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Optical satellite-derived surface water monitoring is challenging because of the spatial gaps in images caused by
clouds, cloud shadows, voids, etc. Here, an efficient method for filling gaps in time-series surface water images is
proposed, based on the spatiotemporal characteristics of water. This method utilises the accurately classified
historical ternary (gap, water, non-water) or binary (water, non-water) water image time-series and the clear part
of the ternary gap water image. Pixels with values of 0 and 1 in the same period water occurrence image are first
used to correct the gap water image. The spatial neighbourhood similarity is then calculated as a quality control
band for mosaicking the accurately classified historical water images. The final result is generated by replacing
the gap pixels with a mosaic image. The proposed method was implemented on the Google Earth Engine, and 93
Landsat 8 top-of-atmosphere (TOA) images were used to verify its validity. Quantitative evaluations were
adequate, with a mean accuracy, recall, and precision of 0.98, 0.90, and 0.85, respectively. The proposed method
could improve the utilisation of optical remote sensing data and would be applicable to the production of large-

area homogeneous surface water time-series and water resource monitoring.

1. Introduction

Detailed long-term maps describing the location and extent of rivers,
lakes, reservoirs, and wetlands, recording the time of events such as
floods, river migration, lake expansion and retreat, reservoir water
storage and discharge, and wetland evolution, can provide insights into
the impacts of climate change and water resource management (Pekel
et al., 2016; Yamazaki and Trigg, 2016).

There has been much research on the dynamic monitoring of surface
water at different scales, including regional (Che et al., 2019; Heim-
huber et al., 2016), continental (Mueller et al., 2016), and global scales
(Donchyts et al., 2016; Klein et al., 2017; Pekel et al., 2016; Schwatke
et al., 2019). At the global scale, commonly used products include the
Joint Research Centre (JRC) Global Surface Water (GSW) dataset (Pekel
et al., 2016), Global WaterPack (Klein et al., 2017) and Database for
Hydrological Time Series of Inland Waters (DAHITI) (Schwatke et al.,
2019). The JRC GSW dataset was generated from the entire Landsat
archive between 1984 and 2020, and contains maps of the location and
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temporal distribution of surface water with 30 m spatial resolution. The
global WaterPack product is derived from the Moderate Resolution
Imaging Spectroradiometer (MODIS) with a spatial resolution of 250 m
and a temporal resolution of 1 day. DAHITI provides a variety of hy-
drological information, of which the monthly status of lakes and reser-
voirs is based on the Landsat archive and Sentinel-2 from 1984 to 2018.

The above-mentioned surface water data sets are all based on optical
images which are vulnerable to clouds. Image synthesis is a common
method for generating high-quality products with minimum cloud
coverage; however, this method sacrifices time resolution and may
therefore miss some short-term hydrodynamic processes (Chen et al.,
2013). In addition, few cloud-free images are available in some regions,
such as the tropics (Bai et al., 2020), and it is difficult to obtain monthly
cloud-free water products by image synthesis. This is one reason why,
even though the entire archive of Landsat 5, 7, and 8 has been leveraged,
there are still gap pixels in GSW’s monthly water products. Therefore,
the filling of surface water gaps caused by clouds, cloud shadows or
other voids is required to produce spatially continuous high-frequency
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surface water products.

Multiple gap filling techniques (also called reconstructions in some
studies) for surface water monitoring have been developed in recent
years. In research on monitoring small reservoir storage from Landsat,
Avisse et al. (2017) assumed that the elevation of a frequently immersed
pixel may be lower than that of a rarely immersed pixel, and proposed a
method to reconstruct missing water pixels based on the updated
topography. Based on the assumption that if all uncontaminated pixels
with the same water occurrence are classified as water, then all
contaminated pixels that have a water occurrence greater than or equal
to that value should also be water, Zhao and Gao (2018) proposed a
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method to correct all types of contaminated pixels in the reservoirs of
GSW. In the method proposed by Yao et al. (2019), isobaths (extracted
from nearly cloud-free images) were used to recover water areas under
contamination through efficient vector-based interpolation. The two
studies described above (Yao et al., 2019; Zhao and Gao, 2018) mainly
focused on lakes or reservoirs (i.e. single water bodies), and only water
status that was not obscured by clouds was considered; therefore, these
methods would not work if a single water body was completely covered
by clouds. In our previous research (Bai et al., under review), we pro-
posed a Bayes-based gap filling algorithm which considers the sur-
rounding water correlation. Although this algorithm produces fairly
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Fig. 1. a) Landsat 8 scene (path/row:124/39) chosen in this paper (RGB rendering: near-infrared, red, green). b) Temporal distribution of the accurately classified

historical water image time-series.



B. Bai et al.

good reconstruction results, its application over large areas is limited
because of one of its inputs is cloud-free binary (water and non-water)
images that are difficult to obtain over large areas.

In this study, an efficient and scalable method is developed to fill the
surface water gaps in time-series images caused by clouds, cloud
shadows, or terrain shadows at the pixel level based on spatiotemporal
neighbourhood similarity. In contrast to the method proposed by Avisse
et al. (2017), our method does not depend on terrain data, which are
difficult to obtain in many regions. In contrast to the methods proposed
by Yao et al. (2019) and Zhao and Gao (2018), our method considers the
relationship between connected or disconnected water bodies by
considering spatial neighbourhood similarity, which enables the method
to be workable even if a reservoir or lake is completely cloud-covered. In
addition, in contrast to the method proposed by Bai et al. (under re-
view), the proposed method can use ternary (gap, water, non-water)
historical water images as empirical data, which is conducive to
execution over a large area. The proposed method was developed on the
Google Earth Engine (GEE) (Gorelick et al., 2017), and can be calculated
scene-by-scene, which makes it scalable. Furthermore, it is potentially
useful for the frequent monitoring of surface water.

2. Data and methods
2.1. Data

The Landsat 8 top-of-atmosphere (TOA) image was adopted in this
study for consistency with other surface water mapping studies (Pekel
et al., 2016; Tulbure and Broich, 2013). 93 images accessed from the
GEE with path 124 and row 39 (see Fig. 1a) in the Worldwide Reference
System-2 (WRS-2), acquired from April 2013 to May 2021, were
selected.

The river shown in the image scene in Fig. 1a is the Jingjiang River in
China, with a width of approximately 2000 m and winding shape; in the
bottom right of the scene is part of Dongting Lake, which has a char-
acteristic seasonal water shortage. In addition to rivers and lakes, the
land use/land cover types in this study area mainly include reservoirs,
ponds, wetlands, paddy fields, mountain forest land, and artificial land.

After cloud masking (Section 2.3.1) and initial water detection
(Section 2.3.2), 32 images with high classification accuracy checked by
visual interpretation were chosen as the historical empirical data
(accurately classified historical water image time-series). The acquisi-
tion dates of these images are shown in Fig. 1b. The purpose of visual
inspection is to ensure that the classified surface water is as accurate as
possible, and to avoid the impact of classification errors on the gap
filling algorithm.

2.2. Water level data

One water level data point (https://dahiti.dgfi.tum.de/en
/13287 /water-level-altimetry/) from the fusion of satellite altimetry
Jason-2, Jason-3 missions (a 10-day orbital cycle) (Crétaux et al., 2011;
Schwatke et al., 2015), which are available from DAHITI (Schwatke
et al., 2015), was used to evaluate the gap-filled results; its location is
shown in Fig. la.

2.3. Methods

2.3.1. Data pre-processing and water detection

The Landsat 8 TOA images of the GEE were orthorectified. On this
basis, cloud and cloud shadow masking was performed using the quality
assessment (QA) band which is contained in each Landsat 8 image.

K-means-based unsupervised classification was used to obtain sur-
face water. This requires only one parameter, the number of clusters,
which is usually determined according to the number of land use/land
cover types in the scene. In this study, we set it to five, based on expe-
rience. Seven bands or indices from Landsat 8 were taken as inputs of the
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K-means: red band, green band, near-infrared band, normalized differ-
ence vegetation index (NDVI) (Tucker, 1979), normalized difference
water index (NDWI) (McFeeters, 1996), modified NDWI (MNDWI) (Xu,
2006), and normalized difference build-up index (NDBI) (Zha et al.,
2003); these are commonly used for water detection (Jiang et al., 2012;
Pekel et al., 2014).

The water cluster number is different for different images, which
makes it difficult to automatically separate the water from the classified
image time-series (Wu et al., 2019). Here, we dealt with this by visually
selecting pixels that were indisputably water on the Landsat 8 image and
then used the average cluster value of these pixels to extract water.

Finally, every Landsat 8 image was classified as a water image with
two categories (0: non-water, 1: water) or three categories (0: non-
water, 1: water, and 2: gap pixels). In this study, all pixels covered by
clouds, cloud shadows, terrain shadows, and other unrecognised pixels
were classified as gap pixels. After the above step, there may be some
false positive errors (non-water pixels incorrectly detected as water) or
false negative errors (water pixels incorrectly detected as non-water) for
water, and these incorrectly classified pixels were further processed as
gap pixels by manual masking.

2.3.2. Gap filling
In this paper, we propose a gap filling method based on the following

two characteristics of surface water. i) The local spatial correlation of
water, that is, the surface water extent, is highly correlated with its
surroundings (Zhao and Gao, 2018b; Bai et al., under review). There-
fore, when some water is covered by clouds, the extent of the water
under the clouds could be calculated from the extent of the surrounding
water uncovered by clouds. ii) The temporal similarity of water, which
includes two aspects. The first is that the water status is often similar at
adjacent moments, that is, when a pixel is marked as water at a previous
moment and is water at a later moment, then the pixel is more likely to
be water at the current moment. The second aspect is that water usually
has obvious seasonal variations, so that water status could be estimated
by comparison with the same period (e.g., winter or summer) in history;
that is, if a pixel has never been water in the same period historically,
then the pixel is likely not water, and vice versa.

The first above-mentioned characteristic of water can be evolved into
spatial neighbourhood similarity, which refers to the number of clear
pixels with the same category between the gap pixel neighbourhood and
historical neighbourhood in this study (Fig. 2). For example, in Fig. 2, in
the similarity image, the number 5 indicates that there are five clear
pixels in the corresponding neighbourhood of the historical image with
the same category as the clear pixels in the neighbourhood of the
example gap pixel. By comparing the neighbourhood of the example gap
pixel with pixels in its corresponding position in individual historical
images, an image of spatial neighbourhood similarity at each historical
date can be generated. Then, the category of the gap pixel can be
assigned to that of the pixel in the historical image with the greatest
similarity.

\Temporal similarity is expressed as the same period water occur-
rence in this paper. One pixel is more likely not water if it has never been
classified as water during the same period in history. Similarly, one pixel
is more likely to be water if the pixel has always been classified as water
in the same period. In the accurately classified historical surface water
image time-series, images with a day of year (DOY) difference within
100 days (approximately one quarter) from the gap date were used to
generate the same period water occurrence. This process is illustrated in
Fig. 3.

Fig. 4 shows the framework of the proposed gap filling method.
There were two inputs: the ternary (0: non-water, 1: water, and 2: gap
pixels) gap surface water image, and the accurately classified ternary or
binary (0: non-water, 1: water) historical surface water image time-
series. The output was a gap-filled surface water image with two clas-
ses (0: non-water, 1: water).

The detailed gap filling process was as follows. First, a ternary gap
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water image was preliminarily corrected using the same period water
occurrence. Pixels were classified as water if the value of the corre-
sponding position in the same period water occurrence image was equal
to 1 (i.e., a pixel in the same period history is always water). Similarly,
the pixels were set to non-water, where values were equal to 0 in the
same period water occurrence image.

Second, the similarity of the spatial neighbourhoods was calculated.
A logical AND operation between the gap water image and each his-
torical surface water image was designed to obtain spatial difference

binary images. The spatial difference binary image was then masked
with an image in which the water occurrence was neither 0 nor 1. After
performing a spatial neighbouring summation operation (using a win-
dow with a radius of 70 pixels in this study) on the spatial difference
binary image time-series, the spatial neighbourhood similarity image
time-series can be generated. The category of the gap pixel was
considered to be the same as that of the pixel at that historical moment
with the highest value in the spatial neighbourhood similarity image
time-series.
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The final step was mosaicking. Here, we constructed an Image-
Collection object in GEE, where each accurately classified historical
surface water image was taken as one band, while the spatial neigh-
bourhood similarity image was another band. The time difference (unit:
days) between the historical water image and the gap water image was
set as an attribute. Then, the ImageCollection was sorted according to
the time difference attribute. After that, the qualityMosaic method in
GEE was used to mosaic the accurately classified historical water image
band according to the spatial neighbourhood similarity band. Hence,
each pixel in the mosaic image was a historical pixel on the date which
with the highest spatial neighbourhood similarity. When the similarity
was too low (usually owing to greater cloud coverage), the similarity
calculation was considered unreliable, and other strategies (see Fig. 5)
were adopted to fill the gaps. In this study, when the similarity was less
than 30 (the value should increase as the radius of the spatial neigh-
bourhood increases, and vice versa), the pixel at the closest date was
used instead. Here, if the closest date was greater than 64 days (multiple
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Fig. 5. Strategies adopted when the spatial neighbourhood similarity calcula-
tion was unreliable.

of the 16-days revisit cycle of Landsat, around 2 months), the same
period water occurrence was used to correct the mosaicked image by
setting the pixels to non-water class if the occurrence was less than 0.6,
or setting to water otherwise. The pixels in the mosaicked image were
then used to replace the pixels that remained in the gap class after the
initial correction.

The above processing was performed on each image that contained
gaps to obtain the gap-filled water image time-series.

2.3.3. Validation

The proposed method was evaluated in two ways. One was to
compare the water area time-series with the water levels, which has
been used in many studies (Yao et al., 2019; Schwatke et al., 2019).

The second was to construct the gap filling task by manually adding
clouds to the cloud-free water image and then comparing the gap-filled
water image with the original cloud-free water image. Here, 12 cloud-
free water images from accurately classified historical surface water
image time-series were selected as the original images. To make the
evaluation more comprehensive and objective, gap filling tasks were
constructed in three scenarios: i) randomly adding different clouds to
each cloud-free water image; ii) adding the same cloud to each cloud-
free water image; and iii) adding different clouds to one cloud-free
water image. 5000 sample pixels were randomly generated in the
cloud areas to calculate the precision, accuracy, and recall indicators
(Olson and Delen, 2008; Stillinger et al., 2019). Accuracy indicates how
many pixels are correctly predicted for all water and non-water samples,
recall indicates how many water pixels in the samples are predicted
correctly, and precision refers to how many pixels in the predicted water
are actually water.
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3. Results
3.1. Gap filling with different strategies

Figs. 6-8 show three situations where different strategies were used
to fill gaps in region 2 (marked with a yellow rectangle in Fig. 1). In each
example situation, the filling result of the intermediate date was used as
the illustration.

Fig. 6 shows an example of gap filling based on spatial neighbour-
hood similarity. Fig. 6d-f show three temporally continuous surface
water images in an accurately classified historical surface water image
time-series. There were gap pixels in the surface water image on 6 May
2014, which were caused by the inconsistent spectrum of water in the
optical image (Fig. 6b). The gap pixels are not very large and can be
filled based on spatial neighbourhood similarity. The gap-filled result is
shown in Fig. 6g. By comparing it with the original optical image, we can
see that the gap-filled surface water extent has high accuracy. In addi-
tion, the surface water extents on the three dates were quite different,
and the gap-filled result maintained this change. This would be difficult
to achieve using methods such as image synthesis or linear interpolation.

When the spatial neighbourhood similarity was unreliable, as in the
gap filling task of 14 September 2015, a different strategy was

2014-04-04

Landsat 8

water detected

gap-filled

Hm water

2014-05-06
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employed, as shown in Fig. 7. Because the surface water image was
substantially covered by clouds, the area inside the orange ellipse in
Fig. 7e could not be correctly filled based on the spatial neighbourhood
similarity. In this situation, the filling strategy was to use the closest
image in the accurately classified historical surface water image time-
series for filling. Here, the water image on 16 October 2015 was the
closest to the gap image, with a time difference of 32 days; hence, it was
used for filling. The water in the ellipse in the gap-filled water image
(Fig. 7g) was the same as that on 16 October 2015 (Fig. 7f). The un-
certainty of this filling strategy is relatively high, especially for areas
with frequent water extent changes and large time differences.

When the spatial neighbourhood similarity calculation was unreli-
able and the time difference between the gap image and the closest
image was greater than 64 days, the same period water occurrence was
used to determine the category of the gap pixels. Fig. 8 shows an
example. Images from 31 January and 26 August 2020 are two tempo-
rally continuous surface water images in accurately classified historical
water image time-series. The image from 22 May 2020 was almost
completely covered by clouds, so the spatial neighbourhood similarity
would be unreliable, and the temporally closest image was from 26
August 2020, with a time difference of 97 days. In this case, the same
period water occurrence was used to fill the image. Similarly, in such a

2014-11-14

gap pixels mm non-water

Fig. 6. An example of gap filling using spatial neighbourhood similarity. A-c) Landsat 8 images (RGB rendering: near-infrared, red, green). D-f) Water detected based
on (a-c). g) Gap filling result on 6 May 2014. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of

this article.)
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2015-10-16
-
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Fig. 7. An example of gap filling using the closest clear pixels. A-c) Landsat 8 images (RGB rendering: near-infrared, red, green). D-f) water detected based on (a-c).
g) gap filling result on 14 September 2015. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

case, the uncertainty of gap filling will also be large. As shown by the
orange ellipse in Fig. 8b and g, there is a false positive error for water.
This example can also be used to illustrate the influence of “closest”
parameter on the filling result. If it is set too large, such as 97 days, then
the water image on 26 August 2020 will be used as a replacement for the
gap pixels. Clearly, in areas with frequent water changes, the uncer-
tainty of gap filling based on this strategy would increases.

3.2. Comparison with JRC GSW monthly water data

The GSW dataset shows high accuracy with less than 5% omission
and less than 1% false water detection (Pekel et al., 2016). There are
three categories in the GSW monthly water image: water, not water, and
no observations (e.g., pixels contaminated by clouds or scan line
corrector [SLC] failure).

The water area time-series of the gap-filled surface water images and
the GSW monthly water products (example regions 2-4 marked on
Fig. 1), are shown in Fig. 9-11. Note that in this study, we only used
Landsat 8, whereas GSW monthly water data in the corresponding
months were generated from the combination of Landsat 7 and 8. The
water area time-series after gap filling showed more obvious time var-
iations than those of the GSW products.

From the water occurrence image, it can be seen that the water
extent in region 2 shows frequent changes. From the time-series in
Fig. 9a, both the GSW and gap-filled water area show seasonal varia-
tions, but the latter shows more obvious variations.

The fill percentage (i.e., the proportion of pixels whose category
changes before and after filling) after removing areas where water
occurrence equal to 0 or 1 was calculated, and is shown in Fig. 9b. If the
clear part of the gap water image is accurately classified, the fill per-
centage indicates the uncertainty of the water surface to a certain extent.
The larger the value, the more corrected pixels there are in the gap
image, and the greater the uncertainty of the water image classification,
and vice versa.

Fig. 9c shows the gap-filled result for 23 July 2019. At this date, the
Landsat 8 image was partially contaminated by clouds, and there were
some stripe contaminations in the GSW water image in the corre-
sponding month. It can be seen that the shape of the water after gap
filling is essentially the same as that in the GSW product, but there are no
stripes.

Region 3 is a section of the Jingjiang River with sandbars in the
middle. The water extent in this area has also changed over time.
However, compared with lakes, the seasonal variation in this area was
not as obvious. Fig. 10a shows that the gap-filled water area time-series
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Fig. 8. An example of gap filling using the same period water occurrence. A-c) Landsat 8 images (RGB rendering: near-infrared, red, green). D-f) Water detected from

(a-c). g) Gap filling result on 22 May 2020.

has more obvious seasonal characteristics than that of the GSW.

An example (9 July 2014) of the gap filling result is shown in
Fig. 10c. Parts of the water bodies are covered by clouds. Because there
was no cloud-free Landsat image in this month, only a small part of the
water body was identified in the GSW product. The water image based
on our newly proposed method showed enhanced spatial details of the
river.

Region 4 is also a section of the river. Some parts of the region are
often inundated with water. The seasonal and inter-annual fluctuations
show good consistency between the gap-filled and GSW water area time-
series (Fig. 11), and show an upward trend.

An example of gap filling on 23 February 2018 is shown in Fig. 11c.
There are thin clouds in the Landsat 8 image, so we can visualise the real
extent of water. It can be seen that, although most pixels are masked into
clouds, the water body is reconstructed accurately.

For the other two example regions (5 and 6, marked on Fig. 1), the
gap-filled results also show good accuracy (see Figures S1 and S2 in the
Supplementary Materials).

3.3. Consistency with water level data

The surface water area time-series before and after gap filling around
(orange rectangle in Fig. 1) the water level point (marked by green star
in Fig. 1), and water level data are shown in Fig. 12. It can be seen that
the water area time-series before gap filling has almost no obvious time
variations, whereas after gap filling, it shows obvious seasonal vari-
ability and maintains a strong correlation with the water level.

Fig. 13 shows the scatterplot of the water area (before and after gap
filling) time-series and water levels obtained by linear interpolation. The
coefficient of determination R? in a polynomial fitting is 0.62 after gap
filling. In Fig. 13a, three points (27 September and 13 October 2014, and
18 October 2016) deviate significantly. Because of the date mismatch
between the water image and the water level, and the linear interpolation
operation on the water level data, the three points correspond to the two
water level dates in Fig. 12. It can be seen that the relevant water levels
have a large deviation in the sequence, which may be due to the relatively
high water level (there was a flood in this basin in the summer of 2016), or
it may have been generated during data processing (the satellite water
level data contains some uncertainty, such as system noise). After
removing the three points in Fig. 13a, the R? improved to 0.79.
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3.4. Accuracy assessment

The accuracy, recall, and precision of the gap-filled results from the
gap water images constructed using different strategies are shown in
Fig. 14. It can be seen that the accuracy of the gap-filled results was high
in various situations. The average accuracy of gap filling using strategies
that randomly add different clouds to different cloud-free images was
0.98, while the average recall and precision were 0.90 and 0.85,
respectively. When evaluating the gap filling results of the third strat-
egy, the cloud proportion was also included to show that the gap filling
accuracy had no definite relationship with this parameter. This is
because the gap filling accuracy is related to many factors, such as the
location of the cloud, density of the accurately classified historical water
image time-series, and accuracy of the water classification.
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At the same time, we should also understand that the samples here
are unbalanced, and the evaluation results are relative owing to the
strategy of sample selection (Roberts et al., 2017; Wadoux et al., 2021).

We also calculated the root mean square error (RMSE) and between
the gap-filled water image and the original cloud-free water image, as
shown in Fig. 15. The average RMSE and R? of the gap filling task
constructed by the strategy of randomly adding different clouds to
different images was 0.14 and 0.73, respectively. The smalle the RMSE,
the better the gap-filled effect, while the lager theR?, the better the gap-
filled result.
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Fig. 15. RMSE and R? of the gap filling task constructed using different strategies. a) Different cloud-free images with different clouds added. b) Different cloud-free
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4. Discussion
4.1. The influence of spatial neighbourhood radius on gap filling.

The radius of the spatial neighbourhood has a complex effect on the
gap filling accuracy. Generally, the larger the gaps, the larger the spatial
neighbourhood radius needed to search for clear pixels for the similarity
calculation. For example, we plotted the relationship between the
spatial neighbourhood radius and the accuracy of the gap-filled water
image on 14 September 2015, as shown in Fig. 16. Because the image
was covered by thin clouds, we could visually identify the extent of
water; therefore, we manually selected some sample blocks under the
cloud, and then randomly generated 2000 sample points for accuracy
evaluation. Fig. 16a showed that the filling accuracy increased with an
increase in the spatial neighbourhood radius. However, it should also be
noted that setting a very large radius reduces the calculation speed and
would introduce errors (see Fig. S3 in the Supplementary Material).

When the clouds are small and the water has a narrow shape, a
smaller neighbourhood radius could have a high gap filling accuracy, as
shown in Fig, S4 in the Supplementary Material.

In general, the selection of an appropriate spatial neighbourhood
radius depends on the size of the clouds and water body. When filling
time-series images, considering the various situations that may occur, a
larger neighbourhood radius should be used. For example, a radius of 70
pixels of Landsat 8 at 30 m spatial resolution was used in this study, and
the filling result was acceptable.

4.2. Potential applications

The method proposed in this paper is also suitable for filling stripe
gaps that exist in surface water extracted based on Landsat 7 Enhanced
Thematic Mapper Plus (ETM+) SLC-off images, and gaps caused by
coverage of ice, snow, etc. This provides the possibility of generating
spatiotemporally continuous surface water.

4.3. Limitations and opportunities

The proposed method requires an accurate contaminated pixel mask
and accurate water classification. In addition, if the cloud coverage is
too high and the historical water images before or after the gap date are
too far away, the gap filling error would increase.

The proposed method can correct some classification errors (e.g.,
cloud shadows classified as water) in the gap water image when they
occur in areas where the water occurrence equals 0 or 1. However, when
errors occur outside these areas, the errors are retained, which affects
the filling result by affecting the calculation of spatial neighbourhood
similarity.

The requirement of the proposed method on the number of accu-
rately classified historical surface water image time series is to be able to
synthesize water images without gaps after contaminated pixel masking,
and the more the better. It means that the gap filling accuracy could be
improved by adding data from other sensors, such as Landsat 7, and
Sentinel-1 and -2.

Recently, Mullen et al. (2021) proposed a cloud-filling approach
using a statistical relationship between the inundation status of
unmasked pixels and their inundation frequency (IF) value to infer the
status of all pixels of the image based on their own IF value. This method
has promising applications. In our future research, performance evalu-
ation of different methods will be included.

5. Conclusion

The time-series surface water gap filling method proposed in this
study is based on spatiotemporal neighbourhood similarity. After gap
filling, the variations of surface water area time-series were consistent
with water level data from satellite altimeters (the coefficient of
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determination R®> was 0.79), and presented more obvious seasonal
characteristics. Quantitative evaluation showed that the average accu-
racy, recall, and precision were 0.98, 0.90, and 0.85, respectively.

When carrying out surface water monitoring tasks, implementing the
proposed method could increase the utilisation of optical remote sensing
images and improve the temporal resolution of surface water time-
series, making it easier to reveal seasonal and annual variations in sur-
face water. This method is implemented on the Google Earth Engine,
which make it easy to conduct time-series calculations and is suitable for
large-area applications. It could also be used to fill gaps in existing
surface water datasets, such as GSW.
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