA	Chemotaxis motA protein	1.6	N
210	201020	YtxE/		1.0	
276	BC1626	motS	Chemotaxis motB protein	0.7	N
277	BC1647		Flagellum-specific ATP synthase	1.0	NU
278	BC1651	FlgE	Flagellar hook protein flgE	1.8	N
279	BC1653	6	hypothetical protein	2.0	S
280	BC1660	YjbJ	Soluble lytic murein transglycosylase	0.9	M
281	BC1725	DsdA	D-serine dehydratase	1.8	E
282	BC1746	20011	Aspartateammonia ligase	0.9	E
283	BC1740		Chlorohydrolase/deaminase family protein	0.7	FR
284	BC1793		Transcriptional regulator, TetR family	1.8	K
285	BC1827		hypothetical Cytosolic Protein	1.8	S
286	BC1828		Xaa-Pro aminopeptidase	0.9	E
287	BC1867		Phage protein	2.3	S
288	BC1938	CydA	Cytochrome d ubiquinol oxidase subunit I	1.0	C
289	BC1962	-,	Phosphohydrolase (MutT/nudix family protein)	1.2	LR
290	BC2006	TlpA	Methyl-accepting chemotaxis protein, pH sensor	1.2	NT
291	BC2013		Alpha/beta hydrolase	6.5	R
292	BC2032	YjhB	Phosphohydrolase (MutT/nudix family protein)	1.2	F
293	BC2074	J -	Acetyltransferase	2.9	KR
294	BC2077		YukE protein of unknown function	0.8	S
295	BC2101		Formatetetrahydrofolate ligase	0.6	F
296	BC2105		Lactoylglutathione lyase	1.8	E
297	BC2120	NarJ	Respiratory nitrate reductase delta chain	4.7	C
298	BC2124	MoeBH	thiamine/molybdopterin biosynthesis MoeB-like protein	3.5	Н
299	BC2125	MoeAH	Molybdopterin biosynthesis MoeA protein, nitrate respiration	2.2	Н
300	BC2163		TPR-repeat-containing protein	1.2	R
301	BC2164		Isoleucyl-tRNA synthetase, mupirocin resistant	1.8	J
302	BC2195		1-acyl-sn-glycerol-3-phosphate acyltransferase	1.3	I
303	BC2202	YpmQ	Cytochrome c oxidase Cu(A) center assembly protein	0.6	R
304	BC2254	YodN	IG hypothetical 18022	1.0	S
305	BC2298		Transcriptional repressor	1.2	K
306	BC2353		unknown	0.6	S
307	BC2424		hypothetical protein	0.8	S
308	BC2431		PhnB protein	0.7	S
309	BC2435		Phosphoglycerate mutase	1.7	G
310	BC2439		Aminoacyl-histidine dipeptidase	0.6	E
311	BC2448		D-alanyl-D-alanine carboxypeptidase	0.6	M
312	BC2456		Peptide synthetase	0.8	Q, Q
313	BC2567		Phage protein	0.6	S
314	BC2579		hypothetical Cytosolic Protein	1.6	J
315	BC2723	YurR	D-amino acid dehydrogenase small subunit	0.7	E
316	BC2772		Methyltransferase	1.6	QR
317	BC2919	YokD	Aminoglycoside N3'-acetyltransferase	1.5	V
318	BC2926		hypothetical protein	1.8	L
319	BC2938	AroE	3-phosphoshikimate 1-carboxyvinyltransferase	2.1	E

321	BC3078		Acetyltransferase	1.3	R
322	BC3121		5'-nucleotidase	1.1	F
323	BC3192		precursor of the glucomannan utilization protein ydhR	6.5	S
324	BC3264		hypothetical protein	1.1	L
325	BC3281		hypothetical protein	2.1	S
326	BC3303		hypothetical protein	0.8	J
327	BC3334		2-haloalkanoic acid dehalogenase	0.8	R
328	BC3355	YrkA	Magnesium and cobalt efflux protein corC	2.1	R
		YkgB			
329	BC3368	rkgb	6-phosphogluconolactonase	5.1	G
330	BC3392		unknown	3.6	S
331	BC3437		hypothetical Cytosolic Protein	1.0	S
332	BC3439				C
			Hydroxylamine reductase	5.0	
333	BC3460	YwfD	Short chain dehydrogenase	0.7	IQR
334	BC3497	YhjG	Transcriptional regulator, ArsR family	1.0	K
335	BC3533	YoaR	Vancomycin B-type resistance protein vanW	1.6	V
336	BC3535	YetN	IG hypothetical 17116	1.1	S
337	BC3548	YueD	Benzil reductase	1.7	IQR
338	BC3550		Argininosuccinate lyase	2.6	Ē
339	BC3571	YrhF	hypothetical Cytosolic Protein	1.3	S
340	BC3597	ParE	Topoisomerase IV subunit B	1.2	L
341	BC3599	YneT	Succinyl-CoA synthetase, alpha subunit-related enzymes	0.9	R
342	BC3731	YvgY	COP associated protein	0.8	P
343	BC3743	PepT	Peptidase T	0.8	E
344	BC3769	MutS	DNA mismatch repair protein mutS	1.4	L
345	BC3790	YufP	Nucleoside transport ATP-binding protein	1.8	R
346	BC3797	DapA	Dihydrodipicolinate synthase	0.7	EM
347	BC3799	•	Aspartate-semialdehyde dehydrogenase	0.7	Е
348	BC3802	YmxH	hypothetical protein	1.0	S
349	BC3827	ClpY	ATP-dependent hsl protease ATP-binding subunit hslU	0.9	0
350	BC3900	YlmE	hypothetical Cytosolic Protein	0.7	R
		Time			
351	BC3952		GTPase	1.5	J
352	BC3960	YktB	hypothetical protein	0.8	S
353	BC3974	YkrB	Polypeptide deformylase	0.7	J
		TKID	NRDH-redoxin		
354	BC3987			1.3	0
355	BC3995	YkyB	hypothetical Cytosolic Protein	1.9	S
356	BC4041		hypothetical protein	1.5	S
					R
357	BC4052		hydrolase (HAD superfamily)	0.6	
358	BC4084	YfjQ	Magnesium and cobalt transport protein corA	1.5	P
359	BC4085		Pyrimidine-nucleoside phosphorylase	0.6	F
		NudF		0.9	LR
360	BC4094	Nuur	ADP-ribose pyrophosphatase		
361	BC4123		Lipase/Acylhydrolase with GDSL-like motif	1.4	E
362	BC4143	YqjE	Peptidase T	0.7	E
363		SpoOA		0.7	TK,
	BC4170		Stage 0 sporulation protein A		
364	BC4174	ArgR	Arginine repressor, argR	1.1	K
365	BC4180	FolD	Methylenetetrahydrofolate dehydrogenase (NADP+)	0.8	Н
366	BC4203	YhcW	Phosphoglycolate phosphatase	1.7	R
		THETT			
367	BC4206		Transcriptional regulator, PadR family	0.9	K
368	BC4225		Glycine dehydrogenase [decarboxylating]	0.9	E
369	BC4226	GcvT	Aminomethyltransferase	0.9	Е
		GCVI			
370	BC4256		Transcriptional regulator, ArsR family	0.7	K
371	BC4258	YqgX	Hydroxyacylglutathione hydrolase	0.6	R
372	BC4277		Zinc-specific metalloregulatory protein	1.6	P
373	BC4323		ComE operon protein 2	0.8	F
374	BC4340	YdfN	NAD(P)H nitroreductase	0.6	С
375	BC4365		Alcohol dehydrogenase	0.7	C, C
376	BC4382	YrzL	hypothetical Cytosolic Protein	1.4	S
377	BC4393	YrzC	RRF2 family protein	0.8	K
378	BC4468	HemL	Glutamate-1-semialdehyde 2,1-aminomutase	0.7	Н
379	BC4481	YsoA	TPR repeat protein	0.7	R
380	BC4483	YvbH	hypothetical protein	0.7	S
381	BC4492		putative phosphoesterase	0.7	R
382	BC4509	YhaP	Sodium export permease protein	1.0	CP
			hypothetical protein		
383	BC4555			2.9	S
384	BC4579	DnaI	Primosomal protein dnaI	2.5	L
385	BC4593		Isocitrate dehydrogenase [NADP]	0.8	С
	BC4614	VlavV			
386		YkvY	Xaa-Pro dipeptidase	0.8	Е
387	BC4642	YtdI	ATP-NAD kinase	1.0	G
388	BC4644		PhnB protein	1.1	S
389	BC4692		hypothetical protein	4.6	S
		37. E			
390	BC4703	YtzE	Transcriptional regulator, DeoR family	1.3	KG
391	BC4743		unknown	1.4	V
392	BC4762	PckA	Phosphoenolpyruvate carboxykinase [ATP]	1.9	Ċ
		YdeE	Transcriptional regulator, AraC family	1.2	K, S
393	BC4832				
	BC4847		D-alanyl-D-alanine carboxypeptidase	4.0	
393 394	BC4847		D-alanyl-D-alanine carboxypeptidase		M
393		KapB		4.0 0.7 1.0	

207	DC40E0	VostE	4 nitronhanninhaanhataaa		0.0	C
397 398	BC4959 BC4992	YutF YusI	4-nitrophenylphosphatase Arsenate reductase family protein		0.9 2.1	G P
399	BC5000	YobS	Transcriptional regulator, TetR family		0.6	K
400	BC5076	1000	Short chain dehydrogenase		2.1	R
401	BC5180		unknown		1.3	S
402	BC5187		Cytochrome c551		0.7	C
403	BC5251		RNA polymerase sigma factor		4.2	K
404	BC5317	YwlG	hypothetical protein		1.1	S
405	BC5325	YwlC	SUA5 protein		1.0	J
406	BC5379	YwfO	dGTP triphosphohydrolase		0.6	R
407	BC5413	ThiD	Phosphomethylpyramidine kinase		0.9	Н
408	BC5436		Peptide methionine sulfoxide reductase		1.0	0, 0
409	BC5341	AcdA	Acyl-CoA dehydrogenase, short-chain specific	1.7		I
410	BC0044	YabD	Sec-independent secretion protein tatD	0.7		L
411	BC0191		hypothetical Membrane Spanning Protein	0.7		S
412	BC0245	AppF	Oligopeptide transport ATP-binding protein oppF	4.1		E
413	BC0268	YdcK	Zinc metalloprotease	3.7		S
414	BC0344	YcgN	Delta-1-pyrroline-5-carboxylate dehydrogenase	0.9		C
415	BC0387	10811	hypothetical protein	1.5		S
416	BC0446	YceG	hypothetical tellurium resistance protein	0.9		S
417	BC0457	1000	Tetratricopeptide repeat family protein	1.0		S
418	BC0657	YusO	Transcriptional regulator, MarR family	0.8		K
419	BC1275	1400	Methyltransferase	1.1		Q
420	BC1491	GudB	NAD-specific glutamate dehydrogenase	0.6		E
421	BC1796	Guub	hypothetical protein	2.1		S
421	BC1790 BC2649		Transcriptional regulator, MerR family	2.1	0.8	K
423	BC3406		Oxidoreductase	1.2	0.0	R
424	BC3980	YkuR	putative N-acetyldiaminopimelate deacetylase	2.0		R
424	BC3980 BC4097	1 KUR	2,5-diketo-D-gluconic acid reductase	2.0	1.0	R
425	BC4097 BC4150	YqiX	Arginine-binding protein	0.9	1.0	ET
427	BC4130 BC4802	I QIA		0.9	0.7	S
			hypothetical protein	0.0	0.7	
428	BC5077	37 7	hypothetical protein	0.9		S
429	BC5410	YocJ	FMN-dependent NADH-azoreductase	1.9		I
1	BC1190	MecA	genetic competence negative regulator mecA	-0.6		OTN
2	BC1517	AroB	3-dehydroquinate synthase			Е
3	BC1531	YpjD	hypothetical Transcriptional Regulatory Protein			R
4	BC0004	RecF	DNA replication and repair protein recF	-1.1	-1.2	L
5	BC0003	YaaA	hypothetical protein	-0.6		S
6	BC0021		Deoxyguanosine kinase		-1.0	F
7	BC0039	YabA	hypothetical protein	-0.7	-1.1	S
8	BC0045	RnmV	Ribonuclease M5		-1.1	L
9	BC0056		Peptidyl-tRNA hydrolase	-0.9	-1.7	J
10	BC0058		Transcription-repair coupling factor		-0.9	LK
11	BC0065		Cell division protein DIVIC		-1.4	D
12	BC0066	YabR	S1-type RNA-binding domain		-3.4	J
13	BC0069		Stage II sporulation protein E	-0.6	-0.8	TK
14	BC0072	FtsH	Cell division protein ftsH	-1.0	-1.1	0
15	BC0078	PabC	4-amino-4-deoxychorismate lyase		-0.9	EH
16	BC0081	FolK	2-amino-4-hydroxy-6-hydroxymethyldihydropteridine pyrophosphok	inase	-0.8	Н
17	BC0082	YazB	Transcriptional regulator, Xre family		-1.7	K
18	BC0106	YacM	2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase		-0.8	I
19	BC0100	YacO	23S rRNA methyltransferase	-0.6	-0.6	J
20	BC0112	RplK	LSU ribosomal protein L11P	5.0	-0.7	J
21	BC0117	RplJ	LSU ribosomal protein L10P		-0.7	J
22	BC0119	repio	DNA-directed RNA polymerase beta chain		-0.7	K
23	BC0122 BC0131	RnIC			-0.6	J
23	BC0131 BC0132	RplC	LSU ribosomal protein L3P		-0.7	
		RplD	LSU ribosomal protein L1E/L4P			J
25	BC0133	RplW	LSU ribosomal protein L23P		-1.0	J
26	BC0135	RpsS	SSU ribosomal protein S19P		-0.9	J
27	BC0138	RplP	LSU ribosomal protein L16P		-0.7	J
28	BC0144	RpsN	SSU ribosomal protein S14P		-0.8	J
29	BC0147	RplR	LSU ribosomal protein L18P		-0.7	J
30	BC0159	RplQ	LSU ribosomal protein L17P		-1.2	J
31	BC0161	YbaE	Cobalt transport ATP-binding protein cbiO		-0.8	P
32	BC0163	TruA	tRNA pseudouridine synthase A	-1.9	-2.8	J
	BC0167	CwlD	Spore-specific N-acetylmuramoyl-L-alanine amidase		-0.8	M
33	BC0198		ABC transporter substrate-binding protein		-0.6	P
33 34			hypothetical Membrane Spanning Protein		-4.6	S
33 34 35	BC0232	371 7	hypothetical protein		-0.7	S
33 34 35 36	BC0235	YdaL			-1.0	M
33 34 35		YdaL	Transglycosylase	-1.1	-1.0	
33 34 35 36	BC0235	YdaL	Oligopeptide-binding protein oppA	-1.1 -0.9	-1.0	Е
33 34 35 36 37	BC0235 BC0236	YdaL				Е
33 34 35 36 37	BC0235 BC0236	MurF	Oligopeptide-binding protein oppA			E M
33 34 35 36 37 38	BC0235 BC0236 BC0241		Oligopeptide-binding protein oppA UDP-N-acetylmuramoylalanyl-D-glutamyl-2,6-diaminopimelateD-	-0.9	-1.2	
33 34 35 36 37 38	BC0235 BC0236 BC0241 BC0258	MurF	Oligopeptide-binding protein oppA UDP-N-acetylmuramoylalanyl-D-glutamyl-2,6-diaminopimelateD- alanyl-D- alanyl ligase	-0.9	-1.2 -0.9	M

43	BC0340	PcrA	DNA helicase II		-0.8	L
44	BC0353	YerQ	hypothetical protein		-0.8	IR
45	BC0364	YefA	tRNA (Uracil-5-) -methyltransferase	-0.7	-0.9	J
46	BC0365	YfjN	Nitrogen regulation protein NIFR3	-0.6	-0.7	J
		11314				
47	BC0368		hypothetical Cytosolic Protein	-0.8	-1.4	S
48	BC0376	AhpF	Alkyl hydroperoxide reductase subunit F		-0.7	0
49	BC0388	YoeD	hypothetical protein	-2.1	-2.4	S
50	BC0400		Fatty acid desaturase	-1.2	-1.3	I
51	BC0407		Ornithine carbamoyltransferase	-1.6	-1.8	Ē
52	BC0409		Carbamate kinase	-1.4	-3.0	E
53	BC0416		Phage infection protein		-0.9	S
54	BC0417	TopB	DNA topoisomerase I		-1.2	L, L
55	BC0419	ThiM	Hydroxyethylthiazole kinase		-1.8	H
		I IIIIVI				
56	BC0422		Methyl-accepting chemotaxis protein, signaling domain		-1.3	NT
57	BC0423	SrfAAH	Non-ribosomal peptide synthetase (adenylation domain)		-2.9	Q, Q
58	BC0439		Prolyl-tRNA synthetase	-1.2	-1.2	J
	BC0445	YceF		1.2		P
59			TerC-like protein		-0.7	
60	BC0453	YkvW	Zinc uptake P-type ATPase		-1.1	P
61	BC0471		tRNA pseudouridine synthase A	-0.8	-1.5	J
62	BC0545	YhbB	hypothetical Cytosolic Protein		-1.4	S
		THOD		0.7	-11	
63	BC0563		Biotin carboxyl carrier protein	-0.7		С
64	BC0576	McpBH	Methyl-accepting chemotaxis protein	-0.7	-1.4	NT
65	BC0631	TreP	PTS system, trehalose-specific IIBC component	-1.4	-1.9	G, G
66	BC0644		OsmC-like protein		-2.1	0
67	BC0673		Flavin-dependent dehydrogenase		-1.1	С
68	BC0675		hypothetical protein		-0.7	S
69	BC0682	SrtC	Sortase		-0.7	M
70	BC0773	YdjE	Fructokinase		-1.8	G
71	BC0774	SacA	Sucrose-6-phosphate hydrolase		-0.9	G
72	BC0780	YhdB	hypothetical protein		-0.7	S
73	BC0801		Transcriptional regulator, LytR family	-0.6	-0.8	K
74	BC0812		PBS lyase HEAT-like repeat		-1.6	C
75	BC0841	YbbI	Glucokinase regulatory protein		-1.5	R
76	BC0858		Modulator of drug activity B	-0.6	-1.6	R
77	BC0875		0		-1.5	S
78	BC0892		hypothetical protein	-1.9	-2.9	S
79	BC0899		protein with unknown function	-1.2	-1.8	S
80	BC0903		Methyltransferase		-1.2	L
81	BC0939	YdiS	Type II restriction-modification system restriction subunit		-0.9	V
82	BC0954		tcdA-E operon negative regulator	-0.9	-1.7	S
				-0.3		
83	BC0981		Dihydroxyacetone kinase		-0.9	G
84	BC0984		DNA-binding protein		-1.4	S
85	BC0992		hypothetical protein		-1.0	S
86	BC0997		hypothetical protein		-1.4	S
87	BC1018		unknown		-1.6	S
88	BC1025		Glyoxalase family protein		-1.1	E
89	BC1037		Transcriptional regulator, PadR family		-1.0	K
90	BC1064	YdbS	hypothetical Membrane Spanning Protein		-2.8	S
91	BC1086	YhfJ	Lipoate-protein ligase A		-0.8	Н
92	BC1101		Internalin G		-0.9	S
93	BC1124		Methyl-accepting chemotaxis protein		-1.5	NT
94	BC1129		Trifolitoxin immunity protein	-1.1	-2.3	M, R
	BC1131		Protein of unknown function			K
95				-0.9	-1.3	
96	BC1157		Alpha-amylase		-1.5	G
97	BC1160	YitL	S1 RNA binding domain	-0.7	-1.1	S
98	BC1172		ComZ protein		-1.9	G
99	BC1198	YjbM	GTP pyrophosphokinase		-0.6	S
				1.4	0.0	
100	BC1237	TrpB	Tryptophan synthase beta chain	-1.4		E
101	BC1244		IG hypothetical 16680		-0.7	S
102	BC1286		Spermidine/putrescine transport ATP-binding protein potA		-1.1	E
103	BC1288		Spermidine/putrescine transport system permease protein potC	-1.3	-1.6	E
104	BC1302	YvfI	Transcriptional regulator, GntR family	0	-0.7	K
		1 111				
105	BC1327		(2-aminoethyl)phosphonatepyruvate transaminase		-1.6	E
106	BC1349		Acetyltransferase		-1.1	KR
107	BC1357	YhcG	ABC transporter ATP-binding protein	-0.7	-0.7	V
		10	SSEB protein		5.1	S
108	BC1366	B1.F		-0.7		
109	BC1371	DltB	Protein dltB	-0.6	-0.9	M
110	BC1398		Acetolactate synthase small subunit	-0.6	-1.6	E
111	BC1436		Phage shock protein A	-2.6	-2.5	KT
	BC1443		SAM-dependent methyltransferase	-0.7	-0.7	
112		DI E				QR
113	BC1472	RluB	Ribosomal large subunit pseudouridine synthase B	-2.2	-1.9	J
	BC1479	YvqK	hypothetical Cytosolic Protein		-1.0	S
114		-				
114	BC1497		C VIIOVIATE KINASE		-0.7	F
114 115	BC1497	Vnh C	Cytidylate kinase	0.0	-0.7	F
114 115 116	BC1504	YphC	GTP-binding protein	-0.8	-0.9	R
114 115		YphC HepS YpmB		-0.8		

119	BC1550		Multimodular transpeptidase-transglycosylase PBP 1A		-1.4	M
120	BC1557		hypothetical protein		-4.3	S
121	BC1565	YpvA	ATP-dependent helicase, DinG family	-0.7		KL
122	BC1568		Methionine aminopeptidase	• • • • • • • • • • • • • • • • • • • •	-0.6	J
123	BC1582	YpcP	5'-3' exonuclease		-0.7	L
124	BC1586	TuaA	Undecaprenyl-phosphate galactosephosphotransferase	-0.8	-1.2	M
					-1.2	
125	BC1593	YitH	Acetyltransferase	-1.0		KR
126	BC1632	CheR	Chemotaxis protein methyltransferase		-1.6	NT
127	BC1633		hypothetical protein	-0.9		S
128	BC1641	FlgB	Flagellar basal-body rod protein flgB		-1.8	N
129	BC1642	FlgC	Flagellar basal-body rod protein flgC	-1.3	-1.2	N
130	BC1643	FliE	Flagellar hook-basal body complex protein fliE	-2.2		NU
131	BC1650	FlgD	Basal-body rod modification protein flgD	2.2	-1.2	N
		rigo				
132	BC1699		ECF-type sigma factor negative effector		-3.7	S
133	BC1718		DUF family protein of unknown function		-0.8	S
134	BC1737		Cardiolipin synthetase		-1.5	I
135	BC1740		unknown	-0.6	-1.5	S
136	BC1741	MalS	NAD-dependent malic enzyme	-0.8	-1.2	С
137	BC1756	PadR	Transcriptional repressor PadR	-0.9	-0.7	K
		1 aurc		-0.3		
138	BC1788		Lysophospholipase L2		-1.3	I
139	BC1794		unknown		-0.8	E
140	BC1804	YbfQ	Rhodanese-related sulfurtransferases	-1.3	-2.3	R
141	BC1893		Scaffold protein	-2.7		S
142	BC1914		Phage protein		-1.3	K
143	BC1935		hypothetical protein	-0.9		S
144	BC1936		Transcriptional regulator, MarR family	-2.1	-2.0	K
		371. D			-2.0	
145	BC1947	YybP	hypothetical protein	-3.0		S
146	BC1956		Two-component response regulator	-0.7		TK
147	BC1968		hypothetical protein		-5.7	Н
148	BC1984		unknown		-1.3	S
149	BC1998	YczG	Transcriptional regulator, ArsR family		-0.9	K
150	BC2017	TCEC	Ribosomal-protein-serine acetyltransferase	-0.6	-0.8	J
		V0		-0.0		
151	BC2037	YcgQ	hypothetical Membrane Spanning Protein		-1.2	S
152	BC2060		hydrolase (HAD superfamily)		-1.6	R
153	BC2084		hypothetical Cytosolic Protein		-2.7	S
154	BC2094		Acetyltransferase	-1.3		R
155	BC2102		hypothetical protein	-0.6	-0.7	S
156	BC2123	MoeAH	Molybdenum cofactor biosynthesis protein A	-1.1		Н
157	BC2134	NasF	Uroporphyrin-III C-methyltransferase	-1.3	-0.8	H, H
				-1.3		
158	BC2137	DnrN	Nitric oxide-dependent regulator DnrN		-1.1	D
159	BC2157	YphP	hypothetical protein		-0.7	J
160	BC2172		IG hypothetical 1888 Protein of unknown function	-1.1	-1.9	S
161	BC2183		Acetyltransferase		-1.0	KR
162	BC2187		Phosphoglycolate phosphatase		-1.8	R
163	BC2190		Penicillin-binding protein	-1.1		V
164	BC2194	YvaB		-1.1		I
			FMN-dependent NADH-azoreductase			
165	BC2204	AsnB	Asparagine synthetase [glutamine-hydrolyzing]	-0.6		E
166	BC2208		Iron(III) dicitrate-binding protein	-0.9	-0.7	P
167	BC2225		6-phosphogluconate dehydrogenase	-0.7		G
168	BC2242	YueI	hypothetical Cytosolic Protein	-0.6		S
169	BC2285	MmgD	2-methylcitrate synthase	-1.0		С
170	BC2286	MmgE	2-methylisocitrate dehydratase	-2.3		R
		wiiiigL		2.0	0.7	S
171	BC2318		hypothetical protein	4.0	-0.7	
172	BC2321		tRNA pseudouridine synthase A	-1.6	-2.5	J
173	BC2335		Catabolite gene activator	-1.0	-1.1	Т
174	BC2357		Cold shock protein	-1.6		S
175	BC2358		hypothetical protein	-1.5	-2.2	K
176	BC2379		Transcriptional regulator		-0.8	K
177	BC2390		hypothetical protein		-1.4	S
					-1.4	
178	BC2421		unknown			S
			S-layer protein / Peptidoglycan endo-beta-N-			_
179	BC2464		acetylglucosaminidase	-0.8		G
180	BC2498		Two-component response regulator vanR	-0.9	-2.1	TK
181	BC2513		Excinuclease ABC subunit A		-0.9	L
	BC2550		D-alanineD-alanine ligase	-0.7	-1.1	M
182	BC2578		Phage protein	· · · ·	-1.3	S
182	DC2010					
183	DCGCGG		Phage protein		-1.2	S
183 184	BC2580		hypothetical protein		-1.3	S
183 184 185	BC2601		5.			S
183 184			hypothetical protein		-1.2	_
183 184 185	BC2601		hypothetical protein hypothetical protein	-0.9	-1.2 -0.8	S
183 184 185 186 187	BC2601 BC2607 BC2644		hypothetical protein	-0.9		S
183 184 185 186 187 188	BC2601 BC2607 BC2644 BC2662	Voe7	hypothetical protein Division specific D,D-transpeptidase / Cell division protein ftsI	-0.9	-0.8	S M
183 184 185 186 187 188 189	BC2601 BC2607 BC2644 BC2662 BC2671	YoaZ	hypothetical protein Division specific D,D-transpeptidase / Cell division protein ftsI ThiJ/PfpI family		-0.8 -3.5	S M R
183 184 185 186 187 188 189 190	BC2601 BC2607 BC2644 BC2662 BC2671 BC2705	YjqA	hypothetical protein Division specific D,D-transpeptidase / Cell division protein ftsI ThiJ/PfpI family hypothetical Cytosolic Protein	-0.7	-0.8 -3.5 -0.8	S M R S
183 184 185 186 187 188 189 190	BC2601 BC2607 BC2644 BC2662 BC2671 BC2705 BC2713	YjqA YurQ	hypothetical protein Division specific D,D-transpeptidase / Cell division protein ftsI ThiJ/PfpI family hypothetical Cytosolic Protein UvrC-like protein	-0.7 -1.9	-0.8 -3.5 -0.8 -3.1	S M R S L
183 184 185 186 187 188 189 190	BC2601 BC2607 BC2644 BC2662 BC2671 BC2705	YjqA	hypothetical protein Division specific D,D-transpeptidase / Cell division protein ftsI ThiJ/PfpI family hypothetical Cytosolic Protein	-0.7	-0.8 -3.5 -0.8	S M R S

104	DC2740		Acetyltyonofoyaga	1.0		ĮZD
194	BC2749		Acetyltransferase	-1.2		KR
195	BC2770	GlcR	Transcriptional regulator, DeoR family	-1.2		KG
196	BC2773		RRF2 family protein		-1.1	K
197	BC2779	AcoA	Acetoin dehydrogenase E1 component alpha-subunit		-1.4	С
198	BC2809	YwnH	Phosphinothricin N-acetyltransferase	-3.1	-3.5	M
199	BC2821		unknown		-4.9	L
200	BC2824	YfjM	hypothetical Cytosolic Protein		-2.2	S
201	BC2848		unknown	-1.3	-5.5	E
202	BC2862	PrsA	Protein export protein prsA precursor	1.0	-0.8	0
203	BC2871	YitS	DegV family protein		-0.7	S
204	BC2882	YhbE	hypothetical Cytosolic Protein	-1.7	-1.6	M
205	BC2923		Acetyltransferase	-2.5	-1.6	KR
206	BC2933	YkpA	ABC transporter ATP-binding protein	-0.7	-0.8	R
207	BC2936	YdgH	Transcriptional repressor Bm3R1	-1.6	-0.9	K
208	BC2937	- 0	Acetyltransferase		-1.1	R
209	BC2977		Pyrroline-5-carboxylate reductase		-0.7	E
	BC3058					
210			Phosphohydrolase (MutT/nudix family protein)		-1.3	LR
211	BC3062	YhdZ	SIR2 family protein	-1.0		K
212	BC3081	YhjR	hypothetical protein		-0.9	S
213	BC3093		unknown	-0.8	-1.1	S
214	BC3135		Carboxymethylenebutenolidase-related protein	-2.3		R
215	BC3174		Short chain type dehydrogenase/reductase	-3.4	-1.2	IOR
216	BC3209		hypothetical Cytosolic Protein	-0.9	1.6	S
217	BC3216		1-aminocyclopropane-1-carboxylate deaminase	-0.6		E
218	BC3240		Thermitase	-0.7	-1.2	0
			N-acetylmuramoyl-L-alanine amidase, Cell wall or membrane			
219	BC3257		biogenesis	-1.2	-1.2	T, M
220	BC3286		hypothetical protein	-1.4	-3.4	S
221	BC3308	CapA	Capsule biosynthesis protein capA	-1.2	-2.2	M
222	BC3394	Capii	4-oxalocrotonate tautomerase		-2.7	R
223	BC3484		Oligoendopeptidase F		-0.8	E
224	BC3501	RapC	Response regulator aspartate phosphatase	-0.6	-0.9	R
225	BC3520	TarH	Methyl-accepting chemotaxis protein (motility, Signal transduction)	-1.6	-1.5	NT
226	BC3587		Transcriptional regulator, LytR family	-1.2		K
227	BC3592		Transcriptional regulator, TetR family		-2.3	K
228	BC3606	YneP	Esterase	-1.0	-1.7	R
229	BC3608	THE	Thioredoxin related protein	-1.5	-1.4	S
230	BC3659		hypothetical protein	-0.6	-1.0	S
231	BC3661	YneJ	CcdC protein		-0.7	0
232	BC3667b		unknown	-2.0	-2.1	S
233	BC3682		Transketolase		-0.6	G
234	BC3693		Transcriptional regulator, PadR family	-0.8		K
235	BC3696	XhlAH	cell-surface associated haemolysin		-1.0	S
236	BC3698		Cell wall endopeptidase, family M23/M37	-3.2	-2.9	M
237	BC3699		Antigen/ lysozyme like protein	-1.8	-3.9	M
		C1 A		-1.0		
238	BC3706	GlnA	Transcriptional regulator, MerR family		-1.7	K
239	BC3708	YnbA	GTP-binding protein hflX		-1.0	R
240	BC3714	MiaA	tRNA delta(2)-isopentenylpyrophosphate transferase		-0.9	J
241	BC3777	YmdB	IG hypothetical 15594	-1.1	-1.6	S
242	BC3785	YmfI	3-oxoacyl-[acyl-carrier protein] reductase		-1.3	IQR
243	BC3792	YmfC	Transcriptional regulator, GntR family		-1.4	K
244	BC3792		Cell division protein ftsK	-1.3	2.72	D
					0.0	
245	BC3796		Zn-dependent hydrolase	-0.6	-0.9	R
246	BC3803	MlpA	Zinc protease		-0.6	R
247	BC3805	PnpA	Polyribonucleotide nucleotidyltransferase		-0.6	J
248	BC3811	InfB	Bacterial Protein Translation Initiation Factor 2 (IF-2)		-0.7	J
249	BC3815	YlxS	hypothetical Cytosolic Protein	-0.7	-1.1	S
250	BC3830		Glucose inhibited division protein A	-0.9	-1.1	J
251	BC3835	RnhB	Ribonuclease HII	-0.8	-1.4	L
		MIIID				
252	BC3837		Signal peptidase I	-1.1	-0.8	U
253	BC3846		Chromosome partition protein smc		-1.1	D
254	BC3847		Ribonuclease III	-0.6		K
255	BC3849	FabG	3-oxoacyl-[acyl-carrier protein] reductase	-0.7	-1.0	IQR
256	BC3859	YloQ	GTPase	-0.9	-0.9	R
257	BC3862	YloN	Radical SAM family enzyme		-1.4	R
258	BC3863	YloM	16S rRNA m(5)C 967 methyltransferase	-1.0	-0.9	J
259		1.0141	Guanylate kinase	2.0		F
239	BC3869				-0.7	Г
	D.00		lysozyme inhibitor, binds to and inhibits macrophage lysozyme, aid			
260	BC3874	LprIH	bacterial survival	-3.8	-4.3	S
261	BC3892	YlyB	Ribosomal large subunit pseudouridine synthase D	-0.8	-0.7	J
262	BC3916	PbpB	Division specific D,D-transpeptidase / Cell division protein ftsI		-0.6	M
263	BC3931	1 .	hypothetical protein		-1.6	S
264	BC3931	YhfR	Phosphoglycerate mutase	-4.4		G
		11111		-4.4	-3.0	
	BC3935		hypothetical Cytosolic Protein			S
265		7 711				
265 266 267	BC3938 BC3945	YlbA CtaB	hypothetical Cytosolic Protein Protoheme IX farnesyltransferase	-1.9	-1.7 -1.8	S

268	BC3950	YlaL	hypothetical protein		-0.8	S
269	BC3956	YlaG	GTP-binding protein TypA/BipA		-0.6	T
270	BC3961	YktA	putative transcriptional regulator	-1.2	-2.1	S
271	BC3962	SpeA	Arginine decarboxylase		-1.0	E
272	BC3989	YkuI	Diguanylate cyclase/phosphodiesterase domain 2 (EAL)		-1.5	T
273	BC4051	GlcT	Transcription antiterminator, BglG family		-1.5	K
274 275	BC4063 BC4082		hydrolase (HAD superfamily) hypothetical protein	-2.9	-1.0 -3.1	R S
276	BC4082 BC4112	RibH	6,7-dimethyl-8-ribityllumazine synthase	-2.9	-3.1	H
277	BC4112 BC4146	YqjB	Protein erfK/srfK precursor		-1.4	S
278	BC4140	YqiW	hypothetical protein		-1.1	S
279	BC4151 BC4155	RodA	Rod shape-determining protein rodA		-0.9	D
280	BC4158	Roun	2-oxoisovalerate dehydrogenase beta subunit	-0.6	-0.9	C
281	BC4165	BkdR	Sigma-54-dependent transcriptional activator	-0.9	-2.1	KT
282	BC4103	DKUIC	Exodeoxyribonuclease VII small subunit	-0.3	-1.0	L
283	BC4181	NusB	N utilization substance protein B		-0.7	K
284	BC4186	IVUSE	Stage III sporulation protein AH	-1.1	-0.7	S
285	BC4204	MntR	Manganese transport transcription regulator	-1.1	-1.6	K
286	BC4208		hypothetical protein		-0.7	S
287	BC4221		ABC transporter ATP-binding protein			V
288	BC4224	GcvPBH	Glycine dehydrogenase [decarboxylating]	-1.3	-1.0	E
289	BC4239	OCTI DII	ComG operon protein 1	1.0	-1.7	NU
290	BC4243		hypothetical protein	-1.0	-5.4	S
291	BC4249		UDP- N-acetylglucosamine transferase	-1.0	0.1	M
292	BC4262	YqgN	5-formyltetrahydrofolate cyclo-ligase	1.0	-1.0	Н
293	BC4280	YqfU	hypothetical Membrane Spanning Protein	-2.7	-2.5	S
294	BC4283	YqfR	ATP-dependent RNA helicase	-0.7	-1.0	LKJ
295	BC4293	YqfL	hypothetical Cytosolic Protein	0.1	-0.8	S
296	BC4297	Iqib	GTP-binding protein		-1.5	R
297	BC4320	RpsT	SSU ribosomal protein, translation	-4.9	1.0	J
298	BC4326	YgeM	Methyltransferase	-0.9	-1.0	QR
299	BC4328	YqeK	hydrolase (HAD superfamily)	0.0	-0.7	Н
300	BC4332	YqeH	GTP-binding protein		-0.9	R
301	BC4371	- 4	hypothetical protein		-1.0	S
302	BC4375		Uridine kinase	-0.8	-1.3	F
303	BC4379	YrrL	hypothetical protein		-1.2	R
304	BC4381	YrrK	hypothetical Cytosolic Protein		-2.4	L
305	BC4396	YrvM	Molybdopterin biosynthesis MoeB protein		-0.7	Н
306	BC4401	RelA	GTP pyrophosphokinase		-0.6	TK
307	BC4402		Adenine phosphoribosyltransferase		-0.8	F
308	BC4406		hypothetical protein		-2.5	S
309	BC4411		Queuine tRNA-ribosyltransferase	-0.8	-1.0	J
310	BC4415	RuvA	Holliday junction DNA helicase ruvA		-0.7	L
311	BC4434		GTP-binding protein	-0.9	-0.9	R
312	BC4436	RpmA	LSU ribosomal protein L27P		-0.8	J
313	BC4437	YsxB	hypothetical ribosome-associated protein	-0.7	-1.0	J
314	BC4443	MinC	Cell division inhibitor MinC		-0.8	D
315	BC4448		Protein with unknown function	-1.7		S
316	BC4453		Phage protein		-3.2	S
317	BC4477	LonA	ATP-dependent protease La	-0.6	-0.9	0
318	BC4484		hypothetical Cytosolic Protein		-1.6	S
319	BC4487		Superfamily I DNA and RNA helicases		-1.0	L
320	BC4489		hypothetical Cytosolic Protein	-2.6	-3.2	S
321	BC4493	YsnA	Nucleoside-triphosphatase		-1.3	F
322	BC4496	RacE	Glutamate racemase		-2.3	M
323	BC4505	36.5	Transcriptional regulator		-1.9	K
324	BC4512	MotB	Flagella motor protein	-0.6		N
325	BC4519	YslB	hypothetical Cytosolic Protein		-0.6	S
326	BC4523	EtfA	Electron transfer flavoprotein beta-subunit	-1.1	-1.3	C
327	BC4541	YwbD	Methyltransferase	-0.9	-1.2	R
328	BC4574	RpmI	LSU ribosomal protein L35P	0.0	-0.6	J
329	BC4580	DnaB	Replication initiation and membrane attachment protein	-0.8	-1.2	L
330	BC4583 BC4587	Dol A	NAD(P)-dependent glyceraldehyde-3-phosphate dehydrogenase	-1.3	0.7	G
331		PolA CitZ	DNA polymerase I		-0.7	L, L
332	BC4594	CILL	Citrate synthase hypothetical protein	2.2	-0.8	C S
333 334	BC4619 BC4647	YtbJ	nypotnetical protein Thiamine biosynthesis protein thiI	-2.2	-1.8 -0.9	H
335	BC4648	NifZ	Cysteine desulfhydrase	-0.8	-1.3	E
336	BC4658	141177	Maltose O-acetyltransferase	-0.0	-1.3	R
337	BC4656		Ankyrin		-1.4	R
338	BC4668		Virulence factor mviM		-0.6	R
339	BC4704	YtzF	Ribosomal small subunit pseudouridine synthase A	-0.9	-1.2	J
340	BC4704 BC4746	YtqA	Fe-S oxidoreductase	5.5	-1.1	R
341	BC4740 BC4795	1 tqri	hypothetical Membrane Spanning Protein	-1.2	1.1	S
342	BC4799		hypothetical protein	-1.1	-1.3	S
J 14	201100) F protein	2.1	1.0	3

343						
	BC4818		hypothetical protein		-1.2	S
344	BC4830		ABC transporter permease protein		-1.2	V
345	BC4836		Two component system histidine kinase		-0.7	Т
				1.4		
346	BC4846		Dihydroorotase	-1.4	-2.2	R
347	BC4911		Arsenical pump membrane protein	-0.6	-0.9	P
348	BC4925	YumB	NADH dehydrogenase		-1.3	С
349	BC4927		Cell surface protein		-1.0	L
350	BC4934		protein of unknown function	-0.9		S
		37 (3.6	•	-0.5	0.4	
351	BC4935	YutM	Fe-S carrier protein, assembly of Fe-S clusters, DNA repair		-2.4	S
352	BC4940	YjkB	ABC transporter ATP-binding protein		-0.9	P
353	BC4951	YuzD	hypothetical protein	-2.0	-1.6	S
354	BC4952	YutI	NifU protein	-0.8	-0.7	Ö
		I ULI			-0.7	
355	BC4956		Ribosomal-protein-alanine acetyltransferase	-0.9		KR
356	BC4966	YutD	hypothetical Cytosolic Protein	-1.7	-2.7	S
357	BC4983	YurY	ABC transporter ATP-binding protein		-0.6	0
				1.0	0.0	S
358	BC5007	YusU	IG hypothetical 17Protein of unknown function29	-1.9		
359	BC5010		Transcriptional regulator	-0.7	-1.0	K
360	BC5015		hypothetical exported repetitive protein	-1.6	-1.0	S
361	BC5018		hypothetical Membrane Spanning Protein		-1.3	S
		V10		1.0		
362	BC5047	YvdC	IG hypothetical 16995	-1.2	-1.4	R
363	BC5051	AlsT	Sodium/proton-dependent alanine carrier protein		-1.0	E
364	BC5056		Collagen adhesion protein		-0.8	S
365	BC5064		protein with unknown function	-0.7	-1.1	R
366	BC5086		putative lantibiotic biosynthesis protein	-3.5	-2.4	S
367	BC5106		Ferric anguibactin-binding protein	-0.6	-0.7	P
368	BC5111		Transposase	-1.7	-1.7	L
369	BC5117		ABC transporter permease protein	-0.9	-1.4	S
				-0.9		
370	BC5118		ABC transporter ATP-binding protein		-1.3	Е
371	BC5119		In operon with BC5120, which is a nitroreductase family protein	-0.7	-1.1	S
372	BC5120		hypothetical Cytosolic Protein	-0.6	-0.9	S
373	BC5121		protein of unknown function	-0.8	-1.1	S
374	BC5122		YcaO cyclodehydratase, ATP-ad Mg2+-binding	-0.6	-1.3	S
375	BC5123		homolog of lantibiotic biosynthesis dehydratase C-term		-0.7	S
376	BC5124		Protein with unknown function		-1.8	S
377	BC5125		Peptidase family M50		-1.4	M
378	BC5128	SmpB	SsrA-binding protein, required for rescue of stalled ribosomes	-1.6	-0.6	0
379	BC5168	UvrB	Excinuclease ABC subunit B		-2.1	L
380	BC5194		unknown		-1.0	S
		YviA/deg	DegV family fatty acid binding protein, phosphorylation of fatty			-
	D.O					
381	BC5198	V	acids	-2.3		S
382	BC5222	YybE	Transcriptional regulators, LysR family	-3.6	-1.6	K
383	BC5232		Phosphoglycerol transferase		-1.1	M
384	BC5235	YutK	Nucleoside permease nupC		-1.3	F
		Tutk				
385	BC5239		0		-3.8	T, S
386	BC5241	YvbJ	IG hypothetical 16680		-0.8	S
387	BC5242		Membrane protein with C2C2 zinc finger	-4.4		J
388	BC5243		hypothetical protein			
300	DC3243				0.7	
000	DOSCOS				-0.7	S
389	BC5252		hypothetical Membrane Spanning Protein	-0.6	-1.1	S S
389 390	BC5252 BC5253	YknZ		-0.6 -1.0		S
390	BC5253		hypothetical Membrane Spanning Protein ABC transporter permease protein	-1.0	-1.1 -0.9	S S V
390 391	BC5253 BC5254	YvrO	hypothetical Membrane Spanning Protein ABC transporter permease protein ABC transporter ATP-binding protein		-1.1 -0.9 -1.7	S S V V
390 391 392	BC5253 BC5254 BC5255		hypothetical Membrane Spanning Protein ABC transporter permease protein ABC transporter ATP-binding protein periplasmic component of efflux system	-1.0 -1.5	-1.1 -0.9 -1.7 -2.0	S S V V M
390 391 392 393	BC5253 BC5254 BC5255 BC5263	YvrO	hypothetical Membrane Spanning Protein ABC transporter permease protein ABC transporter ATP-binding protein periplasmic component of efflux system UDP-glucose 4-epimerase	-1.0 -1.5	-1.1 -0.9 -1.7 -2.0 -1.9	S S V V M M
390 391 392	BC5253 BC5254 BC5255	YvrO	hypothetical Membrane Spanning Protein ABC transporter permease protein ABC transporter ATP-binding protein periplasmic component of efflux system	-1.0 -1.5	-1.1 -0.9 -1.7 -2.0	S S V V M
390 391 392 393 394	BC5253 BC5254 BC5255 BC5263	YvrO YknX	hypothetical Membrane Spanning Protein ABC transporter permease protein ABC transporter ATP-binding protein periplasmic component of efflux system UDP-glucose 4-epimerase EPSX protein	-1.0 -1.5	-1.1 -0.9 -1.7 -2.0 -1.9	S S V V M M
390 391 392 393 394 395	BC5253 BC5254 BC5255 BC5263 BC5264 BC5265	YvrO YknX LytR	hypothetical Membrane Spanning Protein ABC transporter permease protein ABC transporter ATP-binding protein periplasmic component of efflux system UDP-glucose 4-epimerase EFSX protein Transcriptional regulator, LytR family	-1.0 -1.5 -1.8 -0.6	-1.1 -0.9 -1.7 -2.0 -1.9 -1.1 -2.1	S S V V M M E
390 391 392 393 394 395 396	BC5253 BC5254 BC5255 BC5263 BC5264 BC5265 BC5267	YvrO YknX	hypothetical Membrane Spanning Protein ABC transporter permease protein ABC transporter ATP-binding protein periplasmic component of efflux system UDP-glucose 4-epimerase EFSX protein Transcriptional regulator, LytR family Glycosyltransferase	-1.0 -1.5 -1.8 -0.6	-1.1 -0.9 -1.7 -2.0 -1.9 -1.1 -2.1 -1.4	S S V V M M E K
390 391 392 393 394 395 396 397	BC5253 BC5254 BC5255 BC5263 BC5264 BC5265 BC5267 BC5269	YvrO YknX LytR	hypothetical Membrane Spanning Protein ABC transporter permease protein ABC transporter ATP-binding protein periplasmic component of efflux system UDP-glucose 4-epimerase EFSX protein Transcriptional regulator, LytR family Glycosyltransferase Amylovoran biosynthesis AmsK	-1.0 -1.5 -1.8 -0.6 -0.7 -0.9	-1.1 -0.9 -1.7 -2.0 -1.9 -1.1 -2.1	S S V V M M E K M
390 391 392 393 394 395 396	BC5253 BC5254 BC5255 BC5263 BC5264 BC5265 BC5267	YvrO YknX LytR	hypothetical Membrane Spanning Protein ABC transporter permease protein ABC transporter ATP-binding protein periplasmic component of efflux system UDP-glucose 4-epimerase EFSX protein Transcriptional regulator, LytR family Glycosyltransferase	-1.0 -1.5 -1.8 -0.6	-1.1 -0.9 -1.7 -2.0 -1.9 -1.1 -2.1 -1.4	S S V V M M E K
390 391 392 393 394 395 396 397 398	BC5253 BC5254 BC5255 BC5263 BC5264 BC5265 BC5267 BC5269 BC5271	YvrO YknX LytR	hypothetical Membrane Spanning Protein ABC transporter permease protein ABC transporter ATP-binding protein periplasmic component of efflux system UDP-glucose 4-epimerase EPSX protein Transcriptional regulator, LytR family Glycosyltransferase Amylovoran biosynthesis AmsK UDP-N-acetylglucosamine 4-epimerase	-1.0 -1.5 -1.8 -0.6 -0.7 -0.9 -1.2	-1.1 -0.9 -1.7 -2.0 -1.9 -1.1 -2.1 -1.4 -1.2	S S V V M M E K M M M M M
390 391 392 393 394 395 396 397 398 399	BC5253 BC5254 BC5255 BC5263 BC5264 BC5265 BC5267 BC5269 BC5271 BC5272	YvrO YknX LytR YveT	hypothetical Membrane Spanning Protein ABC transporter permease protein ABC transporter ATP-binding protein periplasmic component of efflux system UDP-glucose 4-epimerase EPSX protein Transcriptional regulator, LytR family Glycosyltransferase Amylovoran biosynthesis AmsK UDP-N-acetylglucosamine 4-epimerase Carbamoyl-phosphate synthase small chain	-1.0 -1.5 -1.8 -0.6 -0.7 -0.9 -1.2 -0.7	-1.1 -0.9 -1.7 -2.0 -1.9 -1.1 -2.1 -1.4 -1.2	S S V V M M E K M M M F, I
390 391 392 393 394 395 396 397 398 399	BC5253 BC5254 BC5255 BC5263 BC5264 BC5265 BC5267 BC5269 BC5271 BC5272 BC5273	YvrO YknX LytR YveT	hypothetical Membrane Spanning Protein ABC transporter permease protein ABC transporter ATP-binding protein periplasmic component of efflux system UDP-glucose 4-epimerase EFSX protein Transcriptional regulator, LytR family Glycosyltransferase Amylovoran biosynthesis AmsK UDP-N-acetylglucosamine 4-epimerase Carbamoyl-phosphate synthase small chain UDP-bacillosamine synthetase	-1.0 -1.5 -1.8 -0.6 -0.7 -0.9 -1.2 -0.7 -0.7	-1.1 -0.9 -1.7 -2.0 -1.9 -1.1 -2.1 -1.4 -1.2 -1.5 -0.8	S S V V M M E K M M M F, I M
390 391 392 393 394 395 396 397 398 399 400 401	BC5253 BC5254 BC5255 BC5263 BC5264 BC5266 BC5267 BC5269 BC5271 BC5272 BC5273 BC5277	YvrO YknX LytR YveT SpsC YwqD	hypothetical Membrane Spanning Protein ABC transporter permease protein ABC transporter ATP-binding protein periplasmic component of efflux system UDP-glucose 4-epimerase EFSX protein Transcriptional regulator, LytR family Glycosyltransferase Amylovoran biosynthesis AmsK UDP-N-acetylglucosamine 4-epimerase Carbamoyl-phosphate synthase small chain UDP-bacillosamine synthetase Tyrosine-protein kinase (capsular polysaccharide biosynthesis)	-1.0 -1.5 -1.8 -0.6 -0.7 -0.9 -1.2 -0.7 -0.7 -0.8	-1.1 -0.9 -1.7 -2.0 -1.9 -1.1 -2.1 -1.4 -1.2 -1.5 -0.8 -1.4	S S V V M M E K M M M F I M M D
390 391 392 393 394 395 396 397 398 399	BC5253 BC5254 BC5255 BC5263 BC5264 BC5265 BC5267 BC5269 BC5271 BC5272 BC5273	YvrO YknX LytR YveT	hypothetical Membrane Spanning Protein ABC transporter permease protein ABC transporter ATP-binding protein periplasmic component of efflux system UDP-glucose 4-epimerase EFSX protein Transcriptional regulator, LytR family Glycosyltransferase Amylovoran biosynthesis AmsK UDP-N-acetylglucosamine 4-epimerase Carbamoyl-phosphate synthase small chain UDP-bacillosamine synthetase	-1.0 -1.5 -1.8 -0.6 -0.7 -0.9 -1.2 -0.7 -0.7	-1.1 -0.9 -1.7 -2.0 -1.9 -1.1 -2.1 -1.4 -1.2 -1.5 -0.8	S S V V M M E K M M M F, I M
390 391 392 393 394 395 396 397 398 399 400 401 402	BC5253 BC5254 BC5255 BC5263 BC5264 BC5265 BC5267 BC5269 BC5271 BC5272 BC5273 BC5277 BC5278	YvrO YknX LytR YveT SpsC YwqD	hypothetical Membrane Spanning Protein ABC transporter permease protein ABC transporter ATP-binding protein periplasmic component of efflux system UDP-glucose 4-epimerase EPSX protein Transcriptional regulator, LytR family Glycosyltransferase Amylovoran biosynthesis AmsK UDP-N-acetylglucosamine 4-epimerase Carbamoyl-phosphate synthase small chain UDP-bacillosamine synthetase Tyrosine-protein kinase (capsular polysaccharide biosynthesis) Chain length regulator (capsular polysaccharide biosynthesis)	-1.0 -1.5 -1.8 -0.6 -0.7 -0.9 -1.2 -0.7 -0.7 -0.8 -0.8	-1.1 -0.9 -1.7 -2.0 -1.9 -1.1 -2.1 -1.4 -1.2 -1.5 -0.8 -1.4 -1.1	S S V V M M E K M M G F, I M D
390 391 392 393 394 395 396 397 398 399 400 401 402 403	BC5253 BC5254 BC5255 BC5263 BC5263 BC5265 BC5265 BC5267 BC5272 BC5272 BC5273 BC5277 BC5278 BC5288	YvrO YknX LytR YveT SpsC YwqD	hypothetical Membrane Spanning Protein ABC transporter permease protein ABC transporter ATP-binding protein periplasmic component of efflux system UDP-glucose 4-epimerase EPSX protein Transcriptional regulator, LytR family Glycosyltransferase Amylovoran biosynthesis AmsK UDP-N-acetylglucosamine 4-epimerase Carbamoyl-phosphate synthase small chain UDP-bacillosamine synthetase Tyrosine-protein kinase (capsular polysaccharide biosynthesis) Chain length regulator (capsular polysaccharide biosynthesis) UDP-N-acetylglucosamine 1-carboxyvinyltransferase	-1.0 -1.5 -1.8 -0.6 -0.7 -0.9 -1.2 -0.7 -0.7 -0.8	-1.1 -0.9 -1.7 -2.0 -1.9 -1.1 -2.1 -1.4 -1.2 -1.5 -0.8 -1.4 -1.1 -1.1	S S V W M M E K M M G F, I M D M M M
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404	BC5253 BC5254 BC5255 BC5263 BC5264 BC5265 BC5267 BC5269 BC5271 BC5272 BC5273 BC5277 BC5278 BC5288 BC5303	YvrO YknX LytR YveT SpsC YwqD YwqC	hypothetical Membrane Spanning Protein ABC transporter permease protein ABC transporter ATP-binding protein periplasmic component of efflux system UDP-glucose 4-epimerase EFSX protein Transcriptional regulator, LytR family Glycosyltransferase Amylovoran biosynthesis AmsK UDP-N-acetylglucosamine 4-epimerase Carbamoyl-phosphate synthase small chain UDP-bacillosamine synthetase Tyrosine-protein kinase (capsular polysaccharide biosynthesis) Chain length regulator (capsular polysaccharide biosynthesis) UDP-N-acetylglucosamine 1-carboxyvinyltransferase Integral membrane protein	-1.0 -1.5 -1.8 -0.6 -0.7 -0.9 -1.2 -0.7 -0.7 -0.8 -0.8	-1.1 -0.9 -1.7 -2.0 -1.9 -1.1 -2.1 -1.4 -1.2 -1.5 -0.8 -1.4 -1.1 -1.1	S S V V V M M M E K M M M M M M M M M M M M M M M
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404	BC5253 BC5254 BC5255 BC5263 BC5264 BC5265 BC5267 BC5267 BC5272 BC5272 BC5273 BC5273 BC5278 BC5288 BC5288 BC5303 BC5312	YvrO YknX LytR YveT SpsC YwqD YwqC	hypothetical Membrane Spanning Protein ABC transporter permease protein ABC transporter ATP-binding protein periplasmic component of efflux system UDP-glucose 4-epimerase EFSX protein Transcriptional regulator, LytR family Glycosyltransferase Amylovoran biosynthesis AmsK UDP-N-acetylglucosamine 4-epimerase Carbamoyl-phosphate synthase small chain UDP-bacillosamine synthetase Tyrosine-protein kinase (capsular polysaccharide biosynthesis) Chain length regulator (capsular polysaccharide biosynthesis) UDP-N-acetylglucosamine 1-carboxyvinyltransferase Integral membrane protein ATP synthase A chain	-1.0 -1.5 -1.8 -0.6 -0.7 -0.9 -1.2 -0.7 -0.7 -0.8 -0.8	-1.1 -0.9 -1.7 -2.0 -1.9 -1.1 -2.1 -1.4 -1.2 -1.5 -0.8 -1.4 -1.1 -1.1 -0.6 -0.8	S S V V M M E K M M M G F, I M D M S C
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404	BC5253 BC5254 BC5255 BC5263 BC5264 BC5265 BC5267 BC5269 BC5271 BC5272 BC5273 BC5277 BC5278 BC5288 BC5303	YvrO YknX LytR YveT SpsC YwqD YwqC	hypothetical Membrane Spanning Protein ABC transporter permease protein ABC transporter ATP-binding protein periplasmic component of efflux system UDP-glucose 4-epimerase EFSX protein Transcriptional regulator, LytR family Glycosyltransferase Amylovoran biosynthesis AmsK UDP-N-acetylglucosamine 4-epimerase Carbamoyl-phosphate synthase small chain UDP-bacillosamine synthetase Tyrosine-protein kinase (capsular polysaccharide biosynthesis) Chain length regulator (capsular polysaccharide biosynthesis) UDP-N-acetylglucosamine 1-carboxyvinyltransferase Integral membrane protein	-1.0 -1.5 -1.8 -0.6 -0.7 -0.9 -1.2 -0.7 -0.7 -0.8 -0.8	-1.1 -0.9 -1.7 -2.0 -1.9 -1.1 -2.1 -1.4 -1.2 -1.5 -0.8 -1.4 -1.1 -1.1	S S V V V M M M E K M M M M M M M M M M M M M M M
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406	BC5253 BC5254 BC5255 BC5263 BC5264 BC5265 BC5267 BC5269 BC5271 BC5272 BC5273 BC5277 BC5288 BC5303 BC5303 BC5312 BC5328	YvrO YknX LytR YveT SpsC YwqD YwqC	hypothetical Membrane Spanning Protein ABC transporter permease protein ABC transporter ATP-binding protein periplasmic component of efflux system UDP-glucose 4-epimerase EPSX protein Transcriptional regulator, LytR family Glycosyltransferase Amylovoran biosynthesis AmsK UDP-N-acetylglucosamine 4-epimerase Carbamoyl-phosphate synthase small chain UDP-bacillosamine synthetase Tyrosine-protein kinase (capsular polysaccharide biosynthesis) Chain length regulator (capsular polysaccharide biosynthesis) UDP-N-acetylglucosamine 1-carboxyvinyltransferase Integral membrane protein ATP synthase A chain Methyltransferase	-1.0 -1.5 -1.8 -0.6 -0.7 -0.9 -1.2 -0.7 -0.7 -0.8 -0.8	-1.1 -0.9 -1.7 -2.0 -1.9 -1.1 -2.1 -1.4 -1.2 -1.5 -0.8 -1.4 -1.1 -0.6 -0.8 -1.2	S S V V W M M E K M M M M M M M G F, I M D M M S C J
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407	BC5253 BC5254 BC5255 BC5263 BC5264 BC5265 BC5267 BC5269 BC5271 BC5272 BC5277 BC5278 BC5278 BC5278 BC5278 BC5238 BC5303 BC5312 BC5328 BC5330	YvrO YknX LytR YveT SpsC YwqD YwqC	hypothetical Membrane Spanning Protein ABC transporter permease protein ABC transporter ATP-binding protein periplasmic component of efflux system UDP-glucose 4-epimerase EPSX protein Transcriptional regulator, LytR family Glycosyltransferase Amylovoran biosynthesis AmsK UDP-N-acetylglucosamine 4-epimerase Carbamoyl-phosphate synthase small chain UDP-bacillosamine synthetase Tyrosine-protein kinase (capsular polysaccharide biosynthesis) Chain length regulator (capsular polysaccharide biosynthesis) UDP-N-acetylglucosamine 1-carboxyvinyltransferase Integral membrane protein ATP synthase A chain Methyltransferase Thymidine kinase	-1.0 -1.5 -1.8 -0.6 -0.7 -0.9 -1.2 -0.7 -0.7 -0.8 -0.8	-1.1 -0.9 -1.7 -2.0 -1.9 -1.1 -1.4 -1.2 -1.5 -0.8 -1.4 -1.1 -0.6 -0.8 -1.2 -0.7	S S V V V M M M E E K M M M M M D M S C C J F
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408	BC5253 BC5254 BC5255 BC5263 BC5264 BC5265 BC5266 BC5267 BC5271 BC5272 BC5277 BC5277 BC5278 BC5278 BC5303 BC5312 BC5328 BC5303 BC5312 BC5328	YvrO YknX LytR YveT SpsC YwqD YwqC AtpB YwkE	hypothetical Membrane Spanning Protein ABC transporter permease protein ABC transporter ATP-binding protein periplasmic component of efflux system UDP-glucose 4-epimerase EFSX protein Transcriptional regulator, LytR family Glycosyltransferase Amylovoran biosynthesis AmsK UDP-N-acetylglucosamine 4-epimerase Carbamoyl-phosphate synthase small chain UDP-bacillosamine synthetase Tyrosine-protein kinase (capsular polysaccharide biosynthesis) Chain length regulator (capsular polysaccharide biosynthesis) UDP-N-acetylglucosamine 1-carboxyvinyltransferase Integral membrane protein ATP synthase A chain Methyltransferase Thymidine kinase Transcription termination factor rho	-1.0 -1.5 -1.8 -0.6 -0.7 -0.9 -1.2 -0.7 -0.7 -0.8 -0.8	-1.1 -0.9 -1.7 -2.0 -1.9 -1.1 -1.1 -1.2 -1.5 -0.8 -1.4 -1.1 -0.6 -0.8 -1.2 -0.7 -0.6	S S V V V M M M E K M M M M M D M S C J J F K K
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407	BC5253 BC5254 BC5255 BC5263 BC5264 BC5265 BC5267 BC5269 BC5271 BC5272 BC5277 BC5278 BC5278 BC5278 BC5278 BC5238 BC5303 BC5312 BC5328 BC5330	YvrO YknX LytR YveT SpsC YwqD YwqC	hypothetical Membrane Spanning Protein ABC transporter permease protein ABC transporter ATP-binding protein periplasmic component of efflux system UDP-glucose 4-epimerase EFSX protein Transcriptional regulator, LytR family Glycosyltransferase Amylovoran biosynthesis AmsK UDP-N-acetylglucosamine 4-epimerase Carbamoyl-phosphate synthase small chain UDP-bacillosamine synthetase Tyrosine-protein kinase (capsular polysaccharide biosynthesis) Chain length regulator (capsular polysaccharide biosynthesis) UDP-N-acetylglucosamine 1-carboxyvinyltransferase Integral membrane protein ATP synthase A chain Methyltransferase Thymidine kinase Transcription termination factor rho CTP synthase	-1.0 -1.5 -1.8 -0.6 -0.7 -0.9 -1.2 -0.7 -0.7 -0.8 -0.8	-1.1 -0.9 -1.7 -2.0 -1.9 -1.1 -2.1 -1.4 -1.2 -1.5 -0.8 -1.4 -1.1 -1.1 -0.6 -0.8 -1.2 -0.7 -0.6 -0.7	S S S V V V M M M E E K M M M G F, I M M S C C J F K F
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408	BC5253 BC5254 BC5255 BC5263 BC5264 BC5265 BC5266 BC5267 BC5271 BC5272 BC5277 BC5277 BC5278 BC5278 BC5303 BC5312 BC5328 BC5303 BC5312 BC5328	YvrO YknX LytR YveT SpsC YwqD YwqC AtpB YwkE	hypothetical Membrane Spanning Protein ABC transporter permease protein ABC transporter ATP-binding protein periplasmic component of efflux system UDP-glucose 4-epimerase EFSX protein Transcriptional regulator, LytR family Glycosyltransferase Amylovoran biosynthesis AmsK UDP-N-acetylglucosamine 4-epimerase Carbamoyl-phosphate synthase small chain UDP-bacillosamine synthetase Tyrosine-protein kinase (capsular polysaccharide biosynthesis) Chain length regulator (capsular polysaccharide biosynthesis) UDP-N-acetylglucosamine 1-carboxyvinyltransferase Integral membrane protein ATP synthase A chain Methyltransferase Thymidine kinase Transcription termination factor rho	-1.0 -1.5 -1.8 -0.6 -0.7 -0.9 -1.2 -0.7 -0.7 -0.8 -0.8	-1.1 -0.9 -1.7 -2.0 -1.9 -1.1 -1.1 -1.2 -1.5 -0.8 -1.4 -1.1 -0.6 -0.8 -1.2 -0.7 -0.6	S S V V V M M M E K M M M M M D M S C J J F K K
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410	BC5253 BC5254 BC5255 BC5263 BC5264 BC5265 BC5267 BC5269 BC5271 BC5272 BC5273 BC5277 BC5288 BC5303 BC5312 BC5328 BC5330 BC5332 BC5332 BC5332 BC5332 BC5333 BC5333	YvrO YknX LytR YveT SpsC YwqD YwqC AtpB YwkE	hypothetical Membrane Spanning Protein ABC transporter permease protein ABC transporter ATP-binding protein periplasmic component of efflux system UDP-glucose 4-epimerase EPSX protein Transcriptional regulator, LytR family Glycosyltransferase Amylovoran biosynthesis AmsK UDP-N-acetylglucosamine 4-epimerase Carbamoyl-phosphate synthase small chain UDP-bacillosamine synthetase Tyrosine-protein kinase (capsular polysaccharide biosynthesis) Chain length regulator (capsular polysaccharide biosynthesis) UDP-N-acetylglucosamine 1-carboxyvinyltransferase Integral membrane protein ATP synthase A chain Methyltransferase Thymidine kinase Transcription termination factor rho CTP synthase DNA-directed RNA polymerase delta chain	-1.0 -1.5 -1.8 -0.6 -0.7 -0.9 -1.2 -0.7 -0.7 -0.8 -0.8 -0.6	-1.1 -0.9 -1.7 -2.0 -1.9 -1.1 -2.1 -1.4 -1.2 -1.5 -0.8 -1.4 -1.1 -1.1 -0.6 -0.8 -1.2 -0.7 -0.7	S S V V M M E K M M G F, I M D M S C C J F K K F K
390 391 392 393 394 395 396 397 398 400 401 402 403 404 405 406 407 408 409 410 411	BC5253 BC5254 BC5255 BC5263 BC5264 BC5265 BC5267 BC5269 BC5271 BC5272 BC5273 BC5277 BC5278 BC5278 BC5278 BC5338 BC5332 BC5332 BC5332 BC5338 BC5332 BC5338 BC5338 BC5338 BC5338 BC5338 BC5338 BC5339 BC5365	YvrO YknX LytR YveT SpsC YwqD YwqC AtpB YwkE	hypothetical Membrane Spanning Protein ABC transporter permease protein ABC transporter ATP-binding protein periplasmic component of efflux system UDP-glucose 4-epimerase EFSX protein Transcriptional regulator, LytR family Glycosyltransferase Amylovoran biosynthesis AmsK UDP-N-acetylglucosamine 4-epimerase Carbamoyl-phosphate synthase small chain UDP-bacillosamine synthetase Tyrosine-protein kinase (capsular polysaccharide biosynthesis) Chain length regulator (capsular polysaccharide biosynthesis) UDP-N-acetylglucosamine 1-carboxyvinyltransferase Integral membrane protein ATP synthase A chain Methyltransferase Thymidine kinase Transcription termination factor rho CTP synthase DNA-directed RNA polymerase delta chain hypothetical protein	-1.0 -1.5 -1.8 -0.6 -0.7 -0.9 -1.2 -0.7 -0.7 -0.8 -0.8	-1.1 -0.9 -1.7 -2.0 -1.9 -1.1 -1.4 -1.2 -1.5 -0.8 -1.4 -1.1 -0.6 -0.8 -0.7 -0.7 -0.7 -0.9	S S V V V M M M E E K M M M M D M S C J F K K F K S S
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 411 411	BC5253 BC5254 BC5255 BC5263 BC5264 BC5265 BC5267 BC5269 BC5271 BC5272 BC5277 BC5278 BC5278 BC5303 BC5312 BC5328 BC5332 BC5332 BC5332 BC5332 BC5332 BC5332 BC5333 BC5332 BC5333 BC5333 BC5333 BC53365 BC5367	YvrO YknX LytR YveT SpsC YwqD YwqC AtpB YwkE	hypothetical Membrane Spanning Protein ABC transporter permease protein ABC transporter ATP-binding protein periplasmic component of efflux system UDP-glucose 4-epimerase EFSX protein Transcriptional regulator, LytR family Glycosyltransferase Amylovoran biosynthesis AmsK UDP-N-acetylglucosamine 4-epimerase Carbamoyl-phosphate synthase small chain UDP-bacillosamine synthetase Tyrosine-protein kinase (capsular polysaccharide biosynthesis) Chain length regulator (capsular polysaccharide biosynthesis) UDP-N-acetylglucosamine 1-carboxyvinyltransferase Integral membrane protein ATP synthase A chain Methyltransferase Thymidine kinase Transcription termination factor rho CTP synthase DNA-directed RNA polymerase delta chain hypothetical protein hypothetical protein	-1.0 -1.5 -1.8 -0.6 -0.7 -0.9 -1.2 -0.7 -0.8 -0.8 -0.6	-1.1 -0.9 -1.7 -2.0 -1.9 -1.1 -2.1 -1.4 -1.2 -1.5 -0.8 -1.4 -1.1 -1.1 -0.6 -0.8 -1.2 -0.7 -0.7	S S S V V V M M M E E K M M M G F, I M M M S C J F K K S S S
390 391 392 393 394 395 396 397 398 400 401 402 403 404 405 406 407 408 409 410 411	BC5253 BC5254 BC5255 BC5263 BC5264 BC5265 BC5267 BC5269 BC5271 BC5272 BC5273 BC5277 BC5278 BC5278 BC5278 BC5338 BC5332 BC5332 BC5332 BC5338 BC5332 BC5338 BC5338 BC5338 BC5338 BC5338 BC5338 BC5339 BC5365	YvrO YknX LytR YveT SpsC YwqD YwqC AtpB YwkE	hypothetical Membrane Spanning Protein ABC transporter permease protein ABC transporter ATP-binding protein periplasmic component of efflux system UDP-glucose 4-epimerase EFSX protein Transcriptional regulator, LytR family Glycosyltransferase Amylovoran biosynthesis AmsK UDP-N-acetylglucosamine 4-epimerase Carbamoyl-phosphate synthase small chain UDP-bacillosamine synthetase Tyrosine-protein kinase (capsular polysaccharide biosynthesis) Chain length regulator (capsular polysaccharide biosynthesis) UDP-N-acetylglucosamine 1-carboxyvinyltransferase Integral membrane protein ATP synthase A chain Methyltransferase Thymidine kinase Transcription termination factor rho CTP synthase DNA-directed RNA polymerase delta chain hypothetical protein	-1.0 -1.5 -1.8 -0.6 -0.7 -0.9 -1.2 -0.7 -0.7 -0.8 -0.8 -0.6	-1.1 -0.9 -1.7 -2.0 -1.9 -1.1 -1.4 -1.2 -1.5 -0.8 -1.4 -1.1 -0.6 -0.8 -0.7 -0.7 -0.7 -0.9	S S V V V M M M E E K M M M M D M S C J F K K F K S S
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 411 413	BC5253 BC5254 BC5255 BC5263 BC5263 BC5264 BC5265 BC5267 BC5272 BC5272 BC5273 BC5277 BC5278 BC5278 BC5278 BC5288 BC5303 BC5312 BC5328 BC5330 BC530 BC5330 BC5330 BC5330 BC5330 BC5330 BC5330 BC530 B	YvrO YknX LytR YveT SpsC YwqD YwqC AtpB YwkE PyrG RpoE YwiB YqiK	hypothetical Membrane Spanning Protein ABC transporter permease protein ABC transporter ATP-binding protein periplasmic component of efflux system UDP-glucose 4-epimerase EPSX protein Transcriptional regulator, LytR family Glycosyltransferase Amylovoran biosynthesis AmsK UDP-N-acetylglucosamine 4-epimerase Carbamoyl-phosphate synthase small chain UDP-bacillosamine synthetase Tyrosine-protein kinase (capsular polysaccharide biosynthesis) Chain length regulator (capsular polysaccharide biosynthesis) UDP-N-acetylglucosamine 1-carboxyvinyltransferase Integral membrane protein ATP synthase A chain Methyltransferase Thymidine kinase Transcription termination factor rho CTP synthase DNA-directed RNA polymerase delta chain hypothetical protein hypothetical protein Glycerophosphoryl diester phosphodiesterase	-1.0 -1.5 -1.8 -0.6 -0.7 -0.9 -1.2 -0.7 -0.8 -0.8 -0.6	-1.1 -0.9 -1.7 -2.0 -1.9 -1.1 -2.1 -1.4 -1.2 -1.5 -0.8 -1.4 -1.1 -1.1 -0.6 -0.8 -1.2 -0.7 -0.7 -0.6 -0.7	S S S V V V M M M E E K M M M G F, I M D D M M S C C J F K K F K S S C C
390 391 392 393 394 395 396 397 398 400 401 402 403 404 405 407 408 409 410 411 411 412 413	BC5253 BC5254 BC5255 BC5263 BC5264 BC5265 BC5267 BC5269 BC5271 BC5272 BC5273 BC5277 BC5278 BC5278 BC5288 BC5303 BC5312 BC5332 BC5332 BC5332 BC5332 BC5332 BC5334 BC5365 BC5367	YvrO YknX LytR YveT SpsC YwqD YwqC AtpB YwkE PyrG RpoE YwiB YqiK YwhC	hypothetical Membrane Spanning Protein ABC transporter permease protein ABC transporter ATP-binding protein periplasmic component of efflux system UDP-glucose 4-epimerase EPSX protein Transcriptional regulator, LytR family Glycosyltransferase Amylovoran biosynthesis AmsK UDP-N-acetylglucosamine 4-epimerase Carbamoyl-phosphate synthase small chain UDP-bacillosamine synthetase Tyrosine-protein kinase (capsular polysaccharide biosynthesis) Chain length regulator (capsular polysaccharide biosynthesis) UDP-N-acetylglucosamine 1-carboxyvinyltransferase Integral membrane protein ATP synthase A chain Methyltransferase Thymidine kinase Transcription termination factor rho CTP synthase DNA-directed RNA polymerase delta chain hypothetical protein hypothetical protein Glycerophosphoryl diester phosphodiesterase Membrane metalloprotease	-1.0 -1.5 -1.8 -0.6 -0.7 -0.9 -1.2 -0.7 -0.8 -0.8 -0.6	-1.1 -0.9 -1.7 -2.0 -1.9 -1.1 -1.1 -1.2 -1.5 -0.8 -1.4 -1.1 -0.6 -0.8 -1.2 -0.7 -0.6 -0.7 -0.9 -1.4	S S V V M M M E K M M M G F, I M D M S C J F K S S C R
390 391 392 393 394 395 397 398 400 401 402 406 408 409 410 411 412 413	BC5253 BC5254 BC5255 BC5263 BC5264 BC5265 BC5267 BC5269 BC5271 BC5272 BC5277 BC5278 BC5278 BC5278 BC5288 BC5303 BC5312 BC5328 BC5338 BC5338 BC5338 BC5338 BC5338 BC5338 BC5338 BC5338 BC5339 BC5365 BC5374 BC5374 BC5377 BC5386	YvrO YknX LytR YveT SpsC YwqD YwqC AtpB YwkE PyrG RpoE YwiB YqiK	hypothetical Membrane Spanning Protein ABC transporter permease protein ABC transporter ATP-binding protein periplasmic component of efflux system UDP-glucose 4-epimerase EFSX protein Transcriptional regulator, LytR family Glycosyltransferase Amylovoran biosynthesis AmsK UDP-N-acetylglucosamine 4-epimerase Carbamoyl-phosphate synthase small chain UDP-bacillosamine synthetase Tyrosine-protein kinase (capsular polysaccharide biosynthesis) Chain length regulator (capsular polysaccharide biosynthesis) UDP-N-acetylglucosamine 1-carboxyvinyltransferase Integral membrane protein ATP synthase A chain Methyltransferase Thymidine kinase Transcription termination factor rho CTP synthase DNA-directed RNA polymerase delta chain hypothetical protein hypothetical protein hypothetical protein hypothetical protein Glycerophosphoryl diester phosphodiesterase Membrane metalloprotease Lipoate-protein ligase A	-1.0 -1.5 -1.8 -0.6 -0.7 -0.9 -1.2 -0.7 -0.8 -0.8 -0.6	-1.1 -0.9 -1.7 -2.0 -1.9 -1.1 -1.2 -1.5 -0.8 -1.4 -1.1 -0.6 -0.8 -1.2 -0.7 -0.6 -0.7 -0.9 -1.4	S S S V V V M M M E E K M M M G F, I M M M S C G J F K K S S C C R H
390 391 392 393 394 395 396 397 398 400 401 402 403 404 405 407 408 409 410 411 411 412 413	BC5253 BC5254 BC5255 BC5263 BC5264 BC5265 BC5267 BC5269 BC5271 BC5272 BC5273 BC5277 BC5278 BC5278 BC5288 BC5303 BC5312 BC5332 BC5332 BC5332 BC5332 BC5332 BC5334 BC5365 BC5367	YvrO YknX LytR YveT SpsC YwqD YwqC AtpB YwkE PyrG RpoE YwiB YqiK YwhC	hypothetical Membrane Spanning Protein ABC transporter permease protein ABC transporter ATP-binding protein periplasmic component of efflux system UDP-glucose 4-epimerase EPSX protein Transcriptional regulator, LytR family Glycosyltransferase Amylovoran biosynthesis AmsK UDP-N-acetylglucosamine 4-epimerase Carbamoyl-phosphate synthase small chain UDP-bacillosamine synthetase Tyrosine-protein kinase (capsular polysaccharide biosynthesis) Chain length regulator (capsular polysaccharide biosynthesis) UDP-N-acetylglucosamine 1-carboxyvinyltransferase Integral membrane protein ATP synthase A chain Methyltransferase Thymidine kinase Transcription termination factor rho CTP synthase DNA-directed RNA polymerase delta chain hypothetical protein hypothetical protein Glycerophosphoryl diester phosphodiesterase Membrane metalloprotease	-1.0 -1.5 -1.8 -0.6 -0.7 -0.9 -1.2 -0.7 -0.8 -0.8 -0.6	-1.1 -0.9 -1.7 -2.0 -1.9 -1.1 -1.1 -1.2 -1.5 -0.8 -1.4 -1.1 -0.6 -0.8 -1.2 -0.7 -0.6 -0.7 -0.9 -1.4	S S V V M M M E K M M M G F, I M D M S C J F K S S C R

440	DOFFOOD		1 1 2 1 2		4.5	
418	BC5393		hypothetical protein		-1.5	S
419	BC5408	YfnB	2-haloalkanoic acid dehalogenase/ putative phosphatase	-6.2	-7.2	R
			N-acetylglucosaminyldiphosphoundecaprenol N-acetyl-beta-D-			
420	BC5419	TagA	mannosaminyltransferase		-1.2	M
421	BC5420		Glycosyltransferase	-0.6		M
422	BC5426	YkhA	Acyl-CoA hydrolase		-0.8	I
423	BC5427		Glycosyltransferase involved in cell wall biogenesis		-0.7	M
424	BC5429		Beta-1,3-N-acetylglucosaminyltransferase		-1.0	M
425	BC5430		Oligosaccharide translocase (flippase)		-0.7	R
426	BC5433	YfmM	ABC transporter ATP-binding protein uup		-1.0	R
427	BC5454		Molybdenum cofactor biosynthesis enzyme and related Fe-S oxido	reductases	-1.5	R
428	BC5461	YycH	hypothetical membrane protein yycH	-0.8	-1.2	S
429	BC5462	YycG	Two-component sensor kinase yycG		-0.7	T
430	BC5474	RpsR	SSU ribosomal protein S18P		-0.7	J
431	BC5479	YkuT	Mechanosensitive ion channel		-0.6	M
432	BC5482		Sporulation initiation inhibitor protein soj		-0.6	D
433	BC5485	GidA	Glucose inhibited division protein A		-0.8	D
434	BC5487		Jag protein		-1.1	R
435	BC5489	RnpA	Ribonuclease P protein component	-0.7		J

Supplementary Table S2B: Induced and downregulated genes upon heat shock (30°C to 42°C) in $\it Bacillus cereus ATCC14579 wt$

No	Locus Tag	Gene	Annotation	log2 expression	coo
1	BC1000	bc1000	hypothetical Membrane Spanning Protein	6.8	S
2	BC0863	katE	Catalase	6.6	P
3	BC0998	yflT	General stress protein 17M	6.6	S
4	BC0862	vfkM	Protease I	6.4	R
5	BC1005	rsbM	Bacterioferritin	5.6	P
6	BC1003	rsbW	Anti-sigma B factor	5.4	T
7	BC1004	sigB	RNA polymerase sigma-B factor	5.1	K
8	BC1168	clpB	ClpB protein	5.1	0
9	BC1011	bc1011	hypothetical protein	5.0	S
10	BC1002	rshV	Anti-sigma B factor antagonist	4.9	Т
11	BC0999	#N/A	CsbD family protein	4.6	S
12	BC2214	bc2214	Small heat shock protein	4.6	0
13	BC0295	groEL	60 kDa chaperonin GROEL	4.5	0
14	BC0293 BC0101	mcsB	Arginine kinase	4.4	E
15	BC0294	groES	10 kDa chaperonin GROES	4.4	0
16	BC2134	nasF	Uroporphyrin-III C-methyltransferase	4.3	Н
17	BC0100	mcsA	ClpC ATPase	4.3	S
18	BC0100	clpC	Negative regulator of genetic competence clpC/mecB	4.3	0
19	BC4365	bc4365	Alcohol dehydrogenase	4.1	C
20	BC4363 BC2119	narH	Respiratory nitrate reductase beta chain	4.1	C
21	BC2119 BC2135			3.8	PR
22	BC0099	nasE	Nitrite reductase [NAD(P)H] small subunit	3.8	– PR K
		ctsR	Transcriptional regulator ctsR		S
23	BC3131 BC2133	bc3131	hypothetical protein	3.7	
24		bc2133	CbiX protein		S
25	BC4454	bc4454	hypothetical protein	3.6	S
26	BC4455	bc4455	IG hypothetical 17788	3.6	S
27	BC4456	bc4456	Type I restriction-modification system restriction subunit	3.6	V
28	BC2120	narJ	Respiratory nitrate reductase delta chain	3.6	С
29	BC4457	bc4457	Type I restriction-modification system restriction subunit	3.6	V
30	BC2136	nasD	Nitrite reductase [NAD(P)H] large subunit	3.5	С
31	BC3130	bc3130	hypothetical protein	3.5	S
32	BC2128	narK	Nitrite extrusion protein	3.3	P
33	BC4458	bc4458	Type I restriction-modification system specificity subunit	3.2	V
34	BC3603	bc3603	Anaerobic ribonucleoside-triphosphate reductase	3.2	F
35	BC4793	bc4793	Cytochrome d ubiquinol oxidase subunit II	3.2	C
36	BC1941	cydD	Transport ATP-binding protein cydC	3.2	CO
37	BC1694	bc1694	hypothetical protein	3.2	S
38	BC4459	bc4459	Type I restriction-modification system methylation subunit	3.1	V
39	BC1010	bc1010	hypothetical protein	3.1	S
40	BC5211	bc5211	PTS system, lichenan oligosaccharide-specific IIC component	3.0	G
41	BC5152	clpP	ATP-dependent Clp protease proteolytic subunit	2.9	OU
42	BC1693	bc1693	putative hydrolase	2.9	R
43	BC0492	bc0492	Pyruvate formate-lyase activating enzyme	2.8	0
44	BC0884	alsD	Alpha-acetolactate decarboxylase	2.7	Q
45	BC2121	narI	Respiratory nitrate reductase gamma chain	2.7	С
46	BC2118	narG	Respiratory nitrate reductase alpha chain	2.7	C

	_				_
47	BC1009	bc1009	putative phosphocarrier protein	2.7	S
48	BC1695	bc1695	Transcriptional regulator, MarR family	2.7	K
49	BC5212	bc5212	PTS sugar transporter subunit IIB	2.6	S
50	BC0883	alsS	Acetolactate synthase large subunit	2.6	EH
51	BC3883	pyrF	Orotidine 5'-phosphate decarboxylase	2.6	F
52	BC1940	cydC	Transport ATP-binding protein cydD	2.6	CO
53	BC3884	pyrD	Dihydroorotate dehydrogenase, catalytic subunit	2.5	F
54	BC0707	bc0707	Ferrous iron transport protein B	2.5	P
55	BC4312	dnaK	Chaperone protein dnaK	2.5	0
56	BC4460	bc4460	Type I restriction-modification system specificity subunit	2.5	V
57	BC4792	bc4792	Cytochrome d ubiquinol oxidase subunit I	2.5	С
58	BC0491	bc0491	Formate acetyltransferase	2.5	С
59	BC3882	pyrE	Orotate phosphoribosyltransferase	2.5	F
60	BC2125	bc2125	Molybdopterin biosynthesis MoeA protein	2.4	Н
61	BC4313	grpE	GrpE protein	2.4	0
62	BC2220	adhA	Alcohol dehydrogenase	2.4	R
63	BC2123	bc2123	Molybdenum cofactor biosynthesis protein A	2.3	Н
			NADH oxidase		C
64	BC2023	yqjM		2.3	
65	BC1305	yvbY	hypothetical protein	2.2	S
66	BC1923	ydbI	hypothetical Membrane Spanning Protein	2.2	R
			Non-specific DNA-binding protein Dps / Iron-binding ferritin-like antioxidant		_
67	BC2011	dps1	protein / Ferroxidase	2.2	P
68	BC1126	bc1126	S-layer homology domain	2.2	S
69	BC3886	bc3886	Carbamoyl-phosphate synthase large chain	2.2	EF
70	BC0708	bc0708	Ferrous iron transport protein B	2.2	P
71	BC2165	bc2165	hypothetical Membrane Spanning Protein	2.2	S
72	BC2941	aroF	Chorismate synthase	2.1	E
73	BC1304	yvfW	iron-sulfur cluster-binding protein	2.1	С
74	BC1411	hisI	Phosphoribosyl-AMP cyclohydrolase	2.1	Е
75	BC2942	aroA	Chorismate mutase	2.1	Е
76	BC1317	bc1317	Acetoacetyl-CoA reductase	2.1	IQR
77	sRNABC050			2.1	S
78	BC2939	tyrA	Arogenate dehydrogenase	2.1	E
79	BC0482	nagP	PTS system, N-acetylglucosamine-specific IIBC component	2.1	G
80	BC2940	bc2940	Histidinol-phosphate aminotransferase	2.1	E
			Cytochrome d ubiquinol oxidase subunit II		C
81	BC1939	cydB	•	2.0	
82	BC4469	hemB	Delta-aminolevulinic acid dehydratase	2.0	Н
83	BC4241	yqgY	hypothetical protein	2.0	S
84	BC3439	bc3439	Hydroxylamine reductase	2.0	С
85	BC0668	ydjL	(R,R)-butanediol dehydrogenase	2.0	ER
86	BC3885	pyrK	Dihydroorotate dehydrogenase electron transfer subunit	2.0	HC
87	BC5012	ydhL	Chloramphenicol resistance protein	2.0	G
88	BC0371	bc0371	Mandelate racemase/muconate lactonizing enzyme family protein	1.9	MR
89	BC1999	iolS	IolS protein	1.9	С
90	BC2166	bc2166	Transcriptional regulator, TetR family	1.9	K
91	BC5018	bc5018	hypothetical Membrane Spanning Protein	1.9	S
92	BC3602	bc3602	Anaerobic ribonucleoside-triphosphate reductase activating protein	1.9	0
93	BC4268	bc4268	Phosphate transport system permease protein pstC	1.9	P
94	BC1717	ygaJ	Peptidase E	1.8	Е
95	BC1965	thrC	Threonine synthase	1.8	Е
96	BC2341	#N/A	MMPL family transporter	1.8	S
97	BC4971	bc4971	Phosphoglycerate mutase	1.8	G
98	BC3437	bc3437	hypothetical Cytosolic Protein	1.8	S
99	BC0709	bc0709	Ferrous iron transport protein A	1.8	P
100	BC3759	bc3759	6-phospho-beta-glucosidase	1.8	G
101	BC0817	ywaF	hypothetical Membrane Spanning Protein	1.8	S
101	BC2935	#N/A	MMPL family transporter	1.8	S
102	DCZ333	rsbY/	white braining transporter	1.0	J
102	BC1006	rso r / rsbP	Sigma factor sigB regulation protein rehit	1.8	TK
103	BC1006		Sigma factor sigB regulation protein rsbU		
104	BC2758	bc2758	Metal-dependent hydrolase	1.8	R
105	BC0805	bc0805	outer surface protein	1.8	S
106	BC1523	bc1523	Menaquinol-cytochrome c reductase cytochrome b subunit	1.8	С
107	BC5055	bc5055	Wall-associated protein precursor	1.8	S
108	BC4468	hemL	Glutamate-1-semialdehyde 2,1-aminomutase	1.8	Н
109	BC4055	nagA	N-acetylgalactosamine-6-phosphate deacetylase	1.8	G
110	BC3356	bc3356	Transcriptional regulator, MerR family	1.8	K
111	BC1780	ilvD	Dihydroxy-acid dehydratase	1.7	EG
112	BC3435	bc3435	Daunorubicin resistance transmembrane protein	1.7	V
	BC1966	thrB	Homoserine kinase	1.7	Е
113	BC4870	bc4870	L-lactate dehydrogenase	1.7	С
113 114	DC4010		Peptidase family M20	1.7	E
114		yaiN			_
114 115	BC2978	yqjN hisB	Imidazoleglycerol-phosphate dehydratase		E
114 115 116	BC2978 BC1407	hisB	Imidazoleglycerol-phosphate dehydratase	1.7	E S
114 115 116 117	BC2978 BC1407 BC1778	hisB bc1778	ACT domain-containing protein	1.7 1.7	S
114 115 116	BC2978 BC1407	hisB		1.7	

120	BC4140	bc4140	Mg(2+) transport ATPase, P-type	1.7	P
121	BC5219	bc5219	Integral membrane protein	1.7	S
122	BC1413	bc1413	Histidinol-phosphatase	1.7	ER
123	BC1922	bc1922	Glutamyl-tRNA(Gln) amidotransferase subunit A	1.7	J
					c
124	BC0612	bc0612	L-lactate permease	1.7	
125	BC1303	yvfV	(S)-2-hydroxy-acid oxidase, iron-sulfur chain	1.7	С
126	BC3616	citB	Aconitate hydratase	1.7	С
127	BC4471	hemC	Porphobilinogen deaminase	1.7	Н
128	BC1308	ywcJ	Nitrite transporter	1.7	P
129	BC0444	terD	Tellurium resistance protein terD	1.7	T
130	BC4470	hemD	Uroporphyrinogen-III synthase	1.7	Н
131	sRNABC051			1.7	S
132	BC1316	bc1316	PhaR protein	1.6	S
133	BC4926	yumC	Thioredoxin reductase	1.6	0
134	BC5322	ywrF	Nitrilotriacetate monooxygenase component B	1.6	R
					P
135	BC5207	bc5207	Chromate transport protein	1.6	
136	BC0442	yceC	Tellurium resistance protein terD	1.6	T
137	BC1524	qcrC	Menaquinol-cytochrome c reductase cytochrome c subunit	1.6	С
138	BC2757	bc2757	Tryptophan 2,3-dioxygenase	1.6	E
139	BC1007	bc1007	Chemotaxis protein methyltransferase	1.6	NT
140	BC4972	bc4972	DNA-binding protein	1.6	S
141	BC4311	dnaJ	Chaperone protein dnaJ	1.6	0
142	BC4121	nhaC	Tyrosine transporter	1.6	С
143	BC5388	ywfI	IG hypothetical 16794	1.6	S
144	BC1522	qcrA	Menaquinol-cytochrome c reductase iron-sulfur subunit	1.6	С
145	BC5003	yusK	3-ketoacyl-CoA thiolase	1.6	I
			3		
146	BC1025	bc1025	Glyoxalase family protein	1.6	E
147	BC0103	radA	DNA repair protein RadA	1.6	0
148	BC4927	bc4927	Cell surface protein	1.6	L
149	BC0104	yacK	DNA-binding protein	1.6	R
150	BC3555	dhaS	Aldehyde dehydrogenase	1.6	С
			Magnesium and cobalt efflux protein corC		R
151	BC3355	yrkA		1.6	
152	BC3887	bc3887	Carbamoyl-phosphate synthase small chain	1.5	EF
153	BC3760	yckE	6-phospho-beta-glucosidase	1.5	G
154	BC0870	yheI	Multidrug resistance ABC transporter ATP-binding and permease protein	1.5	V
155	BC3467	bc3467	Ferrichrome transport system permease protein fhuG	1.5	P
156	BC4776	bc4776	hypothetical protein	1.5	S
157	BC0443	yceE	Tellurium resistance protein terD	1.5	T
158	BC3758	bc3758	Transcriptional regulator, GntR family	1.5	K
159	BC4472	hemX	HEMX protein	1.5	0
160	BC1070	hemY	Protoporphyrinogen oxidase	1.5	Н
161			Spore coat protein gerQ	1.5	S
	BC5391	ywdL			
162	BC1008	rsbK	Two component system histidine kinase	1.5	T
163	BC4584	ytaG	Dephospho-CoA kinase	1.5	Н
164	BC2759	bc2759	L-kynurenine hydrolase	1.4	E
165	BC0802	yhfP	Alcohol dehydrogenase	1.4	CR
166	BC0663	rbsC	Ribose transport system permease protein rbsC	1.4	G
					K
167	BC4314	hrcA	Heat-inducible transcription repressor hrcA	1.4	
168	BC0408	bc0408	Arginine/ornithine antiporter	1.4	Е
169	BC4902	alaR	Transcriptional regulator, AsnC family	1.4	K
170	BC4995	bc4995	regulatory protein (pfoS/R)	1.4	R
171	BC4901	alaT	Aromatic amino acid aminotransferase	1.4	E
172	BC4703		Transcriptional regulator, DeoR family	1.4	KG
		ytzE			
173	BC2351	bc2351	Transcriptional regulator, MerR family	1.4	K
174	BC4898	bc4898	Glucose-6-phosphate isomerase	1.4	G
175	BC0937	citT	Two-component response regulator citT	1.4	KT
176	BC4198	yqhT	Xaa-Pro dipeptidase	1.4	Е
177	BC1225	yjcG	2'-5' RNA ligase	1.3	J
	BC3123				
178		bc3123	hydrolase	1.3	Q
179	BC5022	bc5022	Cytolysin immunity CylI	1.3	S
180	BC0806	licR	Transcription antiterminator, BglG family	1.3	GTK
181	BC4481	ysoA	TPR repeat protein	1.3	R
182	BC1498	ypfD	SSU ribosomal protein S1P	1.3	J
183	BC2130	bc2130	Transporter	1.3	R
184	BC2171	bc2171	Proline iminopeptidase	1.3	R
185	BC4199	yqhS	3-dehydroquinate dehydratase	1.3	Е
186	BC1128	bc1128	Isocitrate lyase	1.3	С
187	BC1964	bc1964	Homoserine dehydrogenase	1.3	Е
188	BC2479	bc2479	ABC transporter permease protein	1.3	V
189	BC4614	ykvY	Xaa-Pro dipeptidase	1.3	E
190	BC1588	bc1588	Secreted polysaccharide polymerase	1.3	M
191	BC3787	ymfG	Zinc protease	1.3	R
	BC5035	yitW	Phenylacetic acid degradation protein paaD	1.3	R
192			3-ovoacyl-lacyl-carrier proteinl reductage	1.2	IOb
192 193	BC0195	yjdA	3-oxoacyl-[acyl-carrier protein] reductase	1.3	IQR
192			3-oxoacyl-[acyl-carrier protein] reductase 6-phosphogluconate dehydrogenase Trehalose-6-phosphate hydrolase	1.3 1.3 1.3	IQR G G

196	BC1069	hemH	Ferrochelatase	1.3	Н
197	BC3438	bc3438	Transcriptional regulator, PadR family	1.3	K
198	BC5400	bc5400	Bacitracin transport ATP-binding protein bcrA	1.3	V
199	BC0631	treP	PTS system, trehalose-specific IIBC component	1.3	G
200	BC5220	bc5220	Lactoylglutathione lyase	1.3	E
201	BC1252	odhA	2-oxoglutarate dehydrogenase E1 component	1.3	С
202	BC0618	yfiZ	Iron(III) dicitrate transport system permease protein fecD	1.3	P
203	BC3000	bc3000	Proline/betaine transporter	1.2	GEPR
204	BC0237	bc0237	Galactose-1-phosphate uridylyltransferase	1.2	C
205	BC1937	bc1937	Luciferase-like monooxygenase	1.2	С
206	BC5062	bc5062	Tyrosyl-tRNA synthetase	1.2	J
207	BC0759	bc0759	Serine protease	1.2	R
208	BC4844	bc4844	4-Hydroxy-2-oxoglutarate aldolase	1.2	V
209	sRNABC052		Jan and an	1.2	S
210	BC1224	yjcF	Acetyltransferase	1.2	KR
211	BC1814	bc1814	Transcriptional regulator, TetR family	1.2	K
212	BC0662	rbsA	Ribose transport ATP-binding protein rbsA	1.2	G
213	BC0372	bc0372	hypothetical protein	1.2	S
				1.2	C
214	BC3947	pycA	Pyruvate carboxylase		
215	BC0555	bc0555	Glycine betaine transporter	1.2	M
216	BC4866	glgD	Glucose-1-phosphate adenylyltransferase	1.2	G
217	BC3993	bc3993	Polyphosphate kinase	1.2	P
218	BC5047	yvdC	IG hypothetical 16995	1.2	R
219	BC0439	bc0439	Prolyl-tRNA synthetase	1.2	J
220	BC2938	aroE	3-phosphoshikimate 1-carboxyvinyltransferase	1.2	E
221	BC3743	pepT	Peptidase T	1.2	Е
222	BC4693	ytoP	Deblocking aminopeptidase	1.2	G
223	BC2170	yocR	Sodium-dependent leucine transporter	1.2	R
224	BC4996	ldh	L-lactate dehydrogenase	1.2	С
225	BC1246	bc1246	NADH dehydrogenase	1.2	R
226	BC1412	bc1412	Phosphoribosyl-ATP pyrophosphatase	1.1	Е
227	BC4218	bc4218	ABC transporter permease protein	1.1	R
228	BC4219	bc4219	ABC transporter permease protein	1.1	R
229	BC2354	bc2354	Protoporphyrinogen oxidase	1.1	Н
230	BC5136	pgm	Phosphoglycerate mutase	1.1	G
231	BC4592	bc4592	Malate dehydrogenase	1.1	С
232	BC4084	yfjQ	Magnesium and cobalt transport protein corA	1.1	P
233	BC4310	yqeT	Ribosomal protein L11 methyltransferase	1.1	J
234	BC1619	nfrA	Oxygen-insensitive NADPH nitroreductase	1.1	С
235	BC4220	bc4220	ABC transporter permease protein	1.1	R
236	BC5312	atpB	ATP synthase A chain	1.1	С
237	BC1065	bc1065	hypothetical Membrane Spanning Protein	1.1	S
238	BC1415	bc1415	Glyoxylate reductase (NADP+)	1.1	CHR
239	BC5399	bc5399	Bacitracin transport permease protein BCRB	1.1	R
240	BC4900	yugI	S1-type RNA-binding domain	1.1	J
241	BC3668	alsR	Transcriptional regulators, LysR family	1.1	K
242	BC0539	yeeI	hypothetical Cytosolic Protein	1.1	S
243	BC0696	qoxC	Cytochrome aa3 quinol oxidase polypeptide III	1.1	С
244	BC0695	qoxD	Cytochrome aa3 quinol oxidase polypeptide IV	1.1	C
245	BC4240	bc4240	Transcriptional regulator	1.1	K
246	BC1587	bc1587	Oligosaccharide translocase (flippase)	1.1	R
				1.1	S
247	BC2370	bc2370	hypothetical protein		
248	BC3719	fruK	1-phosphofructokinase	1.1	G
249	BC5335	fbaA	Fructose-bisphosphate aldolase	1.0	G
250	BC3662	ccdA	Cytochrome c-type biogenesis protein ccdA	1.0	0
251	BC5140	gapA	Glyceraldehyde 3-phosphate dehydrogenase	1.0	G
252	BC1815	bc1815	Acetyltransferase	1.0	KR
253	BC3960	yktB	hypothetical protein	1.0	S
254	BC1833	bc1833	hypothetical protein	1.0	S
255	BC0617	bc0617	Iron ABC transporter permease	1.0	S
1	BC0123	bc0123	DNA-directed RNA polymerase beta' chain	-1.0	K
2	BC5427	bc5427	Glycosyltransferase involved in cell wall biogenesis	-1.0	M
3	BC3811	infB	Bacterial Protein Translation Initiation Factor 2 (IF-2)	-1.0	J
4	BC0244	appD	Oligopeptide transport ATP-binding protein oppD	-1.0	EP
5	BC3506	bc3506	Ribosomal-protein-alanine acetyltransferase	-1.0	J
6	BC3819	bc3819	1-deoxy-D-xylulose 5-phosphate reductoisomerase	-1.0	I
7	BC1713	bc1713	hypothetical Membrane Spanning Protein	-1.1	S
8	BC5050	bc5050	Nucleoside permease nupC	-1.1	F
9	BC3836	ylqF	GTP-binding protein	-1.1	R
10	BC5456	yydA	hypothetical Cytosolic Protein	-1.1	S
11	BC3814		N utilization substance protein A	-1.1	K
		nusA	iv utilization substance protein A		
12	sRNABC079	Δ-37	Call division mustain flaV	-1.1	S
13	BC3845	ftsY	Cell division protein ftsY	-1.1	U
14	BC4208	bc4208	hypothetical protein	-1.1	S
15	BC5278	ywqC	Chain length regulator (capsular polysaccharide biosynthesis)	-1.1	M
16	BC5358	bc5358	Collagen adhesion protein	-1.1	M

17	BC0122	bc0122	DNA-directed RNA polymerase beta chain	-1.1	K
18	sRNABC055			-1.1	S
19	BC3815	ylxS	hypothetical Cytosolic Protein	-1.1	S
20	BC5452	guaC	GMP reductase	-1.1	F
21	BC3820	cdsA	Phosphatidate cytidylyltransferase	-1.1	I
22	BC5006	yusM	Prolyne dehydrogenase	-1.1	Ē
23	BC1384		Bacitracin resistance protein (Putative undecaprenol kinase)	-1.1	V
		yubB			
24	BC1383	yojI	Na+ driven multidrug efflux pump	-1.1	V
25	BC0201	yitY	L-gulonolactone oxidase	-1.1	С
26	BC3699	bc3699	Antigen	-1.1	M
27	BC5034	yoaH	Methyl-accepting chemotaxis protein	-1.1	NT
28	BC5277	ywqD	Tyrosine-protein kinase (capsular polysaccharide biosynthesis)	-1.1	D
29	BC0190	glmS	Glucosaminefructose-6-phosphate aminotransferase [isomerizing]	-1.1	M
30	BC3846	bc3846	Chromosome partition protein smc	-1.1	D
			Glucose inhibited division protein A		
31	BC3830	bc3830	•	-1.1	J
32	BC4335	bc4335	Phosphatidylserine decarboxylase	-1.2	I
33	BC2006	tlpA	Methyl-accepting chemotaxis protein	-1.2	NT
34	BC3679	bc3679	Multidrug resistance ABC transporter ATP-binding and permease protein	-1.2	V
35	BC5255	yknX	periplasmic component of efflux system	-1.2	M
36	sRNABC002	3		-1.2	S
37	BC3837	bc3837	Signal peptidase I	-1.2	Ŭ
		nrdF		-1.2	F
38	BC1355		Ribonucleoside-diphosphate reductase beta chain		
39	BC1615	bc1615	Na+ driven multidrug efflux pump	-1.2	V
40	BC4136	bc4136	L-serine dehydratase	-1.2	Е
41	BC5264	bc5264	EPSX protein	-1.2	E
42	BC3812	ylxQ	LSU ribosomal protein L7AE	-1.2	J
43	BC5370	speB	Agmatinase	-1.2	E
44	BC0469	rlmD	23S rRNA (uracil(1939)-C(5))-methyltransferase RlmD	-1.2	S
		ши	200 Travit (uracii(1000)-C(0))-incuryirialistelase Milli		s
45	sRNABC005		Multidana analista ana anastria D	-1.2	
46	BC0202	yitZ	Multidrug resistance protein B	-1.2	GEPR
47	BC0874	yckI	Cystine transport ATP-binding protein	-1.2	E
48	BC0654	ybaR	Sulfate transporter	-1.2	P
49	BC3868	yloH	DNA-directed RNA polymerase omega chain	-1.2	K
50	BC2153	bc2153	hypothetical protein	-1.2	S
51	BC1277	bc1277	D-alanyl-D-alanine carboxypeptidase	-1.2	M
			CTP synthase		F
52	BC5338	pyrG		-1.2	
53	BC4295	recO	DNA repair protein recO	-1.2	L
54	BC3817	proS	Prolyl-tRNA synthetase	-1.2	J
55	BC4744	bc4744	hypothetical Membrane Spanning Protein	-1.2	S
56	BC3810	ylxP	hypothetical Cytosolic Protein	-1.2	S
57	BC5365	ywiB	hypothetical protein	-1.2	S
58	BC5106	bc5106	Ferric anguibactin-binding protein	-1.2	P
59	BC1742	bc1742	Two component system histidine kinase	-1.2	T
60	BC1110	bc1110	Cytotoxin K	-1.2	S
61	BC5231	bc5231	hypothetical protein	-1.2	S
62	BC0576	bc0576	Methyl-accepting chemotaxis protein	-1.2	NT
63	BC0873	yckJ	Cystine transport system permease protein	-1.2	E
64	BC1729	bc1729	Multi-TM2 domain protein	-1.2	S
65	BC0907	appA	Oligopeptide-binding protein oppA	-1.2	Е
66	BC5364	argS	Arginyl-tRNA synthetase	-1.3	J
67	BC3257	bc3257	N-acetylmuramoyl-L-alanine amidase	-1.3	TM
68	BC4174	bc4174	Arginine repressor, argR	-1.3	K
69	BC0909	bc0909	Oligopeptide transport system permease protein oppC	-1.3	EP
70	BC1564	bc1564	hypothetical protein	-1.3	S
71	BC3840	rimM	16S rRNA processing protein rimM	-1.3	J
72	BC3962	speA	Arginine decarboxylase	-1.3	E
73	BC1290	bc1290	Phosphatidylglycerophosphatase B	-1.3	I
74	BC4630	argG	Argininosuccinate synthase	-1.3	E
75	BCp0001	50	hypothetical protein	-1.3	S
		h-4127			
76	BC4137	bc4137	hypothetical protein	-1.3	S
77	BC0468	yfjP	DNA-3-methyladenine glycosylase II	-1.3	L
78	BC3808	truB	tRNA pseudouridine synthase B	-1.3	J
79	BC5242	bc5242	Membrane protein with C2C2 zinc finger	-1.3	J
80	BC5331	ytiA	LSU ribosomal protein L31P	-1.3	J
81	BC3809	rbfA	Ribosome-binding factor A	-1.3	J
82	BC5339	rpoE	DNA-directed RNA polymerase delta chain	-1.3	K
83	BC0115	bc0115	Protein translocase subunit SecE	-1.3	Ü
			RNA chaperone/antiterminator CspA		K
84	BC1131	cspA		-1.3	
85	BC5489	rnpA	Ribonuclease P protein component	-1.3	J
86	BC3821	uppS	Undecaprenyl pyrophosphate synthetase	-1.3	I
87	sRNABC029			-1.3	S
88	BC5490	bc5490	LSU ribosomal protein L34P	-1.3	J
89	BC3678	bc3678	Multidrug resistance ABC transporter ATP-binding and permease protein	-1.3	V
90	BC3839	trmD	tRNA (Guanine-N1) -methyltransferase	-1.3	J
		bc5243	hypothetical protein	-1.3	
0.4		nc2/43	nyoonencal protein	-13	S
91 92	BC5243 BC5230	bc5230	hypothetical Membrane Spanning Protein	-1.3	R

93	BC0162	ybaF	Cobalt transport protein cbiQ	-1.4	P
94	BC5241	yvbJ	IG hypothetical 16680	-1.4	S
95	BC0422	bc0422	Methyl-accepting chemotaxis protein	-1.4	NT
96	BC1497	bc1497	Cytidylate kinase	-1.4	F
97	BC3680	yneF	hypothetical protein	-1.4	S
98	BC1223	yjcD	ATP-dependent DNA helicase	-1.4	L
99	BC5487	bc5487	Jag protein	-1.4	R
100	BC1730	bc1730	hypothetical protein	-1.4	S
101	BC2933	ykpA	ABC transporter ATP-binding protein	-1.4	R
102	BC3681	yneE	IG hypothetical 18106	-1.4	S
103	BC1709	mleN	malate-2H+/lactate-NA+ antiporter	-1.4	С
104	BC0769	ytiP	Guanine-hypoxanthine permease	-1.4	R
105	BC4337	bc4337	hypothetical Membrane Spanning Protein	-1.4	S
106	BC0872	yckK	Cystine-binding protein	-1.4	ET
107	BC0160	ybxA	Cobalt transport ATP-binding protein cbiO	-1.4	P
108	BC3911	bc3911	Cell division protein ftsW	-1.4	D
109	BC4859	bc4859	cold-shock protein	-1.4	K
110	BC1563		Methyltransferase	-1.4	L
		ypsC			
111	BC2358	bc2358	cold-shock protein	-1.4	K
112	BC1767	bc1767	Sodium-dependent serine transporter	-1.4	R
113	BC1809	bc1809	Non-hemolytic enterotoxin lytic component L2	-1.4	S
114	BC0658	yusP	Multidrug resistance protein B	-1.4	GEPR
	BC5389			-1.4	M
115		bc5389	D-alanyl-D-alanine carboxypeptidase		
116	BCp0002		hypothetical protein	-1.5	S
117	BC1821	nupC	Nucleoside permease nupC	-1.5	F
118	BC3805	pnpA	Polyribonucleotide nucleotidyltransferase	-1.5	J
119	BC0163	truA	tRNA pseudouridine synthase A	-1.5	J
120	BC0967	bc0967	hypothetical protein	-1.5	S
121	BC5397	ydzA	hypothetical Membrane Spanning Protein	-1.5	S
122	BC0677	bc0677	Bacitracin resistance protein (Putative undecaprenol kinase)	-1.5	V
123	BC0161	ybaE	Cobalt transport ATP-binding protein cbiO	-1.5	P
124	BC5065	bc5065	Methyl-accepting chemotaxis protein	-1.5	NT
125	BC3104				
		bc3104	Hemolysin BL lytic component L2	-1.5	S
126	BC0908	appB	Oligopeptide transport system permease protein oppB	-1.5	EP
127	BC4435	bc4435	Sporulation initiation phosphotransferase B	-1.5	T
128	BC3694	bc3694	N-acetylmuramoyl-L-alanine amidase	-1.5	M
129	BC0021	bc0021	Deoxyguanosine kinase	-1.5	F
					S
130	BC3697	bc3697	hypothetical protein	-1.5	
131	BC3986	ykuJ	hypothetical Cytosolic Protein	-1.5	S
132	BC4379	yrrL	hypothetical protein	-1.6	R
133	BCp0006		LexA repressor	-1.6	KT
134	BC5329	prfA	Bacterial Peptide Chain Release Factor 1 (RF-1)	-1.6	J
135	BC0981	bc0981	Dihydroxyacetone kinase	-1.6	G
136	BC0902	bc0902	S-layer protein / N-acetylmuramoyl-L-alanine amidase	-1.6	M
137	BC5235	yutK	Nucleoside permease nupC	-1.6	F
138	sRNABC007			-1.6	S
139	BC2621	bc2621	Signal peptidase I	-1.6	U
140	BC5408	yfnB	2-haloalkanoic acid dehalogenase	-1.6	R
141	BC3103	bc3103	Hemolysin BL lytic component L1	-1.6	S
142	BC1434	bc1434	Na+/H+ antiporter NhaC	-1.6	С
143	BC0020	#N/A	deoxynucleoside kinase	-1.6	S
144	BC0323	bc0323	Phosphoribosylaminoimidazole carboxylase catalytic subunit	-1.6	F
145	BC4396		Molybdopterin biosynthesis MoeB protein	-1.6	H
		yrvM			
146	BC1565	ypvA	ATP-dependent helicase, DinG family	-1.7	KL
147	BCp0003		hypothetical cytosolic protein	-1.7	S
148	BC2620	pbpA	Penicillin-binding protein transpeptidase	-1.7	M
149	BC0670	bc0670	Phospholipase C	-1.7	S
150	BC3702	bc3702	Antirepressor	-1.7	S
151	BC5328	ywkE	Methyltransferase	-1.7	J
152	BC4434	bc4434	GTP-binding protein	-1.7	R
153	sRNABC008			-1.7	S
154	BC2103	yfmL	ATP-dependent RNA helicase	-1.7	LKJ
155	BC2357	bc2357	Cold shock protein	-1.7	S
156	BC0423	bc0423	Peptide synthetase	-1.7	Q
157	BC3520	bc3520	Methyl-accepting chemotaxis protein	-1.7	NT
158	BC4704	ytzF	Ribosomal small subunit pseudouridine synthase A	-1.7	J
159	BC0607	ywtF	Transcriptional regulator, LytR family	-1.7	K
160	BC1739	bc1739	Proton/sodium-glutamate symport protein	-1.7	C
161	BC0297	pbuG	Guanine-hypoxanthine permease	-1.7	R
162	BC0243	appC	Oligopeptide transport system permease protein oppC	-1.7	EP
163	BC2021	ycdH	High-affinity zinc uptake system protein znuA precursor	-1.7	P
164	BC4489	bc4489	hypothetical Cytosolic Protein	-1.8	S
		004403			
165	BCp0005		type B DNA polymerase	-1.8	S
	BC0259	ydbR	ATP-dependent RNA helicase	-1.8	LKJ
166		J			
166 167	BC2713	yurQ	UvrC-like protein	-1.8	L

169	BC2102	bc2102	hypothetical protein	-1.8	S
170	BC0363	bc0363	Nucleoside permease nupC	-1.8	F
171	BC3804	ylxY	Chitooligosaccharide deacetylase	-1.9	G
172	BC3695	bc3695	holin	-1.9	S
173	BC3776	bc3776	Stage V sporulation protein S	-1.9	S
174	BC3696	#N/A	hypothetical protein	-1.9	S
175	BC4925	yumB	NADH dehydrogenase	-1.9	С
176	BC0564	bc0564	hypothetical lipoprotein	-2.0	C
177	BC3777	ymdB	IG hypothetical 15594	-2.0	S
178	BC4999	bc4999	CAAX amino terminal protease family	-2.0	R
179	BC3177	bc3177	DNA helicase	-2.0	L
180	BC0656	glpT	Glycerol-3-phosphate transporter	-2.0	G
181	BC4283	yqfR	ATP-dependent RNA helicase	-2.0	LKJ
182	BC4795	bc4795	hypothetical Membrane Spanning Protein	-2.0	S
183	BC2300	bc2300	Oxalate/formate antiporter	-2.0	GEPR
184	BC1810	bc1810	Non-hemolytic enterotoxin lytic component L1	-2.0	S
185	BC2234	bc2234	Arginine/ornithine antiporter	-2.1	Е
186	BC5330	bc5330	Thymidine kinase	-2.1	F
187	BC0954	bc0954	tcdA-E operon negative regulator	-2.1	S
188	BC3835	rnhB	Ribonuclease HII	-2.1	L
189	BC0580	bc0580	NAD-dependent malic enzyme	-2.1	C
190	BC5064	bc5064	hypothetical protein	-2.2	R
191	BC0121	ybxB	16S rRNA m(2)G 1207 methyltransferase	-2.2	J
192	BC5438	ysbB	Murein hydrolase export regulator	-2.2	M
193	BC0965	bc0965	hypothetical protein	-2.2	S
194	sRNABC010	000000	nypomeneu protein	-2.2	S
195	BC0241	bc0241	Oligopeptide-binding protein oppA	-2.3	E
196	BC5439	ysbA	Murein hydrolase exporter	-2.3	R
197	BC3183	bc3183	hypothetical Membrane Spanning Protein	-2.4	S
198	BC0966	bc0966	Fimbria associated protein	-2.4	M
199	BC3542	bc3542	Transcriptional regulator	-2.5	S
200	BC0242	bc0242	Oligopeptide transport system permease protein oppB	-2.5	EP
201	BC1599	bc1599	hypothetical Membrane Spanning Protein	-2.5	S
201	BC4507	bc4507	Aquaporin	-2.6	G
203	BC3703	bc3703	Phage protein	-2.6	S
203	BCp0017	003703	hypothetical membrane spanning protein	-2.6	S
205	BC2465	bc2465	hypothetical protein	-2.6	S
206	BC2403 BCp0020	002403	hypothetical protein	-2.7	S
207	BCp0020			-2.7	M
207	BC5443	1-5442	N-acetylmuramoyl-L-alanine amidase	-2.7	M
	BC0865	bc5443	Glycine betaine transporter		E
209		yvsH	Arginine/ornithine antiporter	-2.8	
210	BC3922	bc3922	Prespore specific transcriptional activator rsfA	-2.8	S
211	BCp0015		hypothetical membrane spanning protein	-3.0	S
212	sRNABC020		home of hotical and dis	-3.0	S
213	BCp0019		hypothetical protein	-3.1	S
214	BCp0008		hypothetical cytosolic protein	-3.1	S
215	BCp0018		hypothetical cytosolic protein	-3.4	S
216	BC5218	bc5218	Proton/sodium-glutamate symport protein	-3.5	С
217	BCp0016		N-acetylmuramoyl-L-alanine amidase	-3.6	NU
218	BCp0007		hypothetical membrane spanning protein	-3.9	S
219	BCp0014		hypothetical cytosolic protein	-3.9	S
220	BC0579	maeN	Malate-sodium symport	-4.0	С
221	BC4242	yhcL	Proton/sodium-glutamate symport protein	-4.2	R
222	BCp0013		hypothetical cytosolic protein	-4.3	S
223	BCp0012		hypothetical protein	-4.3	S
224	BCp0010		hypothetical cytosolic protein	-4.4	S
225	BCp0011		hypothetical membrane spanning protein	-4.5	S
226	BCp0009		hypothetical cytosolic protein	-5.1	S

Supplementary Table S3B: SigB-dependent induced and downregulated genes upon heat shock (30°C to 42°C) in Bacillus cereus wt cells versus $\Delta sigB$ and $\Delta bc1009$ mutants

Bold: SigB and Bc1009-dependent-induced and downregulated genes under heat shock in B. cereus

Non-bold: SigB-dependent-induced genes upon heat shock in B. cereus COG: Cluster of orthologous groups

				wt 42°C/ ΔsigB 42°C	wt 42°C/ Δ <i>bc1009</i> 42°C	
No	Locus Tag	Gene	Annotation	Log2 expression	Log2 expressio n	COG
1	BC1000	bc1000	hypothetical Membrane Spanning Protein	7.3		S
2	BC0998	yflT	General stress protein 17M	7.1		S
3	BC1004	sigB	RNA polymerase sigma-B factor	6.6		K
4	BC0863	katE	Catalase	6.6		P
5	BC0862	yfkM	Protease I	6.4		R
6	BC0999	#N/A	CsbD family protein	5.6		S
7 8	BC1003 BC1005	rsbW bc1005	Anti-sigma B factor Bacterioferritin	5.5 5.4		P
9	BC1003 BC1002	rsbV	Anti-sigma B factor antagonist	5.3		T
10	BC1002	bc1011	hypothetical protein	5.2	1.2	S
11	BC1852	bc1852	Exonuclease SbcC	4.5	3.7	L
12	BC3131	bc3131	hypothetical protein	4.4	0.7	S
13	BC1009	bc1009	hypothetical protein	4.3	4.6	S
14	BC3130	bc3130	hypothetical protein	4.2		S
15	BC1853	bc1853	hypothetical protein	4.1	3.7	S
16	BC2300	bc2300	Oxalate/formate antiporter	3.6	3.3	GEPI
17	BC5391	ywdL	Spore coat protein gerQ	3.6		S
18	BC1010	bc1010	hypothetical protein	3.5	1.1	S
19	BC1855	bc1855	Chromosome segregation ATPases	3.4	3.0	L
20	BC1857	bc1857	Exonuclease SbcD	3.3	3.6	L
21	BC1860	bc1860	Phage protein	3.2	3.1	S
22	BC1856	bc1856	Phage protein	3.1	3.3	S
23	BC3699	bc3699	Antigen	3.0	3.2	M
24	BC1862	bc1862	Phage protein	3.0	2.6	S
25	BC3698	bc3698	Cell wall endopeptidase, family M23/M37	2.8	3.0	M
26	BC1858	bc1858	Phage protein	2.6	2.4	S
27	BC1660	yjbJ	Soluble lytic murein transglycosylase	2.5	2.4	M
28	BC1001	bc1001	hypothetical protein	2.4	1.3	S
29	BC1671	flgG	Flagellar basal-body rod protein flgG	2.4	2.1	N
30	BC1861	bc1861	DNA/RNA helicase (DEAD/DEAH box family)	2.3	2.3	KL
31	BC3695	bc3695	holin	2.3	2.8	S
32	BC5390	cwlJ	Cell wall hydrolase cwlJ	2.3		M
33	BC1669	flhA	Flagellar biosynthesis protein flhA	2.2	2.1	S
34	BC3696		hypothetical protein	2.2	2.7	S
35	BC1670	flhF	Flagellar biosynthesis protein flhF	2.2	1.9	S
36	BC3132	bc3132	General stress protein 17M	2.2		S
37	BC3129	yqxL	Magnesium and cobalt transport protein corA	2.2		P
38 39	BC1661	fliN	Flagellar motor switch protein fliN	2.2	2.3 2.3	NU NU
39 40	BC1666	fliQ flhB	Flagellar biosynthetic protein fliQ	2.1	1.9	NU
41	BC1668 BC5449	bc5449	Flagellar biosynthetic protein flhB Conserved membrane protein (hemolysin III homolog)	2.1	1.9	R
	BC3648			2.0		K
42 43	BC3648 BC1663	ydeB fliN	CarD-like transcriptional regulator Flagellar motor switch protein fliN	2.0 2.0	2.1	NU
43 44	BC1665	fliP	Flagellar biosynthetic protein fliP	2.0	2.0	NU
45	BC1667	fliR	Flagellar biosynthetic protein fliR	2.0	1.9	NU
46	BC3694	bc3694	N-acetylmuramoyl-L-alanine amidase	2.0	2.3	M
47	BC1664	fliN	Flagellar motor switch protein fliN	2.0	2.2	S
48	BC1854	bc1854	hypothetical Cytosolic Protein	2.0	2.2	S
49	BC1870	bc1870	Phage protein	1.9	1.5	S
50	BC2130	bc2130	Transporter	1.9	1.2	R
51	BC1863	bc1863	MCM domain family protein	1.9	2.0	L
52	BC1662	fliM	Flagellar motor switch protein fliM	1.9	1.9	N
53	BC2131	bc2131	hypothetical protein	1.9		S
54	BC1851	bc1851	Transcriptional regulator	1.8	1.8	K
55	BC1866	bc1866	Phage protein	1.8	1.4	S
56	BC0852	bc0852	Quaternary ammonium compound-resistance protein	1.8	1.5	P
57	BC1864	bc1864	DNA polymerase I	1.7	2.4	L
58	BC3697	bc3697	hypothetical protein	1.7	1.7	S
59	BC1006	rsbP/Y	Sigma factor sigB regulation protein rsbU	1.7		TK
60	BC1869	bc1869	Phage protein	1.7	1.8	S
61	BC0853	bc0853	Quaternary ammonium compound-resistance protein	1.6	1.5	P
62	BC5438	ysbB	Murein hydrolase export regulator	1.6	1.4	M

63	BC1873	bc1873	Phage protein	1.6	1.3	S
64	BC4482	bc4482	hypothetical protein	1.6		S
65	BC1245	bc1245	hypothetical protein	1.6		S
66	BC4267	bc4267	Phosphate transport system permease protein pstA	1.6	1.1	P
67	BC1264	yonV	hypothetical protein	1.6		S
					1.2	P
68	BC1612	bc1612	Na+/H+ antiporter NapA (inosine-dependent germination)	1.5	1.2	
69	BC4644	bc4644	PhnB protein	1.5		S
70	BC5006	yusM	Prolyne dehydrogenase	1.5		Е
71	BC1880	bc1880	Phage protein	1.5	1.2	S
72	BC1443	bc1443	SAM-dependent methyltransferase	1.5		QR
73	BC1436	bc1436	Phage shock protein A	1.5	1.2	KT
74	BC4268	bc4268	Phosphate transport system permease protein pstC	1.5	1.4	P
					1.4	K
75	BC4714	bc4714	CarD-like transcriptional regulator	1.5		
76	BC1876	bc1876	Phage protein	1.5	1.3	S
77	BC1872	bc1872	Phage protein	1.5	1.6	С
78	BC1187	bc1187	hypothetical protein	1.4		S
79	BC0251	#N/A	DUF3948 family protein	1.4	1.8	S
80	BC1265	bc1265	hypothetical Cytosolic Protein	1.4		S
81	BC4813	bc4813	hypothetical protein	1.4		S
82	BC3882		Orotate phosphoribosyltransferase	1.4	2.2	F
		pyrE				S
83	BC3458	bc3458	XpaF1 protein	1.4	1.1	
84	BC1874	bc1874	Phage protein	1.3	1.0	S
85	BC1848	bc1848	Prophage helix-turn-helix protein	1.3		S
86	BC3884	pyrD	Dihydroorotate dehydrogenase, catalytic subunit	1.3	2.2	F
87	BC3723	bc3723	hypothetical protein	1.3		S
88	BC4046	bc4046	hypothetical protein	1.3	1.1	S
89	BC0404	bc0404	Methyl-accepting chemotaxis protein	1.3		NT
		bc3459	7 1 0 1			
90	BC3459		hypothetical protein	1.3		S
91	BC1493	bc1493	hypothetical protein	1.3	1.1	S
92	BC4075	dacF	D-alanyl-D-alanine carboxypeptidase	1.3		M
93	BC2107	bc2107	Quinone oxidoreductase	1.3		CR
94	BC1878	bc1878	Phage protein	1.3		S
95	BC0555	bc0555	Glycine betaine transporter	1.3		M
96	BC4269	bc4269	Phosphate-binding protein	1.3	1.2	P
97	BC5020	bc5020	hypothetical protein	1.2	1.2	S
98	BC5009	mcpC	Methyl-accepting chemotaxis protein	1.2		NT
99	BC5435	yerP	Acriflavin resistance plasma membrane protein	1.2	2.9	V
100	BC3883	pyrF	Orotidine 5'-phosphate decarboxylase	1.2	1.8	F
101	BC2842	bc2842	hypothetical protein	1.2		S
102	BC0557	bc0557	hypothetical protein	1.2		S
103	BC2358	bc2358	cold-shock protein	1.2		K
104	BC1435	bc1435	hypothetical protein	1.2	1.1	S
105	BC1887	bc1887	Phage protein	1.2	1.2	S
					1.2	
106	BC0683	bc0683	hypothetical protein	1.1		S
107	BC1625	bc1625	Chemotaxis motA protein	1.1		N
108	BC4266	bc4266	Phosphate transport ATP-binding protein pstB	1.1		P
109	BC1494	bc1494	N-acetylmuramoyl-L-alanine amidase	1.1		M
110	BC2357	bc2357	Cold shock protein	1.1		S
111	BC4047	bc4047	hypothetical protein	1.1		S
112	BC3886	bc3886	Carbamoyl-phosphate synthase large chain	1.1	1.4	EF
113	BC2841	bc2841	hypothetical protein	1.1		S
	BC1886				4.0	
114		bc1886	Phage protein	1.1	1.2	S
115	BC0423	bc0423	Peptide synthetase	1.1		Q
116	BC5033	#N/A	HAMP domain-containing protein	1.1	1.1	S
117	BC3885	pyrK	Dihydroorotate dehydrogenase electron transfer subunit	1.0	1.5	HC
118	BC1882	bc1882	Phage protein	1.0	1.2	S
119	BC3075	ydbM	EpiH/GdmH-related protein	1.0		S
120	BC1658	yvzB	Flagellin	1.0	1.2	N
121	BC1550	bc1550	Multimodular transpeptidase-transglycosylase PBP 1A	1.0		M
122	BC1888	bc1888	Phage protein	1.0		EP
123	BC3653	hutP	Hut operon positive regulatory protein	1.0		S
124	BC3000	bc3000	Proline/betaine transporter	1.0		GEPR
1	BC3590	bc3590	ABC transporter permease protein	-1.0		R
2	BC0865	yvsH	Arginine/ornithine antiporter	-1.0		E
3	BC0763	bc0763	ABC transporter permease protein	-1.0		V
4	BC0363	bc0363	Nucleoside permease nupC	-1.0		F
•	sRNABC02	sRNABC02		1.0		-
5	0	0		-1.1		S
			Claver hamalagu damain / mutativa			
6	BC0991	bc0991	S-layer homology domain / putative murein endopeptidase	-1.1		D
7	BC3245	yecA	Amino acid permease	-1.1		E
8	BC0746	tenI	Regulatory protein TENI	-1.1		Н
9	BC2973	yxjA	Nucleoside permease nupC	-1.1		F
10	BC5219	bc5219	Integral membrane protein	-1.1		S
11	BC0189	bc0189	hypothetical protein	-1.1		S
		bc3103	Hemolysin BL lytic component L1	-1.1		S
12						
12 13	BC3103 BCp0005	bcp0005	type B DNA polymerase	-1.2	-1.3	S

Chapter 3

14	BC0674	bc0674	Permease	-1.2		V
	sRNABC06	sRNABC06				
15	3	3		-1.2		S
			putative N-acetylgalactosaminyl-diphosphoundecaprenol			
16	BC1589	tuaG	glucuronosyltransferase	-1.3		M
17	BCp0016	bcp0016	N-acetylmuramoyl-L-alanine amidase	-1.3	-1.1	NU
18	BC1725	dsdA	D-serine dehydratase	-1.3		E
19	BC0556	bc0556	Microbial collagenase	-1.3		R
20	BC4795	bc4795	hypothetical Membrane Spanning Protein	-1.3		S
	sRNABC00	sRNABC00				
21	2	2		-1.4		S
	sRNABC01	sRNABC01				
22	0	0		-1.4		S
23	BC5174	bc5174	hypothetical Membrane Spanning Protein	-1.4		S
24	BC1809	bc1809	Non-hemolytic enterotoxin lytic component L2	-1.4		S
25	BC1540	panB	3-methyl-2-oxobutanoate hydroxymethyltransferase	-1.4		Н
26	BC3104	bc3104	Hemolysin BL lytic component L2	-1.4		S
27	BCp0015	bcp0015	hypothetical membrane spanning protein	-1.5		S
28	BC2129	bc2129	hypothetical protein	-1.5		S
29	BCp0019	bcp0019	hypothetical protein	-1.5	-1.7	S
30	BC1541	panC	Pantoatebeta-alanine ligase	-1.5		Н
31	BC1542	panD	Aspartate 1-decarboxylase	-1.6		Н
32	BCp0020	bcp0020	hypothetical protein	-1.6	-1.7	S
33	BC5351	bc5351	Bacillolysin	-1.7		Е
34	BC1448	bc1448	Nitric oxide dioxygenase	-1.7		С
35	BC4140	bc4140	Mg(2+) transport ATPase, P-type	-1.7		P
36	BC4141	bc4141	Mg(2+) transport ATPase protein C	-1.7		S
37	BCp0014	bcp0014	hypothetical cytosolic protein	-1.7		S
38	BC4109	ribD	Diaminohydroxyphosphoribosylaminopyrimidine deaminase	-1.8		Н
39	BCp0012	bcp0012	hypothetical protein	-1.8	-1.2	S
40	BC4110	ribE	Riboflavin synthase alpha chain	-1.8		Н
41	BCp0017	bcp0017	hypothetical membrane spanning protein	-1.8		S
42	BC1810	bc1810	Non-hemolytic enterotoxin lytic component L1	-1.8		S
43	BC4112	ribH	6,7-dimethyl-8-ribityllumazine synthase	-1.8		Н
44	BCp0011	bcp0011	hypothetical membrane spanning protein	-1.9	-1.6	S
45	BC4111	ribA	GTP cyclohydrolase II	-1.9	-1.1	Н
46	BC3439	bc3439	Hydroxylamine reductase	-2.0		С
47	BCp0013	bcp0013	hypothetical cytosolic protein	-2.0	-1.4	S
48	BCp0009	bcp0009	hypothetical cytosolic protein	-2.0		S
49	BCp0021	bcp0021	N-acetylmuramoyl-L-alanine amidase	-2.0	-1.5	M
50	BCp0010	bcp0010	hypothetical cytosolic protein	-2.1	-1.4	S
51	BCp0018	bcp0018	hypothetical cytosolic protein	-2.2	-1.7	S
52	BC2136	nasD	Nitrite reductase [NAD(P)H] large subunit	-2.5	-1.5	С
53	BC2124	moeB	thiamine/molybdopterin biosynthesis protein MoeB	-2.5	-1.3	Н
54	BC2118	narG	Respiratory nitrate reductase alpha chain	-2.5	-1.3	C
55	BC2132	bc2132	Ferrochelatase	-2.6	-1.8	H
56	BC2135	nasE	Nitrite reductase [NAD(P)H] small subunit	-2.6	-1.7	PR
57	BC2123	bc2123	Molybdenum cofactor biosynthesis protein A	-2.7	-1.3	H
58	BC5101	bc5101	Perfringolysin O precursor	-2.7	-1.7	S
59	BC2125	moeA	Molybdopterin biosynthesis MoeA protein	-2.7	-1.3	H
60	BC2134	nasF	Uroporphyrin-III C-methyltransferase	-2.8	-2.0	H
61	BC2133	bc2133	CbiX protein	-2.9	-2.1	S
62	BC5026	bc5026	hypothetical protein	-3.0	-2.2	S
63	BC2126	moaE	molybdopterin synthase catalytic subunit MoaE	-3.0	-1.3	H
64	BC2127	bc2127	Molybdopterin (MPT) converting factor, subunit 1	-3.1		Н
65	BC5027	bc5027	Protein erfK/srfK precursor	-3.2	-2.9	S
66	BC2119	narH	Respiratory nitrate reductase beta chain	-3.5	-2.5	С
67	BC2121	narI	Respiratory nitrate reductase gamma chain	-3.5	-2.3	С
68	BC2120	narJ	Respiratory nitrate reductase delta chain	-3.7	-2.6	С
69	BC2128	narK	Nitrite extrusion protein	-4.1	-2.9	P

Supplementary Table S4A: Bc1009-dependent proteins in *Bacillus cereus* upon heat shock (30°C to 42°C) in wt cells versus $\Delta bc1009$ mutant

					wt 42°C/ Δbc1009 42	
No	Locus Tag	Protein	Annotation	log2 FC_T20	log2 FC_T40	COG
1	BC1113	YhdL	Sigma-M negative effector	7.0		S
2	BC5205	LevR	Transcriptional regulatory protein levR	6.2	0.7	TK
3	BC1837		Methylmalonyl CoA epimerase	5.5		E
4	BC0236		Transglycosylase	5.2	5.5	M
5	BC5239		protein with unknown function	4.8		T
6	BC0232		hypothetical Membrane Spanning Protein	4.8		S
7	BC0961		Transcriptional regulator, TetR family	3.6		K
8	BC2770	GlcR	Transcriptional regulator, DeoR family	3.6		KG
9	BC1064	YdbS	hypothetical Membrane Spanning Protein	3.2		S
10	BC5177	YwqN	Trp repressor binding protein	2.9	1.1	R
11	BC4150	YqiX	Arginine-binding protein	2.9	1.1	TE
12	BC5056	I QIA	Collagen adhesion protein	2.8		S
13		DooE				M
	BC4496	RacE	Glutamate racemase	2.8	2.1	
14	BC3812	YlxQ	LSU ribosomal protein L7AE	2.7	3.1	J
15	BC0185	RocF	Arginase	2.6	2.7	Е
16	BC4453		Phage protein	2.3		S
17	BC3251		hypothetical protein	2.2		S
18	BC5163		Prolipoprotein diacylglyceryl transferase	2.2	3.6	M
19	BC0622		L-threonine 3-dehydrogenase	2.1		MG
20	BC1439	YvqC	Two-component response regulator yvqC	2.1		TK
21	BC1712	FumC	Fumarate hydratase	2.0	2.6	С
22	BC1796		hypothetical protein	1.9		Н
23	BC2085		hypothetical protein	1.9		S
24	BC3159		NAD-dependent epimerase/dehydratase / Alpha/beta hydrolase	1.7		S
			Endonuclease III			
25	BC1548			1.6		L
26	BC4270		Penicillin-binding protein	1.6		M
			UDP-N-acetylglucosamineN-acetylmuramyl-(Pentapeptide)			
27	BC4249		pyrophosphoryl-undecaprenol N-acetylglucosamine transferase	1.5		M
28	BC1970		hypothetical protein	1.5		Н
29	BC2753	SleB	Cell wall hydrolase cwlJ	1.5	1.0	M
30	BC2121	NarI	Respiratory nitrate reductase gamma chain	1.4		С
31	BC0644		OsmC-like protein	1.4		0
32	BC4679		hypothetical protein	1.3		S
33	BC0889	HemZ	Coproporphyrinogen oxidase, anaerobic	1.3		Н
34	BC3107	Tielliz	UvrC-like protein	1.3		L
35	BC0903			1.2		L
			Methyltransferase			
36	BC1905		Phage protein	1.2		S
37	BC1568		Methionine aminopeptidase	1.2		J
38	BC0780	YhdB	hypothetical protein	1.2		S
39	BC5189	SecA	Protein translocase subunit SecA	1.2	1.2	U
40	BC0651		Two component system histidine kinase	1.2		T
41	BC0895		putative pyruvyl-transferase	1.2		S
42	BC3520	TarH	Methyl-accepting chemotaxis protein (motility, Signal transduction)	1.1		NT
43	BC2498	VanR	Two-component response regulator vanR	1.1		TK
44	BC5322	YwrF	Nitrilotriacetate monooxygenase component B	1.1		R
45	BC4102	YbaC	Alpha/beta hydrolase	1.0		S
46	BC1640		hypothetical protein	1.0		S
47	BC4302	PhoH	PhoH protein	1.0	0.7	T
		1 11011	•			L
48	BC4487		Superfamily I DNA and RNA helicases	1.0	0.7	
49	BC3312		3-Oxoadipate enol-lactonase	1.0		R
50	BC3586		Oligopeptide-binding protein oppA	1.0		E
51	BC1862		Phage protein	1.0		S
52	BC2192	DfrA	Dihydrofolate reductase	0.9		Н
53	BC4562	YsgA	23S rRNA methyltransferase	0.9		J
54	BC0814	_	ABC transporter permease protein	0.9		V
55	BC0896		S-layer protein / Peptidoglycan endo-beta-N-acetylglucosaminidase	0.9		G
56	BC0755		Potassium-transporting ATPase C chain	0.9		P
57	BC3058		Phosphohydrolase (MutT/nudix family protein)	0.9		L
58	BC3596	ParC	Topoisomerase IV subunit A	0.9		L
			I opoisomerase IV subunit A IG hypothetical 1822			
59	BC2254	YodN		0.8		S
60	BC5031		Methionyl-tRNA synthetase	0.8		J
61	BC1048		IG hypothetical 1777	0.8		R
62	BC1641	FlgB	Flagellar basal-body rod protein flgB	0.8		N
63	BC4594	CitZ	Citrate synthase	0.8		С
64	BC1542	PanD	Aspartate 1-decarboxylase	0.8		Н
65	BC0447	YceH	Tellurite resistance protein	0.8		P
66	BC5046	YvdD	Lysine decarboxylase family	0.8		R

C.	DC0074		lysozyme inhibitor, binds to and inhibits macrophage lysozyme, aid bacterial			
67	BC3874		survival	0.8		S
68	BC1129		Trifolitoxin immunity protein	0.8		M
69	BC0426		Hydroxymethylpyrimidine-binding protein	0.7		P
70	BC2087		hypothetical protein	0.7		S
71	BC1365	YrdC	Isochorismatase	0.7		Q
72	BC4859			0.7		0
73	BC5236		Diguanylate cyclase/phosphodiesterase domain 1 (GGDEF)	0.7		S
74	BC1124		Methyl-accepting chemotaxis protein	0.7		NT
		C-:				
75	BC5482	Soj	Sporulation initiation inhibitor protein soj	0.7		D
76	BC4454		hypothetical protein	0.7		S
77	BC3391		Glycosyl hydrolase	0.6		S
78	BC0453	YkvW	Zinc uptake P-type ATPase	0.6		P
79	BC1387		Transcriptional regulator, MarR family	0.6		K
30	BC1629	FliY	Chemotaxis protein cheC	0.6		NTU
31	BC4762	PckA	Phosphoenolpyruvate carboxykinase [ATP]		3.0	С
32	BC4250	1 0.0.1	5-methyltetrahydrofolatehomocysteine methyltransferase		2.9	E
		37 - 41				
33	BC4514	YodJ	D-alanyl-D-alanine carboxypeptidase		2.6	M
34	BC1718		DUF family protein of unknown function		2.6	S
35	BC3355	YrkA	Magnesium and cobalt efflux protein corC		2.5	R
36	BC3995	YkyB	hypothetical Cytosolic Protein		1.8	S
37	BC1818	_	Transcriptional regulator, TetR family		1.6	K
88	BC5059		,		1.5	K
39	BC3439		Hydroxylamine reductase		1.3	C
10	BC3769	MutS	DNA mismatch repair protein mutS		1.0	L
91	BC4509	YhaP	Sodium export permease protein		1.0	CP
92	BC3597	ParE	Topoisomerase IV subunit B		0.9	L
13	BC1799	YoaA	Ribosomal-protein-alanine acetyltransferase		0.8	J
94	BC3790	YufP	Nucleoside transport ATP-binding protein		0.8	R
95	BC0144	RpsN	SSU ribosomal protein S14P		0.7	J
96	BC1202		Serine/threonine protein phosphatase		0.7	T
97	BC4792		Cytochrome d ubiquinol oxidase subunit I		0.7	Ċ
		M-4D	Chemotaxis motB protein			N
98	BC4512	MotB	•		0.6	
99	BC4799		hypothetical protein		0.6	S
00	BC2102		protein with unknown function		0.6	S
1	BC4006		hypothetical Cytosolic Protein	-0.6		S
2	BC3690	LexA	LexA repressor	-0.6		KT
3	BC4586	MutM	Formamidopyrimidine-DNA glycosylase	-0.6		L
4	BC1408	HisH	Amidotransferase hisH	-0.7		E
5	BC0164	RplM	LSU ribosomal protein L13P	-0.6		J
6	BC5106	тфпи	Ferric anguibactin-binding protein	-0.6		P
7	BC0824		Lactoylglutathione lyase	-0.6		E
8	BC0470		S-layer protein / N-acetylmuramoyl-L-alanine amidase	-0.6		S
9	BC4280	YqfU	hypothetical Membrane Spanning Protein	-0.6	-1.7	S
10	BC4539		0	-0.6		S
11	BC2004		hypothetical protein	-0.6		S
12	BC3609		hypothetical protein	-0.6		S
13	BC1033	GlpP	Glycerol uptake operon antiterminator regulatory protein	-0.6		K
4	BC3021		hypothetical Cytosolic Protein	-0.6		S
15	BC2272		Protein export protein prsA precursor	-0.6		0
		VC-D			1.0	
16	BC5408	YfnB	2-haloalkanoic acid dehalogenase/ putative phosphatase	-0.6	-1.2	R
7	BC2133		CbiX protein	-0.7		S
8	BC4327	YqeL	iojap protein family	-0.7		S
19	BC1867		Phage protein	-0.7		S
20	BC3728		hypothetical protein	-0.7	-1.7	L
21	BC4049	PtsH	Phosphocarrier protein HPr	-0.7		G
22	BC0235	YdaL	hypothetical protein	-0.7		S
23	BC2580	- uub	Phage protein	-0.7	-1.3	S
23 24	BC2380 BC2883	YhbD	hypothetical Cytosolic Protein		-1.3	S
				-0.7		
25	BC5377	YwhC	Membrane metalloprotease	-0.7		R
26	BC4097		2,5-diketo-D-gluconic acid reductase	-0.8		R
27	BC5381	FhuC	Ferrichrome transport ATP-binding protein fhuC	-0.7		PH
28	BC5019		Ribosomal-protein-serine acetyltransferase	-0.7		J
29	BC1830		Copper resistance protein A	-0.7		Q
0	BC0142	RplX	LSU ribosomal protein L24P	-0.7		Ĵ
31	BC0365	YfjN	Nitrogen regulation protein NIFR3	-0.7		J
32		YhbE	hypothetical Cytosolic Protein	-0.7		M
14	BC2882	THE	01		0.0	
2.0	BC3380		Quinone oxidoreductase	-0.7	-0.6	С
	BC3478		Phosphoglycerate mutase	-0.7		G
34		RpsF	SSU ribosomal protein S6P	-0.7		J
34	BC5476		DNA integration/recombination/invertion protein	0.0		S
33 34 35 36	BC5476			-0.8		
34 35 36	BC5476 BC3711					
34 35 36 37	BC5476 BC3711 BC3398	Ywe I	Serine transporter	-0.8	-0.6	E
34 35 36 37 38	BC5476 BC3711 BC3398 BC1308	YwcJ	Serine transporter Nitrite transporter	-0.8 -0.9	-0.6	E P
34 35 36 37	BC5476 BC3711 BC3398	YwcJ YttP	Serine transporter	-0.8	-0.6 -0.7	E

42	BC1852		Exonuclease SbcC	-0.8		S
43	BC0493	UgtP	1,2-diacylglycerol 3-glucosyltransferase	-0.8	-0.7	M
44	BC2369	J	Acetyltransferase	-0.8		KR
45	BC4174	ArgR	Arginine repressor, argR	-0.8		K
46	BC1625	MotA	Chemotaxis motA protein	-0.9		N
47	BC0405	ArgR	Arginine repressor, argR	-0.9		K
48	BC4795		hypothetical Membrane Spanning Protein	-1.0		S
49	BC4247		hypothetical protein	-0.9		S
50	BC2449		Lipase/Acylhydrolase with GDSL-like motif	-1.0		E
					0.7	
51	BC4256		Transcriptional regulator, ArsR family	-1.0	-0.7	K
52	BC4934		hypothetical protein	-1.6		S
53	BC2368	YflK	hypothetical Cytosolic Protein	-1.2		S
54	BC3618		Peptidoglycan N-acetylglucosamine deacetylase	-1.1	-0.8	G
55	BC3667b		protein with unknown function	-1.2		S
	BC4607	VenI				
56		YtrI	hypothetical protein	-1.3		S
57	BC2135	NasE	Nitrite reductase [NAD(P)H] small subunit	-1.4		PR
58	BC0139	RpmC	LSU ribosomal protein L29P	-1.5	-0.7	J
59	BC2210		NAD(P)H nitroreductase	-1.1		С
60	BC1650	FlgD	Basal-body rod modification protein flgD	-1.1	-1.7	N
		rigD	Transcriptional regulator, LytR family		1.7	K
61	BC1969			-1.2		
62	BC2094		Acetyltransferase	-1.2		R
63	BC3718	FruA	PTS system, fructose-specific IIABC component	-1.2	-0.6	GT
64	BC3958	YktC	Myo-inositol-1(or 4)-monophosphatase	-1.2		G
65	BC2456		Peptide synthetase	-1.2		Q
66	BC2125		Molybdopterin biosynthesis MoeA protein, nitrate respiration	-1.2		H
67	BC3442		hypothetical protein	-1.2		R
68	BC5000	YobS	Transcriptional regulator, TetR family	-1.2	-1.0	K
69	BC3023	YcnE	hypothetical Cytosolic Protein	-1.3		S
70	BC1593	YitH	Acetyltransferase	-1.3		K
71	BC5047	YvdC	IG hypothetical 16995	-1.3		R
72	BC0596	YvgW	Zinc-transporting ATPase	-1.3		P
73	BC2797	YybD	Acetyltransferase	-1.3	-1.9	K
74	BC3062	YhdZ	SIR2 family protein	-1.4		K
75	BC1514	НерТ	Farnesyltransferase	-1.4		Н
76	BC5271	11001	UDP-N-acetylglucosamine 4-epimerase	-1.4		MG
77	BC0778		Thioredoxin	-1.4		OC
78	BC3209		hypothetical Cytosolic Protein	-1.4		S
79	BC1638		Flagellar hook-associated protein 2	-1.4	-1.5	N
80	BC2077		YukE protein of unknown function	-1.5	-0.8	S
81	BC4175	YqxC	putative cell adhesion protein (contact hemolysin TlyA-related)	-1.5		J
82	BC0103	RadA	DNA repair protein RadA	-1.6		0
83	BC5274	YveM	UDP-N-acetylglucosamine 4,6-dehydratase	-1.7	-1.4	MG
84	BC0143	RplE	LSU ribosomal protein L5P	-1.7		J
85	BC4232		Shikimate kinase	-1.7		E
86	BC0949		hypothetical Membrane Spanning Protein	-1.7		S
87	BC3953	YlaI	hypothetical protein	-1.8		S
88	BC1422	Sat	Sulfate adenylyltransferase	-1.9		P
89	BC1814		Transcriptional regulator, TetR family	-1.9		K
90	BC1901		Phage protein	-1.9		S
91	BC4298		Cytidine deaminase	-2.2		F
92	BC5478		hypothetical Cytosolic Protein	-2.4		S
93	BC0069		Stage II sporulation protein E	-2.5		TK
94	BC3793		Cell division protein ftsK	-2.5		D
95	BC2749		Acetyltransferase	-2.6		K
96	BC2649		Transcriptional regulator, MerR family	-2.7		K
97	BC2298		Transcriptional repressor	-2.9	-1.4	K
98	BC2587		Phage Prohead Protease	-2.9	2.72	R
		17				
99	BC3548	YueD	Benzil reductase	-3.0		IQ
100	BC1623	Hfq	Hfq protein	-3.2		R
101	BC2051		Ribosomal-protein-alanine acetyltransferase	-3.1		K
102	BC4373	YxiP	hypothetical protein	-3.1		S
103	BC3047		Serine/threonine protein phosphatase	-3.1		T
		371 D				
104	BC3813	YlxR	hypothetical Cytosolic Protein	-3.2		K
105	BC3952		GTPase	-5.5		J
106	BC1126		S-layer homology domain		-0.6	S
107	BC2335		Catabolite gene activator		-0.6	T
108		YutH	CotS-related protein		-0.6	S
	BC4954	ı ulfı	Coto-related protein			
109	BC2353				-0.6	S
110	BC2526	YcxD	Transcriptional regulator, GntR family		-0.6	KE
111	BC4830		ABC transporter permease protein		-0.7	V
112	BC3394		4-oxalocrotonate tautomerase		-0.7	R
113	BC2379		Transcriptional regulator		-0.7	K
	BC0709		Ferrous iron transport protein A		-0.7	P
114						
	BC2421				-0.7	S
114		YabR	S1-type RNA-binding domain		-0.7 -0.7	S J

118	BC2578		Phage protein	-0.7	S
119	BC1788		Lysophospholipase L2	-0.9	I
120	BC5035	YitW	Phenylacetic acid degradation protein paaD	-0.8	R
121	BC3682		Transketolase	-0.8	G
122	BC0159	RplQ	LSU ribosomal protein L17P	-0.8	J
123	BC1284		•	-0.8	S
124	BC4484		hypothetical Cytosolic Protein	-0.9	S
125	BC3308	CapA	Capsule biosynthesis protein capA	-0.9	M
126	BC2318		hypothetical protein	-0.9	S
127	BC3317		Histidyl-tRNA synthetase	-1.0	J
128	BC1984			-1.0	S
129	BC4314	HrcA	Heat-inducible transcription repressor hrcA	-1.0	K
130	BC4165	BkdR	Sigma-54-dependent transcriptional activator	-1.0	TK
131	BC2163		TPR-repeat-containing protein	-1.0	R
132	BC0387		hypothetical protein	-1.6	S
133	BC4221		ABC transporter ATP-binding protein	-1.1	V
134	BC5386	YwfL	Lipoate-protein ligase A	-1.1	Н
135	BC0673		Flavin-dependent dehydrogenase	-1.1	С
136	BC2321		tRNA pseudouridine synthase A	-1.2	J
137	BC1968		hypothetical protein	-1.2	Н
138	BC0875			-1.2	S
139	BC3606	YneP	Esterase	-1.3	R
140	BC0984		DNA-binding protein	-1.2	S
141	BC3961	YktA	putative transcriptional regulator	-1.2	S
142	BC0331	PurM	Phosphoribosylformylglycinamidine cyclo-ligase	-1.3	F
143	BC4257		hypothetical Cytosolic Protein	-1.3	S
144	BC0437		Phosphoglyceromutase/phosphopentomutase	-1.3	R
145	BC1537	BirA	Biotin operon repressor / Biotin[acetyl-CoA-carboxylase] synthetase	-1.3	HK
146	BC4436	RpmA	LSU ribosomal protein L27P	-1.3	J
147	BC2848		protein with unknown function	-1.4	E
148	BC2172		IG hypothetical 1888	-1.5	S
149	BC3437		hypothetical Cytosolic Protein	-1.6	S
150	BC2358			-1.7	K
151	BC0416		Phage infection protein	-1.9	S
152	BC1822		Pyrimidine-nucleoside phosphorylase	-1.9	F
153	BC0631	TreP	PTS system, trehalose-specific IIBC component	-1.9	G
154	BC2215	YfkC	Mechanosensitive ion channel	-2.0	M
155	BC4718	MoaD	Molybdopterin (MPT) converting factor, subunit 1	-2.2	Н
156	BC4323		ComE operon protein 2	-2.5	F
157	BC4692		hypothetical protein	-2.7	S
158	BC4613	YtkL	Metal-dependent hydrolase	-2.9	R
159	BC4458		Type I restriction-modification system specificity subunit	-3.2	V
160	BC4580	DnaB	Replication initiation and membrane attachment protein	-4.6	L
161	BC1512	HepS	Heptaprenyl diphosphate synthase component I	-4.7	S

Supplementary Table S4B: Bc1009-dependent genes in *Bacillus cereus* upon heat shock (30°C to 42°C) in wt cells versus $\Delta bc1009$ mutant

				wt 42°C/ Δ <i>bc1009</i> 42°	С
No	Locus Tag	Gene	Annotation	Log2 expression	COG
1	BC1859		Phage protein	2.3	S
2	BC0579	maeN	Malate-sodium symport	1.6	С
3	BC5241	yvbJ	IG hypothetical 16680	1.5	S
4	BC5242		Membrane protein with C2C2 zinc finger	1.5	J
5	BC1877		Phage protein	1.5	S
6	BC0161	ybaE	Cobalt transport ATP-binding protein cbiO	1.4	P
7	BC1883		Phage protein	1.4	S
8	BC2149		hypothetical protein	1.4	S
9	BC1867		Phage protein	1.4	S
10	BC5243		hypothetical protein	1.4	S
11	BC5226	ywrK	Arsenical pump membrane protein	1.4	P
12	BC0160	ybxA	Cobalt transport ATP-binding protein cbiO	1.3	P
13	BC3856	rpmB	LSU ribosomal protein L28P	1.3	J
14	BC3986	ykuJ	hypothetical Cytosolic Protein	1.3	S
15	BC4637	ackA	Acetate kinase	1.3	С
16	BC0564		hypothetical lipoprotein	1.3	С
17	BC4916		hypothetical Cytosolic Protein	1.2	S
18	BC2752	уреВ	hypothetical Membrane Spanning Protein	1.2	S
19	BC1868		Phage protein	1.2	S
20	BC5134		Inosine-uridine preferring nucleoside hydrolase	1.2	F
21	BC5117		ABC transporter permease protein	1.2	S
22	BC2854		Oxidoreductase	1.2	С

23	BC5034	yoaH	Methyl-accepting chemotaxis protein	1.2	NT
24	BC5266		Heteropolysaccharide repeat unit export protein	1.2	S
25	BC3702		Antirepressor	1.1	S
26	BC0162	ybaF	Cobalt transport protein cbiQ	1.1	P
27	BC5268		Secreted polysaccharide polymerase	1.1	S
28	BC3887		Carbamoyl-phosphate synthase small chain	1.1	EF
29	BC5269		Amylovoran biosynthesis AmsK	1.1	M
30	BC5439	ysbA	Murein hydrolase exporter	1.1	R
31	BC3703		Phage protein	1.1	S
32	BC5265	lytR	Transcriptional regulator, LytR family	1.1	K
33	BC1879	-	Transglycosylase	1.1	S
34	BC1885		Phage protein	1.1	S
35	BC5118		ABC transporter ATP-binding protein	1.1	Е
36	BC5267	yveT	Glycosyltransferase	1.0	M
37	BC3626	,	hypothetical Cytosolic Protein	1.0	S
38	BC5125		hypothetical protein	1.0	M
39	BC1884		Transcription state regulatory protein abrB	1.0	K
40	BC5120		hypothetical Cytosolic Protein	1.0	S
1	BC0185	rocF	Arginase	-1.1	E
2	BC0208	dppC	Oligopeptide transport system permease protein oppC	-1.9	EP
3	BC0209	иррс	Oligopeptide transport ATP-binding protein oppD	-1.7	EP
4	BC0210		Oligopeptide transport ATP-binding protein oppF	-1.6	E
5	BC0237		Galactose-1-phosphate uridylyltransferase	-1.0	C
6	BC0347		ABC transporter permease protein	-1.8	P
7	BC0347 BC0348	yhcJ	ABC transporter permease protein ABC transporter substrate-binding protein	-1.7	P
8	BC0743	yncs	Hydroxymethylpyrimidine transport ATP-binding protein	-1.4	P
9	BC0743 BC0813		enterotoxin / cell-wall binding protein	-1.4	TS
10	BC0855		Multidrug resistance protein B	-1.2	GEPR
	BC1180	D	Oligopeptide transport system permease protein oppB		EP
11		oppB		-1.1	
12	BC1181	oppC	Oligopeptide transport system permease protein oppC	-1.2	EP
13	BC1182	oppD	Oligopeptide transport ATP-binding protein oppD	-1.3	EP
14	BC1183	oppF	Oligopeptide transport ATP-binding protein oppF	-1.2	E
15	BC1296	ysfD	(S)-2-hydroxy-acid oxidase subunit GlcF	-1.0	С
16	BC1316		PhaR protein	-1.6	S
17	BC1317		Acetoacetyl-CoA reductase	-1.5	IQR
18	BC1318		Poly-beta-hydroxybutyrate polymerase	-1.5	I
19	BC1569		Xanthine phosphoribosyltransferase	-1.0	F
20	BC1717	ygaJ	Peptidase E	-1.1	Е
21	BC1746		Aspartateammonia ligase	-1.2	Е
22	BC2190		Penicillin-binding protein	-1.7	V
23	BC2292		3-hydroxyisobutyryl-coenzyme A hydrolase	-1.1	I
24	BC2629		Methionyl-tRNA formyltransferase	-1.3	J
25	BC2939	tyrA	Arogenate dehydrogenase	-1.1	Е
26	BC3880		hypothetical Membrane Spanning Protein	-1.1	S
27	BC4036	ykrW	Ribulose bisphosphate carboxylase large chain	-1.0	G
28	BC4073		Anti-sigma F factor	-1.1	Т
29	BC4158		2-oxoisovalerate dehydrogenase beta subunit	-1.1	С
30	BC4212		Transcriptional regulator, TetR family	-1.0	K
31	BC4213		Quaternary ammonium compound-resistance protein	-1.2	P
32	BC4214	ykkD	Quaternary ammonium compound-resistance protein	-1.3	P
33	BC4365		Alcohol dehydrogenase	-1.0	C
34	BC4986	yusB	ABC transporter permease protein	-1.1	P
35	BC5233		D-alanine aminotransferase	-1.2	EH
36	BC5239		SH3 domain-containing protein	-1.5	TS
37	BCp0001		hypothetical protein	-1.5	S
38	BCp0002		hypothetical protein	-1.2	S
39	sRNABC051			-1.3	S
40	sRNABC052			-1.0	S

Supplementary Table S5A: Differentially regulated SigB- dependent or SigB and Bc1009-dependent proteins in non-heat-stressed condition at 30°C in *B. cereus* ATCC14579 wt cells versus $\Delta sigB$ and $\Delta bc1009$ mutants

Bold: indicate SigB and Bc1009-induced or downregulated proteins in wt cells versus $\Delta sigB$ and $\Delta bc1009$ mutants at 30°C Not Bold: indicate SigB-induced or downregulated proteins in wt cells versus $\Delta sigB$ mutant at 30°C

log2 FC: log 2 protein fold change values at T0

COG: Cluster of orthologous groups

			Induction	SigB- dependent wt 30°C / \(\Delta sigB\) 30°C	Bc1009- dependent wt 30°C / \(\Delta bc1009\) 30°C	
No.	Locus Tag	Protein	Annotation	log2 FC	log2 FC	cog
1	BC3699	Frotein	Antigen/ lysozyme like protein	6.4	log2 FC	M
2	BC0944		hypothetical protein	5.4		S
3	BC5408	YfnB	2-haloalkanoic acid dehalogenase/ putative phosphatase	5.0		R
4	BC5408 BC5205	LevR	Transcriptional regulatory protein levR	4.3		KTK
5	BC0423	SrfAAH	Non-ribosomal peptide synthetase (adenylation domain)	4.1	3.9	Q
6	BC2294	эпаап	hypothetical Cytosolic Protein	4.1	1.6	S
7	BC2724	OmdAH	LAAC/ Bacteriocin-protection, YdeI or OmpD-Associated	4.1	4.2	S
8	BC2724 BC1718	Ollidan	DUF family protein of unknown function	4.0	4.9	S
0	BC1/10		lysozyme inhibitor, binds to and inhibits macrophage lysozyme, aid	4.0	4.9	3
9	BC3874	LprIH	bacterial survival	3.7		S
10	BC3674 BC4667	ьрип	Ankyrin	3.6		R
11	BC3071	CutC		3.6	3.1	P
			Copper homeostasis protein cutC			S
12 13	BC2752 BC1303	YpeB YvfV	hypothetical Membrane Spanning Protein	3.5 3.5	3.5 3.0	C
		1 VI V	(S)-2-hydroxy-acid oxidase, iron-sulfur chain		3.0	S
14	BC4453		Phage protein	3.5	2.7	
15	BC5077		hypothetical protein	3.4	3.2	S
16	BC4830		ABC transporter permease protein	3.3	1.0	V
17	BC2512		hypothetical protein	3.3		S
18	BC0198		ABC transporter substrate-binding protein	3.1		P
19	BC0580		NAD-dependent malic enzyme	3.0		С
20	BC0544		iron-sulfur cluster-binding protein	3.0	3.1	С
21	BC1662	FliM	Flagellar motor switch protein fliM	3.0	2.9	N
22	BC4165	BkdR	Sigma-54-dependent transcriptional activator	3.0		KT
23	BC2296	YirY	Exonuclease SbcC	3.0		L
24	BC4124		Transcriptional regulator, MarR family	3.0		K
25	BC1640		hypothetical protein	2.9		S
26	BC5121		protein of unknown function	2.8	1.8	S
27	BC0576	McpBH	Methyl-accepting chemotaxis protein	2.8	1.4	NT
28	BC4236		ComG operon protein 4	2.8	3.0	NU
29	BC5243		protein with unknown function	2.8	2.6	S
30	BC4496	RacE	Glutamate racemase	2.7	2.6	M
			N-acetylmuramoyl-L-alanine amidase, Cell wall or membrane			
31	BC3257		biogenesis	2.7	2.4	TM
32	BC5124		Protein with unknown function	2.6		S
33	BC3698		Cell wall endopeptidase, family M23/M37	2.6	3.9	M
34	BC2210		NAD(P)H nitroreductase	2.6		С
35	BC2941	AroF	Chorismate synthase	2.6		Е
36	BC0232		hypothetical Membrane Spanning Protein	2.6	1.4	S
37	BC0678		Methyl-accepting chemotaxis protein, signaling domain	2.6	2.0	NT
38	BC5123		homolog of lantibiotic biosynthesis dehydratase C-term	2.5	1.8	S
39	BC4019		hypothetical protein	2.5	1.5	S
40	BC1202		Serine/threonine protein phosphatase	2.5	1.1	T
41	BC4518	SdhC	Succinate dehydrogenase cytochrome b558 subunit	2.5		С
42	BC1663	FliN	Flagellar motor switch protein fliN	2.5	2.8	NU
43	BC3406		Oxidoreductase	2.5	2.6	R
44	BC3107		UvrC-like protein	2.5		L
45	BC5280	YwpB	(3R)-hydroxymyristoyl-[acyl carrier protein] dehydratase	2.4		I
46	BC2846		Protein dltD precursor	2.4		M
47	BC0453	YkvW	Zinc uptake P-type ATPase	2.3		P
48	BC4547		Cell surface protein	2.3		M
49	BC5118		ABC transporter ATP-binding protein	2.3	1.9	E
50	BC1688	YmfQ	IG hypothetical 17894	2.3	1.6	S
51	BC4170	SpoOA	Stage sporulation protein A	2.2	1.3	TK
52	BC5125		Peptidase family M50	2.2	2.3	M
		YviA/deg	DegV family fatty acid binding protein, phosphorylation of			
53	BC5198	v	fatty acids	2.2	2.0	S
54	BC5122		YcaO cyclodehydratase, ATP-ad Mg2+-binding	2.2	1.9	S
55	BC5117		ABC transporter permease protein	2.2	1.7	S
56	BC4341	YwaC	GTP pyrophosphokinase	2.2		S
			Methyl-accepting chemotaxis protein (motility, Signal transduction)	2.1		NT

			In operon with BC5120, which is a nitroreductase family			
58	BC5119		protein	2.1	1.8	S
59	BC4239		ComG operon protein 1	2.1		NU
60	BC1857	SbcD	Exonuclease SbcD, DNA recombination and repair	2.1	2.8	L
61	BC1472	RluB	Ribosomal large subunit pseudouridine synthase B	2.1		J
62	BC4512	MotB	Chemotaxis motB protein	2.0	0.7	N
63	BC2842		hypothetical protein	2.0		S
64	BC5103	YclP	Ferric anguibactin transport ATP-binding protein	2.0	1.7	P
65	BC2357		Cold shock protein	2.0		S
66	BC1658	YvzB	Flagellin	1.9	2.4	N
67	BC5141	CggR	Central glycolytic genes regulator	1.9	2.3	K
68	BC4530		hypothetical protein	1.9		S
69	BC3995	YkyB	hypothetical Cytosolic Protein	1.9		S
70	BC0185	RocF	Arginase	1.9		E
71	BC5000	YobS	Transcriptional regulator, TetR family	1.9		K
72	BC1168	ClpB	ClpB protein	1.9	1.5	0
73	BC0336		Somatin-like protein	1.8		0
74	BC1651	FlgE	Flagellar hook protein flgE	1.8	1.8	N
75	BC5128	SmpB	SsrA-binding protein, required for rescue of stalled ribosomes	1.7	1.7	0
76	BC0756		Sensor protein kdpD	1.7		T
77	BC0903		Methyltransferase	1.7		L
78	BC4703	YtzE	Transcriptional regulator, DeoR family	1.7	1.1	KG
79	BC5034	YoaH	Methyl-accepting chemotaxis protein	1.7	1.1	NT
80	BC3355	YrkA	Magnesium and cobalt efflux protein corC	1.7		R
81	BC1422	Sat	Sulfate adenylyltransferase	1.6		P
82	BC0073	YacB	Bvg accessory factor	1.6		K
83	BC0026	RecR	Recombination protein recR	1.6		L
84	BC1398		Acetolactate synthase small subunit	1.6		E
85	BC3812	YlxQ	LSU ribosomal protein L7AE	1.6		J
86	BC1277		D-alanyl-D-alanine carboxypeptidase	1.6		M
87	BC0422		Methyl-accepting chemotaxis protein, signaling domain	1.5		NT
88	BC4403	YrvE	Single-stranded-DNA-specific exonuclease recJ	1.5	1.3	L, S
89	BC5410	YocJ	FMN-dependent NADH-azoreductase	1.5		I
90	BC5120		hypothetical Cytosolic Protein	1.5	1.3	S
91	BC1850		Transcriptional regulator	1.5	1.0	K
92	BC4449		hypothetical Membrane Spanning Protein	1.5		L
93	BC4619		hypothetical protein	1.5		S
94	BC1632	CheR	Chemotaxis protein methyltransferase	1.5		NT
95	BC1282	SinR	SinR protein	1.4		K
96	BC4984		ABC transporter substrate-binding protein	1.4	1.1	P
97	BC5263		UDP-glucose 4-epimerase	1.4		M
98	BC5428		hypothetical protein	1.4		S
99	BC5255	YknX	periplasmic component of efflux system	1.4	1.1	M
100	BC5018		hypothetical Membrane Spanning Protein	1.4		S
101	BC5200	YvhJ	Transcriptional regulator, LytR family	1.4		K
102	BC2740	SecY	Protein translocase subunit SecY	1.4		U
103	BC1654	CheV	Chemotaxis protein cheV	1.4	1.0	TN
104	BC2285	MmgD	2-methylcitrate synthase	1.4	1.3	С
105	BC1771		Fibronectin-binding protein	1.4		S
			S-layer protein / Peptidoglycan endo-beta-N-			
106	BC2464		acetylglucosaminidase	1.4	2.0	G
107	BC1639	FliS	Flagellar protein fliS	1.3	1.0	NUO
108	BC0267	YdcI	Transcription accessory protein (S1 RNA binding domain)	1.3		K
109	BC0001	DnaA	Chromosomal replication initiator protein dnaA	1.3		L
110	BC1760	Dildr	3-oxoacyl-[acyl-carrier-protein] synthase III	1.3		I
111	BC0888	CwlH	N-acetylmuramoyl-L-alanine amidase	1.3	1.2	M
112	BC1725	DsdA	D-serine dehydratase	1.3	1.2	E
113	BC5404	Doun	Homoserine dehydrogenase	1.3		E
114	BC1624		hydrolase (HAD superfamily)	1.3		R
		Dr. A			1 0	
115	BC3947	PycA VaaN	Pyruvate carboxylase 5-formyltetrahydrofolate cyclo-ligase	1.3	1.0	C
116	BC4262	YqgN		1.3	1 0	H S
117	BC3081	YhjR	hypothetical protein S-layer protein / Peptidoglycan endo-beta-N-	1.3	1.2	5
110	DC000G			1.2	0.0	G
118	BC0896		acetylglucosaminidase	1.2	0.9	
119	BC1060		Collagen adhesion protein	1.2		M
120	BC0604	37.134	hypothetical protein	1.2		S
121	BC4209	YqhM	Lipoate-protein ligase A	1.2		H
122	BC1657	#N/A	#N/A	1.2	1.5	S
123	BC4579	DnaI	Primosomal protein dnaI	1.2		L
124	BC4741		DNA integration/recombination/invertion protein	1.2		L
125	BC5436		Peptide methionine sulfoxide reductase	1.2		0
126	BC1659	#N/A	#N/A	1.2	1.0	S
			Methyl-accepting chemotaxis protein (motility, Signal			
127	BC0404	TarH	transduction)	1.2	1.6	NT
128	BC0053		Stage V sporulation protein G	1.2		M
129	BC3687		2',3'-cyclic-nucleotide 2'-phosphodiesterase	1.1		F

130	BC1794	#N/A	#N/A	1.1		E
131	BC2431	PhnB	PhnB protein	1.1	0.6	S
132	BC4970		hypothetical protein	1.1		S
133	BC3919	YllA	hypothetical Membrane Spanning Protein	1.1		S
34	BC0597	YueK	Nicotinate phosphoribosyltransferase	1.1	1.5	н
35		IUCK		1.1	1.3	P
	BC1581		Mg(2+) P-type ATPase-like protein			
136	BC4492		putative phosphoesterase	1.1		R
137	BC3394		4-oxalocrotonate tautomerase	1.1		R
138	BC2435		Phosphoglycerate mutase	1.1		G
139	BC1157		Alpha-amylase	1.1	0.8	G
140	BC1653		hypothetical protein	1.1	0.7	S
141	BC0331	PurM	Phosphoribosylformylglycinamidine cyclo-ligase	1.1		F
142	BC1962		Phosphohydrolase (MutT/nudix family protein)	1.1		LR
143	BC5157	YvcI	Mutator mutT protein (7,8-dihydro-8-oxoguanine-triphosphatase)	1.0		LR
144	BC3571	YrhF	hypothetical Cytosolic Protein	1.0		S
145	BC1593	YitH	Acetyltransferase	1.0		KR
146	BC5374	YqiK	Glycerophosphoryl diester phosphodiesterase	1.0		C
147	BC4286		NIF3-related protein	1.0		S
148	BC3209		hypothetical Cytosolic Protein	1.0		S
149	BC2862	PrsA	Protein export protein prsA precursor	1.0		0
150	BC4178		Exodeoxyribonuclease VII small subunit	1.0	0.7	L
151	BC4437	YsxB	hypothetical ribosome-associated protein	1.0		J
152	BC2579		hypothetical Cytosolic Protein	1.0		J
153	BC1726		hypothetical Membrane Spanning Protein	1.0	1.8	S
54	BC0675		hypothetical protein	1.0	2.0	S
155	BC0499	YfhH	Transcriptional regulator	1.0		S
		1 111171				
156	BC2087		hypothetical protein	1.0		S
157	BC0449		hypothetical protein	0.9		S
158	BC3976	YkzG	putative transcriptional regulator	0.9		S
159	BC1936		Transcriptional regulator, MarR family	0.9		K
160	BC0038	YaaT	Tpl protein	0.9		S
161	BC5422		O-Antigen ligase - like protein	0.9		S
162	BC1131		Protein of unknown function	0.9		K
163	BC1338		Oligoendopeptidase F	0.9		Е
164	BC0303		Alpha/beta hydrolase	0.9		R
165	BC2896		Aspartate aminotransferase	0.9		E
				0.9		S
166	BC3996	D 14	hypothetical protein			
167	BC4155	RodA	Rod shape-determining protein rodA	0.9		D
168	BC5222	YybE	Transcriptional regulators, LysR family	0.8		K
169	BC4469	HemB	Delta-aminolevulinic acid dehydratase	0.8		Н
170	BC1454	YkaA	putative pit accessory protein	0.8		P
171	BC5189	SecA	Protein translocase subunit SecA	0.8	1.1	U
172	BC0056		Peptidyl-tRNA hydrolase	0.8		J
173	BC1288		Spermidine/putrescine transport system permease protein potC	0.8		Е
174	BC4955	YutG	Low temperature requirement C protein	0.8		I
175	BC0364	YefA	tRNA (Uracil-5-) -methyltransferase	0.8		J
176	BC2021	YcdH	High-affinity zinc uptake system protein znuA precursor	0.8		P
		TCull				
177	BC4958		NAD(P)H dehydrogenase [quinone]	0.8		R
178	BC0044	YabD	Sec-independent secretion protein tatD	0.8		L
179	BC5252		hypothetical Membrane Spanning Protein	0.8		S
180	BC0954		tcdA-E operon negative regulator	0.7		S
181	BC4694		hypothetical protein	0.7		S
182	BC5241	YvbJ	IG hypothetical 16680	0.7	1.3	S
183	BC1195	YjbI	Globin Family Protein	0.7		R
184	BC3831	TopA	DNA topoisomerase I	0.7		L
185	BC3051	- 0 - 1	Phosphohydrolase (MutT/nudix family protein)	0.7		LR
186	BC1532	DonB		0.7		E
		DapB	Dihydrodipicolinate reductase			
187	BC3865	41.0	Polypeptide deformylase	0.7		J
188	BC0883	AlsS	Acetolactate synthase large subunit	0.7		EH
189	BC3807	RibC	Riboflavin kinase	0.7		Н
190	BC3929	YlbI	Phosphopantetheine adenylyltransferase	0.7		Н
191	BC1637		Flagellar hook-associated protein 3	0.7		N
192	BC3659		hypothetical protein	0.7		S
193	BC4198	YqhT	Xaa-Pro dipeptidase	0.7		E
194	BC4791	YtiB	Carbonic anhydrase	0.7	1.3	P
195	BC4731 BC0437		Phosphoglyceromutase/phosphopentomutase	0.7	1.0	R
		DiD				
196	BC0383	FhuD	Ferrichrome-binding protein	0.7		P
197	BC1477	ResD	Transcriptional regulatory protein resD	0.7		TK
198	BC1261		ATP/GTP-binding protein	0.6		LR
199	BC3774		Pyruvate synthase alpha chain	0.6		С
200	BC0368		hypothetical Cytosolic Protein	0.6		S
201	BC5380		Ferrichrome-binding protein	0.6		P
202	BC4909	KapB	Kinase-associated protein B	0.6		S
-02	20.300	Lupb	Molybdenum cofactor biosynthesis enzyme and related Fe-S	5.0		3
			intorpodential coractor prosynthesis enzyme and related re-5			
203	BC5454		oxidoreductases	0.6		R

				SigB-	Bc1009-	
244	BC5242		Membrane protein with C2C2 zinc finger		2.5	J
243	BC5168	uvrB	Excinuclease ABC subunit B		1.7	L
242	BC4934		hypothetical protein		2.0	S
241	BC4746	ytqA	Fe-S oxidoreductase		0.9	R
240	BC4371		hypothetical protein		1.3	S
239	BC4302	phoH	PhoH protein		1.4	T
238	BC4224		Glycine dehydrogenase [decarboxylating]		3.2	Е
237	BC3886	j	Carbamoyl-phosphate synthase large chain		1.4	EF
236	BC3595	yvaA	Oxidoreductase		1.4	R
235	BC3587		Transcriptional regulator, LytR family		0.8	K
234	BC3286		hypothetical protein		0.9	S
233	BC3194		Transcriptional regulator, MarR family		1.0	K
232	BC3135		Carboxymethylenebutenolidase-related protein		1.6	R
231	BC2607		hypothetical protein		0.8	S
230	BC2299		hypothetical protein		0.9	S
229	BC2102		hypothetical protein		0.6	S
228	BC2057		Stomatin like protein		1.3	0
227	BC1991		putative murein endopeptidase		1.0	D
226	BC1914		Phage protein		0.7	K
225	BC1800		Two-component response regulator vanR		1.1	TK
224	BC1652 BC1661		Flagellar motor switch protein fliN		2.4	NU
223	BC1652	ngc	hypothetical protein		0.6	S
222	BC1629 BC1642	flgC	Flagellar basal-body rod protein flgC		0.7	N
221	BC1628	fliY	Chemotaxis protein cheC		0.7	NTU
219	BC1603 BC1628	cheA	Chemotaxis protein cheA		1.1	NT
218	BC1370 BC1603	uitC	D-alanyi carrier protein		0.7	IQ K
217	BC1359 BC1370	dltC	D-alanyl carrier protein		3.6	IQ
216	BC1172 BC1359	vhcH	Bacitracin transport ATP-binding protein bcrA		0.6	V
215 216	BC1165 BC1172	yitU	hydrolase (HAD superfamily) ComZ protein		2.7	G
214	BC0815	yknY	ABC transporter ATP-binding protein		0.6	V R
213	BC0426	-137	Hydroxymethylpyrimidine-binding protein		0.8	P
212	BC1497		Cytidylate kinase	0.6	0.0	F
211	BC1066	YhgC	Signal transduction protein TRAP	0.6		R
210	BC2019	371 0	Low-affinity zinc transport protein	0.6		R
209	BC0546	CspR	23S rRNA methyltransferase	0.6		J
208	BC4801	YvqH	Phage shock protein A	0.6		KT
207	BC2321		tRNA pseudouridine synthase A	0.6		J
206		IIIIL	ATP-dependent RNA helicase	0.6		LKJ
	BC2103	YfmL				

			Downregulation	dependent wt 30°C / ΔsigB 30°C	dependent wt 30°C / Δbc1009 30°C	
No.	Locus Tag	Protein	Annotation	log2 FC	log2 FC	COG
1	BC3923		LSU ribosomal protein L32P	-7.9		J
2	BC2051		Ribosomal-protein-alanine acetyltransferase	-7.9		KR
3	BC2353		hypothetical protein	-7.0		S
			Thioredoxin reductase, posttranslational modification,			
4	BC0385		protein turnover, chaperones	-6.6	-5.8	0
5	BC0405	ArgR	Arginine repressor, argR	-6.5	-6.5	K
6	BC3856	RpmB	LSU ribosomal protein L28P	-5.7		J
_	DOODEA	VCD	Multidrug resistance ABC transporter ATP-binding and permease	5.0		V
7	BC2371	YfiB	protein	-5.6		
8	BC1970		hypothetical protein	-5.3		Н
9	BC2355		hypothetical protein	-4.9	-3.2	S
10	BC3550		Argininosuccinate lyase	-3.4		Е
11	BC1647		Flagellum-specific ATP synthase	-3.3		NU
12	BC1403	LeuD	3-isopropylmalate dehydratase small subunit	-3.2		E
13	BC1619	NfrA	Oxygen-insensitive NADPH nitroreductase	-3.1		С
14	BC4463		Stage II sporulation protein B	-2.6		S
15	BC4692		hypothetical protein	-2.6		S
16	BC0288	YdiD	Ribosomal-protein-alanine acetyltransferase	-2.6		R
17	BC4373	YxiP	hypothetical protein	-2.5		D
18	BC3982	CcpC	Transcriptional regulators, LysR family	-2.4		K
19	BC1011		hypothetical protein	-2.4		S
20	BC3110	YndF	Spore germination protein BC	-2.3		S
21	BC3132		General stress protein 17M	-2.2		S
22	BC4058	YpuG	hypothetical Cytosolic Protein	-2.1		S
23	BC4250		5-methyltetrahydrofolatehomocysteine methyltransferase	-2.1		E
24	BC4221		ABC transporter ATP-binding protein	-2.0		V
25	BC3821	UppS	Undecaprenyl pyrophosphate synthetase	-2.0		I
26	BC3298		hypothetical Cytosolic Protein	-2.0		S
27	BC2424		hypothetical protein	-2.0		S
28	BC2077		YukE protein of unknown function	-2.0	-2.0	S

29	BC3938	YlbA	hypothetical Cytosolic Protein	-1.9		S
30	BC0857		hypothetical protein	-1.9		R
31	BC0142	RplX	LSU ribosomal protein L24P	-1.8		J
32	BC0041	YabC	Corrin/porphyrin methyltransferase	-1.8		R
33	BC3125		hypothetical protein	-1.7		S
34	BC0365	YfjN	Nitrogen regulation protein NIFR3	-1.7		J
35	BC3322		hypothetical protein	-1.7		S
36	BC4151	YqiW	hypothetical protein	-1.6		S
37	BC4203	YhcW	Phosphoglycolate phosphatase	-1.6		R
38	BC1316		PhaR protein	-1.6		S
39	BC3587		Transcriptional regulator, LytR family	-1.6		K
40	BC3005		Glycosyltransferase involved in cell wall biogenesis	-1.6		M
41	BC1363	LrpC	Leucine-responsive regulatory protein	-1.5	-0.9	K
42	BC2984	•	Immune inhibitor A precursor	-1.5		S
43	BC3718	FruA	PTS system, fructose-specific IIABC component	-1.5		GT
44	BC2590	11021	Phage protein	-1.5		S
			0.1			
45	BC3728		hypothetical protein	-1.4	-1.4	L
46	BC1848		Prophage helix-turn-helix protein	-1.4		S
47	BC3480		DNA mismatch repair protein mutS	-1.4	-1.4	L
48	BC2753	SleB	Cell wall hydrolase cwlJ	-1.4		M
49	BC2379		Transcriptional regulator	-1.4		K
50	BC1520	YpiB	hypothetical Cytosolic Protein	-1.4	-1.1	S
51	BC1660	YjbJ	Soluble lytic murein transglycosylase	-1.4	-1.8	М
52	BC5341	AcdA	Acyl-CoA dehydrogenase, short-chain specific	-1.4	-1.5	I
					-1.5	
53	BC1359	YhcH	Bacitracin transport ATP-binding protein bcrA	-1.4		V
54	BC5101		Perfringolysin O precursor	-1.4	-2.4	S
55	BC3281		hypothetical protein	-1.4	-0.9	S
56	BC0416		Phage infection protein	-1.4		S
57	BC3341		1-deoxy-D-xylulose 5-phosphate reductoisomerase	-1.4		I
58	BC1638		Flagellar hook-associated protein 2	-1.3	-1.5	N
59	BC2251	KamA	Lysine 2,3-aminomutase	-1.3	-10	E
60		YusJ			-0.9	I
	BC5002	I USJ	Acyl-CoA dehydrogenase	-1.3	-0.9	
61	BC3693		Transcriptional regulator, PadR family	-1.3		K
62	BC1914		Phage protein	-1.3		K
63	BC4039	YkrZ	2-hydroxy-3-oxo-5-methylthiopent-2-enoate oxidase	-1.3		S
64	BC1535	YpjH	Glycosyltransferase	-1.2		M
65	BC4460		Type I restriction-modification system specificity subunit	-1.2		V
66	BC4927		Cell surface protein	-1.2		L
67	BC1898		Phage protein	-1.2		S
68	BC3159		NAD-dependent epimerase/dehydratase / Alpha/beta hydrolase	-1.2		MGRQ
69	BC5048		Ferritin	-1.2		P
70	BC2126	MoeEH	Molybdopterin synthase catalytic subunit	-1.1		Н
71	BC0972		hypothetical protein	-1.1		R
72	BC2448		D-alanyl-D-alanine carboxypeptidase	-1.1		M
73	BC2037	YcgQ	hypothetical Membrane Spanning Protein	-1.1		S
74	BC4634		Protein ecsC	-1.1		S
75	BC5325	YwlC	SUA5 protein	-1.1		J
76	BC1353	YosM	NrdI protein	-1.0		F
77	BC0366	100111	hypothetical protein	-1.0	-0.7	S
		V-l-U		-1.0	-0.7	G
78	BC0361	YxkH	Polysaccharide deacetylase			
79	BC1017		hypothetical protein	-1.0		S
80	BC3121		5'-nucleotidase	-1.0		F
81	BC4256		Transcriptional regulator, ArsR family	-1.0	-0.8	K
82	BC0076	PabB	Para-aminobenzoate synthase component I	-1.0		EH
83	BC1540	PanB	3-methyl-2-oxobutanoate hydroxymethyltransferase	-0.9		Н
84	BC5274	YveM	UDP-N-acetylglucosamine 4,6-dehydratase	-0.9	-1.2	MG
85	BC3731	YvgY	COP associated protein	-0.9	-0.7	P
86	BC3007		Acetylornithine aminotransferase	-0.9		E
87	BC0679		Cell wall-binding protein	-0.9	-1.3	S
				0.0	-1.3	
88	BC0808	D 0	PTS system, diacetylchitobiose-specific IIB component	-0.8		G
89	BC2147	RapG	Response regulator aspartate phosphatase	-0.8		R
	BC0135	RpsS	SSU ribosomal protein S19P	-0.8		J
90			Modulator of drug activity B	-0.8	-0.7	R
91	BC0858					
		YjhB	Phosphohydrolase (MutT/nudix family protein)	-0.8		F
91	BC0858	YjhB AbrB				F K
91 92 93	BC0858 BC2032 BC0042	AbrB	Phosphohydrolase (MutT/nudix family protein) Transcription state regulatory protein abrB	-0.8 -0.8		K
91 92 93 94	BC0858 BC2032 BC0042 BC2655		Phosphohydrolase (MutT/nudix family protein) Transcription state regulatory protein abrB Cobalt transport ATP-binding protein cbiO	-0.8 -0.8 -0.8		K P
91 92 93 94 95	BC0858 BC2032 BC0042 BC2655 BC0021	AbrB YkoD	Phosphohydrolase (MutT/nudix family protein) Transcription state regulatory protein abrB Cobalt transport ATP-binding protein cbiO Deoxyguanosine kinase	-0.8 -0.8 -0.8		K P F
91 92 93 94 95 96	BC0858 BC2032 BC0042 BC2655 BC0021 BC0157	AbrB YkoD RpsK	Phosphohydrolase (MutT/nudix family protein) Transcription state regulatory protein abrB Cobalt transport ATP-binding protein cbiO Deoxyguanosine kinase SSU ribosomal protein S11P	-0.8 -0.8 -0.8 -0.8	-0.8	K P F J
91 92 93 94 95 96 97	BC0858 BC2032 BC0042 BC2655 BC0021 BC0157 BC0052	AbrB YkoD RpsK YabJ	Phosphohydrolase (MutT/nudix family protein) Transcription state regulatory protein abrB Cobalt transport ATP-binding protein cbiO Deoxyguanosine kinase SSU ribosomal protein S11P Translation initiation inhibitor	-0.8 -0.8 -0.8 -0.8 - 0.8 -0.7		K P F J J
91 92 93 94 95 96 97 98	BC0858 BC2032 BC0042 BC2655 BC0021 BC0157 BC0052 BC1341	AbrB YkoD RpsK	Phosphohydrolase (MutT/nudix family protein) Transcription state regulatory protein abrB Cobalt transport ATP-binding protein cbiO Deoxyguanosine kinase SSU ribosomal protein S11P Translation initiation inhibitor Aluminum resistance protein	-0.8 -0.8 -0.8 -0.8 -0.8 -0.7		K P F J
91 92 93 94 95 96 97 98	BC0858 BC2032 BC0042 BC2655 BC0021 BC0157 BC0052 BC1341 BC3303	AbrB YkoD RpsK YabJ	Phosphohydrolase (MutT/nudix family protein) Transcription state regulatory protein abrB Cobalt transport ATP-binding protein cbiO Deoxyguanosine kinase SSU ribosomal protein S11P Translation initiation inhibitor Aluminum resistance protein hypothetical protein	-0.8 -0.8 -0.8 -0.8 -0.7 -0.7		K P F J J R
91 92 93 94 95 96 97 98 99	BC0858 BC2032 BC0042 BC2655 BC0021 BC0157 BC0052 BC1341 BC3303 BC2773	AbrB YkoD RpsK YabJ	Phosphohydrolase (MutT/nudix family protein) Transcription state regulatory protein abrB Cobalt transport ATP-binding protein cbiO Deoxyguanosine kinase SSU ribosomal protein S11P Translation initiation inhibitor Aluminum resistance protein hypothetical protein RRF2 family protein	-0.8 -0.8 -0.8 -0.8 -0.8 -0.7 -0.7 -0.7		K P F J J R J K
91 92 93 94 95 96 97 98	BC0858 BC2032 BC0042 BC2655 BC0021 BC0157 BC0052 BC1341 BC3303	AbrB YkoD RpsK YabJ	Phosphohydrolase (MutT/nudix family protein) Transcription state regulatory protein abrB Cobalt transport ATP-binding protein cbiO Deoxyguanosine kinase SSU ribosomal protein S11P Translation initiation inhibitor Aluminum resistance protein hypothetical protein	-0.8 -0.8 -0.8 -0.8 -0.7 -0.7		K P F J J R
91 92 93 94 95 96 97 98 99	BC0858 BC2032 BC0042 BC2655 BC0021 BC0157 BC0052 BC1341 BC3303 BC2773	AbrB YkoD RpsK YabJ	Phosphohydrolase (MutT/nudix family protein) Transcription state regulatory protein abrB Cobalt transport ATP-binding protein cbiO Deoxyguanosine kinase SSU ribosomal protein S11P Translation initiation inhibitor Aluminum resistance protein hypothetical protein RRF2 family protein	-0.8 -0.8 -0.8 -0.8 -0.8 -0.7 -0.7 -0.7		K P F J J R J K
91 92 93 94 95 96 97 98 99 100	BC0858 BC2032 BC0042 BC2655 BC0021 BC0157 BC0052 BC1341 BC3303 BC2773 BC1246	AbrB YkoD RpsK YabJ YkvJ	Phosphohydrolase (MutT/nudix family protein) Transcription state regulatory protein abrB Cobalt transport ATP-binding protein cbiO Deoxyguanosine kinase SSU ribosomal protein S11P Translation initiation inhibitor Aluminum resistance protein hypothetical protein RRF2 family protein NADH dehydrogenase	-0.8 -0.8 -0.8 -0.8 -0.7 -0.7 -0.7 -0.7 -0.7		K P F J J K R

105	BC5335	FbaA	Fructose-bisphosphate aldolase	-0.6	-0.7	G
106	BC4415	RuvA	Holliday junction DNA helicase ruvA	-0.6		L
107	BC3680	YneF	hypothetical protein	-0.6		S
108	BC0083	yacF	Nif3 family protein		-2.0	J
109	BC0100	mcsA	ClpC ATPase		-1.1	S
110	BC0101	mcsB	Arginine kinase		-0.7	E
111	BC0164	rplM	LSU ribosomal protein L13P		-0.8	J
112	BC0489		Glycosyltransferase involved in cell wall biogenesis		-2.2	M
113	BC0504	yfhQ	A/G-specific adenine DNA glycosylase		-1.3	L
114	BC0707		Ferrous iron transport protein B		-1.3	P
115	BC0821		CotJC protein		-0.7	P
116	BC0875		hypothetical protein		-1.2	S
117	BC0999	#N/A	hypothetical protein		-0.9	S
118	BC1024	ykcA	Glyoxalase family protein		-0.7	Е
119	BC1050	ecsA	ABC-type transporter ATP-binding protein ecsA		-0.7	V
120	BC1179		Oligopeptide-binding protein oppA		-1.7	Е
121	BC1690		D-alanyl-D-alanine carboxypeptidase		-1.6	V
122	BC1715		Transcriptional regulator		-1.2	KS
123	BC1719		Transcriptional regulator, MecI family		-1.7	K
124	BC1746		Aspartateammonia ligase		-3.5	Е
125	BC1861		DNA/RNA helicase (DEAD/DEAH box family)		-1.8	KL
126	BC2437		hypothetical protein		-1.9	S
127	BC2923		Acetyltransferase		-1.2	KR
128	BC3095	ansR	Ans operon repressor protein		-2.0	K
129	BC3270		hypothetical Membrane Spanning Protein		-1.9	S
130	BC3321	yfkO	NAD(P)H-dependent flavin reductase		-2.7	С
131	BC3690	lexA	LexA repressor		-0.6	KT
132	BC3790	yufP	Nucleoside transport ATP-binding protein		-1.9	R
133	BC3952		GTPase		-0.6	J
134	BC4205	splB	Spore photoproduct lyase		-0.9	L
135	BC4384	·	hypothetical protein		-0.6	S
136	BC4462		Septum formation protein Maf		-7.8	D
137	BC4508	ywnA	RRF2 family protein		-1.9	K
138	BC4525	ysiA	Transcriptional regulator, TetR family		-0.8	K
139	BC4649	ezrA	Septation ring formation regulator		-2.2	D
140	BC4839	#N/A	hypothetical protein		-0.8	V
141	BC5221		Phage infection protein		-2.8	S
142	BC5237	ydaM	N-acetylglucosaminyltransferase		-1.2	M
143	BC5239		hypothetical protein		-0.9	TS
144	BC5309	atpH	ATP synthase delta chain		-0.6	С
145	BC5377	ywhC	Membrane metalloprotease		-0.8	R

Supplementary Table S5B: Differentially regulated SigB- dependent or SigB and Bc1009-dependent genes in non-heat-stressed condition at 30°C in *B. cereus* ATCC14579 wt cells versus $\Delta sigB$ and $\Delta bc1009$ mutants

Bold: indicate SigB and Bc1009-induced or downregulated genes in wt cells versus $\Delta sigB$ and $\Delta bc1009$ mutants at 30°C

Not Bold: indicate SigB-induced or downregulated genes in wt cells versus ΔsigB mutant at 30°C

log2 FC: log 2 protein fold change values at T0

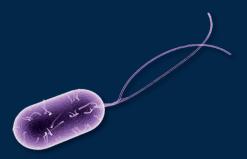
COG: Cluster of orthologous groups

No				wt 30°C/ ΔsigB 30°C	wt 30°C/ Δbc1009 30°C	
		Gene	Annotation	log2 expression	log2	COG
1	Locus Tag				expression	
	BC0423	srfAAH	Non-ribosomal peptide synthetase (adenylation domain)	1.8	1.8	Q
2	BC0576	тсрВН	Methyl-accepting chemotaxis protein	1.4	1.8	NT
3	BC0675		hypothetical protein	1.4	1.5	S
4	BC0678		Methyl-accepting chemotaxis protein	1.4	1.3	NT
5	BC0888	cwlH	N-acetylmuramoyl-L-alanine amidase	1.1	1.3	M
6	BC1653		LysR transcriptional regulator, can function as activator/repressor	1.0	1.1	S
7	BC1658	yvzB/fliC	Flagellin	1.6	1.6	N
8	BC1660	yjbJ	Soluble lytic murein transglycosylase	2.2	2.3	M
9	BC1662	fliM	Flagellar motor switch protein fliM	2.5	2.6	N
10	BC1663	fliN	Flagellar motor switch protein fliN	2.3	2.3	NU
11	BC1857	sbcD	Exonuclease SbcD	3.4	3.3	L
12	BC3257		N-acetylmuramoyl-L-alanine amidase	1.4	1.4	TM
13	BC3698		Cell wall endopeptidase, family M23/M37	3.7	3.6	M
14	BC5117		ABC transporter permease protein	1.2	1.3	S
15	BC5118		ABC transporter ATP-binding protein	1.2	1.5	Е
16	BC5119		hypothetical protein	1.3	1.5	S
17	BC5120		hypothetical Cytosolic Protein	1.0	1.2	S
18	BC5121		hypothetical protein	1.2	1.3	S
19	BC5121			1.2	1.3	S
20	BC5122 BC5123		hypothetical Cytosolic Protein	1.1	1.3	S
		1.7	hypothetical protein			
21	BC5241	yvbJ	IG hypothetical 16680	1.3	1.4	S
22	BC5243		hypothetical protein	1.4	1.6	S
23	BC0215		peptide ABC transporter substrate-binding protein	2.9	1.7	Е
24	BC0492		Pyruvate formate-lyase activating enzyme	3.8	1.0	0
25	BC0559		Methyl-accepting chemotaxis protein	1.2	1.2	NT
26	BC0965		hypothetical protein	1.7	2.3	S
27	BC0966		Fimbria associated protein	1.5	1.5	M
28	BC1110	cytK	Cytotoxin K	1.8	2.1	S
29	BC1625		Chemotaxis motA protein	1.5	1.7	N
30	BC1626	ytxE	Chemotaxis motB protein	1.3	1.5	N
31	BC1656		Flagellin	1.2	1.3	N
32	BC1661	fliN	Flagellar motor switch protein fliN	2.5	2.4	NU
33	BC1664		Flagellar motor switch protein fliN	2.3	2.4	S
34	BC1665	fliP	Flagellar biosynthetic protein fliP	2.3	2.6	NU
35	BC1666	fliQ	Flagellar biosynthetic protein fliQ	2.3	2.4	NU
36	BC1667	fliR	Flagellar biosynthetic protein fliR	2.5	2.5	NU
37	BC1668	flhB	Flagellar biosynthetic protein flhB	2.3	2.4	NU
38	BC1669	flhA	Flagellar biosynthesis protein flhA	2.4	2.4	S
39	BC1670			2.3	2.5	S
		flhF	Flagellar biosynthesis protein flhF			
40	BC1671	flhA	Flagellar basal-body rod protein flgG	2.3	2.5	N
	D.O.4.000		Metal-dependent hydrolase related to alanyl-tRNA			_
41	BC1672		synthetase	1.4	1.1	R
42	BC1852		Exonuclease SbcC	3.2	2.3	L
43	BC1853		hypothetical protein	3.3	2.5	S
44	BC1855		Chromosome segregation ATPases	3.6	2.0	L
45	BC1856		Phage protein	3.0	2.0	S
46	BC1858		Phage protein	1.9	1.6	S
47	BC1860		Phage protein	2.9	1.5	S
48	BC1862		Phage protein	2.4	1.8	S
49	BC1873		Phage protein	1.7	1.0	S
50	BC1004	ak-D	Transcriptional regulator during the transition from	1.0	1.9	K
50	BC1884	abrB	growth to stationary phase	1.8	1.3	
51	BC1885		Phage protein	1.4	1.2	S
52	BC1887	.,	Phage protein	1.2	1.3	S
53	BC2006	tlpA	Methyl-accepting chemotaxis protein	1.4	1.5	NT
54	BC2008		hypothetical protein	1.2	1.0	S
55	BC2056		hypothetical protein	1.7	1.1	OU
56	BC2057		Stomatin like protein	1.7	1.4	0
57	BC2465		hypothetical protein	1.2	1.1	S
58	BC3458		XpaF1 protein	1.5	1.3	S
59	BC3520		Methyl-accepting chemotaxis protein	1.8	2.1	NT

60	BC3694		N-acetylmuramoyl-L-alanine amidase	3.4	3.0	M
61	BC3695		holin	3.4	3.3	S
62	BC3696	#N/A	hypothetical protein	3.5	3.5	S
63	BC3697		hypothetical protein	2.4	1.6	S
64	BC3699		Antigen	4.0	3.7	M
65	BC3703		Phage protein	1.5	1.8	S
66	BC3763	#N/A	LysM peptidoglycan-binding domain-containing protein	1.6	1.7	S
67	BC4337		hypothetical Membrane Spanning Protein	1.4	1.5	S
68	BC4340	ydfN	NAD(P)H nitroreductase	1.4	1.2	С
69	BC4792		Cytochrome d ubiquinol oxidase subunit I	3.2	1.5	С
70	BC4793		Cytochrome d ubiquinol oxidase subunit II	3.5	1.9	С
71	BC4933		Methyltransferase	1.4	1.3	R
72	BC5033	#N/A	HAMP domain-containing protein	2.9	1.8	S
73	BC5116		hypothetical protein	1.5	1.7	S
74	BC5126		Transposase	1.3	1.4	L
75	BC5242		Membrane protein with C2C2 zinc finger	1.8	2.0	J
1	BC1060		Collagen adhesion protein	-1.7	-1.9	M
2	BC1283	sinI	SinI protein	-2.1	-1.0	S
3	BC2078		hypothetical Membrane Spanning Protein	-1.9	-1.5	S
4	BC2080	yukC	hypothetical Membrane Associated Protein	-2.4	-1.4	S
			DNA segregation ATPase and related proteins			
5	BC2081	yukA	(FtsK/SpoIIIE family)	-1.7	-1.3	D
6	BC3186	yrrS	hypothetical protein	-1.9	-1.2	S
7	BC5026		hypothetical protein	-4.7	-2.9	S
8	BC5027		Protein erfK/srfK precursor	-4.1	-3.2	S
9	BCp0001		hypothetical protein	-1.4	-1.1	S
10	BCp0002		hypothetical protein	-1.3	-1.1	S
11	BCp0003		hypothetical cytosolic protein	-1.1	-1.0	S
12	BCp0005		type B DNA polymerase	-1.5	-1.2	S
13	BCp0006		LexA repressor	-1.6	-1.4	KT
14	BCp0007		hypothetical membrane spanning protein	-2.0	-2.1	S
15	BCp0008		hypothetical cytosolic protein	-1.7	-1.9	S
16	BCp0009		hypothetical cytosolic protein	-2.0	-2.2	S
17	BCp0010		hypothetical cytosolic protein	-1.7	-2.0	S
18	BCp0011		hypothetical membrane spanning protein	-1.6	-2.2	S
19	BCp0012		hypothetical protein	-1.8	-2.2	S
20	BCp0013		hypothetical cytosolic protein	-1.7	-2.0	S
21	BCp0014		hypothetical cytosolic protein	-1.8	-1.9	S
22	BCp0015		hypothetical membrane spanning protein	-1.5	-1.7	S
23	BCp0016		N-acetylmuramoyl-L-alanine amidase	-1.7	-1.9	NU
24	BCp0017		hypothetical membrane spanning protein	-1.8	-1.8	S
25	BCp0018		hypothetical cytosolic protein	-1.7	-1.7	S
26	BCp0019		hypothetical protein	-1.6	-1.9	S
27	BCp0020		hypothetical protein	-1.5	-1.8	S
28	BCp0021		N-acetylmuramoyl-L-alanine amidase	-1.5	-1.8	M

3.6 References

- Abee, T., Wels, M., de Been, M., and den Besten, H. (2011). From transcriptional landscapes to the identification of biomarkers for robustness. *Microb Cell Fact* 10, S9. doi: 10.1186/1475-2859-10-S1-S9.
- 2. Bartolini, M., Cogliati, S., Vileta, D., Bauman, C., Ramirez, W., and Grau, R. (2019). Stress-responsive alternative sigma factor SigB plays a positive role in the antifungal proficiency of *Bacillus subtilis. Appl. Environ. Microbiol.* 85. doi: 10.1128/AEM.00178-19.
- 3. Bartolini, M., Cogliati, S., Vileta, D., Bauman, C., Rateni, L., Leñini, C., et al. (2018). Regulation of biofilm aging and dispersal in *Bacillus subtilis* by the alternative sigma factor SigB. *J. Bacteriol.* doi: 10.1128/JB.00473-18.
- 4. Benjamini, Y., and Hochberg, Y. (1995). Controlling the False Discovery Rate: A practical and powerful approach to multiple testing. *Journal of the Royal Statistical Society. Series B (Methodological)* 57, 289–300.
- Blankenburg, S., Hentschker, C., Nagel, A., Hildebrandt, P., Michalik, S., Dittmar, D., et al. (2019). Improving proteome coverage for small sample amounts: an advanced method for proteomics approaches with low bacterial cell numbers. *Proteomics* 19, e1900192. doi: 10.1002/pmic.201900192.
- Ceragioli, M., Mols, M., Moezelaar, R., Ghelardi, E., Senesi, S., and Abee, T. (2010). Comparative transcriptomic and phenotypic analysis of the responses of *Bacillus cereus* to various disinfectant treatments. *Applied and Environmental Microbiology* 76, 3352–3360. doi: 10.1128/AEM.03003-09.
- Ceuppens, S., Rajkovic, A., Hamelink, S., Van de Wiele, T., Boon, N., and Uyttendaele, M. (2012). enterotoxin
 production by *Bacillus cereus* under gastrointestinal conditions and their immunological detection by
 commercially available kits. *Foodborne Pathogens and Disease* 9, 1130–1136. doi: 10.1089/fpd.2012.1230.
- Chen, J.-C., Chang, C.-F., Hsu, D.-W., Shu, J.-C., Chen, H.-Y., Chen, C.-Y., et al. (2017). Temporal regulation of σB by partner-switching mechanism at a distinct growth stage in *Bacillus cereus*. *Int. J. Med. Microbiol*. 307, 521– 532. doi: 10.1016/j.ijmm.2017.09.005.
- 9. Chen, J.-C., Liu, J.-H., Hsu, D.-W., Shu, J.-C., Chen, C.-Y., and Chen, C.-C. (2015). Methylatable signaling helix coordinated inhibitory receiver domain in sensor kinase modulates environmental stress response in *Bacillus Cereus. PLoS ONE* 10, e0137952. doi: 10.1371/journal.pone.0137952.
- Cheng, C., Dong, Z., Han, X., Sun, J., Wang, H., Jiang, L., et al. (2017). Listeria monocytogenes 10403S arginine repressor ArgR finely tunes arginine metabolism regulation under acidic conditions. Front Microbiol 8, 145. doi: 10.3389/fmicb.2017.00145.
- 11. de Been, M., Tempelaars, M. H., van Schaik, W., Moezelaar, R., Siezen, R. J., and Abee, T. (2010a). A novel hybrid kinase is essential for regulating the *sigma(B)*-mediated stress response of *Bacillus cereus. Environ Microbiol* 12, 730–745. doi: 10.1111/j.1462-2920.2009.02116.x.
- 12. de Been, M., Tempelaars, M. H., van Schaik, W., Moezelaar, R., Siezen, R. J., and Abee, T. (2010b). A novel hybrid kinase is essential for regulating the sigma(B)-mediated stress response of *Bacillus cereus*. *Environ*. *Microbiol*. 12. 730–745. doi: 10.1111/i.1462-2920.2009.02116.x.
- 13. de Vries, Y. P., Hornstra, L. M., Atmadja, R. D., Schaik, W. van, de Vos, W. M., and Abee, T. (2005). Deletion of *sigB* in *Bacillus cereus* affects spore properties. *FEMS Microbiol Lett* 252, 169–173. doi: 10.1016/j.femsle.2005.08.042.
- 14. Desriac, N., Broussolle, V., Postollec, F., Mathot, A.-G., Sohier, D., Coroller, L., et al. (2013). *Bacillus cereus* cell response upon exposure to acid environment: toward the identification of potential biomarkers. *Front Microbiol* 4, 284. doi: 10.3389/fmicb.2013.00284.
- Distler, U., Kuharev, J., Navarro, P., Levin, Y., Schild, H., and Tenzer, S. (2014). Drift time-specific collision energies enable deep-coverage data-independent acquisition proteomics. *Nat Methods* 11, 167–170. doi: 10.1038/nmeth.2767.
- Ehling-Schulz, M., Koehler, T. M., and Lereclus, D. (2019). The Bacillus cereus group: Bacillus species with pathogenic potential. Microbiol Spectr 7, 10.1128/microbiolspec.GPP3-0032-2018. doi: 10.1128/microbiolspec.GPP3-0032-2018.


- 17. Fouet, A., Namy, O., and Lambert, G. (2000). Characterization of the operon encoding the alternative *sigma(B)* factor from *Bacillus anthracis* and its role in virulence. *J Bacteriol* 182, 5036–5045. doi: 10.1128/JB.182.18.5036-5045.2000.
- Gaballa, A., Guariglia-Oropeza, V., Dürr, F., Butcher, B. G., Chen, A. Y., Chandrangsu, P., et al. (2018). Modulation
 of extracytoplasmic function (ECF) sigma factor promoter selectivity by spacer region sequence. *Nucleic Acids*Res 46, 134–145. doi: 10.1093/nar/gkx953.
- 19. Galinier, A., and Deutscher, J. (2017). Sophisticated regulation of transcriptional factors by the bacterial phosphoenolpyruvate: sugar phosphotransferase system. *J Mol Biol* 429, 773–789. doi: 10.1016/j.jmb.2017.02.006.
- 20. Gao, T., Li, Y., Chai, Y., Wang, Q., and Ding, M. (2021). SigB regulates stress resistance, glucose starvation, MnSOD production, biofilm formation, and root colonization in *Bacillus cereus* 905. *Appl Microbiol Biotechnol*. doi: 10.1007/s00253-021-11402-v.
- Haldenwang, W. G. (1995). The sigma factors of Bacillus subtilis. Microbiol Rev 59, 1–30. doi: 10.1128/mr.59.1.1-30.1995.
- 22. Haldenwang, W. G., and Losick, R. (1979). A modified RNA polymerase transcribes a cloned gene under sporulation control in *Bacillus subtilis*. *Nature* 282, 256–260. doi: 10.1038/282256a0.
- 23. Hayrapetyan, H., Tempelaars, M., Nierop Groot, M., and Abee, T. (2015). *Bacillus cereus* ATCC 14579 RpoN (Sigma 54) is a pleiotropic regulator of growth, carbohydrate metabolism, motility, biofilm formation and toxin production. *PLoS One* 10, e0134872. doi: 10.1371/journal.pone.0134872.
- Henry, S., Lereclus, D., and Slamti, L. (2020). The alternative sigma factor SigB is required for the pathogenicity of *Bacillus thuringiensis*. *J Bacteriol* 202, e00265-20. doi: 10.1128/JB.00265-20.
- Höper, D., Völker, U., and Hecker, M. (2005). Comprehensive Characterization of the contribution of individual sigb-dependent general stress genes to stress resistance of *Bacillus subtilis*. *J Bacteriol* 187, 2810–2826. doi: 10.1128/JB.187.8.2810-2826.2005.
- 26. Kassambara, A. (2019). Visualization of a correlation matrix using "ggplot2" [R package ggcorrplot version 0.1.3]. Available at: https://CRAN.R-project.org/package=ggcorrplot [Accessed May 27, 2021].
- 27. Kendall, M. G. (1938). A new measure of rank correlation. Biometrika 30, 81-93. doi: 10.2307/2332226.
- 28. Lê, S., Josse, J., and Husson, F. (2008). FactoMineR: An R package for multivariate analysis. *Journal of Statistical Software* 25, 1–18. doi: 10.18637/jss.v025.i01.
- Lereclus, D., Agaisse, H., Grandvalet, C., Salamitou, S., and Gominet, M. (2000). Regulation of toxin and virulence gene transcription in *Bacillus thuringiensis*. *International Journal of Medical Microbiology* 290, 295–299. doi: 10.1016/S1438-4221(00)80024-7.
- 30. Lindbäck, T., Mols, M., Basset, C., Granum, P. E., Kuipers, O. P., and Kovács, Á. T. (2012). CodY, a pleiotropic regulator, influences multicellular behaviour and efficient production of virulence factors in *Bacillus cereus*. *Environmental Microbiology* 14, 2233–2246. doi: 10.1111/j.1462-2920.2012.02766.x.
- 31. Liu, Y., Orsi, R. H., Boor, K. J., Wiedmann, M., and Guariglia-Oropeza, V. (2017). Home Alone: elimination of all but one alternative sigma factor in *Listeria monocytogenes* allows prediction of new roles for σB. *Frontiers in Microbiology* 8, 1910. doi: 10.3389/fmicb.2017.01910.
- 32. Liu, Y., Orsi, R. H., Gaballa, A., Wiedmann, M., Boor, K. J., and Guariglia-Oropeza, V. (2019). Systematic review of the *Listeria monocytogenes* σB regulon supports a role in stress response, virulence and metabolism. *Future Microbiology* 14, 801–828. doi: 10.2217/fmb-2019-0072.
- Lund, T., De Buyser, M. L., and Granum, P. E. (2000). A new cytotoxin from *Bacillus cereus* that may cause necrotic enteritis. *Mol Microbiol* 38, 254–261. doi: 10.1046/j.1365-2958.2000.02147.x.
- Lund, T., and Granum, P. E. (1997). Comparison of biological effect of the two different enterotoxin complexes isolated from three different strains of *Bacillus cereus*. *Microbiology (Reading)* 143 (Pt 10), 3329–3336. doi: 10.1099/00221287-143-10-3329.
- 35. Marles-Wright, J., and Lewis, R. J. (2010). The stressosome: molecular architecture of a signalling hub. *Biochem. Soc. Trans.* 38, 928–933. doi: 10.1042/BST0380928.

- 36. Mols, M., Mastwijk, H., Groot, M. N., and Abee, T. (2013). Physiological and transcriptional response of *Bacillus cereus* treated with low-temperature nitrogen gas plasma. *Journal of Applied Microbiology* 115, 689–702. doi: https://doi.org/10.1111/jam.12278.
- 37. Nadezhdin, E. V., Brody, M. S., and Price, C. W. (2011). An α/β hydrolase and associated Per-ARNT-Sim domain comprise a bipartite sensing module coupled with diverse output domains. *PLoS One* 6. doi: 10.1371/journal.pone.0025418.
- 38. Nadon, C. A., Bowen, B. M., Wiedmann, M., and Boor, K. J. (2002). Sigma B Contributes to PrfA-Mediated Virulence in *Listeria monocytogenes. Infection and Immunity* 70, 3948–3952. doi: 10.1128/IAI.70.7.3948-3952.2002.
- Nannapaneni, P., Hertwig, F., Depke, M., Hecker, M., M\u00e4der, U., V\u00f6lker, U., et al. (2012). Defining the structure
 of the general stress regulon of *Bacillus subtilis* using targeted microarray analysis and random forest classification.

 Microbiology (Reading, Engl.) 158, 696–707. doi: 10.1099/mic.0.055434-0.
- 40. Neira, J. L., Cámara-Artigas, A., Hernández-Cifre, J. G., and Ortore, M. G. (2021). The Histidine phosphocarrier kinase/phosphorylase from *Bacillus subtilis* is an oligomer in solution with a high thermal stability. *International Journal of Molecular Sciences* 22, 3231. doi: 10.3390/ijms22063231.
- 41. Nicolas, P., Mäder, U., Dervyn, E., Rochat, T., Leduc, A., Pigeonneau, N., et al. (2012). Condition-dependent transcriptome reveals high-level regulatory architecture in *Bacillus subtilis*. *Science* 335, 1103–1106. doi: 10.1126/science.1206848.
- 42. Pané-Farré, J., Quin, M. B., Lewis, R. J., and Marles-Wright, J. (2017). Structure and function of the stressosome signalling hub. *Subcell. Biochem.* 83, 1–41. doi: 10.1007/978-3-319-46503-6_1.
- 43. Periago, P. M., van Schaik, W., Abee, T., and Wouters, J. A. (2002). Identification of proteins involved in the heat stress response of *Bacillus cereus* ATCC 14579. *Appl Environ Microbiol* 68, 3486–3495. doi: 10.1128/AEM.68.7.3486-3495.2002.
- Petersohn, A., Bernhardt, J., Gerth, U., Höper, D., Koburger, T., Völker, U., et al. (1999). Identification of sigma(B)-dependent genes in Bacillus subtilis using a promoter consensus-directed search and oligonucleotide hybridization. J. Bacteriol. 181, 5718–5724.
- 45. Pfaffl, M. W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. *Nucleic Acids Res* 29, e45. doi: 10.1093/nar/29.9.e45.
- 46. Pfaffl, M. W., Horgan, G. W., and Dempfle, L. (2002). Relative expression software tool (REST©) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. *Nucleic Acids Res* 30, e36.
- 47. Pfaffl, M. W., Tichopad, A., Prgomet, C., and Neuvians, T. P. (2004). Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper Excel-based tool using pair-wise correlations. *Biotechnology Letters* 26, 509–515. doi: 10.1023/B:BILE.0000019559.84305.47.
- 48. Phipson, B., Lee, S., Majewski, I. J., Alexander, W. S., and Smyth, G. K. (2016). robust hyperparameter estimation protects against hypervariable genes and improves power to detect differential expression. *Ann Appl Stat* 10, 946–963. doi: 10.1214/16-AOAS920.
- 49. Price, C. W., Fawcett, P., Cérémonie, H., Su, N., Murphy, C. K., and Youngman, P. (2001). Genome-wide analysis of the general stress response in *Bacillus subtilis*. *Mol. Microbiol*. 41, 757–774. doi: 10.1046/j.1365-2958.2001.02534.x.
- 50. Price, C. W. (2010). "General stress response in *Bacillus subtilis* and related gram-positive bacteria," in *Bacterial Stress Responses* (John Wiley & Sons, Ltd), 301–318. doi: 10.1128/9781555816841.ch17.
- 51. R core Team (2014). R: The R Project for statistical computing. Available at: https://www.r-project.org/[Accessed August 31, 2021].
- 52. Reder, A., Albrecht, D., Gerth, U., and Hecker, M. (2012a). Cross-talk between the general stress response and sporulation initiation in *Bacillus subtilis* the σB promoter of *spo0E* represents an AND-gate. *Environmental Microbiology* 14, 2741–2756. doi: https://doi.org/10.1111/j.1462-2920.2012.02755.x.
- 53. Reder, A., Gerth, U., and Hecker, M. (2012b). Integration of σB Activity into the decision-making process of sporulation initiation in *Bacillus subtilis*. *J Bacteriol* 194, 1065–1074. doi: 10.1128/JB.06490-11.
- 54. Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W., Shi, W., et al. (2015). limma powers differential expression analyses for RNA-sequencing and microarray studies. *Nucleic Acids Res* 43, e47. doi: 10.1093/nar/gkv007.

- 55. Rodriguez Ayala, F., Bartolini, M., and Grau, R. (2020). The stress-responsive alternative sigma factor SigB of *Bacillus subtilis* and its relatives: an old friend with new functions. *Front. Microbiol.* 11. doi: 10.3389/fmicb.2020.01761.
- 56. Schneider, C. A., Rasband, W. S., and Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. *Nat Methods* 9, 671–675.
- 57. Scott, E., and Dyer, D. W. (2012). Divergence of the SigB regulon and pathogenesis of the *Bacillus cereus sensu lato* group. *BMC Genomics* 13, 564. doi: 10.1186/1471-2164-13-564.
- 58. Smith, V., Josefsen, M., Lindbäck, T., Hegna, I. K., Finke, S., Tourasse, N. J., et al. (2020). MogR is a ubiquitous transcriptional repressor affecting motility, biofilm formation and virulence in *Bacillus thuringiensis*. *Frontiers in Microbiology* 11. Available at: https://www.frontiersin.org/article/10.3389/fmicb.2020.610650 [Accessed June 28, 2022].
- 59. Suomi, T., Hiissa, J., and Elo, L. L. (2021). PECA: Probe-level expression change averaging. bioconductor version: Release (3.13) doi: 10.18129/B9.bioc.PECA.
- 60. van Schaik, W. van, Voort, M. van der, Molenaar, D., Moezelaar, R., Vos, W. M. de, and Abee, T. (2007). Identification of the σB regulon of *Bacillus cereus* and conservation of σb-regulated genes in low-gc-content grampositive bacteria. *Journal of Bacteriology* 189, 4384–4390. doi: 10.1128/JB.00313-07.
- 61. van Schaik, W., Tempelaars, M. H., Wouters, J. A., de Vos, W. M., and Abee, T. (2004a). The alternative sigma factor σB of *Bacillus cereus*: response to stress and role in heat adaptation. *J Bacteriol* 186, 316–325. doi: 10.1128/JB.186.2.316-325.2004.
- van Schaik, W., Zwietering, M. H., de Vos, W. M., and Abee, T. (2004b). Identification of σB-dependent genes in
 Bacillus cereus by proteome and in vitro transcription analysis. *J Bacteriol* 186, 4100–4109. doi: 10.1128/JB.186.13.4100-4109.2004.
- 63. Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A., et al. (2002). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. *Genome Biology* 3, research0034.1. doi: 10.1186/gb-2002-3-7-research0034.
- Vohradsky, J., Schwarz, M., Ramaniuk, O., Ruiz-Larrabeiti, O., Vaňková Hausnerová, V., Šanderová, H., et al. (2021). Kinetic modeling and meta-analysis of the *Bacillus subtilis* SigB regulon during spore germination and outgrowth. *Microorganisms* 9, E112. doi: 10.3390/microorganisms9010112.
- 65. Voigt, B., Schroeter, R., Jürgen, B., Albrecht, D., Evers, S., Bongaerts, J., et al. (2013). The response of *Bacillus licheniformis* to heat and ethanol stress and the role of the SigB regulon. *Proteomics* 13, 2140–2161. doi: 10.1002/pmic.201200297.
- 66. Warda, A. K., Tempelaars, M. H., Abee, T., and Nierop Groot, M. N. (2016). Recovery of heat treated *Bacillus cereus* spores is affected by matrix composition and factors with putative functions in damage repair. *Front Microbiol* 7, 1096. doi: 10.3389/fmicb.2016.01096.
- 67. Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. 2nd ed. Springer international publishing doi: 10.1007/978-3-319-24277-4.
- 68. Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D., François, R., et al. (2019). Welcome to the Tidyverse. *Journal of Open Source Software* 4, 1686. doi: 10.21105/joss.01686.
- 69. Zhu, B., and Stülke, J. (2018). SubtiWiki in 2018: from genes and proteins to functional network annotation of the model organism *Bacillus subtilis*. *Nucleic Acids Res* 46, D743–D748. doi: 10.1093/nar/gkx908.

CHAPTER 4

The role of SigB in biosurfactant synthesis and the effect of biosurfactant on SigB general stress response in *Bacillus licheniformis*

Kah Yen Claire Yeak 1,2, Mounia Bijlaart 1, Tjakko Abee 2, Marjon Wells-Bennik 1*

1NIZO, Department of Health, Kernhemseweg 2, PO Box 20, 6718 ZB Ede, The Netherlands 2Food Microbiology, Wageningen University and Research, PO Box 8129, 6700 EV Wageningen, The Netherlands

Abstract

In this study, the role of SigB - the master regulator of the General Stress Response (GSR) in the production of lichenysin (a biosurfactant and lipopeptide) in *Bacillus licheniformis* wild type and its SigB mutant was investigated. Additionally, the effect of lichenysin and a highly similar lipopeptide (surfactin) on the induction of the SigB GSR and lethal stress resistance was studied.

B. licheniformis MW3 wt cells produced more lichenysin than $\Delta sigB$ cells, i.e., 3.3 versus 2.5 µg per g of biomass, respectively, but lichenysin production was shown to be not directly regulated by SigB: No SigB promoter binding motif (PBM) was found preceding the *lch* (*lic*) operon, and the expression of lichenysin-producing enzymes (*lchAA/licA* and *lchTE/licTE*) was not affected upon SigB activation in exponential or stationary phase cultures. When cells of B. licheniformis were exposed to lichenysin, a ~2-fold induction of the expression of sigB and the SigB-dependent gene rsbW was observed. Similar ~2-fold induction of SigB-dependent rsbV by lichenysin and surfactin was shown in a B. subtilis wt strain containing a P_{rsbV} -lacZ reporter. The mild surfactant-induced SigB GSR provided modest protection to B. licheniformis in the first 120 min when cells were exposed to harsh stress (12% (v/v) ethanol).

In conclusion, this study showed modest roles of SigB in *B. licheniformis* surfactant production and surfactant-induced lethal stress resistance. The exact environmental conditions and efficacy of surfactants in triggering SigB GSR, and their impact on the competitive fitness of *B. licheniformis* remain to be elucidated.

4.1 Introduction

Bacillus licheniformis is a mesophilic endospore former, commonly found in soil, rhizospheres of plants, plant material, compost, aquatic environments, and animal intestinal tracts. As a result, this bacterium and its spores are also inevitably present in food products (Vos et al., 2009; Connor et al., 2010; López et al., 2021). The endospores survive harsh conditions, such as wet/dry heat, exposure to ultraviolet light, ionizing radiation, microwave treatment (Sella et al., 2014), chemical sporicides, high hydrostatic pressure, high voltage electric fields, and many others, as reviewed in (Cho and Chung, 2020). Spores of strains that contain the mobile genetic element Tn1546 are extremely heat resistant and can even survive boiling for \sim 10 h (Berendsen et al., 2016).

Bacterial spores can withstand many environmental insults, but cells are more sensitive once the spores germinate and the bacterium is in its vegetative state. For instance, conditions of nutrient depletion or exposure to osmotic, acid, oxidative stress, or antibacterial compounds may occur, or cells may be exposed to fluctuations in the growth conditions, such as temperature shifts (Voigt et al., 2013; Wells-Bennik et al., 2016; Bartolini et al., 2019; Cho and Chung, 2020). Yet, vegetative cells of *B. licheniformis* are also relatively resilient during growth compared with many other non-spore-forming bacteria. It is a facultative anaerobe, can grow at high salt concentrations (Gekas et al., 1998; Yeak et al., 2022), and is facultative thermophilic with an ability to grow at temperatures up to ~ 58°C (Warth, 1978; Baranyi and Tamplin, 2004). It is also well known for producing xylanase and cellulase, enzymes that enable this bacterium to break down plant cell walls made up of hemicellulose (Seo et al., 2013; López et al., 2021). These properties allow *B. licheniformis* to thrive on plant sources in the soil, other natural niches, extreme habitats (e.g., salt lakes), or even oil reservoirs (Yakimov et al., 1997; Hashemi et al., 2014; Singh and Jha, 2016; Nikolova and Gutierrez, 2020).

Moreover, *B. licheniformis* synthesizes the lichenysin lipopeptide, which has antimicrobial properties (Nerurkar, 2010; Coronel-León et al., 2016). It is synthesized by the lichenysin synthetase cluster *lchAA-AB-AC-TE* (also annotated as *licA – licTE*) (Konz et al., 1999), and is a biosurfactant that is structurally very similar to the biosurfactant produced by *B. subtilis* (surfactin). Surfactin is synthesized via proteins encoded by the *srf* operon: *srfAA-AB-AC-TE* (Nakano et al., 1991). Both surfactants are commonly used as household cleaning agents (Shaligram and Singhal, 2010), in soil bioremediation and oil recovery (Golyshin et al., 1999; Mulligan, 2005; Alvarez et al., 2020), but also exert antimicrobial properties, e.g., inhibiting the growth of *Staphylococcus aureus, Escherichia coli, Enterobacter* spp., and *Pseudomonas* spp. (Yakimov et al., 1995; Coronel-León et al., 2016). However, both compounds have also been previously reported to be associated with foodborne illness (Salkinoja-Salonen et al., 1999; Mikkola et al., 2003; Pavić et al., 2005).

B. licheniformis and *B. subtilis* are relatively stress-resistant due to the presence of stress-adaptive mechanisms, such as the renowned general stress response (GSR), which is mediated by the alternative Sigma factor B (SigB). They utilize SigB-GSR to adapt to abrupt changes or stresses in the environments, e.g., temperature shifts, osmotic shock, and ethanol (Petersohn et al., 1999, 2001; Price et al., 2001; Voigt et al., 2013). In addition, the antimicrobial action of lichenysin and surfactin conceivably provides producer cells with a competitive advantage over other coexisting microorganisms, thereby supporting their survival. Moreover, biosurfactants can also reduce water surface tension, promoting cellular swarming on surfaces and pellicle biofilm formation, which may allow for enhanced scavenging of nutrients and contribute to the colonization of new habitats (Raaijmakers et al., 2010; Ke et al., 2015).

To date, SigB GSR has been well characterized in *B. subtilis*. In the presence of physical stressors (extreme temperature, pH, salt, ethanol, antibiotics, oxidative or nitrosative stress, blue light, elevated manganese), SigB is triggered via the stressosome signaling cascade, which is made up of the Regulator of SigB proteins R, S, and T (encoded by *rsbR*, *rsbS*, and *rsbT*, respectively) (Marles-Wright and Lewis, 2010; Pané-Farré et al., 2017). In response to nutritional stressors (e.g., glucose, nitrogen, or phosphate), SigB is activated via the RsbQP energy signaling module, recently reviewed in Rodriguez Ayala et al. (2020). In *B. licheniformis*, physical signals including high temperature, salt, and ethanol also trigger the SigB GSR (Schroeter et al., 2013; Voigt et al., 2013), while nutritional stress caused by glucose, nitrogen, and/or phosphate starvation does not trigger SigB GSR (Hoi et al., 2006; Voigt et al., 2007). Whether this latter phenomenon reflects differences in roles of SigB in *B. subtilis* and *B. licheniformis* remains to be studied.

Recently, Bartolini et al. (2019) reported that a comparative analysis of *B. subtilis* wild type and its SigB mutant showed significantly decreased surfactin-dependent antifungal activity in the latter strain. The absence of SigB led to an apparent reduction in surfactin production in *B. subtilis*, conceivably via indirect effects on the expression of the *srf* operon, since no SigB promoter binding site was detected in the promoter region (Bartolini et al., 2019). So far, it was not known whether SigB has an effect on lichenysin production in *B. licheniformis*. Moreover, lichenysin/surfactin can interact with microbial membranes and cause growth inhibition, as previously reported for ethanol (a well-known inducer of the SigB-mediated GSR in *B. subtilis* and *B. licheniformis*). The question is whether these surfactants induce the SigB GSR in *B. licheniformis*.

In this study, firstly, the effect of SigB on lichenysin production was assessed. Secondly, the effect of lichenysin and surfactin on SigB GSR and subsequent lethal stress survival of *B. licheniformis* was investigated.

4.2 Materials and Methods

4.2.1 Strains, media, growth conditions, and chemicals used

All strains used in this study are listed in Table 1. *B. licheniformis* strains used were MW3 (parent strain DSM13 $\Delta hsdR1$ and $\Delta hsdR2$) and MW3 $\Delta sigB$ (DSM13 $\Delta hsdR1$, $\Delta hsdR2$, $\Delta rsbWsigBrsbX$) (Courtesy Dr. J. Panne Farre, University of Greifswald, Germany). The wild-type (wt) MW3 strain was selected instead of the DSM13 type strain because this strain lacked two restriction enzyme genes $\Delta hsdR1$ and $\Delta hsdR$, allowing for increased transformation efficiency (Waschkau et al., 2008; Hoffmann et al., 2010) needed to generate an isogenic $\Delta sigB$ mutant (Voigt et al., 2013). The *B. subtilis* strain used was the 168 wt strain of Marburg origin (Zeigler et al., 2008; Barbe et al., 2009; Misirli et al., 2014).

All strains were cultured in Luria Bertani (LB) medium or propagated on LB agar plates (Tritium Microbiologie, Eindhoven, The Netherlands), and the MW3 $\Delta sigB$ mutant was grown in LB medium or agar plates supplemented with 200 μ g/ml spectinomycin unless otherwise stated. The chemically defined medium used was the C-minimal medium described by Commichau et al. (2008), supplemented with 1 g/L glucose (C-Glc). The *Bacillus* transformation medium used was the 1X MC competence medium (containing 6.7 μ l of 1M MgSO₄, 10 μ l of 1% (v/v) tryptophan, 200 μ l of 10X MC, and 1.8 ml of sterile water). The 10 X MC medium contained 140.36 g/L K₂HPO₄.3H₂O, 52.39 g/L KH₂PO₄, 200 g/L glucose, 300 mM Na₃C₆H₅O₇, 0.22 g/L of C₆H₈FeNO₇, 10 g/L of casein hydrolysate, and 20 g/L of KC₅H₈NO₄. All incubations were done at 37°C, and all liquid cultures were incubated in a shaking incubator at 200 rpm. Growth was monitored by determining the optical density at 600 nm (OD₆₀₀).

All chemicals, oligonucleotides, KOD polymerases, and genomic DNA isolation kit (GenElute) were purchased from Merck (Zwijndrecht, The Netherlands). Plasmids were isolated with the GeneJET Miniprep kit (Thermo Fischer Scientific, Bleiswijk, The Netherlands), and the amplified PCR products were purified with the QIAquick PCR purification kit (Qiagen, Hilden, Germany). The DNA of received plasmids and transformants were sequenced via Sanger sequencing (BaseClear B.V., Leiden, The Netherlands).

4.2.2 Lichenysin synthetase cluster and sigB gene deletion verification in B. licheniformis MW3

To perform a qualitative check of the *B. licheniformis* MW3 wt and MW3 Δ*sigB* strains (Courtesy Dr. J. Panne Farre, University of Greifswald, Germany), PCR was carried out to check for 1) the presence of each of the genes in the lichenysin synthetase gene cluster (*lchAA*, *lchAB*, *lchAC*, *lchTE*) (or *licA*, *licB*, *licC*, *licTE*) and 2) the absence of *sigB* in the MW3 Δ*sigB* mutant. All of the corresponding primers used are listed in Table 2. The amplicons were

visualized on 1% (w/v) agarose gel stained with ethidium bromide. The molecular marker used was the 1 Kb Plus DNA ladder (Thermo Fischer Scientific).

4.2.3 Lichenysin extraction from biomass and quantification

To achieve optimal lichenysin production, B. licheniformis wt and $\Delta sigB$ mutant were cultured on LB agar (2 % w/v) at 37°C for 10 days, and lichenysin was extracted from collected biomass as described by Madslien et al., (2013) and Rønning et al., (2015), with slight modifications as described in detail in Yeak et al. (2022). The Reversed-Phase High-Performance Liquid Chromatography (RP-HPLC) with high-resolution accurate mass spectroscopic (MS) detection was used to quantify the amount of lichenysin produced by the B. licheniformis wt strain and its isogenic $\Delta sigB$ mutant. All chemicals and reagents, lichenysin calibration standards, and instruments used were the same as described in Yeak et al. (2022). The occurrence of lichenysin with the molecular masses listed in Table 3 was assessed, and the total amount was quantified in the positive detection mode. Data analysis was performed as described in Yeak et al. (2022).

4.2.4 Screening of the SigB promoter binding consensus

The complete FASTA sequence of *B. licheniformis* DSM13 was uploaded to the bacterial gene regulation database, PRODORIC2 (Eckweiler et al., 2018), available at http://www.prodoric2.de. The presence or absence of the SigB transcription factor binding consensus (GTTTAA-N₁₄-GGGTAT) upstream of the lichenysin synthetase operon in the DSM13 genome was assessed using PRODORIC2. A manual check of the SigB binding site was also performed using the Benchling Biology Software, 2020, retrieved from https://benchling.com.

4.2.5 Quantification of changes in gene expression for *B. licheniformis* upon ethanol shock or lichenysin treatment

To determine whether the induction of SigB influences the expression of the lichenysin gene cluster directly, the changes in the expression of SigB-dependent genes (rsbW, yfkM, and sigB itself) and two lichenysin synthetase genes (lchAA, lchTE) were quantified upon 4% (v/v) ethanol shock of cultures via Reverse-Transcription quantification polymerase chain reaction (RT-qPCR). The changes in the expression of rsbW, yfkM, and sigB upon treatment with 10, 20, or 30 μ M of lichenysin (Lipofabrik, Villeneuve-d'Ascq, France) were also determined via RT-qPCR to assess whether the exposure of cells to lichenysin mediates a SigB GSR.

4.2.5.1 Cultivation conditions and RNA isolation

For the gene expression studies, B. licheniformis was cultivated in the chemically defined medium (C-Glc) to ensure that the changes in gene expression were not affected by the slight difference in nutrient compositions/concentrations in different batches of LB. Briefly, B. licheniformis wt strain and $\Delta sigB$ mutant were cultured overnight (ON) in C-Glc medium and

C- Glc supplemented with 200 μ l spectinomycin, respectively. ON cultures of wt and $\Delta sigB$ mutant were inoculated into pre-warmed C- Glc without spectinomycin to an OD₆₀₀ of 0.05, and the cultures were allowed to grow to the exponential phase (an OD₆₀₀ of ~ 0.35). Subsequently, 10 ml of the culture was collected as a no-stress control, and another 10 ml was treated with either 4 % ethanol (v/v), 10, 20, or 30 μ M of commercially available lichenysin (Lipofabrik) for 10 min. Lichenysin stock (5 mg/ml) was dissolved in water (pH 11.5 to obtain maximum solubility) instead of other solvents (such as ethanol or DMSO) to avoid SigB induction in cells upon addition of the concentrated lichenysin stock solution. Cells pellet were collected via centrifugation at 8000 g for 5 min at room temperature and resuspended in 400 μ l ice-cold Tris Ethylene-diamine-tetra-acetic acid (TE) (pH 7.5) buffer. The resuspended cells were transferred to a sterile bead beater tube containing 0.5 g zirconia beads (Merck). Subsequently, 250 μ l phenol (pH 4.3, 99% v/v), 250 μ l chloroform (99% v/v), 30 μ l sodium acetate (3M pH 5.5), and 30 μ l 10% (v/v) sodium dodecyl sulfate (pH 7.2) were added to the tube, and the content was frozen with liquid nitrogen, followed by storage at -80°C.

RNA was isolated using the High Pure RNA Isolation kit (Roche, Almere, The Netherlands). The RNA concentration in the samples was measured with the NanoDrop Spectrophotometer (Thermo Fischer Scientific), and 3 µg was taken and digested with DNAseI (Thermo Fischer Scientific). A test PCR was performed using the CY9 and CY10 primers targeting *lchAA* (*licA*) to ensure the digested RNA was free of DNA contamination (see Table 2).

4.2.5.2 Reverse-Transcription quantification polymerase chain reaction (RT-qPCR)

To achieve the best qPCR efficiency as described in the protocol of the iScript™ One-Step RT-PCR Kit With SYBR® Green (Biorad, Lunteren, The Netherlands), an exact amplicon size of 145-150 bp for each targeted gene was designed using the Primer 3 plus program (http://www.bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi) (Untergasser et al., 2007, 2012). All RT primers used to amplify the corresponding PCR products using MW3 wt chromosomal DNA as a template are listed in Table 2. PCR products were purified, and standard curves were generated as Mulder et al. (2017) described. The *ccpA* (encoding the carbon catabolite protein) and *rpoB* (encoding RNA polymerase beta subunit) genes were used as the RT-qPCR reference genes for *B. licheniformis*.

The changes in gene expression of three SigB-dependent genes (*sigB*, *rsbW*, *yfkM*), two lichenysin synthetase genes (*lchAA*, *lchTE*), and two reference genes (*ccpA*, *rpoB*) in MW3 wt and MW3 Δ*sigB* mutant were quantified using the iScript ™ One-Step RT-PCR Kit With SYBR® Green (Biorad). The instrument used was the CFX384 Touch Real-Time PCR system (Biorad). All samples were prepared, and procedures were performed according to the manufacturer's protocol. 100 ng of total RNA was used as the template, and the standard reaction protocol was followed. Briefly, complementary deoxyribonucleic acid (*cDNA*) synthesis was performed

at 50°C for 10 min, and then the reverse transcriptase was inactivated at 95°C for 1 min. Following cDNA synthesis, qPCR was performed in a cycle of two steps 1) DNA denaturation step: 95 °C for 10 s and 2) annealing and elongating step: 55°C for 30 s, for a total of 39 PCR cycles. To determine the PCR product specificity, the melting curve of the reaction products was analyzed over a temperature range from 55°C to 95°C, at 0.5°C increments every 3 s.

The cycle threshold (CT) values were recorded, indicating the cycle number upon which the fluorescent signal exceeded the background level. Next, the relative transcript level of each tested gene in MW3 wt and the MW3 $\Delta sigB$ mutant was normalized using the average transcript levels of the two reference genes rpoB and ccpA in both strains, respectively. Subsequently, the fold changes in gene expression of MW3 wt versus the MW3 $\Delta sigB$ mutant under the control condition (no treatment) and upon ethanol shock or lichenysin treatment were calculated using the Livak method formula (Livak and Schmittgen, 2001).

Fold changes =
$$2^{-ddCT}$$

 $ddCT = RNA2 (CT - CT_{constant}) - RNA1 (CT - CT_{constant})$

CT: Transcript amount of the respective gene/cycles until the threshold value is reached;

CT_{constant}: Median of the CT values of the reference genes *ccpA* and *rpoB* in the respective strain;

RNA1: RNA of wt or $\triangle sigB$ under the control condition (no treatment):

RNA2: RNA of wt or $\Delta sigB$ under the induced condition (4% ethanol v/v or 10, 20, 30 μ M lichenysin).

4.2.6 Construction of the *Bacillus subtilis* ΔsigB mutant

The *B. subtilis* 168 *sigB* knockout mutant was constructed using the long flanking homology recombination method Kunst and Rapoport, (1995), and all primers used were designed using the Benchling Biology Software, 2020, retrieved from https://benchling.com.

The purified chromosomal DNA of *B. subtilis* wt was used as a template. First, 1 kb DNA fragments that flanked the upstream and the downstream regions of the *sigB* gene (BSU04730) were amplified with the primer pairs CY316, CY317, and CY320, CY321 (Table 2), respectively, via PCR. Next, the chloramphenical cassette was amplified from the pNZ5319 plasmid using primers CY318 and CY319, and each end contained a 20 bp complementary (overhang) sequence which matched the upstream and downstream DNA flanking fragment, respectively. The three PCR fragments were purified, then 100 ng of the left flanking fragment, 100 ng of the right flanking fragment, and 150 ng of the chloramphenical cassette were added into a PCR reaction tube to generate one 3.2 kb linear DNA fragment via a two-steps sewing PCR as described by Wach (1996). The 3.2 kb linear DNA fragment was introduced into *B. subtilis* wt

competent cells via natural competence in 1X MC competence medium (see section 4.2.1 for composition), and the transformed cells were selected on LB agar supplemented with 5 μ g/ml chloramphenicol. Positive colonies were isolated, chromosomal DNA of colonies was purified using the genomic DNA isolation kit (section 4.2.1) and sequenced (outsourced to BaseClear) with primers CY322 and CY323 (Table 2) to check for the complete integration of the 3.2 kb linear DNA fragment into the sigB locus. The sequenced positive transformants with complete integration of the 3.2 kb linear DNA fragment into the sigB locus were propagated on LB with 5 μ g/ml chloramphenicol.

To further construct the marker-free $\Delta sigB$ mutant, transformation procedures described above were repeated to introduce the pDR244 *cre*-recombination plasmid (Koo et al., 2017) that was used to excise the chloramphenical cassette (Table 2). The absence of a marker in the $\Delta sigB$ mutant BY47 (Table 1) was confirmed by sequencing, and this strain was further used to introduce translational promoter-*lacZ* constructs, as described in the next section.

4.2.7 Construction of Bacillus subtilis lacZ-reporter strains

B. subtilis lacZ-reporter strains were constructed by translationally fusing the promoter of rsbV (P_{rsbV}) to the lacZ-reporter, and inserting this fragment into the amyE locus of B. subtilis 168 wt and ΔsigB mutant (BY47). Briefly, the plasmid pNW2205 (courtesy of Dr. N. Stanley Wall, University of Dundee, UK) containing the translational reporter fusions of P_{rsbV} to lacZ, was inserted into the amyE locus via the same transformation procedures as described in section 4.2.6. Positive colonies were selected on LB agar containing 200 μg/ml spectinomycin, and the loss of amylase activity was evaluated using 1% (w/v) starch plates. Positive colonies were isolated, and chromosomal DNA was purified and sequenced (BaseClear) with primers CY414 and CY415 to verify the genomic integration (Table 2). B. subtilis wt with P_{rsbV} -lacZ integrated into the amyE locus was named BY67 (168 trpC2 $amyE::P_{rsbV}$ -lacZ::spc), and the $\Delta sigB$ mutant was named BY72 (168 trpC2 $\Delta sigB$ $amyE::P_{rsbV}$ -lacZ::spc). All strains constructed for this study are shown in (Table 1) and the primers used are listed in Table 2.

Table 1: Strains and plasmids used in this study

Strain	Description and Genotype	Reference
168	B. subtilis 168 type strain trpC2	(Kunst et al., 1997; Zeigler et al., 2008; Barbe et al., 2009)
MW3	B. licheniformis MW3 ΔhsDR1 ΔhsdR2	(Hoffmann et al., 2010; Voigt et al., 2013)
MW3 ΔsigB	B. licheniformis MW3 ΔhsDR1 ΔhsdR2 ΔrsbWsigBrsbX::spec	(Voigt et al., 2013)
BY44	B. subtilis 168 trpC2 ΔsigB::cat	This study
BY47	B. subtilis 168 trpC2 ΔsigB	This study
BY67	B. subtilis 168 trpC2 amyE::PrsbV-lacZ::spec	This study
BY72	B. subtilis 168 trpC2 ΔsigB amyE::PrsbV-lacZ::spec	This study
pNZ5319	Cre-lox plasmid with cat and erm antibiotic cassettes	(Lambert et al., 2007)
pDR244	Cre- recombinase plasmid with spec antibiotic cassette	(Koo et al., 2017)
pNW2205	pDG1728 PrsbV-lacZ::spc	Courtesy Dr. N. Stanley Wall, University of Dundee, UK

4.2.8 β-galactosidase (LacZ) reporter assay

BY67 and BY72 carrying the P_{rsbV} -lacZ reporter fusion were grown in the C-Glc medium supplemented with 200 µg/ml spectinomycin. ON cultures in C-Glc were used to inoculate fresh C-Glc medium to an OD₆₀₀ of 0.05 and incubation was continued until an OD₆₀₀ of ~ 0.35 was reached. Half of the culture was then used as the control, and the other half was exposed to a selected compound at a concentration of choice. This included 4% (v/v) ethanol, 10-100 µM of surfactin (Merck), or 30 µM of lichenysin (Lipofabrik) for 10 min. Stock solutions of surfactin (10 mg/ml) and lichenysin (5 mg/ml) were made in water (pH 11.5) instead of solvents such as ethanol or DMSO to avoid induction of the SigB GSR by solvents present in stock solutions. Upon exposure to ethanol and the surfactants for 10 min, cell pellets were collected immediately via centrifugation at 8000 g for 2 min at room temperature, supernatants were discarded, and pellets were stored at - 20°C.

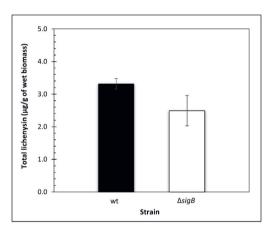
The in vivo SigB activity of BY67 and BY72 was determined using the quantitative β- galactosidase (LacZ) assay described by Stannek et al. (2015). (see Chapter 2). Briefly, cells were thawed and lysed with 400 µl Z-buffer (0.48 mM Na₂HPO₄ 2H₂O; 0.32 mM NaH₂PO₄; 0.08 mM KCl; $8.0 \mu\text{M MgSO}_4$; $0.4 \text{ mM }\beta$ - mercaptoethanol; $200 \mu\text{g}$ lysozyme and $200 \mu\text{g}$ DNAse I) for 1 h at 37°C. Lyzed cells were centrifuged at 17,000 g to remove cell debris, and 100 µl of cell-free crude extracts per sample were collected into a new Eppendorf tube. 700 µl of Z-buffer without \(\beta \)- mercaptoethanol was mixed with 100 \(\mu \)l of the crude extracts and incubated for 5 min at 28°C. 800 µl of Z-buffer without β- mercaptoethanol was used as a reference. Subsequently, 200 μl of 4 mg/ml of ortho-nitrophenyl-β-galactoside (ONPG) was added to all the crude extracts and the reference and allowed to react at 28°C. When a yellow color became visible, 500 µl of 62.5 mM Na₂CO₃ was added to stop the reaction. The absorption of samples at $\lambda = 420\,$ nm was measured. Protein concentration was determined at $\lambda = 595$ nm using the commercial Roti®-Quant Bradford solution (Carl Roth, Karlsruhe, Germany) according to the manufacturer's protocol. The absorbance at A_{595nm} and A_{420nm} is corrected with the blank without cells. The specific ß- galactosidase (LacZ) activity (indicating the SigB activity) in Miller Units/mg protein was calculated using the formula:

$$\frac{Units}{mg\ protein} = \frac{2005.3475\ x\ A420nm}{\Delta T\ x\ V\ x\ A595}$$

One unit of β -galactosidase = the amount of enzyme produced to hydrolyze the chromogenic substrates ONPG to one nmol of o-nitrophenol (absorbs light at λ = 420nm) per min at 28°C. V= 0.1 ml.

4.2.9 Stress adaptation and cell survival assay

The survival of MW3 wt and its isogenic $\Delta sigB$ mutant was established upon exposure to 12% (v/v) ethanol, with or without pre-exposure to 10 μ M lichenysin, 10 μ M surfactin, or 4% (v/v) ethanol. Wt cells were cultured ON in C- Glc medium, and the $\Delta sigB$ mutant was cultured in C- Glc supplemented with 200 μ g/ml spectinomycin. ON cultures of the wt strain and the $\Delta sigB$ mutant were diluted (to OD₆₀₀ 0.05) in pre-warmed C-Glc without spectinomycin, and grown to an OD₆₀₀ of \sim 0.35, at which point the viable counts in the culture were determined. For each strain, three different cultures of OD₆₀₀ 0.35 were exposed to lichenysin (final concentration 10 μ M), surfactin (final concentration 10 μ M), or ethanol (final concentration 4% (v/v) for 30 min before subjecting to lethal ethanol stress (12% v/v). Another culture was immediately exposed to 12% (v/v) ethanol. The viable counts of each culture were determined just before exposure to the lethal ethanol stress. Following exposure to 12% (v/v) ethanol, viable counts were determined every hour. In all cases, viable counts were determined by preparing 10-fold serial dilutions and plating these on C- Glc agar plates that were subsequently incubated at 37°C ON and counted.


Table 2: Primers used in this study. Underscore (_) indicates the complementary overhang sequences; Bsu (B. subtilis); Bli (B. licheniformis); RT: Reverse transcription

Primer	Name	Sequence 5'- 3'
CY51	pNZ5319 cat gene check	TAGGATCCAAGTACAGTCGG
CY316	Bsu sigB upstream flanking forward	TTCTTGGAGCGTCCTGATCTG
CY317	Bsu sigB upstream flanking reverse with cat overhang	<u>TTTAAACGTGCTCCAGTGGC</u> GA
		TCAACTCGCTCCCCATTTAAATA
CY318	sigB cat gene forward overhang	AATGGGGAGCGAGTTGATC
		<u>GCCACTGGAGCACGTTTAAAC</u>
CY319	sigB cat gene reverse overhang	TTTTCTTCAACCTGGATCAT
		<u>CGTCTTCTCGTAGCGATCGG</u>
CY320	Bsu sigB downstream flanking forward with cat overhang	<u>CCGATCGCTACGAGAAGACG</u> ATGAT
		CCAGGTTGAAGAAACGAG
CY321	Bsu sigB downstream flanking reverse	TGCTTCAGCGCCTTCTAATACA
CY322	Bsu sigB genomic DNA check forward	AGGACTCGTTCTCGGCATCT
CY323	Bsu sigB genomic DNA check reverse	TCTGGATATGCGTCTCTCGGA
CY414	PrsbV-pNW2205 check forward	CAATTCGATCAGCATCTGGAAAAGG
CY415	PrsbV-pNW2205 check reverse	TCAAATTTTCCTTCAAATCACTAGTTGC
CY21	Bli lchAA forward	CGATTCCGGGTTATTGACTG
CY22	Bli lchAA reverse	CGCTTCATATTGTGCGTTCC
CY23	Bli lchAB forward	ATTTGAGGATCTTGCGGACTTG
CY24	Bli lchAB reverse	TATAGCGGGAGATAGTCGTACC
CY25	Bli lchAC forward	GGCTGCGTATATCATGCTTG
CY26	Bli lchAC reverse	CTTGTTGGCTTCCATCAAGG
CY27	Bli lchTE forward	GATATTCGGCATCATTCAGACC
CY28	Bli lchTE reverse	GCTACTTGTTCCGTTTCTGATA
CY29	Bli sigB forward	ATCAGGAGAACCAGGATGAAG
CY30	Bli sigB forward	GATCTTCAGCCAATGCTTCC
CY1	Bli rpoB_RT forward	GCTCGCAGCTTTCTCAGTTT
CY2	Bli rpoB_RT reverse	CCGGCCGTAGTGTGAATAGT
CY3	Bli ccpA_RT forward	CCTCGCCAGCTCTGAATAAA
CY4	Bli ccpA_RT reverse	CGACGACGAGAAGAAGGTG
CY9	Bli lchAA_RT forward	ACATCGTCGGCTATATCGAA
CY10	Bli lchAA_RT reverse	CTCCATCCAGCTCTAAGCAA
CY15	Bli lchTE_RT forward	GATCGCCTGTGCATATTCTG
CY16	Bli lchTE_RT reverse	CGGCTACTTGTTCCGTTTCT
CY17	Bli sigB_RT reverse	ATCTATGCCAGGTTGGGATG
CY18	Bli sigB_RT forward	TGGACGCTCCAGGTCTTATC

4.3 Results

4.3.1 Lichenysin production differs between *B. licheniformis* MW3 wt and $\Delta sigB$ mutant

The total lichenysin yield of wt *B. licheniformis* was higher than the isogenic $\Delta sigB$ mutant after growth on LB agar. Based on analyses of three independent biological replicates, wt and $\Delta sigB$ mutant cells grown on LB agar produced a total of 3.3 ± 0.2 and 2.5 ± 0.5 µg lichenysin /g of wet biomass, respectively (Figure 1). The molar masses of the various isoforms and their respective concentrations produced by the wt and $\Delta sigB$ mutant are listed in Table 3. The acyl chain lengths of the detected isoforms varied from C12 to C17, in line with previously reported results (Yeak et al., 2022).

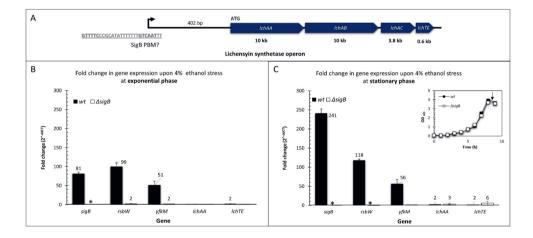
Figure 1- Total lichenysin yield from *Bacillus licheniformis* MW3 wt and $\Delta sigB$ mutant. The production of lichenysin was quantified in three independent biological replicates using Reversed-RP-HPLC-MS. The total lichenysin yield consisted of C12 to C17 isoforms. Total production in wt cells was 3.3 \pm 0.2 µg lichenysin /g of wet biomass and in $\Delta sigB$ cells was 2.5 \pm 0.5 µg lichenysin /g of wet biomass.

Table 3: Lichenysin isoforms, molar masses, and mean concentrations of three independent biological replicates

Isoform	Molecular Formula	[M + H] ⁺ m/z	Concentration (µg/g wet biomass) in wt	Concentration (μ g/g wet biomass) in Δ sigB
C12-Lichenysin	$C_{50}H_{88}N_8O_{12}$	993.6595	0.013	0.010
C13-Lichenysin	$C_{51}H_{90}N_8O_{12}$	1007.6751	0.255	0.188
C14-Lichenysin	$C_{52}H_{92}N_8O_{12}$	1021.6908	0.640	0.482
C15-Lichenysin	$C_{53}H_{94}N_8O_{12}$	1035.7064	2.232	1.683
C16-Lichenysin	$C_{54}H_{96}N_8O_{12}$	1049.7221	0.138	0.102
C17-Lichenysin	$C_{55}H_{98}N_8O_{12}$	1063.7377	0.039	0.028
Т	otal concentration		3.317	2.493

4.3.2 The *lch* (*lic*) operon lacks a SigB promoter binding motif and expression is not influenced by SigB activation

No SigB promoter binding motif (PBM) was identified preceding the lichenysin synthetase operon (*lch/lic*), indicating that SigB does not directly regulate lichenysin production. The search of whole-genome sequences of *B. licheniformis* type strain (DSM13) using the Prodoric2 bacterial gene regulation database resulted in 46 potential promoter sequences with a SigB PBM (Supplementary Table S1), but none of these were found upstream of the lichenysin operon. Therefore, an additional manual check was performed by screening 500 nucleotides upstream of the ATG start codon preceding the *lch/lic* operon. Two potential hit sequences were shortlisted, but neither displayed a clear SigB PBM. One sequence, namely, GTTTCC-N₁₄-TTGGAAAT was located 104 bp upstream of the ATG start codon, but in the anti-sense direction, eliminating it as a SigB PBM involved in the regulation of the *lch/lic* operon. The second sequence GTTTTC-N₁₄-GTCAATTT was found at 402 bp upstream of the ATG in the sense direction of the DNA but showed limited similarity to the SigB consensus sequence in *B. licheniformis*, which is GTTTAA-N₁₄-GGGTAT. Despite the presence of the GTTT in the – 35 region, the well-known guanine bases at the -10 region were not conserved (Figure 2A).

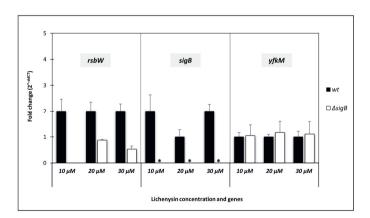

While direct binding of SigB to this predicted motif is unlikely, the expression of the lichenysin gene cluster upon SigB activation was investigated. Cultures of wt and $\Delta sigB$ strains of *B. licheniformis* were exposed to 4% (v/v) ethanol stress, which is known to induce the SigB-mediated GSR (Voigt et al., 2013). For wt cells at the exponential phase, ethanol stress resulted in strong induction of the three SigB-dependent genes, i.e., sigB itself, rsbW, and yfkM. Expression of sigB was increased 81-fold while rsbW (encoding the anti-SigB protein RsbW) and yfkM (encoding the general stress protein YfkM) were induced 99-fold and 51-fold, respectively. However, lchAA (also annotated as licA; encoding the lichenysin synthetase A LchAA/LicA protein) was not differentially expressed (2-ddCT fold change value =1). Expression of lchTE (also annotated as licTE; encoding the LchTE/LicTE thioesterase protein) was mildly increased ~ 2- fold, which was significantly lower than the three SigB-dependent genes. These results suggest that SigB does not directly regulate the expression of the lch (lic) operon (Figure 2B). Ethanol exposure resulted in a ~ 2-fold increase in rsbW and yfkM expression in $\Delta sigB$ cells compared to non-exposed $\Delta sigB$ cells, while lchAA (licA) and lchTE (licTE) were not differentially expressed (2-ddCT fold change value =1) (Figure 2B).

The effect of SigB induction by 4% (v/v) ethanol stress on the expression of sigB, rsbW, yfkM, lchAA, and lchTE was also examined when cells enter the early stationary phase of growth (see insert in Figure 2C). For wt cells in the stationary phase, ethanol strongly induced sigB, rsbW, and yfkM (241, 118, or 56 fold, respectively). The induction of these genes was not observed in the $\Delta sigB$ mutant. Although lchAA (licA) and lchTE (licTE) were mildly induced \sim 2 fold in the wt cultures in the stationary phase, no apparent dependence on SigB was observed (Figure

2C). Overall, these results showed that the lichenysin gene cluster is not regulated by SigB at the gene transcriptional level, neither in the exponential phase nor the stationary phase.

4.3.3 Lichenysin induces a mild SigB general stress response in *B. licheniformis* Surfactants are known to affect biological membranes. Therefore, we determined whether exposure of cells to lichenysin mediates a SigB GSR.

Figure 3 shows the changes in expression of the sigB, rsbW, and yfkM genes in wt and $\Delta sigB$ mutants after exposure to 10, 20, and 30 μ M of lichenysin. In wt cells, sigB and rsbW gene expression was induced ~ 2-fold upon lichenysin exposure, but no changes were measured for the yfkM gene (2^{-ddCT} fold change value =1). The mild induction of both sigB and rsbW genes in the tested conditions contrasts with the 80 to 100-fold increase of both genes in wt cells after exposure to 4% (v/v) ethanol (Figure 2). On the contrary, neither the rsbW nor the yfkM gene was differentially expressed (2^{-ddCT} fold change value =1) in the $\Delta sigB$ mutant after lichenysin exposure (Figure 3). These results show that exposure to 10, 20, and 30 μ M of lichenysin results in the induction of SigB GSR genes, reflecting mild activation of adaptive stress response in B. licheniformis.


Figure 2- The lichenysin synthetase operon and ethanol-induced changes in gene expressions. **2A-** The lichenysin synthetase operon, also known as the *lch* or *lic* operon in *B. licheniformis*. **2B-** Fold changes (2^{-ddCT}) in the expression of three SigB-dependent genes (sigB itself, rsbW, yfkM) and two lichenysin operon genes (lchAA, lchTE) in *B. licheniformis* MW3 wt (**black bar**) and $\Delta sigB$ (**white bar**) cells upon exposure to 4% (v/v) ethanol at exponential phase (OD_{600nm} of ~ 0.35); **2C insert-** shows the growth of *B. licheniformis* MW3 wt (**black square**) and $\Delta sigB$ (**white square**). The arrow indicates the time point at which stationary phase cells (OD_{600nm} of ~ 4) were collected. **2C-**Fold changes (2^{-ddCT}) in the expression of sigB, rsbW, yfkM, lchAA, and lchTE in *B. licheniformis* MW3 wt (**black bar**) and $\Delta sigB$ (**white bar**) cells upon exposure to 4% (v/v) ethanol at stationary phase. Fold changes (2^{-ddCT}) indicate the change of transcript level for each tested gene in wt and $\Delta sigB$ mutant cells upon exposure to 4% (v/v) ethanol or lichenysin compared to the control condition (no treatment) and were calculated with the Livak method (Livak and Schmittgen, 2001) (section 4.2.5). Fold change = 1 indicates no differential expression; fold change > 1 = induction in gene expression; N= 3.

4.3.4 Lichenysin and surfactin induce a mild SigB general stress response in B. subtilis

As lichenysin appeared to induce SigB GSR in *B. licheniformis*, we next tested whether exposure to lichenysin or surfactin induces SigB GSR in *B. subtilis* using the wt and the $\Delta sigB\ P_{rsbV}$ -lacZ reporter strains.

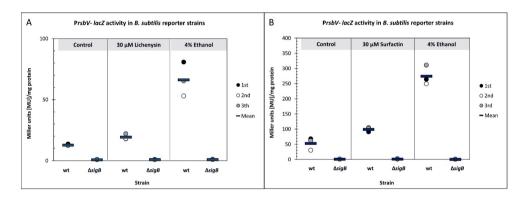

The effect of a range of surfactin concentrations (from 5 μ M to 100 μ M) on induction of P_{rsbV} activity in *B. subtilis* was tested, showing a slight average induction at 5 μ M and higher compared to the unexposed control (Supplementary Figure S1). A concentration of 30 μ M of surfactin and lichenysin was selected as the concentration to expose the *B. subtilis* reporter strains.

Figure 4A shows that the P_{rsbV} LacZ activity in wt cells under control condition (no treatment) was ~10 MU/mg protein, and a significant increase to ~ 70 MU/mg protein was measured after exposure to 4% (v/v) ethanol. When wt cells were treated with 30 μ M of lichenysin, the P_{rsbV} LacZ activity was ~ 20 MU/mg protein, which was lower than cells exposed to ethanol stress but ~ 2-fold higher than the control cells without any treatment. This increment was subtle, but it can be concluded that this was SigB-dependent as no P_{rsbV} LacZ activity was detected in the *B. subtilis* $\Delta sigB$ mutant (Figure 4A). This mild SigB-dependent increased gene expression in *B. subtilis* caused by lichenysin exposure of cells is in line with the results in *B. licheniformis* (Figure 3).

Figure 3 - Changes in expression of SigB-dependent genes in *Bacillus licheniformis* MW3 wt and Δ*sigB* mutant upon exposure to lichenysin. Fold changes ($2^{\text{-ddCT}}$) in the expression of three SigB-dependent genes (sigB itself, rsbW, yfkM) upon exposure to 10, 20, and 30 μM of lichenysin in *B. licheniformis* MW3 wt (**black bar**) and ΔsigB (**white bar**) cells, respectively. Fold changes ($2^{\text{A-ddCT}}$) indicate the change of transcript level for each tested gene in wt and ΔsigB mutant cells upon exposure to lichenysin compared to the control condition (no treatment) and were calculated with the Livak method (Livak and Schmittgen, 2001) (section 4.2.5). Fold change = 1 indicates no differential expression; fold change > 1 = induction in gene expression; N= 3. Asterisk indicates the absence of gene activity.

Surfactin also induced a mild SigB GSR in *B. subtilis*: the P_{rsbV} LacZ activity of wt cells after exposure to 30 μ M surfactin was ~100 MU/mg protein, which was twice the level seen without treatment (~50 MU/mg protein) (Figure 4B). Exposure to 4% (v/v) ethanol resulted in even higher levels of P_{rsbV} LacZ activity, which was ~ 250 MU/mg protein (Figure 4B). Similar to the lichenysin-treated cells, the P_{rsbV} LacZ activity recorded for wt cells after surfactin treatment was ~ 2-fold higher than the P_{rsbV} LacZ activity recorded for wt cells without treatment but ~ 5-fold lower than wt cells treated with ethanol, indicating that surfactin also induced SigB GSR mildly. For the $\Delta sigB$ cells that were tested under the same conditions, no P_{rsbV} LacZ activity was detected, indicating that the changes in P_{rsbV} LacZ activities measured after exposure to surfactin were SigB-dependent (Figure 4B).

Figure 4- Assessment of SigB induction in *Bacillus subtilis* by lichenysin and surfactin using P_{rsbV} LacZ-reporter strains. **4A-** P_{rsbV} -lacZ activities in response to 30 μ M of lichenysin (Lipofabrik) and 4% (v/v) of ethanol in *B. subtilis* wt and $\Delta sigB$ mutant. **4B-** P_{rsbV} -lacZ promoter activities in response to 30 μ M of surfactin (Merck) and 4% (v/v) of ethanol in *B. subtilis* wt and $\Delta sigB$ mutant. The results of three independent biological replicates are shown (N=3). The **circles** depict values from individual experiments, and the **bar** shows the mean value of the replicates.

4.3.5 Pre-exposure to lichenysin and surfactin shows a modest protective effect for *B. licheniformis* when subjected to 12% (v/v) ethanol

It is conceivable that the mild induction of selected SigB GSR genes upon lichenysin and surfactin exposure activates a stress defense. Therefore, we determined the survival of *B. licheniformis* cells upon exposure to 12% (v/v) ethanol (lethal stress) without and with preexposure to lichenysin and surfactin (10, 20, and 30 μ M).

As the cell survival of *B. licheniformis* upon exposure to 10-30 μ M of lichenysin and surfactin was similar over this concentration range (data not shown), biological triplicates were performed using only the lowest concentration (10 μ M), and the results are presented in Figure 5. Without pre-exposure to lichenysin, surfactin, and 4% (v/v) ethanol, wt and $\Delta sigB$ cells died quickly upon exposure to 12% (v/v) ethanol (Figures 5A, C, and E). In the case of pre-exposure

to 10 μ M of lichenysin or surfactin, wt cells were slightly more robust than the $\Delta sigB$ mutant when exposed to 12% (v/v) ethanol, showing \sim 0.5 and 1- 2 log CFU/ml higher CFUs in the first 120 min, respectively (Figure 5B and D). Prolonged exposure up to 3 h resulted in similar viable counts for wt and $\Delta sigB$ mutant cells. Pre-exposure of wt and $\Delta sigB$ mutant cells to 4% (v/v) of ethanol before being subjected to 12% (v/v) ethanol, resulted in \sim 2 logs CFU/ml higher viable counts for the wt than for the $\Delta sigB$ cells (Figure 5F). These results provided evidence for 4% (v/v) ethanol-induced SigB dependent adaptive GSR in *B. licheniformis* that protects against lethal 12 % (v/v) ethanol stress, while putative mild surfactant-induced SigB GSR only showed a modest protective effect against lethal ethanol stress for the first 120 min in *B. licheniformis*.

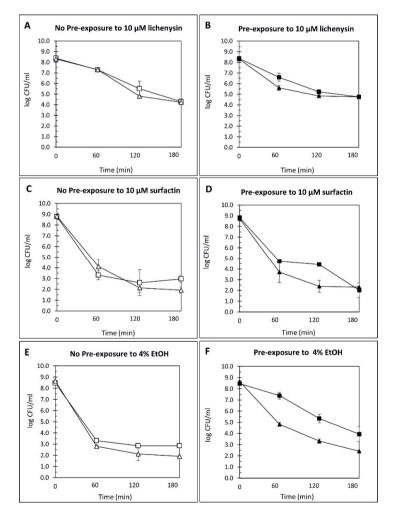


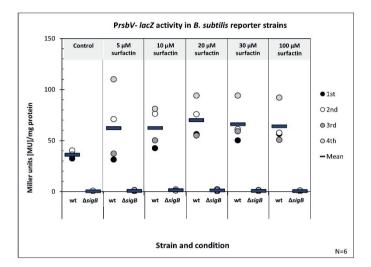
Figure 5- Viable counts of *Bacillus licheniformis* strain MW3 upon exposure to 12% (v/v) ethanol with and without pre-exposure to 10 μM lichenysin, 10 μM surfactin, or 4% (v/v) ethanol. Viable counts of wt and $\Delta sigB$ cultures without pre-exposure to 10 μM lichenysin (5**A**); 10 μM surfactin (5**C**); 4% (v/v) ethanol (5**E**); Viable counts of wt and $\Delta sigB$

cultures with pre-exposure to 10 μ M lichenysin (**5B**); 10 μ M surfactin (**5D**); 4% (v/v) ethanol (**5F**); **Square**- wt; **triangle**- $\Delta sigB$ mutant; **open symbol** – without pre-exposure; **closed symbol** – with pre-exposure. N = 3

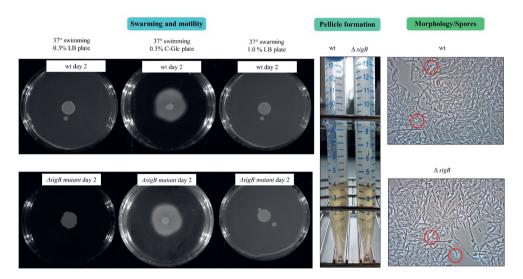
4.4 Discussion

This study demonstrated that the deletion of SigB affected lichenysin production negatively in *B. licheniformis*, but the expression of lichenysin-producing enzymes is not under the direct control of SigB. The exposure of *B. licheniformis* and its close relative *B. subtilis* to lichenysin and surfactin led to mild induction of SigB-dependent genes that mediate the adaptive GSR, and exposure to these compounds provided a modest protective effect against lethal ethanol stress (12% v/v) for the first 120 min *B. licheniformis*.

In this study, the *B. licheniformis* MW3 wt (with the deletion of two restriction endonucleases hsDR1 and hsdR2) was used instead of its isogenic parental strain DSM13, which has naturally poor genetic competence (Hoffmann et al., 2010; Voigt et al., 2013). *B. licheniformis* MW3 produces $\sim 3.3~\mu g$ of lichenysin per g of wet biomass under the optimal condition (LB agar at 37°C) (Figure 1). This amount is ~ 8 fold lower than DSM13, which was previously shown to produce $\sim 25~\mu g$ of lichenysin per g of wet biomass on LB agar at 37°C (Yeak et al., 2022). The deletion of sigB in the MW3 wt strain further reduced the potential of MW3 to synthesize lichenysin (Figure 1), suggesting that SigB plays a role in lichenysin production.


However, SigB does not regulate lichenysin production directly at the gene level as 1) no SigB PBM was found preceding the *lch* (*lic*) gene cluster and 2) activation of SigB at the exponential or stationary phase did not influence the expression of lchAA (licA) or lchTE (licTE) gene. These findings are in line with the role of SigB that was reported for surfactin production by B. subtilis (Bartolini et al., 2019). In B. subtilis, SigB is believed to indirectly increase the production of surfactin (for which the enzymes encoded by srfA are required) via an unknown pathway (Bartolini et al. 2019) because 1) no SigB PBM was detected preceding the srfA operon, and 2) the two well-known srfAA regulators (ComA two-component system and the RapC phosphatase) (Core and Perego, 2003) are not SigB dependent (Price et al., 2001; Hecker et al., 2007). Nevertheless, PhoP – the regulator of phosphate metabolism (Salzberg et al., 2015), and Spx - the regulator of disulfide stress (Nakano et al., 2003), which are involved in srfAA regulation (Zhu and Stülke, 2018) are SigB-dependent. This implies that SigB may indirectly affect srfAA expression via PhoP or Spx. Moreover, the srfA operon is required for competent cell development in B. subtilis because the comS gene (encodes the regulatory component in the competence signal transduction pathway) resides within the srfA operon. Thus, all cells that produce surfactin also produce ComS, facilitating a partial subpopulation of cells to develop competence (Rahman et al., 2021). This suggests that SigB may be further involved in the indirect control of other regulatory pathways that are connected, such as competence. In B. licheniformis, the expression of the lch/lic operon is regulated by ComA (regulator of competence) as the *srfA* operon in *B. subtilis* (Yakimov and Golyshin, 1997). However, no competence-related genes reside within the *B. licheniform* lch/lic operon. The *B. licheniformis lch/lic* operon is also regulated by CodY (regulates response to limitation of branched-chain amino acid) (Zhu et al., 2017), which in turn is SigB-dependent (Voigt et al., 2013). In $\Delta codY$ cells, the transcription of lchAA (licA) and its regulators (ComA, DegQ, and DegU) was upregulated to generate more lichenysin precursor amino acids (Gln, Ile, Leu, and Val), implying that SigB may have an indirect effect on the synthesis of lichenysin precursors, thereby affecting the assembly of lichenysin.

Indirect regulation of gene expression by SigB via regulation of other transcription regulators is not uncommon, and the regulatory pathways of various adaptive processes are known to be highly intertwined (Hamoen et al., 2003). While a role of SigB has been established in sporulation, competence, biofilm formation, and cellular motility in *B. subtilis*, such roles are not known in *B. licheniformis*. In this study, we observed that the overnight cultures of *B. licheniformis* MW3 wt and $\Delta sigB$ mutant were both able to form pellicle biofilms, initiate sporulation, and showed similar motility on low percentage agar plates (Supplementary Figure S2), additionally pointing to a limited role for SigB in *B. licheniformis* adaptive processes.


Exposure of *B. licheniformis* and *B. subtilis* to lichenysin and surfactin resulted in an approximate 2-fold induction of SigB-dependent genes, and the presumed GSR only had a modest effect on survival following exposure to 12% (v/v) ethanol. The exact environmental conditions and efficacy of surfactants in triggering SigB GSR remain to be elucidated. However, it is noteworthy that the production of surfactin triggers the differentiation of cells into competence development, matrix production, and sporulation, resulting in different subpopulations (Rahman et al., 2021). Lichenysin and surfactin are moreover good ion chelators that form complexes with ions (Grangemard et al., 2001; Zamboulis et al., 2011), and may scavenge beneficial ions as micronutrients to the proximity of the cells, conceivably supported by enhanced swarming motility to promote colonization of new habitats (Raaijmakers et al., 2010).

In conclusion, this study showed a modest impact of *B. licheniformis* SigB on lichenysin production and a minor effect of surfactant-induced SigB GSR on lethal stress resistance in the conditions tested. Further studies are required to confirm additional roles of lichenysin in *B. licheniformis* ecology and physiology, and its impact on its competitive fitness and environmental transmission.

4.5 Supplementary Materials

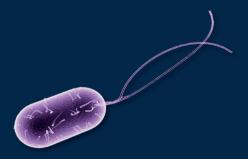
Supplementary Figure S1: A- Assessment of SigB induction by 5- 100 μ M of surfactin in *Bacillus subtilis* wt and $\Delta sigB$ mutant P_{rsbV} -lacZ-reporter strains.

Supplementary Figure S2: Motility, pellicle formation, and spore formation of *B. licheniformis* MW3 wild type and $\Delta sigB$ mutant cells.

Supplementary Table S1: Prediction of operons with SigB promoter binding motif (PBM) in *Bacillus licheniformis* DSM13 using the Prodoric 2 database

SigB PBM	strand	positive hit sequence	locus_tag	gene	
MX000072 -		ATCGTTTTTCTGATTTTTTCCCCCGGGAAATCG			
MX000072	+	TTTGTTTGATCATATATTGATACCGGGTAATGT	BL01687	ycdF	
MX000072	-	GTCGTTTCCAATAAAACATTATATTGGAAATAA			
MX000072	+	CAGGTTTTGCAAAAAACGTTTGAAAGGCAAATG			
MX000072	+	TAAGTTTGACATTGTTAGGCACATCGGAATAAA			
MX000072	+	CTAGTTTAGTATAAGATGGATCTAAGGTAAGAG			
MX000072	+	GGAGTTTTTCATTTTTATCAAAAGGGAAAGGA	BL01489	BL01489	
MX000072	-	GATGTTTTCACGGTTGATTGATTGGGAATAGT			
MX000072	-	AAGGTTTATATTTTCCCTTTTCAAGGGAAATCA			
MX000072	+	GACGTTTTACCTTGTCCGGTTTGGTGGAAAAAG			
MX000072	+	AGTGTTTTTCTTTCTGAAAAGTGGGGAAAGAA	BL03081	yfkJ	
MX000072	+	GGCGTTTTTTAGCGGAAACAAAAGGGGGATACA	BL03092	yfjM	
MX000072	_	TCTGTTTGAAAGTGGCCTTTCGCCGGGAATGAT		JJJ	
MX000072	_	TTCGTTTTCAAAAAAAGTTTTTAAGGGTAGATA			
MX000072	_	TTTGTTTTATTAAGAATGATTAAGGGGGAAAAC	BL01306	yitK	
MX000072	+	GACGTTTTCAAAATATTGTTTTAAGGGTAAACC	BL05104	yitT	
MX000072	-	GTCGTTTTTAACGTCTTCCCGATAGGGAAAATA	BECOTOT	<i>y</i> 1	
MX000072	+	CGAGTTTTCGATAGTCGGGGGACACGGAAATAT			
MX000072	+	GGTGTTTTCAAAGAACAGCAGACGGAAAAATG	BL00557	тоеВ	
MX000072	-	TCTGTTTTCGGATTTCGTTAAACGGGAAAAAC	BL00337 BL01621	ykoA	
MX000072	+	TTTGTTTTAGAAAAGATGTTTTGGAGGAATGGT	BL01021 BL02267	ileS	
	+		DL02201	lles	
MX000072		TAGGTTTTGCCCAAGTTCGTTAAAGGGAAATGT	DI 001FF	DI 00155	
MX000072	+	TATGTTTTATGAAGGTGCAAGTCCGGGTAATAG	BL00155	BL00155	
MX000072	-	GGGGTTTTTTTTATGTCTAAAAAAGGGGAAAGC	BL05172	BL05172	
MX000072	+	GGCGTTTTGGAAATGACAAGATCCTGGTAAGCG			
MX000072	+	CAGGTTTACGGAACGGGCAGCCCGGGGAAAAAT	BL01511	bmrU	
MX000072	+	TGTGTTTTCAAGAATTGTTTTGTGCGGAAACAG			
MX000072	-	TGGGTTTTGGTTTAATTTTAAAAGGGGAAATTT			
MX000072	+	AGAGTTTTGTTTCACCTGATTGTGGGGTAATAG	BL00066	opuD	
MX000072	-	GACGTTTTCCTCAATGGTTTTCCAGGGAAATAA			
MX000072	+	TTCGTTTTATTATTGAATTTAAAAGGGAAAACG			
MX000072	+	CATGTTTTCGATCGCTTTCGCATGGGAATGCG			
MX000072	-	GCTGTTTCTTTTTATAGTATAATGGGAAAAAA	BL05321	yueG	
MX000072	+	AACGTTTTTGAAGCGCCTTGACCTGGGAACCGG			
MX000072	+	AGCGTTTTAGAGTTGAATCCTCCAAGGTATTGG			
MX000072	+	TGAGTTTGTAATTGTAATTTTTCGGGGTATATC	BL02431	gtaB	
MX000072	-	GCTGTTTTGCATATGGGGATTCTCTGGAAATTC			
MX000072	+	CGGGTTTGTCGTGACGCCGCCAGCGGGAAATGA			
MX000072	+	CTCGTTTTTGATTTAGCCGAAAAGGGAAATCAT	BL02454	yqjF	
MX000072	-	ACTGTTTTTAGCTCATCAAAGAGGGGAAGGGA	BL04018	feuC	
MX000072	-	TCTGTTTTAAAACGCTTTTTTCATGGGAAAACG	BL03895	ung	
MX000072	-	TTAGTTTAAAACCGGTTGTCAGCAGGGAAAAGG	BL03870	galE	
MX000072	+	TTGGTTTTTTTAGTCAGTTATTTAGGGAATAGG	BL05363	BL05363	
MX000072	-	AATGTTTTTAAAAAATGATGAAAAAGGAAAAAA	220000	2230000	
MX000072	+	TCGGTTTTATAGGAAGGCACAGGGGGGCAAGCG			
MX000072	-	GACGTTTTAGACCGTTTTGGAAAGGGGAAGTCA			
14172000012		oneon i i noneed i i i toonaaddoaad lea			

4.6 References


- Alvarez, V. M., Guimarães, C. R., Jurelevicius, D., de Castilho, L. V. A., de Sousa, J. S., da Mota, F. F., et al. (2020). Microbial enhanced oil recovery potential of surfactin-producing *Bacillus subtilis* AB2.0. *Fuel* 272, 117730. doi: 10.1016/j.fuel.2020.117730.
- Baranyi, J., and Tamplin, M. L. (2004). ComBase: A common database on microbial responses to food environments. *Journal of Food Protection* 67, 1967–1971. doi: 10.4315/0362-028X-67.9.1967.
- 3. Barbe, V., Cruveiller, S., Kunst, F., Lenoble, P., Meurice, G., Sekowska, A., et al. (2009). From a consortium sequence to a unified sequence: the *Bacillus subtilis* 168 reference genome a decade later. *Microbiology (Reading)* 155, 1758–1775. doi: 10.1099/mic.0.027839-0.
- 4. Bartolini, M., Cogliati, S., Vileta, D., Bauman, C., Ramirez, W., and Grau, R. (2019). Stress-responsive alternative sigma factor SigB plays a positive role in the antifungal proficiency of *Bacillus subtilis*. *Appl. Environ. Microbiol.* 85. doi: 10.1128/AEM.00178-19.
- Berendsen, E. M., Boekhorst, J., Kuipers, O. P., and Wells-Bennik, M. H. J. (2016). A mobile genetic element profoundly increases heat resistance of bacterial spores. *ISME J* 10, 2633–2642. doi: 10.1038/ismej.2016.59.
- Cho, W.-I., and Chung, M.-S. (2020). Bacillus spores: a review of their properties and inactivation processing technologies. Food Sci Biotechnol 29, 1447–1461. doi: 10.1007/s10068-020-00809-4.
- Commichau, F. M., Gunka, K., Landmann, J. J., and Stülke, J. (2008). Glutamate metabolism in *Bacillus subtilis:* gene expression and enzyme activities evolved to avoid futile cycles and to allow rapid responses to perturbations of the system. *J Bacteriol* 190, 3557–3564. doi: 10.1128/JB.00099-08.
- 8. Connor, N., Sikorski, J., Rooney, A. P., Kopac, S., Koeppel, A. F., Burger, A., et al. (2010). Ecology of speciation in the genus *Bacillus*. *Appl Environ Microbiol* 76, 1349–1358. doi: 10.1128/AEM.01988-09.
- Core, L., and Perego, M. (2003). TPR-mediated interaction of RapC with ComA inhibits response regulator-DNA binding for competence development in *Bacillus subtilis*. *Mol Microbiol* 49, 1509–1522. doi: 10.1046/j.1365-2958.2003.03659.x.
- Coronel-León, J., Marqués, A. M., Bastida, J., and Manresa, A. (2016). Optimizing the production of the biosurfactant lichenysin and its application in biofilm control. *J Appl Microbiol* 120, 99–111. doi: 10.1111/jam.12992.
- 11. Eckweiler, D., Dudek, C.-A., Hartlich, J., Brötje, D., and Jahn, D. (2018). PRODORIC2: the bacterial gene regulation database in 2018. *Nucleic Acids Research* 46, D320–D326. doi: 10.1093/nar/gkx1091.
- Gekas, V., Gonzalez, C., Sereno, A., Chiralt, A., and Fito, P. (1998). Mass transfer properties of osmotic solutions.
 Water activity and osmotic pressure. *International Journal of Food Properties* 1, 95–112. doi: 10.1080/10942919809524570.
- 13. Golyshin, P. M., Fredrickson, H. L., Giuliano, L., Rothmel, R., Timmis, K. N., and Yakimov, M. M. (1999). Effect of novel biosurfactants on biodegradation of polychlorinated biphenyls by pure and mixed bacterial cultures. *New Microbiol* 22, 257–267.
- 14. Grangemard, I., Wallach, J., Maget-Dana, R., and Peypoux, F. (2001). Lichenysin: a more efficient cation chelator than surfactin. *Appl Biochem Biotechnol* 90, 199–210. doi: 10.1385/abab:90:3:199.
- 15. Hamoen, L. W., Venema, G., and Kuipers, O. P. (2003). Controlling competence in *Bacillus subtilis*: shared use of regulators. *Microbiology* 149, 9–17. doi: 10.1099/mic.0.26003-0.
- Hashemi, T., BaseriSalehi, M., and Bahador, N. (2014). Isolation of halophilic bacteria from Maharlu salt lake -Iran and their evaluation for the production of bioactive compounds. *International Journal of Molecular and Clinical Microbiology* 4, 365–370.
- Hecker, M., Pané-Farré, J., and Uwe, V. (2007). SigB-Dependent General stress response in *Bacillus subtilis* and related gram-positive bacteria. *Annual Review of Microbiology* 61, 215–236. doi: 10.1146/annurev.micro.61.080706.093445.
- Hoffmann, K., Wollherr, A., Larsen, M., Rachinger, M., Liesegang, H., Ehrenreich, A., et al. (2010). Facilitation of direct conditional knockout of essential genes in *Bacillus licheniformis* DSM13 by comparative genetic analysis and manipulation of genetic competence. *Appl Environ Microbiol* 76, 5046–5057. doi: 10.1128/AEM.00660-10.
- 19. Hoi, L. T., Voigt, B., Jürgen, B., Ehrenreich, A., Gottschalk, G., Evers, S., et al. (2006). The phosphate-starvation response of *Bacillus licheniformis*. *Proteomics* 6, 3582–3601. doi: 10.1002/pmic.200500842.
- 20. Ke, W.-J., Hsueh, Y.-H., Cheng, Y.-C., Wu, C.-C., and Liu, S.-T. (2015). Water surface tension modulates the swarming mechanics of *Bacillus subtilis*. *Frontiers in Microbiology* 6. Available at: https://www.frontiersin.org/article/10.3389/fmicb.2015.01017 [Accessed April 7, 2022].
- 21. Konz, D., Doekel, S., and Marahiel, M. A. (1999). Molecular and biochemical characterization of the protein template controlling biosynthesis of the lipopeptide lichenysin. *J Bacteriol* 181, 133–140.
- 22. Koo, B.-M., Kritikos, G., Farelli, J. D., Todor, H., Tong, K., Kimsey, H., et al. (2017). Construction and analysis of two genome-scale deletion libraries for *Bacillus subtilis*. *Cell Syst* 4, 291-305.e7. doi: 10.1016/j.cels.2016.12.013.

- Kunst, F., Ogasawara, N., Moszer, I., Albertini, A. M., Alloni, G., Azevedo, V., et al. (1997). The complete genome sequence of the gram-positive bacterium *Bacillus subtilis*. *Nature* 390, 249–256. doi: 10.1038/36786.
- 24. Kunst, F., and Rapoport, G. (1995). Salt stress is an environmental signal affecting degradative enzyme synthesis in *Bacillus subtilis. Journal of Bacteriology* 177, 2403–2407. doi: 10.1128/jb.177.9.2403-2407.1995.
- Lambert, J. M., Bongers, R. S., and Kleerebezem, M. (2007). Cre-lox-Based System for Multiple Gene Deletions and Selectable-Marker Removal in *Lactobacillus plantarum*. Appl Environ Microbiol 73, 1126–1135. doi: 10.1128/AEM.01473-06.
- 26. Livak, K. J., and Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. *Methods* 25, 402–408. doi: 10.1006/meth.2001.1262.
- López, M. J., Jurado, M. M., López-González, J. A., Estrella-González, M. J., Martínez-Gallardo, M. R., Toribio, A., et al. (2021). Characterization of thermophilic lignocellulolytic microorganisms in composting. *Front Microbiol* 12, 697480. doi: 10.3389/fmicb.2021.697480.
- 28. Madslien, E. H., Rønning, H. T., Lindbäck, T., Hassel, B., Andersson, M. A., and Granum, P. E. (2013). Lichenysin is produced by most *Bacillus licheniformis* strains. *Journal of Applied Microbiology* 115, 1068–1080. doi: https://doi.org/10.1111/jam.12299.
- 29. Marles-Wright, J., and Lewis, R. J. (2010). The stressosome: molecular architecture of a signalling hub. *Biochem. Soc. Trans.* 38, 928–933. doi: 10.1042/BST0380928.
- 30. Mikkola, R., Kolari, M., Andersson, M. A., Helin, J., and Salkinoja-Salonen, M. S. (2003). Toxic lactonic lipopeptide from food poisoning isolates of *Bacillus licheniformis. European Journal of Biochemistry* 267, 4068–4074. doi: https://doi.org/10.1046/j.1432-1033.2000.01467.x.
- 31. Misirli, G., Hallinan, J., Röttger, R., Baumbach, J., and Wipat, A. (2014). BacillusRegNet: A transcriptional regulation database and analysis platform for *Bacillus* species. *Journal of Integrative Bioinformatics* 11, 106–119. doi: 10.1515/jib-2014-244.
- 32. Mulder, J., Wels, M., Kuipers, O. P., Kleerebezem, M., and Bron, P. A. (2017). Unleashing natural competence in *Lactococcus lactis* by induction of the competence regulator ComX. *Appl. Environ. Microbiol.* 83. doi: 10.1128/AEM.01320-17.
- 33. Mulligan, C. N. (2005). Environmental applications for biosurfactants. *Environ Pollut* 133, 183–198. doi: 10.1016/j.envpol.2004.06.009.
- 34. Nakano, M. M., Xia, L. A., and Zuber, P. (1991). Transcription initiation region of the *srfA* operon, which is controlled by the *comP-comA* signal transduction system in *Bacillus subtilis*. *Journal of Bacteriology* 173, 5487. doi: 10.1128/jb.173.17.5487-5493.1991.
- 35. Nakano, S., Küster-Schöck, E., Grossman, A. D., and Zuber, P. (2003). Spx-dependent global transcriptional control is induced by thiol-specific oxidative stress in *Bacillus subtilis. Proceedings of the National Academy of Sciences* 100, 13603–13608. doi: 10.1073/pnas.2235180100.
- Nerurkar, A. S. (2010). Structural and molecular characteristics of lichenysin and its relationship with surface activity. Adv Exp Med Biol 672, 304–315. doi: 10.1007/978-1-4419-5979-9_23.
- Nikolova, C., and Gutierrez, T. (2020). Use of microorganisms in the recovery of oil from recalcitrant oil reservoirs: current state of knowledge, technological advances and future perspectives. Frontiers in Microbiology 10. Available at: https://www.frontiersin.org/article/10.3389/fmicb.2019.02996 [Accessed March 7, 2022].
- 38. Pané-Farré, J., Quin, M. B., Lewis, R. J., and Marles-Wright, J. (2017). "structure and function of the stressosome signalling hub," in *Macromolecular Protein Complexes: Structure and Function* Subcellular Biochemistry., eds. J. R. Harris and J. Marles-Wright (Cham: Springer International Publishing), 1–41. doi: 10.1007/978-3-319-46503-6 1.
- 39. Pavić, S., Brett, M., Petrić, I., Laštre, D., Smoljanović, M., Atkinson, M., et al. (2005). An outbreak of food poisoning in a kindergarten caused by milk powder containing toxigenic *Bacillus subtilis* and *Bacillus licheniformis*. *Archiv fur Lebensmittelhygiene* 56, 20–22.
- Petersohn, A., Bernhardt, J., Gerth, U., Höper, D., Koburger, T., Völker, U., et al. (1999). Identification of sigma(B)-dependent genes in *Bacillus subtilis* using a promoter consensus-directed search and oligonucleotide hybridization. *J. Bacteriol.* 181, 5718–5724.
- 41. Petersohn, A., Brigulla, M., Haas, S., Hoheisel, J. D., Völker, U., and Hecker, M. (2001). Global analysis of the general stress response of *Bacillus subtilis*. J. Bacteriol. 183, 5617–5631. doi: 10.1128/JB.183.19.5617-5631.2001.
- 42. Price, C. W., Fawcett, P., Cérémonie, H., Su, N., Murphy, C. K., and Youngman, P. (2001). Genome-wide analysis of the general stress response in *Bacillus subtilis*. *Mol. Microbiol*. 41, 757–774. doi: 10.1046/j.1365-2958.2001.02534.x.
- 43. Raaijmakers, J. M., De Bruijn, I., Nybroe, O., and Ongena, M. (2010). Natural functions of lipopeptides from *Bacillus* and *Pseudomonas*: more than surfactants and antibiotics. *FEMS Microbiology Reviews* 34, 1037–1062. doi: 10.1111/j.1574-6976.2010.00221.x.
- 44. Rahman, F. B., Sarkar, B., Moni, R., and Rahman, M. S. (2021). Molecular genetics of surfactin and its effects on different sub-populations of *Bacillus subtilis*. *Biotechnology Reports* 32, e00686. doi: 10.1016/j.btre.2021.e00686.

- 45. Rodriguez Ayala, F., Bartolini, M., and Grau, R. (2020). The Stress-Responsive Alternative sigma factor SigB of *Bacillus subtilis* and its relatives: an old friend with new functions. *Front Microbiol* 11. doi: 10.3389/fmicb.2020.01761.
- Rønning, H. T., Madslien, E. H., Asp, T. N., and Granum, P. E. (2015). Identification and quantification of lichenysin - a possible source of food poisoning. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 32, 2120–2130. doi: 10.1080/19440049.2015.1096967.
- 47. Salkinoja-Salonen, M. S., Vuorio, R., Andersson, M. A., Kämpfer, P., Andersson, M. C., Honkanen-Buzalski, T., et al. (1999). Toxigenic strains of *Bacillus licheniformis* related to food poisoning. *Appl Environ Microbiol* 65, 4637–4645
- Salzberg, L. I., Botella, E., Hokamp, K., Antelmann, H., Maaß, S., Becher, D., et al. (2015). Genome-wide analysis
 of phosphorylated PhoP binding to chromosomal DNA reveals several novel features of the PhoPR-mediated
 phosphate limitation response in *Bacillus subtilis*. *Journal of Bacteriology* 197, 1492–1506. doi: 10.1128/JB.0257014.
- Schroeter, R., Hoffmann, T., Voigt, B., Meyer, H., Bleisteiner, M., Muntel, J., et al. (2013). Stress responses of the industrial workhorse *Bacillus licheniformis* to osmotic challenges. *PLoS One* 8, e80956. doi: 10.1371/journal.pone.0080956.
- 50. Sella, S. R. B. R., Vandenberghe, L. P. S., and Soccol, C. R. (2014). Life cycle and spore resistance of spore-forming *Bacillus atrophaeus*. *Microbiological Research* 169, 931–939. doi: 10.1016/j.micres.2014.05.001.
- 51. Seo, J. K., Park, T. S., Kwon, I. H., Piao, M. Y., Lee, C. H., and Ha, J. K. (2013). Characterization of cellulolytic and xylanolytic enzymes of *Bacillus licheniformis* JK7 Isolated from the rumen of a native Korean goat. *Asian-Australasian Journal of Animal Sciences* 26, 50. doi: 10.5713/ajas.2012.12506.
- 52. Shaligram, N. S., and Singhal, R. (2010). Surfactin A review on biosynthesis, fermentation, purification and applications. Food Technology and Biotechnology. Available at: https://www.semanticscholar.org/paper/Surfactin-%E2%80%93-A-Review-on-Biosynthesis%2C-Fermentation%2C-Shaligram-Singhal/e1aad5c827bfa258264a8eaf8f49072e0d7825e3 [Accessed December 1, 2021].
- 53. Singh, R. P., and Jha, P. N. (2016). A halotolerant bacterium *Bacillus licheniformis* HSW-16 augments induced systemic tolerance to salt stress in wheat plant (*Triticum aestivum*). Front. Plant Sci. 7. doi: 10.3389/fpls.2016.01890.
- 54. Stannek, L., Thiele, M. J., Ischebeck, T., Gunka, K., Hammer, E., Völker, U., et al. (2015). Evidence for synergistic control of glutamate biosynthesis by glutamate dehydrogenases and glutamate in *Bacillus subtilis. Environmental Microbiology* 17, 3379–3390. doi: 10.1111/1462-2920.12813.
- 55. Untergasser, A., Cutcutache, I., Koressaar, T., Ye, J., Faircloth, B. C., Remm, M., et al. (2012). Primer3—new capabilities and interfaces. *Nucleic Acids Res* 40, e115. doi: 10.1093/nar/gks596.
- 56. Untergasser, A., Nijveen, H., Rao, X., Bisseling, T., Geurts, R., and Leunissen, J. A. M. (2007). Primer3Plus, an enhanced web interface to Primer3. *Nucleic Acids Research* 35, W71–W74. doi: 10.1093/nar/gkm306.
- 57. Voigt, B., Hoi, L. T., Jürgen, B., Albrecht, D., Ehrenreich, A., Veith, B., et al. (2007). The glucose and nitrogen starvation response of *Bacillus licheniformis*. *PROTEOMICS* 7, 413–423. doi: 10.1002/pmic.200600556.
- 58. Voigt, B., Schroeter, R., Jürgen, B., Albrecht, D., Evers, S., Bongaerts, J., et al. (2013). The response of *Bacillus licheniformis* to heat and ethanol stress and the role of the SigB regulon. *PROTEOMICS* 13, 2140–2161. doi: https://doi.org/10.1002/pmic.201200297.
- Vos, P., Garrity, G., Jones, D., Krieg, N. R., Ludwig, W., Rainey, F. A., et al. eds. (2009). Bergey's Manual of Systematic Bacteriology: Volume 3: The Firmicutes. 2nd ed. New York: Springer-Verlag doi: 10.1007/978-0-387-68489-5.
- 60. Wach, A. (1996). PCR-synthesis of marker cassettes with long flanking homology regions for gene disruptions in S. cerevisiae. Yeast 12, 259–265. doi: 10.1002/(SICI)1097-0061(19960315)12:3%3C259::AID-YEA901%3E3.0.CO:2-C.
- 61. Warth, A. D. (1978). Relationship between the heat resistance of spores and the optimum and maximum growth temperatures of *Bacillus* species. *J Bacteriol* 134, 699–705.
- 62. Waschkau, B., Waldeck, J., Wieland, S., Eichstädt, R., and Meinhardt, F. (2008). Generation of readily transformable *Bacillus licheniformis* mutants. *Appl Microbiol Biotechnol* 78, 181–188. doi: 10.1007/s00253-007-1278-0.
- 63. Wells-Bennik, M. H. J., Eijlander, R. T., den Besten, H. M. W., Berendsen, E. M., Warda, A. K., Krawczyk, A. O., et al. (2016). Bacterial spores in food: survival, emergence, and outgrowth. *Annu Rev Food Sci Technol* 7, 457–482. doi: 10.1146/annurev-food-041715-033144.
- 64. Yakimov, M. M., Amro, M. M., Bock, M., Boseker, K., Fredrickson, H. L., Kessel, D. G., et al. (1997). The potential of *Bacillus licheniformis* strains for *in situ* enhanced oil recovery. *Journal of Petroleum Science and Engineering* 18, 147–160. doi: 10.1016/S0920-4105(97)00015-6.

- 65. Yakimov, M. M., and Golyshin, P. N. (1997). ComA-dependent transcriptional activation of lichenysin A synthetase promoter in *Bacillus subtilis* cells. *Biotechnology Progress* 13, 757–761. doi: https://doi.org/10.1021/bp9700622.
- 66. Yakimov, M. M., Timmis, K. N., Wray, V., and Fredrickson, H. L. (1995). Characterization of a new lipopeptide surfactant produced by thermotolerant and halotolerant subsurface *Bacillus licheniformis* BAS50. *Appl Environ Microbiol* 61, 1706–1713. doi: 10.1128/aem.61.5.1706-1713.1995.
- 67. Yeak, K. Y., Wells-Bennik, M., Perko, M., Staring, G., Fernandez-Ciruelos, B., Wells, J., et al. (2022). Lichenysin production by *Bacillus licheniformis* food isolates and toxicity to human cells. *Frontiers in Microbiology* 13. Available at: https://www.frontiersin.org/article/10.3389/fmicb.2022.831033 [Accessed January 24, 2022].
- 68. Zamboulis, D., Peleka, E. N., Lazaridis, N. K., and Matis, K. A. (2011). Metal ion separation and recovery from environmental sources using various flotation and sorption techniques. *Journal of Chemical Technology & Biotechnology* 86, 335–344. doi: 10.1002/jctb.2552.
- 69. Zeigler, D. R., Prágai, Z., Rodriguez, S., Chevreux, B., Muffler, A., Albert, T., et al. (2008). The origins of 168, W23, and other *Bacillus subtilis* legacy strains. *J Bacteriol* 190, 6983–6995. doi: 10.1128/JB.00722-08.
- 70. Zhu, B., and Stülke, J. (2018). SubtiWiki in 2018: from genes and proteins to functional network annotation of the model organism *Bacillus subtilis*. *Nucleic Acids Res* 46, D743–D748. doi: 10.1093/nar/gkx908.
- 71. Zhu, C., Xiao, F., Qiu, Y., Wang, Q., He, Z., and Chen, S. (2017). Lichenysin production is improved in *codY* null *Bacillus licheniformis* by addition of precursor amino acids. *Appl Microbiol Biotechnol* 101, 6375–6383. doi: 10.1007/s00253-017-8352-z.

CHAPTER 5

Lichenysin production by *Bacillus licheniformis* food isolates and toxicity to human cells

Kah Yen Claire Yeak^{1,2,*}, Manca Perko¹, Guido Staring¹, Blanca M. Fernandez-Ciruelos³, Jerry M. Wells³, Tjakko Abee² and Marjon H. J. Wells-Bennik^{1*}

¹ NIZO, Ede, Netherlands, ² Food Microbiology, Wageningen University & Research, Wageningen, Netherlands, ³ Host-Microbe Interactomics, Wageningen University & Research, Wageningen, Netherlands

FIELD CONTRIBUTION

Bacterial foodborne outbreaks related to *Bacillus* species in foods are commonly due to *Bacillus cereus*, but cases of intoxications caused by *Bacillus licheniformis* have been reported due to production of lichenysin. Information is lacking on levels produced in foods and on the stage of growth during which this surfactant is synthesized. This is needed for risk assessments. We investigated the production of lichenysin by different *Bacillus licheniformis* food isolates. The amount of lichenysin produced strongly depended on the strain and on the cultivation medium and incubation temperature. The organism did not produce detectable amounts of lichenysin up to cell densities of 5 log₁₀/ml in milk and LB. At higher cell densities, appreciable amounts of lichenysin were measured. We also demonstrated that lichenysin is toxic to human epithelial cells at levels that can be produced in foods. This study stresses that control of outgrowth of *B. licheniformis* in foods is important to prevent foodborne illness due to lichenysin production. In addition, active introduction of specific *B. licheniformis* strains into the food chain, either indirectly as crop bioprotectant or feed additive, or directly as food additives (probiotic), requires thorough assessment of surfactant production capacity

Abstract

Bacillus licheniformis can cause foodborne intoxication due to the production of the surfactant lichenysin. The aim of this study was to measure the production of lichenysin by food isolates of B. licheniformis in LB medium and skimmed milk and its cytotoxicity for intestinal cells. Out of 11 B. licheniformis isolates tested, most showed robust growth in high salt (1M NaCl), 4% ethanol, at 37°C or 55°C, and aerobic and anaerobic conditions. All strains produced lichenysin (in varying amounts), but not all strains were hemolytic. Production of this stable compound by selected strains (high producers B4094 and B4123, and type strain DSM13^T) was subsequently determined using LB medium and milk, at 37°C and 55°C. Lichenysin production in LB broth and milk was not detected at cell densities < 5 log₁₀ CFU/ml. The highest concentrations were found in the stationary phase of growth. Total production of lichenysin was 4-20 times lower in milk than in LB broth (maximum 36 µg/ml), and ~10 times lower in the biomass obtained from milk agar than LB agar. Under all conditions tested, strain B4094 consistently yielded the highest amounts. Besides strain variation and medium composition, temperature also had an effect on lichenysin production, with two-fold lower amounts of lichenysin produced at 55°C than at 37°C. All three strains produced lichenysin A with varying acyl chain lengths (C11 to C18). The relative abundance of the C14 variant was highest in milk and the C15 variant highest in LB. The concentration of lichenysin needed to reduce cell viability by 50% (IC₅₀) was 16.6 µg/ml for Caco-2 human intestinal epithelial cells and 16.8 µg/ml for pig ileum organoids. Taken together, the presence of low levels (< 5 log₁₀ CFU/ml) of B. licheniformis in foods is unlikely to pose a foodborne hazard related to lichenysin production. However, depending on the strain present, the composition, and storage condition of the food, a risk of foodborne intoxication may arise if growth to high levels is supported and such product is ingested.

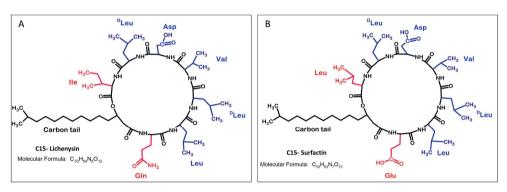
5.1 Introduction

Bacillus licheniformis is a facultative anaerobic endospore-producing bacterium that is ubiquitously found in the environment, plant material, and soil. The organism belongs to the *Bacillus subtilis* group and is known for its use in the production of enzymes or antibiotics (e.g., bacitracin), while spore preparations of selected strains are used as crop bioprotectants and feed additives (Wang et al., 2016; Elshaghabee et al., 2017; Radhakrishnan et al., 2017).

B. licheniformis is not considered to be a pathogen and has not been shown to be able to invade the outer barriers of the body without previous lesions (e.g., mucosal tissue or skin), but sporadic cases of human infection related to *B. licheniformis* have been reported (Sugar and McCloskey, 1977; Park et al., 2006; Haydushka et al., 2012; Padhi et al., 2012). In cows, the organism has been linked to rare cases of abortion (Johnson et al., 1994; Agerholm et al., 1995), and in a study by Nieminen et al. (2007), high numbers were found in some samples of mastitic milk.

While generally considered safe, *B. licheniformis* has occasionally been reported as a causative agent of foodborne intoxication after the consumption of cooked meat, vegetables, milk powders, and dairy products (Salkinoja-Salonen et al., 1999; Pavić et al., 2005; Logan, 2012; Rønning et al., 2015). Reported cases were characterized by a relatively short incubation time (2–14 h) and high infective dose (> 5 log₁₀ CFU/g) followed by mild gastrointestinal symptoms (e.g., nausea, stomach cramps, vomiting, abdominal pain, and sometimes diarrhea) lasting for 6–24 h (Kramer and Gilbert, 1989; Salkinoja-Salonen et al., 1999). The agent causing foodborne illness was identified as the surfactant lichenysin (Salkinoja-Salonen et al., 1999; Mikkola et al., 2003), with one fatal case linked to the consumption of infant formula containing lichenysin (Salkinoja-Salonen et al., 1999).

Spores of *B. licheniformis* may be present in food ingredients and survive commonly applied heating processes such as pasteurization. The heat resistance of spores can vary significantly between isolates: some carry genetic elements that give rise to the production of high-level heat-resistant spores (Berendsen et al., 2016a). Surviving spores can germinate, return to their vegetative state, and then grow in the finished food, depending on the composition of the product and its storage condition. The organism tolerates a relatively low water activity (A_w) of ~ 0.9 and a broad temperature range (~ 10°C - 58°C) for growth (Warth, 1978; Baranyi and Tamplin, 2004). This includes food processing conditions at relatively high temperatures, for instance, in evaporators that are operated at temperatures around 55°C. *B. licheniformis* can be the predominant spore former in milk powders made from pasteurized milk that is evaporated and spray-dried (Miller et al., 2015; Eijlander et al., 2019), even though the raw milk used to make powder contains a broad range of spore-forming species (Coorevits et al., 2008; Miller et al., 2015). High temperatures in evaporators (operated under vacuum) in


combination with a low Aw in the concentrated product stream put selective pressures that favor outgrowth and subsequent spore formation by *B. licheniformis* (Burgess et al., 2010; Eijlander et al., 2019; Delaunay et al., 2021). Besides dairy products, the organism is also frequently found in spices, dry herbs (e.g., pepper and turmeric) (Mathot et al., 2021), and flours (Rosenkvist and Hansen, 1995; Iurlina et al., 2006). As a common contaminant in food ingredients, the processing conditions will determine whether viable spores are present in the finished product (Postollec et al., 2012). If the product and storage conditions subsequently support the growth of *B. licheniformis*, a possibility of lichenysin production in the food exists (Warth, 1978; Postollec et al., 2012).

Lichenysin is a secondary metabolite. It is synthesized by the proteins encoded by the *lchAA-AB-AC-TE* gene cluster, also annotated as *licA-TE* (Konz et al., 1999). The biosynthesis of the peptide fraction of lichenysin is catalyzed by nonribosomal peptide synthetases (NRPS). The presence of *lch* genes in *B. licheniformis* appears to be very common: the *lchAA* gene was detected by PCR in all 53 isolates studied by Madslien et al. (2013). The whole-genome sequences of these isolates are not available, but lichenysin production was confirmed for all strains in their study. The presence of the *lch* cluster in a particular strain does not necessarily mean that the compound is produced. This depends on the level of transcription, translation, and enzyme (lichenysin synthetase) activity level (Harwood et al., 2018). Environmental conditions, such as the type of carbon, nitrogen, or phosphate sources present in the environment strongly influence production (Coronel-León et al., 2015b).

Lichenysin is an amphiphilic lipopeptide. Its structure is highly similar to surfactin, a well-known surfactant produced by *B. subtilis* (Arima et al., 1968) (Figure 1). Both compounds can be produced aerobically or anaerobically (Javaheri et al., 1985; Willenbacher et al., 2015; Coronel-León et al., 2016a; Hoffmann et al., 2020). They consist of a hydrophilic peptide ring of seven amino acids, connected to a hydrophobic β-hydroxy fatty acid chain (Joshi et al., 2008; Coronel-León et al., 2016a, 2016b). The β-hydroxy fatty acids can vary in length between 12–17 carbons and can be normal or branched in *iso* or *anteiso* forms (Yakimov et al., 1995). Lichenysin A contains glutamine (Gln) and isoleucine (Ile) in the 1st and 7th position of the cyclic peptide, respectively, whereas surfactin has glutamate (Glu) and leucine (Leu) in these positions (Figure 1). Other lichenysin isoforms are more similar to surfactin, e.g., lichenysin B only differs in the fatty acid chain, and lichenysin C has one amino acid difference in the peptide ring (Leu > Ile) (Nerurkar, 2010). Lichenysin D and G isoforms are almost identical to lichenysin A, with just one amino acid difference at the 7th position; lichenysin D has either Leu or Valine (Val), whereas lichenysin G has Val (Nerurkar, 2010).

The various isoforms of these surfactants share similar features, such as good solubilizing, foaming, emulsifying, and detergent activity (Rajendran and Marahiel, 1999; Zhao et al., 2017; Santos et al., 2018; Thakur et al., 2020), but they can have different physicochemical and

bioactive properties, depending on the amino acids in the peptide ring and the length and type of the fatty acid chain (Santos et al., 2018). Lichenysin A, for instance, has higher surfactant power than surfactin, likely due to the two different amino acids in the peptide ring, and it has 2 to 10-fold lower critical micelle concentrations (CMC) than surfactin (Grangemard et al., 2001; Nerurkar, 2010). The multifaceted properties of these amphiphilic lipopeptides account for their broad range of applications, such as biocontrol in the agricultural industry (Henry et al., 2011; Sachdev and Cameotra, 2013), emulsifiers in the oil industry (Yao et al., 2021), foaming agents in cosmetics (Varvaresou and Iakovou, 2015), and detergents in household cleaning products (Shaligram and Singhal, 2010).

Figure 1- Chemical structures of C15-lichenysin and C15-surfactin. **(A)** C15 Lichenysin; **(B)** C15- Surfactin; The lipopeptide lichenysin A (cyclo-[Gln1-Leu2-Leu3-Val4-Asp5-Leu6-Ile7 β-OH fatty acid]) produced by *B. licheniformis* (Yakimov et al., 1995) is structurally similar to surfactin (cyclo-[Glu1-Leu2-Leu3-Val4-Asp5-Leu6-Leu7 β-OH fatty acid]) produced by *B. subtilis* (Zhao et al., 2017), which was first discovered by Arima et al. (1968). The 1st and 7th position of the peptide ring differs between surfactin and lichenysin A.

Once produced, lichenysin is highly stable under extreme conditions (Coronel-León et al., 2015a, 2015b). Its surfactant properties are unaffected over a wide pH range (pH 6-11), in the presence of high salt concentration (~ up to 20 % NaCl), and upon exposure to temperatures as high as 121 °C (Coronel-León et al., 2015b; Purwasena et al., 2019). Next to its action as a surfactant, lichenysin is also a good ion chelator, exerts antibiotic activity, interacts with phospholipids, and induces the formation of ion channels in artificial membranes (Grangemard et al., 2001; Coronel-León et al., 2017).

Production of lichenysin in foods may pose a food safety risk. It has hemolytic activity and toxic effects on boar spermatozoa cells at concentrations above 10 µg/ml and Vero cells at concentrations above 33 µg/ml (Madslien et al., 2013), whereas toxicity data for humanderived cell lines have not been reported. This activity is tightly linked to the capacity of lichenysin to interact with cell membranes and disrupt membrane barrier functions (Coronel-León et al., 2017). Although lichenysin A production by *B. licheniformis* in food has been connected with cases of food poisoning (Salkinoja-Salonen et al., 1999; Mikkola et al., 2003; Nieminen et al., 2007; Logan, 2012; Madslien et al., 2013; Rønning et al., 2015), data on

amounts and types of lichenysin synthesized during growth in food matrices, levels produced at different stages of growth, and dependency on culturing conditions are not available.

In this study, we determined the types and amounts of lichenysin produced by selected *B. licheniformis* food isolates in nutrient-rich Luria Bertani (LB) medium and skimmed milk at different temperatures. Additionally, we assessed the cytotoxicity of lichenysin with surfactin as a reference.

5.2 Materials and Methods

5.2.1 Bacterial strains and culture conditions

The following foodborne isolates of *B. licheniformis* from the NIZO culture collection were used: B4089, B4090, B4091, B4092, B4094, B4121, B4123, B4124, B4125, and B4164. Details related to their isolation sources and whole-genome accession numbers were reported (Berendsen et al., 2016a). Genomes were checked for the presence of the lichenysin gene cluster (*licA*, *licB*, *licC*, and *licTE*) using the Benchling biology software, available at https://benchling.com. *B. licheniformis* DSM13^T type strain was obtained from the German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany (DSMZ). Bacteria were routinely cultured using LB medium (Bertani, 2004) (Tritium Microbiologie BV, Eindhoven, The Netherlands) and incubated aerobically at 37°C, using shaking at 220 rpm, unless stated otherwise.

5.2.2 Screening and selection of B. licheniformis food isolates

5.2.2.1 β – hemolytic activity on Columbia Blood Agar

To screen strains for hemolytic activity, the Columbia blood agar method (Mulligans et al., 1984) was used as described by Madslien et al. (2013) with minor adjustments. Briefly, the optical densities (OD_{600}) of the overnight (ON) cultures in LB were measured and adjusted to OD_{600} 2.0. Ten μ l of each culture was spotted on Columbia agar base supplemented with 5% sheep blood (Tritium Microbiologie BV) and incubated at 37°C. The hemolytic activity of each strain was inspected after 24 and 48 hours (h) of incubation. Strains that caused lysis of the red blood cells exhibited a transparent clearing zone around the colonies, indicating the presence of the biosurfactant lichenysin.

5.2.2.2 Oil displacement test

To assess the ability of *B. licheniformis* strains to produce biosurfactants, the oil displacement method as described by Walter et al. (2013) was used with modifications. Briefly, the oil used in this study was a mixture of linseed: wheat germ: and sesame oils in the ratio of 3: 0.5: 0.05 (Mitterzumleben, Oberthal, Germany). 1 ml of the oil mixture was evenly placed on top of 3.5 ml of distilled water on a 6-wells plate (Thermo Fischer Scientific, Bleiswijk, The Netherlands).

An aliquot of 10 μ l of an ON culture of *B. licheniformis* was dropped on the oil layer, and the diameter of displaced oil was measured.

5.2.2.3 Aerobic and anaerobic growth in 96-wells plate

An ON culture of *B. licheniformis* in LB was adjusted to OD_{600} 0.05 in fresh LB medium and grown to $OD_{600} \sim 0.5$ at 37°C. Then 2 μ l was added to either 198 μ l of LB medium, or LB medium containing 1 M NaCl, or LB containing 4% ethanol (v/v) in 96 well plates (Greiner Bio-One B.V, Alphen aan den Rijn, The Netherlands). Two different plates were incubated at 37°C or 55°C in the Epoch2 microplate reader (Biotek, Hellevoetsluis, The Netherlands) in dual orbital shaking mode, and growth was followed for ~20 h by measuring the OD_{600} .

For anaerobic growth, all lab materials and cultivation media were transferred into an anaerobic chamber (model #830 -ABE/OTA) (Plas-Labs, Michigan, United States), 24 h before the experiment. The gas mixture used was 5% H_2 , 5% CO_2 , 90 % N_2 . All strains were first cultured to an $OD_{600} \sim 0.5$ aerobically, then 2 μ l of cultures were added to 198 μ l of anaerobic LB medium containing 0.2% of potassium nitrate (KNO₃). Growth was followed by monitoring the OD_{600} for ~ 20 h using the Epoch2 microplate reader (BioTek) inside the anaerobic chamber. 2 μ l of the blue fluorogenic dye Resazurin (1 g/l in distilled water) (Merck, Zwijndrecht, Netherlands) was added to an additional well that contained (198 μ l) cell culture and was used as a redox indicator. The color change from blue to pink and then to colorless indicated the absence of oxygen.

5.2.3 Growth conditions and sample collection for lichenysin extraction

5.2.3.1 Growth curves in LB broth and skimmed milk

Two selected *B. licheniformis* food isolates B4123, B4094, and the type strain DSM13^T were cultured either in LB or skimmed milk (Tritium Microbiologie BV) ON at 37°C, 220 rpm. The OD₆₀₀ of ON cultures was measured and adjusted to OD₆₀₀ 0.05, diluted 6-fold, resulting in around 10² colony-forming units (CFU) ml⁻¹ in 100 ml of fresh prewarmed medium. Samples were collected at time point 0 (T0) and subsequently, cultures were incubated at 37°C, with continuous shaking (220 rpm) for 72 h. During the growth of these cultures, samples were collected to determine the CFUs in time and to determine the concentrations of lichenysin in the culture.

In LB, samples were collected every 2 h for the first 24 h and for the first 28 h in skimmed milk to determine the CFUs in time. Lichenysin produced in the culture was determined at every 4 h in LB and skimmed milk, with additional selected time points in between the 4 h interval after cells reached the early stationary phase. Aliquots of 5 ml cell cultures were collected and frozen immediately at -20°C until used for lichenysin extraction.

At each mentioned time point, 1 ml of the culture was 10-fold serially diluted using sterile phosphate-buffered saline (PBS), and appropriate dilutions were plated out either on LB agar

or Plate count skimmed milk agar (PCMA) (Tritium Microbiologie BV) followed by incubation at 37°C ON and counting of the colonies. The CFU/ml at each time point for each strain was determined using the formula (Number of colonies x dilution factor) / volume spread on the plate. In addition, lichenysin concentrations in the cultures at each time point were analyzed and quantified (section 5.2.4).

To measure the OD_{600} of ON cultures in skimmed milk, the milk was cleared by mixing 1 ml of ON culture with 9 ml of citrate milk clearing solution (2%) (Tritium Microbiologie BV). For growth in skimmed milk, two additional samples were collected at time points 26 and 28 h as all three strains grew slower in skimmed milk than in LB, and cultures reached the stationary phase later than in LB. Incubation was performed at 37°C.

5.2.3.2 Estimation of lag time, lambda (λ), and specific growth rate, mu (μ)

The average log₁₀ CFU/ml for the strain B4094, B4123, and DSM13 were calculated in LB and skimmed milk from two independent experiments. Their respective specific growth rate (mu/μ) and lag time (lambda/λ) for each strain/medium were estimated using the Baranyi primary growth model (Baranyi and Roberts, 1994; Buchanan et al., 1997), performed using the Github version of the Biogrowth R package. The Biogrowth R package is available at the Comprehensive R Archive Network (CRAN) (https://CRAN.Rproject.org/package=biogrowth) the Github and page https://github.com/albgarre/biogrowth web. The Baranyi model was selected in this study because it has the lowest variability for estimating growth rates compared to Gompertz, Richards, and the logistic model (Pla et al., 2015).

5.2.3.3 Surface growth on LB and skimmed milk agar and sample collection for endpoint lichenysin quantification

To compare lichenysin produced in diverse environments (liquid broth versus solid surface), B4094, B4123, and DSM13^T were cultured on LB and skimmed milk agar. ON cultures in LB or skimmed milk of the three selected strains were used to inoculate fresh LB broth or skimmed milk (15 ml) to an OD_{600} of 0.05, and cultures were grown to an OD_{600} of 0.5 by incubation at 37°C with agitation (200 rpm). Aliquots of 500 μ l of the cultures grown in LB or skimmed milk were then spread evenly on the LB and skimmed milk agar plates containing 2% (w/v) agar, respectively, and allowed to dry under the laminar flow hood. All plates were sealed with parafilm and incubated at 37 °C for 10 days, after which biomass was collected from the agar surface using a sterile scraper. The collected biomass (150 mg) was weighed inside an empty soda-lime glass tube (DWK Life Sciences, Staffordshire, England), and stored at -20°C until used for lichenysin extraction.

5.2.4 Lichenysin extraction

5.2.4.1 Extraction from liquid culture samples during growth in LB and skimmed milk

Lichenysin was extracted as described by Madslien et al. (2013) and Rønning et al. (2015) with slight modifications. Briefly, a 5 ml aliquot of the collected liquid cultures (see section 5.2.4.1) was mixed with 5 mL of pure methanol (Merck) in a soda-lime glass tube (DWK Life Sciences), and vortexed for 5 min until a homogenous mixture was obtained. The mixture was heated for 30 min at 80°C in a water bath. At 10 min intervals, each tube was vortexed for 20 s. Subsequently, the mixture of methanol and cells was cooled down for 20 min on the bench, and centrifuged for 10 min at 4000 g at room temperature. The liquid phase was transferred to a new glass tube. The cell pellet was subsequently resuspended in 2 ml of methanol, and the extraction process was repeated. Per sample, the liquid phases collected from the first and second extraction procedures were mixed and evaporated under N_2 flow at 40°C in a heating block. The dry residue was resuspended in 500 μ l of methanol and lichenysin was quantified in these samples.

5.2.4.2 Extraction of lichenysin from biomass collected from surface growth on LB agar and skimmed milk agar

Extraction of lichenysin from biomass was performed as described above for the liquid culture extractions. 3 ml of pure methanol was added to 150 mg of cell biomass weighted in a sodalime glass tube (DWK Life Sciences) and vortexed for 5 min until a homogenous mixture was obtained. The second extraction was performed using 1 ml of methanol. After evaporation, the dry lichenysin extract was resuspended in 150 µl of methanol before quantification.

5.2.4.3 Quantification of lichenysin by Reversed-Phase High-Performance Liquid Chromatography (RP-HPLC) – Electro Spray Ionization Mass Spectrometry (ESI-MS)

Qualitative and quantitative analyses of lichenysin A variants as extracted from either liquid cultures or biomass were performed using Reversed-Phase High-Performance Liquid Chromatography (RP-HPLC) with high-resolution accurate mass spectroscopic (MS) detection. All chemicals and reagents used were HPLC grade (Merck). Surfactin (\geq 98.0% purity with >99% consisting of the C15 variant, HPLC grade) (Merck) and lichenysin \geq 90.0% purity (Lipofabrik, Villeneuve-d'Ascq, France) were used as standards in the quantification.

The instrumentation used for RP-HPLC was the Agilent 1260 SL system (Agilent Technologies, Middelburg, The Netherlands) consisting of a degasser, binary pump, thermostatted autosampler, and column compartment. Aliquots of 5 μ l of lichenysin samples were injected onto a Kinetex C8 Minibore column (2.6 μ m, 100 Å, 100 x 2.1 mm, p/n: 00D-4497-AN) (Phenomenex, Utrecht, The Netherlands), and separation was performed at 50°C. The temperature of the autosampler was 10°C. Lichenysin A was eluted at a flow rate of 0.2 ml/min

with a linear gradient of 0.10 % formic acid in 40 % water + 55 % acetonitrile + 5 % tetrahydrofuran (mobile phase A) to 0.1 % formic acid in 75 % acetonitrile + 25 % tetrahydrofuran (mobile phase B) in 20 min.

The mass spectrophotometer (Agilent Technologies) comprised a high-resolution accurate mass quadrupole time of flight G6530B, equipped with a dual Electrospray Ionisation (ESI) source, operated in 2 GHz, in extended dynamic range mode. The ionization was performed in positive mode with reference mass correction. The fragmentor voltage was 150 V, gas temperature 350°C, drying gas flow $10 \, l \, min^{-1}$, nebulizer pressure 25 psi, capillary voltage 3500 V, and collision energies 25 psi. A calibration curve of lichenysin was made for external calibration based on lichenysin standards in acetonitrile (14 different concentrations in the range of $10 - 40,000 \, \mu g/l$) from a stock concentration of 5 mg/ml (Lipofabrik).

The LCMS was operated in a full-scan mode to scan the parent ions $(M + xH)^{x+}$ from the range of 100 m/z to 2500 m/z. The most abundant ion representing lichenysin A in the standard was [M + H] + 1021.6908 (m/z), similar to the description by Madslien et al. (2013) and Rønning et al. (2015). Lichenysin A and its variants in the samples were identified according to the masses listed in supplementary Table S1. Quantitative data were acquired in the positive detection mode, and data analysis was done with MassHunter Qualitative and Quantitative Analysis software version B.07.00 (Agilent Technologies). The Limit of detection LOD (= Limit of quantification) was 0.005 μ g/ml.

5.2.5 Cytotoxicity assay

5.2.5.1 Preparation of concentrated lichenysin extract

To perform cytotoxicity assay, two batches of concentrated lichenysin were prepared from biomass grown on LB agar plates as described in section 5.2.4.2. Instead of using 150 mg biomass, lichenysin was extracted from 6.5 g of biomass from strain B4123, and dissolved in a final volume of 300 μ l methanol. A small aliquot of 1 μ l was taken to determine the concentration of the concentrated lichenysin extract via RP-HPLC-ESI-MS. The remaining concentrated extract was entirely evaporated under a flow of nitrogen at 40°C in a heating block. The dry residue was resuspended in either 99% Dimethyl Sulfoxide (DMSO) or Dulbecco's Modified Eagle Medium (DMEM; Gibco, Thermo Fischer Scientific, Bleiswijk, The Netherlands) without phenol red serum or antibiotics. Surfactin (purchased from Merck) was also used in cytotoxicity assays by dissolving 10 mg in 1 ml of distilled water (10 mM) (with an adjusted pH of ~11.7 to obtain full solubility). Both lichenysin and surfactin were diluted to the desired concentration in DMEM medium without phenol red, serum and antibiotics before adding to the cells.

5.2.5.2 Propagation and culturing of human cell

Human Embryonic Kidney (HEK293) cells were obtained from Invivogen (San Diego, California, United States), and Caco-2 human intestinal epithelial cells (ATCC HTB-37) were purchased from the American Type Culture Collection (Manassas, Virginia, United States). Both cell lines were maintained in DMEM medium containing 10 % Fetal Bovine Serum (FBS) (Thermo Fischer Scientific) and 1 % penicillin/streptomycin (Merck) to attain a confluent growth. The grown HEK293 and Caco-2 cells were seeded and suspended at a final concentration of 2 x 10^5 cells/ml (in 200 μ l) in 96 wells-plates (Greiner). The 96 wells-plates were then incubated for 24 h at 37°C, under a gas atmosphere of 5 % CO₂ for cell adherence, and washed with PBS to remove unbound cells. The attached cells were exposed to different concentrations (0 – 200 μ M) of surfactin (diluted with distilled water (pH 11.7) from a 10 mM stock) or lichenysin (dissolved in DMEM, prepared as described in 2.4.2) for a period of 72 h.

Generation of 3D pig ileum organoids

Pig ileum organoids were generated by the method described by Sato et al. (2011) using modifications described by van der Hee et al. (2018, 2020). Briefly, 3D organoids were dissociated into single cells by TrypLE digestion, seeded in a 96-well plate, and incubated until reaching full confluency. Subsequently, cells were exposed to a range of $0-200~\mu\text{M}$ of surfactin diluted with distilled water (pH ~11.7) from a 10 mM stock or lichenysin (dissolved in DMSO, prepared as described in 2.4.2) for a period of 72 h.

AlamarBlue assay

The alamarBlue (Thermo Fischer Scientific) fluorometric assay was used to examine the cytotoxicity of lichenysin and surfactin toward two human cell lineages (HEK293, Caco-2) and ileum organoids from pigs. Culturing medium DMEM with Alamar blue (i.e., a no-cells control) and cells exposed to 10 % DMSO were used to correct background fluorescence and cell death, respectively. To assess cell viability or death upon exposure to surfactin or lichenysin, cells without treatment were used as a negative control. In the cytotoxicity assessment of surfactin and lichenysin toward pig ileum cells, cells treated with 1 % DMSO instead of cells without treatment were used as a negative control because lichenysin was dissolved in DMSO instead of the DMEM medium.

The alamarBlue assay was performed as described in Burczynski et al. (2000); Hamid et al. (2004); Rampersad (2012). Briefly, the Alamar Blue solution was added to a final concentration of 10 % (v/v) in each well. The plates were incubated for 4 h and exposed to an excitation wavelength of 530 nm. The fluorescence at the emission wavelength of 590 nm was measured with a SpectraMax M5 (Molecular Devices, San Jose, CA, United States) and expressed as relative fluorescence units. The average fluorescence of the no-cells control was used to normalize all recorded fluorescence emission values.

The cell viability (%) was calculated by using the formula:

$$\left(\frac{Fs-Favg\ no\ cells\ control}{Favg\ untreated\ cells\ OR\ Favg\ cells\ treated\ with\ 1\%\ DMSO}\right) \ge 100$$

 F_s = the recorded fluorescence for cells in each well after the exposure to surfactin or lichenysin

 F_{avg} no cells control = the average fluorescence recorded for the no-cells control;

 F_{avg} untreated cells = the average fluorescence recorded for the untreated cells

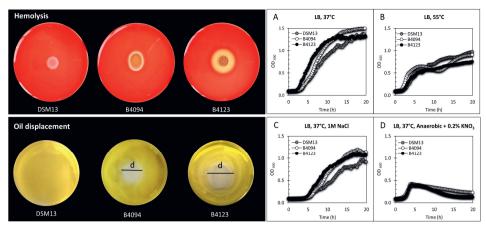
F_{avg} 1% DMSO = the average fluorescence recorded for the cells treated with 1% DMSO

5.3 Results

5.3.1 Initial screening experiments for the growth of eleven *B. licheniformis* food isolates and lichenysin production in different conditions

The growth of 10 food isolates of *B. licheniformis* (B4089, B4090, B4091, B4092, B4094, B4121, B4123, B4124, B4125, B4164) and type strain DSM13^T under various conditions are presented in Table 1. The underlying growth data are presented in Supplementary Figures S1-S4. In addition, all strains were screened for hemolytic activity (Supplementary Figure S3), and the ability to produce lichenysin via RP-HPLC-MS (Table 1, Supplementary Table S2).

All 11 isolates showed comparable growth at 37°C in LB broth, except strain B4089 that grew more slowly. All isolates grew at 55°C in LB broth, a temperature close to their reported maximum growth limit of 58°C (Warth, 1978; Berendsen et al., 2016b) (Table 1, Supplementary Figure S1). Strains B4094, B4090, and B4091 showed growth at an even higher temperature, at 60°C, with B4094 growing the best with the highest cell count (see Table 1 and Supplementary Figure S2). The presence of high salt concentrations of 1M NaCl in LB broth (resulting in an A_w of ~0.927 - 0.935 (Gekas et al., 1998)) did not have a substantial impact on the final OD₆₀₀ that was reached by the cultures of all 11 tested isolates at 37°C, while at 55°C the additional salt stress resulted in lower cell densities (Supplementary Figure S1). Growth of all isolates in the presence of 4% (v/v) ethanol in LB was observed except for B4089. Under anaerobic conditions with 0.2% KNO₃ at 37°C, three isolates (B4089, B4092, B4164) of 11 isolates failed to grow, and B4094 showed the most growth.


The hemolytic activity of all isolates on the Columbia blood agar varied substantially (Table 1 and Supplementary Figure S3). Out of the 11 tested strains, three food isolates (B4090, B4091, B4164) and the DSM13^T strain did not show hemolytic activity, while obvious clearing zones were formed on blood agar plates by the other eight strains. Strains B4089, B4092, B4094, B4124 showed weak hemolytic activity, strains B4125 and B4121 showed medium and strong hemolytic activity, respectively, and strain B4123 showed the strongest hemolytic activity (Table 1 and Supplementary Figure S3). All strains showed the ability to produce lichenysin as

detected by RP-HPLC-MS in biomass obtained from LB agar at 37 °C (Supplementary Table S2), with reference strain DSM13 producing the lowest amounts. The complete lichenysin gene cluster (*lchAA-TE*, also annotated as *licA-licTE*) was found in 10 of 11 strains, based on the analysis of the published genomes (Berendsen et al., 2016b). The available genome sequences of strain B4089 showed the presence of *lchAC* (*licC*) and *lchTE* (*licTE*) but not *lchAA* (*licA*) and *lchAB* (*licB*). Both genes were detected in this strain based on PCR analysis (using *lchAA* and *lchAB* specific primers and B4089 chromosomal DNA as a template; data not shown) (Supplementary Table S3). Based on lichenysin production and the positive PCR results, the available genome sequence of B4089 may be incomplete.

5.3.1.1 Growth and lichenysin production in strains B4094, B4123, and DSM13^T The growth and lichenysin production under different conditions was further assessed for three selected strains, namely: B4094, which showed robust growth in the presence of ethanol and NaCl, growth at 60°C, and produced heat-resistant spores (Berendsen et al., 2016b); B4123 which showed strong hemolytic activity and intermediate growth in all tested conditions; and DSM13^T which was used as a reference strain.

A direct comparison of the hemolytic activity of the strains and the growth under different conditions is presented in Figure 2, with B4123 showing strong hemolytic activity (large clearing zone), B4094 forming a small clearing zone, while DSM13^T was not hemolytic. DSM13^T did not displace oil from water, but both B4094 and B4123 showed clear displacement activity (Figure 2). Given the potential of DSM13^T to produce lichenysin (see the previous section), these results indicate that B4094 and B4123 produce higher amounts of lichenysin than DSM13^T, resulting in the observed hemolytic activity of erythrocytes and oil displacement.

When grown in LB at 37°C, food isolates B4094 and B4123 grew better than DSM13^T (Figure 2A), whereas, at 55°C, strains B4094 and DSM13^T reached a higher cell density than B4123 (Figure 2B). Under high salt concentration (1M NaCl), both food isolates showed a growth advantage over DSM13^T but did not differ evidently from one another (Figure 2C) and all three strains showed growth under anaerobic conditions in the presence of nitrate (Figure 2D).

Figure 2- Hemolysis, oil displacement, and representative growth data for the three selected strains, B4094, B4123, and DSM13^T. (**Top left**) DSM13^T, B4094, and B4123 growth on Columbia blood agar showing hemolytic activity. The clearing zone on the blood agar indicates results from lysis of erythrocytes, indicative of the presence of the biosurfactant lichenysin. (**Bottom left**) The oil displacement activity of DSM13^T, B4094, and B4123. The displacement zone (d) shows the oil-repelling movement away from water, indicative of the presence of a surfactant. (**Right**) Aerobic and anaerobic growth data for DSM13T (**grey**), B4094 (**white**), and B4123 (**black**) in LB medium. (**A**) Growth in LB at 37°C; (**B**) Growth in LB at 55°C; (**C**) Growth in LB + 1M NaCl at 37°C; (**D**) Anaerobic growth in LB + 0.2% KNO3 at 37°C.

Table 1: Properties of Bacillus licheniformis food isolates and the type strain DSM13T

Medium	Blood agar	Growth in LB broth ^c				Growth on LB agar ^d	LB agar		
Straina	Hemolysis ^b	37°C	55°C	1M NaCl, 37°C	1M NaCl, 55°C	4% EtOH, 37°C	0.2% KNO ₃ 37°C	60°C	Lichenysin production ^e
B4089	Weak	+	+++	+ +	+	-	-	NT	+
B4090*	None	++++	+++	++++	+ +	+++	+	+++	+
B4091	None	++++	+++	+ +	+ +	++++	+	+++	+
B4092*	Weak	++++	+++	+ +	+ +	+++	-	++	+
B4094*	Weak	++++	+++	++++	++	++++	++	++++	+
B4121	Strong	++	+ +	+++	+	++++	+	+	+
B4123	Super strong	++++	+++	+++	+	++	+	+	+
B4124	Weak	++++	+++	+ +	++	++	+	+ +	+
B4125	Medium	+++	+	+++	+	++	+	+	+
B4164	None	+++	+	+ +	++	++	-	+	+
$DSM13^{T}$	None	++	+ +	++	++	++	+	+++	+

^{*}Food isolates sources as indicated in Berendsen et al., 2016(b); * indicates isolates that are heat resistant with Tn1546 transposons encompassing the *spoVA***

End operons. DSM13** type strain was purchased from the German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany (DSMZ). *Hemolysis test carried out on Columbia blood agar plates; None - no clearing zone was observed; Weak - very small clearing zone; medium- medium size clearing zone; strong - big clearing zone; Super strong - very big clearing zone (Supplementary Figure S3)

^cGrowth data measured in OD_{600nm}; Minus (-) = no growth; + sign indicates growth robustness based on OD₆₀₀ measurement (Supplementary Figures S1 and S4).

^dGrowth data at 60° C was checked on LB agar via spot platting of 3 µl of OD₆₀₀ 1.0 day culture. NT= not tested; ++++ = growth observed in 10^{-9} dilution; +++ = growth observed in 10^{-9} dilution; ++ = growth observed in dilution > 10^{0} but < 10^{-7} ; + = growth only observed at 10^{0} dilution (Supplementary Figure S2).

^eLichenysin production screening test via RP-HPLC ESI-MS; no quantification data; positive = lichenysin peak was detected (Supplementary Figure S2).

5.3.2 Growth and lichenysin production by selected food isolates B4094, B4123, and DSM13^T in LB broth and skimmed milk

5.3.2.1 Growth in LB broth and skimmed milk

The growth of strains B4094, B4123, and DSM13^T in LB and skimmed milk is presented in Figures 3A and 3B. The specific growth rate (μ , h^{-1}), lag phase (λ), and the doubling time (Td) were calculated for each strain under different conditions (section 5.2.3.2) and the results are shown in Table 2. Starting from an initial level of 1 to 2 log₁₀ CFU/ml, each of the strains reached similar cell densities in a stationary phase of around 9 log₁₀ CFU/ml within 12 to 14 h in LB (Figures 3A), with B4123 having the shortest lag time, and DSM13 having the highest growth rate (μ = 2.75 h⁻¹; Td = ~15 min) (Table 2). Lag times and growth rates in skimmed milk were similar for the three strains. All had shorter lag times and lower growth rates (μ ~ 0.7 h⁻¹) than in LB and entered the stationary phase approximately 10 h later. Final cell densities of around 9 log₁₀ CFU/mL were reached after 22 to 24 h incubation (Figure 3B). At this moment, the milk showed spoilage.

Table 2: Estimated growth rate mu (μ) and lag time (λ) for DSM13^T, B4094 and B4123 in LB and skimmed milk using the Baranyi primary growth model

Medium	Strain	Parameter	logN ₀ (log ₁₀ CFU /ml)	logN _{max} (log ₁₀ CFU /ml)	μ (h ⁻¹)	λ (h)	Td (min)
LB	DSM13 ^T	Estimate	1.8	8.9	2.75	5.88	15.1
		Std. Error	0.2	0.1	0.12	0.39	
	B4094	Estimate	1.4	8.8	2.05	4.51	20.3
		Std. Error	0.1	0.1	0.05	0.32	
	B4123	Estimate	0.7	8.9	1.93	1.70	21.5
		Std. Error	0.2	0.1	0.04	0.38	
Skimmed	DSM13 ^T	Estimate	0.8	9.0	0.74	0.24	56.4
milk		Std. Error	0.4	0.2	0.02	1.66	
	B4094	Estimate	1.1	9.0	0.69	0.66	60.2
		Std. Error	0.3	0.2	0.01	1.32	
	B4123	Estimate	1.3	8.8	0.74	0.67	56.4
		Std. Error	0.2	0.1	0.01	1.00	

5.3.2.2 Lichenysin production in LB broth and skimmed milk

The total lichenysin concentrations during the growth of strains B4094, B4123, and DSM13^T at 37 °C were determined in LB and skimmed milk. Lichenysin was not found in cultures of DSM13^T in both media, except for a very low level (0.1 μ g/ml) in LB at 20 h (Figures 3C and 3D). For the two food isolates, lichenysin was not detected in LB and skimmed milk at cell densities < 5 \log_{10} CFU/ml.

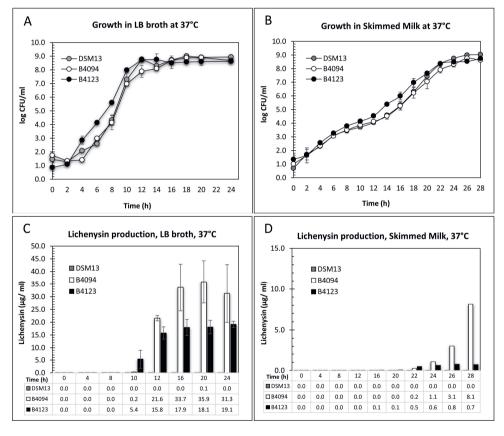
In LB, lichenysin was first detected at time point 10 h, namely, 0.2 μ g/ml at a cell density of 7 \log_{10} CFU/ml (strain B4094) and 5.4 μ g/ml at a cell density of 8 \log_{10} CFU/ml (strain B4123) (Figure 3C). Upon entering into stationary phase, lichenysin concentrations increased to

35.9 μ g/ml and 19.1 μ g/ml for strain B4094 and B4123, respectively, with cell densities of around 8-9 \log_{10} CFU/ml (Figure 3C).

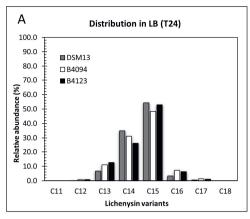
The production of lichenysin was significantly lower in skimmed milk than in LB for both strains, with B4094 producing more lichenysin than strain B4123 in both cases. In the milk, low lichenysin levels were first detected after 22 h for strain B4094, namely 0.2 μ g/ml at a cell density of ~ 7.9 \log_{10} CFU/ml, with levels increasing to 8.1 μ g/ml in the stationary stage (8.8 \log_{10} CFU/ml) after 28 h of incubation (Figure 3D). For strain B4123, low levels of lichenysin (0.1 μ g/ml) were first detected at 16 h, and levels reached only 0.8 μ g/ml during the stationary phase at cell densities of ~ 8.5 \log_{10} CFU/ml (Figure 3D). Lichenysin production and total viable counts were furthermore determined at two later time points (48 and 72 h), showing that cell concentrations in LB and skimmed milk did not change in cultures of B4094, B4123, and DSM13^T, and the lichenysin concentrations did not increase (Supplementary Tables S4 & S5).

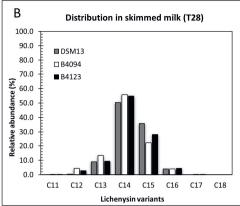
It can be concluded from Figure 3 that 1) lichenysin was not detected in LB and skimmed milk at cell densities $< 5 \log_{10} \text{CFU/ml}$; 2) lichenysin production started when cells reached the late exponential phase in LB and skimmed milk; 3) lichenysin production was strain and medium-dependent at similar cell densities.

5.3.2.3 Identification and quantification of lichenysin A variants in LB broth and skimmed milk


The concentrations of lichenysin reported in the previous section consisted of the sum of lichenysin variants, all corresponding with lichenysin A variants. The molar masses of the detected variants are listed in Supplementary Table S1. The percentages of individual variants based on the total amount found are presented in Figures 4A and 4B for strains B4094, B4123, and DSM13^T upon growth in LB for 24 h and skimmed milk for 28 h. An example of chromatograms with mass spectra from the extracts of the B4094 cultured cells in skimmed milk as retrieved at 28 h is shown in Supplementary Figure S5.

The five main lichenysin A variants found were C12, C13, C14, C15, and C16 (molar mass of 993.7 Da, 1007.7 Da, 1021.7 Da, 1035.7 Da, and 1049.7 Da, respectively). In addition, strains B4094, B4123, and DSM13^T synthesized two other variants, namely, C11-lichenysin (979.6 Da) and C17-lichenysin (1063.7 Da). Lichenysin with the shortest hydrophobic tail (C11) was only detected in the case of the two food isolates (B4094 and B4123) grown in skimmed milk but not in LB. The relative abundance of lichenysin with the longest hydrophobic tail (C17) was higher in LB than in skimmed milk for all three strains (Figure 4 and Supplementary Table S4). The 14 Da mass shift between the molecular masses detected could arise from amino acid substitutions in the peptide moiety (e.g., valine vs. isoleucine) or different fatty acid chain lengths. Given the ~1 min shorter elution time of the variant with the 14 Da lower mass than C12 (Supplementary Figure S5), this mass difference could be assigned to the acyl chain length.


As a comparison, C15-surfactin and C15-lichenysin (differing in peptide ring but not chain length) had very similar retention times (~13 min).


Approximately half of the main variants produced in LB consisted of C15-lichenysin, followed by C14 and smaller amounts of C13 > C16 > C12 (Figure 4A). In skimmed milk, on the other hand, C14-lichenysin had the highest relative abundance (around 55%), followed by C15 and smaller amounts of C13 > C16 > C12. This was observed for each of the three strains, indicating that the composition of the medium has a strong influence on the distribution of the chain length.

To further test whether the medium composition and culture conditions affect the levels of lichenysin produced and the synthesis of different isoforms, the total lichenysin production of B4094, B4123, and DSM13^T on agar surfaces was also quantified.

Figure 3- Growth and lichenysin production for DSM13^T, B4094, and B4123 in LB and skimmed milk at 37°C. (**A**) Growth of three selected strains, DSM13^T, B4094 and B4123 in LB medium for 24 h. (**B**) Growth of three selected strains, DSM13^T, B4094 and B4123 in skimmed milk for 28 h. (**C**) Total lichenysin production (mg/ml) in LB broth for DSM13^T, B4094, and B4123. (**D**) Total lichenysin production (mg/ml) in skimmed milk for DSM13^T, B4094, and B4123. The amount of lichenysin produced by all three strains in LB at selected time points as quantified with RP-HPLC-QTOF-ESI/MS. **Grey circle or bar-** DSM13^T, **white circle or bar-** B4094, **black circle or bar-** B4123.

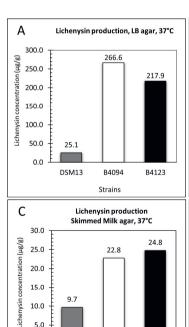
Figure 4- Distribution of lichenysin A variants, produced in LB broth and skimmed milk at 37°C. Relative abundance of individual lichenysin variants as part of the total amount in (**A**)- LB broth at 24 h; (**B**) skimmed milk at 28 h. **Grey bar-** DSM13^T, **white bar-** B4094, **black bar-** B4123.

5.3.3 Surface growth on LB agar and skimmed milk agar and production of lichenysin and its variants at optimal temperature (37°C) and high temperature (55°C)

5.3.3.1 Lichenysin production on LB agar and skimmed milk agar at 37°C and 55°C

The amounts and variants of lichenysin produced by strains B4094, B4123, and DSM13^T upon growth on LB agar and skimmed milk agar at 37°C and 55°C, are presented in Figure 5. The amount of lichenysin produced by all three strains was measured at a late time point (after 10 days of incubation of the agar plates).

On LB agar at 37°C, DSM13^T, B4094, and B4123 yielded 25 µg lichenysin per g of wet biomass (µg /g), 267 µg/g, and 218 µg/g, respectively (Figure 5A). All three strains also produced lichenysin at 55°C, but at lower concentrations than at 37°C, namely, ~ 60 % less for DSM13^T, ~50 % less (138 µg/g) for B4094, and ~ 30 % less (168 µg/g) for B4123 (Figure 5B).


Similar trends were observed upon growth on skimmed milk agar, albeit the total concentrations produced on milk agar were around ten-fold lower than on LB agar. At 37 °C, strains DSM13^T, B4094, and B4123 produced 10 μ g/g, 23 μ g/g, and 25 μ g/g of lichenysin per g of wet biomass, respectively (Figure 5C), and at 55°C, the total lichenysin concentrations were between ~ 50 and 90 % lower (Figure 5D).

Similar to the results reported in section 5.3.2, B4094 and B4123 produced significantly higher amounts of lichenysin than the type strain DSM13 under all conditions tested.

5.3.3.2 Identification and quantification of lichenysin A variants on LB agar and skimmed milk agar at 37°C and 55°C

The distribution of lichenysin A variants upon production on LB agar and skimmed milk agar at 37°C and 55°C is presented in Figure 6. Upon growth on LB agar at 37°C and 55°C, all three strains produced C15 as the dominant variant (in most cases > 60%), followed by the variants C14 > C13 > C16 > C12-lichenysin. The relative abundance of the C17 variant was low but similar for the three strains (Figures 6A and 6B).

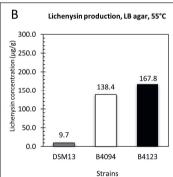
On skimmed milk agar, C14- lichenysin had the highest relative abundance at 37°C for all three strains, followed by C15 > C13 > C16-lichenysin (Figure 6C). At 55°C, the C14 and C15 variants made up 70 to 90% of the total lichenysin, with similar ratios for strains B4094 and B4123, but two times higher levels of C15 than C14 for DSM13^T. At this high temperature, C13 and C16-lichenysin each constituted around 10% of the total amount, with only very low levels of C17 and the C12-variant (Figure 6D).

15.0

10.0

5.0

0.0


97

DSM13

B4094

Strains

B4123

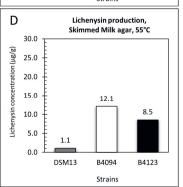
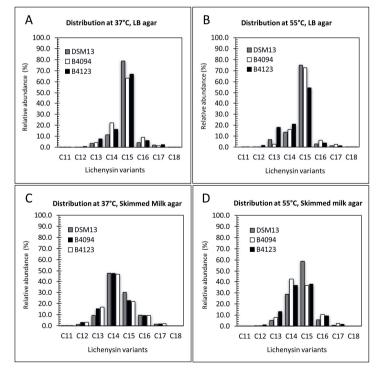
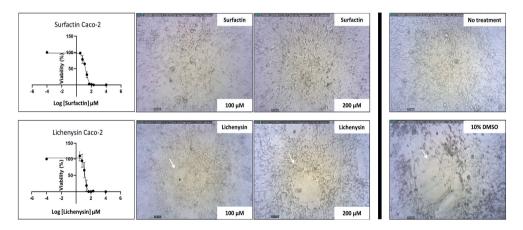


Figure 5- Lichenysin production upon surface growth on LB agar and skimmed milk at 37 and 55°C. Total lichenysin produced by DSM13^T, B4094, and B4123 per g of wet biomass after 10 days of incubations on (A) LB agar at 37°C; (B) LB agar at 55°C; (C) skimmed milk agar at 37°C; (D) skimmed milk agar at 55°C. Grey bar- DSM13^T, white bar- B4094, black bar- B4123.

A variant with the longest hydrophobic tail (C18) was found to be produced at very low levels by all three strains at 37°C on LB agar but not on skimmed milk agar (Figure 6 and Supplementary Table S6). The C18 variant (with ~ 1 min higher elution time) was detected in biomass of B4094 obtained after growth at 55°C on LB agar, but not for the other two strains growth at 55°C on LB. In contrast, the shortest C11 variant was detected only in skimmed milk or skimmed milk agar, but not in LB broth or on LB agar at 37°C and 55°C (Supplementary Table S6). However, one exception was observed, as the B4123 strain produced the C11 variant on LB agar at 55°C. Together, these results indicate that the tail lengths of the lichenysin variants and their relative abundances depend on the strain, cultivation medium, and temperature.

Considering the above outcomes that culturing conditions can strongly influence the amount and type of lichenysin produced, lichenysin production was also evaluated upon culturing DSM13^T, B4094, and B4123 in liquid broth using stagnant conditions. Results presented in Supplementray Figure S6 show that lichenysin concentrations were significantly higher in the fractions that contained cells (pellicle and cell pellet) than in the supernatant, with the highest amount observed in the pellicle that was formed at the liquid-air interface.




Figure 6- Distribution of lichenysin A variants upon surface growth on LB agar and skimmed milk agar at 37 and 55°C. Relative abundance of individual lichenysin variants as part of the total amount extracted from biomass of DSM13^T, B4094, and B4123 after 10 days of incubations on (A) LB agar at 37°C; (B) LB agar at 35°C; (C) skimmed milk agar at 37°C; (D) skimmed milk agar at 55°C. Grey bar- DSM13T, white bar- B4094, black bar-B4123.

5.3.4 Lichenysin is slightly more toxic to Caco-2 cells than surfactin

The toxicity of lichenysin toward human cells and pig organoids was investigated, using *B. subtilis*-derived surfactin as a control. The concentration of lichenysin and surfactin needed to reduce cell viability by 50% (IC50) is presented for different cell lines and organoids in Table 3. Lichenysin and surfactin were not toxic to HEK293 embryonic kidney cells at the highest tested concentration of 200 μ M (~200 μ g/ml), even after prolonged exposure for 72 h. Lichenysin and surfactin led to a reduction of the viability of Caco-2 cells after 72 h incubation with IC50 values of 16.6 μ g/ml and 23.4 μ g/ml, respectively (Figure 7). Cells exposed to lichenysin or surfactin at 100 μ M (~100 μ g/ml) or 200 μ M (~200 μ g/ml) showed different degrees of cell impairment indicated by reduced fluorescence in the Alamar Blue assay and cells incubated with the solvent DMSO alone at 10% w/v showed severe impairment (Figure 7). The viability of the pig organoids upon exposure to lichenysin and surfactin was also determined, showing IC50 for lichenysin of 16.8 μ g/ml, while surfactin at the highest tested concentration of 200 μ M did not show toxicity, indicating an IC50 > 200 μ g/ml.

Table 3: Cytotoxic level of lichenysin and surfactin (IC50) to human and mammalian cells

Cell line	Surfactin IC ₅₀	Lichenysin IC ₅₀		
	(µg/g)	(µg/g)		
HEK293	>200	>200		
Caco-2	23,5	16,6		
Pig ileum organoids	>200	16,8		

Figure 7- Toxicity of lichenysin and surfactin toward human Caco-2 cells. Caco-2 cells were seeded ($2x10^5$ cells/ml) in 96 wells-plates and exposed to different lichenysin and surfactin concentrations (only 100 μM and 200 μM are shown; in \log_{10} scale = 2 and 2.3 μM, respectively). No-treatment cells were the negative control, and 10% DMSO was used as a control for cell death. Cell viability was monitored for 72 h, and microscopic pictures of cell disruption for lichenysin after 24 and 72 h are shown. The IC50 for lichenysin is 16,6 μM (= \sim 16.6 μg/ml), in \log_{10} scale = 1.22 μM; and for surfactin is 23,5 μM (= \sim 25.5 μg/ml), in \log_{10} scale = 1.37 μM.

5.4 Discussion

The results presented in this study showed that nine out of ten *B. licheniformis* food isolates have robust growth properties. The amount of lichenysin produced by the isolates depended on the strain, cultivation medium, and incubation temperature. Lichenysin showed toxic effects in pig ileum organoids and human epithelial Caco-2 cells.

Strain B4094 consistently produced more lichenysin than strain B4123 under all conditions tested, and both high producers synthesized much more lichenysin than DSM13 $^{\rm T}$. The observed variation between strains is in line with an earlier report by Madslien et al. (2013), who demonstrated that the amounts produced by 53 *B. licheniformis* strains varied more than two orders of magnitude (ranging from <0.013 μ g to >3.3 μ g per mg biomass) between strains. Some high producers in their study were associated with foodborne intoxications, and they classified strain ATCC14580 (=DSM13 $^{\rm T}$) as a weak producer.

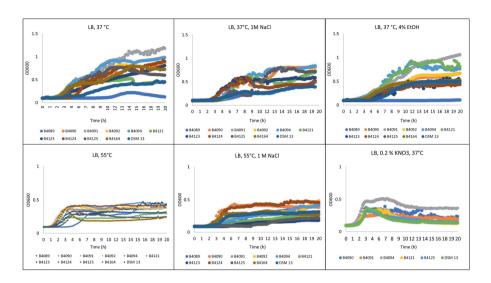
The analysis of lichenysin production in liquid LB or skimmed milk (as a food matrix) revealed that lichenysin was not detected at cell densities < 5 log₁₀ CFU/ml. Production did not reach maximum levels until the stationary stage in both media. It is known that lichenysin production can be influenced by environmental factors, e.g., medium composition (Yakimov et al., 1996), oxygen availability, temperature, and pH (Yakimov et al., 1995; Joshi et al., 2008; Li et al., 2008; Gogotov and Miroshnikov, 2009), and the type of carbon source (important for energy generation) or nitrogen sources (for amino acids and protein synthesis). Reported yields of lichenysin were for instance, higher in cultivation media containing glucose than in media with other carbon sources like sucrose, maltose, glycerol, sodium citrate, sodium acetate, lactose, corn starch, and starch (Yakimov et al., 1995; Qiu et al., 2014). In addition, the yield increased in the presence of specific amino acids like L-glutamic acid and L-asparagine in the medium (Yakimov et al., 1996) and when inorganic nitrogen sources [such as KNO₃, NaNO₃, NH₄Cl, (NH₄)₂SO₄, and NH₄NO₃] were present instead of organic nitrogen sources (peptone, yeast extract, etc.) (Qiu et al., 2014). LB contains glucose and readily available nitrogen sources (yeast extract and peptone), whereas skimmed milk contains the sugar lactose and casein as a nitrogen source, requiring proteolytic cleavage prior to uptake by cells. These differences in composition likely account for the significantly lower levels of lichenysin produced in milk than in LB, as found in this study.

We furthermore showed that lichenysin yields were temperature-dependent, with lower yields at 55°C than 37°C in biomass obtained from agar plates (LB and milk agar) (Figure 5). This result is consistent with the study of Yakimov et al. (1995), who showed that lichenysin production by *B. licheniformis* is optimal at 35°C to 45°C. Similarly, surfactin yield from *B. subtilis* was also influenced by temperature, with lower production at 45°C than at 35°C (Park et al., 2019) and higher yields at 37°C than at 25°C (Abdel-Mawgoud et al., 2008; Rahman

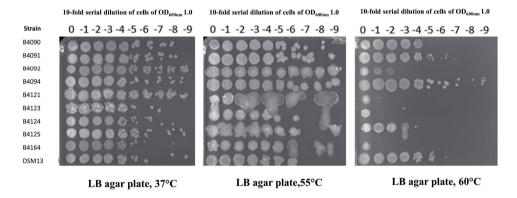
and Ano, 2009). In another study, the production of surfactin by *Bacillus amyloliquefaciens* was, however, lower at 25°C or 30°C than at 15°C (Monteiro et al., 2016).

In our study, cultures contained lichenysin A variants with different acyl chain lengths (C11 to C18). The length of the fatty acid chain lengths may influence the toxicity of the compound; Previous studies on surfactin showed that C15 acyl chains had more efficient penetration strength into the cell membrane than its shorter counterparts, C13 and C14-surfactin (Liu et al., 2010; Wu et al., 2017), and exhibited enhanced antifungal and antibacterial activity (Meena and Kanwar, 2015). This is thought to result from more efficient interactions of a longer fatty acid chain of surfactin with the acyl chains of phospholipids in the cell membrane. Cultures containing lichenysin with a skew toward long-chain variants (which is medium and culture condition dependent) may therefore be more toxic to different cells than cultures with a higher proportion of short-chain variants.

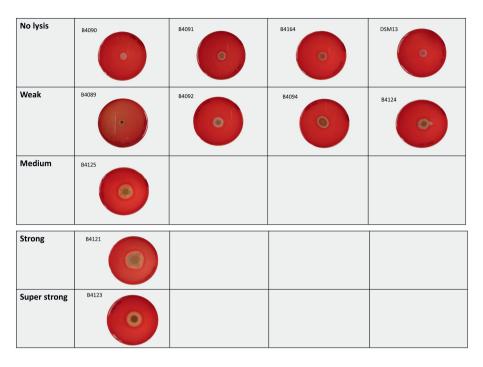
The concentration of lichenysin needed to reduce cell viability by 50% (IC $_{50}$) was 16.6 µg/ml for Caco- 2 human intestinal epithelial cells and 16.8 µg/ml for pig ileum organoids. These levels correspond with concentrations resulting in toxic effects on boar spermatozoa cells (i.e.,> 10 µg/ml) (Madslien et al., 2013). For surfactin, the IC $_{50}$ value was 23.5 µg/ml for Caco-2 cells, while no toxicity was seen for the ileum organoids at the highest levels tested (> 200 µg/ml). This indicates that lichenysin is more toxic to these cell types than surfactin. In the case of surfactin, the purchased compound largely contained C15 acyl chains (> 99%). The lichenysin extracts used in the toxicity assays contained a mix of lichenysin variants, with C15-lichenysin being the most abundant (> 65 %, produced by B4094 on LB agar 37°C, see Figure 6). In addition to differences in the peptide ring between surfactin and lichenysin, the presence of longer acyl chains (~10% C16) may have contributed to the observed differences in toxicity toward the organoids. A further detailed mechanistic study with pure lichenysin variants having different carbon chain lengths would be required to elucidate this; however, such compounds are not commercially available.

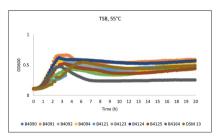

Overall, levels of *B. licheniformis* up to $5 \log_{10}$ viable cells/ml in liquid foods are unlikely to pose a foodborne hazard related to the presence of lichenysin. However, at higher cell densities, a risk of foodborne intoxication may arise due to the production of the compound. Lichenysin levels produced in milk and LB were in the same range as the IC₅₀ values of lichenysin for epithelial cells. The actual amounts to cause illness *in vivo* upon ingestion of foods will depend on various factors, most notably the amount of food ingested and the concentration of the lichenysin in the product. High producers are commonly found in foods: in the study by Madslien et al. (2013), 28 out of 53 isolates produced > 3.3 µg/mg biomass on tryptic soy agar after 10 days at 37°C. The highest level found in our study was 0.27 µg/mg biomass for B4094 on LB agar. This 10-fold difference indicates that production of higher levels than reported in this study is conceivable in food products with high levels of *B. licheniformis*, depending on the

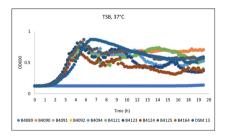
strain present, the composition of the food and conditions during processing and storage in the chain. In solid foods, the distribution of the organism in the product may be inhomogeneous with 'hot spots' of high cell concentrations and lichenysin production. In confirmed foodborne intoxication cases due to consumption of solid product contaminated with *B. licheniformis*, high levels of the organism were observed (i.e., 2×10^6 CFU/g in curried chicken and mayonnaise sandwich; 1×10^8 CFU/g in minced beef pies; 1.1×10^8 CFU/g in pancakes) (Salkoninen et al., 1999).

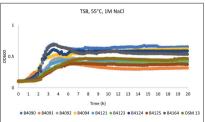

In addition to natural contamination of foods, *B. licheniformis* can be actively introduced into the food chain (e.g., as crop bioprotectants or feed/food additives). This is usually done in the form of spores. Therefore, from a food processing point of view, it is crucial that the selected strains do not possess genetic elements that enable the production of highly heat-resistant spores (Berendsen et al., 2016a, b), resulting in potential non-sterility issues in finished products.

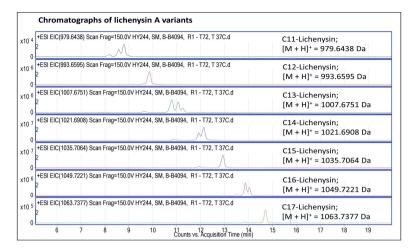
From a food safety point of view, the production of lichenysin must be prevented, requiring a thorough assessment of surfactant production capacity. Once lichenysin is produced in food upon the growth of *B. licheniformis*, the compound is stable even when cells (or even spores) are inactivated. This stresses the importance of controlling this organism throughout the entire production chain by inactivating viable cells and spores in ingredients and preventing outgrowth using appropriate preservation systems and/or low-temperature control.

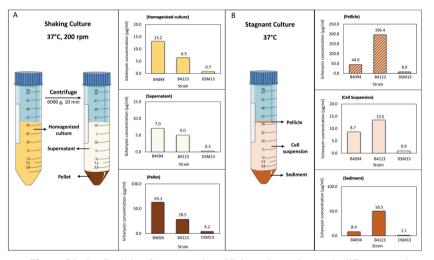

5.5 Supplementary Materials


Supplementary Figure S1- Growth of different Bacillus licheniformis strains in LB medium under different conditions




Supplementary Figure S2- Growth of different *Bacillus licheniformis* strains on agar plates at 37°C, 55°C, and 60°C. The OD_{600nm} of the ON cultures in LB media was measured and used to inoculate 5 ml of fresh LB medium to the OD_{600nm} 0.05. Cultures were then grown at 37 °C, 200 rpm until OD_{600nm} 0.5. This step was performed to get endospores-free culture. 1 ml of cells from the day culture in LB medium were collected by centrifugation at 10000 x g for 2 min (5430 R Eppendorf centrifuge) and resuspended in 1 ml sterile 0.9 % NaCl solution. The OD_{600nm} of the cells was measured and adjusted to 1.0 with the 0.9 % NaCl solution. A 10-fold dilution series in the NaCl solution was prepared up to 10^{-9} . 3 µl of cells from each dilution tube was spotted on LB agar plates and dried under the flow cabinet. The plates were incubated at 37 °C, 55 °C, and 60 °C.


Supplementary Figure S3- Hemeolysis Test for different *Bacillus licheniformis* strains. The growth of all 10 *B. licheniformis* food isolates and the type strain DSM13T on Columbia blood agar show hemolytic activity. The clearing zone on the blood agar indicates the lysis of erythrocytes, indicative of the presence of the biosurfactant lichenysin. A small clearing zone indicated weak hemolytic activity and a big clearing zone indicated strong hemolytic activity.



Supplementary Figure S4- Growth of different Bacillus licheniformis strains in TSB medium under different conditions

Supplementary Figure S5- Chromatographs of lichenysin A variants. Chromatographs of C11 to C17- lichenysin A variants detected for B4094 via RP-HPLC-QTOF-ESI/MS. 5 μ L sample was injected on a C8 analytical column (Phenomenex) thermostated at 50°C. Lichenysin A was eluted at a flow rate of 0.2 mL/min with a linear gradient of 0.10% formic acid in 40% water + 55% acetonitrile + 5% tetrahydrofuran to 0.1% formic acid in 75 % acetonitrile + 25% tetrahydrofuran in 20 min. Lichenysin A variants were screened according to the masses in Supplementary Table S1. Quantitative analyses were carried out using lichenysin A standard (range 10 – 40 000 μ g/L) (Lipofabrik).

Supplementary Figure S6- Bacillus licheniformis growth and lichenysin production in different matrices

Supplementary Table S1: Molar masses of lichenysin A variants

No	Variant	Molecular Formula	M [da]	[M + H]+	
	^L C11-Lichenysin*	$C_{49}H_{86}N_8O_{12}$	978.6365	979.6438	
	^L C12-Lichenysin	C ₅₀ H ₈₈ N ₈ O ₁₂	992.6522	993.6595	
	[™] C13-Lichenysin	$C_{51}H_{90}N_8O_{12}$	1006.6678	1007.6751	
Lichenysin A	^H C14-Lichenysin	C ₅₂ H ₉₂ N ₈ O ₁₂	1020.6835	1021.6908	
	^H C15-Lichenysin	$C_{53}H_{94}N_8O_{12}$	1034.6991	1035.7064	
	[™] C16-Lichenysin	$C_{54}H_{96}N_8O_{12}$	1048.7148	1049.7221	
	[™] C17-Lichenysin*	$C_{55}H_{98}N_8O_{12}$	1062.7304	1063.7377	
	[™] C18-Lichenysin*	$C_{56}H_{100}N_8O_{12}$	1076.7534	1077.7534	
*identified in this stu	ıdy, L- low, M- medium, H- high				

Supplementary Table S2: Lichenysin production screening in biomass obtained from LB agar at 37°C

	Rt = 12.7 - 13.0 min	Rt = 9.8 min			Rt = 12.0 - Rt = 13.0 12.2 min min		Rt = 14.8 min	Rt = 15.3 min
	C15-	C12-	C13-	C14-	C15-	C16-	C17-	C18-
	Surfactin	Lichenysin*	Lichenysin*	Lichenysin*	Lichenysin*	Lichenysin*	Lichenysin*	Lichenysin*
		$C_{50}H_{88}N_8O_{12}$	$C_{51}H_{90}N_8O_{12}$	$C_{52}H_{92}N_8O_{12}$	$C_{53}H_{94}N_8O_{12}$	$C_{54}H_{96}N_8O_{12}$	$C_{55}H_{98}N_8O_{12}$	$C_{56}H_{100}N_8O_{12}$
	[M + H]+	$[M + H]^{+}$	[M + H]+	[M + H]+	[M + H]+	[M + H]+	[M + H]+	[M + H]+
	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc
	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)
strain no.	1036.690	993.659	1007.675	1021.690	1035.706	1049.722	1063.737	1077.753
B4089	42855841	66400	8790159	11999823	74615281	97665105	35531669	1114756
B4090	47158178	851787	49332070	20573729	81912012	10316775	28541879	677605
B4091	75910640	108704	11622944	32236428	12939537	43191399	20808074	6856817
B4092	43824269	80315	3455921	95918454	76118297	10993278	22410919	496102
B4094	64747932	425735	55469001	33570524	10861941	24775599	94752748	2543627
B4121	65258378	10583906	21377135	46903198	10773611	22490580	76602476	1766166
B4123	58876876	520364	52015840	27770900	10087992	19885884	74148616	2014192
B4124	10274490	85037665	73973754	11443050	17473608	87987855	34270586	33499914
B4125	54810004	8904784	17756391	33025520	93745718	12453498	40078496	588291
B4164	81673484	2814232	18361653	66246781	14209978	48338781	22711756	5394420
DSM 13	11487866	237825	7134384	23338008	20527716	5983426	2955461	13876

Supplementary Table S3: The presence/absence of the lichenysin gene cluster in strains used in this study

STRAIN	licA / lchAA	licB / lchAB
B4089	positive PCR on genomic DNA*	positive PCR on genomic DNA**
B4090	B4090_RS06670 B4090_RS07745 B4090_RS05175	B4090_RS06670 B4090_RS07745 B4090_RS05175
B4091	B4091_RS01540 B4091_RS07175 B4091_RS13370	B4091_RS01540 B4091_RS07175 B4091_RS13370
B4092	B4092_RS01230 B4092_RS05480 B4092_RS11525	B4092_RS01230 B4092_RS05480 B4092_RS11525
B4094	B4094_RS09780 B4094_RS04415 B4094_RS20155	B4094_RS09780 B4094_RS04415 B4094_RS20155
	B4121_RS17190 B4121_RS17195 B4121_RS07900	
B4121	B4121_RS21390	B4121_RS17190 B4121_RS17195 B4121_RS07900 B4121_RS21390
	B4123_RS02770 B4123_RS10570 B4123_RS13065	
B4123	B4123_RS07720	B4123_RS02770 B4123_RS10570 B4123_RS13065 B4123_RS07720
B4124	B4124_RS11270 B4124_RS05120 B4124_RS04610	B4124_RS11270 B4124_RS05120 B4124_RS04610
	B4125_RS10415 B4125_RS14280 B4125_RS08345	
B4125	B4125_RS19185	B4125_RS10415 B4125_RS14280 B4125_RS08345 B4125_RS19185
B4164	B4164_RS04965 B4164_RS16945 B4164_RS08070	B4164_RS04965 B4164_RS16945 B4164_RS08070
DSM13	TRNA_RS23485	TRNA_RS23490
STRAIN	licC / lchAC	licTE / lchTE
B4089	B4089_RS00540	B4089_RS00535
B4090	B4090_RS10120	B4090_RS10125
B4091	B4091_RS20640	B4091_RS20645
B4092	B4092_RS19250	B4092_RS19245
B4094	B4094_RS08740	B4094_RS08735
	B4121_RS21395 B4121_RS22340 B4121_RS17200	
B4121	B4121_RS09725	B4121_RS17205 B4121_RS14020 B4121_RS22335
B4123	B4123_RS13590	B4123_RS08525
B4124	B4124_RS07445	B4124_RS07450
	B4125_RS08340 B4125_RS19175 B4125_RS10420	
B4125	B4125_RS10425	B4125_RS10430 B4125_RS19170
B4164	B4164_RS14050	B4164_RS14045
DSM13	TRNA_RS23495	TRNA_RS23495
*	primers used: CY21 and CY22	
**	primers used: CY23 and CY24	
Pri-mer	Description	5'-3' sequence
CY21	Bli lchAA forward	CGATTCCGGGTTATTGACTG
CY22	Bli lchAA reverse	CGCTTCATATTGTGCGTTCC
CY23	Bli lchAB forward	ATTTGAGGATCTTGCGGACTTG
CY24	Bli lchAB reverse	TATAGCGGGAGATAGTCGTACC

Supplementary Table S4: Lichenysin production and variant distribution in LB broth and skimmed milk at 37°C.

*recovery percentage for standards were 60-72%

Sample name	Medium	Standard/strain	Replicate timepoint	Injected volume [µL]	Dilution factor	Rt = 8.7 min C11-Lichenysin $C_eH_{se}N_sO_{12}$ [M + H]* 979.6438 Final Conc. [ug/L]	Rt = 9.7 min C12-Lichenysin $C_{ss}H_{ss}N_sO_{12}$ [M + H]* 993.6595 Final Conc [ug/L]	Rt = 10.6 min C13-Lichenysin $C_{\rm Si}H_{\rm Se}N_{\rm s}O_{\rm 12}$ [M + H]+ 1007.6751 Final Conc. [ug/L]	Rt = 11.8 min C14-Lichenysin $C_{\infty}H_{9\alpha}N_sO_{1\alpha}\left[M+H\right]^*$ 1021.6908 Final Conc. [ug/L]	Rt = 12.8 min C15-Lichenysin $C_{\rm SH}_{\rm 94}N_{\rm s}O_{12}$ [M + H]* 1035.7064 Final Conc. [ug/L]	Rt = 13.8 min Cl6-Lichenysin $C_{ss}H_{as}N_{s}O_{1z}$ [M + H] $^{+}$ 1049.7221 Final Conc. [ug/L]	Rt = 14.6 min C17-Lichenysin $C_{\rm sH_{98}N_9O_{12}}$ [M + H] $^+$ 1063.7377 Final Conc. [ug/L]	Rt = 15.2 min C18-Lichenysin C ₅₆ H ₁₀₀ N ₈ O ₁₂ [M + H]* 1077.7534 Final Conc. [ug/L]
HY135	LB	STD R1		5	0.1	0.0	0.2	1.7	3.5	4.8	0.6	0.0	0.0
HY136 HY137	LB LB	STD R2 STD R3		5 5 5	0.1	0.0 0.0	1.0 113.9	6.7 582.8	12.6 943.0	16.1 602.5	1.3 44.3	0.2 6.7	0.0 0.0
HY138	SM	STD R1		5	0.1	0.0	5.2	29.5	47.4	36.3	2.2	0.3	0.0
HY139 HY140	SM SM	STD R2 STD R3		5 5	0.1	0.0	25.1 78.7	143.6 602.2	228.1 841.5	166.9 590.6	9.1 27.0	1.4 3.4	0.0
HY141	LB	DSM13	R1-T0	5	0.1	0.0	0.0	0.0	0.7	0.5	0.0	0.0	0.0
HY142 HY143	LB LB	B4094 B4123	R1-T0 R1-T0	5 5	0.1	0.0	0.0 0.0	0.0 0.0	0.9 0.2	0.6 0.4	0.0	0.0	0.0 0.0
HY144	LB	DSM13	R1-T4	5	0.1	0.0	0.0	0.0	0.3	0.4	0.0	0.0	0.0
HY145 HY146	LB LB	B4094 B4123	R1-T4 R1-T4	5 5	0.1	0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.2 0.3	0.0	0.0 0.0	0.0 0.0
HY147	LB	DSM13	R1-14 R1-T6	5	0.1	0.0	0.0	0.0	0.0	0.3	0.0	0.0	0.0
HY148	LB	B4094	R1-T6	5	0.1	0.0	0.0	0.0	0.0	0.2	0.0	0.0	0.0
HY149 HY150	LB LB	B4123 DSM13	R1-T6 R1-T8	5 5	0.1	0.0	0.0 0.0	0.0 0.0	0.0	0.2 0.0	0.0	0.0 0.0	0.0 0.0
HY151	LB	B4094	R1-T8	5	0.1	0.0	0.0	0.0	0.0	0.2	0.0	0.0	0.0
HY152 HY153	LB LB	B4123 DSM13	R1-T8 R1-T10	5 5	0.1	0.0 0.0	0.0 0.0	0.2 0.0	1.5 0.0	2.7 0.0	0.0	0.0 0.0	0.0 0.0
HY154	LB	B4094	R1-T10	5	0.1	0.0	1.5	14.6	154.2	155.0	22.1	2.0	0.0
HY155	LB	B4123	R1-T10	5	0.1	0.0	9.2	130.3	817.2	723.7	92.5	7.4	0.0
HY156 HY157	LB LB	DSM13 B4094	R1-T12 R1-T12	5 1	0.1	0.0 0.0	0.0 247.0	0.0 2545.9	0.0 7875.0	0.6 10106.7	1671.6	0.0 218.0	0.0 0.0
HY158	LB	B4123	R1-T12	1	0.5	0.0	116.8	1847.7	3541.3	6973.2	785.6	126.9	0.0
HY159 HY160	LB LB	DSM13 B4094	R1-T16 R1-T16	5 1	0.1	0.0 0.0	0.1 284.4	2.0 2740.8	9.3 8432.9	11.6 10949.0	0.6 1816.5	0.1 241.5	0.0 0.0
HY161	LB	B4123	R1-T16	1	0.5	0.0	130.6	1895.4	4173.7	7559.9	887.3	141.0	0.0
HY162 HY163	LB LB	DSM13 B4094	R1-T20 R1-T20	5 1	0.1	0.0	0.1 273.8	2.1 3048.5	10.1 9117.0	11.2 12774.1	0.0 2032.5	0.1 300.5	0.0
HY164	LB	B4123	R1-T20	1	0.5	0.0	147.2	2037.2	4324.5	7833.2	928.1	148.0	0.0
HY165	LB LB	DSM13	R1-T24	5	0.1	0.0	0.2	1.6	8.6	10.2	0.7	0.1	0.0 0.0
HY166 HY167	LB	B4094 B4123	R1-T24 R1-T24	1 1	0.5 0.5	0.0 0.0	208.1 170.3	2345.0 2301.3	6737.7 4984.7	9057.2 9143.3	1337.4 1131.2	241.0 182.4	0.0
HY168	LB	DSM13	R1-T48	5	0.1	0.0	0.0	1.3	8.4	14.7	1.1	0.2	0.0
HY169 HY170	LB LB	B4094 B4123	R1-T48 R1-T48	1	0.5 0.5	0.0 0.0	60.4 46.7	1106.4 1173.0	4857.4 4235.1	7470.2 8790.1	1057.5 1124.0	199.7 204.3	0.0 0.0
HY171	LB	DSM13	R1-T72	5	0.1	0.0	0.0	1.3	9.7	16.8	1.2	0.3	0.0
HY172 HY173	LB LB	B4094 B4123	R1-T72 R1-T72	1	0.5 0.5	0.0	20.6 0.9	624.4 74.4	5455.3 882.3	10909.8 3187.7	1745.6 345.6	305.6 82.3	0.0
HY174	LB	DSM13	R2-T0	5	0.1	0.0	0.0	0.0	0.4	0.5	0.0	0.0	0.0
HY175	LB	B4094	R2-T0	5	0.1	0.0	0.0	0.0	0.0	0.3	0.0	0.0	0.0
HY176 HY177	LB LB	B4123 DSM13	R2-T0 R2-T4	5 5	0.1	0.0	0.0 0.0	0.0 0.0	0.0	0.3 0.2	0.0	0.0	0.0 0.0
HY178	LB	B4094	R2-T4	5	0.1	0.0	0.0	0.0	0.0	0.3	0.0	0.0	0.0
HY179 HY180	LB LB	B4123 DSM13	R2-T4 R2-T6	5 5	0.1	0.0	0.0 0.6	0.0 10.2	0.0 66.8	0.2 109.1	0.0 8.9	0.0 1.9	0.0 0.0
HY181	LB	B4094	R2-T6	5	0.1		0.0	0.0	0.0	0.0	0.0	0.0	0.0
HY182 HY183	LB LB	B4123 DSM13	R2-T6 R2-T8	5 5	0.1	0.0	0.0 0.0	0.0 0.0	0.0	0.2 0.1	0.0	0.0 0.6	0.0
HY184	LB	B4094	R2-16 R2-T8	5	0.1	0.0	0.0	0.0	1.5	2.9	0.3	0.0	0.0
HY185	LB	B4123 DSM13	R2-T8	5	0.1	0.0		0.2	4.2	6.8	0.9	0.0	0.0
HY186	LB	DSIVI13	R2-T10	5	0.1	0.0	l	l	l	0.1	0.0		0.0

111110		D4004	D0 E40	_	0.4	Laa	Loo	Lio	Lana		140		100 1
HY187 HY188	LB LB	B4094 B4123	R2-T10 R2-T10	5 5	0.1	0.0	0.0 74.7	1.6 900.3	22.3 4045.4	28.7 3394.9	4.9 532.2	0.5 76.6	0.0
HY189 HY190	LB LB	DSM13 B4094	R2-T12 R2-T12	5 1	0.1	0.0 0.0	0.0 222.6	0.3 2035.5	1.9 7580.6	2.7 8830.0	0.0 1658.9	0.0 187.1	0.0 0.0
HY191 HY192	LB LB	B4123 DSM13	R2-T12 R2-T16	1 5	0.5 0.1	0.0	176.8 0.0	2447.4 0.9	4821.0 4.7	9362.5 7.8	1152.3 0.3	184.0 0.1	0.0
HY193	LB	B4094	R2-T16	1	0.5	0.0	492.0	5328.7	12728.2	20692.6	3062.9	562.8	0.0
HY194	LB	B4123	R2-T16	1	0.5	0.0	214.0	2972.7	5279.2	11208.8	1212.6	195.7	0.0
HY195 HY196	LB LB	DSM13 B4094	R2-T20 R2-T20	5 1	0.1 0.5	0.0	0.3 441.0	5.9 5353.7	27.0 13137.4	42.3 21417.8	2.8 3298.8	0.3 596.0	0.0
HY197	LB	B4123	R2-T20	1	0.5	0.0	179.2	2741.6	5144.8	11232.4	1272.1	207.0	0.0
HY196	LB	B4094	R2-T20	5	0.1	0.0	407.2	3692.2	17651.7	8004.4	2362.3	444.0	0.0
HY198 HY199	LB LB	DSM13 B4094	R2-T24 R2-T24	5 1	0.1 0.5	0.0	0.0 309.4	3.9 4533.1	20.0 12798.7	34.2 21247.5	2.1 3215.5	0.3 587.2	0.0
HY200	LB	B4123	R2-T24	1	0.5	0.0	146.2	2504.3	5114.0	11096.0	1289.9	215.6	0.0
HY199 HY201	LB LB	B4094 DSM13	R2-T24 R2-T48	5 5	0.1	0.0	296.9 0.0	3238.9 3.0	17141.4 15.2	8143.3 23.0	2366.3 1.3	453.8 0.3	0.0
HY202	LB	B4094	R2-T48	1	0.1	0.0	93.1	2651.1	10646.8	19985.9	3127.4	628.5	0.0
HY203	LB	B4123	R2-T48	1	0.5	0.0	14.7	617.7	2157.3	6231.0	634.8	123.9	0.0
HY204 HY205	LB LB	DSM13 B4094	R2-T72 R2-T72	5 1	0.1	0.0	0.0 56.4	0.5 2103.9	4.1 9402.5	7.5 18828.9	0.3 2892.0	0.1 587.5	0.0
HY206	LB	B4123	R2-T72	1	0.5	0.0	13.9	735.6	3047.1	9293.4	1028.5	205.0	0.0
HY207	SM	DSM13	R1-T0	5	0.1	0.0	0.0	0.3	0.8	0.7	0.0	0.0	0.0
HY208 HY209	SM SM	B4094 B4123	R1-T0 R1-T0	5 5	0.1	0.0	0.0	0.0 0.1	0.0 0.5	0.3 0.4	0.0		0.0
HY210	SM	DSM13	R1-T4	5	0.1	0.0	0.0	0.1	0.0	0.6			0.0
HY211	SM	B4094	R1-T4	5	0.1	0.0	0.0	0.1	0.0	0.3	0.0		0.0
HY212 HY213	SM SM	B4123 DSM13	R1-T4 R1-T8	5 5	0.1	0.0 0.0	0.0	0.4	0.5 0.0	0.7 0.3	0.0		0.0
HY214	SM	B4094	R1-T8	5	0.1	0.0	0.0	0.3	0.6	1.2			0.0
HY215 HY216	SM SM	B4123	R1-T8	5	0.1	0.0	0.0	0.2	0.3	0.6	0.0	0.0	0.0
HY217	SM	DSM13 B4094	R1-T12 R1-T12	5 5	0.1	0.0	0.0	0.1 0.2	0.0 0.4	0.3 0.9	0.0	0.0	0.0
HY218	SM	B4123	R1-T12	5	0.1	0.0	0.0	0.4	1.0	2.0	0.0	0.0	0.0
HY219 HY220	SM SM	DSM13 B4094	R1-T16 R1-T16	5 5	0.1	0.0 0.0	0.0	0.1 0.1	0.0 0.2	0.2 0.4		0.0	0.0
HY221	SM	B4123	R1-T16	5	0.1	0.0	0.0	0.1	0.2	0.3	0.0		0.0
HY222	SM	DSM13	R1-T18	5	0.1	0.0	0.0	0.0	0.0	0.3			0.0
HY223 HY224	SM SM	B4094 B4123	R1-T18 R1-T18	5 5	0.1	0.0	0.0	0.0 0.1	0.0 0.2	0.2 0.5	0.0	0.0	0.0
HY225	SM	DSM13	R1-T10	5	0.1	0.0	0.0	0.0	0.0	0.2	0.0	0.0	0.0
HY226	SM	B4094	R1-T20	5	0.1	0.0	0.0	0.0	0.0	0.5	0.0		0.0
HY227 HY228	SM SM	B4123 DSM13	R1-T20 R1-T22	5 5	0.1	0.0 0.0	0.0	0.3	6.8 0.3	1.9 0.4	0.0	0.0	0.0
HY229	SM	B4094	R1-T22	5	0.1	0.0	0.9	3.4	19.2	7.3	1.3	0.0	0.0
HY230	SM	B4123	R1-T22	5	0.1	0.0	3.1	18.6	182.4	126.3	30.5	2.1	0.0
HY231 HY232	SM SM	DSM13 B4094	R1-T24 R1-T24	5 5	0.1	0.0 0.0	0.0 15.9	0.1 76.7	1.2 698.4	0.9 200.3	0.0 70.3	0.0 2.2	0.0
HY233	SM	B4123	R1-T24	5	0.1	0.0	9.9	51.0	289.7	192.6	46.4	3.8	0.0
HY234	SM	DSM13	R1-T26	5	0.1	0.0	0.0	0.8	4.1	6.0	0.2	0.0	0.0
HY235 HY236	SM SM	B4094 B4123	R1-T26 R1-T26	5 5	0.1	0.0	109.7 17.0	411.7 73.6	1769.0 380.0	653.8 231.2	139.1 46.8	5.3 3.4	0.0
HY237	SM	DSM13	R1-T28	5	0.1	0.0	0.0	0.9	4.9	2.6	0.4		0.0
HY238 HY239	SM SM	B4094 B4123	R1-T28 R1-T28	5 5	0.1	0.0 0.0	1.1 16.5	4.2 68.0	22.1 375.7	10.2 223.7	1.4 39.3	0.0 2.8	0.0
HY240	SM	DSM13	R1-T48	5	0.1	0.0	0.0	1.0	7.1	3.9	0.0	0.0	0.0
HY241	SM	B4094	R1-T48	1	0.5	0.0	602.9	2011.1	6983.7	4178.1	554.8	34.4	0.0
HY242 HY243	SM SM	B4123 DSM13	R1-T48 R1-T72	5 5	0.1	0.0	40.2 0.0	114.2 0.3	682.8 2.3	302.7 1.8	50.5 0.0	3.2 0.0	0.0
HY244	SM	B4094	R1-T72	5	0.1	15.0	338.0	1057.0	4222.5	1908.8	328.7	21.7	0.0
HY245	SM	B4123	R1-T72	5	0.1	3.0	31.1	92.1	544.4	258.2	36.5	2.2	0.0
HY246 HY247	SM SM	DSM13 B4094	R2-T0 R2-T0	5 5	0.1	0.0 0.0	0.0 0.1	0.2 0.3	0.0 0.0	0.2 0.5	0.0		0.0
HY248	SM	B4123	R2-T0	5	0.1	0.0	0.0	0.3	0.6	1.0	0.0	0.0	0.0
HY249	SM	DSM13	R2-T4	5	0.1	0.0	0.0	0.6	1.3	1.8	0.0	0.0	0.0
HY250 HY251	SM SM	B4094 B4123	R2-T4 R2-T4	5 5	0.1	0.0 0.0	0.0	0.4 0.6	0.7 0.9	1.0 1.3	0.0	0.0	0.0
HY252	SM	DSM13	R2-T8	5	0.1	0.0	0.0	0.6	1.2	1.5	0.0		0.0
HY253	SM	B4094 B4123	R2-T8 R2-T8	5 5	0.1	0.0 0.0	0.0 0.0	0.4 0.4	1.2 0.7	1.2 1.1	0.0		0.0 0.0
HY254 HY255	SM SM	DSM13	R2-18 R2-T12	5 5	0.1	0.0	0.0	0.4	0.7	0.7	0.0	0.0	0.0
HY256	SM	B4094	R2-T12	5	0.1	0.0	0.0	0.6	1.4	3.0	0.0	0.0	0.0
HY257 HY258	SM SM	B4123 DSM13	R2-T12 R2-T16	5 5	0.1	0.0 0.0	0.0	0.4 0.4	0.7 0.6	1.0 1.1	0.0	0.0	0.0
HY259	SM	B4094	R2-T16	5	0.1	0.0	0.0	0.0	0.2	0.3		0.0	0.0
HY260	SM	B4123	R2-T16	5	0.1	0.0	2.2	9.9	61.4	44.9	8.6	0.8	0.0
HY261	SM	DSM13	R2-T18	5	0.1	0.0	0.0	0.1	0.0	0.3	0.0		0.0

HY262	SM	B4094	R2-T18	5	0.1	0.0	0.0	0.0	0.0	0.2	0.0	0.0	0.0
HY263	SM	B4123	R2-T18	5	0.1	0.0		0.0	0.0	0.3		0.0	0.0
HY264	SM	DSM13	R2-T20	5	0.1	0.0	0.0	0.1	0.4	0.7	0.0	0.0	0.0
HY265	SM	B4094	R2-T20	5	0.1	0.0	0.0	1.8	14.9	4.1	0.7	0.0	0.0
HY266	SM	B4123	R2-T20	5	0.1	0.0	1.1	6.8	81.5	36.0	6.5	0.2	0.0
HY267	SM	DSM13	R2-T22	5	0.1	0.0	0.0	0.0	0.4	0.4	0.0	0.0	0.0
HY268	SM	B4094	R2-T22	5	0.1	0.0	4.6	27.3	241.5	136.8	47.2	2.1	0.0
HY269	SM	B4123	R2-T22	5	0.1	0.0	7.4	47.2	293.1	241.6	59.3	4.5	0.0
HY270	SM	DSM13	R2-T24	5	0.1	0.0	0.0	0.4	2.5	1.5	0.0	0.0	0.0
HY271	SM	B4094	R2-T24	5	0.1	0.0	19.6	109.6	619.2	253.9	65.6	2.6	0.0
HY272	SM	B4123	R2-T24	5	0.1	0.0	12.2	61.4	330.2	229.3	44.7	3.1	0.0
HY273	SM	DSM13	R2-T26	5	0.1	0.0	0.0	0.8	6.7	4.0	0.4	0.0	0.0
HY274	SM	B4094	R2-T26	5	0.1	14.8	100.6	359.0	1730.2	690.8	115.0	5.0	0.0
HY275	SM	B4123	R2-T26	5	0.1	0.0	19.0	80.6	409.5	260.1	41.9	2.7	0.0
HY276	SM	DSM13	R2-T28	5	0.1	0.0	0.1	0.8	4.3	3.9	0.3	0.0	0.0
HY277	SM	B4094	R2-T28	5	0.1	15.5	358.0	1086.0	4527.6	1793.6	329.4	15.9	0.0
HY278	SM	B4123	R2-T28	5	0.1	0.0	25.1	70.8	434.9	194.2	26.8	1.8	0.0
HY279	SM	DSM13	R2-T48	5	0.1	0.0	0.0	0.5	4.0	2.0	0.0	0.0	0.0
HY280	SM	B4094	R2-T48	5	0.1	23.2	169.7	537.8	2582.6	1039.2	158.9	8.7	0.0
HY281	SM	B4123	R2-T48	5	0.1	0.0	17.6	67.5	377.2	228.4	39.2	2.7	0.0
HY282	SM	DSM13	R2-T72	5	0.1	0.0	0.0	1.1	7.0	6.3	0.7	0.1	0.0
HY283	SM	B4094	R2-T72	5	0.1	10.4	85.6	300.9	1569.7	688.2	105.2	5.9	0.0
HY284	SM	B4123	R2-T72	5	0.1	0.4	34.6	107.2	705.2	362.9	53.5	3.6	0.0

Supplementary Table S5: Cell concentration (log10 CFU/ ml) and total lichenysin production (μ g/ml) at T48 and T72 h in LB medium and skimmed milk

Timepoint/ concentration		48 h		72 h			
Medium	Strain	Cell concentration	Lichenysin	Cell concentration	Lichenysin		
		(log CFU/ml)	(µg/ml)	(log CFU/ml)	(µg/ml)		
LB	DSM13	8.7	0.0	8.7	0.0		
	B4094	8.9	25.9	8.9	26.5		
	B4123	8.9	12.7	8.7	9.5		
Skimmed	DSM13	8.6	0.0	9	0.0		
milk	B4094	8.8	9.4	9.1	5.3		
	B4123	8.7	1.0	9.1	1.1		

Supplementary Table S6: Lichenysin production and variant distribution in biomass obtained from LB agar and skimmed milk agar at 37°C

Strain B4094 B4123 DSM13 B4094 B4123 DSM13	Medium LB agar LB agar LB agar LB agar LB agar LB agar	injec tion vol (µL) 1 1 1 1 1	$Rt = 9.4 \\ min \\ C11-\\ Licheny \\ sin \\ C_{49}H_{86}N_8 \\ O_{12} \\ [M+H]^* \\ 979.6438 \\ Final \\ Conc. \\ [\mu g/kg] \\ < 5 \\ < 5 \\ < 5 \\ < 5 \\ < 5 \\ < 5 \\ Rt = 8.7 \\ min \\$	Rt = 10.3 min C12-Licheny sin C ₅₀ H ₈₈ N ₈ O ₁₂ [M + H]* 993.6595 Final Conc. [µg/kg] 252.4 1328.2 46.4 93.2 2555.8 20.4 Rt = 9.7 min	$\begin{split} Rt &= 11.2 \\ min \\ \textbf{C13-} \\ \textbf{Licheny} \\ \textbf{sin} \\ \textbf{O}_{12} \\ [M+H]^* \\ 1007.675 \\ 1 \\ Final \\ \textbf{Conc.} \\ \textbf{[\mu g/kg]} \\ 11084.0 \\ 16753.1 \\ 893.9 \\ 3562.4 \\ 30212.8 \\ 659.1 \\ min \end{split}$	$\begin{array}{l} Rt = 12.4\\ min\\ \textbf{C14-}\\ \textbf{Licheny}\\ sin\\ \textbf{O}_{12}\\ [M+H]^*\\ 1021.690\\ 8\\ Final\\ \textbf{Conc.}\\ \pmb{[\mu g/kg]}\\ 59083.3\\ 35310.9\\ 2244.2\\ 35076.2\\ 1315.6\\ min\\ \end{array}$	$\begin{array}{l} Rt = 13.3 \\ min \\ \textbf{C15-} \\ \textbf{Licheny} \\ \textbf{sin} \\ \textbf{O}_{12} \\ [M+H]^* \\ \textbf{1035.706} \\ \textbf{4} \\ \textbf{Final} \\ \textbf{Conc.} \\ \textbf{[\mu g/kg]} \\ \textbf{168680.3} \\ \textbf{145947.4} \\ \textbf{19781.1} \\ \textbf{100760.1} \\ \textbf{91533.5} \\ \textbf{7268.3} \\ \textbf{min} \end{array}$	$\begin{array}{l} Rt = 14.3 \\ min \\ \textbf{C16-} \\ \textbf{Licheny} \\ \textbf{sin} \\ \textbf{O}_{12} \\ [M+H]^* \\ \textbf{1049.722} \\ 1 \\ \textbf{Final} \\ \textbf{Conc.} \\ \textbf{[\mu g/kg]} \\ 23845.1 \\ 13329.9 \\ 1046.4 \\ 8534.5 \\ 6206.5 \\ 289.3 \\ min \end{array}$	Rt = 15.1 min C17-Licheny sin C28-HssNs O12 [M+H]* 1063.737 7 Final Cconc. [µg/kg] 3687.2 5270.4 484.4 3245.6 2207.2 124.7 Rt = 14.6 min	Rt = 15.4 min C18-Licheny sin C ₅₆ H ₁₀₀ N ₈ O ₁₂ [M + H]* 1077.753 4 Final Conc. [µg/kg] 77.3 42.8 4.2 43.9 < 5 < 5 < 5 Rt = 15.2 min	Total- Licheny sin Final Conc. [µg/kg] 266709 217983 25105 138486 167813 9677
Standa rd	Medium	injec tion vol (μL)	C11- Licheny sin C ₄₉ H ₈₆ N ₈ O ₁₂ [M + H] ⁺ 979.6438 Final Conc. [µg/kg]	C12- Licheny sin C ₅₀ H ₈₈ N ₈ O ₁₂ [M + H]* 993.6595 Final Conc. [µg/kg]	C13- Licheny sin $C_{51}H_{90}N_8$ O_{12} $[M + H]^+$ 1007.675 1 Final Conc. $[\mu g/kg]$	C14- Licheny sin C ₅₂ H ₉₂ N ₈ O ₁₂ [M + H] ⁺ 1021.690 8 Final Conc. [µg/kg]	C15- Licheny sin $C_{53}H_{94}N_8$ O_{12} $[M + H]^+$ 1035.706 4 Final Conc. $[\mu g/kg]$	C16- Licheny sin $C_{54}H_{96}N_8$ O_{12} $[M+H]^+$ 1049.722 1 Final Conc. $[\mu g/kg]$	C17- Licheny sin C ₅₅ H ₉₈ N ₈ O ₁₂ [M + H] ⁺ 1063.737 7 Final Conc. [µg/kg]	C18- Licheny sin $C_{56}H_{100}N_8$ O_{12} $[M + H]^+$ 1077.753 4 Final Conc. $[\mu g/kg]$	Total- Licheny sin Final Conc. [µg/kg]
	CanolaPro							., .			
STD R1	TM + cal st 10 CanolaPro TM	1	n.d.	33.6	219.4	378.8	291.0	15.0	1.8	n.d.	939.4
STD R2	+ cal st 12 CanolaPro TM	1	n.d.	154.5	1025.6	1697.4	1369.9	67.7	12.8	n.d.	4327.8
STD R3	+ cal st 14	1	n.d.	667.9	4341.9	7657.7	5360.1	282.0	63.9	n.d.	18373.4
B4094	Skimmed milk agar skimmed	1	29.1	676.1	3483.9	10873.3	5189.5	2128.0	392.3	n.d.	22772.2
B4123	milk agar	1	37.3	796.9	4171.5	11515.8	5451.6	2312.4	477.3	n.d.	24762.7
DSM13	skimmed milk agar	1	0.3	117.1	921.5	4639.2	2925.5	924.7	148.2	n.d.	9676.6
B4094	skimmed milk agar	1	0.3	47.5	937.4	5135.9	4428.8	1270.6	282.2	n.d.	12102.6
B4123	skimmed milk agar skimmed	1	0.9	102.7	1120.1	3138.0	3242.2	797.5	146.7	n.d.	8548.1
DSM13	milk agar	1	0.0	3.6	56.6	310.0	635.9	62.6	9.3	n.d.	1077.9

5.6 References

- Abdel-Mawgoud, A. M., Aboulwafa, M. M., and Hassouna, N. A.-H. (2008). Optimization of surfactin production by *Bacillus subtilis* isolate BS5. *Appl. Biochem. Biotechnol.* 150, 305–325. doi:10.1007/s12010-008-8155-x.
- Agerholm, J. S., Krogh, H. V., and Jensen, H. E. (1995). A retrospective study of bovine abortions associated with Bacillus licheniformis. Zentralblatt Vet. Reihe B J. Vet. Med. Ser. B 42, 225–234. doi:10.1111/j.1439-0450.1995.tb00706.x.
- 3. Arima, K., Kakinuma, A., and Tamura, G. (1968). Surfactin, a crystalline peptidelipid surfactant produced by *Bacillus subtilis*: Isolation, characterization and its inhibition of fibrin clot formation. *Biochem. Biophys. Res. Commun.* 31, 488–494. doi:10.1016/0006-291X(68)90503-2.
- 4. Baranyi, J., and Roberts, T., A. (1994). A dynamic approach to predicting bacterial growth in food. *Int. J. Food Microbiol.* 23, 277–294. doi:10.1016/0168-1605(94)90157-0.
- Baranyi, J., and Tamplin, M. L. (2004). ComBase: A common database on microbial responses to food environments. J. Food Prot. 67, 1967–1971. doi:10.4315/0362-028X-67.9.1967.
- Berendsen, E. M., Boekhorst, J., Kuipers, O. P., and Wells-Bennik, M. H. J. (2016a). A mobile genetic element profoundly increases heat resistance of bacterial spores. *ISME J.* 10, 2633–2642. doi:10.1038/ismej.2016.59.
- 7. Berendsen, E. M., Koning, R. A., Boekhorst, J., de Jong, A., Kuipers, O. P., and Wells-Bennik, M. H. J. (2016b). high-level heat resistance of spores of *Bacillus amyloliquefaciens* and *Bacillus licheniformis* results from the presence of a *spovA* operon in a *Tn1546* transposon. *Front. Microbiol.* 7. doi:10.3389/fmicb.2016.01912.
- 8. Bertani, G. (2004). Lysogeny at mid-twentieth century: p1, p2, and other experimental systems. *J. Bacteriol.* 186, 595–600. doi:10.1128/JB.186.3.595-600.2004.
- Buchanan, R. L., Whiting, R. C., and Damert, W. C. (1997). When is simple good enough: a comparison of the Gompertz, Baranyi, and three-phase linear models for fitting bacterial growth curves. *Food Microbiol.* 14, 313– 326. doi:10.1006/fmic.1997.0125.
- Burczynski, M. E., McMillian, M., Ciervo, J., Li, L., Parker, J. B., Dunn, R. T., II, et al. (2000). Toxicogenomics-based discrimination of toxic mechanism in HepG2 human hepatoma cells. *Toxicol. Sci.* 58, 399–415. doi:10.1093/toxsci/58.2.399.
- 11. Burgess, S. A., Lindsay, D., and Flint, S. H. (2010). Thermophilic *bacilli* and their importance in dairy processing. *Int. J. Food Microbiol.* 144, 215–225. doi:10.1016/j.ijfoodmicro.2010.09.027.
- Coorevits, A., De Jonghe, V., Vandroemme, J., Reekmans, R., Heyrman, J., Messens, W., et al. (2008).
 Comparative analysis of the diversity of aerobic spore-forming bacteria in raw milk from organic and conventional dairy farms. Syst. Appl. Microbiol. 31, 126–140. doi:10.1016/j.syapm.2008.03.002.
- 13. Coronel-León, J., de Grau, G., Grau-Campistany, A., Farfan, M., Rabanal, F., Manresa, A., et al. (2015a). Biosurfactant production by AL 1.1, a *Bacillus licheniformis* strain isolated from Antarctica: production, chemical characterization and properties. *Ann. Microbiol.* 65, 2065–2078. doi:10.1007/s13213-015-1045-x.
- Coronel-León, J., de Grau, G., Grau-Campistany, A., Farfan, M., Rabanal, F., Manresa, A., et al. (2015b). Erratum to: Biosurfactant production by AL 1.1, a *Bacillus licheniformis* strain isolated from Antarctica: production, chemical characterization and properties. *Ann. Microbiol.* 65, 2079–2079. doi:10.1007/s13213-015-1080-7.
- Coronel-León, J., Manresa Presas, M. Á. (María Á., and Marqués Villavecchia, A. M. (2016a). Lichenysin production and application in the pharmaceutical field. Available at: http://diposit.ub.edu/dspace/handle/2445/104173 [Accessed November 30, 2021].
- Coronel-León, J., Marqués, A. M., Bastida, J., and Manresa, A. (2016b). Optimizing the production of the biosurfactant lichenysin and its application in biofilm control. *J. Appl. Microbiol.* 120, 99–111. doi:10.1111/jam.12992.
- Coronel-León, J. R., Marqués, A., Manresa, Á., Aranda, F. J., Teruel, J. A., and Ortiz, A. (2017). Interaction of the lipopeptide biosurfactant lichenysin with phosphatidylcholine model membranes. *Langmuir ACS J. Surf. Colloids* 33, 9997–10005. doi:10.1021/acs.langmuir.7b01827.

- Delaunay, L., Cozien, E., Gehannin, P., Mouhali, N., Mace, S., Postollec, F., et al. (2021). Occurrence and diversity
 of thermophilic sporeformers in French dairy powders. *Int. Dairy J.* 113, 104889.
 doi:10.1016/j.idairyj.2020.104889.
- Eijlander, R. T., Hekezen, R. van, Bienvenue, A., Girard, V., Hoornstra, E., Johnson, N. B., et al. (2019). Spores in dairy – new insights in detection, enumeration and risk assessment. *Int. J. Dairy Technol.* 72, 303–315. doi:https://doi.org/10.1111/1471-0307.12586.
- Elshaghabee, F. M. F., Rokana, N., Gulhane, R. D., Sharma, C., and Panwar, H. (2017). *Bacillus* as potential probiotics: status, concerns, and future perspectives. *Front. Microbiol.* 8. doi:10.3389/fmicb.2017.01490.
- Gekas, V., Gonzalez, C., Sereno, A., Chiralt, A., and Fito, P. (1998). Mass transfer properties of osmotic solutions.
 I. Water activity and osmotic pressure. *Int. J. Food Prop.* 1, 95–112. doi:10.1080/10942919809524570.
- Gogotov, I. N., and Miroshnikov, A. I. (2009). [The influence of growth medium composition and physicochemical factors on biosurfactant production by the bacterium *Bacillus licheniformis* VKM B-511]. *Prikl. Biokhim. Mikrobiol.* 45, 654–658.
- 23. Grangemard, I., Wallach, J., Maget-Dana, R., and Peypoux, F. (2001). Lichenysin: a more efficient cation chelator than surfactin. *Appl. Biochem. Biotechnol.* 90, 199–210. doi:10.1385/abab:90:3:199.
- 24. Hamid, R., Rotshteyn, Y., Rabadi, L., Parikh, R., and Bullock, P. (2004). Comparison of alamar blue and MTT assays for high through-put screening. *Toxicol. Vitro Int. J. Publ. Assoc. BIBRA* 18, 703–710. doi:10.1016/j.tiv.2004.03.012.
- Harwood, C. R., Mouillon, J.-M., Pohl, S., and Arnau, J. (2018). Secondary metabolite production and the safety
 of industrially important members of the *Bacillus subtilis* group. *FEMS Microbiol. Rev.* 42, 721–738.
 doi:10.1093/femsre/fuy028.
- Haydushka, I. A., Markova, N., Kirina, V., and Atanassova, M. (2012). Recurrent sepsis due to *Bacillus licheniformis*.
 J. Glob. Infect. Dis. 4, 82–83, doi:10.4103/0974-777X.93768.
- 27. Henry, G., Deleu, M., Jourdan, E., Thonart, P., and Ongena, M. (2011). The bacterial lipopeptide surfactin targets the lipid fraction of the plant plasma membrane to trigger immune-related defence responses. *Cell. Microbiol.* 13, 1824–1837. doi:10.1111/j.1462-5822.2011.01664.x.
- 28. Hoffmann, M., Fernandez Cano Luna, D. S., Xiao, S., Stegemüller, L., Rief, K., Heravi, K. M., et al. (2020). Towards the anaerobic production of surfactin using *Bacillus subtilis. Front. Bioeng. Biotechnol.* 8, 1306. doi:10.3389/fbioe.2020.554903.
- Iurlina, M. O., Saiz, A. I., Fuselli, S. R., and Fritz, R. (2006). Prevalence of *Bacillus* spp. in different food products collected in Argentina. *LWT Food Sci. Technol.* 39, 105–110. doi:10.1016/j.lwt.2005.01.006.
- Javaheri, M., Jenneman, G. E., McInerney, M. J., and Knapp, R. M. (1985). Anaerobic production of a biosurfactant by *Bacillus licheniformis* JF-2. *Appl. Environ. Microbiol.* 50, 698–700. doi:10.1128/aem.50.3.698-700.1985.
- 31. Johnson, C. T., Lupson, G. R., and Lawrence, K. E. (1994). The bovine placentome in bacterial and mycotic abortions. *Vet. Rec.* 134, 263–266. doi:10.1136/vr.134.11.263.
- 32. Joshi, S., Yadav, S., and Desai, A. J. (2008). Application of response-surface methodology to evaluate the optimum medium components for the enhanced production of lichenysin by *Bacillus licheniformis* R2. *Biochem. Eng. J.* 41, 122–127. doi:10.1016/j.bej.2008.04.005.
- 33. Konz, D., Doekel, S., and Marahiel, M. A. (1999). Molecular and biochemical characterization of the protein template controlling biosynthesis of the lipopeptide lichenysin. *J. Bacteriol.* 181, 133–140.
- 34. Kramer, J. M., and Gilbert, R. J. (1989). *Bacillus cereus* and other *Bacillus* species. Foodborne bacterial pathogens ed. Doyle, M.P. New York Marcel Dekker, Inc.
- 35. Li, Y.-M., Haddad, N. I. A., Yang, S.-Z., and Mu, B.-Z. (2008). Variants of lipopeptides produced by *Bacillus licheniformis* HSN221 in different medium components evaluated by a rapid method ESI-MS. *Int. J. Pept. Res. Ther.* 14, 229–235. doi:10.1007/s10989-008-9137-0.
- Liu, X., Tao, X., Zou, A., Yang, S., Zhang, L., and Mu, B. (2010). Effect of the microbial lipopeptide on tumor cell lines: apoptosis induced by disturbing the fatty acid composition of cell membrane. *Protein Cell* 1, 584–594. doi:10.1007/s13238-010-0072-4.

- 37. Logan, N. A. (2012). Bacillus and relatives in foodborne illness. *J. Appl. Microbiol.* 112, 417–429. doi:https://doi.org/10.1111/j.1365-2672.2011.05204.x.
- 38. Madslien, E. H., Rønning, H. T., Lindbäck, T., Hassel, B., Andersson, M. A., and Granum, P. E. (2013). Lichenysin is produced by most *Bacillus licheniformis* strains. *J. Appl. Microbiol.* 115, 1068–1080. doi:https://doi.org/10.1111/jam.12299.
- Mandal, S. M., Sharma, S., Pinnaka, A. K., Kumari, A., and Korpole, S. (2013). Isolation and characterization of diverse antimicrobial lipopeptides produced by *Citrobacter* and *Enterobacter*. *BMC Microbiol*. 13, 152. doi:10.1186/1471-2180-13-152.
- Mathot, A. G., Postollec, F., and Leguerinel, I. (2021). Bacterial spores in spices and dried herbs: The risks for processed food. Compr. Rev. Food Sci. Food Saf. 20, 840–862. doi:https://doi.org/10.1111/1541-4337.12690.
- 41. Meena, K. R., and Kanwar, S. S. (2015). Lipopeptides as the antifungal and antibacterial agents: applications in food safety and therapeutics. *BioMed Res. Int.* 2015. doi:10.1155/2015/473050.
- 42. Mikkola, R., Kolari, M., Andersson, M. A., Helin, J., and Salkinoja-Salonen, M. S. (2003). Toxic lactonic lipopeptide from food poisoning isolates of *Bacillus licheniformis*. *Eur. J. Biochem.* 267, 4068–4074. doi:https://doi.org/10.1046/j.1432-1033.2000.01467.x.
- 43. Miller, R. A., Kent, D. J., Watterson, M. J., Boor, K. J., Martin, N. H., and Wiedmann, M. (2015). Spore populations among bulk tank raw milk and dairy powders are significantly different. *J. Dairy Sci.* 98, 8492–8504. doi:10.3168/jds.2015-9943.
- 44. Mulligan, C. N., Cooper, D. G., and Neufeld, R. J. (1984). Selection of microbes producing biosurfactants in media without hydrocarbons: *J. Ferment. Technol.* 62, 311–314.
- 45. Monteiro, F. P., Medeiros, F. H. V. de, Ongena, M., Franzil, L., Souza, P. E. de, and Souza, J. T. de (2016). Effect of temperature, pH and substrate composition on production of lipopeptides by *Bacillus amyloliquefaciens* 629. *Afr. J. Microbiol. Res.* 10, 1506–1512. doi:10.5897/AJMR2016.8222.
- Nerurkar, A. S. (2010). Structural and molecular characteristics of lichenysin and its relationship with surface activity. Adv. Exp. Med. Biol. 672, 304–315. doi:10.1007/978-1-4419-5979-9_23.
- Nieminen, T., Rintaluoma, N., Andersson, M., Taimisto, A.-M., Ali-Vehmas, T., Seppälä, A., et al. (2007).
 Toxinogenic *Bacillus pumilus* and *Bacillus licheniformis* from mastitic milk. *Vet. Microbiol.* 124, 329–339.
 doi:10.1016/j.vetmic.2007.05.015.
- Optimized procedures for generating an enhanced, near physiological 2D culture system from porcine intestinal organoids (2018). Stem Cell Res. 28, 165–171. doi:10.1016/j.scr.2018.02.013.
- Padhi, T. R., Sharma, S., Das, S., and Das, T. (2012). Bacillus licheniformis as a cause of delayed-onset recurrent pseudophakic endophthalmitis-a rare case report. Retin. Cases Brief Rep. 6, 43–45. doi:10.1097/ICB.0b013e3182051df9.
- 50. Park, D. J., Yun, J. C., Baek, J. E., Jung, E. Y., Lee, D. W., Kim, M.-A., et al. (2006). Relapsing *Bacillus licheniformis* peritonitis in a continuous ambulatory peritoneal dialysis patient. *Nephrol. Carlton Vic* 11, 21–22. doi:10.1111/j.1440-1797.2006.00539.x.
- 51. Park, T., Jeon, M.-K., Yoon, S., Lee, K. S., and Kwon, T.-H. (2019). Modification of interfacial tension and wettability in oil-brine-quartz system by in situ bacterial biosurfactant production at reservoir conditions: implications for microbial enhanced oil recovery. *Energy Fuels* 33, 4909–4920. doi:10.1021/acs.energyfuels.9b00545.
- 52. Pavić, S., Brett, M., Petrić, I., Laštre, D., Smoljanović, M., Atkinson, M., et al. (2005). An outbreak of food poisoning in a kindergarten caused by milk powder containing toxigenic *Bacillus subtilis* and *Bacillus licheniformis*. *Arch. Für Leb.* Available at: https://www.researchgate.net/publication/259827457_An_Outbreak_of_Food_Poisoning_in_a_Kindergarten_caused_by_Milk_Powder_containing_toxigenic_Bacillus_subtilis_and_Bacillus_licheniformis [Accessed March 30, 2021].
- 53. Pla, M.-L., Oltra, S., Esteban, M.-D., Andreu, S., and Palop, A. (2015). Comparison of primary models to predict microbial growth by the plate count and absorbance methods. *BioMed Res. Int.* 2015, e365025. doi:10.1155/2015/365025.

- 54. Postollec, F., Mathot, A.-G., Bernard, M., Divanac'h, M.-L., Pavan, S., and Sohier, D. (2012). Tracking spore-forming bacteria in food: from natural biodiversity to selection by processes. *Int. J. Food Microbiol.* 158, 1–8. doi:10.1016/j.ijfoodmicro.2012.03.004.
- 55. Purwasena, I. A., Astuti, D. I., Syukron, M., Amaniyah, M., and Sugai, Y. (2019). Stability test of biosurfactant produced by *Bacillus licheniformis* DS1 using experimental design and its application for MEOR. *J. Pet. Sci. Eng.* 183, 106383. doi:10.1016/j.petrol.2019.106383.
- Qiu, Y., Xiao, F., Wei, X., Wen, Z., and Chen, S. (2014). Improvement of lichenysin production in *Bacillus licheniformis* by replacement of native promoter of lichenysin biosynthesis operon and medium optimization. *Appl. Microbiol. Biotechnol.* 98, 8895–8903. doi:10.1007/s00253-014-5978-y.
- 57. Radhakrishnan, R., Hashem, A., and Abd_Allah, E. F. (2017). *Bacillus:* A biological tool for crop improvement through bio-molecular changes in adverse environments. *Front. Physiol.* 8. doi:10.3389/fphys.2017.00667.
- 58. Rahman, M. S., and Ano, T. (2009). Production characteristics of lipopeptide antibiotics in biofilm fermentation of *Bacillus subtilis*. *J. Environ*. *Sci.* 21, S36–S39. doi:10.1016/S1001-0742(09)60032-2.
- Rajendran, N., and Marahiel, M. A. (1999). "4.08 Multifunctional peptide synthetases required for nonribosomal biosynthesis of peptide antibiotics," in *Comprehensive Natural Products Chemistry*, eds. S. D. Barton, K. Nakanishi, and O. Meth-Cohn (Oxford: Pergamon), 195–220. doi:10.1016/B978-0-08-091283-7.00094-1.
- Rampersad, S. N. (2012). Multiple applications of Alamar Blue as an indicator of metabolic function and cellular health in cell viability bioassays. Sensors 12, 12347–12360. doi:10.3390/s120912347.
- Rønning, H. T., Madslien, E. H., Asp, T. N., and Granum, P. E. (2015). Identification and quantification of lichenysin - a possible source of food poisoning. Food Addit. Contam. Part Chem. Anal. Control Expo. Risk Assess. 32, 2120–2130. doi:10.1080/19440049.2015.1096967.
- 62. Rosenkvist, H., and Hansen, A. (1995). Contamination profiles and characterisation of *Bacillus* species in wheat bread and raw materials for bread production. *Int. J. Food Microbiol.* 26, 353–363. doi:10.1016/0168-1605(94)00147-x.
- Sachdev, D. P., and Cameotra, S. S. (2013). Biosurfactants in agriculture. *Appl. Microbiol. Biotechnol.* 97, 1005–1016. doi:10.1007/s00253-012-4641-8.
- Salkinoja-Salonen, M. S., Vuorio, R., Andersson, M. A., Kämpfer, P., Andersson, M. C., Honkanen-Buzalski, T., et al. (1999). Toxigenic strains of *Bacillus licheniformis* related to food poisoning. *Appl. Environ. Microbiol.* 65, 4637–4645.
- 65. Santos, V. S. V., Silveira, E., and Pereira, B. B. (2018). Toxicity and applications of surfactin for health and environmental biotechnology. *J. Toxicol. Environ. Health Part B* 21, 382–399. doi:10.1080/10937404.2018.1564712.
- 66. Sato, T., Stange, D. E., Ferrante, M., Vries, R. G. J., Van Es, J. H., Van den Brink, S., et al. (2011). Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett's epithelium. *Gastroenterology* 141, 1762–1772. doi:10.1053/j.gastro.2011.07.050.
- 67. Shaligram, N. S., and Singhal, R. (2010). Surfactin A review on biosynthesis, fermentation, purification and applications. *undefined*. Available at: /paper/Surfactin-%E2%80%93-A-Review-on-Biosynthesis%2C-Fermentation%2C-Shaligram-Singhal/e1aad5c827bfa258264a8eaf8f49072e0d7825e3 [Accessed January 26, 2021].
- Sugar, A. M., and McCloskey, R. V. (1977). Bacillus licheniformis sepsis. JAMA 238, 1180–1181. doi:10.1001/jama.1977.03280120072022.
- Thakur, S., Singh, A., Sharma, R., Aurora, R., and Jain, S. K. (2020). Biosurfactants as a novel additive in pharmaceutical formulations: current trends and future implications. *Curr. Drug Metab.* 21, 885–901. doi:10.2174/1389200221666201008143238.
- van der Hee, B., Madsen, O., Vervoort, J., Smidt, H., and Wells, J. M. (2020). Congruence of transcription programs in adult stem cell-derived jejunum organoids and original tissue during long-term culture. Front. Cell Dev. Biol. 8. doi:10.3389/fcell.2020.00375.
- 71. Varvaresou, A., and Iakovou, K. (2015). Biosurfactants in cosmetics and biopharmaceuticals. *Lett. Appl. Microbiol.* 61, 214–223. doi:https://doi.org/10.1111/lam.12440.

- 72. Walter, V., Syldatk, C., and Hausmann, R. (2013). Screening concepts for the isolation of biosurfactant producing microorganisms. Landes Bioscience Available at: https://www.ncbi.nlm.nih.gov/books/NBK6189/ [Accessed December 15, 2020].
- 73. Wang, Z., He, Z., Beauchemin, K. A., Tang, S., Zhou, C., Han, X., et al. (2016). Comparison of two live *Bacillus* species as feed additives for improving in vitro fermentation of cereal straws. *Anim. Sci. J. Nihon Chikusan Gakkaiho* 87, 27–36. doi:10.1111/asj.12346.
- 74. Warth, A. D. (1978). Relationship between the heat resistance of spores and the optimum and maximum growth temperatures of *Bacillus* species. *J. Bacteriol.* 134, 699–705.
- 75. Willenbacher, J., Rau, J.-T., Rogalla, J., Syldatk, C., and Hausmann, R. (2015). Foam-free production of Surfactin via anaerobic fermentation of *Bacillus subtilis* DSM 10T. *AMB Express* 5, 21. doi:10.1186/s13568-015-0107-6.
- Wu, Y.-S., Ngai, S.-C., Goh, B.-H., Chan, K.-G., Lee, L.-H., and Chuah, L.-H. (2017). Anticancer activities of surfactin and potential application of nanotechnology assisted surfactin delivery. *Front. Pharmacol.* 8. doi:10.3389/fphar.2017.00761.
- 77. Yakimov, M. M., Fredrickson, H. I., and Timmis, K. N. (1996). Effect of heterogeneity of hydrophobic moieties on surface activity of lichenysin A, a lipopeptide biosurfactant from *Bacillus licheniformis* BAS50. *Biotechnol. Appl. Biochem.* 23, 13–18. doi:10.1111/j.1470-8744.1996.tb00358.x.
- Yakimov, M. M., Timmis, K. N., Wray, V., and Fredrickson, H. L. (1995). Characterization of a new lipopeptide surfactant produced by thermotolerant and halotolerant subsurface *Bacillus licheniformis* BAS50. *Appl. Environ. Microbiol.* 61, 1706–1713. doi:10.1128/aem.61.5.1706-1713.1995.
- 79. Yao, L., Selmi, A., and Esmaeili, H. (2021). A review study on new aspects of biodemulsifiers: Production, features and their application in wastewater treatment. *Chemosphere* 284, 131364. doi:10.1016/j.chemosphere.2021.131364.
- 80. Zhao, H., Shao, D., Jiang, C., Shi, J., Li, Q., Huang, Q., et al. (2017). Biological activity of lipopeptides from *Bacillus*. *Appl. Microbiol. Biotechnol.* 101, 5951–5960. doi:10.1007/s00253-017-8396-0.

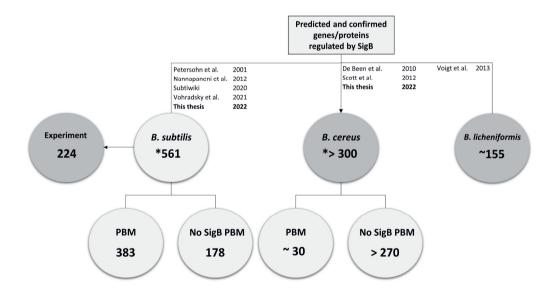
CHAPTER 6

General Discussion

Kah Yen Claire Yeak

This thesis describes the investigation of the general stress response (GSR) mediated by the master regulator of adaptive stress - Sigma factor B (SigB), in three well-known Bacillus species: Bacillus subtilis (the model organism for spore-forming bacteria), Bacillus cereus (a foodborne pathogen), and Bacillus licheniformis (an industrial 'workhorse'). They are Gram-positive, sporeforming, and facultative anaerobic bacteria found ubiquitously in the environment. The SigBmediated GSR plays a vital role in conferring resistance to cells to cope with physical or nutritional stresses, and recently, the roles of SigB in regulating various other cellular functions have become evident (Chapter 1). Novel SigB regulon members in B. subtilis were predicted in Chapter 2, and a number of these members were validated via promoter studies, extending the putative SigB regulon in B. subtilis (containing ~ 500 members). These members mainly cope with general stress and other cellular functions. Additionally, SigB signaling cascades and SigB regulon members orthologous to the B. subtilis 168 regulon members were found to be species-specific in other Bacillales members. Subsequently, in Chapter 3, novel genes and proteins (~ 300) that are SigB-dependent were revealed in B. cereus upon exposure to heat shock and under the control condition at 30°C, indicating that SigB controls a set of cellular functions unrelated to heat stress. A subgroup of the newly identified SigB-dependent genes/proteins was co-regulated by the putative phosphocarrier protein Bc1009. This protein was demonstrated to play a role in heat resistance and motility. In Chapter 4, a mild effect of SigB on the production of the secondary metabolite lichenysin (a surfactant) was demonstrated in B. licheniformis. This compound mildly induced GSR and provided modest protection to cells in lethal ethanol stress conditions. In Chapter 5, it was concluded that the production of lichenysin by different B. licheniformis food isolates strongly depend on the strain, medium composition, and incubation conditions. In vitro studies showed that lichenysin is toxic to human cells at ID₅₀ of ~16 µg/ml. Therefore, when levels of B. licheniformis cells in foods reach high levels and such foods are ingested, this can cause foodborne intoxication.

Following the introduction in **Chapter 1**, the observations and results of **Chapters 2-5** provided a better understanding of bacterial stress adaptation. In this general discussion, three major topics are discussed. **Firstly**, the new insights on SigB mechanisms in *Bacillus*. **Secondly**, the ecological aspects of SigB and SigB-GSR, and **thirdly**, implications of the knowledge gained on SigB and SigB GSR for the food sector and the study of other foodborne pathogens.


6.1 New insights on SigB mechanisms in Bacillus

New information on the four main aspects of SigB GSR was acquired; namely, **i)** SigB regulon: genes/proteins that are SigB-dependent, regulated either directly or indirectly, **ii)** alternative roles of SigB in *Bacillus*, **iii)** SigB signal sensing cascades in *Bacillus*, and **iv)** known stressors that induce SigB in *Bacillus*.

6.1.1 Genes and proteins regulated by SigB: the SigB regulon

The activation of SigB leads to the transcription of a group of genes regulated by SigB, and thereby the expression of proteins (**Chapter 1**). These genes/proteins regulated by SigB either directly (have an upstream SigB **P**romoter **B**inding **M**otif) or indirectly (without a SigB PBM) are known as the SigB regulon members. In this thesis, those genes with a SigB PBM are referred to as the SigB direct regulon members; SigB can bind to the promoter of these genes and regulate their transcription directly. Those that do not have a SigB PBM are the SigB indirect regulon members and are likely regulated by SigB via an intermediate (e.g., a SigB-dependent member).

This section provides up-to-date information on the SigB regulon members of *B. subtilis* and *B. cereus* based on the results of **Chapters 2** and **3**, respectively, and the reported SigB regulon members in the literature (Chapter 1 appendixes). SigB regulon members for these two species are grouped into either direct or indirect members based on the presence/absence of either a known/predicted SigB PBM (Figure 1). No update is available for *B. licheniformis* as the locus tags used by Voigt et al. (2013) differ from those used for *B. licheniformis* type strain DSM13 in **Chapter 2**; therefore, no direct comparison was made.

Figure 1- Up-to-date knowledge on SigB regulon members in *B. subtilis* 168, *B. cereus* ATCC14579 and *B. licheniformis* DSM13. Total genes or proteins that are identified via experiments or predicted to be regulated by SigB in the literature and this thesis. **Light grey circle-** SigB-dependent genes/proteins identified via predictions and experiments. **Dark grey circle-** SigB-dependent genes/proteins identified via experiments.

6.1.1.1 SigB regulon in B. subtilis

The updates on *B. subtilis* SigB regulon members compared to the list of SigB regulon genes listed on Subtiwiki are mainly based on the study of Vohradsky et al. (2021) and the results obtained in **Chapter 2**. Firstly, 411 SigB regulon members were reported by Vohradsky et al. (2021), including all the up-to-date SigB regulon members extracted from Subtiwiki and the literature. Secondly, 255 genes were predicted to have a SigB PBM of (Category I-V) in **Chapter 2.** Of these, 99 overlapped with the list published by Vohradsky et al. (2021), resulting in 156 newly predicted genes with a SigB PBM. The SigB regulon members were identified via experiments or predicted based on machine learning expression kinetics, kinetic modeling, or the presence of a SigB PBM in the promoter region of these genes (Nannapaneni et al., 2012; Vohradsky et al., 2021), including the 156 newly predicted members reported in **Chapter 2** of this thesis. Taking together all the genes/proteins identified via experiments or predicted in the literature and this thesis, *B. subtilis* carries a total of 567 potential SigB regulon candidates. By removing five genes that do not have a locus tag (BSU number) in the list of Vohradsky et al. (2021), 562 candidates remained (Appendix 1A Chapter 1, Tables S1 and S2 Chapter 2).

Out of these 562 members, 383 were predicted to have a SigB PBM based on information available in the literature (Petersohn et al., 2001; Nannapaneni et al., 2012; Vohradsky et al., 2021) and this thesis **(Chapter 2)**, indicating ~ 68% are SigB direct regulon members in *B. subtilis*. The remaining 178 (~ 22%) did not have a SigB PBM and are SigB indirect regulon members. A total of 224 out of 562 showed significant differential regulation in proteomics approaches/DNA array-based expression studies in at least one of the following conditions tested: exposure to ethanol, butanol, osmotic, oxidative stress, growth at low temperature, and heat shock (Nannapaneni et al., 2012). For the remaining predicted members, their SigB-controlled activity remains to be confirmed via experimental work. Nonetheless, the vast set of SigB regulon candidates in *B. subtilis* demonstrated that the SigB regulon might be more extensive than previously thought. Many candidates are known to be regulated by additional transcriptional regulators. These may thus be involved in other regulatory networks than GSR and do not have a SigB PBM that resembles the consensus (**Chapter 2**, (Nannapaneni et al., 2012; Vohradsky et al., 2021)), nor display standard SigB-dependent GSR upon exposure to standard stressors (discussed in section 6.1.4).

6.1.1.2 SigB regulon in B. cereus

In comparison to *B. subtilis*, not many large-scale DNA array-based or proteomics-based studies have been performed to investigate the SigB GSR in *B. cereus*. Only ~30 SigB regulon members (both direct and indirect) were initially described in the literature by de Been et al. (2010) and Scott and Dyer (2012). Thus, it is generally recognized that the SigB regulon in *B. cereus* is smaller than in *B. subtilis* (Rodriguez Ayala et al., 2020).

In this thesis, the core function of SigB in *B. cereus* was deciphered by analyzing the changes in proteome/transcriptome profiles of the clean $\Delta sigB$ mutant versus wt cells under heat stress (30°C > 42°C) and at 30°C, and novel SigB-dependent genes/proteins under both conditions

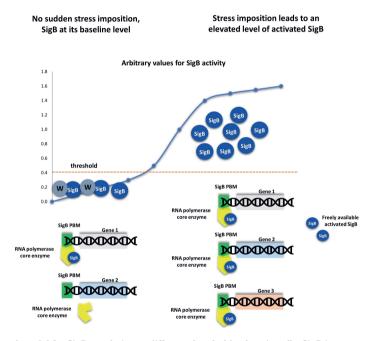
were identified (**Chapter 3**). While differentially regulated proteins were highlighted in **Chapter 3**, differential expression of specific gene clusters (but not detected in proteomes) was also observed, suggesting that the SigB regulon in *B. cereus* may exceed 300 members (see Supplementary Tables Chapter 3). Nevertheless, SigB regulon members containing a SigB PBM remained low, approximately 10%. (discussed in Chapter 3).

Using the same definition described for B. subtilis, ~10% of the candidates (~ 300) are SigB direct regulon members, and the remaining candidates appeared (so far) to be SigB indirect regulon members in B. cereus. Whether more of these SigB regulon members contain a functional SigB PBM is yet to be elucidated. This finding showed that the size of the SigB direct regulon in B. cereus is still much smaller than in B. subtilis, which may be attributed to more pleiotropic regulators that are SigB-dependent in B. cereus. Moreover, as discussed in **Chapter 3,** most newly identified SigB-dependent genes and proteins formed a SigB subregulon controlled by the putative phosphocarrier protein Bc1009, signifying that these are indirectly regulated by SigB via Bc1009.

The SigB subregulon members and other newly identified SigB regulon members (**Chapter 3**) have putative functions in cell motility, signal transduction, transcription, amino acid/carbohydrate/ion transport, and metabolism. Of which, roles in heat resistance and motility were confirmed in phenotypic assays. Remarkably, many of these are transcriptional regulators, indicating that SigB may also be involved in other cellular responses as reported for *B. subtilis* (e.g., sporulation, biofilm formation, etc.) discussed in section 6.1.2.

6.1.1.3 SigB direct and indirect regulation in Bacillus

Based on the results of Chapters 2 and 3, Figure 2 illustrates the direct and indirect regulatory relationships between SigB and genes/proteins that it controls. Genes with a SigB PBM allow the direct binding of SigB to execute direct regulation (Type 1). Genes without a SigB PBM but show SigB-dependent expressions may be regulated by SigB direct regulon members (Type 2) or their expression may be affected by SigB indirectly via a cascade effect (Type 3). Both direct and indirect regulation can be either positively controlled (induction/upregulation) or negatively controlled (repression/inhibition) (Green line: positive; red line: negative in Figure 2). The role of SigB as a transcriptional activator resulting in gene induction response is typically better known than the negative gene response (Rodriguez Ayala et al., 2020). However, SigB inhibition activity is not new, as SigB has been reported to negatively impact sporulation by prohibiting the onset of spore formation in B. subtilis (Reder et al., 2012a, 2012b; Rothstein et al., 2017). Taking an example from **Chapter 2**, the deletion of the sigB gene in B. subtilis also resulted in slightly higher promoter activity of the ylaL gene under the control condition without further stress imposition, indicating putative SigB-dependent repression activity. Therefore, SigB may be a repressor, either indirectly or directly. More evidence of the SigB-dependent repression/inhibition was gathered for B. cereus, in which the expression of regulators such as ArgR or a group of genes involved in anaerobic respiration was higher in the absence of SigB than in its presence (discussed in Chapter 3).


Figure 2- SigB direct and indirect regulatory relationships in Bacillus cells

SigB-dependent repression is rarely mentioned in the literature, despite evidence of genes/proteins being upregulated when SigB is absent in B. subtilis (Rodriguez Ayala et al., 2020). This is because studies of SigB binding to the upstream regions of these genes/operons were not done to confirm the repression effect of SigB further. Additionally, most studies compared genes/proteins expression patterns in a setting of the wt expression levels versus $\Delta sigB$ mutants. The upregulation observed in the $\Delta sigB$ mutant can result from perturbations in gene expressions caused by the deletion of SigB or attributed to the Sigma factor competition for shared promoters, contributing to the transcriptional repression of associated genes (Mauri and Klumpp, 2014). For instance, if gene A is co-regulated by SigB and a competitor SigB_C, both compete to bind to the promoter of gene A, causing repression of gene A. Thus, deletion of SigB leads to the "de-repression" effect observed for gene A, but in a wt situation, SigB does not necessarily "repress" gene A. Furthermore, temperature, pH, water activity, or the medium composition used in the experiment may affect bacteria integrating the signaling response, causing indirect "repression" effects.

On the other hand, different SigB threshold levels (i.e., amount) in *Bacillus* cells may regulate distinct sets of genes. It is known that elevated expression of SigB followed by its activation (uncoupling from RsbW) mediates the GSR (**Chapter 1**), but the threshold levels of SigB required to regulate each gene are unknown. If the threshold level of SigB varies in different physiological states (i.e., unstressed and stressed conditions), a low threshold level of SigB may limit the binding of SigB to all known SigB-regulated promoters. Thus, *Bacillus* cells may program their expression machinery to prioritize the expression of genes that are only required at a specific physiological state (see conceptual model, Figure 3). For instance, two of the tested candidates with SigB PBMs that highly resembled the consensus failed to show SigB-dependent activity under the tested conditions (**Chapter 2**). Other than the reasons described

in **Chapter 2** (i.e., low binding affinity due to extended spacer, triggered by unknown stressors), these genes may be regulated at a high SigB threshold level, and the induction of SigB does not necessarily increase the promoter activity (e.g., *ylaL*, *ygaO*, *ykaA*, Chapter 2 Figure 3). This is in line with the notion that SigB is not only responsible for the adaptive stress regulation in *Bacillus* spp., but also for indirect regulation of other cellular responses (discussed in **Chapters 2 and 3**), likely at different SigB threshold levels.

The extensive information gained on the SigB regulon in this thesis further elucidated SigB regulon structures for *B. subtilis*, especially for *B. cereus*. Such detailed data are useful for further studies to obtain a complete picture of the SigB-controlled regulatory functions in *Bacillus* spp.

Figure 3- Conceptual model for SigB regulation at different threshold values in cells. SigB is expressed at its baseline level as controlled by SigA in the absence of stress, and remains bound to RsbW. Low amount of SigB may be free and may guide RNA polymerase to the SigB promoter binding motif (PBM), and regulate Gene 1 putatively. Gene 2 which also has a SigB PBM was not regulated by SigB at baseline due to the low threshold. Upon exposure to stressors, the expression of SigB is elevated, and uncoupled from RsbW, allowing Gene 1 and 2, and additionally Gene 3 to be regulated concomitantly by SigB at a high threshold.

6.1.2 SigB regulatory networks: alternative roles of SigB

More than 500 and 300 confirmed and predicted genes/proteins are potentially regulated by SigB in *B. subtilis* and *B. cereus*, respectively. Not all are directly controlled by SigB (Figure 1), but those indirectly controlled provide further insights into the SigB regulatory networks.

In B. subtilis, the functional distribution map of SigB regulon members (including newly predicted members) illustrated that, other than in the GSR, SigB also participates in controlling sporulation. biofilm formation. information processing such protein synthesis/modification/ degradation, transcription of other regulators, DNA repair and recombination, carbon metabolisms, biosynthesis or acquisition of amino acids, and a group of phage genes with unknown function (Chapter 2). Hence, the SigB regulon may show overlap with regulons that other transcriptional regulators control. The results obtained in Chapter 2 aligned with the report of Vohradsky et al., 2021, who provided evidence that 37 other regulators shared governing roles with SigB in regulating SigB regulon members (both direct and indirect). This includes other sigma factors, i.e., SigA for housekeeping; SigM and SigW for dealing with cell surface stress; SigG, SigF, SigH, and SigE in sporulation for the transcription of early stationary phase genes, early forespores, mother cells, and sporulation specific genes, respectively; SigX for resistance against cationic antimicrobial peptides and temporary phage resistance; SigD for the regulation of flagella, motility, chemotaxis and autolysis; and SigI for control of heat shock genes (Zhu and Stülke, 2018; Vohradsky et al., 2021). SigB regulon members co-regulated by SigX in B. subtilis (Vohradsky et al., 2021) may provide cells with an adaptive phage tolerance to resist temporary phage attacks (Tzipilevich et al., 2022). Although no other studies have investigated the role of SigB in phage tolerance, 15 genes encoding for phage elements were predicted to have a SigB PBM in B. subtilis (Chapter 2), and the expression of a large group of phage genes was found inducible via SigB in B. cereus (Chapter 3). However, the functions of these phage genes are unknown, and SigB and SigX co-regulatory mechanisms are yet to be explored.

Additionally, SigB has been reported to indirectly influence the production of the antimicrobial peptide (surfactin) that has antifungal activities in *B. subtilis* (Bartolini et al., 2019a), and it was also shown in **Chapter 4** that SigB influenced the production of a similar compound, namely lichenysin in *B. licheniformis*. The production of these biosurfactants likely increases the motility of cells by reducing the surface tension in their environment, which may promote swimming toward nutrients or resources, especially in water-containing habitats like upper layers of mud/soils, and stagnant lakes, or ponds.

While the alternative roles of SigB in other processes are described in *B. subtilis*, e.g., sporulation (Reder et al., 2012b, 2012a; Rothstein et al., 2017), biofilm development (Bartolini et al., 2019b; Nadezhdin et al., 2020; Arnaouteli et al., 2021), motility (Bartolini et al., 2018), surfactin production for antifungal control (Bartolini et al., 2019a), less information is available for *B. cereus*. Only one study reported that SigB affected spore properties (de Vries et al., 2005)

and one that biofilm formation was influenced (Gao et al., 2021). However, it was not studied how SigB interacts with genes/proteins or regulators in the sporulation or biofilm formation pathway.

Based on the evidence of differentially regulated genes/proteins as presented in **Chapter 3**, a SigB regulatory network is mapped out in Figure 4 to illustrate the potential integration of SigB activity in lifestyle decision-making and metabolic crosstalk in *B. cereus*. Major regulators that showed prominent differential regulation by SigB are listed in Table 1, genes/proteins identified in **Chapter 3** are colored, and their potential interaction partners are marked in grey. Pointed arrows indicate positive interaction, and thwart arrows indicate negative interaction (Figure 4).

Firstly, the central glycolytic genes regulator CggR (Bc5141) showed SigB-dependent induction. It is a transcriptional repressor of the glycolytic *gapA* operon genes which encode catabolic enzymes in glycolysis (Brantl and Licht, 2010), indicating that SigB influences glycolysis. The CggR-mediated pathway was previously shown to be affected by the deletion of RpoN (a regulator of growth, carbohydrate metabolism, motility, biofilm formation, and toxin production), negatively influencing pyruvate availability when *B. cereus* is switching to fermentative metabolism under anaerobic conditions (Hayrapetyan et al., 2015).

Secondly, SigB may be involved in the positive or negative feedback regulation of sporulation in *B. cereus*. The phosphorelay regulator Spo0A (Bc4170) - responsible for sporulation initiation, and SigK (Bc4336) - responsible for mother cell-specific gene expression during sporulation (Sun et al., 2021), were induced by SigB under heat stress. On the other hand, AbrB (the transcriptional regulator of transition state genes that repressed sporulation sigma factor SigH) (Schultz et al., 2009; Rodriguez Ayala et al., 2020) showed increased expression in $\Delta sigB$ cells compared to wt at 30°C without further stress imposition.

Table 1: Summary of differential regulation of transcriptional regulators by SigB in B. cereus

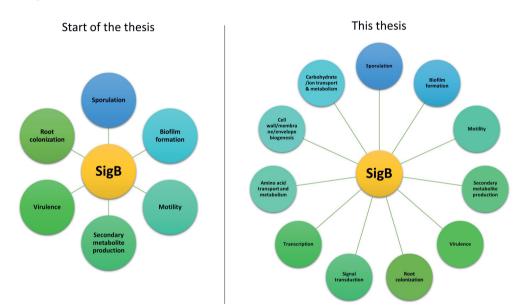
Regulator	Description	Regulation by SigB
CggR	Central glycolytic genes regulator	Positive
Spo0A	Phosphorelay regulator for sporulation initiation	Positive
SinI, IcaR	SinR biofilm repressor antagonist	Negative
ArgR	Regulator of arginine metabolic genes	Negative
SigK	Sporulation-specific sigma factor	Positive
AbrB	Regulator of transition state genes	Positive

This discussion proposes that in positive regulation, SigB induces Spo0A, and the phosphorylated Spo0A becomes active and positively influences sporulation. Spo0A also activates AbbA (the AbrB repressor) to inhibit the expression of AbrB. The reduced expression of AbrB may release the SigH repression, thereby partially allowing SigH to contribute to sporulation. In negative regulation, SigB induces AbrB, AbrB repressed SigH and may impact

the sporulation process negatively. Moreover, Spo0E is SigB-dependent and blocks the transcription of *spo0A* and *spoIIE* genes, leading to a sporulation-deficient phenotype (Reder et al., 2012b).

Involvement of SigB in lifestyle decision making and metabolic crosstalks Sporulation +/ Spo0A AbbA Arginine metabolism +/ Arginine metabolism +/ Arginine biosynthesis SigB Si

Figure 4 - Potential integration of SigB activity in lifestyle decision-making and metabolic crosstalk in B. cereus


Thirdly, SigB may regulate biofilm formation in a feedback loop. SigB was shown to induce Spo0A, and inhibit the expression of SinI (antagonist of SinR repressor for biofilm formation) and IcaR (Bc4652) (**Chapter 3**), a repressor that blocks IcA (a protein important for intracellular adhesion during biofilm formation) (Cue et al., 2009). The scenario depiction in positive regulation: 1) Spo0A is induced, becomes active upon phosphorylation, and in turn activates the expression of SinI, and SinI represses SinR to promote biofilm formation (Xu et al., 2017; Lin et al., 2022); 2) IcaR is inhibited, and thus IcA is derepressed, facilitating adhesion during biofilm formation. In negative regulation, SinI is repressed, the SinI-SinR interaction may be disrupted and SinR represses biofilm formation, forming a feedback loop.

Fourth, SigB positively regulates motility indirectly in *B. cereus*, which was confirmed via phenotypic assays in **Chapter 3**. This regulation may occur through the control of SinI. As SinI represses SinR, SlrR forms a complex with SinR and de-represses the inhibition of the expression of motility genes (Cozy et al., 2012).

Fifth, SigB is connected to nitrogen source utilization. It likely interacts with the ArgR feedback regulator (Pandey et al., 2020) depending on the absence or presence of arginine. In the presence of arginine, ArgR represses the expression of genes for arginine biosynthesis and activates the expression of genes for arginine catabolism, whereas, in the absence of arginine, ArgR activates the genes for biosynthesis (Cheng et al., 2017). In **Chapter 3**, it was shown that

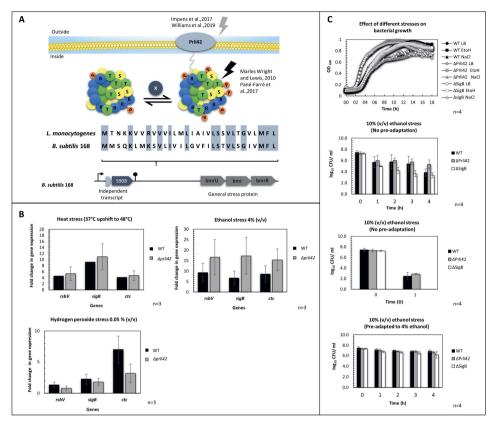
SigB negatively impacted the level of ArgR, and Van Schaik et al. (2005) also reported that *B. cereus* cells failed to utilize many nitrogen sources, including L-arginine, in the absence of SigB.

Lastly, SigB may play a role in regulating genes/proteins related to virulence in *B. cereus* ATCC14579. For example, the *cytK* (*bc1110*) gene encoding for cytotoxin K, *bc0423*/Bc0423 (peptide synthase similar to *srfA* that is required to synthesize surfactin), a group of phage genes (with unknown function), and proteins related to antibiotic resistance were induced by SigB in *B. cereus* ATCC14579 (**Chapter 3**). However, the interaction of SigB with these genes/proteins remains to be elucidated.

Figure 5- Influence of SigB in cellular responses and secondary processes in *Bacillus* species. Evidence was gathered via experiments performed with *B. cereus* (Chapter 3) and *B. licheniformis* (Chapter 4). *In silico* predictions for additional roles of SigB in other functions than the general stress response for *B. subtilis* are not shown in this figure but are described in Chapter 2.

The indications of SigB involvement in different cellular responses of *B. cereus* in **Chapter 3** and the indirect involvement of SigB in lichenysin production in **Chapter 4** provided additional evidence that SigB may influence more cellular functions/secondary processes than previously described **(Chapter 1)**, at least in *Bacillus* species (Figure 5).

6.1.3 SigB signal sensing cascades


As introduced in **Chapter 1**, the stressosome is the signaling protein complex that detects the stress signals in *B. subtilis* group members and integrates the signals into the SigB signaling cascades (Delumeau et al., 2006). It comprises the RsbR, RsbS, and RsbT proteins, in which RsbR consists of N-terminal domains of RsbRA dimers, protruding from the protein as turrets and is thought to act as the sensory domain to integrate stress signals (Marles-Wright and Lewis, 2008). However, how the signals are being sensed by the stressosome and integrated into the SigB GSR mechanism is unknown.

Besides *B. subtilis* group members, the Bacillales member *L. monocytogenes* also employs a stressosome for stress signaling (Impens et al., 2017; Williams et al., 2019). The *Listeria* stressosome has been reported to interact with the mini membrane anchoring protein- Prli42 to sense environmental cues. Impens et al. (2017) described that Prli42 is conserved in firmicutes, able to interact with the *Bacillus* stressosome components, and is critical for stressosome activation in *L. monocytogenes*.

The amino acid sequence alignment of *L. monocytogenes* Prli42 and the *B. subtilis* homolog are presented in Figure 6A. The function of the Prli42 homolog in *B. subtilis* and its interaction with the *Bacillus* stressosome components were evaluated but not described in the previous chapters. No solid evidence was obtained to show that Prli42 is required to activate the SigB GSR nor that it interacts with any of the four RsbR paralogs in *B. subtilis*. A clean $\Delta prli42$ mutant was constructed to investigate its role in activating the stressosome-mediated GSR upon exposure to ethanol, heat, and oxidative stress via gene expression studies (Figure 6B). The gene expression results (measured via One-step RT- qPCR as described in Chapter 4) showed that the expression of *sigB* and two SigB-dependent genes (*ctc* and *rsbV*) in response to I) heat stress (upshift from 37°C to 48°C); II) 4% (v/v) ethanol stress and III) 0.05% (v/v) oxidative stress, did not differ between wt and $\Delta prli42$ cells (expression values for $\Delta sigB$ cells were lower than the cycle threshold, and not included in Figure 6B). Moreover, the deletion of *prli42* did not impact growth nor lead to decreased robustness of *Bacillus* cells when exposed to 10% (v/v) lethal ethanol conditions, with or without pre-adaptation to 4% (v/v) ethanol (Figure 6C).

Furthermore, the Prli42 homolog of *B. subtilis* was chemically synthesized with the TAMRA fluorophore conjugated to the carboxy-terminal end of the peptide to study the interaction of Prli42 with the N-terminal domains of four purified RsbR paralogs (RsbRA, RsbRB, RsbRD, RsbRD) via fluorescence polarization assays. This work was performed in collaboration with Sema Edjer, Rick Lewis, and John Marles-Wright (unpublished data reported in the PhD thesis entitled 'Structure-function relationships in stressosome complexes from *Listeria monocytogenes* and *Bacillus subtilis*', 2021, Newcastle University). No interaction was found between the cytosolic tail of the *B. subtilis* Prli42 homolog and the RsbR N-terminal domains *in vitro*. Based on these results, we concluded that the Prli42 homolog does not interact with the *Bacillus* stressome and is not critical for activating SigB GSR in *B. subtilis*. As no other potential ligands were found to interact with RsbR, the mechanisms of how the stressosome

senses and integrates the stress signal into the SigB signaling cascades remain to be established.

Figure 6- Prli42 homolog and functionality in *B. subtilis.* **6A-** Interaction model of Prli42 to the stressosome component as suggested by Impens et al. (2017) and Williams et al. (2019) and the multiple sequence alignment of the Prli42 homolog sequence in *B. subtilis* 168 to *L. monocytogenes*. Conserved amino acids higher than 55% are highlighted. The Prli42 homolog in *B. subtilis* is an independent transcript located upstream of the new RNA feature S908. **6B-** Fold changes in the expression of *sigB* and two SigB-dependent genes (*ctc* and *rsbW*) in *B. subtilis* wt (**black bar**) and Δ*prli42* (**grey bar**) cells upon exposure to heat stress (37°C upshifted to 48°C), 4% (v/v) ethanol and 0.05% (v/v) hydrogen peroxide at exponential phase (OD_{600nm} of ~ 0.35). **6C-** Growth and viable counts of wt (**black bar**), Δ*prli42* (**grey bar**), and Δ*sigB* (**white bar**) cells upon exposure to 10% (v/v) ethanol with and without preadaptation to 4% ethanol (v/v). **Circle-** growth in Luria Bertani (LB) medium; **square-** growth in LB with 4% ethanol; **triangle** – growth in LB with 1M NaCl, all at 37°C. N=3

Moreover, it is noteworthy that the presence of an ortholog to the *B. cereus* RsbK protein was predicted in *B. subtilis* (**Chapter 2**), but no cognate response regulator was detected adjacent to the predicted *rsbK* gene in the *B. subtilis* genome. This finding may imply that an additional SigB activation pathway exists in *B. subtilis*. This notion is not new. As introduced in **Chapter 1**, SigB is proposed to be activated directly at high/low temperatures (54°C/15°C) or in the presence of nitrosative stress via an Rsb-independent pathway (Brigulla et al., 2003; Holtmann et al., 2004; Tran et al., 2019a). These stressors may be able to interact with so far unidentified

membrane signaling proteins, such as possibly the RsbK ortholog, that sense specific stress. Nonetheless, the potential functionality of the RsbK ortholog in B. subtilis and its putative role in the SigB activation pathway remains to be confirmed.

In addition, the protein serine kinase RsbW (the anti-sigma factor) has been shown to exhibit high cross-phosphorylation activity with other kinases (Shi et al., 2014). It is generally recognized that the dephosphorylated RsbV sequesters RsbW to promote the transcriptional activation of SigB (Chapter 1). However, Shi and colleagues (2014) showed that PrkC and YabT kinases could efficiently cross-phosphorylate the RsbW, thereby influencing its phosphorylation capacity. Such cross-phosphorylation events may lead to either an unexpected SigB activation or the loss of the ability of RsbW to phosphorylate RsbV, leading to a potential constitutional activation of SigB (updated scheme of SigB activation routes for Bacillus species in Figure 7).

Lastly, a Hpt protein (Bc1009) in the SigB gene cluster of B. cereus has previously been proposed to be the intermediate protein that transfers the phosphate group from RsbK to RsbY (de Been et al. (2010). While the phosphate group can transfer from RsbK to RsbY directly (Chen et al., 2012, 2015), the transfer via a Hpt protein might be possible. Based on the evidence obtained in Chapter 3, it could however be concluded that Bc1009 is not a direct SigB regulator: its deletion did not influence the expression of SigB or the other SigB gene cluster members. Therefore, the possibility of Bc1009 being the Hpt intermediate that mediates the phosphoryl group transfer in *B. cereus* was ruled out.

Update of SigB signalling cascades in Bacillus spp.

1. Stressosome (RsbRST) 2. RsbQP 3. RsbKY 4. Rsb-independent Impens et al. (2017)

Upstream 5. Other unidentified signaling proteins 6. Crossphosphorylation event activates RsbW Shi et al. (2014) Downstream Transcription

Figure 7- Updated scheme of SigB activation routes for Bacillus species

6.1.4 Stressors that induce SigB

In published reports of SigB GSR in *Bacillus* species and other Bacillales members such as *L. monocytogenes* and *S. aureus*, standard stressors (i.e., heat, ethanol, salt, and glucose starvation) are often employed to study the induction response of SigB upon exposure to the stressors. Although many other physical (pH, antibiotics, oxidative or nitrosative stress, blue light, red light, elevated level of manganese) and metabolic stressors (phosphate, oxygen, azide, carbonyl cyanide m-chlorophenylhydrazone (CCCP), nitric oxide (NO), mycophenolic acid, and decoyinine) are known (Voelker et al., 1995; Gaidenko and Price, 1998; Guedon et al., 2003; Mascher et al., 2003; Zhang and Haldenwang, 2005; Tran et al., 2019b) (Chapter 1), most of the global gene and protein studies were performed using only the standard stressors. However, these are not the only stressful conditions bacteria encounter in their ecological niches. Moreover, as SigB is the master regulator of stress, a stressor is also generally recognized as the prerequisite to triggering the SigB GSR. In this thesis, it was shown in Chapter 3 that SigB might not need an external stressor to exert active functions in *B. cereus* cells, and an alternative stressor that induces SigB moderately was identified in *B. licheniformis* as well as *B. subtilis* (Chapter 4).

SigB is known to be under the control of the housekeeping sigma factor, SigA, and is expressed at low levels during growth. The baseline expression level of SigB increases markedly when cells encounter stresses in their surroundings, providing cells with rapid stress adaptive response (Rodriguez Ayala et al., 2020). However, the "housekeeping" level of SigB may already involve in regulating other cellular responses in the absence of external stressors (illustrated in Figure 3), supported by the evidence obtained in **Chapter 3** for B. cereus. The proteomics analyses of the B. cereus wild-type (wt), $\Delta sigB$, and $\Delta bc1009$ mutants upon exposure to heat stress revealed novel proteins differentially regulated by SigB, potentially via the putative phosphocarrier protein Bc1009. However, a subgroup of these newly identified proteins also showed differential regulation at constant temperature (30°C, without further stress imposition) in the $\Delta sigB$ cells compared to wt cells. These proteins were mainly involved in cell motility, transcription, signal transduction, cell wall/membrane biogenesis, carbohydrate/ion transport, and metabolism. Of these cellular functions, the motility phenotype was confirmed, and both SigB-deficient and Bc1009-deficient cells showed defects in swimming motility on low-percentage agar plates. These findings in Chapter 3 imply that the SigB-mediated GSR is activated by a stressor and may be regulated by the elevated level of SigB, but other SigB-dependent cellular processes (either directly or indirectly) may not require an external stressor. These processes may be governed by SigB at its baseline expression level controlled by SigA.

The function of the baseline level of SigB has not been reported in the literature for *Bacillus* spp.. Based on the results of **Chapter 3**, two scenarios of SigB functions in *Bacillus* cells can be deduced (Figure 8). Without stress, baseline levels of SigB produced in the cells (as controlled by SigA) interact with other transcriptional regulators/proteins to control other

cellular responses, e.g., motility. With stress, the baseline levels of SigB are elevated in the cells as a result of the stressor-induced GSR, *Scenario one*: switching all cells to cope with stresses and enhance survival; or *Scenario two*: switching some cells to transiently cope with stresses while other cells keep regulating other cellular responses (Figure 8). As the proteomics analyses (supported by transcriptomics data) in **Chapter 3** showed that proteins involved in motility, signal transduction, transcription, and cell wall/membrane biogenesis were similarly regulated regardless of heat stress, *Scenario two* more likely depicts the SigB mechanisms in *Bacillus* cells, at least for *B. cereus*. Notably, as introduced in **Chapter 1**, SigB is deemed to be at its inactive state (bound by RsbW) in unstressed conditions, and in the presence of stress, the dephosphorylated RsbV sequester RsbW and leads to SigB activation and thus the transcription of SigB-controlled genes. If *Scenario two* would hold true, this indicates that *not all* SigB in unstressed conditions is inactive (see the conceptual model in Figure 3). This activation of SigB may occur due to a high cross-phosphorylation event exhibited by RsbW (discussed in section 6.1.3).

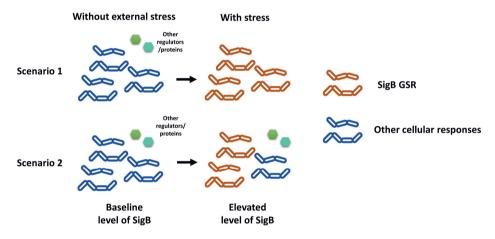


Figure 8- Illustration of the function of SigB with and without external stress in Bacillus cells.

However, the temperature used in the experimental works in **Chapter 3** (30°C) may still be stressful for *Bacillus* cells as the average temperature of soils in nature (niches for *Bacillus*) is likely below 30°C. Nevertheless, the continuous culture of cells at 30°C did not introduce a sudden switch of environments for the cells, which is deemed to be a crucial factor for SigB activation in *Bacillus* cells (Rodriguez Ayala et al., 2020). Therefore, the group of genes/proteins differentially regulated in $\Delta sigB$ cells compared to wt cells at 30°C (**Chapter 3**) supported the notion that SigB functions at its baseline level.

Besides external factors, compounds that *Bacillus* cells produce themselves may induce the SigB-GSR and lead to protection from other stresses. For example, the deletion of SigB was shown to negatively affect lichenysin production in *B. licheniformis* in **Chapter 4**, which has

antimicrobial/antifungal properties (**Chapter 1**) and is toxic to mammalian and human cells (**Chapter 5**). Further experiments in **Chapter 4**, which exposed cells to lichenysin or surfactin (a similar compound to lichenysin), showed that lichenysin induces a mild SigB GSR, which confers cells with a slight advantage to survive subsequent exposure to lethal stress (12% ethanol v/v). Similarly, in *B. subtilis*, SigB has been reported to influence surfactin production indirectly (Bartolini et al., 2019a), and surfactin-producing cells are unaffected by surfactin itself (Rahman et al., 2021). This thesis presents evidence that surfactin and lichenysin are mild stressors that can induce the SigB GSR in *B. licheniformis* and *B. subtilis*, respectively, which may also be true for other *Bacillus* spp. Although the exact environmental conditions and efficacy of surfactants in triggering SigB GSR remain to be elucidated, it is noteworthy that surfactin has also been reported to act as a signaling molecule to further trigger the differentiation of cells into competence development, matrix production, and sporulation, resulting in different subpopulations within a cellular population (Rahman et al., 2021).

6.2 Ecological aspects of SigB and SigB-GSR

Ecological niches are specific habitats where a group of microorganisms populates an ecosystem (Polechová and Storch, 2019). In the following sections, the contribution of SigB and SigB-GSR to the persistence of *Bacillus* spp. in environmental niches and the roles of *Bacillus* spp. in environments are discussed.

6.2.1 Persistence of microorganisms in environmental niches

The core function of SigB in mediating GSR and its alternative functions in regulating other processes (section 6.1) shows that SigB plays a crucial role throughout the life cycle of *Bacillus* cells and assists the rapid adaptation in different niches. While the alternative functions of SigB discussed in the sections above were seemingly independent of each other, these functions are interrelated ecologically.

In natural habitats, *Bacillus* cells may be exposed to conditions of drought, temperature shift, change in salinity or pH, nutrient deprivation, absence of O₂, presence of harmful compounds, e.g., antimicrobials and cell wall disruptors, and the presence of other competitors. At each particular condition, SigB appears to play a role in managing the specific stresses alone or with other Sigma factors/regulators (depicted in Figure 9). When cells face harsh changing living conditions, SigB induces the GSR in *Bacillus* to prepare cells to cope with environmental/nutritional stressors or may form biofilm or sporulate as one of the mitigation strategies upon entering the stationary phase (Arnaouteli et al., 2021). This switch of bacterial lifestyle from the motile form into the sessile form is monitored by SigB via regulating genes involved in biofilm formation and sporulation (Shemesh and Chai, 2013). As reported in section 6.1.2, the regulation of biofilm formation and sporulation are closely linked to the regulation of cell motility, in which the motile cells within the mature biofilm will disperse and colonize new niches. Again, SigB is known to be involved in such control of biofilm aging and triggering cell

dispersal in *B. subtilis* (Bartolini et al., 2018). Moreover, *Bacillus* cells commonly colonize soil and are often nutrient-deprived; thus, controlling cell motility may allow sessile colonies at one nutrient-deprived location to move to another, e.g., different layers of soil surfaces. This movement can be further enhanced by surfactant-producing cells, which can lower the surface tension of a water-contained environment.

Other than the environmental/nutritional limiting conditions, *Bacillus* cells may face threats from other microbes that coinhabit the same niche and compete for nutrients with *Bacillus* (e.g., other bacteria/fungus) or attack them (e.g., viruses). Species like *Pseudomonas* can inhibit cell differentiation, e.g., biofilm formation and sporulation in *Bacillus* (Powers et al., 2015). Therefore, *Bacillus* cells are known to secrete metabolites that exert antibacterial, antifungal, or antiviral properties to gain competitive advantages. Such metabolites can be surfactants (e.g., surfactin/lichenysin). Surfactin production is indirectly influenced by SigB in *B. subtilis* (Bartolini et al., 2019a), and lichenysin production was also shown to be reduced in the absence of SigB in *B. licheniformis* (**Chapter 4**). Metabolites like surfactin conceivably contribute to competitive fitness and can act as signaling cues to trigger cell differentiation into different subpopulations, e.g., competence development, matrix production, and sporulation in *B. subtilis* (Rahman et al., 2021).

6.2.2 Contribution of SigB to the role of Bacillus spp. within the soil ecosystem

Bacillus spp. as rhizobacteria play active roles in maintaining the homeostasis of the soil ecosystem. Bacillus interacts with plants and establishes mutualistic relationships: on the one hand, plants fix carbon and secrete the carbohydrates via root exudates to provide carbon sources for Bacillus. On the other hand, Bacillus colonizes plant roots to promote the cycling of nutrients and organic matter, solubilize soil for nutrient access, enhance nitrogen fixation, stimulate plant growth and prevent plant drought (Radhakrishnan et al., 2017; Hashem et al., 2019). They confer stress tolerance to plants by inducing plants to produce phytohormones and other stress-related metabolites to fight pathogens, e.g., cell-wall degrading enzymes and antioxidants (Allard-Massicotte et al., 2016; Hashem et al., 2019; Saxena et al., 2020). Moreover, Bacillus spp. produce surfactants, and surfactants that are good ion chelators can play a role in the bioremediation of metal-contaminated soil and reduce the toxic effects of metal ions on plant growth (Radhakrishnan et al., 2017).

These ecological roles of *Bacillus* spp. are not directly related to the SigB GSR. However, SigB has recently been shown to regulate SodA2 (superoxide dismutase) positively (important in surviving ethanol and toxic chemical like herbicides) to contribute to the colonization of wheat roots in *B. cereus* (Gao et al., 2021). This report is in line with the results obtained in **Chapter 3**, as biofilms and motility-related genes/proteins were found to be influenced by SigB (section 6.1.2), implying that SigB of *Bacillus* spp. may involve triggering of biofilm formation for root colonization. Moreover, the role of SigB in the nitrogen cycle has been described by Van Schaik et al. (2005), who showed that SigB-deficient cells failed to utilize many nitrogen sources, which are the intermediates of the urea cycle, such as arginine, ornithine, citrulline, and aspartate.

Similarly, **Chapter 3** also indicated that SigB interacts with ArgR (the arginine metabolism regulator), and many genes encode nitrate reductase enzyme complex members (essential for anaerobic growth), nitrogenases (nitrogen fixation), and molybdopterin synthases (nitrate assimilation in plants and anaerobic respiration in bacteria) also showed SigB-dependent expression (Chapter 3 Supplementary Materials), stressing the functional role of SigB in the nitrogen cycle and anaerobic respiration.

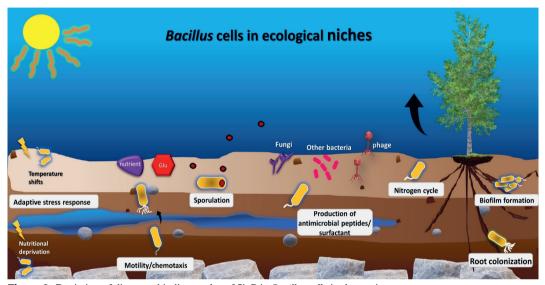


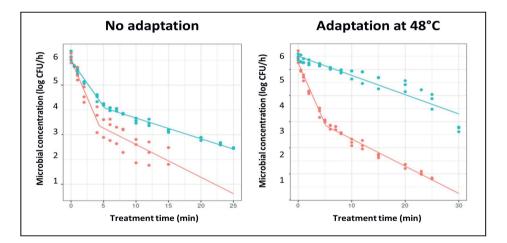
Figure 9- Depiction of direct and indirect roles of SigB in Bacillus cells in the environment

6.3 Implications in the study of other foodborne pathogens and the food sector

B. cereus, L. monocytogenes, and S. aureus are well-known foodborne hazards that can cause foodborne illnesses (European Food Safety Authority, 2021) (SigB GSR for L. monocytogenes and S. aureus described in **Chapter 1**). They have been identified in the list of top 32 microbiological hazards in Europe based on the major outbreaks, global public health impact, and food contamination data (WHO, 2015; ECDC, 2019; European Commission, 2021; European Food Safety Authority, 2021; Yeak et al., 2022). While B. licheniformis is generally considered non-pathogenic, it can cause rare foodborne intoxications (Salkinoja-Salonen et al., 1999; Mikkola et al., 2000). Knowledge gained on SigB-GSR in Bacillus is transferable to studying the above-mentioned foodborne pathogens and has practical implications for food quality and safety concerning food processing design and improving food safety prediction modeling tools.

6.3.1 Implications in the study of other foodborne pathogens

The studies of GSR in *L. monocytogenes* and *S. aureus* are discussed in other reviews (see Chapter 1), so this discussion only highlights the transferable knowledge gained on SigB and SigB-GSR to the development of new therapeutics in treating pathogens like *L. monocytogenes* and *S. aureus*. SigB enhances the tolerance of *L. monocytogenes* and *S. aureus* to different classes of antibiotics and supports cells to escape the host cell immune systems. Therefore, SigB inhibitors like fluoro-phenyl-styrene-sulfonamide (Ringus et al., 2013) or PrfA inhibitors in *L. monocytogenes* (methyl-benzothiazole, acetamide) (Tran et al., 2022) could offer a novel solution to reduce the resistance of such a pathogen and provide alternative therapeutic approaches in addition to antibiotics. Similarly, finding inhibiting ligands that bind to the stressosome proteins may provide SigB inhibition effects. The FragLites molecules (halogenated drug-like fragment compounds used in drug discovery studies) (Wood et al., 2019) were found to potentially bind to the RsbR ligand-binding pocket of the *L. monocytogenes* stressosome and may provide information to target-based drug discovery (Unpublished data, PhD thesis Sema Edjer, Newcastle University, 2021), opening up new avenues of research.


6.3.2 Implications for food quality and food safety

As *Bacillus* (and other pathogens) are highly persistent in the environment, they can contaminate raw food ingredients and enter the food chains. Their ability to form biofilms and spores (influenced by SigB) also contributed to their persistence in the food processing plant by contaminating surfaces like storage tanks, pipes, or conveyor belts (Lin et al., 2022). The impact of spore resistance on food safety and quality is well-known, which contributes to cell survival, emergence, and outgrowth in food, reviewed in Wells-Bennik et al. (2016); den Besten et al. (2018) and Setlow and Christie (2021). Moreover, microbes with robust stress adaptation systems may reside in the same processing environments for a long time.

This scenario is of particular importance when foods undergo mild processing, as SigB-GSR in bacteria can be induced by mild stressors and thereby provide cross-protection to the cells against lethal conditions. Mild processing techniques like high-pressure processing, pulsed electric fields, ultrasounds, UV light irradiation, and cold plasma are favored in the food industries as these techniques preserve nutrients and the organoleptic properties of foods (Barba et al., 2017). Moreover, changes in consumer behavior preference for non-processed/mildly-processed foods to date also give impulses to using mild processing techniques. When foods are mildly processed, pathogens in foods (or their toxins) may not be fully inactivated (e.g., *S. aureus* and its heat-resistant toxin) due to their stress-adaptation capability and may lead to increased chances of foodborne outbreak or intoxication. Such events must be avoided by careful analysis of the impact of food processing procedures and conditions on the survival of species of concern.

6.3.2.1 Improvement of food safety prediction modeling tools

Bacillus spp. produce spores that can survive many harsh treatments (Wells-Bennik et al., 2016; Cho and Chung, 2020), but the inactivation of Bacillus vegetative cells is nonetheless important, particularly upon germination and outgrowth. The activation of stress sensing mechanisms such as the SigB GSR potentially impacts the survival of vegetative cells, indicating that variance may exist in the prediction of bacterial inactivation kinetics. Figure 10 shows such differences using B. subtilis wt cells and the $\Delta sigB$ mutant under isothermal heat treatment at 52.5°C, representing the temperature for mild processing. As expected, with a preadaptation treatment at 48°C, wt persisted longer and survived much better (> 3 logs) than the $\Delta sigB$ mutant at 52.5°C. Without the preadaptation treatment, the difference between wt and ΔsigB cells was smaller, but wt cells still showed better fitness than the $\Delta sigB$ cells (higher logs). As SigB is described to be crucial for adaptive stress response but does not have much impact on growth or survival in long-term stress (Pané-Farré et al., 2017; Rodriguez Ayala et al., 2020), these data further emphasized that such stress adaptation mechanisms like SigB GSR may contribute to adaptation to persisting stress, resulting in robust phenotypes. Such physiological responses in bacteria can cause variance in the prediction of bacterial inactivation parameters, and data demonstrated here indicate that it is crucial to determine the dynamics of bacterial inactivation kinetics in specific food compositions under different processing conditions.

Figure 10- Inactivation kinetic model predictions and the microbial counts of *B. subtilis*. wild type (wt) cells versus $\Delta sigB$ mutant during isothermal inactivation at 52.5°C in LB medium without adaptation and with adaptation. wt (**blue**) and $\Delta sigB$ mutant (**red**).

Today, food safety management includes more risk-based than pure hazard-based assessment, leading to the development of many prediction tools, databases, and repositories for improved data analysis (Barlow et al., 2015; Possas et al., 2022). However, uncertainty and variability in risk-based prediction models hamper realistic predictions of microbial behaviors in foods. One such factor is the adaptation capability of organisms (e.g., as influenced by SigB-GSR).

Adaptational events have been shown to account for altered heat resistance traits of *L. monocytogenes* and *Escherichia coli*, leading to inaccurate prediction of inactivation model parameters, and it has been suggested that inactivation model parameters need to be calibrated using experimental data that represent the ability of an organism to adapt (Garre et al., 2018, 2019).

6.4 Concluding remarks and future perspectives

In conclusion, this thesis dissected the SigB-mediated GSR and the role of SigB in *B. subtilis, B. cereus,* and *B. licheniformis,* and provided new insights into the sophisticated SigB regulatory networks of *Bacillus* species, including the identification of SigB-regulated genes/proteins, identification of mild stressors that induce SigB and (putative) proteins involved in SigB signal sensing cascades, and impact on the production of lichenysin.

Notably, not all stressors that trigger the SigB GSR in *Bacillus* environments are known, and studying the response of wt and mutants in the laboratory may not fully reflect actual environmental conditions in the ecological niches. Further studies using strains isolated from natural sources may provide more insight into other stressors and/or SigB signal sensing components that can trigger SigB. Furthermore, the function of SigB may not be restricted to the protection of *Bacillus* cells from sudden exposure to physical or nutritional stressors, but it may play a role in "baseline" functions in other conditions (e.g., unstressed or stresses caused by other factors or long-term stress). However, such baseline level functions need to be further verified, and phenotypes need to be confirmed.

This thesis also sheds more light on lichenysin production by *B. licheniformis*. SigB was found to play a minor role in the production of this secondary metabolite. Biosurfactants like surfactin and lichenysin are stressors that mildly induce SigB GSR, which conferred a slight advantage to cell survival under lethal stress. Such compounds were found to be produced in different amounts by different strains based on medium composition and culture conditions and are toxic to mammalian and human cells. Therefore, their presence in foods such as milk, or cooked meat and vegetables must be carefully examined via detection followed by quantification. Cell growth to high CFU levels (10⁴-10⁵) which facilitates lichenysin production must be prevented.

The fundamental knowledge gained on SigB GSR and the alternative roles of SigB in other cellular functions/secondary processes in this thesis provided a deeper understanding of stress adaptation mechanisms in *Bacillus* species. Such knowledge can be transferred to studying other related pathogens and have practical implications for the food sector.

6.5 References

- Allard-Massicotte, R., Tessier, L., Lécuyer, F., Lakshmanan, V., Lucier, J.-F., Garneau, D., et al. (2016). Bacillus subtilis
 early colonization of arabidopsis thaliana roots involves multiple chemotaxis receptors. mBio 7, e01664-16. doi:
 10.1128/mBio.01664-16.
- Arnaouteli, S., Bamford, N. C., Stanley-Wall, N. R., and Kovács, Á. T. (2021). Bacillus subtilis biofilm formation and social interactions. Nat. Rev. Microbiol. 19, 600–614. doi: 10.1038/s41579-021-00540-9.
- Barba, F. J., Koubaa, M., do Prado-Silva, L., Orlien, V., and Sant'Ana, A. de S. (2017). Mild processing applied to the inactivation of the main foodborne bacterial pathogens: A review. Trends Food Sci. Technol. 66, 20–35. doi: 10.1016/j.tifs.2017.05.011.
- 4. Barlow, S. M., Boobis, A. R., Bridges, J., Cockburn, A., Dekant, W., Hepburn, P., et al. (2015). The role of hazard- and risk-based approaches in ensuring food safety. *Trends Food Sci. Technol.* 46, 176–188. doi: 10.1016/j.tifs.2015.10.007.
- Bartolini, M., Cogliati, S., Vileta, D., Bauman, C., Ramirez, W., and Grau, R. (2019a). Stress-responsive alternative sigma factor SigB plays a positive role in the antifungal proficiency of *Bacillus subtilis. Appl. Environ. Microbiol.* 85. doi: 10.1128/AEM.00178-19.
- Bartolini, M., Cogliati, S., Vileta, D., Bauman, C., Rateni, L., Leñini, C., et al. (2018). Regulation of biofilm aging and dispersal in *Bacillus subtilis* by the alternative Sigma factor SigB. *J. Bacteriol.* 201. doi: 10.1128/JB.00473-18.
- Brantl, S., and Licht, A. (2010). Characterisation of *Bacillus subtilis* transcriptional regulators involved in metabolic processes. *Curr. Protein Pept. Sci.* 11, 274–291. doi: 10.2174/138920310791233396.
- 8. Brigulla, M., Hoffmann, T., Krisp, A., Völker, A., Bremer, E., and Völker, U. (2003). Chill Induction of the SigB-dependent general stress response in *Bacillus subtilis* and its contribution to low-temperature adaptation. *J. Bacteriol.* 185, 4305–4314. doi: 10.1128/JB.185.15.4305-4314.2003.
- 9. Chen, J.-C., Liu, J.-H., Hsu, D.-W., Shu, J.-C., Chen, C.-Y., and Chen, C.-C. (2015). Methylatable signaling helix coordinated inhibitory receiver domain in sensor kinase modulates environmental stress response in *Bacillus cereus*. *PloS One* 10, e0137952. doi: 10.1371/journal.pone.0137952.
- 10. Chen, L.-C., Chen, J.-C., Shu, J.-C., Chen, C.-Y., Chen, S.-C., Chen, S.-H., et al. (2012). Interplay of RsbM and RsbK controls the σB activity of *Bacillus cereus. Environ. Microbiol.* 14, 2788–2799. doi: https://doi.org/10.1111/j.1462-2920.2012.02788.x.
- 11. Cheng, C., Dong, Z., Han, X., Sun, J., Wang, H., Jiang, L., et al. (2017). *Listeria monocytogenes* 10403S arginine repressor ArgR finely tunes arginine metabolism regulation under acidic conditions. *Front. Microbiol.* 8, 145. doi: liu.
- 12. Cho, W.-I., and Chung, M.-S. (2020). *Bacillus* spores: a review of their properties and inactivation processing technologies. *Food Sci. Biotechnol.* 29, 1447–1461. doi: 10.1007/s10068-020-00809-4.
- Cozy, L. M., Phillips, A. M., Calvo, R. A., Bate, A. R., Hsueh, Y.-H., Bonneau, R., et al. (2012). SlrA/SlrR/SinR inhibits motility gene expression upstream of a hypersensitive and hysteric switch at the level of σD in *Bacillus subtilis*. *Mol. Microbiol*. 83, 1210–1228. doi: 10.1111/j.1365-2958.2012.08003.x.
- Cue, D., Lei, M. G., Luong, T. T., Kuechenmeister, L., Dunman, P. M., O'Donnell, S., et al. (2009). Rbf promotes biofilm formation by *Staphylococcus aureus* via repression of *icaR*, a negative regulator of *icaADBC*. *J. Bacteriol*. 191, 6363–6373. doi: 10.1128/JB.00913-09.
- de Been, M., Tempelaars, M. H., van Schaik, W., Moezelaar, R., Siezen, R. J., and Abee, T. (2010). A novel hybrid kinase is essential for regulating the sigma(B)-mediated stress response of *Bacillus cereus. Environ. Microbiol.* 12, 730–745. doi: 10.1111/j.1462-2920.2009.02116.x.
- de Vries, Y. P., Hornstra, L. M., Atmadja, R. D., Schaik, W. van, de Vos, W. M., and Abee, T. (2005). Deletion of sigB in Bacillus cereus affects spore properties. FEMS Microbiol. Lett. 252, 169–173. doi: 10.1016/j.femsle.2005.08.042.
- Delumeau, O., Chen, C.-C., Murray, J. W., Yudkin, M. D., and Lewis, R. J. (2006). High-molecular-weight complexes of RsbR and paralogues in the environmental signaling pathway of *Bacillus subtilis*. J. Bacteriol. 188, 7885–7892. doi: 10.1128/JB.00892-06.
- den Besten, H. M. W., Wells-Bennik, M. H. J., and Zwietering, M. H. (2018). Natural diversity in heat resistance of bacteria and bacterial spores: impact on food safety and quality. annu. Rev. Food Sci. Technol. 9, 383–410. doi: 10.1146/annurev-food-030117-012808.
- ECDC (2019). Annual Epidemiological Reports (AERs). Eur. Cent. Dis. Prev. Control. Available at: https://www.ecdc.europa.eu/en/all-topics-z/surveillance-and-disease-data/annual-epidemiological-reports-aers [Accessed April 14, 2021].
- European Commission (2021). RASFF Portal. Available at: https://webgate.ec.europa.eu/rasff-window/screen/search
 [Accessed December 15, 2021].
- European Food Safety Authority (2021). The European Union One Health 2019 zoonoses report. EFSA J. 19, e06406.
 doi: 10.2903/j.efsa.2021.6406.
- Gaidenko, T. A., and Price, C. W. (1998). General stress transcription factor cb and sporulation transcription factor ch each contribute to survival of *Bacillus subtilis* under extreme growth conditions. *J. Bacteriol.* 180, 3730–3733.

- Gao, T., Li, Y., Chai, Y., Wang, Q., and Ding, M. (2021). SigB regulates stress resistance, glucose starvation, MnSOD production, biofilm formation, and root colonization in *Bacillus cereus* 905. *Appl. Microbiol. Biotechnol.* doi: 10.1007/s00253-021-11402-v.
- 24. Garre, A., Egea, J. A., Iguaz, A., Palop, A., and Fernandez, P. S. (2018). Relevance of the induced stress resistance when identifying the critical microorganism for microbial risk assessment. *Front. Microbiol.* 9. Available at: https://www.frontiersin.org/article/10.3389/fmicb.2018.01663 [Accessed May 13, 2022].
- Garre, A., González-Tejedor, G. A., Aznar, A., Fernández, P. S., and Egea, J. A. (2019). Mathematical modelling of the stress resistance induced in *Listeria monocytogenes* during dynamic, mild heat treatments. *Food Microbiol.* 84, 103238. doi: 10.1016/j.fm.2019.06.002.
- 26. Guedon, E., Moore, C. M., Que, Q., Wang, T., Ye, R. W., and Helmann, J. D. (2003). The global transcriptional response of *Bacillus subtilis* to manganese involves the MntR, Fur, TnrA and σB regulons. *Mol. Microbiol.* 49, 1477–1491. doi: 10.1046/j.1365-2958.2003.03648.x.
- 27. Hashem, A., Tabassum, B., and Fathi Abd_Allah, E. (2019). *Bacillus subtilis*: A plant-growth promoting rhizobacterium that also impacts biotic stress. *Saudi J. Biol. Sci.* 26, 1291–1297. doi: 10.1016/j.sjbs.2019.05.004.
- 28. Hayrapetyan, H., Tempelaars, M., Nierop Groot, M., and Abee, T. (2015). *Bacillus cereus* ATCC 14579 RpoN (Sigma 54) Is a pleiotropic regulator of growth, carbohydrate metabolism, motility, biofilm formation and toxin production. *PLoS ONE* 10, e0134872. doi: 10.1371/journal.pone.0134872.
- Holtmann, G., Brigulla, M., Steil, L., Schütz, A., Barnekow, K., Völker, U., et al. (2004). RsbV-independent induction of the sigb-dependent general stress regulon of *Bacillus subtilis* during growth at high temperature. *J. Bacteriol.* 186, 6150– 6158. doi: 10.1128/JB.186.18.6150-6158.2004.
- 30. Impens, F., Rolhion, N., Radoshevich, L., Bécavin, C., Duval, M., Mellin, J., et al. (2017). N-terminomics identifies Prli42 as a membrane miniprotein conserved in Firmicutes and critical for stressosome activation in *Listeria monocytogenes*. *Nat. Microbiol.* 2, 17005. doi: 10.1038/nmicrobiol.2017.5.
- 31. Lin, Y., Briandet, R., and Kovács, Á. T. (2022). *Bacillus cereus sensu lato* biofilm formation and its ecological importance. *Biofilm* 4, 100070. doi: 10.1016/j.bioflm.2022.100070.
- 32. Marles-Wright, J., and Lewis, R. J. (2008). The Bacillus subtilis stressosome. Commun. Integr. Biol. 1, 182-184.
- 33. Mascher, T., Margulis, N. G., Wang, T., Ye, R. W., and Helmann, J. D. (2003). Cell wall stress responses in *Bacillus subtilis*: the regulatory network of the bacitracin stimulon. *Mol. Microbiol.* 50, 1591–1604. doi: 10.1046/j.1365-2958.2003.03786.x.
- 34. Mauri, M., and Klumpp, S. (2014). A model for sigma factor competition in bacterial cells. *PLOS Comput. Biol.* 10, e1003845. doi: 10.1371/journal.pcbi.1003845.
- Mikkola, R., Kolari, M., Andersson, M. A., Helin, J., and Salkinoja-Salonen, M. S. (2000). Toxic lactonic lipopeptide from food poisoning isolates of *Bacillus licheniformis*. Eur. J. Biochem. 267, 4068–4074. doi: 10.1046/j.1432-1033.2000.01467.x.
- Nadezhdin, E., Murphy, N., Dalchau, N., Phillips, A., and Locke, J. C. W. (2020). Stochastic pulsing of gene expression enables the generation of spatial patterns in *Bacillus subtilis* biofilms. *Nat. Commun.* 11, 950. doi: 10.1038/s41467-020-14431-9.
- Nannapaneni, P., Hertwig, F., Depke, M., Hecker, M., Mäder, U., Völker, U., et al. (2012). Defining the structure of the general stress regulon of *Bacillus subtilis* using targeted microarray analysis and random forest classification. *Microbiol. Read. Engl.* 158, 696–707. doi: 10.1099/mic.0.055434-0.
- Pandey, S. K., Melichercik, M., Řeha, D., Ettrich, R. H., and Carey, J. (2020). Conserved dynamic mechanism of allosteric response to L-arg in divergent bacterial arginine repressors. *Molecules* 25, 2247. doi: 10.3390/molecules25092247.
- 39. Pané-Farré, J., Quin, M. B., Lewis, R. J., and Marles-Wright, J. (2017). Structure and function of the stressosome signalling hub. *subcell. Biochem.* 83, 1–41. doi: 10.1007/978-3-319-46503-6_1.
- Petersohn, A., Brigulla, M., Haas, S., Hoheisel, J. D., Völker, U., and Hecker, M. (2001). Global analysis of the general stress response of *Bacillus subtilis*. J. Bacteriol. 183, 5617–5631. doi: 10.1128/JB.183.19.5617-5631.2001.
- 41. Polechová, J., and Storch, D. (2019). "Ecological Niche," in *Encyclopedia of Ecology (Second Edition)*, ed. B. Fath (Oxford: Elsevier), 72–80. doi: 10.1016/B978-0-12-409548-9.11113-3.
- 42. Possas, A., Valero, A., and Pérez-Rodríguez, F. (2022). New software solutions for microbiological food safety assessment and management. *Curr. Opin. Food Sci.* 44, 100814. doi: 10.1016/j.cofs.2022.100814.
- 43. Powers, M. J., Sanabria-Valentín, E., Bowers, A. A., and Shank, E. A. (2015). Inhibition of cell differentiation in *Bacillus subtilis* by pseudomonas protegens. *J. Bacteriol.* 197, 2129–2138. doi: 10.1128/JB.02535-14.
- 44. Radhakrishnan, R., Hashem, A., and Abd_Allah, E. F. (2017). *Bacillus*: A biological tool for crop improvement through bio-molecular changes in adverse environments. *Front. Physiol.* 8. doi: 10.3389/fphys.2017.00667.
- 45. Reder, A., Albrecht, D., Gerth, U., and Hecker, M. (2012a). Cross-talk between the general stress response and sporulation initiation in *Bacillus subtilis* the σB promoter of spo0E represents an AND-gate. *Environ. Microbiol.* 14, 2741–2756. doi: https://doi.org/10.1111/j.1462-2920.2012.02755.x.
- Reder, A., Gerth, U., and Hecker, M. (2012b). Integration of σB activity into the decision-making process of sporulation initiation in *Bacillus subtilis*. J. Bacteriol. 194, 1065–1074. doi: 10.1128/JB.06490-11.
- 47. Ringus, D. L., Gaballa, A., Helmann, J. D., Wiedmann, M., and Boor, K. J. (2013). Fluoro-phenyl-styrene-sulfonamide, a novel inhibitor of σB activity, prevents the activation of σB by environmental and energy stresses in *Bacillus subtilis. J. Bacteriol.* 195, 2509–2517. doi: 10.1128/JB.00107-13.
- 48. Rodriguez Ayala, F., Bartolini, M., and Grau, R. (2020). The stress-responsive alternative sigma factor SigB of *Bacillus subtilis* and its relatives: an old friend with new functions. *Front. Microbiol.* 11. doi: 10.3389/fmicb.2020.01761.

- 49. Rothstein, D. M., Lazinski, D., Osburne, M. S., and Sonenshein, A. L. (2017). A mutation in the *Bacillus subtilis rsbU* gene that limits rna synthesis during sporulation. *J. Bacteriol.* 199. doi: 10.1128/JB.00212-17.
- 50. Salkinoja-Salonen, M. S., Vuorio, R., Andersson, M. A., Kämpfer, P., Andersson, M. C., Honkanen-Buzalski, T., et al. (1999). Toxigenic strains of *Bacillus licheniformis* related to food poisoning. *Appl. Environ. Microbiol.* 65, 4637–4645.
- 51. Saxena, A. k., Kumar, M., Chakdar, H., Anuroopa, N., and Bagyaraj, D. j. (2020). *Bacillus* species in soil as a natural resource for plant health and nutrition. *J. Appl. Microbiol.* 128, 1583–1594. doi: 10.1111/jam.14506.
- 52. Schultz, D., Wolynes, P. G., Jacob, E. B., and Onuchic, J. N. (2009). Deciding fate in adverse times: sporulation and competence in *Bacillus subtilis. Proc. Natl. Acad. Sci.* 106, 21027–21034. doi: 10.1073/pnas.0912185106.
- Scott, E., and Dyer, D. W. (2012). Divergence of the SigB regulon and pathogenesis of the Bacillus cereus sensu lato group. BMC Genomics 13, 564. doi: 10.1186/1471-2164-13-564.
- 54. Setlow, P., and Christie, G. (2021). What's new and notable in bacterial spore killing! World J. Microbiol. Biotechnol. 37, 144. doi: 10.1007/s11274-021-03108-0.
- Shemesh, M., and Chai, Y. (2013). A combination of glycerol and manganese promotes biofilm formation in *Bacillus subtilis* via histidine kinase KinD signaling. *J. Bacteriol.* 195, 2747–2754. doi: 10.1128/JB.00028-13.
- Shi, L., Pigeonneau, N., Ravikumar, V., Dobrinic, P., Macek, B., Franjevic, D., et al. (2014). Cross-phosphorylation of bacterial serine/threonine and tyrosine protein kinases on key regulatory residues. *Front. Microbiol.* 5, 495. doi: 10.3389/fmicb.2014.00495.
- Sun, G., Yang, M., Jiang, L., and Huang, M. (2021). Regulation of pro-σK activation: a key checkpoint in *Bacillus subtilis* sporulation. *Environ. Microbiol.* 23, 2366–2373. doi: 10.1111/1462-2920.15415.
- Tran, T. T., Mathmann, C. D., Gatica-Andrades, M., Rollo, R. F., Oelker, M., Ljungberg, J. K., et al. (2022). Inhibition of the master regulator of *Listeria monocytogenes* virulence enables bacterial clearance from spacious replication vacuoles in infected macrophages. *PLOS Pathog.* 18, e1010166. doi: 10.1371/journal.ppat.1010166.
- Tran, V., Geraci, K., Midili, G., Satterwhite, W., Wright, R., and Bonilla, C. Y. (2019a). Resilience to oxidative and nitrosative stress is mediated by the stressosome, RsbP and SigB in *Bacillus subtilis. J. Basic Microbiol.* 59, 834–845. doi: 10.1002/jobm.201900076.
- Tran, V., Geraci, K., Midili, G., Satterwhite, W., Wright, R., and Bonilla, C. Y. (2019b). Resilience to oxidative and nitrosative stress is mediated by the stressosome, RsbP and SigB in *Bacillus subtilis*. *J. Basic Microbiol*. 59, 834–845. doi: 10.1002/jobm.201900076.
- 61. Tzipilevich, E., Pollak-Fiyaksel, O., Shraiteh, B., and Ben-Yehuda, S. (2022). Bacteria elicit a phage tolerance response subsequent to infection of their neighbors. *EMBO J.* 41, e109247. doi: 10.15252/embj.2021109247.
- 62. van Schaik, W. (2005). The alternative sigma factor SigmaB and the stress response of *Bacillus cereus*. Available at: https://edepot.wur.nl/121666.
- 63. Voelker, U., Voelker, A., Maul, B., Hecker, M., Dufour, A., and Haldenwang, W. G. (1995). Separate mechanisms activate sigma B of *Bacillus subtilis* in response to environmental and metabolic stresses. *J. Bacteriol.* 177, 3771–3780.
- Vohradsky, J., Schwarz, M., Ramaniuk, O., Ruiz-Larrabeiti, O., Vaňková Hausnerová, V., Šanderová, H., et al. (2021).
 Kinetic modeling and meta-analysis of the *Bacillus subtilis* SigB regulon during spore germination and outgrowth.
 Microorganisms 9, E112. doi: 10.3390/microorganisms9010112.
- Wells-Bennik, M. H. J., Eijlander, R. T., den Besten, H. M. W., Berendsen, E. M., Warda, A. K., Krawczyk, A. O., et al. (2016). Bacterial spores in food: survival, emergence, and outgrowth. *Annu. Rev. Food Sci. Technol.* 7, 457–482. doi: 10.1146/annurev-food-041715-033144.
- WHO (2015). WHO estimates of the global burden of foodborne diseases: foodborne disease burden epidemiology reference group 2007-2015. World Health Organization Available at: https://apps.who.int/iris/handle/10665/199350 [Accessed April 14, 2021].
- Williams, A. H., Redzej, A., Rolhion, N., Costa, T. R. D., Rifflet, A., Waksman, G., et al. (2019). The cryo-electron microscopy supramolecular structure of the bacterial stressosome unveils its mechanism of activation. *Nat. Commun.* 10, 3005. doi: 10.1038/s41467-019-10782-0.
- Wood, D. J., Lopez-Fernandez, J. D., Knight, L. E., Al-Khawaldeh, I., Gai, C., Lin, S., et al. (2019). FragLites—minimal, halogenated fragments displaying pharmacophore doublets. an efficient approach to druggability assessment and hit generation. J. Med. Chem. 62, 3741–3752. doi: 10.1021/acs.jmedchem.9b00304.
- Xu, S., Yang, N., Zheng, S., Yan, F., Jiang, C., Yu, Y., et al. (2017). The spoOA-sinI-sinR regulatory circuit plays an essential role in biofilm formation, nematicidal activities, and plant protection in *Bacillus cereus* AR156. *Mol. Plant-Microbe Interactions*® 30, 603–619. doi: 10.1094/MPMI-02-17-0042-R.
- Yeak, K. C., Palmont, P., Rivière, G., Bemrah, N., den Besten, H. M. W., and Zwietering, M. H. (2022). Microbial and chemical hazard identification in infant food chains. *Glob. Pediatr.* 2, 100010. doi: 10.1016/j.gpeds.2022.100010.
- 71. Zhang, S., and Haldenwang, W. G. (2005). Contributions of ATP, GTP, and redox state to nutritional stress activation of the *Bacillus subtilis* oB transcription factor. *J. Bacteriol.* 187, 7554–7560. doi: 10.1128/JB.187.22.7554-7560.2005.
- Zhu, B., and Stülke, J. (2018). SubtiWiki in 2018: from genes and proteins to functional network annotation of the model organism *Bacillus subtilis*. Nucleic Acids Res. 46, D743–D748. doi: 10.1093/nar/gkx908.

APPENDIX

- Summary (English)
- Layman summary for general audiences (English)
- Ringkasan khalayak Publik (Bahasa Malaysia)
- ₫ 论文简明摘要总结
- O resumo da tese para o público em geral (Português)
- **Acknowledgments**
- **4** About the author
- List of publications
- Overview of completed training activities

Summary

The endospore formers *Bacillus subtilis*, *Bacillus cereus*, and *Bacillus licheniformis* can rapidly adapt to environmental stresses via the general stress response (GSR), which is mediated by the master regulator of stress: the alternative Sigma factor B (SigB). The SigB-GSR is one of the most important stress responses and is crucial to conferring multiple resistances to *Bacillus* cells and supporting their survival in changing environments. Additionally, SigB is involved in regulating several other cellular processes related to stress resistance, e.g., sporulation, biofilm formation, and the production of antimicrobial peptides. The various elements involved in the SigB GSR are well-characterized for a model strain of *B. subtilis*, i.e., the stress signals (stressors) that trigger SigB, the different SigB signaling cascades, the group of SigB-dependent genes regulated in response to stress (namely, the SigB regulon), and the alternative functions of SigB in other cellular processes (Chapter 1). However, the entire SigB GSR mechanism is sophisticated and has not yet been fully elucidated to date. The complete structure of the SigB regulon and regulatory networks in *B. subtilis* remains incomplete. In addition, the SigB GSR mechanisms and functions are less understood in other *B. subtilis* group members and the foodborne pathogen *B. cereus*.

This thesis presents further insights into the SigB-mediated GSR in *B. subtilis, B. cereus,* and *B. licheniformis,* as well as other Bacillales members. **Chapter 2** of this thesis further dissected the SigB regulon of *B. subtilis* using a SigB promoter binding motif (PBM) derived from the promoter sequences of all so far known SigB regulated genes. Novel putative SigB regulon candidates with SigB PBMs were revealed (156), extending the SigB theoretical regulon to > 500 members in this organism. SigB-dependent regulation of selected newly identified promoters was confirmed experimentally. Additionally, species-specific SigB regulon structures and signaling cascades in 106 other Bacillales members were unraveled. Although many Bacillales members contain genes orthologous to the SigB regulon members of *B. subtilis* 168, not all have a SigB PBM. Some Bacillales members appeared to have reassigned SigB PBM to selected genes from the shared gene pool, likely related to survival in different ecological niches.

Notably, many SigB regulon members of *B. subtilis* 168 have orthologs in the closely-related species, *B. cereus*. The SigB regulon of *B. cereus* in response to heat stress was examined indepth via a proteomics approach backed up with transcriptomics data in **Chapter 3**. The putative SigB regulon of *B. cereus* was expanded from ~ 30 to > 300 members, and a SigB subregulon (> 180) controlled by the SigB-dependent phosphotransferase protein (Bc1009) was identified. Additionally, the Bc1009-controlled SigB subregulon was also differentially regulated in non-heat-stressed $\Delta sigB$ and $\Delta bc1009$ mutants compared to wild-type cells at 30°C,

A

implying putative SigB functions at 30°C. Phenotypic assays confirmed the roles of SigB and Bc1009 in heat resistance and motility.


Subsequently, in **Chapter 4,** the influence of SigB on secondary metabolite (the surfactant and antimicrobial peptide-lichenysin) production was demonstrated in *B. licheniformis*, showing that SigB-deficient cells produced ~ 25% less lichenysin than the wild type cells under optimal growth conditions. However, lichenysin production was not directly regulated by SigB. A mild surfactant-induced SigB-GSR on lethal stress resistance was shown by exposing *B. licheniformis* cells to lichenysin or surfactin, and subsequently to lethal ethanol conditions. Likewise, the similar compound - surfactin produced by *B. subtilis* induced mild SigB GSR in *B. subtilis* and provided modest protection to the cells under lethal ethanol conditions.

As lichenysin and surfactin are potential food poisoning agents, lichenysin production by *B. licheniformis* food isolates was investigated in **Chapter 5**. The amounts produced by three selected isolates under different conditions showed that lichenysin production is highly dependent on medium composition, strain, temperature, and culture condition. The toxicities of lichenysin and surfactin to human cells were also determined, implicating that risks of foodborne intoxication may arise if growth to high levels is supported in foods and the product is subsequently ingested by humans.

Chapter 6 discussed the experimental results obtained in the research chapters (2-5). Firstly the new insights gained on the SigB-mediated mechanisms in *Bacillus* species are discussed. These insights are linked with ecological aspects of SigB and SigB-GSR in relation to the persistence of microorganisms. Lastly, implications of the role of SigB in the study of other pathogenic species and practical implications relevant to the food sector are discussed.

Layman summary for general audiences (English)

The group of bacteria called *Bacillus* is one of the biggest and most well-known groups of bacteria living in soils. This thesis investigated the stress management strategies of this bacterial group in depth, specifically in three renowned members, namely *Bacillus subtilis*, *Bacillus cereus*, and *Bacillus licheniformis*. Two of them (Subtilis and Licheniformis) are often used as a cell factory to produce many valuable enzymes, like your detergents at home, but Cereus is the bad guy and can contaminate the food you eat and make you sick. So, when you experience diarrhea or vomiting, Cereus can be the culprit! These three bacteria are widespread in the environment and thus often exposed to stressful situations, like extreme heat or cold temperature or lack of nutrients. However, they manage such stressful situations very well, specifically through a stress management mechanism known as the general stress response (GSR). This GSR response is controlled by a crucial protein called Sigma B (SigB).

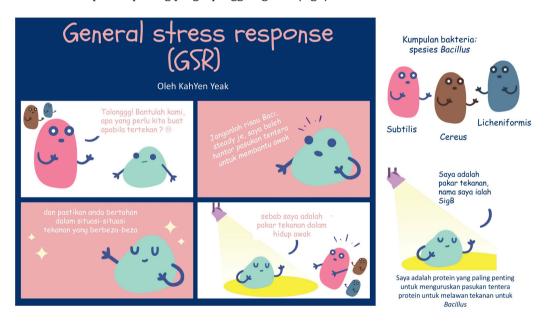
SigB is the master for stress management for this group of bacteria (*Bacillus*), just like humans' brains. When humans are stressed, our brain processes this information and activates responses to either prepare us to run away or fight back. Like humans, when *Bacillus* encounter stress (imagine a 42°C hot summer day), the SigB master gets activated and acts like a commander, to order the production of many proteins to help *Bacillus* to fight stress and survive. Besides managing stress, the SigB master controls several other processes in *Bacillus*, such as turning the cells into a dormant state or producing slimy compounds to protect cells.

The entire SigB-controlled mechanism is very complicated, including 1) different environmental stress signals that turn on this master regulator, 2) the different pathways used to activate the SigB master, 3) a troop of genes and proteins armies controlled by SigB to fight stress, and 4) the miscellaneous functions

of SigB other than dealing with stress. **Chapter 1** introduces **everything you know or others worth knowing** about *Bacillus*, its beneficial or pathogenic roles, and their stress management strategies. **Chapter 2** investigated whether the commands from SigB are delivered to the stress-fighting protein armies directly or indirectly through a secondary messenger, and found that it can occur either way. Furthermore, we revealed that the number of known stress-fighting army troops increased from about 200 members to > 500 in *Bacillus*. Therefore, **even though the SigB-controlled mechanism is well-known, there is always more to explore**. Besides, we also checked for the presence or absence of such SigB-controlled stress management strategies in the close and far relatives of *Bacillus*, and uncovered that it exists in many other bacteria groups.

Chapter 3 showed that the primary responsibility of the SigB master is to manage stress but still has other roles in *Bacillus*, such as controlling the bacterium swimming activity. Besides that, the SigB manager communicates with other *Bacillus* managers, like the manager for foods and nutrients, to select the carbohydrate or protein sources to take in. Results obtained implied that even though the stress management function for the SigB master is well-defined, it is not the only observed crucial function.

Subsequently, in **Chapter 4**, we studied the role of the SigB master in controlling the production of a detergent-like compound (called lichenysin) and examined whether the exposure to this compound caused stress in *Bacillus*. Our results showed that exposure to lichenysin activated the SigB master modestly. This activation provided small protection to *Bacillus* when exposed to other lethal stress, demonstrating that a **mildly stressful condition is stressful, and a mild response is still a response**.


This detergent-like compound (lichenysin) can be a potential food poisoning agent and is produced by all Licheniformis members. Therefore, we also investigated the production of this compound by selected Licheniformis members in food and determined its toxicity to human cells in **Chapter 5**. Results showed that the amounts of produced lichenysin varied extensively between different Licheniformis members and depended on food compositions, temperatures, and cultivation conditions. We also showed that this compound is toxic to humans and mammalian cells. These results implied that there may be a risk of foodborne intoxication if the bacterium is allowed to grow in foods and such foods are subsequently ingested by humans. Hence, **unknown toxicity of a compound is not non-toxic, and the toxin (lichenysin) toxicity is cumulative**.

Lastly, **Chapter 6** discusses **the discovery in this thesis from different perspectives based on scientific evidence.** Firstly, the new insights obtained for the SigB master and other mechanisms that it controls. Secondly, how these stress management strategies contributed to the persistence of *Bacillus* in environments. Finally, the implications of such obtained knowledge in the study of other pathogenic bacteria and other practical implications relevant to the food sector.

Ringkasan khalayak Publik (Bahasa Malaysia)

PS: Thanks Theo and Sylviani for cross-checking the text

Kumpulan bakteria yang dipanggil *Bacillus* adalah salah satu kumpulan bakteria terbesar dan paling terkenal yang hidup di dalam tanah. Tesis ini menyiasat strategi pengurusan tekanan kumpulan bakteria ini secara mendalam, khususnya dalam tiga ahli yang terkenal, iaitu *Bacillus subtilis*, *Bacillus cereus*, dan *Bacillus licheniformis*. Dua daripadanya (Subtilis dan Licheniformis) sering digunakan sebagai kilang sel untuk menghasilkan banyak enzim berharga, seperti detergen di rumah anda, tetapi Cereus adalah patogenik, dan boleh menyebabkan penyakit keracunan makanan. Apabila anda mengalami cirit-birit atau muntah, Cereus boleh menjadi puncanya! Ketiga bakteria ini tersebar luas di alam sekitar, oleh itu sering terdedah kepada situasi tekanan, seperti haba melampau, suhu sejuk atau kekurangan nutrien. Walau bagaimanapun, mereka menguruskan situasi tekanan sedemikian dengan baik, khususnya melalui mekanisme pengurusan tekanan yang dikenali sebagai General Stress Response (GSR). Tindak balas GSR ini dikawal oleh protein penting yang dipanggil Sigma B (SigB).

SigB ialah pakar tekanan utama untuk kumpulan bakteria ini (*Bacillus*), sama seperti otak manusia. Apabila manusia tertekan, otak kita memproses maklumat ini dan mengaktifkan tindak balas untuk menyediakan kita melarikan diri atau melawan. Seperti manusia, apabila *Bacillus* menghadapi tekanan (bayangkan hari musim panas 42°C), SigB akan diaktifkan dan bertindak seperti komander, untuk memerintahkan pengeluaran banyak protein untuk membantu *Bacillus* melawan tekanan dan terus hidup. Selain daripada pengurusan tekanan, SigB juga mengawal beberapa proses yang lain dalam *Bacillus*, seperti mengubah sel ke keadaan yang tidak aktif atau menghasilkan sebatian berlendir untuk melindungi sel.

Keseluruhan mekanisme yang dikawalkan oleh SigB adalah sophistikated, termasuk 1) isyarat tekanan persekitaran berbeza yang mengaktifkan SigB, 2) laluan berbeza yang digunakan untuk mengaktifkan SigB, 3) sekumpulan tentera gen dan protein dikawalkan oleh SigB untuk melawan tekanan, dan 4) pelbagai fungsi SigB selain daripada menangani tekanan.

Bab 1 memperkenalkan segala-gala maklumat tentang *Bacillus* and lain-lain yang patut diketahui tentang *Bacillus*, iaitu peranannya yang bermanfaat atau patogenik, dan strategi pengurusan tekanan mereka. **Bab 2** menyiasat sama ada arahan daripada SigB dihantar kepada tentera protein yang melawan tekanan secara langsung, atau tidak langsung melalui pengawal selia lain, dan mendapati bahawa ia boleh berlaku sama ada cara. Selain itu, kami mendedahkan bahawa bilangan tentera-tentera protein yang melawan tekanan meningkat dari kira-kira 200 anggota menjadi > 500 di *Bacillus*. Oleh kerana itu, walaupun mekanisme dikawal oleh SigB terkenal, masih ada yang lain perlu diterokai. Sebagai tambahan, kami juga menyiasat kehadiran atau ketiadaan strategi pengurusan tekanan terkawal SigB dalam saudara bakteria terdekat atau pun jauh daripada *Bacillus*. Kami mendapati bahawa ia wujud dalam banyak kumpulan bakteria yang lain.

Bab 3 menunjukkan bahawa tanggungjawab utama SigB adalah untuk menguruskan tekanan, tetapi masih mempunyai peranan lain dalam Bacillus, seperti mengawal aktiviti bergerak bakteria. Selain itu, SigB berkomunikasi dengan pengurus lain di Bacillus juga, seperti pengurus untuk makanan dan nutrien, untuk memilih sumber karbohidrat atau protein. Keputusan yang diperoleh menunjukkan bahawa walaupun fungsi pengurusan tekanan untuk SigB ditafsirkan dengan baik, ia bukan satu-satunya fungsi penting yang diperhatikan. Selepas itu, dalam Bab 4, kami mengkaji peranan SigB dalam mengawal pengeluaran kompaun seperti detergen (dipanggil lichenysin) dan mengkaji sama ada pendedahan kepada sebatian ini menyebabkan tekanan dalam Bacillus. Keputusan kami menunjukkan bahawa pendedahan kepada lichenysin mengaktifkan SigB secara sederhana. Pengaktifan ini memberikan perlindungan kecil kepada Bacillus apabila terpapar kepada tekanan maut yang lain. Walaupun tindak balas terhadap tekanan boleh dikatakan ringan, tekanan yang berlaku mahupun tidak boleh diabaikan. Kompaun seperti detergen (lichenysin) ini boleh menjadi agen keracunan makanan yang berpotensi dan dihasilkan oleh semua ahli Licheniformis. Oleh itu, kami juga menyiasat pengeluaran kompaun ini oleh ahli Licheniformis yang terpilih dalam makanan dan menentukan ketoksikannya terhadap sel manusia dalam Bab 5. Keputusan menunjukkan bahawa jumlah lichenysin yang dihasilkan berbeda secara meluas antara ahli Licheniformis yang berbeza, dan bergantung kepada komposisi makanan, suhu, dan kondisi pertumbuhan. Kami juga menunjukkan bahawa kompaun ini adalah toksik untuk manusia dan sel mamalia. Keputusan ini mengimplikasikan potensi risiko keracunan makanan jika bakteria dibiarkan tumbuh dalam makanan, dan makanan tersebut kemudiannya dimakan oleh manusia. Oleh itu, ketoksikan yang tidak diketahui bukan bererti tidak toksik, dan ketoksikan (lichenysin) adalah kumulatif.

Terakhir, **Bab 6** membincangkan penemuan dalam tesis ini dari perspektif yang berbeza berdasarkan bukti saintifik. Pertama, cerapan baharu yang diperoleh untuk SigB dan mekanisme lain yang dikawalnya. Kedua, bagaimana strategi pengurusan tekanan ini menyumbang kepada ketahanan *Bacillus* dalam lingkungannya, dan akhirnya, implikasi pengetahuan yang diperoleh untuk mengkaji bakteria patogen yang lain dan implikasi praktikal lain yang berkaitan dengan sektor makanan.

论文简明摘要总结 (马来西亚中文)

PS: Thanks Yue and Jingya for cross-checking the text

称为芽孢杆菌的细菌群(Bacillus)是生活在土壤中的最大和最知名的细菌群之一。本论文深入研究了该菌群的压力管理策略,特别是最著名的三个成员,Bacillus subtilis,Bacillus cereus,和 Bacillus licheniformis。其中两个(Subtilis和Licheniformis)经常被用作细胞工厂来生产许多有价值的enzymes(酶),就像在我们家中的洗涤剂一样,但 Cereus 是三个成员中不好的那一个,会污染食物并致病。因此,当我们出现腹泻或呕吐时,Cereus 可能就是罪魁祸首!这三种细菌广泛存在于环境中,因此经常会面对不同的压力环境,例如极热或极冷的温度又或是缺乏营养。然而,他们还是可以很好地处理这种压力情况,特别是通过一种称为 General Stress Response (GSR) 的压力管理机制。这种 GSR 反应由一种称为 Sigma B (SigB) 的关键蛋白质控制。

SigB 是这组细菌(Bacillus)的压力管理大师,就像人类的大脑一样。当人类受到压力时,我们的大脑会处理这些信息并激活反应,让我们准备逃跑或反击。与人类一样,当 Bacillus 遇到压力时(想象一个 42°C 的炎热夏天), SigB 会被激活并充当指挥官,命令体内的管理系统去生产许多蛋白质来帮助 Bacillus 去对抗压力并生存。除了管理压力外,SigB 还可以控制 Bacillus 的其他机制,例如使细胞进入体眠状态或产生粘稠的化合物来保护细胞免受破坏。整个 SigB 控制的机制非常复杂,包括 1) 不同的环境压力信号可以激活 SigB,2) 不同的途径可以用于激活 SigB,3) SigB 可以控制一组基因和蛋白质军队去对抗不同的压力环境,以及 4) SigB 除了处理压力外,还有其他的主要功能。

第一章 介绍了有关于 Bacillus 的所有知识或其他值得了解的内容、包括了其有益或致病作用以及它们的压力管理策略。第二章 研究了来自 SigB 的命令是直接还是通过次要信使间接传递给抗压蛋白大军,并发现这两种方式都可能发生。此外,我们还发现,在 Bacillus 里的已知抗压蛋白大军数量已经从大

约 200 个增加到大约 500 个。因此,尽管我们已经掌控 SigB 控制的基本机制,当中还是有非常多值得探索的地方。此外,我们还检查了 *Bacillus* 以外的其他细菌群是否存在这种 SigB 控制的压力管理策略,并发现它存在于许多其他的细菌群中。

第三章 表明, 虽然 SigB 的主要功能是压力管理,但仍然具有其他功能,例如控制细菌的游泳活动。 除此之外,SigB 像一个管理员,还能与在 *Bacillus* 里的其他管理员(如食物和营养管理员)进行沟通,并一起选择要摄入的碳水化合物或蛋白质来源。获得的结果证明,即使 SigB 的主要功能是压力管理,它并不是唯一观察到的关键功能。

随后,在**第四章**中,我们首先研究了 SigB 对类似于洗涤剂物质(称为 Lichenysin-表面活性剂)制造的控制管理,并检查了当将 *Bacillus* 暴露于这种物质时,是否会对它们造成一种压力环境。我们获得的结果表明,暴露于 Lichenysin 这种物质会导致细菌遭受轻度的压力,而这种轻度压力环境可以适度激活 *Bacillus* 的 SigB 功能,并在激活后可以更佳地保护细菌不受其他致命压力的损害。这章表明轻度的压力还是一种压力,并会激活连锁和轻度的压力反应。

所有的 Licheniformis 细菌成员都可以在体内制造这种 Lichenysin 表面活性剂,如果这些细菌刚好生存在食物中并制造这种物质,就有可能会导致食物中毒。因此,我们在**第五章**中研究了 Licheniformis 细菌成员在食物里制造 Lichenysin 的情况,并确定了其对人体细胞的毒性。研究结果表明,不同 Licheniformis 细菌成员之间制造的 Lichenysin 数量差异非常大,并且取决于食物成分、温度和生长条件。我们还发现这种物质对人类和哺乳动物细胞有毒。这些结果都表明,如果允许细菌在食物中生长并制造 Lichenysin,而这些食物随后被人类摄入的话,很大可能会导致食源性中毒。因此,未知毒性的物质并非都是无毒的,而 Lichenysin 毒素的毒性通常都是累积性的。

最后,**第六章里,**基于科学证据, 我们从不同的角度探讨了本论文的发现。首先,我们获得了关于 SigB 及其控制的其他机制的新见解。其次,我们了解了这些压力管理策略如何帮助 *Bacillus* 在不同的 地理环境中持续生存。最后,我们提出了如何将获得的这些细菌抗压知识用于其他病原菌的研究,与其他用于提升相关食品安全的实际用途。

O resumo da tese para o público em geral (Português)

PS: Thanks Nayara for translating the text

O grupo de bactérias chamado Bacillus é um dos maiores e mais conhecidos grupos de bactérias que vivem em solos. Esta tese investigou aprofundadamente as estratégias de gestão de stress deste grupo bacteriano, especificamente três membros de renome, chamados de Bacillus subtilis, Bacillus cereus e Bacillus licheniformis. Dois deles (Subtilis e Licheniformis) são frequentemente usados como fábrica de células para produzir muitas enzimas valiosas e importantes, tais como os detergentes usados na limpeza de casa. No entanto, o Cereus é um vilão que pode contaminar os alimentos e causar doenças nos seres humanos. Dessa forma, quando você tiver diarréia ou vômito, Cereus pode ser o culpado disso! Essas três bactérias estão espalhadas no meio ambiente e, portanto, são frequentemente expostas a situações estressantes, tais como calor ou frio extremos ou falta de nutrientes. Nessas situações, elas driblam essas condições de estresse muito bem, especificamente por meio de um mecanismo de gerenciamento de estresse conhecido como resposta geral ao estresse (GSR). Esta resposta GSR é controlada por uma proteína crucial nesse processo, chamada de Sigma B (SigB).

A SigB é o mestre em gerenciamento de estresse para este grupo de bactérias (Bacillus), assim como os cérebros dos seres humanos. Quando os humanos estão estressados, nosso cérebro processa essas informações e ativa respostas para nos preparar para fugir ou revidar. Assim como os humanos, quando Bacillus encontra-se em estado de estresse (imagine um dia quente de verão de 42°C), o mestre SigB é ativado e age como um comandante, para ordenar a produção de muitas proteínas para ajudar o Bacillus a combater o estresse e sobreviver. Além de gerenciar o estresse, o mestre SigB controla vários outros processos em Bacillus, tais como transformar as células em estado dormente ou produzir compostos viscosos para proteger as células.

Todo o mecanismo controlado por SigB é muito complicado, incluindo 1) diferentes sinais de estresse ambiental que ativam esse regulador mestre, 2) as diferentes vias usadas para ativar o mestre SigB, 3) uma tropa de genes e exércitos de proteínas controlados por SigB para combater o estresse, e 4) as diversas funções do SigB além de lidar com o estresse. **O Capítulo 1** apresenta tudo o que você sabe ou que vale a pena saber sobre Bacillus, seus papéis benéficos ou patogênicos e suas estratégias de gerenciamento de estresse. O **Capítulo 2** investigou se os comandos do SigB são entregues direta ou indiretamente aos exércitos de proteínas de combate ao estresse por meio de um mensageiro secundário e descobriu que isso pode ocorrer de qualquer maneira. Além disso, revelamos que o número de tropas de combate ao estresse conhecidas aumentou de cerca de 200 membros para > 500 em Bacillus. Portanto, embora o mecanismo controlado por SigB seja bem conhecido, sempre há mais o que explorar. Além disso, também verificamos a presença ou ausência de tais estratégias de gerenciamento de estresse controladas por SigB em espécies de bactérias similares e distantes dos Bacillus e descobrimos que elas existem em muitos outros grupos de bactérias.

O **Capítulo 3** mostrou que a principal responsabilidade do mestre SigB é gerenciar o estresse, mas essa proteína ainda tem outros papéis no Bacillus, como controlar a "atividade de natação" da bactéria. Além disso, o manager do SigB se comunica com outros managers do Bacillus, como o manager dos alimentos e nutrientes, para selecionar as fontes de carboidratos ou proteínas a serem ingeridas. Os resultados obtidos indicaram que, embora a função de gerenciamento de estresse para o mestre SigB esteja bem definida, essa não é a única função crucial observada.

Posteriormente, no **Capítulo 4**, estudamos o papel do mestre SigB no controle da produção de um composto do tipo detergente (chamado liquenisina) e examinamos se a exposição a esse composto causava estresse no Bacillus. Nossos resultados mostraram que a exposição à liquenisina ativou modestamente o mestre SigB. Essa ativação forneceu pequena proteção ao Bacillus quando exposto a outro estresse letal, demonstrando que uma condição mesmo que levemente estressante é ainda estressante, e que uma resposta leve ainda é uma resposta.

Este composto (liquenisina) é um tipo de detergente que pode ser um potencial agente de intoxicação alimentar e é produzido por todos os membros do Licheniformis. Portanto, também investigamos a produção deste composto por membros selecionados de Licheniformis em alimentos e determinamos sua toxicidade para células humanas no **Capítulo 5**. Os resultados mostraram que as quantidades de liquenisina produzidas variaram amplamente entre diferentes membros de Licheniformis e dependem da composição dos alimentos, temperaturas e condições de cultivo. Também demostramos que este composto é tóxico para células humanas e de mamíferos. Esses resultados indicam que pode haver um risco de intoxicação alimentar se a bactéria crescer em alimentos e esses alimentos forem posteriormente ingeridos por humanos. Portanto, a toxicidade desconhecida de um composto não significa que ela seja não-tóxica, e a toxicidade da toxina (liquenisina) é acumulativa.

Por fim, o **Capítulo 6** discute todas as descobertas encontradas nesta tese a partir de diferentes perspectivas baseadas em evidências científicas. Em primeiro lugar, descobrimos os novos insights obtidos para o mestre SigB e outros mecanismos que ele controla. Em segundo lugar, descobrimos como essas estratégias de gerenciamento de estresse contribuíram para a persistência de Bacillus nos ambientes e, por fim, elucidamos as implicações desse conhecimento obtido no estudo de outras bactérias patogênicas e outras implicações práticas relevantes para o setor de alimentos.

Acknowledgments

Being independent is an outstanding value that one can have, but one's success is not only the result of individual effort. Completing a PhD is never a journey alone, so this thesis is undoubtedly the result of collaborative teamwork. Also, I have finally come to realize what my Ex-supervisors from Germany meant when they told me that completing a PhD in the Netherlands is much more challenging! However, thanks to the training they provided me in my MSc., which prepared me well to complete this "odyssey" in the Netherlands today.

First and foremost, I would like to express my sincerest gratitude to my company supervisor. **Marjon,** I still clearly recall the different rounds of interviews with you for the PhD position; I could not have undertaken this journey without your decision. I am gratefully indebted to you for your trust and confidence in me, for selecting me from many others to join the PATHSENSE EU project, and for giving me the chance to complete my PhD at NIZO. Thank you very much for your supervision and continuous support throughout the project, from setting up all the aerobic incubators in the lab to finalizing this thesis. You gave me the free space to work independently and implement my research idea but are always there when I am in need. I think we both worked very well in this combination =)! Thank you for backing me in joining different conferences abroad, even if I was not presenting, and for sharing your life, jokes, and all the long conversations. Thank you for being so understanding, your good energy and encouragement, and always bringing a positive vibe to NIZO. I truly enjoyed very much working with you.

Tjakko, I am profoundly grateful to have you as my promotor at the University. I sincerely appreciate your guidance and valuable comments throughout my PhD, especially in the thesis writing phase. I have presented many ideas to you, and you often gave me constructive feedback without "sabotaging" the passion of a naive PhD student: D. Thank you a lot for guiding me to pick the low-hanging fruits, seeing the big picture, for all the fruitful discussion, and for helping me find the best solutions to all issues I faced. Many thanks for your assurance and help in finalizing this thesis when my head was splitting between the PhD and Postdoc.

Marcel. Z and **Heidy**, thank you for offering me the Postdoc position so I can complete my 4th year of PhD. Many thanks for giving me the chance to explore another topic but still enough flexibility to work on my PhD. It was challenging to keep the creative brain for SAFFI and the focused mind for PATHSENSE, but I am happy to learn a different set of skills from you, getting from the fundamental details back to the more applicable works.

A huge thanks to Prof. **Michiel Kleerebezem**, Prof. **Conor O' Byrne**, Dr. **Indra Bergval**, and Prof. **Ine van der Fels-Klerx** for accepting the invitation to be on the thesis committee and taking your time to review this thesis meticulously.

I would also like to thank all my ex-colleagues at NIZO. Particularly, **Ita**, for always welcoming me with a big splendid smile and giving me sweets and snacks to sustain my long lab day:); **Saskia** and **Marke** for the 3 years of ordering > 500 primers and sending > 300 sequencing samples for me; **Patrick** for helping me to find my way around NIZO at the start; **Guido** for running my hundreds and hundreds of HPLC samples, **Renee** for booking all my trips and hotels, **Eric**, for preparing all the glassware, chemicals, and consumables, the historic A233 lab members: **Kristian**, for sharing all your protocols and all the

funny talks, **Simon** and **Joyce** for sharing your research experience and bitter complaints when experiments did not work out; **Avis**, for introducing me to different people at NIZO, and being my officemate for 3 years! Exclusive thanks to the general beast feast group, **Clemens**, **Steffi**, **Matthew**, and **Sylviani**, for all the laughs we shared that made my time at NIZO unforgettable, all the Asian snacks we hoarded (before the pandemic, haha), lunches, dinners, weekend meetings, bbq, hotpots, Korean rice wine! A genuine thank you to all of my MSc. students who worked on my projects with me at NIZO and gave me the chance to teach. **Victoria**, for helping me to construct mutants, isolating RNAs, and performing all preliminary tests for the Prli42 project. **Manca**, for giving me extensive help on the lichenysin project, for being such a responsible and proactive student that I can trust. I am so proud to see you succeed in what you do today. **Eline** and **Mounia**, for being such hardworking students and your contribution to the *B. licheniformis* projects; **Wouter** for performing all the *B. cereus* phenotyping assays. All other students with whom we shared a pleasant time in and outside of NIZO, **Larissa** (I miss seeing you eating 1kg ice cream haha), **Reni**, **Martha**, **Jia Lun**, **Tatiana**, **Jamie**, **Adriano**, and **Alina**.

It was also my pleasure to work with all the elite PATHSENSE team members! **Conor** and **Nina**, thank you for being such an excellent project coordinator, and the manager of PATHSENSE, respectively. I enjoyed all the meetings held at different locations, training and workshops you organized, recording for the radio station, and disseminating our research on the street in Galway! What a good closure as well to have Conor joining my PhD defense. We all love your stories, vibe, and your passion for research. Thank you to all the PIs, especially **Jan**, for hosting me during my secondment, for planning and discussing the *B. cereus* project, and for troubleshooting the problems, **Jörgen**, **Nick**, **Rick**, and **John**, for being the coolest PIs, not only sharing your research knowledge with us but also all the fun drinking sessions: D. **Maria**, thanks for your company in Greifswald and all the waves of laughter you gave us when you pronounced Rsb "ORs"; I can never forget this! **Sema**, for your support of my research ideas and conference trip to Washington. **Laura**, for being our leader and delivering our thoughts in all the review meetings. **Emma**, for hosting me in Madrid and sharing the "hardships" of doing a PhD in a company. **Ana**, for all your Portuguese pronunciation lessons at 3 am in the bars: D; and all other members **Minh**, **Algirdas**, **Duarte**, **Torkel**, **Charlotte**, **Manisha**, **Inge**, and **Diana**, for sharing this fantastic journey together!

I would like to extend my sincere gratitude to all the **co-authors** from other departments at Wageningen University or other organizations involved in this thesis, especially **Jos** and **Michiel**, for helping me with the bioinformatics analysis during your time at NIZO, **Marcel**. **T** for your brilliant idea and initiative on the Bc1009 project, for collecting and analyzing the transcriptomics data, for the co-supervision of students, and for the fruitful discussion on the *B. cereus* project (sometimes also some complaints together;p). **Alex. R** and **Uwe** for running and analyzing the proteomics samples, and **Blanca** and **Jerry** for arranging the toxicity assays at HMI.

This endeavor would not have been possible without my colleagues and friends at FHM. **Andy**, thank you very much for your invites to all FHM's events, especially the most remarkable PhD trip to China. I was so glad to have joined in 2019; that was the first time I connected with all the PhDs in our department. Thank you also for all your life hack tips, lunches, and dinners you prepared, and all the nice encouraging words you have told me! **Alberto G**, for being the person who drags me to all the Vrijmibo events, for playing many different roles in my life, my officemate at FHM, my colleague who works late with me, my friend who listens to me, drinks 7 gin-tonic with me, and most importantly, my brother who truly cares

for me and help me to solve all the life-psychological related issues, haha, and finally, for helping me to organize the party and supporting me all along the way. **Rebecca**, thank you for your support, especially in this last year. I admire your personality and your courage to voice out and also appreciate that it is always so easy to talk to you. I can be myself with you, knowing that telling you any mean jokes will not hurt. Haha. Thank you for accepting and helping me to organize my PhD party, listening to all my naggings and complaints and comforting me, and giving me the Rebecca type of advice! Nathalia B., we met at FHM with my "intrusive" introduction, and soon we realized we shared a similar experience, mainly making fun of the mandatory German-speaking events. I regretted not joining your two solo trips to France because of the thesis writing! Promise for next year :D **Jeroen.** thank you for helping me with the volcano plots, for witnessing the epic "hotpot" night, for the leisure drinking days, and for meeting us during the pandemic ;p!!. Piotr and Alex, you were the two I first met at the PhD weekend. Thank you for the fun time, especially in China, and Alex the genius in the department, thanks for the good talks in China and also sharing some nice project ideas together;) Nathalia C., thank you for recommending jobs to me and the limited time shared in China too, Angela, thank you for telling all the stories, and answering my 10 million questions about FHM in China. Bernard, Maren, Jasper B., and Anneloes, thanks for the unforgettable trip together. Yue, thank you for advising me on what to do at the last phase of PhD, writing the guide together with me, and being my loyal listener of all my presentations:), sorry to bother you with so many questions in the last few months; p, and for your patience with me by answering all my texts and emails :D. Georgios, thank you for being more excited than me when I submitted the thesis reading version, haha: D, and all the dinners, tennis, and drinks together. Alberto B. thanks for the good time in Germany and Switzerland, for being my Tennis coach, some funny moments in the lab practical and the party (you know, haha, I am following your red light), and also the time together with other active Vrijmibo members, Sylviani (again ;p), Domiziana, Tamara and Xuchuan, on all Fridays on drinking, playing tennis, dinner out, the BDDD, the durian experience, and many others! A huge thanks to the PhD trip organizers of 2022 (Linda, Xuchuan, Jasper B., Georgios, Domi, Frank). Together, we made the trip to Germany and Switzerland from impossible to possible! The crazy late-night climbing in the middle of nowhere to this creepy house was the highlight of the entire trip. Thank you also for being so considerate and taking more responsibility for the follow-up works when I finalize the thesis. Thank you to all other FHM colleagues, Oscar (for your home brew wine, home grew veges, and your persistency in forming a veluweloop run team haha), Jasper Z. Thelma, Wilma, Eddy, Judith, Dennis, Anne, and Ingrid (for always making sure that my legs are not exposed in the lab: P), for the coffee breaks, time in the practical and lunch together. Gerda, thank you for helping me to deal with all administrative issues, for reminding me to filling in the hours, and your kindness with me when I made you stressed out in your birthday:) **James**, thank you for constantly forcing me to go home, especially during the last few months of the thesis writing phase and sharing my struggles, sometimes just a few words with you comfort my agitated mind! Ps: I still insist that I am not a robot ;p

When home is far away, your friends are your family. I am very fortunate to have many and would love to take this chance to express my most profound appreciation to you who gave me unconditional support in different moments during my PhD. **Guille,** you witnessed a lot of ups and downs in my life. Thank you for being there, coming to see me wherever I am, making an effort to make me happy, and bringing me to your family events so that I am not left alone in Christmas. Those crazy stories we shared, and times in London, Spain, Malaysia, Italy.. we left many footprints together, and our most outstanding achievement is going from being poor to okay! Hahaha! Thank you also for putting an effort into

maintaining this friendship for 11 years, and for your initiatives to organize my PhD party. Our other amoeba babies group members. **Cris. Aulie** and **Antho.** It is not easy to keep such contact for 10 years. and we made it! You have seen my BSc, MSc, and now my PhD graduation. Your presence motivated me through my journey in Europe from then to now. **Rasa**, you are the very first person I know here. Thank you for all the time we have shared and for making me feel at home in Bonn. I am emotional just to recall all the different moments together in Bonn, Malaysia, and Lithuania. You never fail to come to see me wherever I move to. Thank you for your support, always in silence:). My Göttingen group, Mateus (also my best flatmate in Germany), Ezgi (my twinnie in MSc), Uma, Doris, Ana and Naomi. I am not very sure where I should start. You listened to my complaints these years; we share moments on trips, our problems and cheer each other up. I am so grateful to have all of you with me! Witnessing my craziness, picking me up at night in the ZHG (you know what I mean), building snowmen, rapping random lyrics, eating pinochio pommes, sleeping in MCD etc. etc. You went through an important part of life with me, thank you so much! Larissa, you are one of my extraordinary friends. We had such a pleasant working experience together in AG Stülke and HIP, and I still miss the dynamic there. We continue learning together even after Göttingen, and I think we agree to ditch the 2007.3475, hahaha. The conference trip to the US was astounding:) You often impress and inspire me, and you will always be my role model, in my MSc. PhD and now Postdoc:). Your success in your career show me light in mine too:)

Moving to the Netherlands is impossible without you, Valentin. You will probably not see this, even though we did not make it to the end, but I am super grateful for all the help and emotional support I have gotten from you for most of my PhD journey here in Wageningen. Jana, thank you for your love and assistance these years, for always spotting my breakdown time, and for taking so much care of me. I could not thank you enough. You always know what I need without me telling you (are you secretly doing X-ray on me? haha), thank you for always being there and spoiling me like a kid and making me feeling special. I am sure I will always be fine next to you! Thank you also for painting my idea out for the cover of this thesis and helping me to search the party venues! And one most important thing, for curing my cat phobia with Tato, well only with Tato, but that is already a big achievement. Haha. Laci, thank you for always fixing the house, sharing your palinka, your recipes, for fixing my bike, for tolerating my silent mode at home, I miss the time we lived together! Francesco, thank you for all the Italian dishes you have prepared; I really enjoyed seeing you eating 3-course meals every night when I came home. It somehow lured my brain into thinking that I am actually efficient in managing my time; p! Martin, thank you for our time together, we had many weekends and evenings with my friends or your friends, and I somewhat miss the time you annoyed me every day in my room. It is also so good to have a french master cook at home to take care of all the meals ;p. To my current housemates, Murat, Maria, Wanja and half housemate Aline thank you so much for cooking for me when I was so busy writing, sharing dinners and fancy dessert ;p Murat and Maria, for preparing my lunch boxes not only once but several times! Aline, thank you for fulfilling our sweet tooth by bringing all your amazing desserts! I love and enjoy all the moments we have spent with each other at home, dinners out or all the international cuisines nights at home or outside, and the similar values we share. Now you have seen my true colors, lol. Thank you for embracing my silence and loud noise at two extremes end;p

Tom and **Barbara**, I remember all our talks while running, in gym sessions, walking, dinner, hiking, and in the theme parks. We understand best what each other is going through. Thank you so much for all the

rootings, life sharing, and constant encouragement. We are so close to completing our common goal. I cannot wait to celebrate together with both of you. **Chara**, thank you for your help in checking my entire thesis layout and formatting. Thank you for listening to and staying with me for all those late sleepless nights, for prioritizing and caring for me. I am bad at expressing myself and do not like discussions, but I appreciate your patience with me moromu:). **Klara**, thank you also for constantly checking in with me to see how I do, especially during the transition from the PhD position to the Postdoc. Thank you for introducing me to all the food safety-related topics at the beginning!

Renan, you are so unique, and you know it. You are the "devil voice" in my head to always point out my mistakes, making me realize many things and be practical. I like you so much because your "meanness" jokes make us connect very well. I am feeling so comfortable around you, zero pretension! Haha. **Isa,** you are such a lovely person. You have your Brazilian side, but sometimes also not. You care about everyone secretly, never really mention it, and I see it in your eyes. Thank you for listening to me but not judging me, giving me company and advice! **Julia,** what a perfect present that you are giving me! Thank you so much for flying across the ocean to be in my defense, all the way from Brazil! You always surprise me in a good way. Thank you for sharing a part of your life with me, your secrets and trust, and your vibe! **Ale,** thank you for being so expressive. I became like this because of you. You are so genuine, so lovely, so cheerful. I like that you show yourself to me as you are to others but also show me what you do not show others. Thank you for giving me all the positive vibes! **Khalid,** thank you for always inviting me to the firehouse and introducing me to the group, **Peter, Nuran, Lisanne, Guy, Simen, Melania,** and **Dimitri,** for the lunch, dinner, and all the time spent together, especially during the Corona time:)

Special thanks to my Malaysian group in Wageningen, who made me feel at home far away from home (Mas, Jade, Sven, Eva, Nick, Kamilla, Ida, and Ira). I love to speak all the mixed languages here with you. It is just so natural, feeling almost back in Malaysia. I am proud of our multi-ethnicity and our rich culture. I love all the Malaysian foods we cook and the non-stop laughter every time we meet! Sometimes I really think I will have a heart attack after meeting you. :D my other Malaysian friends in Germany and Belgium. Selvina and Jialin. Time flies! I still recall when we were playing basketball together, then living in Germany together. Thank you for letting me know that I am not alone. Knowing you are not far somewhat gives me comfort; that far away from home, I have someone who knows where I was born, my house, my street, and my schools.

To my dearest friends back in Malaysia, **Jacinthia**, you play an essential role in my life. From day 1 of leaving Malaysia, you have given me your constant support until today. You have always been my loyal listener and always my No. 1 supporter. Thank you so much for listening to all my problems in Europe and compensating me every time I return home. You always spent so much effort to surprise me and fulfill my wish. Thank you for always spoiling me, so that I feel recharged when I fly back to Europe. I could not say enough for you and for the love and care you have given me all these years. The same for my basketball group (**GuatMeng, Zana, Shumin, Xia, YeeChin and ZhenZhe**). Thank you for never excluding me even after so many years and for taking your time to meet me when I am back in Malaysia. Thank you for constantly refreshing my mandarin speaking skills and never mock on me when I talk weird; p. I appreciate your time with me, taking me out, and all our travels together. We fought and trained so hard together, and you were the one who helped me to train my persistence!

Nayara, thank you so much for the entire 2021 until today, all the fun, sad and emotional moments together. Thank you for supporting me in a very different way (you know), for reading my mind, thoughts, and behaviors. Thank you so much for sharing the most important thing for you with me- the **Peixoto family** and **Gustavo**, especially your mum and sisters. There are many heartfelt- confessions, arguments, laughter, and tears, you see, I know. Thank you for giving me the sisterhood experience, taking care and trusting me. You have my heart moved. I appreciate this rare friendship and am so delighted to have you as my sister. **Mainha**, obrigada por cuidar de mim e me tratar como uma de suas filhas. Obrigado por sempre se lembrar de mim, me enviar presentes e comidas, por me cumprimentar de bom dia e boa noite todos os dias. Essas pequenas coisas são tão importantes para mim, e eu aprecio muito isso. Para todos vocês do Brasil, vocês agora são minha segunda família em Fortaleza, além do meu tio e tias que já moram em São Paulo. obrigado por me incluir como parte de sua família.

Last but not least, to all my beloved family in Malaysia, USA, Australia and Brazil. Words cannot express my gratitude to you all. I would never be where I am today in Europe without your never-ending support. We are never good to express this in emotion, but I cannot thank you enough, my grandparents (**C.Ngan** and **A.Mooi** for your love, mental support and secret financial support), my parents (**Chin** and **Sebastian** for your encouragement when I had my down times), brothers (**Conan**, you live in my heart forever, **Cayce** and **Max**, thank you for all your unspoken love and all your praisals behind me, deep down I am very proud of you two who have grown from the litte boys when I left home to the grown up men today!, my sister in law **Annie**, aunties and uncle all around the world who supported me all these years (**Chris, Yong, Adrine, Alice, Sabrina, Livia,** and **KF**) in many aspects, especially financially in my BSc and MSc periods. Thank you for respecting my choice and giving me the freedom to chase after my dream and live my life here. Thank you for taking care of everything back home.

PS: Please excuse me that I am not able to mention each of your names here, but a big thanks to all of you, other technicians, collaboration partners, coworkers from other companies and organizations, and friends who have given me help these years.

About the author

Thank you for your interest in reading about the author; this is the story of how life takes you on unexpected twists and turns, which ended relatively, well. =)

Kah Yen Claire Yeak was born on 31st January 1991 in Selangor, Malaysia. She completed up to A-level in Kuala Lumpur, with biology as her worst science subject compared to chemistry/physics. Yet, she decided to continue pursuing her BSc. in Applied Biology in Germany, merely to go abroad, but the subject of study was kinda secondary; p. The reason was also easy because Biology was the only subject that was taught in English at that time. She then turned down the offer from UPM and left for Bonn, Germany, the beautiful town of Beethoven, but not to study music apparently. She still clearly remember the shocking facial expression of her

biology teacher when the teacher found out that the rebellion Claire who never did all the homeworks and slept through all biology classes at school was enrolled in a biology BSc!

The journey in Germany began. Thanks to the strict and excellent education system in Germany, she failed one subject once and never dared to fail a second time; because 3 times failing means that one is not talented and will be kicked out from the study and never able to do a similar course in entire Germany. Guess which subject? Of course, it was biology-related: Microbiology. Nevertheless, also thanks to this failure, she finished her BSc. with the best grade in microbiology and graduated with high distinction. After that, she did BSc. internship at the University Hospital of Bonn and worked on stem cell research, assisted medical doctors and PhDs in characterizing human mesenchymal stem cells isolated from patients with osteoporosis. At graduation, she decided NOT to continue her MSc. study related to microbiology or genetic engineering, so she returned to Malaysia and worked as a product development intern in Kuala Lumpur.

She was later accepted to the University of Lübeck and the University of Göttingen, and very unexpectedly, decided to go to the latter and continued her MSc. in Microbiology and Molecular life sciences in Göttingen because it was closer to Bonn! During 2 years of her MSc. study, she received intensive training in genetic engineering techniques and other research methods used in microbiology and bacteriology studies. In her MSc. thesis and internship projects, she worked on the yeast and bacteria genetics research projects in the lab of AG Krebber, AG Commichau and AG Stülke, respectively. She investigated novel vitamin B6 metabolic and production pathways in bacteria and life in the absence of vitamin B6 and graduated MSc. with the higest distinction.

Upon finishing, she was determined NOT to continue a PhD, but look for a job. However, history is often strikingly similar! She was advised that a PhD is a prerequisite in Germany, so she applied for the Marie Skłodowska-Curie grant and (very fortunately), received the grant to continue her PhD in the Netherlands. Remembering the interview in Amsterdam, a beautiful hot summer day that (has set ;p) her up for a full commitment of another 3 years at NIZO, the contract-based research company in Ede. During her PhD, she studied bacterial stress management, and specifically investigated the novel roles of SigB in the

general stress response of *Bacillus* (which is the title of this book, and hopefully, you read:). At the end of 2020, she finished her experimental works, but history seems to repeat itself again. She started her 4th year of PhD and the meantime also her first year of Post-doc position in 2021 at the Food Microbiology department at the University of Wageningen. Not hard to guess; it was also an unexpected decision..which is ongoing....and going...

Now, she knows that being a professor IS NOT her next plan, and she is certained to switch her career to the corporate world for future work. However, no one can predict whether the history will once again, repeat itself. To continue discovering whether she will make again "unexpected" decisions in her future career, you can stay connected with her on LinkedIn or contact her via email.

Scan this QR code to connect with her on LinkedIn.

https://www.linkedin.com/in/kahyenclaireyeak/

kahvenclaire.veak@outlook.com

Full CV available on LinkedIn.

List of publications

(This dissertation)

- 1. **Yeak, K.Y.C.,** Boekhorst, J., Wels, M., Abee, T., Wells-Bennik, M.H.J. Prediction and validation of novel SigB regulon members in *Bacillus subtilis* and regulon structure comparison to Bacillales members. (Submitted to BMC Microbiology).
- 2. **Yeak, K.Y.C.,** Templaars, M., Wu, J.L., Westerveld, W., Reder, A., Voelker, U., Panne-Farre, J., Wells-Bennik, M.H.J., Abee, T. SigB modulates novel SigB regulon members via Bc1009 in non-stressed and heat-stressed cells revealing its alternative roles in *Bacillus cereus*. (Submitted to BMC Microbiology).
- 3. **Yeak, K.Y.C.,** Wells-Bennik, M.H.J., Perko, M., Staring, G., Fernandez-Ciruelos, B., Wells, J., et al. (2022b). Lichenysin production by *Bacillus licheniformis* food isolates and toxicity to human cells. *Front. Microbiol.* 13. Available at: https://www.frontiersin.org/article/10.3389/fmicb.2022.831033 [Accessed January 24, 2022].
- 4. **Yeak, K.Y.C.,** Bijlaart, M., Abee, T., Wells-Bennik, M.H.J. The role of SigB in biosurfactant synthesis and the effect of biosurfactant on SigB general stress response in *Bacillus licheniformis*. (Manuscript in preparation).
- 5. **Yeak, K.Y.C.,** Ejder, S., Guerreiro, D., Dessaux, C., Lewis, R., Abee, T., Wells-Bennik, M.H.J., O'Byrne, C., Marles-Wright, J. The role of Prli42 mini-protein in SigB adaptive stress response of *Bacillus subtilis* and *Listeria Monocytogenes*. (Manuscript in preparation).

(Others)

- Yeak, K.Y.C., Palmont, P., Rivière, G., Bemrah, N., den Besten, H. M. W., and Zwietering, M. H. (2022a). Microbial and chemical hazard identification in infant food chains. *Glob. Pediatr.* 2, 100010. doi: 10.1016/j.gpeds.2022.100010.
- 2. **Yeak, K. C.,** Fanning, S., Bourdichon, F., Zwietering, M., Betts, R., and Forsythe, S. *Cronobacter* in the Spotlight: New Insights Into a Known Organism [White paper]. ILSI Europe. New Food Mag. Available at: https://www.newfoodmagazine.com/whitepaper/167276/cronobacter-in-the-spotlight-new-insights-into-a-known-organism/.
- 3. Georgalis L., **Yeak, K.Y.C.**, Tsimpou C., Wells-Bennik, M.H.J., Fernandez P., den Besten, H. M. W., Garre A. Analysis of wt and Δ*sigB* mutant adaptation behaviors in isothermal and dynamic heat treatment improved predictive model parameters for microbial inactivation. (Manuscript in preparation).

Overview of completed training

A. Discipline-specific activities

Name of the course/meeting	Organizing institute(s)	City	Year
Microbial Stress Kinsale, Co Cork Conference	FEM	Kinsale, Ireland	2018
ListMaps Symposium	FEM	Kinsale, Ireland	2018
The Power of Microscopy: Seeing is Believing	Cambridge University	Groningen, Netherlands	2018
Translating Postgenomic Microbiology to Advancing Food Science & Safety	Nestle, NIZO, Natac	Groningen, Netherlands	2018
Secondment at University of Greifswald, Germany	Greifswald University	Greifswald, Germany	2018
Elucidating Structure & Function in Biology	Newcastle University	Newcastle, UK	2019
Advanced Proteomics	University Greifswald	Greifswald, Germany	2019
20th Gram positive Meeting Washington	National Institutes of Health	Washington, USA	2019
Symposium "The Brave New World of Smart Data & Semantics in the Life Sciences"	WUR	Wageningen, Netherlands	2019
Microbial Stress Kinsale, Rome, Conference (Online)	PATHSENSE	Rome, Italy	2020
International Commission on Micriobiological Specifications for Foods (ICMSF)- Latin American Sub-commission	ICMSF	Online	2021
IAFP Europe Food protection	IAFP	Online	2021
10th Europaediatrics 2021	EPA/UNESPA	Zagreb, Croatia	2021
56th Congress of the Turkish Pediatric Association (TPA) 2021,	TPA	Istanbul, Turkey	2021

B. General courses

Name of the course	Organizing institute(s)	City	Year
Bench to Market: Starting up a Spin-Off Company	NUIG	Galway, Ireland	2018
Public Engagement and Outreach	NUIG	Galway, Ireland	2018
VLAG PhD week	VLAG	Baarlo, Netherlands	2018
Scientific Integrity & Ethics	RUG	Groningen, Netherlands	2018
Developing a Research Proposal: Grant Writing Skills	University Regensburg	Ede, Netherlands	2019

Introduction to R	WUR	Wageningen, Netherlands	2019
Career Planning for PhD Graduates	NIZO	Madrid, Spain	2020
Intensive writing course	Radbound University	Wageningen, Netherlands	2020
Project and Time management	WGS	Wageningen, Netherlands	2020
Reviewing a Scientific Manusript	WGS	Wageningen, Netherlands	2020
R-mark down	WGS	Wageningen, Netherlands	2020
Popular Scientific writing	WGS	Wageningen, Netherlands	2021

C. Other activities

Name of the course	Organizing institute	Place	Year
Preparation of research proposal	FHM	Wageningen	2018
FHM PhD knowledge exchange visit China	FHM	China	2019
Food Microbiology department seminars	FHM	Wageningen	2018- 2022
FHM PhD knowledge exchange visit Germany and Switzerland (Including organization)	FHM	Germany, Switzerland	2022

Supervision

MSc. student	Year	Course	Year
Victoria Martinez Sanchez	2019	Food Microbiology practical	2021
Manca Perko	2019	Food Microbiology practical	2022
Eline van Ophem	2020		
Mounia Bijlaart	2020		
Wouter Westerfeld	2020		
Lize Fang	2021		
Cheyenne van Ee	2021		
Lois Hiltjesdam	2021		
Natisha Vatwani	2022		
Jingya Wang	2022		
Ioanna Vouga	2022		
Han Xiao Li	2022		
Wirasha Ghisai	2022		
Han Zhang	2022		

The research described in this thesis was performed at NIZO, Ede, The Netherlands, and the Laboratory of Food Microbiology, Wageningen University & Research.				
Kah Yen Claire Yeak received fu innovation program under the M	_	=		
Financial support from Wage acknowledged.	eningen University	for printing this	thesis is gratefully	
Constitution has Long Distanced a control Walt War Claim Walt				
Cover design by Jana Dieterschagen and Kah Yen Claire Yeak				
Chapter covers and thesis layout by Kah Yen Claire Yeak.				
Printed by Proefschrifmaken.				

