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Summary

The Amazon region is crucial for the Earth system, it stores large amounts of carbon in

soils and biomass, has the largest freshwater basin in the world and it is a biodiversity

hotspot. In this vast expanse of forest, massive amounts of carbon, water and energy

circulate between the biosphere and the atmosphere, providing ecosystem services that

are vital for humanity. The carbon stored has a global importance from a climate change

perspective, the water cycle is crucial for Andean and lowland amazonian communities,

and biodiversity sustains life and healthy forests. Humans have been part of the Amazon

system for several thousands years, but only during the last decades, our activities have

led to unprecedented changes in this system with consequences yet to be known. These

consequences have a complex nature, yet they are prone to be studied as they mani-

fest leaving measurable signals in different compartments of the Amazon system. The

atmosphere is one of these compartments, in which the changes in abundance of some

constituents, like carbon dioxide (CO2) and methane (CH4), can be linked to different

natural or anthropogenic processes. In the Amazon, CO2 is mainly controlled by the veg-

etation, and CH4 by decomposition processes in the absence of oxygen in the sediments of

aquatic habitats. Therefore, by measuring the atmospheric changes of CO2 and CH4 one

can learn something about the sources and sinks of these two greenhouse gases (GHG),

which are highly relevant for global warming. As such, the central objective of this thesis

is to use atmospheric data to better understand the spatial and temporal patterns of sinks

and sources of CO2 and CH4.

In the first chapter a general introduction is provided. There, I describe the Global and

the Amazon carbon cycle (mainly from a CO2 perspective), highlighting the role of CH4

at both scales. The Amazon Tall Tower Observatory (ATTO), the research station where

data was collected, is introduced giving a historical view on how the site started and

what is the actual state in terms of greenhouse gas instrumentation. After that, the

research objectives of the thesis are given together with a conceptual framework for each

chapter.
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In Chapter 2, the CH4 time series is analyzed for the period between June 2013 and

November 2018. We investigated a specific nighttime event in which CH4 levels are

significantly higher at the top of the tower than the lowest measurement height. For this

analysis, an approach based on observational data was applied and we found that the

events have a seasonal pattern, being more frequent during the dry season. Furthermore,

a hypothesis is proposed suggesting a potential source for this methane. The most likely

source location is the Uatumã River, possibly influenced by dead stands of flooded forest

trees that may be enhancing CH4 emissions from those areas.

Using biosphere models and an atmospheric transport model, six years of the the CO2

time series is analyzed in Chapter 3. With this approach, it was possible to study the

seasonal and inter-annual patterns of the continental CO2 signal. When comparing it to

local fluxes, we found differences that are interpreted as an indication of how local and

non-local drivers are coupled or decoupled in the atmospheric CO2 signal. An example

of this is the effect of the 2015/2016 El Niño-induced drought, in which the effect of

the drought was observed first in the atmospheric CO2 and later in the local fluxes. In

addition, we found that simulating CO2 mole fractions at ATTO can be improved when

including river fluxes. However, the overall performance of the simulations was found to

be hampered mainly because biosphere models do not represent the vegetation dynamics

properly.

Of particular interest in Chapter 4, is the role of the Amazon region as a sink or source of

carbon to the atmosphere. To study this question, we use a regional inversion system to

estimate net CO2 fluxes using atmospheric data. The set of data used, is the ATTO CO2

observations and also a network of airborne measurements of CO2 vertical profiles. We

found an amazon vegetation sink of -0.35 ± 0.3 PgC year−1 for the period between 2010-

2018, which as we discussed in Chapter 4, is consistent with other inversions. Furthermore,

our set up allowed us to infer spatial patterns for the Amazon region and also other

neighboring ecosystems like the semi-arid Caatinga and Cerrado in the northeast of Brazil.

We found an emerging sink-source gradient between the Amazon region (sink) and the

Cerrado and Caatinga together (source). Finally, we highlight the main limitations of our

study, giving priority to the regions that are less constrained and where more observations

are needed.

In the last chapter, the fundamental aspects of this work are discussed. A reflection

on the role of atmospheric transport and seasonal drivers of CO2 and CH4 is provided,

with a strong focus on the main limitations of this thesis and thinking about future

lines of research. Furthermore, contextualizing the findings of Chapter 4, the importance

of studying other biomes for regional carbon budgets is highlighted. In the Outlook

we provide several concrete ideas for follow-up work, some of which are under current

development.



Resumen

El Amazonas es crucial para el sistema terrestre. Almacena grandes cantidades de carbono

en los suelos y la biomasa aérea, tiene la mayor cuenca de agua dulce del mundo y cuenta

con una biodiversidad extraordinaria. En esta vasta extensión de bosque circulan enormes

cantidades de carbono, agua y enerǵıa entre la biosfera y la atmósfera, proporcionando

servicios ecosistémicos vitales para la humanidad. El carbono almacenado tiene una

importancia global asociada al cambio climático, el ciclo del agua es crucial para las

comunidades andinas y amazónicas, y la biodiversidad sostiene la vida y la salud de los

bosques. Los seres humanos forman parte del sistema amazónico desde hace varios miles

de años, pero sólo en las últimas décadas nuestras actividades han provocado cambios

sin precedentes en este sistema con consecuencias aún desconocidas. Estas consecuencias

tienen una naturaleza compleja, pero ya que se manifiestan dejando señales medibles en

diferentes compartimentos del sistema amazónico, las podemos estudiar. La atmósfera

es uno de estos compartimentos, en el que los cambios en la abundancia de algunos

constituyentes, como el dióxido de carbono (CO2) y el metano (CH4), pueden asociarse a

diferentes procesos naturales o antropogénicos. En la Amazonia, el CO2 está controlado

principalmente por la vegetación y el CH4 por los procesos de descomposición en ausencia

de ox́ıgeno en los sedimentos de los hábitats acuáticos. Por lo tanto, los cambios en la

concentración atmosférica de CO2 y CH4 contienen información sobre las fuentes y los

sumideros de estos dos gases de efecto invernadero (GEI), relevantes para el calentamiento

global. Por lo tanto, el objetivo central de esta tésis es utilizar datos atmosféricos para

comprender mejor los patrones espaciales y temporales de los sumideros y las fuentes de

CO2 y CH4.

En el primer caṕıtulo se hace una introducción general y se describen el ciclo del carbono

global y el de la región amazónica. Adicionalmente, con una perspectiva histórica se intro-

duce el Observatorio de la Torre Alta del Amazonas (ATTO); la estación de investigación

donde se recolectaron los datos. Finalmente en este caṕıtulo, se describen los objetivos de

investigación y el marco conceptual de cada caṕıtulo. En el caṕıtulo 2, se analiza la serie

temporal de CH4 para el periodo entre junio de 2013 y noviembre de 2018. Se investigó

un evento espećıfico en el que los niveles de CH4 en la noche son significativamente más

altos en la parte superior de la torre que en la parte de medición más baja. Se hizo un

análisis observacional (puramente basado en datos y no modelos) y encontramos que los
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eventos nocturnos tienen un patrón estacional, siendo más frecuentes durante la estación

seca. Además, se propone una hipótesis que sugiere una fuente para este metano. La

ubicación más probable de esta fuente es el ŕıo Uatumã, posiblemente influenciada por los

árboles muertos en los bosques inundables, que pueden estar aumentando las emisiones

de CH4 de esas áreas.

Utilizando modelos de vegetación y un modelo de transporte atmosférico, en el caṕıtulo

3 se analizan seis años de la serie temporal de CO2. Alĺı se investigaron los patrones

estacionales e interanuales de la señal regional de CO2 atmosférico (en unidades de ppm).

La señal regional de CO2 equivale a la concentración atmosférica de CO2 después de

restar la concentración con la cual las masas de aire entran al continente. Dicha señal

regional se comparó con los flujos de CO2 locales (en unidades de umol m−2 s−1), los

cuales contienen información a una escala local. La diferencia en fase a escala estacional

e interanual, se interpretó como un indicador de acople o desacople entre los factores lo-

cales y regionales que controlan la señal regional de CO2 observada. La seqúıa inducida

por El Niño 2015/2016 es un claro ejemplo de desacople, ya que los efectos de la seqúıa

se observaron primero en el CO2 atmosférico y después en los flujos locales. Además,

comprobamos que la simulación de la concentración de CO2 en ATTO puede mejorarse

al incluir los flujos de CO2 provenientes de los ŕıos. Sin embargo, las simulaciones at-

mosféricas no reproducen las mediciones de CO2 y concluimos que la razón principal es

porque los modelos de vegetación utilizados no representan adecuadamente la dinámica

de la estacional de la absorción neta de CO2.

En el caṕıtulo 4, se estudió el papel de la región amazónica como sumidero o fuente

de carbono a la atmósfera. Para estudiar este tema, utilizamos un sistema de inversión

atmosférica regional para estimar los flujos netos de CO2 utilizando datos atmosféricos.

El conjunto de datos utilizados son las observaciones de CO2 de ATTO y también una

red de mediciones aéreas de perfiles verticales de CO2. Encontramos un sumidero de

vegetación amazónica de -0.35 ± 0.3 PgC año−1 para el periodo entre 2010-2018, que

es consistente con otras estimaciones. Además, el método utilizado nos permitió inferir

patrones espaciales para la región amazónica y también para otros ecosistemas vecinos

como la Caatinga y el Cerrado en el noreste de Brasil. Encontramos un gradiente emer-

gente entre la región amazónica (sumidero) y el Cerrado y la Caatinga juntos (fuente).

Por último, destacamos las principales limitaciones de nuestro estudio, dando prioridad

a las regiones que están menos restringidas y en las que se necesitan más observaciones.

En el caṕıtulo 5, se discuten los aspectos fundamentales de este trabajo. Se hace una

reflexión sobre el papel del transporte atmosférico y los controles estacionales de CO2 y

CH4, con un enfoque en las principales limitaciones de esta tesis y proponiendo futuras

ĺıneas de investigación. Además, se destaca la importancia de estudiar otros biomas para

la cuantificación del balance regional de carbono. Finalmente, se proponen varias ideas

concretas para darle continuidad al trabajo de esta tésis, algunas de las cuales se están

desarrollando actualmente.
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Chapter 1

Introduction



2 Introduction

1.1 Global carbon cycle

Back in 1856, the scientist Eunice Foote first described that carbon dioxide (CO2) and

water vapor absorb heat from solar radiation. She also made a direct link between past

climate change and atmospheric changes of these two gases (Jackson, 2020). Some years

later, in 1859, John Tyndall made similar experiments but only using longwave infrared

radiation (i.e. emitted by the Earth itself), which led to the physical basis of the green-

house effect (Jackson, 2020). One of the first predictions of how a rise in atmospheric

CO2 could lead to an increase in global temperature was done in 1897 by Svante Arrhe-

nius (Arrhenius & Holden, 1897). Decades later, by measuring atmospheric CO2 mole

fractions in Mauna Loa, Hawaii, Charles Keeling documented for the first time a steep

increase of CO2 in the atmosphere (Keeling et al., 1976). These early studies laid the

foundations of the atmospheric perspective of the global carbon cycle.

Like CO2, methane (CH4) can absorb longwave radiation and contribute to global warming

with a larger global warming potential (Myhre et al., 2013). Today these two gases, CO2

and CH4, constitute less than 1% of the atmosphere, and yet they have a massive impact

on Earth’s temperature by absorbing heat (Myhre et al., 2013). The CO2 mole fraction

in 1750 was 277 parts per million (ppm) (Joos & Spahni, 2008) while in 2020 it reached

412 ± 0.1 ppm (Dlugokencky, 2020). For CH4 in a similar time period (from 1750 to

2018) the atmospheric mole fraction has increased by a factor of 2.6, reaching 1857 parts

per billion (ppb) in 2018 (Saunois et al., 2020). Although both species are part of the

global carbon cycle, CO2 is more abundant and has a longer lifetime in the atmosphere.

Because of different sources and sinks these species are studied separately (Saunois et al.,

2020; Friedlingstein et al., 2022). Therefore, here we introduce the global carbon cycle

from a CO2 perspective briefly highlighting the role of CH4, and in the next Section the

main sources and sinks of CH4 are described.

The natural carbon cycle can be separated into four main components, the atmosphere,

the ocean, the terrestrial biosphere and geologic reservoirs (Ciais et al., 2013). Carbon

circulates between these reservoirs on different timescales ranging from hours to thousands

of years or even more for the geologic reservoirs (Archer et al., 2009). According to the last

report of the Global Carbon Project (Friedlingstein et al., 2022) (see Figure 1.1), in the

last decade (2011-2020) anthropogenic emissions were on average 10.6 ± 0.7 PgC year−1,

after adding fossil fuel and land use change emissions. From this, 3.1 ± 0.6 PgC year−1 is

captured by the terrestrial biosphere, 2.8 ± 0.4 PgC year−1 by the ocean and 5.1 ± 0.02

PgC year−1 accumulates in the atmosphere. Anthropogenic emissions are thus embedded

in a carbon cycle in which the exchange between reservoirs lead to changes in carbon stocks

(see Figure 1.1) over different temporal scales. The anthropogenic perturbation leads to

a fast (at decadal timescales) increase of CO2 levels in the atmosphere. The main driver

of such increase before 1950 was anthropogenic emissions not associated with burning

fossil fuels, like deforestation and other land use change activities (Canadell et al., 2021).
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After 1950, emissions from fossil fuels turned into the dominant driver of the atmospheric

increase of CO2 (Canadell et al., 2021).

Figure 1.1: The global carbon cycle. Taken from Friedlingstein et al. (2022). The GtC unit

is equivalent to PgC (1015 grams). The uncertainty of the atmospheric growth rate is ± 0.02

PgC year−1 and not shown in the Figure as described in Friedlingstein et al. (2022).

In reality, the sources (E) should balance the sinks (S) of carbon plus what accumulates

in the atmosphere (Friedlingstein et al., 2022). Emissions from fossil fuel combustion

(EFOS) and land use change (ELUC) are distributed in what is taken up by the ocean

(SOCEAN), the terrestrial biosphere (SLAND), and the atmospheric growth rate (GATM).

However, in practice when adding up the estimated sources and sinks, there is an im-

balance (BIM , see equation 1.1) which reflects a mismatch between emissions and the

partitioning into GATM , SOCEAN , SLAND. Each component of equation 1.1 is estimated

using different methods, containing uncertainties associated with an incomplete under-

standing of processes, analytical errors or processes that are not included (Friedlingstein

et al., 2022).

BIM = EFOS + ELUC − (GATM + SOcean + SLAND) (1.1)

One of the processes not included in EFOS, albeit small in magnitude but contributing

to GATM and adding to BIM is the production of atmospheric CO2 by the oxidation of

CH4 (Friedlingstein et al., 2022). Amongst the several sources of CH4 the most important

contributing to GATM is fossil fuel emissions of CH4 and in particular fugitive emissions
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of coal, oil and gas (Friedlingstein et al., 2022). Despite the short atmospheric lifetime of

CH4 (approximately 9 years, Prather et al. (2012)) and its relatively small magnitude of

anthropogenic emissions (∼ 570 TgCH4, 1 Tg is 1012g Saunois et al. (2020)), its global

warming potential is 28 times stronger than CO2 over a 100 year horizon (Myhre et al.,

2013). Consequently, the increasing atmospheric CH4 have contributed with 23% of the

additional energy input since 1750 (Etminan et al., 2016) leading to global warming. The

natural and anthropogenic sources of methane at the global scale are described in the

next Section.

1.1.1 Global sources and sinks of CH4

The main anthropogenic sources (see Figure 1.2) of CH4 are fossil fuel production and use,

and agricultural activities and waste disposal. Based on top-down estimates reported by

Saunois et al. (2020), ’agriculture and waste disposal’ is the largest source of CH4 with an

average emission of 217 (207-240, min-max range) TgCH4 year−1 over 2008-2017. Fossil

fuel production is about half with 111 (81-131) TgCH4 year−1. Natural sources like wet-

lands amount to 181 (159-200) TgCH4 year−1 being the most prominent natural source

and larger than fossil fuel. Other natural sources (termites, wild animals, permafrost,

inland waters and oceans) are smaller, 37 (21-50) TgCH4 year−1. CH4 emissions from

biomass burning, which is categorized by Saunois et al. (2020) as both an anthropogenic

and a natural source, is of the same order of magnitude with 30 (22-36) TgCH4 year
−1. In

total, methane emissions sum up to 576 (550-594) TgCH4 year−1. Unlike CO2, methane

has a more complex chemistry which represents important atmospheric sinks. The main

atmospheric sink of CH4 is the oxidation by OH, which occurs in the Troposphere (ap-

proximately the first 10 km of the atmosphere) and produces CO2. Over the same decade

(2008-2017), the averaged CH4 removal by such a sink was 518 (474-532) TgCH4 year−1,

while consumption in unsaturated soils by methanotrophic bacteria was 38 (27-45) TgCH4

year−1 (Saunois et al., 2020).
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Figure 1.2: Global methane budget for the 2008–2017. Figure taken from Saunois et al.

(2020). Even though, both bottom-up (left) and top-down (right) estimates (Tg CH4 year−1)

are provided, in the main text we only refer to the top-down estimates.

During 1999 and 2006 the atmospheric growth rate of CH4 was stable (Dlugokencky

E. et al., 2011), followed by a renewed growth, steeper than that of the years before

1999 (Nisbet et al., 2016). These contrasting dynamics have led to large interest in

understanding what caused the stagnation and what is causing the actual steep growth.

There are several hypotheses (Nisbet et al., 2016; Schaefer et al., 2016; Turner et al., 2017;

Rigby et al., 2017; Jackson et al., 2020), from which the contribution from fossil fuels and

microbial sources is the more likely explanation (Saunois et al., 2017), yet the debate is

still ongoing (Saunois et al., 2020). What remains clear is that to constrain the global

CH4 budget, natural emissions from wetlands need to be better quantified, as this is the

single largest source of uncertainty in the global budget (Kirschke et al., 2013; Saunois

et al., 2016). It is worth noting that more than 60% of global CH4 emissions come from

tropical regions (Jackson et al., 2020). In South America, wetlands are the dominant

source (Jackson et al., 2020) with a large contribution from the Amazon basin (Pangala

et al., 2017; Basso et al., 2021). In the next Section, after describing the Amazon carbon

cycle, a glimpse into the methane dynamics in the Amazon region is provided.
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1.2 The Amazon carbon cycle

The Amazon is a crucial component of the global carbon cycle and the Earth system, stor-

ing 150-200 PgC, including carbon in soils and above- and belowground biomass (Saatchi

et al., 2007; Malhi et al., 2009; Marques et al., 2017). These stocks result from an ac-

tive exchange of carbon between the vegetation and the atmosphere. Beer et al. (2010)

estimated that the photosynthetic uptake in the Amazon accounts for 16% of the global

gross CO2 uptake by terrestrial vegetation. The net carbon balance in the Amazon will

be addressed in Chapter 4, but here we highlight the main processes with some esti-

mates of their flux magnitude (see Figure 1.3) based on the SPA (2021) and references

therein.

The net carbon balance of the vegetation in the Amazon results from the uptake of atmo-

spheric CO2 by vegetation, known as Gross Primary productivity (GPP) and the release

of CO2 due to metabolic and decomposition processes, known as Terrestrial Ecosystem

Respiration (TER). The magnitude of GPP is (∼14 PgC year−1), very similar to that of

TER with ∼13.6 PgC year−1. TER is composed of plant respiration (∼8.5 PgC year−1),

decomposition of litter and roots (∼3.8 PgC year−1), and decomposition of dead biomass

(∼1.3 PgC year−1). The difference between GPP and what is respired by living plants

is the Net Primary Productivity (NPP), which represents the net production of biomass

(i.e. woody tissue, leafs, fine roots, flowers and fruits) (Malhi et al., 2015). According

to Malhi et al. (2015) part of this biomass serves short-term roles for reproduction or

metabolism (e.g. fruits, flower, fine roots), after which they are decomposed releasing

CO2 black to the atmosphere, but the remaining carbon adds up to the woody biomass

storage in stems and roots. A fraction of this carbon is released by tree mortality and

decomposition over longer timescales. The remaining carbon (∼0.4 PgC year−1) can be

interpreted as a carbon sink, representing approximately 13% of the terrestrial carbon

sink (3.1 ± 0.6 PgC year−1, see Figure 1.1). Recent evidence (Brienen et al., 2015; Hubau

et al., 2020), suggested that over the last three decades the Amazon carbon sink has been

decreasing, mainly driven by an increasing tree mortality. The seasonal and inter-annual

variability of this sink is largely dependent on plant phenology (Saleska et al., 2003; Albert

et al., 2018), climate (Malhi et al., 2015) and geological history (Quesada et al., 2012).

In Chapter 4, a detailed analysis on the Amazon carbon sink and our own estimate is

provided.

When studying the Amazon region as a whole one needs to take into account other carbon

sources that can offset the vegetation sink. These carbon sources are driven by natural

or anthropogenic disturbances (Davidson et al., 2012) that can influence the storage and

cycling of carbon with long-term effects (Wigneron et al., 2020). Human-driven deforesta-

tion is linked to fire-CO2 emissions (van der Werf et al., 2010), but deforestation can also

result in CO2 emissions from forest degradation (Assis et al., 2020). In addition, forest

CO2 uptake can be reduced by limited water supply during droughts (Phillips et al., 2009;
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Gatti et al., 2014; van der Laan-Luijkx et al., 2015; Koren et al., 2018), leading to stom-

atal closure (Garcia et al., 2021) and/or leaf shedding (Doughty et al., 2015). Climate

driven events such as El Niño Southern Oscillation (ENSO) can amplify droughts, caus-

ing tree mortality in species not well-adapted to such stress (Esquivel-Muelbert et al.,

2020). Further disturbances are associated with the intensification of the hydrological

cycle (Gloor et al., 2015), which can be further amplified by climate change (Barichivich

et al., 2018; Gouveia et al., 2019) and lead to tree mortality due to flooding (Aleixo et al.,

2019). In June 2021 one of the largest flooding events was recorded in Manaus, with wa-

ter levels above the critical threshold for more than three months (Espinoza et al., 2022).

In early studies (Richey et al., 2002, 2009) aquatic CO2 emissions in the Amazon were

seen as a large source of CO2 to the atmosphere (Richey et al., 2002, 2009). However,

recent estimates suggest that when integrated over the entire basin, aquatic habitats are

in balance (yet with a large a uncertainty) due to the offset resulting from carbon up-

take by aquatic vegetation and algae (SPA, 2021). Therefore, the Amazon carbon cycle

is constantly changing and the interaction of human activities, natural forest dynamics,

aquatic systems, climate and other species like CH4, presents a system of high complexity

difficult to understand.

Figure 1.3: Terrestrial carbon cycling in the Amazon. Figure taken from SPA (2021).

The data on the Figure was taken from Malhi et al. (2015) and Brienen et al. (2015) and

extrapolated to the Amazon.
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1.2.1 Methane in the Amazon carbon cycle

Methane research in the Amazon has mainly focused on aquatic emissions, but there are

several other sources and sinks that are worth highlighting before describing the aquatic

sources. In the upland forest, well-drained soils have been described as a small sink of

CH4 (Davidson & Artaxo, 2004; Dutaur & Verchot, 2007), yet microsites with absence of

oxygen can be found in places with poor drainage and particular soil properties, leading

to small sources of CH4 (Verchot et al., 2000).

Upland tree stems and leaf surfaces were suggested as potential sinks (Covey & Megoni-

gal, 2019), yet there are no direct observations of such mechanism. Within the canopy,

bromeliads (Martinson et al., 2010) and mounds of soil feeding termites (van Asperen

et al., 2021) were found to be large site-specific CH4 hotspots. The large heterogeneity

of the latter sources makes it difficult to upscale them and a potential underestimation

of these sources at the ecosystem scale seems likely (SPA, 2021). The contribution from

fires to the methane sources in the Amazon varies regionally (Basso et al., 2021), and it

represents approximately 16% of the total CH4 sources (Basso et al., 2021).

Aquatic habitats are the most important source of CH4 in the Amazon. These habitats

are: rivers, lakes, streams, wetlands and flooded forests, hydroelectric reservoirs and

other inland waters. The processes (see Figure 1.4) by which methane is emitted in these

habitats are: 1. diffusion, 2. ebullition (bubbling) and 3. plant mediated transport

(bubbling through plants) (Bridgham et al., 2013; Pangala et al., 2017). It is important

to note that CH4 emitted via these pathways is produced in the wetland soils under

anaerobic conditions. In the case of plant mediated transport, this should not be mistaken

for emissions of CH4 produced by plants. Floodplain trees and aquatic vegetation (i.e.

macrophytes) mediate CH4 emission from the soil to the atmosphere via large lenticels

and hollow conduits (Pangala et al., 2014). These vegetative adaptations are common in

floodplain vegetation as they permit the entrance of oxygen from the atmosphere to the

roots.
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Figure 1.4: Methane production pathways in wetlands. The boxes indicate carbon pools

in different chemical forms (e.g. acetate: C2H3O2). The dotted lines are carbon inputs from

vegetation as either litter or exudates. The solid arrows indicate the transformation of a carbon

pool by the process outlined. The dashed lines are gaseous products of the indicated process,

mainly as CO2 and CH4, which eventually are emitted to the atmosphere. The processes were

adapted from Bridgham et al. (2013).

Flooded forest and wetlands are the largest source of CH4 in the Amazon, thus here

an overview of previous studies estimating this source is given. The study of Melack

et al. (2004) was one of the first approaches to provide a bottom-up estimate of wetland

methane emissions in the Amazon region by combining in-situ flux measurements done

in the 1990s (Devol et al., 1990) and remote sensing data on the wetland extend. More

recent studies (Melack & Hess, 2010; Hess et al., 2015) provide unprecedented advances

in wetland extent, distribution and vegetation mapping in the Amazon region. Melack &

Hess (2010) provide the extent and distribution of wetlands in the Amazon, while Hess

et al. (2015) generated an inundation extent map combining low water and high water

extent at 100 m resolution. The latter was used by Pangala et al. (2017) to upscale

fluxes to the entire Amazon lowland (< 500 m) region, resulting in new valuable insights.

Pangala et al. (2017) found that plant mediated CH4 emission by floodplain trees is the

dominant pathway for methane production in the Amazon. This finding suggested that

previous disagreement between top-down and bottom-up estimates of CH4 emissions was

due to the omission of the tree mediated source in bottom-up estimates. As Pangala

et al. (2017) indicate, previous studies (Bartlett et al., 1988; Devol et al., 1990) have

focused primarily on macrophyte mediated transport and CH4 fluxes at water surfaces.

Therefore, when upscaling those measured fluxes, tree mediated transport emissions were

not included.
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Table 1.1: Bottom-up and top-down estimates of annual CH4 emissions for the Amazon.

Adapted form Pangala et al. (2017) with some additions:the WETCHIMP results (Melton

et al., 2013), the study of Basso et al. (2021) and the synthesis from SPA (2021). Note that

the areas for integrating fluxes in models and inversions, and for upscaling fluxes might differ.

We therefore, refer the reader to the reference for the exact areas.

Approach Method/Model Source estimated Annual CH4 emissions (TgCH4 year−1) Reference

Top-down Column technique all 42.7 ±5.6 Pangala et al. (2017)

Top-down Inversion all 40.2 to 52 Bergamaschi et al. (2009)

Top-down Inversion all 37 ±5.9 Wilson et al. (2016)

Top-down Inversion all 38.2 ± 5.3–45.6 ± 5.2 Wilson et al. (2021)

Top-down Inversion ensemble all 47.3–78.2 Saunois et al. (2020)

Top-down Column technique all 46.2 ± 10.3 Basso et al. (2021)

WETCHIMP Models Melton et al. (2013)

Bottom-up Bern-LPJ Wetlands 8.2 Melton et al. (2013)

Bottom-up DLEM Wetlands 8.8 Melton et al. (2013)

Bottom-up SDGVM Wetlands 59.8 Melton et al. (2013)

Bottom-up WSL Wetlands 20.5 Melton et al. (2013)

Bottom-up ORCHIDEE Wetlands 59 Melton et al. (2013)

Bottom-up CLM4Me Wetlands 55.1 Melton et al. (2013)

Other models

Bottom-up LPX-Bern Wetlands 44 ± 4.8 Ringeval et al. (2014)

Bottom-up WetCHARTs Wetlands 39.4 ± 10.3

Reported by Basso et al. (2021)

using Bloom et al. (2017)

Bottom up DMCM Wetlands 26.2 ±9.8 Bloom et al. (2012)

Bottom-up Flux upscale Wetlands with trees 35.6 ±5.6 to 41.7 ± 5.9 Pangala et al. (2017)

Bottom-up Flux upscale Wetlands 29.4 Melack et al. (2004)

Bottom-up Flux upscale

All aquatic sources

with trees and dams 51 SPA (2021)

A summary of the bottom-up and top-down estimates of annual CH4 emissions is given in

Table 1.1. Note that the top-down estimates include fire emissions, while bottom-up do no

include this source. Thus, the bottom-up estimates like some of the WETCHIMP models

with more than 50 TgCH4 year
−1 are likely overestimating wetland emissions. Top-down

methods range from 37 to 78 TgCH4 year
−1, for the annual CH4 emissions in the Amazon

including all sources (Bergamaschi et al., 2009; Ringeval et al., 2014; Pangala et al., 2017;

Basso et al., 2021; Saunois et al., 2020; Basso et al., 2021). The mean of this range is

57.5 TgCH4 year−1 for all the sources in the region. A recent estimate by Basso et al.

(2021) reported 46 TgCH4 year−1 using airborne profiles of CH4 in different locations

across the Amazon and including fires. The upscaled estimate of Pangala et al. (2017)

ranges from 35 to 41 TgCH4 year
−1 for only wetlands. While upscaled bottom-up and top-

down approaches seem to converge somewhere around 40-50 TgCH4 year−1 for wetland

emissions, process-based modeling efforts show a large spread in their estimates for the

Amazon (Melton et al., 2013). One of the main limitations that models face is the correct

mapping of wetland extent and flooding dynamics (Melton et al., 2013). The latter also

influences the bottom-up estimates, as fluxes need wetland extent maps to be upscaled.

More challenges to upscale CH4 emissions in the Amazon region are discussed in the

review by Melack et al. (2022), in which atmospheric observations are highlighted as one

of the aspects needed to overcome some of these challenges. The ATTO site plays an

important role in this regard, thus in the next Section a we describe the ATTO site.
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1.3 The Amazon Tall Tower Observatory (ATTO): a

new data stream

The Amazon region has received wide scientific attention in the last decades. In the

1980s, an influential study defined the Amazon rainforest as a system in equilibrium

(Salati & Vose, 1984). From that perspective of equilibrium, a decade ago it became

clear that rapid changes in the eastern parts of the Amazon were signs of a disturbance-

dominated regime in state of transition (Davidson et al., 2012). The transition of a

system in equilibrium to what is likely a tipping point (Lovejoy & Nobre, 2018) is at

least conceivable for the eastern part of the Amazon, where deforestation and climate

change have had a massive impact leading to a net source of carbon in the last decade

(Gatti et al., 2021). The purpose of the Amazon Tall Tower Observatory is to provide

continuous, long-term measurements to support studies that can document such transition

taking place and thus shed light on how the Amazon system is changing. Hence, ATTO’s

development builds upon three to four decades of large experiments in the Amazon. The

Amazon Boundary Layer Experiment (ABLE, Harriss et al. (1988, 1990)), the Anglo-

Brazilian Climate Observation Study (ABRACOS, Gash et al. (1996)) and the Large-Scale

Biosphere-Atmosphere Experiment in Amazonia (LBA, Keller et al. (2004b); de Gonçalves

et al. (2013)). Different from the eddy-flux-oriented perspective of LBA, the ATTO

project has additionally a strong focus on high-precision atmospheric measurements. The

general overview of the ATTO research plan and pilot measurements is given by Andreae

et al. (2015), where the specific research objective associated with greenhouse gases is

stated as:

1. to obtain regionally representative measurements of carbon gas concentrations (CO2,

CH4, CO, and VOC), in order to improve our understanding of the carbon budget

of the Amazonian rain forest under changing climate, land use, and other anthro-

pogenic influences in the fetch region of ATTO.

Profile measurements within the boundary layer from a tall tower permits studying local

and regional processes (Bakwin et al., 1998; Andrews et al., 2014) depending on the height

of the measurement inlet. Furthermore, at the upper levels the concentration footprint

can reach scales close to 1000 km (Gloor et al., 2001). Because of these advantages and the

sparseness of data, Gloor et al. (2000) highlighted the need for tall tower measurements

in particular for South America, Africa and Eurasia. Years later the Zotino Tall Tower

Observatory (ZOTTO) was built in Siberia as part of a Russian-German collaboration

and measurements started in 2006. During that time, the idea of a tall tower in the

Amazon was conceived and in 2008 the project began as a Brazilian-German partnership

which led to the first measurements in 2012. The conditions for site selection according

to Andreae et al. (2015) were: (1) large fetch with minimal current human perturbation,

but with potential future land use change at a large scale, (2) relatively flat topography
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with no large wetlands in the fetch region, (3) stable and protected land ownership and

controlled access, and (4) the possibility to reach the site in a reasonable time to facilitate

research and educational activities. The site is located in the central part of the Amazon,

almost 200 km northeast of Manaus and can be accessed in about five hours from the

city. The site is -to our knowledge- the only continuous profile measurement system in

the region, which complements airborne profiles (twice per month) and weekly flasks that

are collected at continental and marine sites (Figure 1.5).
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Figure 1.5: Left panel: ATTO Location with respect to other measurement sites in the

continent and in remote sites outside South America. Right panel: The surroundings of the

ATTO site located within the ’Reserva de Desenvolvimento Sustentável do Uatumã’.

The greenhouse gas (GHG) profile system is an adaptation from that designed for ZOTTO

(Winderlich et al., 2010). It was installed in 2012 on an initial 80-m tower consisting of

five inlet heights at 79, 53, 38, 24, and 4 m above ground. The canopy height is close to

35 m, so there are two inlets within the canopy, two above it and one in the transition

canopy-atmosphere. From 2012 to 2021 two cavity ring-down-based analyzers (Picarro

Inc.), a G1301 and a G1302 measuring CH4 / CO2 and CO2 / CO were used. For more

on precision and technical aspects of this first generation of ATTO measurements, we

refer the reader to Chapter 2 and 3. In May 2021 both analyzers broke and were replaced

in March 2022 by the other two cavity ring-down-based analyzers (Picarro Inc.), models

G2401 (CO2, CH4 and CO) and G2201-i (13C-CO2/CH4 and CO2 and CH4), installed

at the same heights. Additional greenhouse gas measurements were recently installed

(February/March 2022) at the Tall Tower (325 m) using two different systems. A Fourier

Transform Infrared (FTIR) sprectrometer (Spectronous, Ecotech) (Griffith et al., 2012)
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was installed, sampling air from 6 heights (2, 42, 81, 150, 271 and 321 m) and measuring

atmospheric mole fractions of CO2, CH4, CO, N2O and δ13CO2. In September 2021 a

weekly 3L flask sampler was installed following the design of the ICOS flask sampler

system in Europe (Levin et al., 2020). All these provide a comprehensive suite of GHG

measurements with great potential to study processes at different temporal and spatial

scales. To give the reader an impression of the ATTO site, some photos were gathered

to show the Tall Tower from different perspectives (Figure 1.6A,B,C,D), the canopy seen

from above (Figure 1.6E), fog formation in the lower levels close to the canopy (Figure

1.6F), how the inlet lines are set up from the filter to the analyzer inside the container at

the surface (Figure 1.6G,H,I,J,K), and an impression of the scale of the vegetation in the

surroundings (Figure 1.6L).

A B C D

E F G H

I J K L

Figure 1.6: Photos from the ATTO site. The photos A, C, D, F, L were taken from

https://www.attoproject.org/media/gallery/, photos B, E, G, H, I, J were taken by Santiago

Bot́ıa and photo K by Hella van Asperen.
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1.4 Conceptual framework and research objec-

tives

The ATTO site was built with the general objective of better understanding the complex-

ity of the Amazon system as described in the previous sections. At the beginning of this

PhD project in January 2018, the ATTO site had already been running continuously since

2013. With five years worth of data and building upon the first reports from Andreae

et al. (2015), the objectives of this project were primarily centered on studying and inter-

preting the first years of data for both CO2 and CH4. Following this line of research, the

project set to answer the following overarching question which encompasses and orients

the specific research objectives:

To what extent the long-term and continuous ATTO record serves to understand local

and regional processes leading to sources and sinks of CO2 and CH4?

To address this question it was needed to explore different spatial and temporal scales that

influenced the observational record. These scales and their connection to each one of the

core chapters of this thesis are shown on Figure 1.7. We went from a local scale studying

nighttime methane signals to CO2 flux estimation at continental scale. In the first local

study, we used an observational approach to investigate seasonal and diurnal patterns of

CH4. In the second one, the focus shifted to the use of models to simulate atmospheric

transport of CO2 at seasonal and inter-annual scales with a regional view. Finally, CO2

flux estimation at continental scale was attempted, by integrating the ATTO time series

with a regional network of aircraft CO2 profiles and a bayesian inversion system. The

conceptual and theoretical details of each chapter are provided next.

1.4.1 Local CH4 signals and nighttime transport (Chapter 2)

From the overview given by Andreae et al. (2015) an interesting nighttime signal at the

top of the 80-m tower was evident in the mean diurnal cycle. However, it was unknown

what where the atmospheric characteristics of this signal, where it was coming from and

what were the potential sources. Therefore, the first question addressed was:

What is the nocturnal source of methane and what are the atmospheric transport

mechanisms responsible for it at the Amazon Tall Tower Observatory?

In Chapter 2, this question is addressed and in doing so the complex mechanisms by which

gases are transported in the atmosphere had to be studied. Here a brief introduction of

the main concepts is given. The planetary boundary layer (PBL) is the lowest portion

of the atmosphere where trace gases (e.g. CO2 and CH4), momentum and energy are

exchanged between the surface and the air above it (Stull, 1988; Fisch et al., 2004).
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Figure 1.7: Graphical representation of the topics addressed in each core chapter of this

thesis. Each chapter tackles different spatial and temporal scales. Illustration made by Maŕıa

Camila Bot́ıa.

This exchange flux is subjected to atmospheric transport in the PBL, hence understanding

and being able to simulate transport within the PBL is crucial to interpreting measure-

ments taken at the ATTO site. Transport in the PBL of the Amazon can be separated

into daytime and nighttime regimes, due to a strong diurnal cycle associated with heat-

ing and cooling of the surface (Stull, 1988) or the canopy, in the case of ATTO. During

daytime, buoyancy generated turbulence is the main driving motion in the PBL, related

to unstable conditions and causing convective transport (Fisch et al., 2004). During the

first hours of the day, entrainment at the top of the PBL brings air with low-CO2 mole

fractions which is comparable to the surface uptake by vegetation. As the day progresses,

scalars are well-mixed vertically and the height of the PBL reaches it maximum (Stull,

1988; Fisch et al., 2004; Carneiro, 2018) and the air within the canopy and above it are

strongly coupled (Andreae et al., 2015). In contrast, during the nighttime in the absence

of heat input stable conditions result in less turbulence activity, with a decoupling (in

some cases) of the canopy and the air above it (Andreae et al., 2015) and the lowest PBL

height (Stull, 1988).

In the Amazon and in particular for ATTO, in the absence of strong vertical motions

during the night, scalar fluxes converge into shallow layers and can accumulate consider-

ably in short time periods (Andreae et al., 2015). In such conditions alternative physical

processes, such as drainage flow (Araújo et al., 2008), intermittent turbulence (Mahrt,

1999), and gravity waves (Zeri & Sá, 2011; Andreae et al., 2015) amongst others (Steen-
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eveld et al., 2008) are responsible for horizontal and vertical transport inside the canopy

and above it. Drainage flow has been characterized in the Amazon to explain nighttime

advection of CO2 following a height gradient from plateaus to valleys (Araújo et al., 2008),

which translates into a ”loss” of mass during the stable nights that makes eddy covari-

ance measurements challenging. Intermittent turbulence events at the canopy level were

linked to wind shear above the canopy and observed during decoupled nights (Andreae

et al., 2015). Such intermittent events break down nocturnal stability and connect the

canopy with the PBL, permitting vertical transport of CO2 and other scalars to layers

aloft (Andreae et al., 2015). However, Andreae et al. (2015) state that it is not clear what

triggers such intermittent events. In Chapter 2, we study the influence of these nighttime

transport mechanisms on the nighttime CH4 signals at ATTO.

1.4.2 Seasonal and inter-annual CO2 patterns (Chapter 3)

The next step in the project was to study the CO2 signals with a regional perspective

using an atmospheric transport model. Motivated by the study of Restrepo-Coupe et al.

(2017), where they showed that dynamic global vegetation models did not simulate cor-

rectly the seasonality of GPP in the Amazon region. GPP is a component of the net

ecosystem exchange (NEE = Respiration - GPP), so we designed the following study.

Several estimates of NEE were used, together with a Lagrangian atmospheric transport

model and evaluated at ATTO using the CO2 measurements. With this, we could study

how well the NEE estimates could reproduce CO2 after transported into the atmosphere

and thus answer the following question:

What are the main drivers of seasonal and inter-annual variability for CO2 at ATTO?

Atmospheric transport models (ATM) help to understand the influence of surface fluxes

upwind of the measurement site. In Chapter 3, we use a Lagrangian ATM and here provide

the conceptual basis of how the model is formulated and the main governing equations.

In general the ATMs can adopt two formulations: Lagrangian and Eulerian models. In

the Lagrangian formulation of ATM the motion of the air parcels is resolved along a

trajectory. Eulerian models resolve the mass and momentum equations as a function of

space and time, which can be more computationally expensive, yet provides a solution for

a 3-dimensional grid. As Lin et al. (2003) pointed out, both formulations face two main

challenges to simulate concentrations in the PBL: 1. resolving the ”near-field” variability

in observed concentrations that are linked to heterogeneity of the surface fluxes and 2.

poor representation of mixing and advection within PBL. The term near-field in this

context can be described as the surface that had contact with the air transported to the

measurement location before a specific time point (Lin et al., 2003). The advantages of

using Lagrangian particle dispersion models to overcome these challenges are the following

based on Lin et al. (2003):

1. The distribution of particle locations are not restricted to grid cells, which enables
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capturing fine structures resulting from heterogeneity in surface fluxes.

2. Advection and dispersion in the PBL are simulated by explicitly using turbulent

velocity statistics in the trajectories of the particles (Stohl, 1998), different from

assuming conserved air parcels like the traditional mean wind trajectory models

(Stohl & Wotawa, 1995).

A ”particle” can be interpreted as the representation of a gas or air parcel that is trans-

ported by the wind. In Chapter 3, we used the Stochastic Time Inverted Lagrangian

Transport (STILT) model Lin et al. (2003). It simulates the transport in the near-field

by releasing an ensemble of particles (generally 100) and following their time-evolution in

space, backward in time. The STILT model was based on the source code of the Hybrid

Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) (Draxler & Hess, 1998), us-

ing a different turbulent module but the same mean advection scheme. The main feature

developed in STILT is the direct connection between surface fluxes and concentration

changes at a measurement site or receptor, this is known as surface influence or footprint.

The receptor can be a fixed tower, satellite columns or sequenced (vertically or horizon-

tally distributed) airborne measurements. The following provides a brief mathematical

description of the STILT model based on Lin et al. (2003).

The influence function I(xr, tr|x, t) calculates the fraction of a particle at location (xr) and

time (tr), given that it was previously at x and t. In other words, this function connects

spatially and temporally resolved surface sources and sinks for a number of particles (Ntot),

released from a specific location xr and time tr, with density of ρ(xr, tr|x, t) at (x, t), and
is given by:

I(xr, tr|x, t) =
ρ(xr, tr|x, t)

Ntot

(1.2)

Here I(xr, tr|x, t) has units of (1 volume−1) and x is a vector containing the location of

the particle ensemble or receptor locations. Now, by diluting the surface fluxes F (x, y, t)

(units of moles time−1) into a column of air with height h in which turbulent mixing is

assumed to be strong enough to mix the surface fluxes, we can establish a connection

to a volume source/sink S(x, t) with (units of mixing ratio time−1). The condition is

then:

S(x, t) =

{
F (x,y,t)mair

hρ̄(x,y,t)
, for z ≤ h

0, for z > h
(1.3)

In STILT h is taken as half of the mixing height, ρ̄ denotes the average density below h

and mair is the molar mass of air. The mole fraction changes (in ppm) at the receptor

∆Cm,i,j(xr, tr) takes the following form:
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∆Cm,i,j(xr, tr) = f(xr, tr|xj, yj, tm)F (xi, yj, tm) (1.4)

Where the footprint elements f(xr, tr|xj, yj, tm) link the discretized surface fluxes

F (xi, yj, tm) at location (xi,yj) and time (tm) to ∆Cm,i,j(xr, tr). The surface fluxes are

in units of µmol m−2s−1 and f(xr, tr|xj, yj, tm) in (ppm per µmol m−2s−1). Equation

1.5 describes the integrated footprint f(xr, tr|xj, yj, tm) derived from particle locations,

which quantifies the total amount of time each particle (p) remains in the volume element

i, j, k.:

f(xr, tr|xj, yj, tm) =
mair

h× ρ̄(xi, yj, tm)

1

Ntot

Ntot∑
p=1

∆tp,i,j,k (1.5)

1.4.3 Net CO2 flux estimates using the ATTO CO2 record (Chapter 4)

After analyzing the main drivers of seasonal and inter-annual variability of CO2 at ATTO,

the follow up study was aimed at estimating surface fluxes of CO2 using a regional at-

mospheric inversion system. As part of the data constraint we not only used the ATTO

CO2 time series, but also a network of aircraft measurements providing vertical profiles

of CO2 mole fractions at five different locations in the Amazon region. With this set up,

in Chapter 4 we addressed the following questions:

What is the added value of the ATTO site for flux estimation using inverse modeling?

What is magnitude of the Amazon carbon sink as inferred from inverse modeling?

A brief perspective on inverse modeling is given here, but we refer the reader to Chapter

4 and the references cited here for more information. The technique to solve inverse

problems reverses the normal direction of causality (Enting, 2002), explaining the use

of the term ”inversion”. A common application in atmospheric sciences is the retrieval

of surface fluxes by using atmospheric observations. Commonly known as a top-down

approach, atmospheric inversions have been widely applied using CO2 observations to

retrieve net carbon fluxes globally (Gurney et al., 2002; Rödenbeck et al., 2003; Michalak,

2004; Peylin et al., 2013; van der Laan-Luijkx et al., 2017) and/or regionally (Gerbig

et al., 2003; Peters et al., 2007; Schuh et al., 2010; Kountouris et al., 2018a; Koren, 2020).

This method requires well-calibrated measurements and depends to a large extent in the

spatial density and representativeness of the observational network (Gerbig et al., 2009).

Given the spatio-temporal variability of the observations, the atmospheric inversion can

estimate probable surface flux patterns in both space and time. In the linear Bayesian

inverse estimation, prior information of the target variable is often associated with the

vegetation net carbon flux. The mathematical expression of the problem is defined by the

cost function J(x) in equation 1.6.
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J(x) = (y −Hx)TQ−1
m (y −Hx) + (x− xp)

TQ−1
p (x− xp) (1.6)

Where, xp contains the prior fluxes, y the observations, Hx represents the simulated CO2

mole fractions, which uses the observation operator H, and x is the state vector containing

the unknowns of the target variable, which will be adjusted by minimizing J(x). The

observation operator (H) can be interpreted as the connection between surface fluxes and

observed mole fractions. In the atmospheric inversion context, atmospheric transport

models are used as observation operator. In the particular case of Chapter 4, we use the

transport model STILT (Lin et al., 2003) as observation operator for a regional inversion.

The matrices Qm and Qp contain the error covariances for the observations (model-data

mismatch) and for prior fluxes, respectively. The underlying mathematical concept for

the CarboScope global system has been extensively described in Rödenbeck et al. (2003),

and the iterative algorithm to find the cost function minimum is explained in Rödenbeck

(2005). The development of the CarboScope regional inversion system is described in

Rödenbeck et al. (2009) and Trusilova et al. (2010), and recent applications were carried

out by Kountouris et al. (2018b), Kountouris et al. (2018a) and Munassar et al. (2021).

Note that this work represents -to date- the first regional application of the Carboscope

regional system for flux retrievals using CO2 observations in South America.

1.5 Thesis outline

Each core chapter of this thesis contains introduction, methods, results, discussion and

conclusion sections. In Chapter 2, we look into a nighttime CH4 enhancement at the

uppermost inlet (80 m) of particular interest, due to its unexpected nature: very large

( 50 ppb) enhancements during several hours in the night and sometimes with no connec-

tion with the canopy surface. To investigate this phenomenon an extensive observational

analysis is performed describing the atmospheric characteristics in which the CH4 en-

hancements occur, suggesting potential sources and discarding the potential influence of

a CH4-fire signal.

In Chapter 3 the CO2 record is investigated. In this chapter there is a strong focus

on seasonal and inter-annual scales. We also assess the contribution of different spatial

scales to the measured CO2. The spatial scales range from local (eddy covariance scale),

mesoscale (∼ 100 km) to synoptic scale (∼ 1000 km). For this we subtract the background

CO2 mole fraction from our measurements and compare that regional signal with local

eddy covariance and environmental variables. Furthermore, to provide a larger spatial

scale perspective we couple a STILT with different flux components that contribute to

the integrated CO2 signal in the atmosphere. A broad selection of net CO2 vegetation

fluxes amongst other components like fires, rivers and fossil fuels are used. Particular

emphasis is put on the riverine component, which emerged as an important signal to
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better interpret the measurements at ATTO.

In Chapter 4 we use the CO2 record at ATTO and additional CO2 mole fraction datasets

in the region, to estimate surface fluxes using atmospheric inverse modeling. We use

the CarboScope Regional (CSR) inversion system (Rödenbeck et al., 2009) to obtain net

biome exchange (NBE) for tropical South America and the Amazon region. In the Chapter

more detailed information on the inversion system and the particular set-up is provided.

Of particular importance is the information added by the ATTO measurements, but

we also discuss the main limitations of the observational constraint for specific regions

within the domain analyzed. Spatial and temporal patterns over 9 years are analyzed

and emerging spatial gradients are described. Furthermore, we provide estimates with

associated uncertainty on the Amazon carbon sink and place those results in context.

Finally, in Chapter 5 we reflect on the main insights of this work. The topics discussed

connect all the core chapters of the thesis. The relevance of atmospheric transport to

interpret measurements, the main seasonal drivers of GHG variability, and the importance

of other biomes, different from the Amazon, for the regional carbon budget are the topics

addressed. With this some of the remaining challenges and conclusions are given. In

the Outlook, we provide ideas for future lines of research arising from the insights of the

present work.



Chapter 2

Understanding nighttime methane

signals at ATTO

This chapter is based on:

Bot́ıa, S., Gerbig, C., Marshall, J., Lavric, J. V., Walter, D., Pöhlker, C., Holanda, B.,

Fisch, G., de Araújo, A. C., Sá, M. O., Teixeira, P. R., Resende, A. F., Dias-Junior, C.

Q., van Asperen, H., Oliveira, P. S., Stefanello, M., and Acevedo, O. C.: Understanding

nighttime methane signals at the Amazon Tall Tower Observatory (ATTO), Atmos.

Chem. Phys., 20, 6583–6606, https://doi.org/10.5194/acp-20-6583-2020, 2020.
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Abstract

Methane (CH4) atmospheric mixing ratio measurements are analyzed for the period be-

tween June 2013 and November 2018 at the Amazon Tall Tower Observatory (ATTO).

We describe the seasonal and diurnal patterns of nighttime events in which CH4 mixing

ratios at the uppermost (79 m a.g.l) inlet are significantly higher than the lowermost inlet

(4 m a.g.l) by 8 ppb or more. These nighttime events were found to be associated with

a wind direction originating from the southeast and wind speeds between 2 and 5 m s−1.

We found that these events happen under specific nighttime atmospheric conditions when

compared to other nights, exhibiting less variable sensible heat flux, low net radiation and

a strong thermal stratification above the canopy were found. Our analysis indicates that

even at wind speeds of 5.8 m s−1 the turbulence intensity, given by the standard deviation

of the vertical velocity, is suppressed to values lower than 0.3 m s−1. Given these findings,

we suggest that these nighttime CH4 enhancements are advected from their source loca-

tion by horizontal non-turbulent motions. The most likely source location is the Uatumã

River, possibly influenced by dead stands of flooded forest trees that may be enhancing

CH4 emissions from those areas. Finally, biomass burning and the Amazon River were

discarded as potential CH4 sources.
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2.1 Introduction

In the last decades atmospheric CH4 has followed contrasting trends. Following decades

of growth, during the period between 1999 to 2006, atmospheric CH4 mixing ratios were

stable (Dlugokencky E. et al., 2011), whereas during the last decade a steep growth has

been reported (Nisbet et al., 2016). Currently the reasons for these trends are not clear and

several explanations have been proposed (Nisbet et al., 2016; Schaefer et al., 2016; Turner

et al., 2017; Rigby et al., 2017; Howarth, 2019). What is evident in the current debate

is that CH4 emissions from tropical wetlands are the single largest source of uncertainty

to the global CH4 budget (Kirschke et al., 2013; Saunois et al., 2016). Recent estimates

suggest that Amazon CH4 emissions could contribute about a third of the global wetland

CH4 emissions (Pangala et al., 2017). Therefore, better knowledge of the seasonal and

diurnal dynamics of these emissions will provide valuable insights for developing process-

based models that more accurately represent CH4 emission and uptake (Turner et al.,

2019). Our long term measurements of CH4 mixing ratios at the Amazon Tall Tower

Observatory (ATTO) provide an opportunity for better understanding such seasonal and

diurnal dynamics, which are necessarily linked to atmospheric transport (Gloor et al.,

2001).

CH4 is transported from surface sources, which in the Amazon are dominated by wetland

ecosystems (Saunois et al., 2016; Wilson et al., 2016), to the upper levels of the tropo-

sphere. Therefore, the vertical profile of CH4 mixing ratios in the troposphere generally

decreases with height, showing higher mixing ratios in the boundary layer (Miller et al.,

2007; Beck et al., 2012; Webb et al., 2016). The profiles discussed in previous studies

have been based on airborne measurements taken at daytime under well-mixed conditions

during specific campaigns (e.g., Beck et al., 2012) or during regular sampling programs

with aircraft flights at least twice per month (e.g., Gatti et al., 2014; Webb et al., 2016).

These studies provide valuable insights about regional atmospheric transport (Miller et al.,

2007), spatial distribution of dominant CH4 sources (Wilson et al., 2016) and the seasonal

cycle across the Amazon region (Webb et al., 2016).

Closer to the surface, the proximity to the canopy and to the CH4 sources becomes more

important, dominating the variability of CH4 mixing ratios at diurnal time scales. This

strong variability is driven by a heterogeneous spatial distribution of sources (Gloor et al.,

2001) and the complexity of atmospheric transport mechanisms in the first meters of the

boundary layer (Stull, 1988). Despite these complexities, mixing ratio measurements

close to the surface are the most feasible way to perform long-term measurements at

high temporal resolution that can provide insights at diurnal and seasonal time scales.

However, such type of measurements are sparse in this region, particularly for CH4.
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There are two studies that provide an idea of the diurnal variability of CH4 mixing ratios

in the Amazon region (Carmo et al., 2006; Querino et al., 2011). Both of these studies

were conducted in upland forest sites, similar to the present study. Carmo et al. (2006)

performed CH4 mixing ratios measurements during the dry and wet season at three dif-

ferent sites in the Amazon. At all sites they focused their profile measurements on the

canopy layer, which included one sampling inlet not more than 10 m above the canopy

top. This study found that mixing ratios were generally higher at nighttime than during

the day at all sites. As Carmo et al. (2006) focused on identifying local sources and cal-

culating a local budget, the authors do not specify the amplitude of the diurnal cycle for

the dry and wet seasons. Querino et al. (2011) provide one of the few records showing

the diurnal variability of CH4 above the canopy (53 m), as well as mixing ratio profiles

within the canopy. CH4 mixing ratios above the forest were higher during the night than

during the day. The amplitude of the diurnal cycle was particularly large in July (>

30 ppb), whereas in November there was no diurnal variability (Querino et al., 2011).

Vertical CH4 mixing ratios inside the canopy were found to decrease with height, during

both day and night, but more strongly during nighttime measurements, agreeing with

Carmo et al. (2006). Both Querino et al. (2011) and Carmo et al. (2006) attributed this

feature to a source located in the soil, and they both concluded that the upland forest

is a source of CH4. The observed high nighttime CH4 mixing ratios were explained by

referring to a shallower nocturnal boundary layer that led to accumulation of CH4 above

the canopy (at 53 m) in Querino et al. (2011) and throughout the canopy layer in Carmo

et al. (2006).

In the present study we describe similar nighttime CH4 mixing ratio patterns using the

unprecedented long-term measurements at ATTO. This unique data set allows us to better

describe the seasonal and diurnal variability of nighttime CH4 signals at the 80 m tower.

Furthermore, we provide a detailed analysis of the dominant atmospheric conditions under

which high CH4 mixing ratios are measured during the night at the top of the tower.

Finally, we suggest possible sources of this nighttime CH4 together with a description

of the transport mechanisms that could be responsible for the vertical and horizontal

transport of CH4 in the nocturnal boundary layer.
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2.2 Data and Methods

2.2.1 Site description

The Amazon Tall Tower Observatory (ATTO) research station was described in detail by

Andreae et al. (2015), here we will only highlight aspects relevant to the current study.

The ATTO site is located in the Uatumã Sustainable Development Reserve (USDR),

which is ∼150 km northeast of the city of Manaus, in Central Amazonia. The site was

built on a plateau (130 m-a.s.l) surrounded by a large drainage network composed of

depressions or valleys at lower elevation, which together with the plateaus form a small-

scale heterogeneous topography with maximum height gradients of about 100 m (see

Figure 2.1).
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Figure 2.1: Location of ATTO relative to the continent. The topography, in the background,

is based on the elevation model from the Shuttle Radar Topography Mission (NASA-JPL,

2013). The boundaries of the Uatumã Sustainable Development Reserve (USDR) are high-

lighted in the red polygon and the major rivers are labeled. Background layer of the inset

map: ©OpenStreetMap contributors 2020. Distributed under a Creative Commons BY-SA

License
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The site is located in the interfluve between the Uatumã River and its tributary, the

Abacate River. Both of these rivers flow in a NW to SE direction, merging their waters

further southeast of the site. The flow of the Uatumã River is controlled by the Balbina

reservoir, a hydroelectric dam located 55-60 km to the northwest of ATTO. The natural

flood pulse of the Uatumã River was disturbed by the Balbina reservoir, causing large

tree mortality along the riverside (Assahira et al., 2017; Resende et al., 2019). It is worth

noting that the Abacate River has not suffered hydrological disturbances, still presenting

a natural flooding seasonality.

The vegetation of the USDR is composed of different ecosystems. Upland dense forest

(terra firme) is the characteristic vegetation on the plateaus and slopes, with the highest

canopy when compared to the surrounding valleys (Andreae et al., 2015). The canopy

height at ATTO is around 37 m, but the mean canopy height over the plateau is 20.7±0.4

m (Andreae et al., 2015). In between the permanent flowing river channels and the terra

firme forest, a savanna-type ecosystem on white-sand soil (campina) and forest on white-

sand soil (campinarana) are found. In the campina there are smaller shrubs and trees

with a vegetation height of 13.1 ± 2 m. The campinarana has a canopy with emergent

trees up until 17 m (Klein & Piedade, 2019). Along the Uatumã and the Abacate rivers,

seasonally flooded black-water forest (igapó) is the dominant type of vegetation (Andreae

et al., 2015).

The regional atmospheric circulation has a seasonal pattern driven by the annual north-

south shift of the Inter-tropical Convergence Zone (ITCZ) over the Atlantic Ocean (An-

dreae et al., 2012, 2015; Pöhlker et al., 2019). During the dry season, which we define

here from July to October, ATTO is located south of the ITCZ. During the wet season,

defined here from February to May, ATTO is located north of the ITCZ. This seasonal

shift influences the origin of the air masses entering the continent and arriving at ATTO.

During the dry season the prevailing wind direction is from the east, whereas the wind di-

rection during the wet season is predominantly from the northeast (Andreae et al., 2015).

Easterly winds during the dry season transport air masses containing signals from biomass

burning, occurring mainly in the eastern part of the arc of deforestation in Brazil. The

northeasterly winds during the wet season are transported over a large fetch of continuous

rainforest, yet containing high background mixing ratios of greenhouse gases due to the

influence of the northern hemisphere (Andreae et al., 2012, 2015). The dry and wet sea-

sons were defined using precipitation data collected at the site with 30-minute resolution

covering a period from January 2013 to December 2018. The highest precipitation values

are recorded from February to May, with a maximum of 300 mm month−1 during March,

while the lowest values, at below 100 mm month−1, are found for the months between

July and October (Figure 2.2).
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Figure 2.2: Monthly sums of precipitation for the period between 2013-2018 at ATTO.

2.2.2 CH4 mixing ratio sampling system

Our continuous measurements system was installed in March 2012 in the 80-m-tall tower.

This tower was built during the pilot phase of an ongoing measurement program. There

are five air inlets located at 79, 53, 38, 24 and 4 m above ground. At these heights, we

measure atmospheric mixing ratios of CH4, carbon dioxide (CO2) and carbon monoxide

(CO) using two Picarro Analyzers, the G1301 for CH4 and CO2 and the G1302 for CO2

and CO. The G1301 analyzer (Serial CFADS-109) provides data with a standard devi-

ation of the raw data below 0.05 ppm for CO2 and 0.5 ppb for CH4. For the G1302

(Serial CKADS-018), the standard deviation of the raw data is 0.04 ppm for CO2 and 7

ppb for CO. For more details on precision and long-term drift see Andreae et al. (2015).

Similar to Winderlich et al. (2010), downstream of each sampling line 8 l stainless steel

spheres act as buffer volumes. This buffer system provides ideal air mixing characteris-

tics to have continuous near-concurrent measurements at all heights (Winderlich et al.,

2010). In Winderlich et al. (2010) the buffers integrate the air signal from every inlet

with an e-folding time of approximately 37 min, with a flow of 150 standard cubic cen-

timeter per minute (sccm), at 700 mbar. As we have two analyzers our time resolution is

higher with an e-folding time of approximately 18 min (8 l/(150x2) sccm at 700 mbar).

Therefore, we assume that the 15 min averages used in Section. 2.3.3.iii correspond to

independent samples. The standard data available at http://attodata.org are at 30-minute

resolution.
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2.2.3 Meteorological instrumentation

For this study we use wind direction, wind speed, air temperature, net radiation, precip-

itation and soil moisture. Sonic anemometers are fixed at 14, 22, 41, 55 and 81 m (above

ground level; a.g.l.), but in this study we mainly use wind speed and direction at 81 m

(Windmaster, Gill Instruments Limited). In Section 2.3.1 we show wind speed profiles for

specific nights, using additional data from the sonic anemometers (model CSAT3, Camp-

bell Scientific, Inc.) at 14, 41 and 55 m which perform fast response wind (u, v, and w)

measurements. At 81 m molar densities of CO2 and H2O are measured with an IRGA

(LI-7500A, LI-COR Inc., USA). Air temperature is measured at 10 heights: 81, 73, 55,

40, 36, 26, 12, 4, 1.5 and 0.4 m (a.g.l) with a Termohygrometer (C215, Rotronic Mea-

surement Solutions, UK.). Net radiation is measured with a Net radiometer (NR-Lite2,

Kipp and Zonen, Netherlands) at 75 m (a.g.l). For precipitation data, a rain gauge (TB4,

Hydrological Services Pty. Ltd., Australia) is installed at 81 m, and for soil moisture a

water content reflectometer (CS615, Campbell Scientific Inc., USA) provides data for the

depths: 0.1, 0.2, 0.3 0.4, 0.6 and 1 m.

2.2.4 Time period of data used

In the present study we have used CH4 mixing ratio and meteorological data at different

time resolutions. When mentioning meteorological data, we refer to the variables de-

scribed in 2.2.3. To provide more clarity we specify what type of data were used in each

section. In Section 2.3.2, 2.3.3.i and 2.3.3.ii we used CH4 mixing ratios and meteorological

variables at 30-minute resolution. The CH4 mixing ratio record covers the period from

June 2013 to November 2018, which enabled us to study the diurnal and seasonal variabil-

ity within this period. In Section 2.3.3.iii, we used high-frequency (10 Hz) meteorological

data, in particular all wind components (u, v and w), in order to associate turbulence

regimes with CH4 mixing ratios at 15-minute resolution. More on the assumptions to link

high-frequency wind data with 15-minute mixing ratios is given below. In Section 2.3.4,

we use 30-minute averages of CH4, CO and Black Carbon (BC) equivalent mass concen-

trations to assess the influence of biomass burning emissions in our CH4 signals. The raw

BC mass concentrations at 1-minute time resolution were obtained using a Multi-angle

Absorption Photometer (MAAP, model 5012, Thermo Fisher Scientific, Waltham, USA),

as described in Saturno et al. (2018). The instrument measures the absorption coefficient

of aerosol particles deposited on a filter, which is converted to BC mass concentration by

assuming a mass absorption cross section of 6.6 m2 g−1. In Table 2.1, we provide a list

of the data used in each section, specifying the time resolution and the period of time

used.



2.2 Data and Methods 29

Table 2.1: Observational data used in each of the sections. We specify the time resolution

and the period of time used.

Sections Data used Time resolution Period of time

2.3.2, 2.3.3.i/ii
CH4 mixing ratios 30 min 2013-06 to 2018-11

Meteorological data 30 min 2013-06 to 2018-11

2.3.3.iii
CH4 mixing ratios 15 min 2014: Mar-May, July-Sep

Meteorological data 10 Hz (avg. to 1 min) 2014: Mar-May, July-Sep

2.3.4

CH4 mixing ratios 30 min 2013-06 to 2018-11

CO mixing ratios in CH4:CO 30 min 2013-06 to 2018-11

CO mixing ratios in BC:CO 30 min 2013-06 to 2018-05

Black Carbon 30 min 2013-06 to 2018-05

2.2.5 CH4 gradient definition

A CH4 gradient is defined as CH4grad = CH479m - CH44m . We indicate that the units of the

CH4grad and the comparisons here are in parts per billion (ppb). We refer to a positive

gradient when CH4grad > 0 ppb, or to a negative gradient when CH4grad < 0 ppb. Note

that positive gradients are related to higher CH4 mixing ratios at 79 m than at 4 m, while

negative gradients to higher mixing ratios at 4 m. Throughout this paper we also use a

8 ppb threshold for classifying positive gradients and negative gradients. In Section 2.3.2

we use three classes. The first one refers to very strong positive gradients (CH4grad >

8 ppb or above-8-ppb class); the second one to gradients in between -8 ppb and 8 ppb

(-8 < CH4grad < 8 ppb); the third one to very strong negative gradients (CH4grad < -8

ppb). In Section 2.3.3, we have limited our analysis to two classes, CH4grad > 8 ppb, and

CH4grad < 8 ppb (below-8-ppb class). The motivation to use 8 ppb as the threshold value

is to leave out small mixing ratio variations and select very strong events. The ± 8 ppb

threshold is conservative and filters for strong gradients, if we consider that the annual

global increase in atmospheric CH4 during the last three years was 7.06, 6.95 and 10.77

ppb year−1 for 2016, 2017 and 2018 respectively (Dlugokencky, 2019). It is always stated

in the text which of these classes is being considered.

2.2.6 Analysis of 30-minute averages

In Section 2.3.2, the 30-min averages of CH4 mixing ratios were grouped into daytime

and nighttime and further classified into the three classes as described in Section 2.2.5.

In Section 2.3.3.i strong CH4 positive gradients were associated with wind direction by

using the Openair package in R developed by Carslaw & Ropkins (2012). This R package

provides useful predetermined functions to interpret air pollution characteristics based

on wind speed, wind direction and other variables. Micro-meteorological data were used

together with collocated CH4 mixing ratio data at ATTO (Section 2.3.3.ii).
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The heights of the highest sonic anemometer and the highest air inlet for CH4 mixing

ratio measurements differ by two meters, with the former at 81 m and the latter at 79 m.

We assume that the effect of the two meters can be neglected and thus interpret all the

81 m data as valid for 79 m. In order to maintain consistency, we used the same 8 ppb

threshold as in Section 2.3.2, but this time we clustered the other two classes (CH4grad <

-8 ppb and -8 < CH4grad < 8 ppb) into only one: below-8-ppb. The latter provides more

clarity in the interpretation, as we are strictly interested in the above-8-ppb class.

2.2.7 Analysis of 1-minute averages

In Section 2.3.3.iii we analyze the CH4 positive gradients for the stable boundary layer

taking into account the turbulence regimes defined by Sun et al. (2012). For this analysis,

we use high-frequency data (10 Hz) for micro-meteorological variables but we averaged

to 1-minute in order to be consistent with recent practice in nocturnal boundary layer

studies (Marht et al., 2013; Acevedo et al., 2016, 2019) and to more strictly filter out

low-frequency submeso fluctuations (i.e. non-turbulent motions at scales smaller than

those at the mesoscale) (Mahrt, 2009) in all wind components. We focus on 6 months of

2014 (March, April, May, July, August and September). We have selected these months

to target wet and dry seasons, and discarded June because it is considered a transition

month based on precipitation. These turbulence regimes are classified into two classes:

above-8-ppb and below-8-ppb. This classification is performed using the highest temporal

resolution of CH4 mixing ratio data, which is 15 minutes. We assume that the gradient is

constant for each 15-minute interval. For example, if the CH4 gradient is 5 ppb at 21:00

LT (local time), we use the same value for every minute until 21:14 LT.

2.3 Results

2.3.1 Example of CH4 gradient events

In Figure 2.3a we show a night in which a very strong positive gradient occurred. After

00:00 and before 01:00, there is a sudden and abrupt divergence of CH4 mixing ratios

measured at 79 m. This increase in CH4 is not seen at the first three measurement levels,

while at 53 m is observed with some delay and with less intensity. The divergence at

79 m reaches a CH4 peak of 1960 ppb at around 04:00, at which point the lowest three

inlets show CH4 mixing ratios lower than 1880 ppb. At this time there is a strong thermal

inversion for the air above the canopy and the wind speed at 81 m decreases to almost

1 m s−1. The duration of this positive gradient, considering the time in which the 79

m inlet had mixing ratios higher than 1880 ppb, was about 5 hours. These positive

gradient events are very common in our time series and they vary mainly in duration and

magnitude. For the case shown in Figure 2.3a, we can see that the decoupling between

the air above and within the canopy was very strong up until 53 m. At the 53 m level
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the signal, first measured at 79 m, arrived about 30 minutes later when the CH4 mixing

ratio began to increase, but at the lower levels the behavior is completely independent.

Decoupled conditions can be explained by a very strong thermal inversion that obstructs

vertical mixing, which could be triggered by wind shear under stable conditions (Mahrt,

2009).

Figure 2.3: CH4 time series for three selected nights (first column) showing a 24-hour interval,

virtual potential temperature (second column) and mean wind profiles (third column) for

three selected periods of the CH4 time series. The times at which the profiles are plotted are

highlighted on the CH4 time series with the same colors. The canopy height is approximately

35 m. Note that due to instrument malfunctioning the Θv profiles are lacking data at 12 m.

The wind speed profiles cover from 19 m to 81 m.
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For other cases in which we observed positive gradient events during nighttime, the signals

measured at 79 m are then measured at the lowest inlet (4 m) after some time, varying

from 30 minutes to 1.5 hours (see Fig. 2.3b). For these situations, when the coherent

response at the lowest levels is within the next half an hour, it could be explained by

the sequential sampling (top-bottom) and the buffer volume in our measurement system.

However, in the case of such a subsequent top-down signal we also find that the decoupling

between the air above and within the canopy is weaker or non-existent.

The virtual potential temperature (Θv) profiles above the canopy at 22:00 and 02:00 show

a very similar gradient with a weak thermal inversion. Interestingly, at 02:00 when the

CH4 mixing ratio at 79 m reached the maximum, the wind speed at 81 m decreased to 1

m s−1 and for the same time the Θv profile showed a mild gradient of about 1.2 K. This

mild temperature increase with height above 41 m indicates that the decoupling of the

air above the forest is less strong, explaining why the CH4 is measured subsequently at

lower heights. Note that vertical transport for these situations is triggered by mechanical

turbulence (generated by wind shear instabilities) or intermittent turbulence that, in the

absence of a very strong thermal inversion, can transport CH4 to the lower inlets and inside

the canopy (Oliveira et al., 2018). During this night, the gradient was less pronounced

and it lasted for less time than in the night shown in Figure 2.3a.

In Figure 2.3c a night in which no gradient was measured is shown. An almost constant

Θv profile indicates the coupling of the air above the canopy for the three selected times

of the night. The thermal gradient for the layer above the canopy is about 1.5 K. The

CH4 mixing ratios are very similar at all inlet heights for the full 24-hour period. During

this night the wind speed has both the largest values and the lowest variability during the

course of the night. From these three cases, one can see that positive gradient events are

associated with atmospheric stability and wind speed. However, as we show in the next

Section 2.3.3.i, the wind speed is not necessarily always weak for positive gradients.

2.3.2 Seasonal and diurnal patterns of CH4 gradients at ATTO

In Figure 2.4 we show that for all years except 2016, monthly mean positive CH4 gradients

(hereafter simply referred to as positive gradients) occur mainly during the dry season,

whereas the mean gradient is close to zero during the wet season. The monthly mean

gradient is significantly different from zero during the dry months, with p-values (two

sided t-test) lower than 0.01. This positive gradient at ATTO is more pronounced during

the month of August, when the lowest precipitation values are less than 50 mm (Figure

2.2). A different behavior is observed for 2016, in which a strong negative gradient during

June and July suggests a possible CH4 source within the canopy measured at 4 m. The

reason for this is unclear, yet we provide some ideas discussed later in this section. The

dry season peak is also seen at the other measurement heights (not shown here), but at 79

m the measured CH4 mixing ratios are the highest, indicating that non-local sources are
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predominant during this period of time. It is interesting to note that in the dry season also

the largest variability in the gradient was observed, as opposed to the reduced variability

during the wet season and transition months such as December and January.

Figure 2.4: Monthly box-and-whisker plot of CH4 gradient between the 79 m and 4 m levels.

The box denotes the inter-quartile range (IQR), showing the median with a notched line. The

whiskers range from Q1-1.5*IQR to Q3+1.5*IQR, with Q1 and Q3 being the 25th and 75th

percentiles. The cyan line is the monthly mean gradient. The monthly statistics are calculated

from half-hourly measurements at ATTO.

The positive gradients observed during the dry season are associated with nighttime CH4

mixing ratio peaks at 79 m. Figure 2.5 depicts the fraction of time for daytime and

nighttime measurements for each of the classes described in Section 2.2.6. For all months,

daytime measurements (Figure 2.5a) are within the -8 to 8 ppb range over 60% of the

time. Gradients lower than -8 ppb or higher than 8 ppb are more frequent and increase

their contribution to the total time during May, June, July, August and September. For

these months negative gradients are measured 8.7%, 18.6%, 22.3%, and 17.6% and 7.8%

of the total daytime hours, while positive gradients are found 3.6%, 6.2%, 10%, 12.2%

and 8.4%.

Nighttime measurements, in general, show a larger contribution of positive gradients to the

total time (Figure 2.5b). Nighttime positive gradients occur in all months of the year, from

4.1% of the time in January to 43.3% of the time in August. The highest percentages are

recorded during the dry season months of July (30.2%), August (43.3%) and September

(30.2%). Unsurprisingly, these months also have the highest mean nighttime gradients,

with 2.6 ± 23 ppb, 9.7 ± 21 ppb and 6.2 ± 23 ppb for July, August and September,

respectively. The maximum nighttime positive gradients were observed between 03:00

and 06:00 am LT (not shown), with values larger than 130 ppb. During daytime, the
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maximum positive gradients occur between 07:00 and 08:00 LT, with values over 150 ppb.

Note that these gradients are generated during nighttime and can persist for a couple

of hours until the erosion of the nocturnal boundary layer and subsequent growth of the

convective boundary layer, which occurs between 08:00 and 09:00 am LT (Fisch et al.,

2004; Carneiro, 2018).

Figure 2.5: Time fractions for daytime (a) and nighttime (b) measurements in which CH4grad

> 8 ppb, -8 < CH4grad < 8 ppb and CH4grad < -8 ppb. Nighttime is defined as between 20:00

and 06:00 LT and daytime as between 07:00 and 18:00 LT.

The mean diurnal cycles of the CH4 gradient for dry and wet seasons provide interesting

insights (Figure 2.6). The amplitude of the mean diurnal cycle gradient during the dry

season (12.1 ppb) is 4 times larger than that of the wet season (2.7 ppb). This substantial

difference can be attributed to two main reasons. First, due to strong nighttime positive

gradients during the dry season, the maximum mean (7.1 ppb) is much larger than the

maximum mean of the wet season (0.5 ppb). Interestingly, both of these mean maxima

occur at night, indicating that nighttime positive gradients are pulling up the mean in
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both seasons. Second, during the dry season the daytime planetary boundary layer is

higher by a few hundred meters as a result of a larger sensible heat flux caused by the

higher incoming shortwave radiation during this season (Fisch et al., 2004; Carneiro, 2018).

Under this case with higher mixing ratios close to the surface and lower free tropospheric

mixing ratios (as shown for dry and wet seasons by Beck et al. (2012)), a deeper boundary

layer directly affects daytime CH4 mixing ratios because CH4 enhancements near the

surface will be diluted in a larger volume. This dilution effect does not happen at the 4

m inlet, because the within-canopy air volume remains the same throughout the seasons.

This boundary layer effect together with higher CH4 mixing ratios at 4 m compared to

79 m during the dry season yield a lower dry season daytime mean minimum of -5.0 ppb,

whereas the mean minimum during the wet season is -2.2 ppb.

Figure 2.6: Mean diurnal cycle of the CH4 gradient between the 79 and 4 m levels. The

period between June 2013 and November 2018 was used and separated by dry and wet seasons.

The error bars show the standard deviations.

Another possibility that might contribute to this seasonal difference is local production

of CH4 during the wet season. Though we lack long-term CH4 flux measurements at the

site, we can infer a potential local source during the wet season considering that the mean

monthly gradient during daytime hours of the wet season is always negative (not shown),

meaning that the CH4 mixing ratio at 4 m is higher than at 79 m. Although outside

of the scope of this study, strong negative gradients are more common during daytime,

reaching differences as large as -455 ppb, measured in May of 2014.
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The 4 m inlet is too high above the soil to directly associate this signal with the soil

below, but is well within the canopy indicating that the source must be local possibly

within a horizontal distance of few hundred meters. The event in May 2014, coincided

with a strong signal measured for carbon monoxide (CO) with the same timing, but not

for carbon dioxide (CO2), which suggests a source not related to combustion.

The mechanism producing this strong CH4 signal within the canopy is currently under

investigation, yet here we discuss what the potential sources could be. Our first thought

is that the soil on the plateau is producing CH4 episodically. Given some additional

parameters, we can calculate the water-filled pore space (WFPS) for the depth (60 cm)

of maximum soil moisture content, at which we believe CH4 could be produced. To be

conservative we take the mean soil moisture value for the entire record at 60 cm, 0.35 m3

m−3. According to Andreae et al. (2015) ∼85% of the soil in the plateau is clay, thus we

use a soil particle density of 2.86 g cm−3 (Schjønning et al., 2017). Also from Andreae

et al. (2015), we use a bulk density of 1.1 g cm−3. This results in a WFPS of 57%, which

is likely to enhance the abundance of anaerobic micro-sites where methanogenic bacteria

can be activated. At values above 60% Verchot et al. (2000) found positive CH4 fluxes, at

the ATTO site values above 60% are often seen during the wet season. Upland terra-firme

soils are generally considered as CH4 sinks (Dörr et al., 1993; Dutaur & Verchot, 2007;

Saunois et al., 2016), but at local scales the soil can become a source depending on the

balance between CH4 production and oxidation (Verchot et al., 2000). Moreover, tree

stems were found to play an important role as conduits for soil-generated CH4 in upland

terra-firme tropical forest (Welch et al., 2019). These findings, together with our data,

suggest that the upland terra-firme CH4 sink at ATTO needs to be further studied.

A second option is related to daytime anabatic flows within the canopy transported from

the depressions to the plateau (Tóta et al., 2012). These anabatic flows could transport

CH4 produced in saturated soils of these low-lying areas. Recent (May 2019) unpublished

CH4 mixing ratio measurements suggest a possible source at the lowest point of one

depression close to the ATTO site. A further possibility, not likely explaining the complete

signal at 4 m, but probably contributing to it, might be termite production within the

canopy. Termite CH4 production is common in tropical ecosystems (Sanderson, 1996),

however flux measurements from this source have not been performed at the site. The

2016 episode mentioned earlier provides evidence that CH4 mixing ratios at 4 m could

be strongly enhanced by unidentified processes that need further research. The natural

variability of upland terra-firme CH4 sources or sinks could have been altered by the El

Niño event that began in 2015 and lasted until early 2016, as shown by Pfannerstill et al.

(2018) for OH at the ATTO site. For these episodes, which occurred during June and

July (see Fig. 2.4), the enhancement at 4 m lasted for more than 5 hours presenting the

onset at nighttime and maintained during daytime. Furthermore, the air within the 4 m

layer above the ground seemed to be strongly decoupled from the layers above as none

of the upper inlets measured the signal observed at 4 m (not shown). Therefore, the 4
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m episodes described here are very likely a combination of an enhanced source and the

stability conditions of the air within the canopy for those specific dates.

2.3.3 Atmospheric characteristics of positive CH4 gradients

i. CH4 positive gradients and wind direction for 2013-2018

For hourly time scales, we find that for nighttime hours and when the mean CH4grad

is above 8 ppb the wind direction is within the range of 90 and 180 degrees, hereafter

southeasterly (Figure 2.7, left panel). Note that the wind directions ranging between 180-

270 degrees, hereafter southwesterly, also show positive mean CH4grad during nighttime

hours but these are lower than those seen when the wind comes from the southeast. For

lower or negative mean CH4 gradients and other times of the day, mainly daytime, the

wind direction does not show a dominant pattern.

Figure 2.7: Mean CH4 gradient for each bin of wind direction and time of day (left panel)

or month of the year (right panel). Wind direction measured at 81 m and CH4 mixing ratios

at 79 m. Plot produced in R with the Openair package (Carslaw et al., 2010)
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At monthly time scales we observed similar behavior, with a dominant southeasterly

wind direction for mean CH4grad above 8 ppb and the dry season months of August

and September. During August and September, the southwesterly direction shows mean

CH4grad above 4 ppb, suggesting that this wind direction plays an important role in the

positive CH4grad events. Yet, it is very clear that large positive CH4grad are mainly driven

by southeasterly winds. During dry season months the wind is more frequently coming

from the east whereas during the wet season there is a shift to northeasterly winds. In-

situ measurements of wind direction confirm this pattern. The monthly mean wind roses

(see Figure 2.A1) show that the wind is more frequently coming from the east and it

is more likely to bring air masses from southeastern areas of ATTO during June, July,

August and September. These months have wind direction frequencies close to 20% with

wind speeds ranging from 1 to 7 m s−1. The mean wind rose plots for each hour of the

diurnal cycle (see Figure 2.A2) indicate that after 15:00 local time, wind directions in

the 90-180 degrees quadrant become more important than in previous hours of the day,

with frequencies of about 15%. After 18:00, the frequency increases at this wind direction

until 23:00. These wind direction patterns together with the prevailing wind direction for

the positive CH4grad suggest that nighttime positive gradient are more frequent in the dry

season due to the prevailing wind direction, being more likely to bring air masses from

the potential source region located to the southeast of ATTO.

The probability of measuring gradients above the 88th percentile (8 ppb) together with

wind direction and wind speed at 81 m is shown in Figure 2.8. The highest probability

(50%) of having a gradient above 8 ppb is associated with a particular wind speed range,

mainly from 4 to 5 m s−1. This wind speed range is seen for different wind directions, with

the two southern quadrants (from 90 to 270 degrees) having a very similar probability of

40 to 50%, with a slightly higher conditional probability in the southeastern quadrant than

the southwestern quadrant. For the northwest quadrant (270 to 360 degrees) the proba-

bility observed is lower than 40% but interestingly the wind speed range holds. Therefore,

the gradients above 8 ppb are associated not only with a range of wind directions but also

with a particular wind speed range. We showed previously that southeasterly winds are

clearly bringing CH4-enriched air masses, but there is also a 40% probability of having

these enhancements (above 8 ppb) when the wind direction shifts to the southwesterly

direction and also when it comes from the northwest with approximately 25% probability

at wind speeds of 5 m s−1. It is relevant to note that 68% of the positive CH4grad occur

at wind speeds between 2 and 5 m s−1 (not shown), which in the southern quadrants still

have a higher probability of occurrence.

Considering these results, we can infer that dominant large scale circulation patterns

explain why large positive CH4 gradients are more common during the dry season months.

Thus, the wind arriving at ATTO is more likely to come from the source areas to the

south of the site.
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Figure 2.8: Polar plot showing the conditional probability function (CPF) of the gradients

above 8 ppb (88th to 100th percentiles, shown in the bottom of the graph as 8 to 195 ppb).

The radial axis shows wind speed intervals and the colors the probability of having gradient

above 88th percentile. This is shown for each bin composed by wind direction and wind speed

at 81 m. Plot produced in R with the openair package (Carslaw et al., 2010).

Moreover, this also explains why large positive CH4 gradients are more strongly associated

with the southeasterly direction; wind direction frequency is larger for these months than

for other months of the year. Large positive CH4 gradients can also come from other

wind directions, but they are less frequent. Therefore, we identify a potential source of

the nighttime signals with a probability of 40% to 50% to the south of the ATTO site

(see Figure 2.8). Here it is important to recall that these percentages are based on the

conservative threshold of 8 ppb, analyses not shown here using a lower threshold yield

higher probabilities. The nighttime average wind direction is more frequently coming

from the southeast, explaining why positive CH4grad are more strongly associated with

these wind directions at this timescale.
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ii. Net radiation, sensible heat flux, friction velocity and thermal stratification for CH4

positive gradients 2013-2018

Net radiation for the above-8-ppb class is more negative, indicating a stronger radiative

cooling at ATTO (see Figure 2.9a) when these episodes occur. Net radiation is less

variable for positive gradients with lower mean and median values for all night hours.

This can be explained because positive gradients are more frequent during the dry season

and in particular in August, when there is less cloud cover, as can be inferred by our

precipitation record (Fig. 2.2), and as reported in Andreae et al. (2015). Clear skies

contribute with a more effective radiative cooling at the canopy top, leading to a stronger

thermal inversion in the NBL.

Figure 2.9: Box-and-whisker plots of net radiation (a), sensible heat flux (b), friction velocity

(c), and virtual potential temperature difference (d) for nighttime hours. At each hour the

gray colors indicate data points that correspond to either a gradient above 8 ppb or below 8

ppb. The means are indicated by the green triangles and the number of data points for each

box-and-whisker plot is shown on the top of each panel. Note that the sensible heat flux and

the friction velocity were measured at 81 m and net radiation at 75 m. Note that the air inlet

for CH4 mole ratios is at 79 m.
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Net radiation estimates at ATTO provide indirect evidence that suggest a shallower NBL

height during the dry season. Values above the canopy are more negative during the dry

season than during the wet season (see Figure 2.A3), suggesting a strong thermal inversion

driven by large nighttime radiative cooling at the top of the canopy. For stable nights at

the ATTO site, Oliveira et al. (2018) found that at 81 m the turbulent fluxes were clearly

less variable than at lower heights, indicating a very shallow NBL height.

The above-8-ppb class is associated with a less variable H (see Figure 2.9b), tending to

values close to zero. For this class, the mean and median values of H at the beginning

of the night hours, mainly from 20:00 to 23:00 LT, are slightly more negative than for

the other class. After midnight these values tend to be closer to zero for the above-8-ppb

class, suggesting that the nocturnal boundary layer is more stable for positive gradient

events. The variability of both classes between 20:00 and 23:00 LT is not as different as for

the rest of the hours, but still is slightly lower for the above-8-ppb class. Considering the

height at which the H is zero a proxy to infer the NBL height, one could say that positive

CH4 gradient events are associated with a very shallow nocturnal boundary layer, close

to 81 m. The seasonal difference in NBL height was studied by Carneiro (2018) during

the GoAmazon campaign (Martin et al., 2016), using a ceilometer, a lidar and a SODAR,

among other instruments. Carneiro (2018) found that the time to erode (total erosion is

considered to be when sensible heat flux and net radiation become positive) the nocturnal

boundary layer is larger during the wet season, suggesting a deeper NBL height as one

of the reasons to explain this. It is worth noting that the ceilometer sensitivity differs

between instruments and it can also be affected by changes in the background radiation

(Wiegner & Geiß, 2012). The ceilometer used by Carneiro (2018) is a CL31 (Vaisala Inc.,

Finland) and the one at ATTO is a Jenoptik CHM15kx, used recently by Dias-Júnior

et al. (2019) to determine the mixing layer depth using only daytime backscatter profiles.

In another study with the Jenoptik CHM15kx, Wiegner & Geiß (2012) found that the

lowest detectable mixing height is around 150 m, therefore nights with a NBL height lower

than this might not be well captured. Furthermore, the study was conducted over pasture

which has different roughness and radiative characteristics compared to old-growth forest,

and as such the results cannot be extrapolated to ATTO. Nonetheless the study provides

valuable information about seasonal differences of the NBL height.

Positive gradients are also associated with low friction velocity (u∗) variability as well as

low mean and median values for all nighttime hours (see Figure 2.9c). As a measure of

mechanical turbulence, low u∗ values suggest that positive gradients occur mainly at low

turbulence intensity. This finding is not surprising as strong stability and the absence of

turbulence can lead to accumulation of trace gases in the NBL (Stull, 1988; Fitzjarrald &

Moore, 1990) due to reduced vertical mixing.



42 Nighttime methane signals at ATTO

However, under this common assumption and considering that the NBL above the canopy

can attain shallow depths, one would expect to measure the accumulation of trace gases

at least at the other inlet heights above the canopy or at inlet heights closer to the

canopy, where the possible source could be located, but for many of these events this

is not the case. The CH4 signal that arrives at the uppermost inlet (79 m), driving a

positive gradient, is often not seen at lower inlets. This is very often the case for the

inlet at 38 m but less so for that at 53 m, indicating that the CH4 rich air is advected

within a layer that includes the 79 m inlet and sometimes the 53 m inlet, but not those

below 53 m. Having low friction velocity values and considering that the dominant wind

speeds at which positive gradients have more probability of occurrence are between 2 to

5 m s−1 (see Figure 2.8), suggest that CH4 signals are transported mainly by horizontal

non-turbulent motions, which are probably formed by inactive turbulence mainly seen

at the upper layers. Such inactive turbulence contributes very little to the generation of

turbulence as was indicated by Högström (1990).

The difference of θv between 81 and 36 m is slightly higher for the above-8-ppb class than

for the below-8-ppb class (see Figure 2.9d). The difference between the median values

of the two classes is approximately 0.5 K for all night hours, hinting at relatively faster

radiative cooling at the top of the canopy for the above-8-ppb class. The variability of

this difference is very similar between both classes, although the above-8-ppb class is

more skewed towards positive values. The difference between mean and median values for

both classes is small, but the fact that we see a systematic difference at all night hours,

strengthens the argument that thermal stratification is stronger when positive gradients

occur than for the other class.

iii. Association of positive CH4 gradients and NBL turbulence regimes

We have defined the NBL turbulence regimes following the work of Sun et al. (2012),

which was further applied by Dias-Junior et al. (2017) at another site within the Amazon

forest. In regime 1, turbulence is produced by local shear at low wind speed and low σw.

In regime 2, σw increases with wind speed and bulk shear in the NBL triggers turbulence

(Sun et al., 2012). In Figure 2.10a the standard deviation of the vertical velocity (σw)

is plotted as a function of mean horizontal wind speed (U) for all the data available in

2014 without differentiating between gradient classes. Here, one can see that the regime

transition (between regime 1 and 2) occurs at the wind speed bin of 5.8 m s−1, which

comprises the range between 5.6 and 6.0 m s−1. At this threshold the uppermost quartile of

σw exceeds 0.5 m s−1 and the slope defined by median values changes notably. Therefore,

we define this bin as the wind speed threshold that marks the transition from regime 1

to regime 2. Subdividing this further into the gradient classes above and below 8 ppb

(Figure 2.10b), we observe that the variability of σw close to the wind speed threshold

(bins 5.8 and 6.5 m s−1) is reduced for the above-8-ppb class. The upper quartile of σw

for the above-8-ppb class exceeds 0.5 m s−1 only up to 6.5 m s−1.
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The median σw for both classes display a similar range of variability at 7.5 m s−1. The

above-8-ppb class has a different distribution in the same wind speed bins close to the

wind speed threshold, having lower median values of σw. This finding implies that vertical

motions are even more suppressed at 81 m for the above-8-ppb class, regardless of the

wind speed exceeding the threshold value.

Given these facts, we can associate positive gradients with the more stable regime 1: low

σw even at wind speeds exceeding the threshold value, identified without separating into

gradient classes. In other words, the wind speed threshold under positive gradient events

is shifted to a higher wind speed, maintaining low σw values. To account for wind speed

variations that could affect our assumption of constant CH4 mixing ratios for every 15-

minute window, we have filtered out the 15-minute time periods in which the difference

between the maximum and minimum wind speed is larger than 0.5 m s−1 (Fig. 2.10c).

After filtering, the dependence of σw on wind speed shows a similar pattern for each of the

classes. In general, σw is less variable for positive gradients events. However, the difference

in wind speed threshold is even more evident at the wind speed bins of 5.9 and 6.1 m

s−1. According to Sun et al. (2012), turbulence in regime 1 is weak and is controlled by

vertical temperature gradients, in line with our finding of a stronger thermal stratification

for positive gradients shown before. In regime 1 eddies generated at the observation height

triggered by local shear do not come into contact with the ground (Sun et al., 2012). This

is because, as stated by Sun et al. (2012), the length scale of the local shear is smaller

than the observation height.

More evidence about the dominant regime of the NBL when the positive gradients occur is

given by the potential temperature gradient (dθ
dz
) between 81 m and 36 m. We found that

99.95% of the positive gradients occur with positive values of dθ
dz
. As a result, one can infer

the absence of vertical motions at the tower location. We can only attribute this lack of

vertical mixing above the canopy to the tower location. Therefore, we have to separate the

NBL conditions at the tower and at the potential source location. Unfortunately, we only

have measurements at the tower and it is not realistic to measure at all possible source

locations. Thus, the transport mechanisms can be divided into 1. those responsible

for vertical transport of CH4 at the source location and 2. those responsible for the

horizontal advection bringing the CH4 signals to the tower. More on the vertical and

horizontal transport mechanisms is discussed in Section 2.4.2.
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Figure 2.10: Standard deviation (σw) of the vertical velocity, plotted against the mean wind

speed, for 1-minute averaging time. On the top panel (a), the variability of σw for each wind

speed bin is shown for all data points, with no classification based on CH4 gradients. On

(b), the same as (a) is shown, but separating between measurements with gradients above

and below 8 ppb. Note that our CH4 mixing ratio measurements are at 15-minute resolution,

therefore we assume the same value every 15-minute window so we can associate the 1-minute

σw and U with CH4 mixing ratios. On the bottom panel (c), we excluded the 15-minute time

periods where the wind speed varied by more than 0.5 m s−1. Note the difference in y-axis

for (c). The wind speed bins are shown every 0.4 m s−1 until 5.8 m s−1, after the spacing

is 1 m s−1. This gradually increase to coarser wind speed bins is done due to less amount of

data at higher wind speeds. High-frequency measurements cover six months of 2014: March,

April, May, July, August and September.
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2.3.4 Rejecting biomass burning and the Amazon river as potential

sources

The timing of the biomass burning season coincides with the dry season in the Amazon

region (Gatti et al., 2014; van der Laan-Luijkx et al., 2015; Aragão et al., 2018), thus one

could think that CH4 from combustion is responsible for the positive gradients presented

here. During incomplete combustion, CH4 is co-emitted together with carbon monoxide

(CO) (Akagi et al., 2011; Kirschke et al., 2013; Andreae, 2019), thus CO is considered

a good proxy for biomass burning and it can be used as a reference to get an idea of

enhancement ratios due to fire emissions.

In Figure 2.11 large CO mixing ratios (>200 ppb) are observed, suggesting that for these

measurements we could have sampled air with biomass burning signals. However, these

data points represent only 10% of the data shown. Moreover, biomass burning typically

produces CH4 in a certain emission ratio to CO, dependent on the fuel type (Andreae &

Merlet, 2001; Andreae, 2019). These reference ratios are shown as lines in Figure 2.11 and

it can be seen that very few points fall on the reference lines and the CH4 mixing ratios are

substantially enhanced compared to those of CO, indicating an additional source of CH4

seen for all wind directions. The mean CO mixing ratio during nighttime in the dry season

at 79 m (140 ± 1.6 ppb) is on average 33 ppb higher than during the wet season (107 ±
1.25 ppb), suggesting that during the dry season we observe a ”background enhancement”

of CO mixing ratios at ATTO. Therefore, we can conclude that CH4 measurements at

ATTO during the dry season will always have a contribution of biomass burning, but as

Figure 2.11 shows this ”background enhancement” of CO can not completely explain the

additional CH4 of the positive gradients. Note that most of the data points are grouped

below 200 ppb for CO, suggesting that positive gradients occur with CO mixing ratios

close to the mean dry season mixing ratio. Given these facts, we believe that positive

gradients have a minor contribution of CH4 from biomass burning, but the magnitude

of the CH4 enhancement relative to the CO mixing ratios needs to have an additional

source.

Therefore, the challenge constraining to what extent fire emissions affect our CH4 relies

on identifying a clear and distinctive fire plume that provides information on not only the

CH4:CO but also the ratio relative to other species. Considering that black carbon (BC)

particles are emitted in smoldering and flaming fires (Andreae & Merlet, 2001) together

with CO and CH4, we use BC measurements to gain more insights about the influence of

fire emissions on the full CH4 signal at ATTO. Following the same approach as in Figure

2.11, the BC:CO ratios in Figure 2.12 indicate a more clear fire signal for the ESE and

SSE wind directions. Note that the time period used in this plot is five months shorter

than in Figure 2.11 and contains fewer data points, yet some of those points fall on the

reference slopes of Andreae (2019).
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Figure 2.11: Methane (CH4) as a function of carbon monoxide (CO) together with the

slopes of the expected emission ratios (ER) for different types of fires based on the updated

assessment of Andreae (2019) and classified into the dominant wind direction clusters for

positive gradients (southern quadrants: from 90 to 270 degrees). The data points were filtered

to select only nighttime measurements, and the CO data were further filtered to select the

same times for which the above-8-ppb class was seen for our CH4 mixing ratio measurements.

The data cover the time period between June 2013 and November 2018. All measurements

were performed at 79 m.

In general terms, even though fire signals are measured at ATTO during nighttime for

positive CH4 gradients as suggested by Figure 2.12, the nighttime CH4 enhancements at

79 m are not fully explained by combustion. Most of the data points in the ESE wind

direction match the reference slope for biofuel and tropical forest burning. Both linked

to human activity and according to the comprehensive study of Pöhlker et al. (2019),

in the ESE direction there is substantial fire activity, the rainforest has suffered more

fragmentation and degradation and there are more settlements. It is worth recalling

that here we are focusing on nighttime data when stable atmospheric conditions prevail,

therefore the BC associated with biofuel burning might come from nearby settlements.

For other directions the fire signal is not so evident and for some data points the CO

mixing ratio is very high. This can be seen for all wind directions, and we believe that

this can be explained by a possible weakening of the BC:CO due to deposition of BC

(Saturno et al., 2018). Last but not least, even though biomass burning takes place

throughout the entire dry season, its influence at the ATTO site is more relevant during

October and November, as shown by Saturno et al. (2018) and our carbon monoxide time

series. Despite being able to detect a clear fire signature, CH4 enhancements are too high

relative to CO suggesting that an additional source is needed to explain the positive CH4

gradients enhancement during nighttime.
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Figure 2.12: Black Carbon (BC) as a function of carbon monoxide (CO) together with the

slopes of the expected emission ratios (ER) for different types of fires based on the updated

assessment of Andreae (2019) and classified into the dominant wind direction clusters for

positive gradients (southern quadrants: from 90 to 270 degrees). The data points were filtered

to select only nighttime measurements, and the BC data were further filtered to select the

same periods at which the above-8-ppb class was seen for our CH4 mixing ratio measurements.

Note that the BC data set spans from June 2013 to May 2018. The heights of CO and BC

measurements are 79 and 60 m a.g.l., respectively.

The Amazon River was discarded as a potential source even though it coincides with the

wind direction found for the positive gradients. The Amazon River is 120 km southeast of

ATTO, which means that a strong CH4 emission into the nocturnal boundary layer will

have to be advected at a wind speed of 6 m s−1 to reach ATTO in five hours. This might

be possible on some occasions, but as we saw before (Figure 2.8) positive gradients are

associated with wind speeds between 2 and 5 m s−1. Moreover, 80% of the wind speed

for nighttime positive gradients is below 4 m s−1. In addition, we calculated the distance

to the CH4 source by time-integrating the wind speed at 81 m from 20:00 (beginning of

the night) until the first occurrence of a positive gradient (> 8 ppb). The distribution

of these distances is shown in Figure 2.13. The distances with more counts are below 50

km, 90% of the data points fall below 100 km, and 80% of the data points are below 72

km. Given these facts, the Amazon River is not considered as a potential source for the

nighttime CH4 positive gradients.
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Figure 2.13: Distribution of the cumulative distance the wind at 81 m travelled from the

potential source. The distance was calculated by time-integrating the wind speed at 81 m

from 20:00 (beginning of the night) until the first occurrence of a positive gradient (> 8 ppb).

The vertical dashed line shows the distance to the Amazon River in the southeast direction.

The inset on the top right is a zoomed in view showing the x-axis until 80 km.

2.4 Discussion

2.4.1 Constraining potential nighttime CH4 sources

Based on the predominant wind direction of the positive gradients, we propose a potential

source of the nighttime CH4 signals at the 79 m level. First in importance and most

dominant is the southeastern quadrant, second in line is the southwestern quadrant (see

Figures 2.7 and 2.8). In these directions lies the Uatumã River, which we believe is the

most likely main source (but not unique) of the positive gradients seen at ATTO. In

addition to the natural CH4 production by this river, there are two additional sources

that could enhance CH4 degassing from this water body. The first one is related to an

enhanced CH4 concentration downstream of the Balbina reservoir. As it was shown by

Kemenes et al. (2007), the Balbina reservoir not only leaks methane at the turbine intake

due to depressurization but it also enhances CH4 concentrations downstream along the

Uatumã river. Kemenes et al. (2007) found that CH4 concentrations in the Uatumã River

decreased gradually until 30 km below the Balbina reservoir and remained constant for

the next 70 km. It is worth noting that the CH4 concentrations in the river were on

average 24 µM (Kemenes et al., 2007), three orders of magnitude higher than the average

background value (0.05 µM) for Amazonian rivers (Richey et al., 1988; Kemenes et al.,

2007). The second additional source is very likely decomposition of dead flooded forest

stands downstream the Balbina reservoir along the Uatumã River.
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The dead stands are a consequence of the Balbina damming, which has changed the

natural flooding pulse along the river, causing massive mortality of flooded forest trees

along a 80 km stretch downstream of the dam (Resende et al., 2019). These dead stands

were mapped recently by Resende et al. (2019), and their spatial distribution coincides

with the wind directions associated with the positive gradient events (see Figure 2.A4).

Rivers also emit carbon dioxide (CO2), but the CH4 enhancements described here do not

coincide with an increase of CO2. This is mainly because nighttime respiration is very

strong and any non-local enhancement at 79 m is masked by local CO2 signals at lower

levels.

In addition, CH4 could also be produced in the topographic depressions or valleys that

form the drainage network surrounding ATTO. We have mentioned earlier that unpub-

lished measurements of atmospheric CH4 mixing ratios performed recently in one of these

valleys indicate a nighttime increase of CH4 within the canopy. Based on Junk et al.

(2011), these depressions can be classified as wetlands subjected to unpredictable, polymodal

flood pulses fed by rainwater, with low nutrient availability compared to the plateaus. The

flooding dynamics are driven by flash flood pulses after precipitation events, which can

flush out a large amount of the organic material available for decomposition (Wittmann

F., 2019, personal communication). Therefore, these depressions were assumed to have

low potential of producing CH4. Nevertheless, the accumulation seen for CH4 mixing

ratio measurements performed during May and June in 2019 indicate that either CH4 is

transported to the lowest part of the valley and accumulates during the night, or that

CH4 is produced at the valley and accumulated in-situ.

The question that arises here is, why do we see a seasonal pattern in the positive gra-

dients, being more frequent and predominant during the dry season? Considering the

Uatumã River as the main source, we can explain this seasonality based on the effective-

ness with which methane is degassed from the river to the atmosphere and the prevailing

atmospheric conditions that drive atmospheric transport from the river to ATTO. During

the dry season, when the river levels are low, degassing is more effective due to lower hy-

drostatic pressure, rendering the ebullitive pathway more efficient due to a shorter water

column, which also reduces the probability of oxidation (Sawakuchi et al., 2014).

Therefore, during the dry season the CH4 produced in the river sediment plus that added

by the Balbina reservoir could be more effectively emitted to the atmosphere. It is im-

portant to note here that the suggested source coming from the anaerobic decomposition

of the dead stands of flooded forests or igapós, could also be affected by the shorter water

column during the dry season. However, in terms of enabling anaerobic conditions in the

sediments, we have to make a distinction between floodplain and riverine environments,

as these could have different responses to flooding.
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Anaerobic conditions in floodplains soils seem to follow the established idea that with a

higher water level there should be higher methane emissions (Kaplan, 2002; Bloom et al.,

2012; Melton et al., 2013; Ringeval et al., 2014; Bloom et al., 2017), which are either

diffused or transported by ebullition or trees (Pangala et al., 2017) to the atmosphere.

In contrast, sediment in rivers could always be anaerobic with the potential to produce

methane regardless of the season. What is really affected by a deeper water column in a

river is the time for CH4 to be oxidized and the increased hydrostatic pressure that can

inhibit the ebullitive pathway (Sawakuchi et al., 2014).

Given the aforementioned, we can now link these potential sources along the Uatumã

river and its seasonal pattern with the dominant atmospheric conditions during the dry

season months. During these months and in particular in August the frequency with

which the wind brings air from the southeast to ATTO is higher than during the wet

season months, when the prevailing wind direction is from the northeast (see Figure

2.A1). Therefore, the probability of advecting methane-rich air emitted in the Uatumã

River area and potentially the valleys along that same direction is also higher during the

dry season.

2.4.2 Atmospheric transport mechanisms from the source

Nocturnal vertical exchange, can be driven by intermittent turbulence (Acevedo et al.,

2006; Oliveira et al., 2018), gravity waves (Zeri & Sá, 2011), katabatic or drainage flows

(Goulden et al., 2006; Tóta et al., 2008; Araújo et al., 2008; Tóta et al., 2012) and noc-

turnal land-river breezes (De Oliveira & Fitzjarrald, 1994; Sun et al., 1998). Intermittent

turbulence mainly occurs as top-down bursts (Sun et al., 2012) that can connect the up-

per layers of the NBL with the canopy and even penetrate the upper part of it, as was

shown to be important for ozone and CO2 fluxes at the ATTO site by Oliveira et al.

(2018). However, as intermittent turbulence (or regime 3 events as defined by Sun et al.

(2012)) are mainly observed as top-down intrusions, we discard it as a vertical transport

mechanism at the source locations given that the source of CH4 has to be at the surface.

Gravity waves were shown to be responsible for transporting mass out of the sub-canopy

layer during strong stability conditions and clear nights (Fitzjarrald & Moore, 1990), yet

Cava et al. (2004) suggested that wave motions do not play an important role in scalar

transport over a pine forest, based on the fact that one wave period had zero mean flux.

Furthermore, Zeri & Sá (2011) for a study in the Amazon, found that the wave passage

was not directly associated with vertical fluxes of CO2. Therefore, it is difficult to firmly

associate gravity waves with a vertical transport of CH4 at the valleys or at the Uatumã

River.

Having discarded these mechanisms, we believe that land breezes and drainage flows are

the most probable inducing vertical transport at the Uatumã River and the valleys close

to ATTO.
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During the night, due to differential radiative cooling over land and water, the river is

warmer than the forest, leading to slightly warmer air over the water. This leads to a

breeze from the land to the water that can transport trace gases from the forest to the

river. Such breeze (from land to water) was observed over the Balbina reservoir by Vale

et al. (2018), finding a nocturnal accumulation of CO2 over the water. Measurements

during the ABLE experiment showed that the Amazon River could be 6 degrees warmer

than the forest (De Oliveira & Fitzjarrald, 1994). Considering that black water rivers,

such as the Uatumã are warmer than white water rivers, like the Amazon River, it is very

likely that the Uatumã River is warmer than the surrounding forest. The temperature

difference produces a pressure gradient as warm and less dense air moves vertically over

the river. These air parcels can vertically transport CH4 to upper parts of the NBL. This

mechanism was described as a ”chimney effect” in the study of Sun et al. (1998), in which

they found that water vapor, ozone and CO2 can be vertically transported by these events

over a lake. The width of the lake in their study was about 10 km, and the width of the

largest open water flooded areas along the Uatumã River southeast of ATTO, the Lago

Cumateúba and Lago Araçatuba, are 3.5 km and 1.8 km.

The vertical transport mechanism at the valleys could be slightly different from that over

the river. We believe that updrafts driven by air convergence forced by drainage flows

can lead to vertical transport. Drainage flows in the Amazon were inferred by Goulden

et al. (2006) using in-situ measurements and remote sensing imagery and although vertical

transport mechanisms at the lower topographic areas were not addressed, they suggest

that the air at the center could be well-mixed. Later, Araújo et al. (2008) showed that

nocturnal katabatic flow from the plateau to the valley not only affects the horizontal

distribution of CO2 mixing ratios along a topographic gradient but also the vertical profile

of CO2 mixing ratios over the valley. They had tower measurements on the plateau, on

the slope and at the valley floor. With this setup they could confirm the occurrence

of a shallow convergence zone over the valley that breaks down the thermal inversion

and transports air vertically from the valley floor to the layers above. Araújo et al.

(2008) suggest that the air might sink over the slope to maintain the local circulation,

but the katabatic or drainage flow at ATTO could be more pronounced due to steeper

slopes compared to those in Araújo et al. (2008). On a different study (Tóta et al.,

2012), drainage flows were found to occur above the canopy, moving from the plateau to

the valley as in Araújo et al. (2008), but in the sub-canopy layer they observed upward

(anabatic) flow during nighttime. If this process occurs at the ATTO site despite its

steeper topographic gradients, it would not explain the observed positive CH4 gradients.

Such a mechanism would instead result in negative CH4 gradients as the CH4 signal would

arrive first to the 4 m inlet.
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For the horizontal transport of CH4 towards the tower from the source location, we have

discarded a nocturnal low-level jet since these events are commonly associated with high

wind speed, high friction velocities and weak to unstable conditions (Karipot et al., 2008),

whereas positive gradients coincide with low u∗ and a broad range of wind speeds between

2 and 5 m s−1, and they are not specifically associated with large wind speed. Therefore,

we believe that horizontal transport of CH4 from the source location to the tower is driven

by horizontal advection of the prevailing wind, bringing methane-rich air when the wind

direction coincides with those shown in Figure 2.7.

2.5 Conclusions

We showed that during the dry season, CH4 mixing ratios are on average higher at the top

of the 80 m tower than at the lower inlet heights. We have defined these events as positive

CH4 gradients based on the condition: CH479m - CH44m > 8 ppb, which was applied to 6

years of continuous measurements at 30-minute resolution to classify our measurements.

The CH4 positive gradients of the dry season are associated with very strong CH4 signals

measured at 79 m, that occur more frequently during nighttime. Nighttime positive

gradients (CH479m > CH44m) are more frequent during July, August and September. The

amplitude of the mean diurnal cycle of the CH4 gradient during the dry season is four

times larger than that of the wet season due to the strong nighttime positive gradients.

The dominant wind direction for these nighttime episodes, at monthly and diurnal time

scales, is southeast of ATTO. In addition, this direction has the highest probability, 50%,

of bringing air that will cause a positive gradient (> 8 ppb). This probability was also

found to be linked to a wind speed range between 4 and 5 m s−1. Despite these moderate

wind speeds, these CH4 enhancements showed lower net radiation (it is more negative

by -2 to -3 W m−2, see Figure 2.9), less variable sensible heat flux, low friction velocity

(< 0.3 m s−1) and a strong thermal inversion above the canopy. Further analysis of

high-frequency micro-meteorological data suggests that positive gradients are associated

with regime 1 of the nocturnal boundary layer, in which turbulence is weak, controlled

by temperature gradients and generated by wind shear (Sun et al., 2012).

Based on CH4:CO enhancement ratios, we excluded biomass burning as the main driver

of the positive gradients, and have shown that the Uatumã River is very likely the most

important source, due to the coincidence with the dominant wind direction. In addition,

we suggest that two additional CH4 sources might enhance the natural emissions from the

river area. The first one is a Balbina-reservoir-driven increase in CH4 concentrations in

the river (Kemenes et al., 2007), and the second possible source of CH4 is due to anaerobic

decomposition of dead stands of flooded forest along the Uatumã River downstream of

the reservoir (i.e. the areas mapped by Resende et al. (2019)).
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The atmospheric transport mechanisms were divided into those responsible for horizontal

advection of CH4 from the source locations to the ATTO site, and those that transport

air vertically from the source location to the upper layers of the nocturnal boundary

layer. We suggest that vertical transport over the Uatumã River results from differential

radiative cooling of the forest and the water, producing a horizontal pressure difference

that causes an upward displacement of air parcels over the river and transporting CH4

aloft. These air parcels are then advected by the prevailing horizontal wind towards the

ATTO site and subsequently measured at the 79 m level.

In the near future the 325 m tower will be fully equipped, providing valuable information in

terms of CH4 mixing ratios and meteorological variables which will enable us to study if the

positive gradient extends to upper layers of the nocturnal boundary layer. We will be able

to assess the influence of the residual layer and the height of the nocturnal boundary layer

in our CH4 measurements. To better understand local circulation and its effect on vertical

CH4 transport, we strongly recommend performing profile measurements at the river

and in nearby valleys with emerging measurement techniques, such as unmanned aerial

vehicles. High resolution atmospheric transport models, such as the Weather Research

Forecast for greenhouse gases (WRF-GHG), could also help to understand and either

reject or confirm the mechanisms mentioned here. Furthermore, an upcoming campaign

at ATTO specifically aims to determine the isotopic signature of the CH4 mixing ratio

during a positive gradient event, providing more accurate information about the CH4

source.
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Appendix

Figure 2.A1: Monthly averaged wind rose plots at 81 m.
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Figure 2.A2: Hourly mean wind rose plots for each hour of the day. Averaged over all

measurement period at 81m.

Figure 2.A3: Net, short wave incoming, and long wave outgoing radiation for dry and wet

seasons at ATTO.
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Figure 2.A4: Map showing the dead stands and potentially threatened areas due to the

tree mortality caused by the Balbina Dam. This map was modified from Science of The

Total Environment, Vol 659, Authors: Angélica Faria de Resende, Jochen Schöngart, Annia

Susin Streher, Jefferson Ferreira-Ferreira, Maria Teresa Fernandez Piedade, and Thiago Sanna

Freire Silva, Massive tree mortality from flood pulse disturbances in Amazonian floodplain

forests: The collateral effects of hydropower production, Pages 587-598, Copyright (2019),

with permission from Elsevier.
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Abstract

High quality atmospheric CO2 measurements are sparse in Amazonia, but can provide

critical insights into the spatial and temporal variability of sources and sinks of CO2. In

this study we present the first six years (2014-2019) of continuous, high-precision mea-

surements of atmospheric CO2 at the Amazon Tall Tower Observatory (ATTO, 2.1° S,

58.9° W). After subtracting the simulated background concentrations from our observa-

tional record, we define a CO2 regional signal (∆CO2obs) that has a marked seasonal cycle

with an amplitude of about 4 ppm. At both seasonal and inter-annual scales we find

differences in phase between ∆CO2obs and the local eddy covariance net ecosystem ex-

change (EC-NEE), which is interpreted as an indicator of a decoupling between local and

non-local drivers of ∆CO2obs . In addition, we present how the 2015/2016 El Niño-induced

drought was captured by our atmospheric record as a positive 2σ anomaly in both the

wet and dry season of 2016. Furthermore, we analyzed the observed seasonal cycle and

inter-annual variability of ∆CO2obs together with net ecosystem exchange (NEE) using a

suite of modeled flux products representing biospheric and aquatic CO2 exchange. We

use both non-optimized and optimized (i.e., resulting from atmospheric inverse modeling)

NEE fluxes as input in an atmospheric transport model (STILT). The observed shape

and amplitude of the seasonal cycle was captured neither by the simulations using the

optimized fluxes nor by those using the diagnostic Vegetation and Photosynthesis Respira-

tion Model (VPRM). We show that including the contribution of CO2 from river evasion

improves the simulated shape (not the magnitude) of the seasonal cycle when using a

data-driven non-optimized NEE product (FLUXCOM). The simulated contribution from

river evasion was found to be 25% of the seasonal cycle amplitude. Our study demon-

strates the importance of the ATTO record to better understand the Amazon carbon

cycle at various spatial and temporal scales.



3.1 Introduction 59

3.1 Introduction

Amazonia covers approximately one third of South America, and 70-80% of its area is rain

forest (Goulding et al., 2003). This vast expanse of forest stores approximately 85-130 Pg

of carbon in above- and below-ground biomass, making it one of the largest carbon pools

on the globe (Malhi et al., 2006; Saatchi et al., 2007; Feldpausch et al., 2012; Baccini et al.,

2012). Hence, Amazonia plays a fundamental role in the global carbon cycle not only by

storing massive amounts of carbon, but also by acting as an immense ”biogeochemical

reactor” (Andreae, 2001). The exchange between the biosphere and the atmosphere occurs

mainly through CO2 exchange (Friedlingstein et al., 2020). Therefore, atmospheric mole

fraction measurements of CO2 can provide information about this exchange, as they

integrate signals from the underlying ecosystem over large scales. Atmospheric CO2 can

thus be used to study the spatial and temporal variability of the dominant sources and

sinks of carbon, which in the central part of Amazonia are mainly photosynthesis and

respiration (Malhi et al., 2015).

The principal threats to Amazonia are forest degradation and deforestation, agricultural

expansion and climate variability (Davidson et al., 2012; Mitchard, 2018). Deforestation

was recently shown to cause disturbed rainfall patterns upwind and downwind of the

cleared areas during the dry season in Amazonia (Khanna et al., 2017). In addition,

deforestation and agricultural expansion are directly associated with biomass burning

(van der Werf et al., 2010; Barlow et al., 2020), which in turn can be intensified by

severe drought (Gatti et al., 2014; van der Laan-Luijkx et al., 2015; Marengo & Espinoza,

2016; Aragão et al., 2018). Extremes in the hydrological cycle include both droughts and

flooding, which can be enhanced by large-scale events, such as those occuring during the

extreme phases of the El Niño Southern Oscillation (ENSO) cycle (Marengo & Espinoza,

2016; van Schaik et al., 2018; Malhi et al., 2018). Variability in the hydrological cycle in the

Amazon has increased over the last two decades (Gloor et al., 2015), with more frequent

extreme events. At the same time, a significant increase in the length of the dry season in

southern Amazonia has been reported by Fu et al. (2013). Gloor et al. (2012) suggest that

even though biospheric carbon uptake currently compensates for deforestation and fossil

fuel emissions in South America, the continent could become a net source of carbon over

the next decades, as projected by up-scaled plot level studies (Brienen et al., 2015; Hubau

et al., 2020). Therefore, observational ground sites (such as ATTO) that can provide

ground truth data for evaluating predictions are critical to improve our understanding of

the carbon cycle in Amazonia.
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The ecosystem net carbon exchange can be estimated using either a top-down or a bottom-

up approach. Atmospheric inversions (i.e., the top-down approach) use measurements of

atmospheric CO2 mole fractions to optimize a prior estimate of net ecosystem exchange

(NEE) fluxes at global (Gurney et al., 2002; Rödenbeck et al., 2003; van der Laan-Luijkx

et al., 2017) and continental scales (Gerbig et al., 2003; Peters et al., 2007; Schuh et al.,

2010; Shiga et al., 2018; Kountouris et al., 2018a; Hu et al., 2019). This method is highly

dependent on well-calibrated accurate measurements, their spatial density and represen-

tativeness (Gerbig et al., 2009). Typically, fluxes in regions with few measurements will

be estimated with high uncertainties that will lead to limited understanding of spatial

and temporal patterns (Gurney et al., 2002; Peylin et al., 2013; van der Laan-Luijkx

et al., 2015; Thompson et al., 2016). Global inverse models have been found to be under-

constrained (Gurney et al., 2002; Gaubert et al., 2019) and to a large extent hampered by

model uncertainties and insufficient measurements in the Amazon region (Molina et al.,

2015). Moreover, the density of remotely-sensed satellite columns over the region, char-

acterized by deep convection, is highly reduced due to persistent cloud cover (Liu et al.,

2017; Basu et al., 2018). The combination of these factors makes it difficult to con-

strain the seasonal and inter-annual variability of carbon exchange in Amazonia (Molina

et al., 2015). The aircraft network of CO2 profiles (Gatti et al., 2014) at several sites

across Amazonia represents an important advance in the regional effort to improve the

observational constraint for inverse modeling studies (van der Laan-Luijkx et al., 2015;

Alden et al., 2016), yet identifying the relevant processes responsible for inter-annual and

seasonal changes remains challenging.

Process-based biosphere models (representing the bottom-up approach) provide an alter-

native to constrain carbon exchange accross a wide range of ecosystems (Sitch et al., 2015).

However, the inability to reproduce the cycle of gross primary productivity (GPP), which

influences the amplitude and phase of NEE at equatorial sites in Amazonia is one of the

important limitations of biosphere models (Restrepo-Coupe et al., 2017). Others include

e.g. CO2 fertilization effect (Fleischer et al., 2019) and ecosystem respiration (Carvalhais

et al., 2014). While process-based model simulations show a decline in dry-season GPP

at equatorial sites, presumably based on an incorrect assumption of water-limitation, ob-

servations typically suggest that GPP increases during the dry season (Huete et al., 2006;

Myneni et al., 2007; Brando et al., 2010; Restrepo-Coupe et al., 2013; Borchert et al., 2015;

Wu et al., 2016; Green et al., 2020). This discrepancy may be explained by the lack of

leaf phenology in model formulations (Gonçalves et al., 2020). Chen et al. (2020) recently

corroborated this by implementing this mechanism in the biosphere model ORCHIDEE,

yet it is still missing in other biosphere models.
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The evaluation of model-based biosphere-atmosphere flux estimates is generally performed

by comparing simulated fluxes with in-situ flux measurements. Eddy-flux and plot-level

studies serve such purposes and are valuable for understanding processes and underlying

drivers of carbon exchange (Verbeeck et al., 2011; von Randow et al., 2013; Restrepo-

Coupe et al., 2017). An alternative approach to evaluate both biosphere models and

inverse modeling results is to use surface fluxes as an input in atmospheric transport

models, and compare simulated and observed mole fractions at independent measurement

sites. This method has the advantage of attributing the observed CO2 regional signal to

a larger spatial area, as compared to local eddy-flux spatial coverage, especially when

atmospheric CO2 is measured at a tall tower (Gloor et al., 2001). However, atmospheric

transport errors can add additional biases that should be considered when interpreting

patterns at different temporal scales (Gerbig et al., 2008). This leads to different models

presenting widely varying perspectives on the processes influencing Amazonia’s carbon

budget, with most of them being poorly constrained by actual observations.

All things considered, accurate atmospheric CO2 measurements at high temporal resolu-

tion can provide valuable information about the spatial and temporal variability of sources

and sinks of CO2. In this work, we present six years of observations from the Amazon

Tall Tower Observatory (ATTO) in central Amazonia, and demonstrate how they can be

used to increase our process understanding by identifying the main sources of variability

at seasonal and inter-annual scales. Furthermore, we use the CO2 measurements to eval-

uate state-of-the-art top-down as well as bottom-up NEE products using an atmospheric

transport model. A highlight of this study is that we use three different estimates of

NEE fluxes generated using CarbonTracker South America (an inverse modeling system)

(van der Laan-Luijkx et al., 2015), the Vegetation Photosynthesis and Respiration diag-

nostic model (VPRM) (Mahadevan et al., 2008), and a statistically upscaled NEE product

(Bodesheim et al., 2018) (FLUXCOM). With such a diverse dataset of NEE fluxes, we

cover the inherent variability of different model formulations. We also evaluate the capa-

bility of an inversion system, using different data streams for optimization, to constrain

the variability of atmospheric CO2 at ATTO. Thus, we provide valuable insights that will

serve not only to better understand the processes that control atmospheric CO2 at ATTO,

but also to evaluate biosphere flux models from an atmospheric perspective.
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3.2 Data and Methods

3.2.1 Site description

The Amazon Tall Tower Observatory (ATTO) site (2.14°S, 58.99°W, see Figure 3.1) has

been described extensively in Andreae et al. (2015). In this paper, we present aspects

considered important for our study. ATTO is located in the Uatumã Sustainable Devel-

opment Reserve (USDR) in central Amazonia, 150 km northeast of the closest large city,

Manaus. The main infrastructure and research facilities were built in the dense upland

forest (terra fime, at 130 m a.s.l.), where the highest vegetation is found. The canopy

height at the tower location is around 37 m, however the average tree height on the terra

firme forest plateau is 20.7 ± 0.4 m (Andreae et al., 2015).

The local precipitation regime shows a distinct seasonality (see Figure 3.A1, left panel),

and agrees very well (r=0.8, p-value<0.01) with the Multi-Satellite Precipitation Analysis

from the Tropical Rainfall Measuring Mission (TRMM 3B42-daily at a resolution of 0.25

deg, obtained from: https://disc.gsfc.nasa.gov/datasets/TRMM\ 3B42\ Daily\ 7

/summary) (Huffman et al., 2016) sampled at the grid cell closest to ATTO (2.12° S, 58.87°
W). However the local measurements show a lower mean annual precipitation (MAP) than

the climatological average obtained using the TRMM dataset (1934.1 mm yr−1 vs 2382.2

mm yr−1). The monthly and annual mean biases of the TRMM estimate with respect to

the local measurements is +40 mm and +489 mm, respectively. The local time series is

based on an 8-year record (2012-2019), and thus the seasonal average is highly affected

by the 2015/2016 El Niño drought. Therefore, we consider the longer TRMM dataset

(ATTO-TRMM 1998-2019 in Table 3.1) to be more reliable as a climatology. Thus, we

use the ATTO-TRMM (1998-2019) record as a reference; the dry season length (DSL)

is 3 months with a mean dry season precipitation of 63.3 mm month−1. The annual

minimum average precipitation (MiAP) is 45.1 mm month−1. A comparison of these

values between the local record and the TRMM dataset is shown in Table 3.1. For this

study we have defined the climatological dry season as the months whose seasonal median

is lower than 100 mm (July to October). For the wet season we selected the months whose

25th percentile was clearly above 200 mm (February to June), see Figure 3.A1 right panel

for details.

3.2.2 Atmospheric mole fraction measurements

The continuous measurement system was installed in March 2012 at the 81 m walk-up

tower at ATTO and has been described in Andreae et al. (2015) and Bot́ıa et al. (2020).

Here we highlight the features relevant for this study. The atmospheric mixing ratio data

presented here were collected with two cavity ring-down-based analyzers (Picarro Inc.,

USA), a G1301 and a G1302 measuring CH4/CO2 and CO2/CO, respectively. Both ana-

lyzers provide CO2 data at a 15-minute resolution calibrated on the World Meteorological
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Table 3.1: Mean annual precipitation (MAP), mean dry season precipitation (DSP), mean

dry season length (DSL) and annual minimum average precipitation (MiAP) at ATTO using

the local precipitation measurements (2012-2019) and data from the tropical rainfall measuring

mission (TRMM) from 1998-2019 (Huffman et al., 2016). For comparison we show the same

values reported by Restrepo-Coupe et al. (2017) for the research station (K34) for the period

1998-2014.

Site Lat (°) Lon(°) MAP (mm year−1) DSP (mm month−1) DSL (months) MiAP (mm month−1)

ATTO-Local (2012-2019) -2.14 -58.99 1934.1 53.2 3.8 25.3

ATTO-TRMM (2012-2019) -2.12 -58.87 2422.6 63.3 2.8 42.2

ATTO-TRMM (1998-2019) -2.12 -58.87 2382.2 63.3 3 45.1

k34-TRMM (1998-2014) -2.61 -60.21 2672.6 99.7 1-2 99.7

Organization (WMO) CO2 X2007 scale. These data were subsequently averaged to half-

hourly data. The overall accuracy of both analyzers, including the uncertainties of the

water vapor correction, are estimated to be 0.09 ppm CO2 (1 ppm = 1 µmol mol−1 of dry

air).

The analyzers measure the air from five lines connected to inlets located at 79, 53, 38,

24 and 4 m above ground. Downstream of each sampling line, a stainless steel sphere (8

liters volume) acts as a buffer volume. By mixing the sampled air, these buffers integrate

the atmospheric signal, allowing a continuous, near-concurrent measurement from all

heights (Winderlich et al., 2010). The time series presented here is based on only daytime

dry air mole fractions (i.e., 13:00 to 17:00 local time (LT)), representative of well-mixed

convective conditions. In order to maximize the data coverage, we use observations from

both instruments whenever they are available, with the mean calculated for the periods

when both were operational simultaneously. The mean bias between the datasets at

half-hourly resolution was estimated to be 0.02 ppm CO2. The data presented here are

available upon request at https://attodata.org (last access: 25 January 2021).

3.2.3 Phenology measurements and leaf area index age classes

Upper canopy leaf phenology is monitored with a RGB Stardot Netcam model XL 3MP

(2048×2536 pixels) mounted on the top of the 81 m tower. For an in-depth description

of the camera set-up, radiometric calibration and detection of phenostages, we refer the

reader to Lopes et al. (2016). We used only pictures obtained in the morning (i.e., no

backlit crowns), under cloudy sky or under the shadow of a cloud, providing a spatially

even and temporally consistent illumination of the irregular canopy surface. For each

crown (n=194), we were able to detect abrupt increase in greenness (i.e., leaf flush) or

abrupt green-down (i.e., leaf abscission). By counting the number of individual trees

per month for each category (flush or abscission), we built a monthly time series for the

period between July 2013 and November 2018. From the trees that the camera sees, 69%

(n=134) have clear flushing and abscission patterns, and from these the time series was

built.
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Using the number of days after each individual flushing event, we determined leaf age

classes and attributed a fraction of the upper canopy crowns to an age class at monthly

intervals. As in Wu et al. (2016), we defined the following leaf age classes: i) young

leaves (0-2 months), ii) mature leaves (2-6 months), and iii) old leaves (>6 months).

Next, we partitioned the age classes into classes of leaf area index (LAI) (i.e., young,

mature, and old LAI) by normalizing each leaf age class with the total LAI measured at

ATTO. We used a constant LAI of 5.32 m2 m−2 for all months, as the variability of this

number throughout the year was not statistically significant (unpublished results). For

the normalization we took into account the total number of trees in the camera frame

(n=194), assuming that the 30% that does not have clear flushing patterns are part of

the old age class. For more details on the methods and assumptions for the separation

of LAI into leaf age classes, see Wu et al. (2016). LAI was measured using two LAI-2200

PCA sensors (LI-COR Inc., Lincoln, NE, USA) recording simultaneous readings above

and within the canopy. The sensor above the canopy (the reference) was installed on

the 80 m tower (approximately 50 meters above top canopy). All measurements were

performed under diffuse light conditions. The within-canopy measurements were carried

out using 40 cm supports (sampling points) on the ground. The spatial sampling design

was a square grid with 42 sampling points (21x2 and 80m between points). We carried out

monthly campaigns from March 2016 to March 2019. The flushing and abscission data

(http://doi.org/10.17871/atto.223.7.840) together with the raw LAI age classes

(http://doi.org/10.17871/atto.230.4.842) are available upon request request at

https://attodata.org.

3.2.4 Eddy covariance measurements

In this study, we use eddy covariance (EC) measurements from 2014 to 2019. They were

done using a 3-D sonic anemometer (CSAT3, Campbell Scientific Inc., Logan, USA) and

an open-path infrared gas analyser (LI7500, Li-COR Inc., Lincoln, USA), both installed

at the top of the 81 m tower, approximately 40 m above the local canopy top. Half-hourly

EC-sensible heat (EC-H), EC-latent heat (EC-LE), and EC-CO2 fluxes were calculated by

using EddyPro software (Li-COR Inc., Lincoln, USA). Raw time series data were de-spiked

and screened according to Vickers & Mahrt (1997), and data quality control on half-hourly

EC-H/LE/CO2 fluxes was carried out following the method of Mauder & Foken (2004).

EC flux data meeting the highest quality criteria (flags 0 and 1) for H, LE and CO2 and

from the EC-favourable wind direction ([-90° : +90°] sector) were selected for further

analysis. The raw eddy-flux data are available upon request at https://attodata.org (last

access: 25 January 2021).

Net ecosystem exchange (EC-NEE) was calculated as the sum of the half-hourly EC-CO2

flux and storage CO2 flux. The storage flux was obtained using the 5-inlet CO2 mole

fraction profile measurements at the 81 m tower following the calculation procedure of

Winderlich et al. (2014).
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When the profiles were missing measurements from one or two heights, the storage flux was

obtained from 3 or 4 inlets that included both the 4 m and 79 m heights, this occurred only

2.42% of the time over the six years. In cases where only half-hourly EC-CO2 flux data

were available, missing CO2 storage fluxes were gap-filled with mean diurnal variations

over ± 14-day periods as performed by the REddyProc package (Wutzler et al., 2018). In

addition, negative EC-NEE data during nighttime periods (defined as 18:00 to 6:00 with

global radiation (Rg) < 20 W m−2) were removed. In cases where nighttime Rg data were

not available, we discarded negative EC-NEE data between 19:00 and 5:00.

A distribution of friction velocity (u*) thresholds (5th, 50th and 95th percentiles) in

each year was estimated according to Papale et al. (2006) using REddyProc. For this

study, we used the yearly median (50th percentile) u* values as representative for our site

(see Table 3.A1). Our u* values are lower than those from previous studies due to the

higher measurement height (81 m), we refer the reader to Table 3.A2 for a comparison

of u* values in other sites in Amazonia. After the u* filtering, 20.4 % of EC-NEE data

remained. The effect of having more or less data due to a larger or lower u* threshold does

not affect the seasonal cycle of neither EC-NEE, GPP nor Reco, this is shown in Figure

3.A2. The gap-filling of the EC-NEE data was performed using REddyProc and then

negative gap-filled nighttime EC-NEE data were screened out. The missing nighttime

EC-NEE data were gap-filled by a linear interpolation for less than two missing hours

or a mean NEE value over one nighttime period. Nighttime EC-NEE was assigned as

nighttime ecosystem respiration (Reco), and daytime Reco was derived from averaging Reco

over two adjacent nighttime periods, similar to Restrepo-Coupe et al. (2013). Then,

gross primary productivity (GPP) was obtained by subtracting EC-NEE from Reco. We

adopted the above NEE partitioning method because nighttime Reco did not correlate well

with nighttime air temperature, which is needed for commonly used methods (e.g., the

nighttime method (Reichstein et al., 2005), the daytime method (Lasslop et al., 2010) and

modified daytime methods (Keenan et al., 2019)). In this study, we interpret EC-GPP

(hereafter GPP) as gross ecosystem productivity (GEP).

3.2.5 STILT simulations

STILT model description

The Stochastic Time Inverted Lagrangian Transport (STILT) model (Lin et al., 2003) is

useful for diagnosing the impact of surface emissions at a specific measurement location or

receptor by resolving transport in the near-field (i.e., the surface with which the planetary

boundary layer air has had contact with). STILT simulates the transport in the near-field

by following the time evolution of an ensemble of particles (to be interpreted as an air

parcel) and by interpolating meteorological fields to the sub-grid location of each particle.

Turbulent motions in the planetary boundary layer (PBL) are modelled as a Markov chain
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process using turbulent velocity statistics (Lin et al., 2003). Moist convection in STILT

uses vertical profiles of convective mass fluxes within updrafts and downdrafts, as well as

entrainment and detrainment fluxes into and out of the up- and downdrafts (for details,

see Nehrkorn et al., 2010). Vertical profiles of in-cloud mass fluxes are derived from the

driving meteorological fields using the Tiedtke scheme (Tiedtke, 1989).

The time-inverted feature of the model refers to the capability of resolving the near-field

transport of the particle ensemble prior to its arrival at the receptor location. In this

study, the model was run at hourly resolution for the six-year period from 2014 to 2019.

Every hour a 100-particle ensemble was released at the receptor height of 80 m above

ground, and the back trajectories were calculated for the preceding 10 days to ensure

most backward trajectories have left the continent, such that the footprints represent

the full influence of surface fluxes on measurements at ATTO. The difference between

the modelled receptor height and the air inlet is only 1 meter, which we assume can be

neglected.

The model was driven by 3-hourly meteorological fields from ECMWF short-term forecasts

(following the contemporary IFS cycle development; for more info see https://www.ec

mwf.int/en/publications/ifs-documentation). The original meteorological fields

were preprocessed and interpolated to a spatial resolution of 0.25° by 0.25°, covering

South America between 20°S–15°N latitude and 85°W–35°W longitude bands. The original

vertical structure was maintained, however only the 89 lowest of the 137 total levels were

used, limiting the top model level to an altitude of about 21 km.

Seasonally-averaged footprint calculation

To better interpret our measurements and attribute signals to particular regions, spa-

tially explicit surface influence maps or footprints were calculated using the STILT model.

From the back trajectory particle ensembles we derived hourly-gridded footprints. The

footprints are derived at higher spatial resolution (1/12° by 1/8°) than the driving mete-

orological data, and they can be defined as the flux sensitivity of mole fractions measured

at the receptor location, with units of ppm per µmol m−2 s−1. To obtain the seasonally-

averaged footprints, we first filtered for daytime (i.e., 13:00-17:00 LT at the receptor)

values to ensure well-mixed convective conditions at the measurement location. These

individual hourly footprints were aggregated to a climatological monthly mean. From

these monthly means we averaged over: November, December, January (NDJ), February,

March, April (FMA), May, June, July (MJJ) and August, September and October (ASO).

The averaging periods were chosen in this way to allow a good distinction between wet

and dry seasons (FMA and ASO), as well as the transition periods in between (NDJ and

MJJ). The monthly climatology of concentration footprints generated for this study is

available at http://doi.org/10.17871/atto.208.8.811.
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The regional extent of the seasonally-averaged footprints is shown in Figure 3.1 to provide

an idea of the dominant vegetation types within the areas of influence. The 50th percentile

footprint during NDJ and FMA covers an area of mainly intact forest, whereas in MJJ

and ASO the footprints cover areas characterized by a larger presence of disturbed forest,

located on the southern bank of the Amazon River. The area of the 50th percentile

footprint increases from 208,058 km2 in NDJ to 236,969 km2 in FMA and decreases from

244,482 km2 in MJJ to 207,812 km2 in ASO. Note that the Cerrado and Caatinga biomes

(semiarid ecosystems), are within the 75th percentile footprint in MJJ and ASO, although

their relative influence on the signals measured at ATTO is estimated to be low.

Figure 3.1: The 50th and 75th percentiles for the seasonally averaged footprint for NDJ

and FMA (left panel) and MJJ and ASO (right panel) overlain with the distribution of intact

forest (dark green), non-intact forest (pale green), moderately deforested (pink) and severely

deforested (magenta). Cerrado and Caatinga biomes are labeled but not coloured. The ATTO

site is indicated with a red triangle. The distribution of vegetation state is taken from Baker

& Spracklen (2019).

STILT tracer simulations

Lateral Boundary Conditions (LBC). As we are dealing with an atmospheric trans-

port model within a limited domain, we have to consider the influence of the air masses

entering it at its borders (LBC, Lateral Boundary Conditions) to compare the simulated

mole fractions to in situ observations. This additional signal, hereafter also referred to as

”background”, is added in STILT to the CO2 mole fractions related to fluxes from within

the domain. In the case of ATTO, it is almost exclusively advected from the northeastern

or eastern border of our domain (see Figure 3.1). The LBC include the global informa-

tion that influences our domain of interest, such as the increasing trend due to fossil fuel

burning and variations on seasonal and synoptic scales.
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In this study, we have used the Jena Carboscope (s04ocv4.3) as our LBC. We refer the

reader to Rödenbeck et al. (2003) and to http://www.bgc-jena.mpg.de/CarboScope/

to get more details on the data assimilated in this system.

The validity of the LBC is a fundamental aspect in our tracer simulations. To assess this

validity and potential biases, we evaluated the 3D fields of CO2 used as LBC at three

background stations located at the east and northeast of our regional domain: Ragged

Point Barbados (RPB, 13.16°N, 59.43°W), Ascension Island (ASC, 7.94°S, 14.35°W) and

Cape Verde (CVR, 15.12°N, 23.60°W). We sampled the original global fields at the location

of each station and calculated the difference between the simulated and observed mole

fractions (see Figure 3.A3). Since the data from the above stations were assimilated in the

Jena CarboScope inversion system, they have small Mean Bias Errors (MBE) (-0.09 ±
0.26 ppm at RPB, -0.036 ± 0.28 ppm at ASC and -0.176 ± 0.8 ppm at CVR). Even though

these small MBE indicate a strong constraint on the LBC, we have bias corrected the LBC

used to calculate the observed regional signal. The magnitude of the bias-correction will

be shown in the Results section. We define an observed regional signal (∆CO2obs , which

is bias-corrected) and a simulated regional signal (∆CO2sim). The first is calculated by

subtracting the LBC from the measured CO2 mole fractions, and the second by leaving

the LBC tracer out of equations 3.1 and 3.2.

Input fluxes. To obtain simulated mole fractions at the tower location, we coupled

the footprints with the surface fluxes at hourly resolution. By adding all the tracer

components and the LBC, we can obtain multiple realizations of simulated CO2 mole

fractions at the ATTO site that can be compared to observations, and assess how the

underlying fluxes affect the simulated signal. To account for all the sources and sinks

of CO2 and their uncertainties in Amazonia, we use a wide range of available data sets,

including both optimized (i.e., resulting from atmospheric inverse modeling) and non-

optimized NEE flux fields (see Table 3.2).

Equations 3.1 and 3.2 show the main tracer components that were added to obtain the

integrated CO2 mole fractions at ATTO. The subscripts represent the flux categories

associated with different processes and the * indicates we use multiple NEE sources for

each equation as we explain below. The complete overview of input flux fields used for

each tracer is given in Table 3.2.

CO2TopDown
[ppm] =

∑
CO2k , k = LBC,NEE∗

TopDown, ocean, fires, fossilfuel (3.1)

CO2BotUp
[ppm] =

∑
CO2k , k = LBC,NEE∗

BotUp, ocean, fires, rivers, fossilfuel (3.2)

As vegetation dominates the CO2 exchange within our domain, we used five Net Ecosys-

tem Exchange (NEE) data sets, three of which are optimized using an atmospheric inver-

sion system.
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The atmospheric inversion system (Peters et al., 2005) utilizes available in situ and remote

sensing measurements for the assimilation process; it should be noted, however, that

observations from ATTO were not assimilated in any of the products discussed here. In

equations 3.1 and 3.2, NEE is replaced according to the list in Table 3.2 and thus we

obtain five STILT-model results for simulated CO2 mole fractions at ATTO.

The optimized NEE flux fields (i.e. Top-down) were produced using different settings

but the same CarbonTracker Data Assimilation System (CTDAS, van der Laan-Luijkx

et al. (2017)). All inversions use the transport model TM5 (Krol et al., 2005), where the

default run (CTE2020) uses a global transport resolution of 3° x 2° with 1° x 1° zoom

regions over Europe and North America, and two South-America-specific setups of the

system (CT-SAM, van der Laan-Luijkx et al. (2015); Koren (2020): CT-SAM-OCO2 and

CT-SAM-Flask) use a global resolution of 6° x 4° with a nested zoom over South America

of 3° x 2° and 1° x 1°. The three inversions also use different sets of atmospheric CO2

data for the assimilation: surface flask measurements from ObsPack GLOBALVIEWplus

5.0 (available here: https://doi.org/10.25925/20190812) (CTE2020), the same

GLOBALVIEWplus 5.0 but with additional aircraft profiles (Gatti et al., 2014) from

different locations in Amazonia (CT-SAM-Flask), or OCO2 satellite column retrievals

(CT-SAM-OCO2). For the CT-SAM-OCO2 the NASA retrieval v9r was used (https:

//docserver.gesdisc.eosdis.nasa.gov/public/project/OCO/OCO2\ DUG.V9.pdf).

The column observations were aggregated to 10-second super observations (following the

method described in (Crowell et al., 2019)) and retrievals above water were excluded. CT-

SAM optimizes NEE on a gridded state vector of 1° x 1° over South America, whereas

CTE2020 optimizes NEE in the region using larger ”ecoregions” following the plant-

functional types in the prior biosphere model (SiBCASA, Schaefer et al. (2008)). Note

that the driving meteorology in CTE2020 uses ERA5 (C3S, 2017) instead of ERA-interim,

as in CT-SAM-Flask and CT-SAM-OCO2.

Table 3.2: Input fluxes and lateral boundary condition data sets used in STILT. Column

”Input type” indicates whether the fluxes are based on atmospheric inversions (prefix ”Opt”).

Tracer Product Name Input type Time coverage Notes Reference

LBC Jena CarboScope (s04ocv4.3) mole fractions 2014-2019 LBC - lateral boundary condition Rödenbeck et al. (2003)

Ocean CTE2020 Opt flux 2014-2019 Top-down (TD) and Opt. atm. inversion van der Laan-Luijkx et al. (2017)

NEE CTE2020 Opt flux 2014-2019 TD and Opt. van der Laan-Luijkx et al. (2017)

NEE FLUXCOM Flux 2014-2019 Bottom-up (BU) Bodesheim et al. (2018)

NEE VPRM Flux, online 2014-2019 BU Mahadevan et al. (2008)

NEE CT-SAM-OCO2 Opt flux 2015-2017 TD, not used for other years (Opt) Koren (2020)

NEE CT-SAM-Flask Opt flux 2014-2017 TD, 2018 and 2019, 2008-2017 average (Opt) Koren (2020)

Rivers ORCHILEAK Flux 2014-2019 1980-2010 - Climatology Hastie et al. (2019)

Biomass burning GFAS Emissions 2014-2019 Kaiser et al. (2012)

Fossil Fuels EDGAR 4.3.2 Emissions Annual mean All sectors, aggregated Janssens-Maenhout et al. (2017)

The non-optimized NEE fluxes (VPRM and FLUXCOM, i.e. bottom-up) use different ap-

proaches. The Vegetation Photosynthesis and Respiration model (VPRM) estimates NEE

using a simple diagnostic light-use-efficiency model driven by the Enhanced Vegetation

Index (EVI) and Land Surface Water Index (LSWI), derived from surface reflectance mea-

sured by the Moderate Resolution Imaging Spectroradiometer (MODIS), together with
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2-m air temperature and shortwave radiation at the surface provided from the meteorolog-

ical model (Mahadevan et al., 2008), in this case STILT. Two parameters per vegetation

type (Jung et al., 2006) are optimized based on eddy covariance measurements from 9 sites

between 2001 and 2010, obtained from the LBA-ECO repository (https://daac.ornl.

gov/daacdata/lba/carbon\ dynamics/CD32\ Brazil\ Flux\ Network/data/, last

access: 19 October 2020). The FLUXCOM product is derived from up-scaling site-level

data (FLUXNET, http://fluxnet.fluxdata.org/ (last access: 29 September 2020))

to global scales by using a set of predictors which are fed to a random forest regression

(Bodesheim et al., 2018). The reader is referred to Bodesheim et al. (2018) and Jung

et al. (2020) for more information on the predictors and the up-scaling methods.

We use river CO2 fluxes from the updated version (Hastie et al., 2019) of the ORCHILEAK

model (Lauerwald et al., 2017), which uses a high spatial resolution (100 m) wetland

distribution map (Hess et al., 2015). We only add the river flux component to the bottom-

up simulations, as for the top-down simulations the river signal should be captured by the

assimilated observations (Kondo et al., 2020). In order to avoid double counting of fluxes

from floodplains, which could be captured by VPRM and FLUXCOM during a low water

stage, we only used the river CO2 evasion component from the ORCHILEAK model. The

tracers that are not varied in equations 3.1 and 3.2 (i.e., ocean, fires, fossil fuel) are always

added to the simulated mole fraction of each STILT-model realization.

We also simulated the anthropogenic signal component using the annual mean emissions

from EDGAR v4.3.2 (Janssens-Maenhout et al., 2017) reported for 2012; original gridded

emissions (0.1° x 0.1° spatial resolution) from all fossil fuel sectors were aggregated into an

emission field of a single tracer. Since anthropogenic emissions are of minor importance in

our domain we assumed constant annual emissions in our simulations. For the contribution

of biomass burning or fires we use daily emissions from the Global Fire Assimilation

System (GFAS) at 0.1° x 0.1° spatial resolution (Kaiser et al., 2012). Last but not least,

we use optimized oceanic CO2 fluxes from CTE2020. It is worth mentioning that in

CTE2020, different from previous releases, the ocean prior flux is taken from the Jena

Carboscope system.

Input flux adjustments for STILT simulations

The input fluxes have been converted for use in STILT into units of µmol m−2 s−1.

Furthermore, we have adjusted the weekly mean posterior NEE fluxes of CTE2020, CT-

SAM-OCO2 and CT-SAM-Flask to represent the original diurnal variability of its prior

biosphere model (SiBCASA) before using them as input in STILT. Equation 3.3 describes

this adjustment, which projects the original 3-hourly deviations from the monthly average

diurnal cycle back onto the weekly mean posterior flux. For CTE2020, equation 3.3 was

used for each week (k) that fluxes are available, in which the deviation of the 3-hourly

(j=1,..8) flux from the corresponding monthly (i) mean is added to the weekly posterior.



3.3 Results 71

For the CT-SAM-OCO2 and CT-SAM-Flask the prior and diurnal mean NEE in equation

3.3 (1st and 2nd term on the right-hand side) were replaced by its climatology for each

month (i=1-12), as their multi-annual record was smaller and included an ENSO extreme

event. This adjustment was performed in order to convert monthly optimized NEE fluxes

(CTE2020, CT-SAM-OCO2 and CT-SAM-Flask) to hourly resolution and thus couple

them with the hourly footprints. This is important because the diurnal variability in

atmospheric transport has to be considered for more accurate simulations. We consider

that the adjustment is precise enough because the simulated diurnal cycle of CO2 at

the tower resembles that of the other simulations which are originally provided as hourly

fluxes. This is shown in Figure 3.A4.

NEEpost3hk,j
= (NEEprior3hk,j

−DiurnalMeanNEEprior3hi,j
) +NEEpostWeeklyk

(3.3)

3.3 Results

3.3.1 ATTO atmospheric CO2 time series

The observed CO2 trend (Figure 3.2a) at ATTO for the 6-year record is 2.38 ppm year−1

(2.18-2.60 95% CI), which is very similar to the mean global CO2 growth rate of 2.49

± 0.08 ppm year−1 reported by Dlugokencky & Tans (2021) for the same time period.

From the monthly record, we can highlight the wet seasons of 2016 and 2019 as two

distinctive events of important inter-annual variability in which the footprint of the tower

was likely a source of CO2 to the atmosphere. In the transition from wet to dry seasons,

our measurements reach a peak that is followed by a consistent decline throughout the

dry season. On average, this decline has an onset in July and August. We also note that

the monthly variability is lower in the dry season than in the wet season, strengthening

the consistency of the dry season decline.

The simulated background mole fractions (LBC-CScope) have a marked seasonality, reach-

ing the highest values during the wet season, indicating that the air masses coming into

our domain are enriched with CO2. This is in accordance with Figure 3.1, in which we

showed that the surface influence during the wet season is oriented to the northeast,

bringing air from the northern hemisphere. When subtracting the simulated background

mole fractions from our measurements, we can diagnose specifically the regional signal of

CO2, defined as ∆CO2obs in Section 3.2.5. The seasonal cycle of ∆CO2obs (Figure 3.2b)

has an amplitude of 4.14 ppm (default) and 4.11 ppm (bias-corrected) and two distinct

periods in which the signal at ATTO is below the LBC tracer (< 0 ppm). It is worth

mentioning that ∆CO2obs contains information about the real fluxes in our domain, but

it also has an atmospheric transport component, making it difficult to interpret it solely

as a source (> 0 ppm) or an uptake (< 0 ppm) of CO2.
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Figure 3.2: Monthly time series of the ATTO CO2 measurements together with the simu-

lated background concentrations without bias correction (continuous blue line) and with bias

correction (dashed blue line) (a). The observed mole fractions at ATTO (measurement height

79 m) are shown in a thicker black line in (a) and the error bar represents ± 1 σ. The thin

black line represents the linear trend fitted using the Theil-Sen slope. In (b) the seasonal cycle

of the regional signal (∆CO2obs) is shown. The grey shading represents the min-max range

given by the spread of the independent ∆CO2obs , calculated using the interpolation between

ASC and RPB, and the bias corrected ∆CO2obs . To aggregate to monthly averages we selected

only daytime values (i.e. 13:00-17:00 LT) to ensure well-mixed conditions in the PBL. The

dry and wet seasons in (b) are the climatological seasons calculated with the TRMM dataset

described in Section 3.2.1.

As ∆CO2obs is the object of study in this paper, we have assessed its uncertainty by

obtaining a range between an independent LBC estimate and a bias corrected version of

the LBC-CScope. The first, was calculated by taking the measurements at the background

stations ASC and RPB and interpolating a new LBC based on the latitude of the STILT-

particles once they exit our domain. To account for the minor biases of the LBC-CScope

at the background stations, we have bias corrected the LBC-CScope, the magnitude of

this correction is shown in Figure 3.2a by the dashed blue line. The min-max range of

these two ∆CO2obs estimates is lower than the inter-annual monthly standard deviation

of the ∆CO2obs , which strengthens the robustness of this quantity. For the rest of this

study we will use the bias-corrected ∆CO2obs .

Drivers of seasonal variability

∆CO2obs is affected by local (eddy covariance scale) and non-local scales (concentration

footprint scale). At the local scale, we confront the ∆CO2obs−bio
with the EC-NEE in Figure

3.3a. The ∆CO2obs−bio
was calculated using the bias-corrected ∆CO2obs and subtracting the

simulated contribution of rivers, fires, fossil fuel and ocean. The phase of the seasonality

of ∆CO2obs−bio
differs from that of EC-NEE, mainly in January, February and March and

in October, November and December.
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Figure 3.3: Mean seasonal cycle of the observed CO2 regional signal ∆CO2obs and

∆CO2obs−bio
, together with monthly box-and-whisker plots of the eddy-covariance-derived NEE

(EC-NEE) flux are shown in (a). Note that the EC-NEE includes the storage flux and the

means are shown as triangles connected by a dotted line. Averaged seasonal cycles of Gross

Primary Productivity (GPP) and ecosystem respiration (Reco) (b) and, of Photosynthetic

Active Radiation (PAR) together with the age classes of Leaf Area Index (LAI) (c). In (d)

the monthly mean precipitation from the TRMM dataset (1998-2019), the STILT-simulated

averaged seasonal signal of CO2 [ppm] evasion from rivers (see Table 3.2 to see input fluxes

used in STILT) and the Equivalent Water Height anomalies from the Gravity Recovery and

Climate Experiment (GRACE) are shown (all available at: https://grace.jpl.nasa.gov/data-

analysis-tool/. Last access: February 02, 2021). The area over which the GRACE data were

integrated is marked with a purple square in the small inset on the lower right of (d). The

markers in (a) and (b) are shifted to improve visibility and all the error bars represent the

monthly standard deviation. The shaded areas in the background highlight the wet (Feb-Jun)

and dry (Jul-Nov) seasons. The dry and wet seasons are the climatological seasons calculated

with the TRMM dataset described in Section 3.2.1.
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From April to July EC-NEE exhibits an increasing source that can influence the increasing

pattern in ∆CO2obs−bio
. The dry season decline in ∆CO2obs−bio

can be partly attributed

to a decrease in EC-NEE which is triggered mainly by a reduction in Reco from May

to August and a gradual increase in GPP after August (Figure 3.3b). The effect of

atmospheric transport is also important here. For example, the height of the PBL is a

variable that affects the measured CO2 mole fractions at the tower. The PBL height

tends to be deeper during the dry season (1300-1500 m) than in the wet season (1100-

1200 m), which means that the volume in which CO2 mole fractions are diluted is larger,

causing more negative ∆CO2obs−bio
. This example illustrates how the seasonal effects of the

footprint and the PBL height can influence ∆CO2obs−bio
. The observed phase differences

indicate that ∆CO2obs−bio
can decouple from the local EC-NEE in some months of the

year, suggesting that the seasonality in ∆CO2obs−bio
is controlled by overlapping effects of

local and non-local drivers.

One of the most important non-local drivers of ∆CO2obs−bio
is the heterogeneity of NEE

across the seasonally-changing footprint area. The amplitude of the seasonal cycle of EC-

NEE in Amazonia varies along the precipitation gradient (Saleska et al., 2009). Locations

with a higher mean annual precipitation (MAP) (>2500 mm year−1), like K34 (2.61°
S, 60.21° W) have a smaller seasonal cycle amplitude, whereas drier sites (2000-2200

mm year−1) further east in the Tapajós National Forest (K67 and K83) display a more

pronounced seasonal cycle (Saleska et al., 2009). EC-NEE at ATTO (2.14° S, 58.99° W)

shows interesting patterns as it falls between the range mentioned above, with a MAP of

2382 mm year−1 and a seasonal EC-NEE range of approximately 60 g C m−2 month−1

(600 kg C ha−1 month−1). Thus, we observed a seasonal variability with a midyear source

peak, different from the sustained net uptake throughout the year reported for K34 by

Restrepo-Coupe et al. (2017). ATTO is located about 140 km northeast of K34: the sites

are relatively close, yet exhibit different MAP and seasonal EC-NEE patterns. ATTO

EC-NEE is more similar to that measured at the Tapajós National forest in having a

dry season decline, reaching neutrality in September and October (Saleska et al., 2003;

Goulden et al., 2004; Baker et al., 2008; Hayek et al., 2018), but it differs in that the wet

season shows on average a weak source, which after March increases towards a seasonal

peak in May. Interestingly, the ATTO EC-NEE seasonality has a similar phase to the

Caxiuanā (CAX) site (Restrepo-Coupe et al., 2017). Following the classification in Saleska

et al. (2009), the EC-NEE amplitude at ATTO falls close to the sites where Reco is the

most important factor.

From the ∆CO2obs−bio
perspective, Reco can be important from March to July, when EC-

NEE and ∆CO2obs−bio
are in phase. Further inspection of the local processes at ATTO

indicates that Reco correlates significantly with EC-NEE (r=0.55, p-value < 0.01). Fur-

thermore, river CO2 evasion (Figure 3.3d) could also contribute to ∆CO2obs , mainly from

April to July, with a peak contribution of 1.7 ppm in May and June. Simulated aquatic

CO2 signals are in phase with water levels as shown by the Equivalent Water Height
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anomalies. We consider this timing realistic, as CO2 evasion from rivers and floodplains

is enhanced at high water stages (Richey et al., 2002; Amaral et al., 2020), due to larger

inundation areas and an increased water depth that leads to more respiration in the water

column (Devol et al., 1995; Forsberg et al., 2017). Considering that the tower’s STILT

footprint during MJJ covers the main branch of the Amazon River (see Figure 3.1), we

believe aquatic signals play an important role when interpreting the seasonal cycle of CO2

measurements at ATTO.

GPP was found to be negatively correlated with EC-NEE but not significantly (r=-0.14,

p-value=0.21). Therefore, the offset of photosynthesis by Reco suggests that the first is less

important for ∆CO2obs−bio
at the local scale. Nevertheless, the local processes controlling

GPP during the dry and wet seasons are worth highlighting here. The gradual rise in

GPP during the dry season is driven by increasing light availability and a younger age

distribution of leaves in the canopy (Figure 3.3c). Note that PAR increases simultaneously

with a decline in the old class of leaf area index (LAI) and the increment of the mature and

young LAI classes. Such leaf demography dynamics are similar to what Wu et al. (2016)

showed for other sites in Amazonia, and consistent with the dry season green-up reported

by several in-situ (Restrepo-Coupe et al., 2013; Lopes et al., 2016) and regional (Huete

et al., 2006; Doughty et al., 2019) studies. Moreover, Wu et al. (2016) demonstrated that

mature leaves are the most light-use efficient with the highest photosynthetic capacity

(mol CO2 mol−1 photon−1) of all leaf age classes. Thus, the seasonal shift in LAI age

classes produces a younger age composition of the canopy relative to the wet season, which

on average has a higher photosynthetic capacity per leaf area (Wu et al., 2016; Albert

et al., 2018). In addition, reduced GEP (interpreted here as GPP) for June and July was

reported by Restrepo-Coupe et al. (2013) and Wu et al. (2016) for equatorial sites (e.g.

Tapajós National Forest (K67), Cuieras Reserve (K34), and Caxiuana National Forest

(CAX).
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Drivers of inter-annual variability

Although our CO2 time series is rather short for inferring inter-annual patterns, we present

the response of ∆CO2obs and ∆CO2obs−bio
to the 2015/2016 El Niño-induced drought (Fig-

ure 3.4a). Interestingly, the standardized anomalies of ∆CO2obs and ∆CO2obs−bio
follow the

same pattern, suggesting that the inter-annual variability is controlled by the vegetation

signal and that contributions of rivers, fires, fossil fuels and ocean are negligible at this

scale. For this reason, in the rest of this Section we refer to ∆CO2obs only, but the findings

apply equally to ∆CO2obs−bio
.

The >+1σ anomaly of ∆CO2obs in MJJ coincides with the onset of the El Niño, which

started in June of 2015, with values above 1 according to the Multivariate El Niño Index

(MEI) (Figure 3.4b). In the dry season of the same year (ASO), we observe a -1σ anomaly,

illustrating a variable response of ∆CO2obs to El Niño in 2015. In contrast, in 2016 our

observations reveal two >+1.5σ anomalies, centered in the wet and dry seasons. Note

that El Niño lasted until May in 2016, but the effects in ∆CO2obs seemed to persist well

into the dry season of 2016.

It is interesting to note that the local EC-NEE (Figure 3.4a) anomaly is not always in

phase with that of ∆CO2obs . In 2015 the EC-NEE anomaly was in opposite sign to that

of ∆CO2obs during MJJ and ASO, while in 2016 they followed similar patterns. Such

differences in phase between EC-NEE and ∆CO2obs anomalies suggest that in 2015 the

effects of El Niño at the EC-NEE scale were apparent only after ASO, whereas in the

∆CO2obs record it was already evident in MJJ. Therefore, the 2015 anomalies appear to

be driven by a non-local (i.e. larger than the EC-NEE footprint) response to the El Niño.

In contrast, the contribution to the positive anomalies in 2016 appears to be both at the

local and non-local scales.

The variable response of the ∆CO2obs anomalies in 2015 are marked by an erratic behavior,

showing opposing signs in MJJ (+) and ASO (-). The MJJ event is driven by an above

average value in July, whereas that in ASO is pulled down by a negative value in September

and October (not shown). Our eddy covariance data suggest that the ∆CO2obs positive

anomaly in July can not be attributed to a local source of carbon, as the EC-NEE (see

Figure 3.A5) for 2015 was within the seasonal variability of the 2014-2019 record. The

negative anomaly in ASO, can not be explain by local factors either. A reduction in

the observed CO2 mole fractions due to a deeper boundary layer height, a 15% percent

increase with respect to 2014 as shown by Carneiro & Fisch (2020), is likely but non-

local factors are yet to be studied. Interestingly, the GPP reductions in 2015 reported

in Koren et al. (2018) and van Schaik et al. (2018) for the region that overlaps with our

MJJ footprint (i.e. Region B in that study) have an onset in October, failing to explain

our July observation and indicating that the effect of the extreme heat and drought had

a late onset at ATTO.
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Figure 3.4: Standardized anomalies of ∆CO2obs−bio
, ∆CO2obs and EC-NEE (a) averaged over

three-month periods, calculated against the 2014-2019 period, centered on the wet (FMA)

and dry (ASO) seasons, with transition periods in between (MJJ and NDJ). The error bars

denote the standard deviation for each season, calculated before aggregating to the seasonal

mean. In (b) the bi-monthly Multivariate El Niño index shows the strength of the El Niño

event as measured by five different variables and aggregated in one index (data obtained

from: https://psl.noaa.gov/enso/mei/; accessed on June 10, 2020), with values higher than

0.5 corresponding to a strong El Niño event. In the last panels, we show monthly standardized

anomalies of air temperature at 81, 26 and 4 m and soil temperature at 20 and 40 cm (c),

soil moisture at 10, 40 and 100 cm in (d) and precipitation (e). Soil moisture, air and soil

temperature were measured at the ATTO site. Precipitation is taken from the TRMM dataset

(1998-2019).



78 The CO2 record at ATTO

The positive anomaly in ∆CO2obs during the dry season of 2016 has local and non-local

contributions. Locally, a source of carbon in our EC-NEE record, driven by a higher than

normal Reco (Figure 3.A5), can explain the ∆CO2obs 2016-ASO anomaly. Non-local drivers

of this anomaly are attributed to a drought legacy effect (Kannenberg et al., 2020) that

has been already characterized by Koren (2020) using atmospheric inverse modeling and

remote sensing. Koren (2020) reported basin-wide positive anomalies in top-down-NEE

and reductions in remote sensing proxies for GPP in the dry season of 2016. Persistent

soil moisture depletion following the 2015/16 El Niño was put forward as a potential

mechanism driving this legacy drought. A contributing factor to this 2016-dry-season

anomaly, based on the results by Wu et al. (2016) and Gonçalves et al. (2020), is that

drought in 2015 caused some trees (approximately 15%) to undergo an anomalous leaf

flush in March of 2016 (see Figure 3.A6). This precocious flush altered the normal leaf

age distribution over the following months, such that the abundance of photosynthetically

efficient mature-stage leaves (2-6 months of age) was spread out over a longer period.

The meteorological effects of El Niño at local scale were measured later in 2015. Positive

anomalies in air temperature within and above the canopy together with soil temperature

(Figure 3.4c) reached values close to +2σ from November of 2015 to February of 2016.

The negative soil moisture anomalies in the last four months of 2015 were driven by the

negative precipitation anomalies during the same time (Figure 3.4d,e). The soil moisture

anomalies at 40 cm and 100 cm bounced back to values higher than -1σ in March 2016.

However, even when precipitation returned to close-to-climatology values in February and

March 2016, soil moisture at 10 cm depth did not fully recover until late 2016. This pattern

shows a fast recovery in deep soil moisture compared to a persistent (<-1σ) soil moisture

anomaly at 10 cm depth. The re-wetting of deeper layers, together with a still high

soil temperature anomaly at 20 and 40 cm depth, could have reactivated heterotrophic

respiration leading to above-average soil respiration rates during the wet season of 2016

(see Figure 3.A5).

The ∆CO2obs anomalies in the transition months of NDJ in 2018 and 2019 occurred in

the absence of a large scale climate-driven phenomenon. Based on the EC-NEE response,

it seems that both ∆CO2obs anomalies are due to non-local signals. During the 2018-NDJ

event, all meteorological variables (air temperature, soil moisture and temperature, and

precipitation) were within the 1σ range. To interpret the signals in 2019, it is worth

mentioning two aspects. First, the 2019-NDJ average contains values only for November

and December, as January data were not yet available at the time of writing. Second,

the year 2019 was characterized by widespread fires driven by deforestation which began

early in the year (Barlow et al., 2020). Thus, we suggest that the 2019-NDJ positive

anomaly could have a contribution from fires, but the magnitude could be reduced when

the January average is included.
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3.3.2 STILT tagged tracer simulations

Simulated CO2 and spatial distribution at seasonal scale

At the ATTO site, a clear seasonal variation of the footprint throughout the year (Fig-

ure 3.5a) can be observed, consistent with the large scale atmospheric circulation of the

intertropical convergence zone (ITCZ) previously described in Andreae et al. (2012) and

Pöhlker et al. (2019). The seasonal atmospheric circulation affects the mole fractions mea-

sured at ATTO by varying the areas of near- and far-field influence of the surface fluxes

and also the origin of the background air masses. In general, during the wet season ATTO

is located to the north of the ITCZ and is under the influence of the air coming from the

Northern Hemisphere (NH), whereas during the dry season, the station is located south

of the ITCZ, and thus the long range transport is from the Southern Hemisphere (SH)

(Andreae et al., 2015). It is worth highlighting that during MJJ and ASO the main branch

of the Amazon River is well covered by the 50th and 75th footprint percentiles.

The different NEE fluxes used as inputs in STILT show large spatial variability amongst

them (Figure 3.5b-d). While CTE2020 and CT-SAM-Flask follow a similar spatial pat-

tern, CT-SAM-OCO2 tends to predict a larger source of carbon to the atmosphere in

MJJ. When comparing the bottom-up fluxes (Figure 3.5e-f) to those resulting from at-

mospheric inversions, it is clear that the former shows a stronger sink, which is particularly

visible in the FLUXCOM data. The main differences between FLUXCOM and VPRM

are the source regions in NDJ and ASO, more pronounced in FLUXCOM than in VPRM.

Despite the aforementioned differences, in the core of the dry season (ASO) all products

are consistent (with varying extent and magnitude) in the source regions in northeastern

Brazil, in the states of Ceará, Pernambuco, Bah́ıa, Piaúı and Tocantins (see Figure 3.A7

for the names and locations of the northeastern states of Brazil).
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Figure 3.5: Seasonally-averaged concentration footprint (row a) for the inlet level of 80 m.

These footprints were calculated with the output of hourly simulations of the STILT model

covering the 2014-2019 time period. The first column in row (a) shows the regional context

of the footprints and highlights the area shown in the rest of the panels. The ATTO site

is indicated with a red marker. In the rest of the panels the location of the research site is

indicated by the intersection of the parallel and meridian lines. NEE fluxes are shown in rows

b to f.
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We find that none of the simulations accurately capture the amplitude of ∆CO2obs . Only

in the case of FLUXCOM, does the shape of the seasonal cycle show a decline in the

dry season and a wet-to-dry season increase similar to the pattern observerd at ATTO.

The latter increase is also better predicted if the original product is augmented with

additional fluvial fluxes (compare both panels in Figure 3.6). However, FLUXCOM-driven

mole fractions predicted by our model are constantly lower than our measurements by

5 ppm, indicating a strong and persistent uptake of CO2 (negative NEE) as shown in

Figure 3.5. Such a strong sink was expected, as this product was previously found to

have a too strong tropical carbon sink, due to a mixture of systematic biases in the eddy-

covariance data used in upscaling, and the lack of site history effects on NEE (Jung et al.,

2020). Simulations of ∆CO2sim based on VPRM, CTE2020, CT-SAM-Flask and CT-

SAM-OCO2 fluxes show a very different seasonal cycle than ∆CO2obs , showing an earlier

and more rapid drop to a minimum in July. In terms of the amplitude of the seasonal

cycle, VPRM predicts the largest with 5.94 ppm, followed by CTE2020 with 5.88 ppm,

CT-SAM-OCO2 with 5.07 ppm, CT-SAM-Flask with 4.94 ppm and finally FLUXCOM

with 3.21 ppm. The last two are the closest to the observed ∆CO2obs of 4.14 ppm.

The accuracy of the VPRM simulations was worse than expected considering that the

model parameters were calibrated using eddy covariance measurements at several sites

within Amazonia (Mahadevan et al., 2008). We find that the dry season increase in

VPRM-∆CO2sim could be triggered by increasing simulated Reco associated with increas-

ing temperature. VPRM represents Reco as a linear function of temperature and does not

include the effects of moisture (Mahadevan et al., 2008). Furthermore, the decrease in

VPRM-∆CO2sim from May to July, which anticipates that of ∆CO2obs by a month, could

also be associated with the lack of moisture effects in Reco. Note that the eddy covariance

Reco is higher than GPP from May to June in Figure 3.3b, suggesting an overall source

of carbon to the atmosphere.

Simulated inter-annual variability and tracer contribution

In general, the observed inter-annual variability is not well captured by our STILT sim-

ulations (Figure 3.7a). In particular for the 2015 and 2016 anomalies associated with

El Niño, the simulations show either an anticipation of the anomaly (i.e. 2015-NDJ) or

output a signal with an opposite sign (i.e. 2016-ASO). Despite the spread between models

in 2014-MJJ, 2015-MJJ and 2018-FMA, it is worth highlighting the general agreement

between them, not only in 2015-NDJ and 2016-ASO but also in 2017-ASO, 2018-ASO,

2019-ASO and 2019-NDJ. The latter indicates that the disagreement between simulations

is largest in the first part of the year, in which the influence of river CO2 is predicted to

be highest.

The influence of rivers, fires, fossil fuel emissions and ocean fluxes on the simulated CO2

signal is very small compared to that of NEE (Figure 3.7b-e). Note that the simulated
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Figure 3.6: Mean seasonal cycle of the regional signal for each of the simulated (∆CO2sim)

and observed (∆CO2obs) mole fractions of CO2. On the left panel the simulations using

bottom-up NEE fluxes (i.e. VPRM and FLUXCOM) include the river signals. On the right

panel river signals are not included in the bottom-up NEE fluxes, shown with a dashed line.

The error bar in the observations represents ± 1 σ. For the simulated and observed mole

fractions we selected only daytime values (i.e. 13:00-17:00 LT) to ensure well-mixed conditions

in the PBL. The dry and wet seasons in are the climatological seasons calculated with the

TRMM dataset.

NEE contribution in general tends to show a sink of CO2, mainly in the transition from

wet to dry season, in contrast to ∆CO2obs and ∆CO2bio . For the ∆CO2bio the signal from

rivers, fires, fossil fuels and ocean was subtracted, which did not change the seasonal

pattern when compared to ∆CO2obs . Rivers contribute with 1 to 2 ppm depending on the

month of the year. Note that the spatial resolution of the gridded flux for rivers is coarse

(1° x 1°) and we have used a monthly climatology from Hastie et al. (2019) in STILT, thus

the variable magnitude from year to year in the river tracer is mainly due to atmospheric

transport. Fires and anthropogenic emissions (fossil fuels in equations 3.1, 3.2) add up to

a contribution ranging from 0.2 to 0.4 ppm, concentrated in the dry season. The ocean

is the least significant tracer component, contributing less than 0.1 ppm to the regional

signal, reaching the highest values during NDJ. These simulations highlight the relevance

of CO2 evasion at the ATTO site.

When evaluating the model performance at a monthly scale, the CT-SAM-OCO2 simula-

tion was the best, with an RMSE of 4.15 ppm. Note that the CT-SAM-OCO2 simulations

were performed only for three years (i.e. 2015-2017). The VPRM and the CT-SAM-Flask

followed with RMSE values of 4.21 ppm and 4.63 ppm respectively. CTE2020 and FLUX-

COM had higher RMSE values with 4.96 ppm and 5.6 ppm. These RMSE scores are

indicative of regional fluxes not covered by our footprints or the LBC, or from differences

in vertical transport between the STILT model used for the footprints relative to the TM5

model (used in CarbonTracker).
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Figure 3.7: Standardized anomalies of ∆CO2obs and the simulated tracers in STILT (a)

averaged over three-month periods, calculated against the 2014-2019 period and centered on

the wet (FMA) and dry (ASO) seasons, with transition periods in between (MJJ and NDJ).

The error bars denote the standard deviation for each season, calculated before aggregating

to the seasonal mean. Thus, it shows the internal variation of each season for each year.

Note that CT-SAM-OCO2 is not shown here since we did not have enough simulated years

to calculate an anomaly. The climatological standard deviation used for the standardization

is shown in Figure 3.A8. The monthly contribution of simulated NEE, ∆CO2obs and ∆CO2bio

is shown in (b). ∆CO2bio = ∆CO2obs - (river, ff, fires, ocean). In (c), (d) and (e), the

contribution of rivers, oceans and fires and fossil fuels are shown. Note the different scales on

the y-axis.
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3.4 Discussion

3.4.1 Decomposing the ∆CO2obs signal

We showed that ∆CO2obs is controlled by local and non-local factors. The phase

match/mismatch at seasonal and inter-annual scales between EC-NEE and ∆CO2obs was

described as an indicator of the different spatial extents driving ∆CO2obs . Amongst the

local factors analyzed was EC-NEE, which was partitioned into GPP and Reco to better

understand the underlying processes contributing to the local net flux. GPP and Reco

presented a considerable seasonal variation, mainly characterized by a Reco-dominated

wet season and a late dry season increase in both GPP and Reco. Seasonally, we found

that EC-NEE was mainly controlled by Reco. However, it is worth mentioning that when

leaving 2015 and 2016 out of our analysis, we see a clear sink in the EC-NEE during

the dry season. In contrast, focusing only on 2015 and 2016 we observe a suppression

of GPP during the dry season and EC-NEE shows a sustained source as Reco is always

larger than GPP. Therefore, seasonally we observed a larger role of Reco and a clear effect

of the 2015/2016 El Niño in GPP, Reco, EC-NEE and ∆CO2obs (see Figure 3.8).

Figure 3.8: Regional CO2 signal (∆CO2obs ) and EC-NEE averaged over non-ENSO years

(2014, 2017-2019) (a) and ENSO years 2015-2016 (b). In (c) and (d) the same time periods

are shown but for GPP and Reco.

At a more regional scale, the effects of the 2015/2016 El Niño-induced drought in Amazo-

nia have been studied from multiple perspectives. The immediate effects of the drought

(namely occurring in 2015 and 2016) caused reductions in GPP (Liu et al., 2017; van

Schaik et al., 2018) (in line with our local measurements) and sun-induced fluorescence

(SiF) (Koren et al., 2018; Castro et al., 2020). The study of Castro et al. (2020), which

described the effect of the 2015/2016-El Niño event on SiF across the Amazon basin,

sheds light on the variable response of vegetation to drought. At the regional scale, they

found a widespread reduction in SiF, yet at the eco-region scale where ATTO is located,

SiF reductions were comparatively less. However, Doughty et al. (2021) found positive
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anomalies in SiF and GPP at the Amazon basin scale and at the grid cell in which ATTO

is located. Therefore, the debate about the sign of the anomaly in 2015 remains open.

The effects of the 2015/2016 El Niño drought caused long-term impacts on vegetation,

Wigneron et al. (2020) found that the above-ground carbon stocks did not recover until

2017. Furthermore, top-down studies of previous droughts (Gatti et al., 2014; van der

Laan-Luijkx et al., 2015) have shown that the Amazon carbon budget can turn from

almost neutral in a wet year (i.e., 2011), into a source during drought (i.e., 2010). A

reduction in biospheric uptake and an increase in CO2 fire emissions were suggested as

the main causes for the regional response in 2010, which was well captured by widespread

aircraft measurements of CO2 concentrations over the basin. Given these previous find-

ings, local/non-local GPP reductions, long-term vegetation effects and fire emissions are

factors that can in principle influence ∆CO2obs , in addition to the role of Reco and river

signals, which were presented in our results. However, for the present study we found

that even during the 2015/2016-El Niño the fire contribution to the local measurements

was very small (see Figure 3.7), yet we do not rule out that this can be more important

in the future, with a possible expansion of the agricultural frontier within the ∆CO2obs

footprint.

The differential response of vegetation within the seasonally-changing footprint is an im-

portant non-local driver of ∆CO2obs that is worth discussing further. We have already

mentioned the findings of Castro et al. (2020) in which they showed substantial variability

of SiF at the eco-region scale. However, within the ATTO eco-region the SiF reductions

were not as large as those regionally, which is in contrast to the effect of the 2015/2016-El

Niño on GPP at ATTO, which showed a notable reduction in 2015 (see Figure 3.A5). This

apparent discrepancy remains to be studied further, however some plausible hypotheses

are a non-linear behavior between SiF and GPP caused by extreme heat and drought

(Martini, D. 2021 personal communication) in 2015 or that the GPP reduction observed

at ATTO was a local phenomenon within the eco-region used in Castro et al. (2020). Nev-

ertheless, Doughty et al. (2021) showed a linear relationship of GPP and SiF at different

spatial scales, so the discrepancy of our eddy tower GPP with both SiF studies remains

to be studied further.

Now, shifting to a more seasonal perspective, sites at the Tapajós National Forest (K67

and K83) and Caxiuanã (CAX) show a dry-season increase in GPP, which is driven by

leaf age and not by seasonal LAI (Wu et al., 2016). It is interesting that at ATTO we

observe this dry-season GPP increase on the mean seasonality, yet the amplitude of EC-

NEE is different at all sites, being larger at the Tapajós sites followed by ATTO, CAX

and K34 (Saleska et al., 2009). At the sites with larger EC-NEE amplitude, the role

of Reco modulating the EC-NEE is more important, which in turn is determined by the

annual average rainfall as shown by Saleska et al. (2009). A further example of regional

heterogeneity is given by the study of Restrepo-Coupe et al. (2013), in which they showed

that sites where the dry season is very long or the soil is shallow, GPP does not increase
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during the dry season. This is the case for Rondônia, which has a long dry season similar

to the Tapajós sites but with a shallow rocky soil, while Tapajós has deep soil which

buffers the water available to plants (Nepstad et al., 2007).

The seasonal patterns of Reco can be grouped into water-limited and oxygen-limited sites

(Saleska et al., 2009). Water-limited sites, like the one in the Tapajós National forest

(Saleska et al., 2003; Hutyra et al., 2007), exhibit dry season declines of Reco as a result

of an inhibited heterotrophic respiration due to a long dry season length that leads to

the desiccation of decomposition sources near the surface (Saleska et al., 2003). The

soil component of Reco at oxygen-limited sites is inhibited with increasing soil moisture

content, which is the case for K34 (Chambers et al., 2004). Our results suggest that the

Reco at ATTO follows an oxygen-limited regime with a MAP of 2383 mm year−1 despite

having a relatively long dry season length (3 months, see Table 3.1). Note that when

including 2015 and 2016 in our analysis, Reco does not show an increase in October, being

suppressed during the dry season (see Figure 3.8). Therefore, the response of Reco to

disturbance at ATTO is in contrast to what was reported by Davidson et al. (2004) after

a rainfall exclusion experiment for another site located on clay-dominated soil, where no

significant effect was found.

One of the novelties of our study is the use of results from the recently-developed model

(ORCHILEAK) for aquatic CO2 evasion in Amazonia (Hastie et al., 2019) as an input

in our atmospheric transport simulations. We have shown that the seasonal peak of

∆CO2obs in June and July is influenced by a net carbon source driven by Reco and the

CO2 evaded from rivers. The aquatic signal peaks in May and June (Figure 3.3), just

when the ∆CO2obs footprint covers the main branch of the Amazon River, including its

delta (see MJJ in Figure 3.1 and 3.5). Therefore, we suggest that the ∆CO2obs maximum

in June has a larger contribution of CO2 from rivers, while in July Reco could be more

relevant in the ∆CO2obs . We furthermore highlight that by adding aquatic CO2 signals

to FLUXCOM-∆CO2sim : The shape of the seasonal cycle is closer to that of ∆CO2obs ,

indicating that aquatic CO2 evasion is important to correctly represent the seasonal cycle

of CO2 mole fractions at ATTO.

A full error propagation from the river flux fields to our simulated tracer is out of the

scope of this study. However, we provide an estimate for the relative error of about 35%

for the river flux fields, which scales linearly to our simulated river signals. This estimate

was based on Hastie et al. (2019), specifically the annual CO2 evasion of 746 (526-998)

Tg C per year. It is important to note that this relative error has to be interpreted with

caution, as our atmospheric transport model (STILT) has a higher spatial resolution and

the footprints do not cover the entire basin as the ORCHILEAK model does. This model

represents an important advance in coupling the terrestrial carbon cycle with the lateral

forest-river continuum, though the additional sources of uncertainty can be highlighted

here. In ORCHILEAK the carbon sources of the CO2 degassed from aquatic surfaces are
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attributed to: (1) dissolved organic carbon (DOC) and dissolved CO2 transported laterally

from the upland soil and (2) decomposition of submerged organic carbon and litter and

respiration of submerged roots in wetlands and rivers (see Lauerwald et al. (2017) and

Lauerwald et al. (2020)). Lateral transport from upland soil (1) is important for small

streams (Johnson et al., 2006, 2007), which are lacking in ORCHILEAK. In addition, the

lack of aquatic plants in ORCHILEAK introduces uncertainty in (2). Including small

streams and aquatic plants in ORCHILEAK would enable the model to better simulate

CO2 evasion from aquatic habitats.

3.4.2 Fluxes are the major source of error in STILT simulations

Our study is the first to use the CO2 ATTO record to independently evaluate optimized

and non-optimized gridded NEE fluxes when transported in the atmosphere. From this

evaluation we highlight two main important findings. The first is that none of the simula-

tions, including the ones using optimized fluxes, accurately reproduce the seasonal cycle of

the observed signal (∆CO2obs), which represents the regional flux and atmospheric trans-

port influence. ∆CO2obs is almost always lower than the background inflow, indicating

a sustained regional sink of CO2. The second, is the importance of river CO2 signals

at ATTO when interpreting the CO2 measurements and simulated biospheric signals.

We showed that the phase of the seasonal cycle is better captured by FLUXCOM only

when adding river signals (Figure 3.6), and that the amplitude of the seasonal cycle is

overestimated by 0.8 ppm to 1.8 ppm (CT-SAM-Flask and VPRM).

We attribute the incapability of our system to accurately simulate ∆CO2obs mainly to

errors in the input fluxes, which fail to capture the seasonal variability of NEE in the

footprint area. Dynamic vegetation models are known to have difficulties simulating the

seasonality of carbon fluxes in the equatorial (5°S to 5°N) band of Amazonia (Verbeeck

et al., 2011; Restrepo-Coupe et al., 2017), but here we show that even when NEE of a

process-based model (such as SiBCASA) is optimized with different data streams (using

surface CO2 observations CTE2020, additional aircraft profiles within the Amazonia CT-

SAM-Flask and, satellite columns CT-SAM-OCO2), it does not capture the seasonality

of ∆CO2obs sampled at ATTO. This finding is similar to that of Molina et al. (2015), in

showing the difficulties of reproducing the seasonal cycle of NEE after an atmospheric

inversion, but we further show the remaining challenges of a denser observational net-

work, which could either be aircraft profiles (e.g., CT-SAM-Flask) within Amazonia or

satellite columns (e.g., CT-SAM-OCO2). A still limited observational coverage, even

with the aircraft network and the OCO2 columns, is perhaps one of the main remaining

challenges.
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The mismatch between the optimized fluxes and ∆CO2obs at inter-annual scale could be

related to an incorrect seasonality in the prior NEE flux (i.e. NEE before optimization),

but also to the frequency and spatial distribution of observations used in the assimilation.

For CTE2020, CT-SAM-Flask and CT-SAM-OCO2 the same prior model is used (i.e.

SiBCASA), but different data streams are assimilated. Tests indicate that the use of the

same NEE prior leads to a similar shape of the seasonal cycle in the posterior NEE (not

shown) and thus the ∆CO2sim in this study, regardless of the data assimilated for the

optimization. Furthermore, the effects of temperature, soil moisture and precipitation

anomalies in the underlying prior biosphere models (in particular for VPRM and SiB-

CASA) could produce inaccurate vegetation NEE responses in terms of timing and/or

sign. This could result in NEE fluxes with either an early too strong source (i.e. 2015-

NDJ) or the opposite in sign in the same month possibly due to an enhanced uptake (i.e.,

2016-ASO).

This study is the first time that the FLUXCOM NEE product has been evaluated using

atmospheric transport to obtain CO2 mole fractions at a particular site in the tropics.

Interestingly, we found similar inter-annual patterns in ∆CO2sim to those using the op-

timized fluxes, but not with the observations. Jung et al. (2020) found a consistency in

NEE anomalies between FLUXCOM and atmospheric inversions at global scales, and here

we show that this finding holds at regional scales when using FLUXCOM in simulations

of atmospheric CO2. According to Jung et al. (2020), the reasons for the global consis-

tency between FLUXCOM and atmospheric inversions are: 1. a spatial compensation

of processes that are not well represented by the underlying model formulations and 2.

the tendency of such models to be more sensitive to temperature signals, which are more

important at larger spatial scales, as discussed in detail by Jung et al. (2017). Here we

suggest that the spatial scale of our analysis can still suffer from the weaknesses listed

above. In particular, note that the temperature sensitivity can be spotted by comparing

Figures 3.4a and 3.7a; the bottom-up and top-down simulations converge in a 2σ anomaly

in 2015-NDJ, coinciding with temperature anomalies of similar magnitude.

Inter-annual drought-induced impacts on vegetation in Amazonia can include: shifting

carbon allocation from the canopy to fine roots following drought (Doughty et al., 2014),

reduced growth due to water stress and warm temperatures (Clark et al., 2010), prior-

itizing growth at the expense of maintenance and defence (Doughty et al., 2015), and

increased tree mortality (da Costa et al., 2010; Wang et al., 2012) together with reduced

vegetation productivity (Feldpausch et al., 2016). In addition to the mechanisms listed

above, the implementation of the different seasonal phenological stages (as shown in Fig-

ure 3.3 but also by Restrepo-Coupe et al. (2013), Lopes et al. (2016) and Wu et al. (2016))

needs to be improved in dynamic vegetation models as well as in process-based biosphere

models, to produce more accurate NEE and thus ∆CO2sim estimates. Improving the sen-

sitivity of tropical vegetation in dynamic vegetation models to water availability could

also reduce the disagreement between top-down and bottom-up estimates for the global
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carbon budget (Bastos et al., 2020).

Atmospheric transport uncertainties are also a source of errors in our simulations, mainly

associated with the model’s capability to resolve moist (deep) convection (Betts et al.,

2009), vertical mixing within the boundary layer (Gerbig et al., 2008) and advection (i.e.,

wind speed and wind direction) correctly. The seasonality of convection in STILT shows

more activity during the wet season (FMA) over the footprint area, consistent with the

timing of convective events reported by Horel et al. (1989). Therefore, the probability

of a particle being captured by an updraft or downdraft is higher during the wet season.

We are aware that errors in representing deep convection could lead to a potential bias in

the turnover time of the air between the mid and upper troposphere and the boundary

layer. We acknowledge this limitation, but if present, such a bias is more likely to occur

in the wet season. STILT is as good as the driving meteorological fields and their ability

to capture convective events. Convection is a sub-grid process that can impact the ability

of Eulerian models to reproduce tracer transport at the mesoscale in Amazonia (Beck

et al., 2013) and it can also be triggered by small scale processes (Burleyson et al., 2016),

which present difficulties for their representation in atmospheric transport models. Thus,

using higher spatial resolution driving fields, such as ERA5 (C3S, 2017), is expected to

improve the model’s representation of convection, as shown specifically for Lagrangian

models by Hoffmann et al. (2019). To reduce vertical mixing errors, we filter both the

STILT simulations and the observations, so as to obtain only afternoon values (13:00-

17:00 LT) (see in Figure 3.A4 the convergence of simulated and observed CO2 in the

afternoon).

Moreover, to evaluate advection errors at the receptor height (80 m), we compared local

wind speed and direction measured at ATTO with the simulated quantities. We found

a small bias in wind speed (-0.08 m s−1) and a moderate bias in wind direction (-39 °).
However, when evaluating directly the errors of the driving meteorological winds using

three afternoon (14:00 LT) radiosondes at ATTO, we found that they decrease with height

(Figure 3.A9). This indicates that as the particle trajectories reach higher elevations, the

error tends to decrease; the particle height after 2 days of back trajectory was on average

1400 m. A study using a Lagrangian model to evaluate the role of the Amazon Basin

moisture in the hydrological cycle (Drumond et al., 2014) supports the orientation of the

footprints shown here. Drumond et al. (2014) show that moisture sources in Amazonia

during the austral summer are coming from the tropical North Atlantic Ocean, which is

in line with our footprints for NDJ and FMA. Overall, given these findings, we conclude

that the errors in fluxes are much larger than those in transport.
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3.5 Conclusions and outlook

In this study we presented and analysed the first six years of the CO2 record from the

Amazon Tall Tower Observatory. Using a Lagrangian atmospheric transport model we

evaluated how well we could reproduce the observed CO2 concentrations at ATTO. By

combining atmospheric transport from STILT with a set of different NEE flux products,

we found that the inversion results were not able to constrain the seasonal variability of

∆CO2obs in the footprint of the tower and very likely at the regional scale. It seems that

the optimized products cannot adjust the prior seasonal cycle of NEE regardless of the

data stream assimilated. Furthermore, we have presented evidence of the importance of

river CO2 evasion for getting the shape (but not the magnitude) of the seasonal cycle

when using the FLUXCOM product, mainly capturing the increase in ∆CO2obs from May

to July. We have further shown that the main controls of ∆CO2obs at seasonal and inter-

annual scales result from the combined effect of local and non-local drivers, which can be

inferred by the phase difference in EC-NEE and ∆CO2obs .

This is not the first study to highlight the underlying processes that should be better

represented in biosphere models, but it is the first evaluation of bottom-up and top-down

NEE fluxes using an independent station with a long-term and continuous record in Ama-

zonia. We therefore highlight the potential of the ATTO station, and the upcoming 325 m

continuous record, as an independent validation site for atmospheric transport of CO2 and

for regional inversion estimates, which we are currently working on. Equally important

are the seasonal patterns of carbon exchange, ecosystem respiration and leaf phenology

that we have presented here, which add to the current body of literature (Saleska et al.,

2003; von Randow et al., 2004; Hutyra et al., 2007; Baker et al., 2008; Restrepo-Coupe

et al., 2013; Wu et al., 2016; Lopes et al., 2016) and provide in-situ information for

constraining the heterogeneity of these processes in Amazonia. These findings are of ut-

most importance for regional carbon budget assessments, like the RECCAP2 initiative

(https://climate.esa.int/en/projects/reccap-2/). By guiding the choice of prior

fluxes to estimates with better NEE seasonality, improved posterior flux distributions and

thus, regional carbon budgets, can be attained.
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Appendix

Figure 3.A1: On the left panel, the averaged seasonal cycle of precipitation at ATTO using

the local measurements (2012-2019) and the TRMM record at ATTO for the same period.

The climatological average for the 1998-2019 period was taken from TRMM. On the left panel,

the seasonal distribution of precipitation from TRMM at the closest grid (2.125° S, 58.875°W)

to ATTO (2.14°S, 58.99°W).

Table 3.A1: U* threshold percentiles [m s−1] for each year at ATTO. Measurement height

81.65 m. The 50th percentile were used in this study.

Year 5th percentile 50th percentile 95th percentile

2014 0.033 0.074 0.120

2015 0.035 0.061 0.100

2016 0.060 0.105 0.164

2017 0.070 0.148 0.245

2018 0.063 0.117 0.184

2019 0.066 0.095 0.134
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Table 3.A2: Comparison of different u* thresholds for different sites in Amazonia

Site-ID Location Biome Type Canopy height (m) Measurement period EC measurement height (m) U* threshold (m s−1) Reference

K34 2.61°S/60.21°W Tropical rainforest 35-40 14-Jun-99 to 30-Sep-06 53.1 0.2 Restrepo-Coupe et al. (2013)

K67 2.85°S/54.97°W Tropical rainforest 35-40 2-Jan-02 to 23-Jan-06 57.8 0.266 Restrepo-Coupe et al. (2013)

K67 3.01°S/54.58°W Sel. logged Tropical rainforest 35-40 29-Jun-00 to 12-Mar-04 64 0.24 Restrepo-Coupe et al. (2013)

CAX 1.72°S/51.53°W Tropical rainforest 30-35 1-Jan-99 to 30-Jul-03 55.5 0.22 Restrepo-Coupe et al. (2013)

ATTO 2.14°S/58.99°W Tropical rainforest 30-40 1-Jan-14 to 31-Dec-19 81.65 0.061-0.149 This study

ATTO 2.14°S/58.99°W Tropical rainforest 30-40 1-Jan-14 to 31-Dec-18 46.46 0.178-0.203 This study

Figure 3.A2: Uncertainty range of the eddy-covariance derived NEE, GPP and Reco at

seasonal scale. The error bars denote the standard deviation of each month across all years.

Using the 5th and 95th percentiles the percentage of data remaining is 22.5% and 18.1%,

respectively.

Figure 3.A3: Monthly bias of the Jena CarboScope optimized mole fractions

at three background stations, Ascension Island (ASC), Ragged Point Barbados

(RPB) and Cape Verde (CVR). Data from ASC and RPB were retrieved from:

https://www.esrl.noaa.gov/gmd/dv/data/ and the CVR data can be accessed upon request

to Martin Heimann (martin.heimann@bgc-jena.mpg.de).
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Figure 3.A4: Monthly averaged diurnal cycle of CO2 mole fractions measured at ATTO

and simulated with STILT using different input NEE fluxes. Note that the optimized fluxes

(CTE2020, CT-SAM-Flask and CT-SAM-OCO2) were adjusted to represent the original di-

urnal variability of the prior SiBCASA model (as described in Methods, section 3.2.5).



94 The CO2 record at ATTO

Figure 3.A5: NEE (a), GPP (b) and Reco (c) for the full measurement period 2014-2019 and

the last El Niño years 2015 and 2016. The error bars show the monthly standard deviation

for each month across all years.

Figure 3.A6: Monthly flushing time series at ATTO (lower panel) and its standardized

monthly anomaly (upper panel).
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Figure 3.A7: Brazilian states overlayed with the 75th percentile footprint for each season.

Figure 3.A8: Comparison of the standard deviation (1σ) magnitude used to produce the

standardized anomalies in Figure 3.4 and 3.7. The ”bc” denotes the bias correction done for

the LBC.
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Figure 3.A9: Profiles of wind speed and wind direction bias for the ECMWF meteorological

fields used in STILT and three radiosonde launches at ATTO. The vertical gray line is the

zero bias reference line. The radiosondes at ATTO were collected in November 2015 during

an Intensive Operational Period (IOP) by Rosa Santos. All launches were performed at 14:00

(local time).



Chapter 4

Net carbon exchange in tropical

South America

*This chapter is to be submitted toGlobal Biogeochemical Cycles. Bot́ıa, S. and co-authors

(2022), Constraining the net carbon exchange in Tropical South America.
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Abstract

The contribution of vegetation to the South American carbon balance is critical for un-

derstanding the regional dynamics in net carbon exchange. Of particular interest is the

role of the Amazon region as a sink or source of carbon to the atmosphere. Recent

evidence indicates a weakening of the Amazon carbon sink, and when taking fires into

account, the region represents a source of carbon to the atmosphere. In this study we use

a regional atmospheric inversion system together with data from the Amazon Tall Tower

Observatory (ATTO) and airborne profiles of CO2, to constrain the Net Biome Exchange

(NBE) in tropical South America. At the domain-wide scale we find that the atmospheric

observations can constrain 64% of the land mass, with uncertainty reductions in most of

the Amazon region, and the adjacent Cerrado and Caatinga biomes. At the continental

scale, the optimized NBE results in a sink of -0.49 ± 0.1 PgC year−1 while the net carbon

balance is a source of 0.11 ± 0.1 PgC year−1 for the years 2010-2018. Furthermore, we

provide a region-specific analysis showing the effect of assimilating the Amazon Tall Tower

Observatory CO2 time series on the mean seasonal cycle of NBE for four areas within

the Amazon, the Cerrado and the Caatinga. An emerging sink-source gradient between

the Amazon region (sink) and integrated effect of the Cerrado and Caatinga (source) is

found, but the source is located further east and outside the legal Amazon compared to

recent work by Gatti et al (2021). We estimate an Amazon-wide NBE uptake of -0.35

± 0.3 PgC year−1 for the period between 2010-2018. Our estimate agrees with others

in an Amazon-wide negative NBE, yet there is considerable spread amongst top-down

approaches for this region. Finally we highlight the areas with a limited constraint in

our system and conclude that the observational network has to be further expanded for

reducing the remaining uncertainty in top-down inverse approaches.
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4.1 Introduction

Land ecosystems represent the largest carbon sink of atmospheric CO2 (Friedlingstein

et al., 2022), yet it is the most uncertain (Ballantyne et al., 2012) and variable (Le Quéré

et al., 2018) component of the global carbon cycle. Several independent studies confirm

that tropical land ecosystems drive most of the inter-annual variability (IAV) of the net

land carbon flux (Bousquet et al., 2000; Jung et al., 2011; Peylin et al., 2013; Jung et al.,

2017; Rödenbeck et al., 2018; Bastos et al., 2020), which in turn is tightly connected to

the atmospheric CO2 growth rate (Piao et al., 2020). In other words, the accumulation

of CO2 in the atmosphere depends to a large extent on the uptake and release of carbon

taking place in tropical ecosystems. In these two aspects (uptake and release), South

America plays a crucial role by hosting the Amazon rainforest, which covers one-third of

the continent (Goulding et al., 2003).

The balance between uptake and release of carbon results in the Net Biome Exchange

(NBE). Gross Primary Productivity (GPP) and Terrestrial Ecosystem Respiration (TER)

are the main contributors to NBE, besides other small positive net fluxes. Studies using

top-down approaches focused on the Amazon, have shown that the net balance between

TER and GPP can turn into a source of carbon during drought years (Gatti et al., 2014;

van der Laan-Luijkx et al., 2015; Alden et al., 2016). More recently, Gatti et al. (2021)

suggested that the eastern part of the Amazon was on average a net source due to the

effect of temperature and precipitation anomalies on vegetation. Furthermore, a bottom-

up study in which plot level data was up-scaled to the Amazon region, Brienen et al.

(2015) found a net sink of carbon over the last three decades, yet with a decreasing trend

(Brienen et al., 2015; Hubau et al., 2020). Thus, multiple lines of evidence converge

in an Amazon-wide vegetation carbon sink, yet large uncertainties remain (SPA, 2021)

and the need to better understand spatial gradients becomes apparent. In this context,

deforestation fires (van der Werf et al., 2010) and emissions from degradation (Assis

et al., 2020), represent additional carbon sources, particularly important for the Amazon

region (Aragão et al., 2018; Matricardi et al., 2020; Qin et al., 2021; Kruid et al., 2021).

Since 2017, clear-cut deforestation has increased significantly in Brazil (Alencar et al.,

2019; SEEG), not only releasing massive amounts of carbon (Assis et al., 2020) but also

exposing larger areas of forest fragments to degradation (Matricardi et al., 2020). Such

enormous threats to standing forest pose a challenging risk of gradually releasing the

carbon stock of the Amazon, which amounts to 150-200 PgC (Saatchi et al., 2007; Malhi

et al., 2009; Marques et al., 2017; Baccini et al., 2017).

Advancing our knowledge on the regional net carbon balance is essential for better under-

standing the processes controlling the vegetation-sink and emerging anthropogenic carbon

sources. Changes in atmospheric CO2 signals are linked to the net carbon balance, thus

from an atmospheric perspective all underlying processes can potentially be constrained

having reliable knowledge of the individual flux component.
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However, this is not the case and disentangling individual sources and sinks is challenging

using the atmospheric constraint. Top-down atmospheric inversions exploit the informa-

tion embedded in measured CO2 gradients of an observational network to constrain NBE

fluxes, assuming that sources like fires and fossil fuels are well known. NBE estimates

for tropical regions (Gurney et al., 2002; Rödenbeck et al., 2003; Peylin et al., 2013) and

specifically for the Amazon region (Molina et al., 2015) have been conducted previously

using global inversions, but lack of observations and errors in atmospheric transport led to

large uncertainties (Gurney et al., 2002; Stephens et al., 2007; Peylin et al., 2013; Molina

et al., 2015). Other inverse modeling efforts have used a relatively new data stream based

on airborne CO2 profiles (Gatti et al., 2014) to shed light on how fire influences the net

carbon balance in specific years (2010-2011) (van der Laan-Luijkx et al., 2015) and the

spatial differences of NBE in areas within the Amazon for 2010 to 2012 (Alden et al.,

2016). At the time of these studies the data available permitted time-limited analyses,

which provided insights primarily on the response to a drought year and normal/wet

years. The longer dataset published by Gatti et al. (2021) enables to further examine

inter-annual and seasonal signals using a similar top-down approach (Koren, 2020).

A recent finding using the decade-long airborne CO2 measurements, points to an east-

west gradient of the total carbon flux within the Amazon (Gatti et al., 2021). The eastern

source is dominated by fires and a sign shift of NBE (from sink (-) to source (+)) in the arc

of deforestation (Gatti et al., 2021). The west is reported as a close-to-neutral source with

fires being less relevant and vegetation (NBE) very close to being neutral, yet showing a

small uptake of CO2. These findings underline the spatial dependence of fires and NBE in

the Amazon carbon balance and raise the need for further understanding of such gradients

using independent methods.

In this study, we use the CarboScope Regional (CSR) inversion system to assimilate the

2010-2018 airborne CO2 profile record, and in addition data from measurements made at

the Amazon Tall Tower Observatory (ATTO), the continuous and long-term CO2 record

(Bot́ıa et al., 2022). We build upon previous studies using the CSR system in Europe

(Kountouris et al., 2018b,a), to explore its capability to constrain NBE fluxes at the

continental scale over a larger domain, but with a sparser observational network. A

sub-continental analysis with strong focus in the Amazon basin, but not limited to it, is

performed to shed light on spatial gradients and seasonality of NBE. Furthermore, we eval-

uate the added value of having an in-situ site (ATTO) and also the appropriate prior error

statistics to lay the foundation of the appropriate parameter settings in CSR for this spe-

cific regional domain. The latter serves not only as reference for future atmospheric inver-

sions of other species, but also for contributing to the regional carbon balance assessment

project (RECCAP2: https://www.globalcarbonproject.org/reccap/overview.htm)

over the upcoming years.
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4.2 Methods and Data

4.2.1 CarboScope Regional Inversion System

The inverse modeling approach of the CarboScope Regional Inversion System is described

in detail by Rödenbeck (2005), so here we emphasize the fundamental concepts of the

inversion and the two-step scheme linking the regional to a global scale inversion. The

inversion system aims to minimize the cost function J(x) (see equation 1), which consists

of terms for model-data mismatch and prior information.

J(x) = (y −Hx)TQ−1
m (y −Hx) + (x− xp)

TQ−1
p (x− xp) (4.1)

Where, y is a vector of size n containing the atmospheric observations for all sites and

times (in ppm), x is the state vector (surface-atmosphere fluxes) of length m contain-

ing the unknowns which in theory are the surface fluxes. However, in this set up, the

unknowns correspond to adjustable parameters that are used in additive corrections to

the prior flux. H is the atmospheric transport operator (with Hx as the simulated mole

fractions) of dimensions n x m that samples the m unknowns and provides the connection

to y, in other words the sensitivity of each measurement to surface fluxes. The diagonal

matrix Qm (with dimensions n x n) weighs the mole fraction measurements considering

measurement uncertainty, site-dependent representation errors and temporal error cor-

relations that are implemented as a data density weighting (discussed in Section 4.2.2).

The a priori term contains the prior flux field xp and the covariance matrix Qp, with prior

flux uncertainties and spatial and temporal error correlation. The minimization of J(x) is

performed iteratively with respect to x using a conjugate gradient algorithm (Rödenbeck,

2005).

The CarboScope Regional (CSR) inversion system deploys a two-step scheme described in

Rödenbeck et al. (2009) and Trusilova et al. (2010). Here we provide the relevant details

of the regional system and of our set up. In the two-step scheme two types of atmospheric

transport models with different spatial resolutions are used. In step 1, a global inversion

using the CarboScope Global inversion system (Rödenbeck et al., 2003) is performed to

obtain an optimized NBE flux field at a coarse global scale. Using this flux field and

the TM3 atmospheric transport model (Heimann & Körner, 2003) at 4°x5° resolution

driven by the NCEP reanalysis meteorological fields (Kalnay et al., 1996), simulated

mole fractions increments for all sites are obtained. These ”forward” runs represent an

intermediate step and are done twice, see equation 2 (adapted from Rödenbeck et al.

(2009)). The first one initializes TM3 at the coarse global scale and for the entire time

period of the global inversion done in step 1. The second forward run is performed only

for the regional domain (at coarse spatial resolution) and the desired period of interest

(i.e. 2010-2018).
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Both forward runs result in simulated mole fraction increments (∆cmod1 and ∆cmod2) to

which an initial mole fraction (cini), corresponding to a well-mixed atmosphere, is added.

The difference of the two runs corresponds to a far-field contribution from fluxes outside

of the regional domain. All this together is subtracted from the measured mole fractions

at the sites within the domain of interest. This difference represents a ”remaining mole

fraction” (∆cremain), corresponding to signals from fluxes within the regional domain, as

defined by Rödenbeck et al. (2009).

∆cremain = cmeas − (∆cmod1 −∆cmod2 + cini) (4.2)

In step 2, the regional inversion takes place using the high-resolution (0.25°x0.25°) model

STILT (Lin et al., 2003) and using the ∆cremain as data vector. STILT is driven by the

ECMWF-IFS short-term forecasts (following the contemporary IFS cycle development;

for more info, see https://www.ecmwf.int/en/publications/ifs-documentation).

In addition, a set of different prior fluxes (representing a prior ensemble) is used and the

regional inversion is performed for each prior ensemble member individually. The set of

priors are described in Section 4.2.3. The domain we have selected extends from 28.875oS

to 13.875oN and from 83.875oW to 34.125oW, see Figure 4.1; we have limited our domain

to 28.875oS due to a lack of observational records further south. Our inversion set-up

follows largely that of Kountouris et al. (2018a), but we use an isotropic exponential decay

for the spatial error structure, mainly because in our domain unlike in mid-latitudes, the

climatic gradients are similar in both latitude and longitude. We refer the reader to Table

4.1 and Section 4.2.4 for more on the rationale of this choice.

By prescribing a flux field as a fixed prior (i.e. not optimized), one accounts for that

source/sink explicitly, otherwise that information will be implicitly contained in the op-

timized flux field, in this case NBE. To clarify the flux terms used in this work here we

provide some definitions (see equations 4.3 and 4.5). Here NEP is the net ecosystem

productivity, GPP is the gross primary productivity, and TER is terrestrial ecosystem

respiration. When prescribing fluxes from fires (”Fires”) and Fossil Fuels as fixed priors

(as we do for all inversions), we account for these sources directly, therefore the inversion

provides an optimized Net Biome Exchange (NBE). For the NBE we adopt the atmo-

spheric approach in which a positive (+) is a source to the atmosphere and negative (-)

a sink. As Fossil Fuels and Fires are prescribed in our set up, we obtain the net budget

by adding these fluxes to the optimized NBE. In all inversions there is no prescription of

River fluxes, therefore those signals are implicitly accounted for in the optimized NBE.

To assess the effect of a potential net source of Rivers in our NBE, we made an additional

experiment prescribing Rivers in one inversion (see Section 4.2.4).

NEP = TER−GPP (4.3)
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NBE = TER−GPP +Rivers (4.4)

Fc, total = NBE + Fires+ FossilFuels (4.5)

4.2.2 Observational network

To further analyze the spatial distribution of NBE and the influence of our network’s

coverage, we have used the definition of sub-regions shown in Figure 4.1a. One of the

criteria for the choice of these regional integration areas is that they should be independent

from our observational network’s coverage. With this, we avoid having contrasts between

areas with better observational coverage than others. Thus, the selection of these areas

follows to some extent a biome-like distribution (e.g. see the Caatinga and the Cerrado),

but it does not represent individual biomes strictly elsewhere. The division within the

Amazon serves to provide individual sub-regions dividing east-west but also north-south.

In addition, we have also kept an individual sub-region for the main branch of the Amazon

river. The location of the measurement sites is shown on Figure 4.1b together with

their aggregated annual mean surface influence over 2010 to 2018. The coverage of the

observational network in our regional domain concentrates in the areas within the Amazon

but also in the northeast of Brazil. For the seasonal areas of influence for each individual

site see Figure 4.A1.

In the global inversion (step 1) we have used the set of stations in the latest release of

the CarboScope global system with nearly continuous coverage from 2010 onward (i.e.

s10oc v2021, see http://www.bgc-jena.mpg.de/CarboScope/?ID=s10oc v2021, for

details of stations and data providers.). To the default s10oc v2021 station set, we added

the ATTO CO2 record (available at: https://attodata.org/), five sites within the

Amazon region where airborne profiles (available at: https://doi.pangaea.de/10.1594

/PANGAEA.926834) are collected (Gatti et al., 2021), and the weekly flask sampling record

in Natal (NAT), a station in the northeastern part of Brazil (Dlugokencky et al., 2021).

Therefore, the global inversion (step 1) is augmented with these sites (s10 + ATTO +

NAT + Aircraft), and for the regional inversion (step 2) only the sites within our domain

are used. The monthly time series at each site is shown in Figure 4.1c, indicating the

data gaps and the evolution of the CO2 over the last decade. Note that ATTO provides

continuous data only since 2013 and there were major gaps in the aircraft network during

2015 and 2016. For the continuous data (ATTO) we use only daytime measurements

(i.e. from 13:00 to 17:00 local time), to ensure we have measurements representative for

the well-mixed boundary layer. Furthermore, the average number of aircraft profiles per

month is two, see Figure 4.A2. For each measurement of each aircraft profile (full profile

goes up to 4500 m), for the weekly flask measurements at NAT, and for every single data

point at ATTO, we have simulated the surface influence using the STILT model.
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Each measurement has an individual footprint which is used as the transport adjoint in

the regional inversion. The STILT set-up follows that of Bot́ıa et al. (2022), but the

spatial resolution used here is 0.25°x0.25°.

The model-data mismatch error (also called representation error) for the three types of

sites is chosen to be 1.5 ppm for weekly time scales. We apply a data density weighting

(e.g. hourly for ATTO), so the error will be inflated by
√
Nhours/week (details see Koun-

touris et al. (2018a)). We have assumed the same representation error to the aircraft sites

as well as to the ATTO site, resulting in equal constraint in the inversion. An aircraft

profile (composed of several flasks) is scaled with
√
Nflasks/profile, similarly to ATTO ob-

servations having the weight of one weekly flask sample. This means that the continuous

measurements, aircraft profiles and flasks are treated consistently in the inversion.

4.2.3 A-priori fluxes

For the regional inversion we use a set of five prior NEP flux models to create prior and

posterior ensemble statistics. The first two are different versions of the Vegetation Photo-

synthesis and Respiration model (VPRM) (Mahadevan et al., 2008), a simple diagnostic

model using MODIS imagery and fitted to eddy covariance data within the domain which

provides NEP. One version corresponds to the default VPRM model, and for the second

one we have filtered out the seasonal and inter-annual (VPRMFLAT ) variability. The

motivation of this is to assess to what extent the CSR system depends on the prior to

constrain the seasonal cycle and the inter-annual variations of the posterior NBE fluxes.

The third prior ensemble member is the FLUXCOM product (Bodesheim et al., 2018),

which up-scales site-level eddy covariance data to the globe using a random forest regres-

sion. Finally, we used two additional priors that consist of process-based models, the SiB4

(Haynes et al., 2019) and SiBCASA (Schaefer et al., 2008) models. The last three priors

provide NEP as well, but for all we estimate a posterior NBE with the inversion. By

having this set of priors we have a wide representation of the potential spatio-temporal

dynamics of NBE over our domain.

The assumed regional prior uncertainty for the domain-wide and annually integrated flux

is chosen to be consistent with the corresponding prior error for that region in the global

CarboScope inversion (Kountouris et al., 2018a). Therefore, when spatially aggregating

the (spatially and temporally correlated) prior error, regardless of the correlation length

scale, it scales to the assumed prior uncertainty for the domain. We have made several

experiments to test the effect of the prior error correlation length scale (i.e. different

number of degrees of freedom) which we will discuss.
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Figure 4.1: South American domain (from 13.875oN to 28.875oS and 83.875oW to 34.125oW

) with a sub regional division adapted from EPA (2011) (a). A file with the regions created here

can be provided per request (sbotia@bgc-jena.mpg.de). The percentages in the legend denote

the area of the region relative to the full land area in the domain. The annual mean footprint,

associated with the period where data are available is shown in b. The time series showing

the monthly mean CO2 mole fraction at each station or aircraft profile site is shown in c. The

gaps are shown in grey and are due to logistical problems and/or instrument malfunction.

The Amazon contour is based on Eva et al. (2005).
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Furthermore, a non-optimized set of fluxes is used to account for important CO2 sources

that contribute to the integrated signal of CO2 in the atmosphere within our domain.

Ocean fluxes are based on (Rödenbeck et al., 2013) but specifically processed for our

domain at higher (1°x1°) resolution. Following Steinbach et al. (2011), the EDGAR 4.3

inventory, sector and fuel-type specific and scaled at national level for each year based

on the British Petroleum statistical review, is used to account for emissions related to

burning of fossil fuels. The GFAS product (Kaiser et al., 2012) for fire emissions and

the ORCHILEAK model (Hastie et al., 2019) to account for river out-gassing are also

used.

4.2.4 Inversion experiments

Using the set of priors we made several experiments listed in Table 4.1. The reference

inversion run consists on having VPRM as prior with a prior error correlation length

scale of 200 km, an assumed prior uncertainty of 0.903 PgC and prescribed fire-CO2

emissions from GFAS (Kaiser et al., 2012). Furthermore, using the other NEP priors we

run individual inversions to produce a posterior NBE ensemble. This was performed using

200 km as correlation length scale, 0.903 PgC of assumed prior uncertainty, prescribed fires

and the core station set (ATTO + NAT + Aircraft). To investigate the effect of a larger

prior uncertainty we repeated the inversions above but doubling the prior uncertainty (see

the pu ensemble on Table 4.1). Such increase gives more flexibility for the adjustments in

the optimization. In addition, to assess the effect of a larger or smaller correlation length

scale on the posterior NBE fluxes, we varied it from 66 to 800 km but using the same

NEP prior (VPRM) (the cl ensemble on Table 4.1). To study the effect of assimilating the

data from the ATTO site and the potential impact of the discontinuous record at TAB,

we compared the posterior fluxes of a set of runs with and without those two sites (st

ensemble on Table 4.1). Finally, to asses the effect of river out-gassing emissions on the

posterior fluxes, we run an inversion using the reference inversion but with river outgassing

prescribed, making the posterior fluxes estimated the NEP (equation 4.3) instead of NBE

(equation 4.4). To facilitate referencing to each of these experiments in the results, we

introduced a simple naming convention in Table 4.2.

The selection of a larger correlation length scale (200 km) in the reference inversion

compared to other regional inversions (Munassar et al., 2021) is motivated by the following

arguments. First, the sites in our observational record are stretched out over a large

region, over which large swaths of forests have similar climatic characteristics in which

we can assume that prior model errors (i.e., in VPRM) are correlated. Second, part of

our atmospheric data are airborne profiles which are expected to integrate fluxes across

larger scales. Therefore, the choice of 200 km is a trade-off between the need to reduce

the number of degrees of freedom (given the expected homogeneity of evergreen forest

around ATTO) and the desire to resolve flux corrections at smaller scales in the state

vector.
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Table 4.1: Inversion runs and ensemble experiments. Note that CO2 fire emissions from

GFAS were prescribed in all the inversions. The first row represents the reference inversion

settings. The abbreviations cl, pu and st denote the ensemble of the correlation length, prior

uncertainty and station set experiments, respectively.

ID Prior flux and run name Corr. Length Scale Ass.Prior Uncer. Rivers Station Set

- VPRM 200 km 0.903 PgC No Core*

VPRMflat 200 km 0.903 PgC No Core

FLUXCOM 200 km 0.903 PgC No Core

SiBCASA 200 km 0.903 PgC No Core

SiB4 200 km 0.903 PgC No Core

cl VPRM 800 km 0.903 PgC No Core

VPRM 400 km 0.903 PgC No Core

VPRM 200 km 0.903 PgC No Core

VPRM 133 km 0.903 PgC No Core

VPRM 66 km 0.903 PgC No Core

pu VPRMx2 200 km 0.903 x 2 PgC No Core

VPRMflatx2 200 km 0.903 x 2 PgC No Core

FLUXCOMx2 200 km 0.903 x 2 PgC No Core

SiBCASAx2 200 km 0.903 x 2 PgC No Core

SiB4x2 200 km 0.903 x 2 PgC No Core

st VPRM 200 km 0.903 PgC No Core

VPRMnoATT 200 km 0.903 PgC No CoreNoATTO

VPRMnoTAB 200 km 0.903 PgC No CoreNoTAB

- VPRMriv 200 km 0.903 PgC ORCHILEAK Core
∗Core station set refers to: NAT, RBA, ALF, SAN, ATTO, TAB, TEF.

4.2.5 Statistical metrics

To report our results we have adopted the following metrics. When referring to an en-

semble we report the mean together with (±) the spread or the standard deviation across

the ensemble as a metric of uncertainty for that estimate. Thus, the terms spread and

standard deviation are used interchangeably. When referring to the inter-annual variabil-

ity (IAV) of an ensemble, we report the standard deviation of the annual ensemble mean

throughout the 9-year record of our inversion. Furthermore, when a single flux component

(e.g. Fires, Fossil Fuels) or a single ensemble member is referred to, we report the mean

together with the IAV calculated taking the standard deviation of the 9-year period of

interest. The uncertainty calculated by the inversion system, what is often referred to

as ”bayesian” uncertainty, is used in the context of reporting uncertainty reduction at

different spatial scales. This uncertainty primarily depends on the observation density

and not on the selected prior, thus it was calculated using the reference inversion settings

for all years. The naming convention on Table 4.2 will be used to refer to ensemble mean,

spread and single ensemble members throughout the text.
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Table 4.2: Naming convention for the inversion runs and experiments. Following equations

4.3 and 4.4 note that the prior fluxes are NEP and posterior NBE.

Run or ensemble Prefix middle identifier Posfix Example

Prior ensemble pr NEP ens.mn* / ens.std* prNEPens.mn

Posterior ensemble pt NBE ens.mn / ens.std ptNBEens.std

Prior ensemble member pr NEP used - prVPRM

Posterior ensemble member pt NBE used - ptVPRM

Experiment ensemble cl/pu/st+ prNEP / ptNBE ens.mn / ens.std clptNBEens.std
∗mn and std stand for mean and standard deviation. +See Table 1 for the description of these experiments.

4.3 Results

4.3.1 Continental analysis

Carbon budget and year-to-year variability

Continental scale posterior flux estimates using VPRM, VPRMFLAT , SiB4 and SiBCASA

converge to a similar annual mean flux of around -0.5 PgC year−1, whereas the posterior

flux estimates using FLUXCOM are lower by almost 2 PgC year−1 (Figure 4.2b). There is

a large discrepancy in the magnitude among priors, from being almost neutral (e.g. SiB4)

to a massive sink close to 5 PgC year−1 (e.g. FLUXCOM) (Figure 4.2a). FLUXCOM

stands out as the outlier in these prior and posterior ensembles. Even increasing the prior

uncertainty by a factor of 2 in FLUXCOM, results in a large posterior sink compared to

the other posterior NBE fluxes. With the exception of SiB4, all priors are adjusted by in-

troducing a smaller sink or even a weak source into the posterior (i.e. VPRM, VPRMFLAT

and SiBCASA). We tested the robustness of these adjustments when either inverting for

the total biospheric surface flux, or for the biosphere flux after river outgassing is added in

the prior fluxes (Bot́ıa et al., 2022). In the latter case a stronger sink is indeed estimated

(-0.2 PgC year−1 ) for the vegetation component (NEP), resulting in a similar net balance

(NBE) (not shown).

The inter-annual variability of NBE is strongly adjusted by the inversion. In the poste-

rior ensemble the IAV is 0.2 PgC year−1, while in the prior ensemble is 0.1 PgC year−1.

Before the inversion only VPRM and SIBCASA show some inter-annual changes. In

contrast, the posterior flux estimates show more inter-annual variability for all ensem-

ble members. Results from the inversion using the VPRMFLAT prior provide evidence

that the inter-annual variability is added by the observational constraint. Note that this

prior was filtered to not contain seasonal and inter-annual variability, and yet the pos-

terior exhibits considerable adjustments relative to the prior. This demonstrates that

the atmospheric data represents a good constraint for the inter-annual variability of the

posterior NBE estimates. Nevertheless, we state that the magnitude of the yearly fluxes

have a large variability among posterior ensemble members, certainly when considering

FLUXCOM.
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Figure 4.2: Annual NBE fluxes integrated over the continental domain for prior (a) and pos-

terior (b). Individual flux components (e.g. Fires and Fossil Fuels) together with the posterior

ensemble mean with (ptNBEens.mn) and without FLUXCOM (ptNBEens.mn xFxcom) are

shown on c. The net budget shown on c was calculated using ptNBEens.mn xFxcom. The

area for spatial integration is shown on d. Note that the y axis for c is different from a and b.

The net carbon budget was calculated by adding up fossil fuels, fires and the posterior

NBE ensemble mean (ptNBEens.mn nfxcom) (see equation 4.5). The difference of the

posterior NBE ensemble mean with and without FLUXCOM is approximately 0.4 PgC.

Including it would result in an unrealistically large NBE sink when compared to the

other posterior ensemble members. For this reason, for the rest of this work all ensemble

estimates are reported without FLUXCOM, when FLUXCOM is shown or included in an

estimate, it will explicitly be stated.

The IAV of the net budget at continental scales is 0.2 PgC year−1 (similar to that of

NBE) with an annual mean source of 0.11 ± 0.1 (Figure 4.2c). The variability of the net

budget is controlled by the year-to-year changes of the posterior NBE in the ensemble

mean. The inversion time span is rather short to infer any trend in the NBE sink and
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we observe a large variability throughout the nine year period analyzed with a posterior

NBE ensemble mean of -0.49 ± 0.1 PgC year−1. Fires and fossil fuels have an annual

mean contribution to the net budget of 0.6 PgC year−1 with an IAV of 0.06 PgC year−1

with minor year-to-year change. The variability of these flux components is mainly driven

by fires with a mean annual emission of 0.2 ± 0.07 PgC year−1, but fossil fuel emissions

represent a larger source to the atmosphere. These flux components play an important

role at continental scale contributing to increasing CO2 mole fractions. The net budget

presented here might be conservative (i.e. slightly low) as recent studies suggest that the

GFAS fire emission estimates are biased low (Naus, 2021). In a year with high fire activity

the bias can be a factor 2 higher. Thus, the latter shows that at this continental scale

there are substantial uncertainties in the net budget mainly because of the challenges in

constraining fire and vegetation components.

Constraint on seasonal amplitude and mean annual flux

An important finding at continental scale is that the annual mean NBE flux is better

constrained than the amplitude of the mean seasonal cycle (see Figure 4.3a). The annual

mean flux in the prior space ranged from -2.5 to -0.1 PgC year−1, whereas after the

inversion this is reduced to -0.7 to -0.3 PgC year−1. In terms of the mean seasonal cycle

amplitude (peak-to-peak) the numbers are from 10.4 to 0 PgC year−1 in the priors and

9.5 to 1.6 PgC year−1 in the posterior. However, despite the wide range in the amplitude,

the shape of the seasonal cycle is similar amongst posterior estimates (see Figure 4.3b

and c). Here, for both prVPRM and ptVPRM we observe the largest mean seasonal

cycle amplitude. Overall, these findings suggest that the observational constraint adds

information on the seasonal cycle patterns at the continental scale, but differences in the

amplitude remain.

The mean seasonal cycle amplitude and the mean annual flux over 2010 to 2018, are

reduced by 0.4 PgC year−1 and 0.1 PgC year−1 without assimilating ATTO (Figure 4.3).

A similar response was found in the VPRMFLAT when excluding ATTO (not shown),

demonstrating that assimilating data from this station results in an amplification of the

seasonal cycle and a general weakening of the carbon uptake. As such, the effect of the

ATTO-CO2 record remains important even on the larger continental scale.



4.3 Results 111

Figure 4.3: A comparison between the mean seasonal cycle amplitude (peak-to-peak) and the

mean annual NEP for all priors (open symbols) and posterior NBE (filled symbols) ensemble

members (a). We also display the mean seasonal cycle for priors (b) and posteriors (c).

Spatial patterns

Spatially the main adjustments are located in the eastern part of Brazil and north of the

Amazon river delta (Figure 4.4b and 4.4c). The innovation (difference between posterior

and prior fluxes) highlights such adjustments more clearly. The innovation in the eastern

part is not driven by assimilating the NAT station data. This station is mainly receiving

background signals and it is not affected by local dynamics (see Figure 4.A1), nevertheless

the surface influence of all the other stations cover this part of the continent to different

spatial extents. To further investigate the robustness of this innovation, we looked at

the spatial patterns having different prior correlation length scales (see Figure 4.A3)

and these adjustments appear regardless of the scale used. In addition, other inversions

studies (van der Laan-Luijkx et al., 2017; Koren, 2020) report similar spatial patterns for

the easternmost past of Brazil. In general, the priors are adjusted by the inversion either

by introducing a weaker sink or a source throughout the averaging time period.

The central and northern part of the Andes mountain range together with the Orinoco

Savannah are not constrained by the current observations and the spread remains large

both in prior and posterior (Figure 4.4a and 4.4b). This large flux in both directions

(+ and -) is introduced to the ensemble mean by the VPRM prior. Note that there is

no innovation in these areas, which implies a reduced or even absent coverage of our

observational network. Such reduced coverage will have an effect on the spread amongst

posterior NBE ensembles members, as we will discuss in the next Section.
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Figure 4.4: Spatial distribution of mean (1) and standard deviation (2) of the NEP prior

(a) and posterior NBE (b) annual ensembles. Ensemble members include the reference case

VPRM and the other flux priors: VPRMFLAT , SiB4 and SiBCASA. The mean and standard

deviation were calculated over 2010 to 2018. Row c shows the innovation, which is Posterior

- Prior.
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Uncertainties and ensemble spread

The reduction of the assumed prior uncertainty as determined by the posterior covariance

using the reference inversion (ptVPRM) is 31%, from 0.9 to 0.6 PgC (Figure 4.5). Re-

ducing the uncertainty depends mainly on the observational constraint, and as we have

a sparse network this can increase by adding more observational sites. As a comparison,

Munassar et al. (2021) achieved more than an 80% reduction using the CarboScope re-

gional inversion (CSR) over Europe, but they assimilated the data from more than 40

stations for a smaller domain.

The standard deviation across the posterior ensemble decreases by 89% (down to 0.1 PgC,

Figure 4.5) and it is smaller than the posterior uncertainty (0.6 PgC), which indicates

a good convergence of the posterior NBE fluxes. The reduction in the ensemble spread

(or standard deviation) when having FLUXCOM as a member is 49% and there is still

a considerable spread among posterior fluxes, significantly larger than the posterior un-

certainty. Moreover, doubling the prior uncertainty (ensemble pu on Table 4.1) results

in a similar posterior ensemble spread (52%) (not shown). The large remaining spread

in the posterior NBE ensemble indicates that increasing the prior uncertainty on each

member by a factor of 2 does not result in a much larger ensemble spread reduction when

having FLUXCOM as an ensemble member. These findings further support our decision

to exclude FLUXCOM from the posterior NBE ensemble mean estimates.

Figure 4.5: Reduction of the assumed prior uncertainty and resulting posterior uncertainty

of the reference inversion (ptVPRM), together with the standard deviation reduction from

prior to posterior ensembles under different scenarios. The pu denotes the ensemble run using

twice the prior uncertainty. The other ensembles used the default settings, see Table 4.1.



114 Net carbon exchange in tropical South America

To assess the variability associated with the choice of correlation length scale (ensemble

cl on Table 4.1), we ran a set of inversions using a wide range of length scales but the

same prior (VPRM). The posterior ensemble spread for this experiment is ± 0.27 PgC

year−1, which we take as a measure of how much out the posterior NBE ensemble mean

can change by changing the correlation length scale. We also varied the assimilated data

stream by excluding ATTO, NAT and TAB, in individual inversions (ensemble st on

Table 4.1). At this spatial scale, the spread introduced by in- or excluding one of these

stations is 0.08 PgC year−1 as determined by the standard deviation of the experiment

st described in Table 4.1. Thus, the choice of correlation length scale has more impact

on the posterior estimates than excluding ATTO, TAB or NAT in the set of sites from

which data are assimilated.

Forward simulations of mole fractions

The bias (simulation - observation) at each site and the spread between models is strongly

reduced by the inversion (Figure 4.6). The posterior fluxes used (ptVPRM, ptSIB4,

ptSIBCASA and ptVPRMFLAT ) have 0.903 PgC and 200 km of prior uncertainty and

correlation length scale. One aspect to highlight is the low bias for both process-based

model priors, SiBCASA and SiB4. For all stations except ATTO, the bias is within ± 1

ppm for these prior models. The rest of the priors show a large spread in the bias ranging

from -6 ppm (FLUXCOM at ATTO) to 0 ppm (FLUXCOM at SAN above 2000 m.a.s.l.).

Therefore, we highlight the convergence at all stations using the posterior NBE after the

large spread in the priors.

Forward simulations within the boundary layer (below 2 km, ”low” aircraft samples, plus

NAT and ATTO) show a larger spread between models for both prior and posterior. In

the posterior runs the bias is reduced but the spread between models ranges from 0.09

ppm (TEF low) to 0.4 ppm (NAT). The simulations above 2000 m.a.s.l. show smaller

differences amongst models and in particular for the posterior mole fractions, the model

biases are aligned with values within 0.04 ppm (TAB high) to 0.08 ppm (TEF high).

Such vertical differences are driven by the decreasing effect of surface fluxes in the atmo-

sphere. Measurements in the boundary layer simulations (< 2 km) are more influenced

by the surface, whereas the simulations in the free troposphere are primarily influenced

by background CO2, which is well constrained in our set up.

In general, we see lower biases and a general convergence between models after optimizing

the posterior fluxes. This better fit to the data indicates that the resulting posterior

fluxes were significantly adjusted by the inversion system leading to a better match to the

observations. The effect of these adjustments at a sub-continental scale will be discussed

in the next Section.
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Figure 4.6: Mean bias of the simulated mole fractions at each site using prior (a) and

posterior (b) fluxes. The low and high for the aircraft sites refer to the biases compared to

measurements below (low) and above (high) 2000 m.a.s.l. The bias is calculated at each site

at the time resolution of the observation without aggregating in time.

4.3.2 Sub-continental analysis

Region-specific observational constraint

We obtained a mean uncertainty reduction of 43% for the Amazon region, and for all

the regions within it a reduction equals or above 20% (Figure 4.7). The Caatinga and

Cerrado have a lower mean uncertainty reduction, with 27% and 24%, but larger than

that for the ’Amazon and Andes Piedmont’ (20%). The latter suggests that the inno-

vation observed in Figure 4.4 for the easternmost part of Brazil is consistent with our

observational constraint. And thus the posterior NBE fluxes in this region of Brazil are

better constrained than those in the western part of the Amazon. The regions with a

low or almost no uncertainty reduction highlight with more detail the limitations of our

observational network. See for example the Central (5%) and Northern Andes (4%), the

Orinoco Savannah (5%), the Gran Chaco (5%) and the Atlantic Forests (4%). All these

regions are barely under the footprint of our observational network (Figure 4.A1). Given

these findings, the rest of the analysis will be limited to the areas with an uncertainty

reduction larger than or equal to 20%.
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Figure 4.7: Areas for spatial integration of fluxes (a) and prior / posterior uncertainty for

each of these areas (b). The percentages represent the mean uncertainty reduction over the

period between 2010 and 2018, the values in brackets indicate the min-max range. For a

complete time series for each region see Figure 4.A4.

Region-specific NBE and IAV

The areas within the Amazon basin exhibit interesting spatial differences (Figure 4.8a).

The ’Amazon and Andes Piedmont’ have the largest mean carbon uptake rate of the

regions inside the Amazon with -296 gC m−2 year−1. The Brazilian Shield moist forests

follows with a mean rate of -206 gC m−2 year−1 and then the Guianan Shield Forest with

a mean rate of -123 gC m−2 year−1. The Amazon river flat plains represent the smallest

sink of carbon within the Amazon, being very close to neutral in 2014.

These spatial gradients can change from one year to another and they depend partly on

the continuity of the observations. Note that for 2010 to 2012, a period in which airborne

profiles were still collected at TAB, the change from prior to posterior in the ’Amazon

and Andes Piedmont’ included a reduced magnitude of the NBE uptake. After 2012 this

effect is reversed or there is even no change introduced by the inversion. After 2012,

the TAB station was replaced by TEF, which is shifted 5 degrees more to the east and

thus the footprint has reduced coverage of the western part of the Amazon. A simple

test using only one NBE prior and excluding the observations at TAB shows that for two

out of the three years we obtain an slightly enhanced sink (Figure 4.A5). Furthermore,

the uncertainty reduction is higher from 2010 to 2012 than for the rest of the years (see

Figure 4.A4). Therefore, it seems that the posterior NBE fluxes for the ’Amazon and

Andes Piedmont’ are better constrained from 2010 to 2012.

An important aspect to highlight is the small posterior ensemble spread for the Brazilian

Shield Moist Forests (see Figure 4.8), together with a high mean uncertainty reduction

of 54% (see Figure 4.7). This area, followed by the one covering the main branch of the

Amazon river and the Guianan Shield Moist Forests, are better constrained throughout
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Figure 4.8: The posterior NBE ensemble mean (a) for the regions in (b). The error bars

show the standard deviation of the ensemble for each specific region. The posterior NBE

ensemble mean, fires + fossil fuels and the net budget (c) of the Amazon region (d).

the entire inversion period. This is reflected in a smaller ensemble spread and an uncer-

tainty reduction larger than 20%. Therefore, any spatial gradients amongst those regions

are expected to be more reliable. We observe that the Brazilian shield has a more neg-

ative NBE than the Guianan Shield, but this was reversed in 2015 and 2016, indicating

that the 2015/2016 El Niño could have impacted the south of the Amazon more than the

northern part. To infer a potential East-West gradient we focus on the period between

2010 and 2012 because of the reasons mentioned above. For these years it seems that

there is a gradient between the Guianan shield (weaker sink) and the Amazon Andes

Piedmont (stronger sink), yet this is not the case between the Amazon Andes Piedmont

and the Brazilian shield. However, we state that the western part of the Amazon, even

during 2010 and 2012 is not well constrained by our observational network, presenting the

lowest uncertainty reduction (20%) for the areas within the Amazon. According to this

we are more confident in the north-south gradients within the Amazon than a west-east

differences.

The Cerrado and Caatinga regions show a consistent change from prior to posterior. The

Cerrado has a reduced sink in the posterior ensemble mean (mean flux of -164 gC m−2

year−1), and the Caatinga changes from being a sink to a strong source of carbon (mean

source of 250 gC m−2 year−1) in all the years. Such adjustments are in line with the
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positive innovations shown in Figure 4.4 for these areas of the continent. These large

adjustments indicate that the NEP priors used, in particular for these areas, simulate

a very different carbon exchange as compared to the information we obtain from the

atmospheric constraint. The combined effect of the Cerrado and Caatinga represents a

mean source of carbon of 43 gC m−2 year−1. Relative to the mean Amazonian carbon

uptake (-48 gC m−2 year−1) we present an emerging spatial gradient of carbon exchange

extending from a semi-arid (source) ecosystem to tropical rainforest (sink). We will discuss

this further in Section 4.4.

The inter-annual variability of NBE in the whole Amazon region is 0.15 PgC year−1 as

given by the standard deviation of posterior ensemble mean shown in Figure 4.8c. Over

the complete inversion period our posterior NBE ensemble estimate indicates that the

Amazon vegetation was on average a sink of carbon of -0.35 ± 0.3 PgC year−1. However,

it is important to highlight that there is still a large variability amongst the posterior NBE

ensemble members for each year. Our results show that only in 2010 the Amazon was a

small net source of carbon. The others years show a highly variable but consistent net

sink of carbon. Thus, the inter-annual variability of the net budget is controlled by NBE

and to a lesser extent by Fires. For particular years, like 2015, the sign shift depends on

the magnitude of the fire emissions. Even though NBE showed a reduced uptake, the net

flux is still negative (this might be due to a possible underestimation of the fire emissions

in that year). We stress that these estimates are preliminary as we acknowledge that our

fire emission product (GFAS) is possibly biased low at least for CO emissions from fires as

shown by Naus (2021). In addition, the posterior NBE ensemble has a large spread, which

can vary from sink to source in a single year among posterior estimates. Therefore, the

remaining variability in the posterior estimates at the Amazon scale represent a challenge

to constrain the net budget.

Region-specific seasonality of NBE

Interestingly, the inversion introduces more variability relative to the prior, in the shape

of the mean seasonal cycle amongst regions (Figure 4.9). In the prior, the peak of the

seasonal cycle is May for the all regions within the Amazon except for the Brazilian

Shield Moist Forest, where the peak coincides with that of the Cerrado and Caatinga in

September (Figure 4.9a). After assimilating the atmospheric data, the peak (Figure 4.9b)

for the Amazon region, the Guianan Shield Moist Forests and the Amazon River Flat

Plains is shifted to June. For the Brazilian Shield Moist Forests, the peak is adjusted to

January, whilst the change for the Cerrado and Caatinga was from September, to August

and July respectively. The shift of one month for the Amazon region is not seen when

excluding ATTO from the assimilation (Figure 4.9c). A further adjustment introduced

by assimilating ATTO is the shape of the seasonal cycle of the Guianan Shield region,

which shows a 5-month difference between the posterior with (June) and without ATTO

(November). The effect of ATTO on the shape of the mean seasonal cycle is less evident
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for the other regions, yet the mean flux is adjusted. From this we suggest the higher

temporal resolution of the ATTO time series, introduces phase shifts and changes in the

shape of the mean seasonal cycle of the posterior NBE estimates.

Figure 4.9: Mean seasonal cycle for the regions with an uncertainty reduction above 20%.

The mean of the prior and posterior ensembles are shown in a and b. In c, the same as b is

shown, but for an ensemble in which ATTO was not assimilated. Not that the y-axis has a

different scale in the bottom row.

Our results show that the Amazon is a carbon sink during the dry season (for the cen-

tral Amazon defined between July and October), but at the same time a large source is

observed in the semi-arid ecosystems outside the Amazon. Note that the Amazon defini-

tion here (Eva et al., 2005) includes a part of the Central Andes. The north, west and

central areas within the Amazon coincide with an enhanced uptake of NBE after June up

until September in most cases. This contrasts the Cerrado and the Caatinga areas, both

showing a source of carbon in this period. It is clear that the processes driving NBE,

gross primary productivity and ecosystem respiration, are divergent in the Amazon and

the areas outside of it, yet from the NBE is difficult to attribute a source or a sink to a

specific process.

For the Amazon region, the ability to constrain both the annual mean flux and the mean

seasonal cycle amplitude differs slightly (Figure 4.10a). The posterior mean flux range

from -0.01 PgC year−1 (VPRMFLAT ) to -0.7 PgC year−1 (SiBCASA) and the amplitude

from 0.5 PgC year−1 (VPRMFLAT ) to 1.8 PgC year−1 (VPRMnoATT ). Furthermore, re-
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garding the shape of the seasonal cycle we observe that to a large extent it is adjusted by

the inversion but there seems to be a dependence on the shape of the prior (compare all

priors to VPRMFLAT on Figure 4.10b,c ). The convergence of the seasonal cycle shape

in the posterior fluxes highlights the power of the observational constraint, but we also

observe a slight dependence on the prior that can predetermine the posterior seasonal

cycle dynamics.

Figure 4.10: Comparison between the mean seasonal cycle amplitude (peak-to-peak) and the

mean annual NEP for all priors (open symbols) and posterior NBE (filled symbols) ensemble

members in the Amazon region (a). We also display the mean seasonal cycle for priors (b)

and posteriors (c).

4.3.3 The added value of assimilating ATTO at local scale

Comparing the prior NEP and posterior NBE with independent in-situ Eddy Covariance

Net Ecosystem Exchange (EC-NEE) measurements at ATTO shows the local effect of

the inversion on the seasonal cycle (Figure 4.11-first row). EC-NEE results from the

difference between GPP and Ecosystem Respiration, similar to NEP but at local scale.

The EC-NEE footprint is of several kilometers while the NEP or NBE of the inversion

represents a larger area of 0.25°x0.25° per grid cell, which is about 625 km2. However, the

comparison serves as an independent evaluation of the posterior NBE and an assessment

of how well is the prior NEP simulated.

At ATTO there is a good agreement of all posterior ensemble members with the local

eddy covariance measurements, but when excluding ATTO from the assimilated station

set, this is not the case. When assimilating ATTO CO2 mole fractions, there is a general

agreement until September, after this month the eddy-covariance-NEE increases and this

is not seen in the posterior estimates. In this comparison we have included FLUXCOM as

we would like to highlight the adjustment of this prior NEP at this local scale, in which

the shape and magnitude of the seasonal cycle was adjusted considerably. As we showed
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before, at larger spatial scales FLUXCOM remains as an outlier, but the results at the

local scale demonstrate that the inversion system has the ability to adjust a prior with a

large bias at local scale.

We made a similar comparison but at a site where there is no atmospheric data and it

is not covered by the surface influence of our observational network (Figure 4.11-second

row). The site is located on the Orinoco Savannah with two years (2016-2017) of eddy

covariance data available. Here we do not have any adjustment by the inversion, with an

uncertainty reduction of 5% (see Figure 4.7), thus the posterior and prior are very similar.

This exercise illustrates the power of the observational constraint at a site in which obser-

vations are assimilated, but it also highlights the need for more long-term mole fraction

measurements in South America to better constrain NBE with inverse modeling.

Figure 4.11: Mean seasonal cycle for the prior NEP (column a) and posterior NBE (column

b) in the gridcell closest to ATTO (first row) and closest to a site in the Colombian Orinoco

Savannah (second row) (Morales-Rincon et al., 2021). Prior NEP and posterior NBE are com-

pared to independent EC-NEE measurements in both sites. Note that at each site the mean

seasonal cycle was calculated for different periods as we were limited by the data availability

at each location. At ATTO the seasonal average was over 2014 to 2018 and for the Orinoco

site over 2016 to 2017.
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4.4 Discussion

4.4.1 Comparison to Gatti et al., (2021)

This study is similar to Gatti et al. (2021) in the use of the aircraft profile network, but

it differs in two important aspects: 1. we added an additional site (i.e. ATTO) and 2.

obtained the regional fluxes using a regional atmospheric inversion. The method applied

by Gatti et al. (2021) is a column budget technique, in which the difference between

the measurements and a background concentration (calculated using back-trajectories),

is associated with the travel time of air parcels from the coast to the measurement site.

Here we focus on NBE for different spatial regions.

At the Amazon scale, our ensemble mean NBE estimates tend to show a slightly larger sink

(mean sink of -0.13 gC m−2 day−1) than those of Gatti et al. (2021) (mean sink of -0.05 gC

m−2 day−1), but for most of the years Gatti et al. (2021) estimates are within the spread of

our posterior ensemble (see Figure 4.12). There is particularly a good agreement in 2010,

2011 and 2017 and 2018, but for 2013 and 2016 their estimate is outside our posterior

ensemble spread (1-σ). Even though both estimates show a comparable magnitude, a

small difference for individual years (e.g. 2016) could imply a sink-source discrepancy that

is important when assessing the role of the vegetation at this spatial scale. Furthermore,

the year-to-year variability seems to be more pronounced in our study than in Gatti et al.

(2021). Such a difference, mainly in 2012 and 2013, is difficult to explain having in mind

the agreement seen in other years and also having similar observational data (we added

ATTO). However, it is plausible that in our approach the discontinuity of TAB can create

an artifact in 2013 causing a large sink, as we already showed previously. Gatti et al.

(2021) merged the surface influence areas of TAB and TEF into one site and proceeded

with a joined analysis.

Is the Gatti et al. (2021) east (neutral)-west (sink) difference in the Amazonian NBE

confirmed in this work? The answer is no, we do not see directly the same pattern within

Amazonia. Instead in this study the inversion yields a large source in the semi-arid areas

in the northeast of Brazil, dominated by the Caatinga, setting up an east-west NBE

gradient that is not within the legal Amazon though. Within the Amazon, in both the

East and Central regions, our estimates are far from Gatti et al. (2021). Compared to

Gatti et al. (2021) (-0.08 gC m−2 day−1) our estimate for the Central Amazon is a stronger

sink (-0.33 gC m−2 day−1), while for the East Amazon region we find -0.23 gC m−2 day−1

versus 0.04 gC m−2 day−1 reported by Gatti et al. (2021). For the western and northern

part from 2010 to 2012, but also in 2015 we found on average a source of carbon (from

0.19 to 0.64 gC m−2 day−1) with large variability, whereas Gatti et al. (2021) finds a small

sink ranging from -0.16 to -0.01 gC m−2 day−1. Interestingly, from 2013 onwards (except

2015) the agreement between our estimates and Gatti et al. (2021) are better than the

comparison of the East and Central parts.
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Figure 4.12: Comparison between the posterior ensemble mean NBE fluxes of this study,

with those reported by Gatti et al. (2021) in their Extended Data Figure 6, panels b, c and d

correspond to the regions 1, 2 and 3. Here we show mean NBE fluxes for the same regions as

in Gatti et al. (2021). Our posterior ensemble mean does not contain FLUXCOM.
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A possible source of discrepancy between this study and Gatti et al. (2021), could be the

spatial attribution of the eastern source. Gatti et al. (2021) attribute the eastern positive

fluxes, obtained using the column budget technique, to the region of influence of the

SAN and ALF sites (Region 1 in Extended Data Figure 6a in Gatti et al. (2021)) which

strongly covers the eastern Amazon. In our study a similar source is needed to match the

atmospheric profile data, but it is placed further east in the Caatinga, and outside the

legal Amazon bounds. Such a solution is possible in our system with individual (though

correlated) grid points that can be assigned extra flux, but it is not possible in the setup

of Gatti et al. (2021), where a mean flux rate is assigned to the full footprint covered by

the observations. Thus, the degrees of freedom to place sources/sinks in specific biomes

further upwind are not present. While recognizing such spatial differences between the

studies, we nevertheless conclude that the east (neutral) to west (sink) gradient within

Amazonia that Gatti et al. (2021) reports is not seen in our posterior estimates. Therefore,

it is likely that the atmospheric signal of a carbon source that is unmistakably in the data,

but attributed to different spatial regions by the different methodologies. Understanding

this discrepancy, and determining the location of the eastern Brazilian CO2 source should

have highest priority in further work.

The spatially integrated NBE for the Amazon basin estimated in this study, suggests a

larger sink when compared to other top-down studies (Table 4.3). For the same period

of interest (2010-2018) and using a similar data constraint but different methodologies,

our estimate (-0.35 ± 0.3 PgC year−1) is -0.23 PgC year−1, a stronger sink compared to

that of Gatti et al. (2021) (-0.12 ± 0.4 PgC year−1). However, the uncertainty ranges

of both estimates overlap. For a positive ENSO year (2010) and the one after (2011),

Gatti et al. (2014) and van der Laan-Luijkx et al. (2015) estimated a carbon uptake of

-0.15 ± 0.1 PgC year−1 and -0.27 ± 0.4 PgC year−1, both very close when considering the

uncertainty range. Our estimates for those two years are closer to van der Laan-Luijkx

et al. (2015) with -0.20 ± 0.4 PgC year−1. For the period of 2010-2012 we obtain a mean

sink of -0.30 ± 0.3 PgC year−1, while Alden et al. (2016) reported -0.14 ± 0.3 ±, which is

closer to Gatti et al. (2021). Note that most of these estimates have a large uncertainty.

Therefore, studies converge on a mean carbon sink for the Amazon, but the magnitude

of it is still highly uncertain.

Part of this uncertainty can be associated with the fire emission magnitude. The Gatti

et al. (2021) approach with the column budget technique solves for the total flux with

respect to a background signal linked to each of the aircraft profiles. Using an observation-

based CO:CO2 relationship they obtained the contribution of fires and subtract that from

the total. Here, we use the GFAS fire emission product, which as we acknowledged before

is likely biased-low, thus our prescribed fire has a lower contribution to the observed mole

fractions, yet the signal not included in the prescribed fires are implicitly captured by

the atmospheric constraint and thus contained in the optimized NBE. Quantifying this

signal remains challenging. Studies like van der Laan-Luijkx et al. (2015); Koren (2020);



4.4 Discussion 125

Table 4.3: Benchmark of NBE for the Amazon region based on top-down approaches, taken

from Science Panel for the Amazon Report. The mean in this study corresponds to the

posterior ensemble mean, the uncertainty to the standard deviation of the 8-yr mean of each

ensemble member and the inter-annual variability (IAV) to the standard deviation across the

annual posterior ensemble mean. Units in PgC year−1.

Period NBE Uncertainty IAV

This study 2010-2018 -0.35 ± 0.3 ± 0.1

This study 2010-2011 -0.20 ± 0.4

This study 2010-2012 -0.30 ± 0.3

Gatti et al. (2021) 2010-2018 -0.12 ± 0.4

Gatti et al. (2014) 2010-2011 -0.15 ± 0.1

Alden et al. (2016) 2010-2012 -0.14 ± 0.3

van der Laan-Luijkx et al. (2015) 2010-2011 -0.27 ± 0.4

Naus (2021), show that a further optimization of Fires in a bayesian set up, can have an

important impact on the magnitude of the derived fire-CO signal, which can be translated

to a fire-CO2 signal and thus impact the net budget on the regional scale.

4.4.2 Linking NBE to processes at seasonal scale

Understanding if either GPP or TER drive the seasonal dynamics of NBE is challenging.

Tower-based eddy covariance studies are spatially limited, but previous studies showed

that the seasonal amplitude of NEE was negatively correlated with Mean Annual Pre-

cipitation (MAP) (Saleska et al., 2009). In that work, they defined sites in which eddy

covariance-NEE was either dominated by photosynthesis (large NEE amplitude with less

MAP) or respiration (small NEE amplitude with more MAP). At the ATTO site with a

MAP of 2300 mm year−1 respiration was suggested to dominate the seasonality of eddy-

NEE, exceeding GPP during the wet season and increasing in synchrony with GPP during

the dry season in non-ENSO years (Bot́ıa et al., 2022). Using a regional inversion system

for 2010-2012, Alden et al. (2016), did not find a consistent seasonality in NBE, yet tem-

perature and precipitation anomalies were correlated with NBE in the central and eastern

parts of the Amazon.

In top-down approaches a further partitioning of NBE needs to be performed using GPP

proxies (Liu et al., 2017) like Sun-induced Fluorescence (SiF), which has been found to

have contrasting responses during anomalous years. Koren et al. (2018) and Castro et al.

(2020) found SiF reductions during 2015 and 2016, while Doughty et al. (2021) reported

positive anomalies in SiF at the Amazon scale. Plant phenology (i.e. the temporal

patterns of recurrent biological events, such as leaf flush and senescence, stem or root

growth and flowering (SPA, 2021)) has been suggested as an important factor in both
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TER and GPP. A higher photosynthetic capacity, due to a younger leaf age distribution

in the upper canopy was found to control GPP in the central part of Amazon (Wu et al.,

2016; Lopes et al., 2016), with GPP increases during the dry season (Restrepo-Coupe

et al., 2013). Such dry season increase is not simulated by dynamic vegetation models

(Restrepo-Coupe et al., 2017), making it difficult to simulate photosynthetic uptake in

central Amazon. Furthermore, soil respiration was associated to the phenology of leaf and

fine root dynamics (Keller et al., 2004a; Girardin et al., 2016), but with varied seasonal

responses across sites (Saleska et al., 2009).

In this study, we showed that the inversion introduces more variability in the mean sea-

sonal cycle (MSC) of NBE with respect to the prior (Figure 4.9), resulting in interesting

differences for the regions within the Amazon. It seems that TER exceeds GPP only in

the Amazon river flat plains, where we observe a clear source of carbon in May and June.

For the north (Guianan Shield Moist Forests) and west (Amazon and Andes piedmont) a

consistent sink is found, exhibiting a decreasing NBE during the dry season (defined from

July to October) after a peak in June or May. For these regions, GPP potentially exceeds

TER leading to a sink of carbon. The southern Amazon (Brazilian Shield Moist Forests),

which has been more affected by deforestation and climate stressors (Gatti et al., 2021)

shows a different seasonality peaking in January with a minimum in July. Given these

findings we hypothesize that the role of GPP in the shape of the MSC dominates over

TER, as on average we observe a negative NBE. However, more research has to be done

to confirm this.

4.4.3 Prior uncertainty and correlation length scale

The assumed prior uncertainty and the prior correlation length scale are two important

parameters that limit the information gain in the atmospheric inversion. The set of priors

that we used have large differences in flux magnitude (see Figure 4.2), larger than the as-

sumed prior uncertainty. The convergence of the posterior NBE estimates was acceptable

for VPRM, VPRMFLAT , SIB4 and SIBCASA, but FLUXCOM remained as an outlier

even after doubling the assumed prior uncertainty. Also when going to scales smaller

than the full domain, for example by looking at the NBE aggregated for the Amazon (re-

gion 12 of Figure 4.7), there is still not full convergence of the posterior ensemble (Figure.

4.13). On the other hand, local fluxes are fully constrained by the inversion irrespective of

the prior, as can be seen from the comparison to eddy covariance measurements (Section

4.3.3). Therefore, with the assumed prior uncertainty (the reference of 0.903 PgC) at

local scale (where data is assimilated) the inversion system is flexible enough to adjust all

priors, but at larger scales this is not the case.

A diagnostic to evaluate the assumed prior uncertainty is the reduced χ2
r = 2Jmin

n
(Röden-

beck et al., 2003), in which the cost function at the minimum is divided by the effective

number of observations. With this measure, we evaluated the goodness of fit for each
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Figure 4.13: Comparison of uncertainty reduction and ensemble spread for the Amazon

region. We compare the reference inversion (pu1x) and one with twice the assumed prior

uncertainty (pu2x). Note that here FLUXCOM is included to further discuss the implications

of doubling the assumed prior uncertainty.

ensemble member using the default prior uncertainty, as well as doubling it (Table 4.4).

For both cases the χ2
r is larger than 3, but increasing the prior uncertainty results in only

slightly lower χ2
r values. The reason for this is likely related to the fact that most of

the region is still under-sampled. This also indicates that the model-data mismatch term

might be the one dominating the large χ2
r values.

Increasing the assumed model-data mismatch error of 1.5 ppm (time scales of a week)

by a factor two to 3 ppm is expected to change χ2
r to values closer to one. On the other

hand, the balance in the cost function between the model-data mismatch term and the

prior information term decides on location of the minimum, and this balance would not

be changed when increasing both uncertainty terms by a factor of two. In other words,

we believe that although the χ2
r values indicate that model-data mismatch errors might

be underestimated, the resulting posterior estimates are not strongly affected.

Table 4.4: χ2
r for the reference inversion settings and the experiments doubling the prior

uncertainty.

Ensemble member χ2
r (PU=0.903 PgC) χ2

r (PU=0.903 x 2 PgC)

VPRM 5.4 4.4

VPRMFLAT 5.3 4.3

FLUXCOM 5.4 4.4

SIB4 3.7 3.1

SIBCASA 8.8 7.3
∗PU stands for prior uncertainty
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4.5 Conclusions

In this study we have used the ATTO CO2 record together with a network of aircraft

profiles in the CarboScope regional inversion system to estimate carbon fluxes in South

America. We have made a continental scale analysis, highlighting that there is a better

agreement in the annual mean NBE of the posterior ensemble estimates than in the mean

seasonal cycle amplitude. We found that the inter-annual variability of the net carbon

budget is dominated by NBE, but fossil fuels and fires are important sources leading to

a mean net source of 0.11 ± 0.1 PgC year−1 at the continental scale. However, at this

scale we found that the observational network is limited to adjust priors with large biases,

exhibiting one of the main limitations of inverse modeling top-down approaches.

A region-specific analysis of NBE showed that the spatial coverage of the data constraint

used in this study has limitations to reduce the uncertainty in the western and southern

parts of our domain. These regions, in which the uncertainty reduction was 5% or lower,

include the Central and Northern Andes, the Orinoco Savannah, the Gran Chaco and

the Atlantic Forests, adding up to 36% relative to the total area of our domain. The

other regions include the areas within the Amazon basin, the Cerrado and Caatinga on

the eastern part of our domain. These represent the remaining 64% of the land mass,

in which we obtained uncertainty reductions above 20%. For the regions having a larger

uncertainty reduction, we found interesting spatial gradients. Those within the Amazon

were on average a sink of carbon. Comparing the northern (Guianan Shield moist forest)

and southern (Brazilian Shield moist forest) parts of the Amazon, we found a stronger sink

in the south. This was reversed during 2015 and 2016, suggesting that the impact of the

2015/2016 El Niño could have been stronger in the south of the Amazon. When comparing

these two regions with the western part of the Amazon, there are larger differences between

the north (Guianan Shield moist forest) and west (’Amazon and Andes piedmont’), than

those found between the south (Brazilian Shield Moist Forest) and west. Interestingly, the

Caatinga and Cerrado were on average a source of carbon, thus an emerging sink-source

gradient between the Amazon and these eastern regions was found.

The effects of assimilating the ATTO CO2 record on the seasonality of NBE, were eval-

uated at regional and local scale. For the regions with a large uncertainty reduction

assimilating ATTO resulted in a phase shift of the mean seasonal cycle, suggesting an

important observational constraint at this time scale. Locally, we found good agreement

between eddy-covariance-NEE and all posterior ensemble members. The latter shows the

potential of such a site in constraining NEP priors with large difference, but at larger

spatial scales this is not the case and challenges remain.

We estimated an Amazonian carbon uptake of -0.35 ± 0.3 PgC year−1 for the period

between 2010-2018. This estimate indicates a stronger carbon sink, compared to other

top-down estimates (see Table 4.3) for the same period of time. In general, a benchmark
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comparison to other top-down methods agree on estimating a sink of carbon, yet the

uncertainty of this estimate remains large. To reduce such uncertainty using inverse

top-down approaches for a region like the Amazon, we still need a better observational

coverage, mainly in the western part close to the Andes foothills. Future work using the

CSR system will focus on interpreting the posterior NBE, in light of climatic variables

like precipitation and temperature, mainly to disentangle the individual contribution of

GPP and TER to NBE.
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Appendix

Figure 4.A1: Seasonal surface influence for each station used in the inversion. The averaging

period for each station corresponds to the period of data availability, which is site-specific.



4.5 Conclusions 131

Figure 4.A2: Number of aircraft profiles per month over the period of interest in the in-

version. An aircraft profile goes up until 4500 m.a.s.l and on average collects samples at 14

heights.

Figure 4.A3: NBE Innovation (Posterior - Prior) for experiments using different correlation

length scales, but the same prior (VPRM).
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Figure 4.A4: Prior to posterior uncertainty reduction throughout the complete inversion

period (2010-2018).
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Figure 4.A5: Annual posterior fluxes using the same NEP prior (VPRM) but using different

set of data assimilated. For the VPRM run the core set was used, for VPRMnoTAB we left

TAB out. Note that TAB was active from 2010 to 2012, so those are the years that in which

not assimilating it will show an effect. The red lines highlight the years in which the VPRM

is lower than the VPRMnoTAB.
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Note on correlation scale and prior uncertainty

The effect of a larger prior uncertainty on the posterior estimates can be on average 0.4

PgC higher (less uptake) than the reference case (Figure 4.A6a). Note that for each prior

flux the effect is of similar magnitude throughout the years, except for SiB4. Having large

differences here indicate that the prior can be further adjusted to fit the observational

constraint. However, assuming a large prior uncertainty implies a reduction of the weight

given by the prior information used (i.e. the biosphere models). This can be appropriate

for a region like the Amazon, in which there are still big challenges to reproduce photo-

synthetic uptake using biosphere models (Restrepo-Coupe et al., 2013), which can impact

NBE. This challenge is similar for other approaches (Jung et al., 2020) but for estimating

NEP in the tropics. In a Bayesian set-up, like ours, theoretically the choice of the prior

uncertainty values should not be done after performing the inversion, yet in practice such

assumption is difficult to fulfill as we eventually can learn from a first-guess optimization.

Therefore, we recommend to perform an initial check of the priors and their magnitudes

before inversion, and with this make the selection of the prior uncertainty. In a subsequent

study, we will perform more experiments on this.

The prior error correlation length scale determines the degrees of freedom in the inversion.

Having a larger scale results in fewer degrees of freedom and a more spatially-smoothed

innovation. On the contrary, a smaller scale results in more degrees of freedom and a more

locally-induced innovation. The selection of a 200 km scale for our reference inversion, as

we stated earlier, is based on the scale of the influence of the aircraft network, but also on

the scale at which we expect errors are correlated in the prior models. An experiment with

other scales (Figure 4.A6), shows that below 200 km there is not so much change in the

posterior estimates. But when the scale is larger, the posterior estimate can be as much as

1 PgC year−1 higher relative to the smaller scales. However, the adjustments obtained with

a larger scale could be unrealistic knowing that our observational constraint have spatial

limitations. Other studies have selected their prior error structure using data-driven

methodologies (Kountouris et al., 2018b) or estimating it together with the posterior

fluxes using a geostatistical approach (Michalak, 2004). For this study, after evaluating

several scales we decided to use 200 km to have a compromise between enhanced local

adjustments and unrealistic large distribution of the inversion-adjustments.
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Figure 4.A6: The difference between annual and spatially aggregated posterior fluxes with

0.903 PgC and 0.903x2 PgC of prior uncertainty using different prior fluxes (a). On b, using

VPRM as prior, a set of posterior fluxes is shown but varying the prior correlation length

scale.
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5.1 Discussion

In this work we have analyzed a unique observational record for methane and carbon

dioxide in the Amazon region. We performed an observational analysis in Chapter 2

to study nighttime methane signals at ATTO. Carbon dioxide was studied by using an

atmospheric transport model (Chapter 3) together with a Bayesian flux estimation system

(Chapter 4). Our findings cover different spatio-temporal scales. The nighttime study

for methane has site-specific implications at seasonal scale, while for carbon dioxide the

seasonal and inter-annual variability was analyzed using the ATTO data and also using

the inversion system with a regional perspective. In this last Chapter we discuss the

role of atmospheric transport in using and interpreting atmospheric observations, the

seasonality of greenhouses gases at regional scale and the spatial gradients found for Net

Biome Exchange (NBE) uptake using the inversion system. These topics serve to examine

how this work helps shape future research directions not only at ATTO but also at the

Amazon-wide scale.

5.1.1 The role of atmospheric transport in interpreting atmospheric obser-

vations

Long-term atmospheric measurements are useful to understand underlying ecosystem pro-

cesses, in particular at a site like ATTO where anthropogenic emissions are negligible.

However, the interpretation of mole fraction measurements requires understanding of

atmospheric transport, which can be characterized locally using micro-meteorology mea-

surements or using atmospheric transport models for a more regional perspective. Each

method has different shortcomings which impact our ability to understand the measured

signals. Here we discuss these limitations having in mind future studies and ideas to

overcome them.

In Chapter 2, using more than five years of continuous data we described the seasonal

patterns and atmospheric conditions of a nighttime methane enhancement at the top of

the 80 m tower. These events were mentioned by Andreae et al. (2015) with no additional

description but highlighting their unexpected nature: strong methane enhancements at

the uppermost level of the 80 m tower with no connection to the surface. Analyzing more

years of data, we found that these events are more frequent during the dry season (July,

August and September), when the amplitude of the average diurnal cycle was found to

be four times larger than that of the wet season, driven by the nighttime enhancement.

Although this would at first sight suggest stronger dry season CH4 sources, we found that

these signals are associated with a seasonal shift in wind direction that brings air from

a potential source located southeast of the site. The nights when these events occurred

were characterised by having stronger radiative cooling, low friction velocity, and a strong

thermal inversion above the canopy. Under these stable atmospheric conditions, turbulent

motions are caused by wind shear and are very weak. This case study demonstrates that
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long-term measurements are useful to diagnose seasonal patterns, but the interpretation

and source attribution depends on atmospheric transport.

Considering that atmospheric stability is not well resolved by mesoscale models (Sandu

et al., 2013), we provided a thorough description of the atmospheric conditions and provide

hypotheses for the source attribution of these CH4 enhancements. We have in this process

ruled out other potential sources like biomass burning and the Amazon river floodplains,

while suggesting the Uatumã river as the likely source. However, there are a number of

limitations to this approach. A previous study at ATTO (Oliveira et al., 2018), showed

that some nights the nocturnal boundary layer height can be below the 80 m inlet. In

this case, the CH4 measured would be from the residual layer, associated with previous

daytime dynamics and not linked to CH4 emitted during that night. Characterizing

the nocturnal PBL height from the perspective of the nighttime CH4 signals is crucial for

better understanding such nighttime events. Furthermore, the confirmation of the Uatumã

river as the methane source is difficult only relying on the observations at ATTO. One

would require a higher resolution modeling effort (i.e. Large Eddy Simulations (LES)) to

study the atmospheric transport mechanism and CH4 flux measurements at the river to

confirm this source. Yet another helpful source of information is the isotopic signature of

δ13C-CH4 of the sources around ATTO. With the newly installed analyzer (Picarro Inc.

Model G2201-i) providing continuous δ13C-CH4, an attempt to characterize the source of

the nighttime enhancement can also be done.

In Chapter 3 we have explored what we can learn from the atmospheric CO2 record at a

larger spatial scale. We used an atmospheric transport model to obtain the contribution

of the background CO2 to the measured CO2 mole fractions at ATTO. By subtracting

the contribution of the background CO2 we were able to study the regional signal of CO2,

which is driven by sources and sinks within the footprint of the tower. We found that the

regional signal had a marked seasonal cycle (∼4 ppm amplitude), that when confronted to

local CO2 flux measurements from eddy covariance, showed phase differences indicating

a decoupling between local and non-local (i.e. larger than the eddy covariance footprint)

drivers of the regional CO2. In other words, as the atmospheric record integrates signals

from a larger footprint, it contains information not only linked to local processes but also

from further away. An example of this was the response of the regional signal to the

2015/2016 El Niño. Our analysis suggests that the effect of the drought at ATTO, as

inferred from the anomalies of the eddy covariance CO2 flux, had a late onset beginning

in the wet season in 2016, while the CO2 regional signal shows positive anomalies already

in 2015. The physiological reasons for such decoupling need to be studied further, but it

demonstrates that the atmospheric record has a large potential for process understanding

at multiple spatial scales. However, atmospheric transport plays a fundamental role in

this process understanding, because it connects the upwind surface fluxes to the measured

signals at ATTO. In addition, transport is crucial for estimating the background CO2 to

obtain the regional signals. In Chapter 3 we have concluded that errors in biosphere
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fluxes are larger than those in atmospheric transport when simulating CO2 mole fractions

at ATTO, but we believe that a more thorough quantification of transport errors can still

be done, primarily a characterization of the uncertainties in mixing height estimates from

the STILT model at ATTO, and how these compare to uncertainties in other transport

models.

Lastly, Chapters 2 and 3 demonstrate that the power of long-term atmospheric obser-

vations relies on the understanding of seasonal and inter-annual patterns that can be

linked to ecosystem processes. However, challenges in simulating atmospheric transport

and biosphere CO2 exchange need to be overcome to improve our interpretation of the

atmospheric signals. For example, regional estimates of net CO2 exchange obtained with

top-down methods (inversions or column budgeting techniques), should be constantly

evaluated and compared with bottom-up estimates to reduce the spread between meth-

ods and the overall uncertainty of the multiple estimates. The RECCAP2 effort is a good

example in this direction, but the lack of a continental observational network undermines

the ability to target specific areas which complicates regional budgets. Furthermore,

improving the ability to simulate nighttime transport would enable us to use nighttime

measurements (note that in Chapter 4 we only use daytime measurements) and inde-

pendently estimate ecosystem respiration, and directly estimate the nighttime methane

source, all constrained with atmospheric data.

5.1.2 Drivers of seasonal GHG variability in the Amazon

Throughout this thesis, we have put a strong focus on the seasonal patterns observed in

the atmospheric data and here we attempt to discuss more generally the main drivers at

regional scale for both species, CH4 and CO2.

CO2 Seasonality

The seasonal changes in atmospheric CO2 in the Amazon region are mainly controlled by

the net biome exchange (NBE). In Chapter 4, we showed the seasonal cycle of NBE for the

whole Amazon region, and for four regions within it: The Amazon and Andes Piedmont

(west), the Amazon River Flat plains, the Brazilian Shield Moist forest (southeast), and

the Guianan Shield Moist forest (north-northeast). At the basin-wide scale we observe

a small carbon source during May and June followed by an uptake of carbon from July

to March. When zooming into the regions, the western part, the Amazon river and the

Guianan Shield Moist forests have a similar seasonality with a clear uptake having an

onset in July. The Brazilian Shield Moist forests displays a different seasonal cycle with

a decreasing NBE from the peak in January and reaching a minimum in July (maximal

carbon uptake). To what extent GPP or TER are driving the posterior NBE in each of

these regions is one of the key questions to be answered in a next study, but information

from Chapter 3 can already shed light on these processes at ATTO. In Chapter 3, using
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the local eddy covariance flux we found that respiration controlled the seasonal variations

in net ecosystem exchange. In Chapter 4, when looking at the closest grid cell to ATTO,

the seasonality of the posterior NBE ensemble mean was very close to that of the local

eddy covariance. From this we can speculate that in sites similar to ATTO, variability in

respiration dominates the net carbon flux and thus atmospheric CO2.

Saleska et al. (2009) found a negative relationship between mean annual precipitation

(MAP) and the amplitude (peak-to-peak) of the mean seasonal cycle of NEE at differ-

ent eddy covariance sites in South America but mainly within the Amazon. From this

relationship, they defined sites where NEE is dominated by either photosynthesis (larger

NEE amplitude and less MAP) or respiration (more MAP and smaller NEE amplitude).

Looking further into this relationship but using our posterior NBE ensemble mean and

precipitation of the Tropical Rainfall Measuring Mission (TRMM, Huffman et al. (2016)),

we found a similar correlation to that of Saleska et al. (2009) at the same eddy covariance

sites they used in their study (see Figure 5.1). Although the correlation is not significant

for this small selection of sites (driven mainly by the BAN site, without it p<0.1), it calls

for more research in this direction to associate the posterior NBE with environmental

drivers. Exploring this relationship at the domain-wide scale should be part of a future

study using the posterior NBE results from the regional inversion.

Figure 5.1: Mean annual precipitation from TRMM (Huffman et al., 2016) and the seasonal

amplitude of the posterior NBE ensemble mean. The sites are the same as in Saleska et al.

(2009) but we have added ATTO.

The dry season decline of NBE for the western and northern regions together with the

Amazon river area can also be part of a future study. Whether such decline is driven

by an increase in GPP or a reduction in TER remains to be seen. But in Chapter 3 we
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showed that at ATTO, the eddy covariance data for non-El Niño years show an increase

of respiration and GPP during the dry season. In the beginning of the dry season, GPP

exceeds respiration leading to a sink of carbon, while later in the season respiration exceeds

GPP, resulting in a source of carbon. Respiration has been linked to seasonal changes in

fine root production and leaf flushing (Girardin et al., 2016; Raich, 2017), but also to the

lagged response of deep and shallow soil CO2 production to soil drying rates (Davidson

et al., 2004). Relative to respiration, there have been more studies looking into the

seasonality of photosynthesis in the Amazon, as we discuss next.

The GPP pattern observed at ATTO is in line with Restrepo-Coupe et al. (2013) and

Guan et al. (2015), in which a dry season increase was reported. In contrast, Lee et al.

(2013) found a higher GPP in the wet season than the dry season and they concluded that

stomatal conductance decreases with increasing vapor pressure deficit leading to a decline

in GPP. This hypothesis is contradicted by Green et al. (2020), who found a positive

response of photosynthesis to increased vapor pressure deficit in the wettest regions in

the Amazon during the dry season. The GPP increase during the dry season has been

associated with a canopy green-up described in optical remote sensing studies (Huete

et al., 2006; Myneni et al., 2007). These studies were challenged by Morton et al. (2014)

stating that the observed green-up results from artefacts in the remote sensing sensor

geometry. So far there seems to be more studies supporting an increase in dry season

leaf production. Brando et al. (2010) showed an increase in leaf production during the

2005 drought and Wu et al. (2016) showed that leaf production in the dry season lead to

a younger leaf age distribution in the canopy and thus more efficient capture of carbon

dioxide per light photon. Furthermore, using field data to analyze the net productivity of

trees and allocation of carbon to leaves, Girardin et al. (2016) found that Amazon forests

maximize leaf production in the dry season. Thus partitioning the inversion-derived NBE

into TER and GPP is an interesting path to follow. The evidence showing an increasing

GPP in the dry season has to be placed in the NBE context, because the dry season

decline in NBE could be driven by a large TER flux that can exceed GPP, like at ATTO

in the late dry season. Therefore, efforts towards partitioning NBE will likely provide

better understanding of the main controls of atmospheric CO2 regionally.

CH4 Seasonality

The seasonal variability of atmospheric CH4 in the Amazon is mainly driven by wetland

emissions according to Basso et al. (2021). In that study, using aircraft profiles they

showed that there are marked regional differences in CH4 fluxes within the Amazon.

The northeast region close to Santarém and the Amazon river delta had the largest CH4

fluxes with a bimodal seasonality, peaking at the start of the wet and dry seasons. More

to the northwest, fluxes were high but with almost no seasonality and in southern sites

the seasonality had similar amplitude with lower flux magnitudes. Basso et al. (2021)

also showed that the relative contribution of fire-CH4 emissions to the total CH4 mole
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fractions is higher in the southern sites than in the northern ones. Agricultural activities,

mainly livestock via enteric fermentation, is another relevant non-fire methane source in

the southern part of the Amazon (Basso et al., 2021). However, the seasonality of these

activities are not well described and need further study.

The patterns described in Chapter 2 reveal a pronounced seasonal cycle of the nighttime

methane signals at ATTO. Although site-specific, these findings can provide a way forward

linking the atmospheric signals to CH4 production processes in the Uatumã river. One

of the questions to be answered is: how much does the upstream damming of the river

increase the methane flux? It is difficult to answer this question without a long-term

record of fluxes on the river, but a comparison with other rivers might shed light on this

question. Current efforts are centered in characterizing the CH4 fluxes of Uatumã river,

so in the future this comparison can be made.

Further work looking at the entire methane record at ATTO (not only nighttime) should

be performed to add regional scale conclusions associated with the ATTO footprint. This

effort was partially done by Botia et al. (2020), applying a similar approach to that of

Chapter 3, using forward simulations with different wetland flux products and evaluating

the simulated CH4 mole fractions at ATTO. For the ATTO footprint, the observed regional

signal (measurements - background) had a distinct peak in the transition from wet to dry

seasons (June and July), whereas the simulated regional CH4 signal reaches the seasonal

peak one month earlier. The latter suggests that we need to further evaluate the errors

in current wetland emission models (i.e. WetCHARTs (Bloom et al., 2017) and the

WETCHIMP intercomparison (Melton et al., 2013)) and those in transport, but already

from the observations at ATTO we see that the highest mole fractions occur in a period

of receding water levels just before the onset of the dry season.

An interesting point of convergence between the ATTO signals (Botia et al., 2020) and the

aircraft profiles (Basso et al., 2021) is the emergent importance of the ascending and re-

ceding water level phases as observed by atmospheric mole fraction measurements. Basso

et al. (2021) states that the bimodal seasonality of wetland emissions in the northeast

close to Santarém need to be better explained. For the ATTO record, we found a similar

behavior pointing to larger emissions just after the wet season. Some of the potential

explanations for this are the following: A lower water level results in lower hydrostatic

pressure, making the ebullition (bubbles) pathway more effective (Sawakuchi et al., 2014).

In addition, the peak after the wet season can be explained by a longer CH4 production

time in sediments over the wet season which can then be emitted at lower water stages

(Barbosa et al., 2020).

It is clear that wetlands and flooded forests play an important role in the Amazon as

the largest source of CH4. However, upland valleys can also represent small CH4 sources

that could be relevant when extrapolated regionally. The upland valleys were mentioned

in Chapter 2 as potential sources of the nighttime methane signals together with the
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Uatumã river. Based on this indication, air samples and soil fluxes were measured in a

short field-campaign around the ATTO site in 2019. The flux measurements suggested a

consistent source of CH4 in the upland valley (not shown, personal communication Hella

van Asperen, 2019). Moreover, from few discrete air samples (flasks) we obtained the

isotopic signature of CH4 at the valley and also at different locations (δ13C and δ2H, see

Figure 5.2). In general, we see a strong biogenic source falling mainly in the wetland

category and difficult to differentiate, yet there are some interesting details. The isotopic

composition of an airborne sample taken during the BARCA campaign (Beck et al., 2012)

confirms the biogenic source of methane in the Amazonian troposphere, though the heavier

signature in δ13C is because the air mass has undergone mixing with the tropospheric

background, which is heavier than that produced biogenically. When looking closer to

the sources around ATTO (tower, river and valley), the range in δ13C values could serve

as a potential indicator to differentiate within biogenic sources. The river and valley seem

to be more depleted (more negative) than the signatures measured at the Tower, but the

T79m s2 signature shows that these signals could be identified. Moreover, the signature

from the ”valley”, which shows a heavier δ2H, can also serve to characterize specific sources

for a potential attribution. Having a thorough characterization of the isotopic signature

of biogenic sources could help interpreting seasonal signals in the continuous δ13C-CH4

record recently installed at ATTO.

However, more samples need to be taken to improve the characterization around ATTO.

This research path together with the higher emissions at low water stages mentioned

previously are promising ways forward, that are currently ongoing progress. This can add

valuable information for the methane scientific community in terms of isotopic signature

of natural sources, to better understand the role of wetlands and the Amazon in the

current atmospheric growth rate of CH4.

Rivers

In Chapter 2, we suggested that the Uatumã river is likely the source of the nighttime

CH4 signals at ATTO. In Chapter 3, we found that including river outgassing as a flux

component in forward simulations of CO2 mole fractions improved the shape of the sea-

sonal cycle when compared to observations. Following this finding, in Chapter 4, we made

experiments to assess the impact of prescribing rivers in the atmospheric inversions of net

biome exchange. The river fluxes in Chapter 3 and 4 were taken from the recently de-

veloped ORCHILEAK model. This model couples the terrestrial carbon component with

the lateral export of carbon and the water-surface outgassing of CO2. For more details

on the model limitations we refer the reader to Chapter 3 and for the model description

to Lauerwald et al. (2017) and Hastie et al. (2019). Even though rivers were not a central

subject of study in this thesis, they emerged as an important component for interpreting

the ATTO measurements. Therefore, here we revisit the role of rivers and other aquatic

habitats in the seasonal variability of CH4 and CO2 in the Amazon.
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Figure 5.2: Isotopic composition of CH4 in the samples collected at ATTO in 2019. The

samples with the ” s2” postfix were collected by another PhD student as part of her own

project but during the same dry season in 2019. The shaded areas indicate the range reported

for know sources (Sherwood et al., 2017), the FF stands for Fossil Fuel.

The processes producing emissions of CH4 or CO2 in aquatic habitats like flooded forests

and rivers are very different, but from an atmospheric perspective, the net flux is what

contributes to having a source or sink of the species of interest in these environments.

Aquatic vegetation and algae play a role in the uptake and release of CO2 (Melack et al.,

2009; Melack, 2016), while decomposition of organic material in rivers and flooded forest

sediments results in CO2 and CH4 production (Melack et al., 2009; Melack, 2016). The

lateral export of dissolved organic carbon (DOC) and particulate organic carbon (POC)

from upland terra-firme forest to the aquatic habitats contributes to a lesser extent to the

outgassed CO2. Therefore, net fluxes of CO2 depend on the primary productivity and

respiration of aquatic vegetation and the CO2 from decomposition processes (Engle et al.,

2008). A recent synthesis based on previous research and flux measurements in aquatic

habitats in the Amazon, suggested that rivers were in balance (neither sinks or sources

or CO2) (SPA, 2021), but considerable uncertainties remain in estimating the basin-wide

totals of net fluxes and aquatic net primary productivity. A modeling study by Hastie

et al. (2019) included river outgassing as a source to the atmosphere when calculating the

net carbon balance of the Amazon. Assuming that rivers are a source of carbon to the

atmosphere, as we implicitly did by using the ORCHILEAK model (Hastie et al., 2019),
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and in light of our results from Chapter 3, we believe that the seasonality of river CO2

emissions are important for interpreting the ATTO CO2 measurements. Furthermore,

our results from Chapter 4 showed that when including the potential river source the

biosphere becomes a slightly larger sink, something that was not considered by previous

top-down studies (Gatti et al., 2014; van der Laan-Luijkx et al., 2015; Alden et al., 2016;

Gatti et al., 2021).

For CH4, the role of rivers and aquatic habitats is more clear as we mentioned earlier.

In the absence of a strong uptake flux, the anaerobic methane source is dominant. Our

findings from Chapter 2 fit in a broader context associated with the impacts of the Balbina

dam located upstream of the Uatumã river, on the hydrology and ecology of the flooded

forests along this river. These impacts can lead to enhanced CH4 production, as we

suggested in Chapter 2 based on two main reasons. The first is that the Uatumã river

has enhanced CH4 concentrations downstream of the Balbina dam. Part of the methane

produced in the dam leaks to the river after the turbine intake (Kemenes et al., 2007).

Kemenes et al. (2007) also showed that the concentrations in the Uatumã can be 3 orders

of magnitude higher than other similar rivers (Richey et al., 1988). The second reason

is associated with an enhanced carbon input for anaerobic decomposition coming from

the dead stands of flooded forest. The damming of the river changed the flooding pulse

downstream, causing large tree mortality over the last three decades (Resende et al.,

2019). However, even though we found a clear seasonal pattern for the nighttime signals,

this is a site-specific finding that serves as a reference when considering possible impacts

when damming another river in a similar habitat.

5.1.3 Amazon and beyond: the Cerrado and Caatinga in perspective

In Chapter 4 we have shown that the inversion adjusts prior CO2 fluxes significantly,

leading to a source of carbon in the northeast of Brazil in the posterior NBE. The Cerrado

and Caatinga biomes were on average a sink of carbon in the prior ensemble mean (Chapter

4), meaning that the biosphere models used in this study simulate on average a sink of

carbon for these regions. Note however that such sinks in the biosphere models results

only from spin-up, increased warming, or CO2 fertilization and are not at all driven by

local knowledge or empirical observations on the vegetation carbon balance (Fawcett et al.,

2022). The adjustments after the inversion resulted in a weak sink for the Cerrado and

a consistent source over the years for the Caatinga. We showed that this result is robust

against changing the spatial error structure in the inversion settings, but it is in contrast

to what Gatti et al. (2021) found. They suggested that vegetation of the southeast of the

Amazon was loosing the capacity to capture carbon, reporting on average a positive NBE

for the years 2010 to 2018, thus locating a net source of carbon within the Amazon in the

southeast regions. In that study, they limited their analyses to the legal Amazon domain

but used the same aircraft data as we use in our study. In Chapter 4, we have discussed

the potential reasons for the difference of our results with those of Gatti et al. (2021), so
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here we discuss our findings in the context of other research and pose a hypothesis that

could explain the carbon source in the semiarid regions northeast of Brazil.

The Cerrado and Caatinga biomes cover approximately 35% of the Brazilian land mass

(Beuchle et al., 2015) and are characterized by a savannah-type ecosystem (Cerrado) (Sano

et al., 2007) and seasonally dry tropical forest (Caatinga) (Prado, 2003). Both biomes

have a marked seasonality in precipitation, with mean annual precipitation of less than

750 mm year−1 in the Caatinga (Prado, 2003; Leal et al., 2005), and from 800 to 2000 mm

year−1 in the Cerrado (Ratter et al., 1997). Studies focusing on ecosystem functioning

conducted in both biomes using eddy covariance measurements, have shown that these

ecosystems have similar seasonal patterns in net ecosystem exchange. In general, with

the onset of the rainy season higher carbon uptake is observed over converted pasture

and also over natural vegetation (Miranda et al., 1997; Varella et al., 2004; Santos et al.,

2004; Silva et al., 2017; Mendes et al., 2020; Alves et al., 2021). Studies focusing on

soil CO2 emissions comparing converted pasture and both natural ecosystems, Caatinga

(Ribeiro et al., 2016) and Cerrado (Varella et al., 2004), found no significant differences

in magnitude between the pasture and the natural ecosystem. Both coincided in higher

CO2 emissions at the onset of the rainy season (Varella et al., 2004; Ribeiro et al., 2016).

The findings of (Ribeiro et al., 2016) are in line with Mendes et al. (2020), where they

observed an increase in ecosystem respiration with the onset of the rainy season, but

offset by GPP. Integrated over time, these ecosystems in their natural form or converted

to pasture seemed to be carbon sinks when no disturbance is taken into account (Santos

et al., 2004; Bustamante et al., 2012; Silva et al., 2017; Mendes et al., 2020; Alves et al.,

2021).

However, these biomes have suffered considerable natural vegetation loss due to the expan-

sion of the agricultural frontier. Beuchle et al. (2015), found that over the period between

1990 and 2010, both biomes had a continued net loss of natural vegetation. More recently,

most of the agricultural expansion in the Cerrado has been concentrated in a region called

MATOPIBA, which refers to portions of the Maranhão, Tocantins, Piaúı and Baia states

(Spera et al., 2016). Drought periods in the Caatinga can extend over years (Leal et al.,

2005), making agricultural activities more difficult to sustain, yet considerable pasture

conversion for extensive livestock has changed the Caatinga lanscape (Leal et al., 2005).

Such anthropogenic pressure starting in deforestation and resulting in pasture or cropland

conversion leads to fire CO2 emissions (van der Werf et al., 2010, 2017). The Cerrado

biome was found to have higher fire CO2 emissions than the Caatinga, with an increas-

ing trend over the last years (da Silva Junior et al., 2020). Moreover, the annual fire

regime fluctuates between naturally-occurring low-intensity fires at the end of the wet

season ignited by lighting, and anthropogenic high-intensity fires at the end of dry season

(Ramos-Neto & Pivello, 2000).
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Frequent fires can lead to aboveground biomass reduction changing the ecosystem from a

sink to a source of carbon (de Azevedo et al., 2020). Moreover, Bustamante et al. (2012)

found that a large portion of the CO2 emissions from pasture management (i.e. burning

practices) in Brazil are originated in the Cerrado. Over the period of 2003 to 2013,

changes in vegetation stocks due to cropland conversion in the Cerrado and specifically in

the MATOPIBA region, contributed with 33% of the forest carbon emissions (Noojipady

et al., 2017). Note that the latter does not take into account fire and decomposition

sources.

Given these studies, carbon emissions in these two biomes, but primarily in the Cerrado,

can be grouped in two categories. The first one being associated directly with fires (either

from deforestation or pasture management), and the second arising from degradation af-

ter conversion of natural vegetation to pastures or croplands. The emissions in the second

category are associated with changes in carbon stocks, decomposition, and sink to source

shifts due to climate change (Bustamante et al., 2012). Having this in mind, we hypothe-

size that the carbon source in the semi-arid ecosystems of the Cerrado and Caatinga given

by the inversion (Chapter 4) is likely due to agricultural expansion in the Cerrado, mainly

from the second category mentioned above. On top, their possibility for secondary for-

est regrowth is compromised. This contrasts the Amazon biome which is highly resilient

(Poorter et al., 2021) and has shown a relatively fast recovery in aboveground biomass

by secondary forest growth (Poorter et al., 2016). This would make the carbon source we

find in this thesis not only large, but likely also to influence the regional carbon balance

for decades to come. Hence, the hypothesis of the Cerrado and Caatinga source, driven by

carbon stock changes and fires, should be part of a future study in which additional ways

(to those in Chapter 4) of testing the robustness of the inversion results are explored. For

example, not only testing different spatial error correlation length scales, but also testing

the assumption of isotropic (same in both latitude and longitude) exponential decay of

the spatial error structure.

5.1.4 Outlook

Besides the potential ways forward we have implicitly suggested in the previous topics,

additional research paths arising from this thesis are briefly mentioned here. In this thesis

we have mainly used the uppermost inlet of the 80-m tower, but future work should focus

on interpreting the vertical gradients of the long-term GHG record and also from the

newly installed data streams. Calculating fluxes with the gradient method, not only on

the 80-m tower but also using the FTIR profile measurements on the 325-m Tall Tower

is an interesting path to follow. Using the 80-m tower profiles, Shujiro Komiya at MPI-

BGC has shown interesting results, confirming at local scale the large carbon uptake in

2017 that we also observe in Chapter 4 regionally. This work has to be expanded for

the measurements at the Tall Tower. In addition, the newly installed G2201-i Picarro,

providing δ13C-CO2/CH4, can also provide insights on the isotopic fluxes of both CO2 and
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CH4. With δ13C-CO2 the potential of having an additional method for partitioning of the

net CO2 flux into GPP and Respiration seems promising (Wehr et al., 2016). In addition,

the stable isotopes of CH4 can inform us about the nighttime source of the enhancements

studied in Chapter 2, while the 325 m profile can finally provide an upper level (> 80

m) constraint to better describe the nighttime CH4 dynamics from the perspective of the

residual layer and nocturnal boundary layer.

Another tracer that can be used together with greenhouse gases is Radon (222Rn). A radon

monitor was installed in 2018 at 80 m on the Tall Tower and the system has been running

since then. With already more than three years of data, some of the possible studies

using this tracer are the following. 222Rn can serve to better constrain vertical mixing

in the atmospheric transport model STILT, which can lead to improved simulations of

trace gases at ATTO. In addition, by using the Radon Tracer Method one could attempt

estimating upwind fluxes of a specific tracer. A master student in Wageningen University

(supervised jointly by Santiago Bot́ıa and Ingrid Luijkx) has shown that by combining

the 222Rn record with eddy covariance and the CO2 mole fractions one can estimate

reasonable 222Rn fluxes during nighttime at ATTO. This 222Rn flux can then be used to

estimate regional scale CH4 fluxes using the Radon Tracer Method (Levin et al., 1999),

but considering the limitations that this methods entails (Levin et al., 2021).

In addition to these observational-based studies using the current and newly available

data streams at ATTO, a future effort should focus on setting up the regional inversion

system for CH4. Part of this work has been done in Chapter 4 for CO2, so extending the

application of the CarboScope regional system to CH4 over the Amazon domain is feasible

in the future. An important aspect to analyze is the inclusion of satellite data in the

regional inversions. Assimilating XCO2 and XCH4 in combination with in-situ (ATTO)

and flask profiles (aircraft data) could provide a better spatial coverage that can help

reduce the uncertainty in places not yet constrained by the current atmospheric network.

Some of the issues to overcome in such an effort are associated with weighting the data

based on their model-data mismatch error which has a temporal correlation. Moreover,

satellite-derived columns could be biased towards dry season retrievals, which are less

affected by clouds. Nevertheless, recent efforts using satellite data (Tunnicliffe et al., 2020;

Saunois et al., 2020; Wilson et al., 2021) show consistent results for the Amazon region,

yet improvements in several aspects are needed. Some of this issues are, discrepancies

between only-satellite driven and surface-only inversions, how chemical transport models

deal with the atmospheric distribution of the OH radical, and the source/sink attribution

in the posterior fluxes (Saunois et al., 2020).

Shifting to CO2, an interesting future line of research can focus on interpreting the spatial

gradients of NBE reported on Chapter 4, but also on partitioning the NBE signal in GPP

and Respiration. An possibility for partitioning NBE using the inversion system, is to use

the newly installed profile measurements at the Tall Tower (325 m) and assimilate partial
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columns during night. Regarding the spatial gradients of NBE, as they can vary regionally

the processes driving them are expected to be different but in principle should be prone

to be constrained from atmospheric signals. It has been shown that secondary forests due

to their rapid growth have higher net carbon sequestration rates (Poorter et al., 2016;

Requena Suarez et al., 2019). Their potential for carbon sequestration in the Amazon

region has been highlighted by Chazdon et al. (2016) and Heinrich et al. (2021). Moreover,

Brienen et al. (2015) suggested an increasing trend in tree mortality, while Esquivel-

Muelbert et al. (2020) showed the spatial distribution of mortality rates in the Amazon

with the southeast having greater rates on average. Another processes that can have an

impact on CO2 emissions is forest degradation (Assis et al., 2020). If tree mortality is the

dominant control of the spatial distribution of aboveground biomass (Johnson et al., 2016)

and forest degradation is larger than previously thought (Matricardi et al., 2020), with

both having increasing trends (Brienen et al., 2015; Matricardi et al., 2020), there should

be a detectable signal in the atmosphere. These processes, should be captured by changes

in atmospheric CO2 mole fractions and thus in surface fluxes. However, the actual sparse

observational coverage and the temporal resolution (i.e. aircraft data) undermines this

capability. Therefore, a promising way forward is to develop methods and observational

networks targeted to understand and quantify their magnitude and spatial distribution

by atmospheric changes in CO2 and using atmospheric inversions.
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Gonçalves, N. B., Lopes, A. P., Dalagnol, R., Wu, J., Pinho, D. M., & Nelson, B. W.

(2020). Both near-surface and satellite remote sensing confirm drought legacy effect

on tropical forest leaf phenology after 2015/2016 ENSO drought. Remote Sensing of

Environment , 237 , 111489. doi:doi: 10.1016/j.rse.2019.111489.

Goulden, M. L., Miller, S. D., & Rocha, H. R. d. (2006). Nocturnal cold air drainage

and pooling in a tropical forest. Journal of Geophysical Research: Atmospheres , 111 .



REFERENCES 163

doi:doi: 10.1029/2005JD006037.

Goulden, M. L., Miller, S. D., Rocha, H. R. d., Menton, M. C., Freitas, H. C. d., Figueira,

A. M. e. S., & Sousa, C. A. D. d. (2004). Diel and Seasonal Patterns of Tropical Forest

Co2 Exchange. Ecological Applications , 14 , 42–54. doi:doi: 10.1890/02-6008.

Goulding, M., Barthem, R., & Ferreira, E. (2003). The Smithsonian atlas of the Amazon,

.

Gouveia, N. A., Gherardi, D. F. M., & Aragão, L. E. O. C. (2019). The Role of the

Amazon River Plume on the Intensification of the Hydrological Cycle. Geophysical

Research Letters , 46 , 12221–12229. doi:doi: 10.1029/2019GL084302.

Green, J. K., Berry, J., Ciais, P., Zhang, Y., & Gentine, P. (2020). Amazon rainforest

photosynthesis increases in response to atmospheric dryness. Science Advances , 6 .

doi:doi: 10.1126/sciadv.abb7232.

Griffith, D. W. T., Deutscher, N. M., Caldow, C., Kettlewell, G., Riggenbach, M., &

Hammer, S. (2012). A Fourier transform infrared trace gas and isotope analyser for at-

mospheric applications. Atmospheric Measurement Techniques , 5 , 2481–2498. doi:doi:

10.5194/amt-5-2481-2012. Publisher: Copernicus GmbH.

Guan, K. et al. (2015). Photosynthetic seasonality of global tropical forests constrained

by hydroclimate. Nature Geoscience, 8 , 284–289. doi:doi: 10.1038/ngeo2382.

Gurney, K. R. et al. (2002). Towards robust regional estimates of CO 2 sources and sinks

using atmospheric transport models. Nature, 415 , 626–630. doi:doi: 10.1038/415626a.

Number: 6872 Publisher: Nature Publishing Group.

Harriss, R. C. et al. (1990). The Amazon Boundary Layer Experiment: Wet season 1987.

Journal of Geophysical Research: Atmospheres , 95 , 16721–16736. doi:doi: 10.1029/JD

095iD10p16721.

Harriss, R. C., Wofsy, S. C., Garstang, M., Browell, E. V., Molion, L. C. B., McNeal,

R. J., Hoell Jr., J. M., Bendura, R. J., Beck, S. M., Navarro, R. L., Riley, J. T.,

& Snell, R. L. (1988). The Amazon Boundary Layer Experiment (ABLE 2A): dry

season 1985. Journal of Geophysical Research: Atmospheres , 93 , 1351–1360. doi:doi:

10.1029/JD093iD02p01351.

Hastie, A., Lauerwald, R., Ciais, P., & Regnier, P. (2019). Aquatic carbon fluxes dampen

the overall variation of net ecosystem productivity in the Amazon basin: An analysis of

the interannual variability in the boundless carbon cycle. Global Change Biology , 25 ,

2094–2111. doi:doi: https://doi.org/10.1111/gcb.14620.

Hayek, M. N. et al. (2018). Carbon exchange in an Amazon forest: from hours to years.

Biogeosciences , 15 , 4833–4848. doi:doi: 10.5194/bg-15-4833-2018.

Haynes, K. D., Baker, I. T., Denning, A. S., Stöckli, R., Schaefer, K., Lokupitiya, E. Y., &
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Le Quéré, C. et al. (2018). Global Carbon Budget 2018. Earth System Science Data, 10 ,

2141–2194. doi:doi: 10.5194/essd-10-2141-2018.

Leal, I. R., Da Silva, J. M. C., Tabarelli, M., & Lacher Jr., T. E. (2005). Changing the

Course of Biodiversity Conservation in the Caatinga of Northeastern Brazil. Conser-

vation Biology , 19 , 701–706. doi:doi: 10.1111/j.1523-1739.2005.00703.x.

Lee, J.-E., Frankenberg, C., van der Tol, C., Berry, J. A., Guanter, L., Boyce, C. K.,

Fisher, J. B., Morrow, E., Worden, J. R., Asefi, S., Badgley, G., & Saatchi, S.

(2013). Forest productivity and water stress in Amazonia: observations from GOSAT

chlorophyll fluorescence. Proceedings of the Royal Society B: Biological Sciences , 280 ,

20130171. doi:doi: 10.1098/rspb.2013.0171.

Levin, I., Glatzel-Mattheier, H., Marik, T., Cuntz, M., Schmidt, M., & Worthy, D. E.

(1999). Verification of German methane emission inventories and their recent changes

based on atmospheric observations. Journal of Geophysical Research: Atmospheres ,

104 , 3447–3456. doi:doi: 10.1029/1998JD100064.

Levin, I. et al. (2020). A dedicated flask sampling strategy developed for Integrated Car-

bon Observation System (ICOS) stations based on CO2 and CO measurements and

Stochastic Time-Inverted Lagrangian Transport (STILT) footprint modelling. Atmo-

spheric Chemistry and Physics , 20 , 11161–11180. doi:doi: 10.5194/acp-20-11161-2020.



REFERENCES 169

Levin, I., Karstens, U., Hammer, S., DellaColetta, J., Maier, F., & Gachkivskyi, M.

(2021). Limitations of the radon tracer method (RTM) to estimate regional greenhouse

gas (GHG) emissions – a case study for methane in Heidelberg. Atmospheric Chemistry

and Physics , 21 , 17907–17926. doi:doi: 10.5194/acp-21-17907-2021.

Lin, J. C., Gerbig, C., Wofsy, S. C., Andrews, A. E., Daube, B., Davis, K., &

Grainger, C. A. (2003). A near-field tool for simulating the upstream influence

of atmospheric observations: The Stochastic Time-Inverted Lagrangian Transport

(STILT) model. Journal of Geophysical Research, 108 , ACH 2–1–ACH 2–17. doi:doi:

10.1029/2002JD003161.

Liu, J. et al. (2017). Contrasting carbon cycle responses of the tropical continents to the

2015–2016 El Niño. Science, 358 . doi:doi: 10.1126/science.aam5690.

Lopes, A. P., Nelson, B. W., Wu, J., Graça, P. M. L. d. A., Tavares, J. V., Prohaska, N.,

Martins, G. A., & Saleska, S. R. (2016). Leaf flush drives dry season green-up of the

Central Amazon. Remote Sensing of Environment , 182 , 90–98. doi:doi: 10.1016/j.rse.

2016.05.009.

Lovejoy, T. E., & Nobre, C. (2018). Amazon Tipping Point. Science Advances , 4 ,

eaat2340. doi:doi: 10.1126/sciadv.aat2340. Publisher: American Association for the

Advancement of Science.

Mahadevan, P., Wofsy, S. C., Matross, D. M., Xiao, X., Dunn, A. L., Lin, J. C., Ger-

big, C., Munger, J. W., Chow, V. Y., & Gottlieb, E. W. (2008). A satellite-based

biosphere parameterization for net ecosystem CO2 exchange: Vegetation Photosyn-

thesis and Respiration Model (VPRM). Global Biogeochemical Cycles , 22 . doi:doi:

10.1029/2006GB002735.

Mahrt, L. (1999). Stratified Atmospheric Boundary Layers. Boundary-Layer Meteorology ,

90 , 375–396. doi:doi: 10.1023/A:1001765727956.

Mahrt, L. (2009). Characteristics of Submeso Winds in the Stable Boundary Layer.

Boundary-Layer Meteorology , 130 , 1–14. doi:doi: 10.1007/s10546-008-9336-4.

Malhi, Y. et al. (2015). The linkages between photosynthesis, productivity, growth and

biomass in lowland Amazonian forests. Global Change Biology , 21 , 2283–2295. doi:doi:

10.1111/gcb.12859.

Malhi, Y., Rowland, L., Aragão, L. E. O. C., & Fisher, R. A. (2018). New insights

into the variability of the tropical land carbon cycle from the El Niño of 2015/2016.

Philosophical Transactions of the Royal Society B: Biological Sciences , 373 , 20170298.

doi:doi: 10.1098/rstb.2017.0298. Publisher: Royal Society.

Malhi, Y., Saatchi, S., Girardin, C., & AragãO, L. E. O. C. (2009). The Production,
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