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A B S T R A C T   

Optical satellite-derived surface water monitoring is challenging because of the spatial gaps in images caused by 
clouds, cloud shadows, voids, etc. Here, an efficient method for filling gaps in time-series surface water images is 
proposed, based on the spatiotemporal characteristics of water. This method utilises the accurately classified 
historical ternary (gap, water, non-water) or binary (water, non-water) water image time-series and the clear part 
of the ternary gap water image. Pixels with values of 0 and 1 in the same period water occurrence image are first 
used to correct the gap water image. The spatial neighbourhood similarity is then calculated as a quality control 
band for mosaicking the accurately classified historical water images. The final result is generated by replacing 
the gap pixels with a mosaic image. The proposed method was implemented on the Google Earth Engine, and 93 
Landsat 8 top-of-atmosphere (TOA) images were used to verify its validity. Quantitative evaluations were 
adequate, with a mean accuracy, recall, and precision of 0.98, 0.90, and 0.85, respectively. The proposed method 
could improve the utilisation of optical remote sensing data and would be applicable to the production of large- 
area homogeneous surface water time-series and water resource monitoring.   

1. Introduction 

Detailed long-term maps describing the location and extent of rivers, 
lakes, reservoirs, and wetlands, recording the time of events such as 
floods, river migration, lake expansion and retreat, reservoir water 
storage and discharge, and wetland evolution, can provide insights into 
the impacts of climate change and water resource management (Pekel 
et al., 2016; Yamazaki and Trigg, 2016). 

There has been much research on the dynamic monitoring of surface 
water at different scales, including regional (Che et al., 2019; Heim
huber et al., 2016), continental (Mueller et al., 2016), and global scales 
(Donchyts et al., 2016; Klein et al., 2017; Pekel et al., 2016; Schwatke 
et al., 2019). At the global scale, commonly used products include the 
Joint Research Centre (JRC) Global Surface Water (GSW) dataset (Pekel 
et al., 2016), Global WaterPack (Klein et al., 2017) and Database for 
Hydrological Time Series of Inland Waters (DAHITI) (Schwatke et al., 
2019). The JRC GSW dataset was generated from the entire Landsat 
archive between 1984 and 2020, and contains maps of the location and 

temporal distribution of surface water with 30 m spatial resolution. The 
global WaterPack product is derived from the Moderate Resolution 
Imaging Spectroradiometer (MODIS) with a spatial resolution of 250 m 
and a temporal resolution of 1 day. DAHITI provides a variety of hy
drological information, of which the monthly status of lakes and reser
voirs is based on the Landsat archive and Sentinel-2 from 1984 to 2018. 

The above-mentioned surface water data sets are all based on optical 
images which are vulnerable to clouds. Image synthesis is a common 
method for generating high-quality products with minimum cloud 
coverage; however, this method sacrifices time resolution and may 
therefore miss some short-term hydrodynamic processes (Chen et al., 
2013). In addition, few cloud-free images are available in some regions, 
such as the tropics (Bai et al., 2020), and it is difficult to obtain monthly 
cloud-free water products by image synthesis. This is one reason why, 
even though the entire archive of Landsat 5, 7, and 8 has been leveraged, 
there are still gap pixels in GSW’s monthly water products. Therefore, 
the filling of surface water gaps caused by clouds, cloud shadows or 
other voids is required to produce spatially continuous high-frequency 
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surface water products. 
Multiple gap filling techniques (also called reconstructions in some 

studies) for surface water monitoring have been developed in recent 
years. In research on monitoring small reservoir storage from Landsat, 
Avisse et al. (2017) assumed that the elevation of a frequently immersed 
pixel may be lower than that of a rarely immersed pixel, and proposed a 
method to reconstruct missing water pixels based on the updated 
topography. Based on the assumption that if all uncontaminated pixels 
with the same water occurrence are classified as water, then all 
contaminated pixels that have a water occurrence greater than or equal 
to that value should also be water, Zhao and Gao (2018) proposed a 

method to correct all types of contaminated pixels in the reservoirs of 
GSW. In the method proposed by Yao et al. (2019), isobaths (extracted 
from nearly cloud-free images) were used to recover water areas under 
contamination through efficient vector-based interpolation. The two 
studies described above (Yao et al., 2019; Zhao and Gao, 2018) mainly 
focused on lakes or reservoirs (i.e. single water bodies), and only water 
status that was not obscured by clouds was considered; therefore, these 
methods would not work if a single water body was completely covered 
by clouds. In our previous research (Bai et al., under review), we pro
posed a Bayes-based gap filling algorithm which considers the sur
rounding water correlation. Although this algorithm produces fairly 

Fig. 1. a) Landsat 8 scene (path/row:124/39) chosen in this paper (RGB rendering: near-infrared, red, green). b) Temporal distribution of the accurately classified 
historical water image time-series. 
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good reconstruction results, its application over large areas is limited 
because of one of its inputs is cloud-free binary (water and non-water) 
images that are difficult to obtain over large areas. 

In this study, an efficient and scalable method is developed to fill the 
surface water gaps in time-series images caused by clouds, cloud 
shadows, or terrain shadows at the pixel level based on spatiotemporal 
neighbourhood similarity. In contrast to the method proposed by Avisse 
et al. (2017), our method does not depend on terrain data, which are 
difficult to obtain in many regions. In contrast to the methods proposed 
by Yao et al. (2019) and Zhao and Gao (2018), our method considers the 
relationship between connected or disconnected water bodies by 
considering spatial neighbourhood similarity, which enables the method 
to be workable even if a reservoir or lake is completely cloud-covered. In 
addition, in contrast to the method proposed by Bai et al. (under re
view), the proposed method can use ternary (gap, water, non-water) 
historical water images as empirical data, which is conducive to 
execution over a large area. The proposed method was developed on the 
Google Earth Engine (GEE) (Gorelick et al., 2017), and can be calculated 
scene-by-scene, which makes it scalable. Furthermore, it is potentially 
useful for the frequent monitoring of surface water. 

2. Data and methods 

2.1. Data 

The Landsat 8 top-of-atmosphere (TOA) image was adopted in this 
study for consistency with other surface water mapping studies (Pekel 
et al., 2016; Tulbure and Broich, 2013). 93 images accessed from the 
GEE with path 124 and row 39 (see Fig. 1a) in the Worldwide Reference 
System-2 (WRS-2), acquired from April 2013 to May 2021, were 
selected. 

The river shown in the image scene in Fig. 1a is the Jingjiang River in 
China, with a width of approximately 2000 m and winding shape; in the 
bottom right of the scene is part of Dongting Lake, which has a char
acteristic seasonal water shortage. In addition to rivers and lakes, the 
land use/land cover types in this study area mainly include reservoirs, 
ponds, wetlands, paddy fields, mountain forest land, and artificial land. 

After cloud masking (Section 2.3.1) and initial water detection 
(Section 2.3.2), 32 images with high classification accuracy checked by 
visual interpretation were chosen as the historical empirical data 
(accurately classified historical water image time-series). The acquisi
tion dates of these images are shown in Fig. 1b. The purpose of visual 
inspection is to ensure that the classified surface water is as accurate as 
possible, and to avoid the impact of classification errors on the gap 
filling algorithm. 

2.2. Water level data 

One water level data point (https://dahiti.dgfi.tum.de/en 
/13287/water-level-altimetry/) from the fusion of satellite altimetry 
Jason-2, Jason-3 missions (a 10-day orbital cycle) (Crétaux et al., 2011; 
Schwatke et al., 2015), which are available from DAHITI (Schwatke 
et al., 2015), was used to evaluate the gap-filled results; its location is 
shown in Fig. 1a. 

2.3. Methods 

2.3.1. Data pre-processing and water detection 
The Landsat 8 TOA images of the GEE were orthorectified. On this 

basis, cloud and cloud shadow masking was performed using the quality 
assessment (QA) band which is contained in each Landsat 8 image. 

K-means-based unsupervised classification was used to obtain sur
face water. This requires only one parameter, the number of clusters, 
which is usually determined according to the number of land use/land 
cover types in the scene. In this study, we set it to five, based on expe
rience. Seven bands or indices from Landsat 8 were taken as inputs of the 

K-means: red band, green band, near-infrared band, normalized differ
ence vegetation index (NDVI) (Tucker, 1979), normalized difference 
water index (NDWI) (McFeeters, 1996), modified NDWI (MNDWI) (Xu, 
2006), and normalized difference build-up index (NDBI) (Zha et al., 
2003); these are commonly used for water detection (Jiang et al., 2012; 
Pekel et al., 2014). 

The water cluster number is different for different images, which 
makes it difficult to automatically separate the water from the classified 
image time-series (Wu et al., 2019). Here, we dealt with this by visually 
selecting pixels that were indisputably water on the Landsat 8 image and 
then used the average cluster value of these pixels to extract water. 

Finally, every Landsat 8 image was classified as a water image with 
two categories (0: non-water, 1: water) or three categories (0: non- 
water, 1: water, and 2: gap pixels). In this study, all pixels covered by 
clouds, cloud shadows, terrain shadows, and other unrecognised pixels 
were classified as gap pixels. After the above step, there may be some 
false positive errors (non-water pixels incorrectly detected as water) or 
false negative errors (water pixels incorrectly detected as non-water) for 
water, and these incorrectly classified pixels were further processed as 
gap pixels by manual masking. 

2.3.2. Gap filling 
In this paper, we propose a gap filling method based on the following 

two characteristics of surface water. i) The local spatial correlation of 
water, that is, the surface water extent, is highly correlated with its 
surroundings (Zhao and Gao, 2018b; Bai et al., under review). There
fore, when some water is covered by clouds, the extent of the water 
under the clouds could be calculated from the extent of the surrounding 
water uncovered by clouds. ii) The temporal similarity of water, which 
includes two aspects. The first is that the water status is often similar at 
adjacent moments, that is, when a pixel is marked as water at a previous 
moment and is water at a later moment, then the pixel is more likely to 
be water at the current moment. The second aspect is that water usually 
has obvious seasonal variations, so that water status could be estimated 
by comparison with the same period (e.g., winter or summer) in history; 
that is, if a pixel has never been water in the same period historically, 
then the pixel is likely not water, and vice versa. 

The first above-mentioned characteristic of water can be evolved into 
spatial neighbourhood similarity, which refers to the number of clear 
pixels with the same category between the gap pixel neighbourhood and 
historical neighbourhood in this study (Fig. 2). For example, in Fig. 2, in 
the similarity image, the number 5 indicates that there are five clear 
pixels in the corresponding neighbourhood of the historical image with 
the same category as the clear pixels in the neighbourhood of the 
example gap pixel. By comparing the neighbourhood of the example gap 
pixel with pixels in its corresponding position in individual historical 
images, an image of spatial neighbourhood similarity at each historical 
date can be generated. Then, the category of the gap pixel can be 
assigned to that of the pixel in the historical image with the greatest 
similarity. 

\Temporal similarity is expressed as the same period water occur
rence in this paper. One pixel is more likely not water if it has never been 
classified as water during the same period in history. Similarly, one pixel 
is more likely to be water if the pixel has always been classified as water 
in the same period. In the accurately classified historical surface water 
image time-series, images with a day of year (DOY) difference within 
100 days (approximately one quarter) from the gap date were used to 
generate the same period water occurrence. This process is illustrated in 
Fig. 3. 

Fig. 4 shows the framework of the proposed gap filling method. 
There were two inputs: the ternary (0: non-water, 1: water, and 2: gap 
pixels) gap surface water image, and the accurately classified ternary or 
binary (0: non-water, 1: water) historical surface water image time- 
series. The output was a gap-filled surface water image with two clas
ses (0: non-water, 1: water). 

The detailed gap filling process was as follows. First, a ternary gap 
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water image was preliminarily corrected using the same period water 
occurrence. Pixels were classified as water if the value of the corre
sponding position in the same period water occurrence image was equal 
to 1 (i.e., a pixel in the same period history is always water). Similarly, 
the pixels were set to non-water, where values were equal to 0 in the 
same period water occurrence image. 

Second, the similarity of the spatial neighbourhoods was calculated. 
A logical AND operation between the gap water image and each his
torical surface water image was designed to obtain spatial difference 

binary images. The spatial difference binary image was then masked 
with an image in which the water occurrence was neither 0 nor 1. After 
performing a spatial neighbouring summation operation (using a win
dow with a radius of 70 pixels in this study) on the spatial difference 
binary image time-series, the spatial neighbourhood similarity image 
time-series can be generated. The category of the gap pixel was 
considered to be the same as that of the pixel at that historical moment 
with the highest value in the spatial neighbourhood similarity image 
time-series. 

Fig. 2. Schematic of spatial neighbourhood similarity generation.  

Fig. 3. Schematic of same period water occurrence generation.  
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The final step was mosaicking. Here, we constructed an Image
Collection object in GEE, where each accurately classified historical 
surface water image was taken as one band, while the spatial neigh
bourhood similarity image was another band. The time difference (unit: 
days) between the historical water image and the gap water image was 
set as an attribute. Then, the ImageCollection was sorted according to 
the time difference attribute. After that, the qualityMosaic method in 
GEE was used to mosaic the accurately classified historical water image 
band according to the spatial neighbourhood similarity band. Hence, 
each pixel in the mosaic image was a historical pixel on the date which 
with the highest spatial neighbourhood similarity. When the similarity 
was too low (usually owing to greater cloud coverage), the similarity 
calculation was considered unreliable, and other strategies (see Fig. 5) 
were adopted to fill the gaps. In this study, when the similarity was less 
than 30 (the value should increase as the radius of the spatial neigh
bourhood increases, and vice versa), the pixel at the closest date was 
used instead. Here, if the closest date was greater than 64 days (multiple 

of the 16-days revisit cycle of Landsat, around 2 months), the same 
period water occurrence was used to correct the mosaicked image by 
setting the pixels to non-water class if the occurrence was less than 0.6, 
or setting to water otherwise. The pixels in the mosaicked image were 
then used to replace the pixels that remained in the gap class after the 
initial correction. 

The above processing was performed on each image that contained 
gaps to obtain the gap-filled water image time-series. 

2.3.3. Validation 
The proposed method was evaluated in two ways. One was to 

compare the water area time-series with the water levels, which has 
been used in many studies (Yao et al., 2019; Schwatke et al., 2019). 

The second was to construct the gap filling task by manually adding 
clouds to the cloud-free water image and then comparing the gap-filled 
water image with the original cloud-free water image. Here, 12 cloud- 
free water images from accurately classified historical surface water 
image time-series were selected as the original images. To make the 
evaluation more comprehensive and objective, gap filling tasks were 
constructed in three scenarios: i) randomly adding different clouds to 
each cloud-free water image; ii) adding the same cloud to each cloud- 
free water image; and iii) adding different clouds to one cloud-free 
water image. 5000 sample pixels were randomly generated in the 
cloud areas to calculate the precision, accuracy, and recall indicators 
(Olson and Delen, 2008; Stillinger et al., 2019). Accuracy indicates how 
many pixels are correctly predicted for all water and non-water samples, 
recall indicates how many water pixels in the samples are predicted 
correctly, and precision refers to how many pixels in the predicted water 
are actually water. 

Fig. 4. Graphical workflow of the proposed gap filling method.  

Fig. 5. Strategies adopted when the spatial neighbourhood similarity calcula
tion was unreliable. 
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3. Results 

3.1. Gap filling with different strategies 

Figs. 6–8 show three situations where different strategies were used 
to fill gaps in region 2 (marked with a yellow rectangle in Fig. 1). In each 
example situation, the filling result of the intermediate date was used as 
the illustration. 

Fig. 6 shows an example of gap filling based on spatial neighbour
hood similarity. Fig. 6d-f show three temporally continuous surface 
water images in an accurately classified historical surface water image 
time-series. There were gap pixels in the surface water image on 6 May 
2014, which were caused by the inconsistent spectrum of water in the 
optical image (Fig. 6b). The gap pixels are not very large and can be 
filled based on spatial neighbourhood similarity. The gap-filled result is 
shown in Fig. 6g. By comparing it with the original optical image, we can 
see that the gap-filled surface water extent has high accuracy. In addi
tion, the surface water extents on the three dates were quite different, 
and the gap-filled result maintained this change. This would be difficult 
to achieve using methods such as image synthesis or linear interpolation. 

When the spatial neighbourhood similarity was unreliable, as in the 
gap filling task of 14 September 2015, a different strategy was 

employed, as shown in Fig. 7. Because the surface water image was 
substantially covered by clouds, the area inside the orange ellipse in 
Fig. 7e could not be correctly filled based on the spatial neighbourhood 
similarity. In this situation, the filling strategy was to use the closest 
image in the accurately classified historical surface water image time- 
series for filling. Here, the water image on 16 October 2015 was the 
closest to the gap image, with a time difference of 32 days; hence, it was 
used for filling. The water in the ellipse in the gap-filled water image 
(Fig. 7g) was the same as that on 16 October 2015 (Fig. 7f). The un
certainty of this filling strategy is relatively high, especially for areas 
with frequent water extent changes and large time differences. 

When the spatial neighbourhood similarity calculation was unreli
able and the time difference between the gap image and the closest 
image was greater than 64 days, the same period water occurrence was 
used to determine the category of the gap pixels. Fig. 8 shows an 
example. Images from 31 January and 26 August 2020 are two tempo
rally continuous surface water images in accurately classified historical 
water image time-series. The image from 22 May 2020 was almost 
completely covered by clouds, so the spatial neighbourhood similarity 
would be unreliable, and the temporally closest image was from 26 
August 2020, with a time difference of 97 days. In this case, the same 
period water occurrence was used to fill the image. Similarly, in such a 

Fig. 6. An example of gap filling using spatial neighbourhood similarity. A-c) Landsat 8 images (RGB rendering: near-infrared, red, green). D-f) Water detected based 
on (a-c). g) Gap filling result on 6 May 2014. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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case, the uncertainty of gap filling will also be large. As shown by the 
orange ellipse in Fig. 8b and g, there is a false positive error for water. 
This example can also be used to illustrate the influence of “closest” 
parameter on the filling result. If it is set too large, such as 97 days, then 
the water image on 26 August 2020 will be used as a replacement for the 
gap pixels. Clearly, in areas with frequent water changes, the uncer
tainty of gap filling based on this strategy would increases. 

3.2. Comparison with JRC GSW monthly water data 

The GSW dataset shows high accuracy with less than 5% omission 
and less than 1% false water detection (Pekel et al., 2016). There are 
three categories in the GSW monthly water image: water, not water, and 
no observations (e.g., pixels contaminated by clouds or scan line 
corrector [SLC] failure). 

The water area time-series of the gap-filled surface water images and 
the GSW monthly water products (example regions 2–4 marked on 
Fig. 1), are shown in Fig. 9-11. Note that in this study, we only used 
Landsat 8, whereas GSW monthly water data in the corresponding 
months were generated from the combination of Landsat 7 and 8. The 
water area time-series after gap filling showed more obvious time var
iations than those of the GSW products. 

From the water occurrence image, it can be seen that the water 
extent in region 2 shows frequent changes. From the time-series in 
Fig. 9a, both the GSW and gap-filled water area show seasonal varia
tions, but the latter shows more obvious variations. 

The fill percentage (i.e., the proportion of pixels whose category 
changes before and after filling) after removing areas where water 
occurrence equal to 0 or 1 was calculated, and is shown in Fig. 9b. If the 
clear part of the gap water image is accurately classified, the fill per
centage indicates the uncertainty of the water surface to a certain extent. 
The larger the value, the more corrected pixels there are in the gap 
image, and the greater the uncertainty of the water image classification, 
and vice versa. 

Fig. 9c shows the gap-filled result for 23 July 2019. At this date, the 
Landsat 8 image was partially contaminated by clouds, and there were 
some stripe contaminations in the GSW water image in the corre
sponding month. It can be seen that the shape of the water after gap 
filling is essentially the same as that in the GSW product, but there are no 
stripes. 

Region 3 is a section of the Jingjiang River with sandbars in the 
middle. The water extent in this area has also changed over time. 
However, compared with lakes, the seasonal variation in this area was 
not as obvious. Fig. 10a shows that the gap-filled water area time-series 

Fig. 7. An example of gap filling using the closest clear pixels. A-c) Landsat 8 images (RGB rendering: near-infrared, red, green). D-f) water detected based on (a-c). 
g) gap filling result on 14 September 2015. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

B. Bai et al.                                                                                                                                                                                                                                      



International Journal of Applied Earth Observation and Geoinformation 112 (2022) 102882

8

has more obvious seasonal characteristics than that of the GSW. 
An example (9 July 2014) of the gap filling result is shown in 

Fig. 10c. Parts of the water bodies are covered by clouds. Because there 
was no cloud-free Landsat image in this month, only a small part of the 
water body was identified in the GSW product. The water image based 
on our newly proposed method showed enhanced spatial details of the 
river. 

Region 4 is also a section of the river. Some parts of the region are 
often inundated with water. The seasonal and inter-annual fluctuations 
show good consistency between the gap-filled and GSW water area time- 
series (Fig. 11), and show an upward trend. 

An example of gap filling on 23 February 2018 is shown in Fig. 11c. 
There are thin clouds in the Landsat 8 image, so we can visualise the real 
extent of water. It can be seen that, although most pixels are masked into 
clouds, the water body is reconstructed accurately. 

For the other two example regions (5 and 6, marked on Fig. 1), the 
gap-filled results also show good accuracy (see Figures S1 and S2 in the 
Supplementary Materials). 

3.3. Consistency with water level data 

The surface water area time-series before and after gap filling around 
(orange rectangle in Fig. 1) the water level point (marked by green star 
in Fig. 1), and water level data are shown in Fig. 12. It can be seen that 
the water area time-series before gap filling has almost no obvious time 
variations, whereas after gap filling, it shows obvious seasonal vari
ability and maintains a strong correlation with the water level. 

Fig. 13 shows the scatterplot of the water area (before and after gap 
filling) time-series and water levels obtained by linear interpolation. The 
coefficient of determination R2 in a polynomial fitting is 0.62 after gap 
filling. In Fig. 13a, three points (27 September and 13 October 2014, and 
18 October 2016) deviate significantly. Because of the date mismatch 
between the water image and the water level, and the linear interpolation 
operation on the water level data, the three points correspond to the two 
water level dates in Fig. 12. It can be seen that the relevant water levels 
have a large deviation in the sequence, which may be due to the relatively 
high water level (there was a flood in this basin in the summer of 2016), or 
it may have been generated during data processing (the satellite water 
level data contains some uncertainty, such as system noise). After 
removing the three points in Fig. 13a, the R2 improved to 0.79. 

Fig. 8. An example of gap filling using the same period water occurrence. A-c) Landsat 8 images (RGB rendering: near-infrared, red, green). D-f) Water detected from 
(a-c). g) Gap filling result on 22 May 2020. 
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Fig. 9. a) Water area time-series of the yellow rectangle (region 2) in Fig. 1.b) Fill percentage after removing areas where water occurrence was equal to 0 or 1.c) 
Gap-filled result of the example time indicated in (a). 

Fig. 10. As in Fig. 9, but for the purple rectangle (region 3) in Fig. 1.  

B. Bai et al.                                                                                                                                                                                                                                      



International Journal of Applied Earth Observation and Geoinformation 112 (2022) 102882

10

Fig. 11. As in Fig. 9, but for the green rectangle (region 4) in Fig. 1.  

Fig. 12. a) Water area and water level time-series of the orange rectangle (region 1) in Fig. 1. b) Fill percentage after removing areas where water occurrence was 
equal to 0 or 1. c) Gap-filled result of the example date indicated in (a). 
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3.4. Accuracy assessment 

The accuracy, recall, and precision of the gap-filled results from the 
gap water images constructed using different strategies are shown in 
Fig. 14. It can be seen that the accuracy of the gap-filled results was high 
in various situations. The average accuracy of gap filling using strategies 
that randomly add different clouds to different cloud-free images was 
0.98, while the average recall and precision were 0.90 and 0.85, 
respectively. When evaluating the gap filling results of the third strat
egy, the cloud proportion was also included to show that the gap filling 
accuracy had no definite relationship with this parameter. This is 
because the gap filling accuracy is related to many factors, such as the 
location of the cloud, density of the accurately classified historical water 
image time-series, and accuracy of the water classification. 

At the same time, we should also understand that the samples here 
are unbalanced, and the evaluation results are relative owing to the 
strategy of sample selection (Roberts et al., 2017; Wadoux et al., 2021). 

We also calculated the root mean square error (RMSE) and between 
the gap-filled water image and the original cloud-free water image, as 
shown in Fig. 15. The average RMSE and R2 of the gap filling task 
constructed by the strategy of randomly adding different clouds to 
different images was 0.14 and 0.73, respectively. The smalle the RMSE, 
the better the gap-filled effect, while the lager theR2, the better the gap- 
filled result. 

Fig. 13. Scatterplot of the water area and linearly interpolated water level. a) Original. b) Outliers removed.  

Fig. 14. Evaluation results of the gap filling task constructed using different strategies. a) Different cloud-free images with different clouds added. b) Different cloud- 
free images with same clouds added. c) Same image with different clouds added. 
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Fig. 15. RMSE and R2 of the gap filling task constructed using different strategies. a) Different cloud-free images with different clouds added. b) Different cloud-free 
images with same clouds added. c) Same image with different clouds added. 

Fig. 16. a) Relationship between the spatial neighbourhood radius and the gap filling accuracy. b) Ternary surface water image from 14 September 2015. c) Gap 
filling results of the green rectangle in (b) under different spatial neighbourhood radii. 
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4. Discussion 

4.1. The influence of spatial neighbourhood radius on gap filling. 

The radius of the spatial neighbourhood has a complex effect on the 
gap filling accuracy. Generally, the larger the gaps, the larger the spatial 
neighbourhood radius needed to search for clear pixels for the similarity 
calculation. For example, we plotted the relationship between the 
spatial neighbourhood radius and the accuracy of the gap-filled water 
image on 14 September 2015, as shown in Fig. 16. Because the image 
was covered by thin clouds, we could visually identify the extent of 
water; therefore, we manually selected some sample blocks under the 
cloud, and then randomly generated 2000 sample points for accuracy 
evaluation. Fig. 16a showed that the filling accuracy increased with an 
increase in the spatial neighbourhood radius. However, it should also be 
noted that setting a very large radius reduces the calculation speed and 
would introduce errors (see Fig. S3 in the Supplementary Material). 

When the clouds are small and the water has a narrow shape, a 
smaller neighbourhood radius could have a high gap filling accuracy, as 
shown in Fig, S4 in the Supplementary Material. 

In general, the selection of an appropriate spatial neighbourhood 
radius depends on the size of the clouds and water body. When filling 
time-series images, considering the various situations that may occur, a 
larger neighbourhood radius should be used. For example, a radius of 70 
pixels of Landsat 8 at 30 m spatial resolution was used in this study, and 
the filling result was acceptable. 

4.2. Potential applications 

The method proposed in this paper is also suitable for filling stripe 
gaps that exist in surface water extracted based on Landsat 7 Enhanced 
Thematic Mapper Plus (ETM+) SLC-off images, and gaps caused by 
coverage of ice, snow, etc. This provides the possibility of generating 
spatiotemporally continuous surface water. 

4.3. Limitations and opportunities 

The proposed method requires an accurate contaminated pixel mask 
and accurate water classification. In addition, if the cloud coverage is 
too high and the historical water images before or after the gap date are 
too far away, the gap filling error would increase. 

The proposed method can correct some classification errors (e.g., 
cloud shadows classified as water) in the gap water image when they 
occur in areas where the water occurrence equals 0 or 1. However, when 
errors occur outside these areas, the errors are retained, which affects 
the filling result by affecting the calculation of spatial neighbourhood 
similarity. 

The requirement of the proposed method on the number of accu
rately classified historical surface water image time series is to be able to 
synthesize water images without gaps after contaminated pixel masking, 
and the more the better. It means that the gap filling accuracy could be 
improved by adding data from other sensors, such as Landsat 7, and 
Sentinel-1 and -2. 

Recently, Mullen et al. (2021) proposed a cloud-filling approach 
using a statistical relationship between the inundation status of 
unmasked pixels and their inundation frequency (IF) value to infer the 
status of all pixels of the image based on their own IF value. This method 
has promising applications. In our future research, performance evalu
ation of different methods will be included. 

5. Conclusion 

The time-series surface water gap filling method proposed in this 
study is based on spatiotemporal neighbourhood similarity. After gap 
filling, the variations of surface water area time-series were consistent 
with water level data from satellite altimeters (the coefficient of 

determination R2 was 0.79), and presented more obvious seasonal 
characteristics. Quantitative evaluation showed that the average accu
racy, recall, and precision were 0.98, 0.90, and 0.85, respectively. 

When carrying out surface water monitoring tasks, implementing the 
proposed method could increase the utilisation of optical remote sensing 
images and improve the temporal resolution of surface water time- 
series, making it easier to reveal seasonal and annual variations in sur
face water. This method is implemented on the Google Earth Engine, 
which make it easy to conduct time-series calculations and is suitable for 
large-area applications. It could also be used to fill gaps in existing 
surface water datasets, such as GSW. 

6. Data and code availability: 

GEE link of results: 
https://code.earthengine.google.com/593bec4b2052f79f95e41c8 
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