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A B S T R A C T   

Wheat is susceptible to fungal infection and mycotoxin contamination during its cultivation period, under 
opportune environmental conditions. The presence of mycotoxins, such as deoxynivalenol and zearalenone, in 
wheat destined for feed and food can affect animal and human health. This study aimed to develop a machine 
learning algorithm to predict the risk levels of one or more mycotoxins in wheat on a regional basis in Europe 
using crop phenological data, weather data, and satellite images as input. A dataset was obtained with 11 years of 
mycotoxin monitoring data (2010–2020), including historical records of the concentration of deoxynivalenol, 
zearalenone, T-2 toxin and HT-2 toxin, fumonisins, aflatoxins, and/or ochratoxin A in wheat in Europe. This 
dataset was linked, based on year and grid (25 × 25 km), to wheat phenology data, weather data, and satellite 
image data. The complete dataset for the years 2010–2018 was split into a model training (80%) and an internal 
model validation set (20%). Data for the years 2019 and 2020 were used for external validation. The random 
forest (RF) algorithm was applied to train the model using the model training data. The model predicts the 
probability (low, medium, high) of wheat grown in a certain grid in Europe to be contaminated with at least one 
of the six mycotoxins under study. Results showed high prediction performance of the model: internal and 
external validation resulted in 0.90–0.99 prediction accuracy. Based on the data for the Netherlands (case study), 
satellite images showed to improve the overall model performance. The current model with its mycotoxin 
predictions can be used by stakeholders to increase logistics in the wheat supply chain and for risk-based 
monitoring, in this way contributing to improving the safety of wheat derived products, and improving food 
security. For future development and improvement of prediction models, more mycotoxin data with detailed 
locations of the cultivated crop are needed.   

1. Introduction 

Mycotoxins are among the most important food safety hazards, based 
on their presence in agricultural commodities and their potential health 
impacts (Gruber-Dorninger, Jenkins, & Schatzmayr, 2019; Miraglia, De 
Santis, & Brera, 2008). A recent study confirms the (earlier) FAO esti-
mate of 25% of mycotoxin occurrence being above European Commis-
sion and/or Codex threshold limits, while the prevalence of detectable 
mycotoxins is up to 60%–80% in all food and feed crops globally in 2020 
(Eskola et al., 2020). Mycotoxins can lead to acute poisoning symptoms 
and physical damage to animal (Bertero, Moretti, Spicer, & Caloni, 
2018) and human (International Agency for Research on Cancer (IARC), 
2012; Marroquín-Cardona, Johnson, Phillips, & Hayes, 2014; Mitchell, 
Riley, Egner, Groopman, & Wu, 2017). Some fungal species can produce 
more than one mycotoxin, and some specific mycotoxins can be 

produced by different fungal species. Indeed, co-contamination of 
agricultural commodities with multiple mycotoxins is frequently 
observed (Smith, Madec, Coton, & Hymery, 2016). Multi-mycotoxin 
contamination is, therefore, also expected in products destined for 
human and animal consumption (van der Fels-Klerx, Liu, & Battilani, 
2016). With climate change, the presence of mycotoxins in agricultural 
crops is expected to further increase (Tirado, Clarke, Jaykus, 
McQuatters-Gollop, & Frank, 2010; Van de Perre, Jacxsens, Liu, Dev-
lieghere, & De Meulenaer, 2015; van der Fels-Klerx, Liu, & Battilani, 
2016; Van der Fels-Klerx, Vermeulen, Gavai, & Liu, 2019). 

Wheat (triticum. aestivum) is one of the most important feed and food 
crops worldwide. Around 26 million hectares of common wheat are 
yearly grown in Europe (data from FAOStat, at http://faostat3.fao. 
org/home/E). Wheat yields are estimated to increase by about 20% by 
2030 as the global population increases (Bruinsma, 2003). Wheat can be 
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susceptible to fungal infection and mycotoxin contamination during its 
critical growing period (flowering to harvest), under opportune envi-
ronmental conditions, related to temperature, rain, and humidity. Given 
the frequent occurrence of mycotoxins in wheat, such as related to 
deoxynivalenol (DON) and zearalenone (ZEN), and its negative health 
and economic consequences, early prediction of the occurrence of my-
cotoxins in wheat is crucial to provide reliable and timely advice for 
cereal collectors and processors as well as food safety authorities. These 
stakeholders can use mycotoxin predictions to manage the contamina-
tion in wheat-based food and feed supply chains, and limit the 
contamination in wheat derived end products. 

Mycotoxin prediction models make use of weather data, crop 
phenology data, and in some cases also agronomical data. Weather 
variables such as relative humidity, temperature, and rainfall, have 
proven to impact the presence of Fusarium Head Blight in wheat (Birr, 
Verreet, & Klink, 2019; El Jarroudi et al., 2020; Xiao et al., 2020) and 
DON contamination in winter wheat (Liu, Manstretta, Rossi, & Van der 
Fels-Klerx, 2018). Phenological variables such as flowering date, harvest 
date, sowing date, as well as agronomic variables such as soil type, crop 
variety, and crop rotation, also have been shown to impact DON 
contamination in winter wheat (Liu, Manstretta, Rossi, & Van der Fels- 
Klerx, 2018; van der Fels-Klerx, Burgers, & Booij, 2010). Fungal infec-
tion in wheat usually results in changes in morphology, such as changes 
in the leaf color. Thus, satellite images derived from multi-source remote 
sensing have recently been investigated to reflect the wheat growth 
conditions, such as biophysical properties and disease stress (Chen, 
Wang, Yang, & Ma, 2017; Rokni & Musa, 2019). Some band values (Red, 
Green, NIR) and other vegetation indices (VIs) have been applied to 
monitor and/or predict plant diseases, such as bacterial leaf blight 
(Yudarwati, Hongo, Sigit, Barus, & Utoyo, 2020), powdery mildew 
disease (Zhang, Yuan, Nie, Wei, & Yang, 2014) and Fusarium Head 
Blight (Xiao et al., 2020). 

In previous studies aimed at developing prediction models for my-
cotoxins in wheat, different types of modeling have been applied. Till 
today, most studies have applied statistical (empirical) modeling using 
weather and agronomical variables as input (Prandini, Sigolo, Filippi, 
Battilani, & Piva, 2009). In addition, mechanistic modeling, based on 
the fungal infection cycle, has been used for predicting Fusarium spp. 
and DON contamination of wheat (Rossi, Giosuè, & Delogu, 2003; Rossi, 
Giosuè, Pattori, Spanna, & Del Vecchio, 2003). Only a few studies have 
applied machine learning (ML) model approaches for the prediction of 
mycotoxins. Recently, Liu et al. (2018) performed a comparison among 
an empirical model, a mechanistic model, and a Bayesian network (BN) 
model for the prediction of DON in wheat. The authors concluded that 
the highest prediction performance of the model could be obtained by 
using BN modeling as compared to empirical and mechanistic modeling, 
in particular, to predict the high DON contamination (high-risk level). 

Xiao et al. (2020) compared the Relevance Vector Machine (RVM) 
and the Logistic model for the prediction of Fusarium Head Blight in 
wheat. Authors reported that RVM performs well on a small number of 
samples, but the universality of parameters of this kind of model is not 
high, implying the parameters of the model will be different with 
changes in both time and space. They suggested further research should 
consider using deep learning techniques as well as a large dataset as 
input. Camardo Leggieri et al. (Camardo Leggieri, Mazzoni, & Battilani, 
2021) used an ML approach to predict aflatoxin B1 (AFB1) and fumo-
nisins (FBs) in maize, using cropping system factors as input variables. 
Their argument for applying ML was that conventional statistical 
methods were not suitable for the task at hand. 

This study aimed to explore the use of a machine learning algorithm 
for the prediction of the risk levels of mycotoxins in wheat on a regional 
basis in Europe, using weather data, crop phenological data, and satel-
lite images as input. To our knowledge, this is the first study that 1) 
predicts multi-mycotoxin contamination of a crop in the same model and 
2) incorporates satellite image data with weather and crop phenological 
data to predict the occurrence of chemical food safety hazards in crops. 

2. Methods 

2.1. Data 

Four types of data were used in this study: mycotoxin monitoring 
data, wheat phenology data, weather data, and satellite images. 
Considering the most sensitive stages of fungal infection and mycotoxin 
contamination of wheat, these data were selected for the period of wheat 
flowering till maturing each year. Data were pre-processed for the 
modeling steps and then combined into one dataset, by linking data 
based on grid (25 × 25 km) and year. 

2.1.1. Mycotoxin data 
Mycotoxin data used in this study include 11 years (2010–2020) of 

historical monitoring data for the presence of mycotoxins in wheat 
cultivated in Europe (3115 records in total). Six types of mycotoxins are 
included: DON, ZEN, T-2 toxin and HT-2 toxin (T2 + HT2), FBs, AFB1, 
and ochratoxin A (OTA). These data include a) field survey data for the 
presence of DON in wheat in the Netherlands (112 records) at 6 digits 
zip code level (van der Fels-Klerx, Burgers, & Booij, 2010; van der Fels- 
Klerx, Focker, De Rijk, & Liu, 2021), b) monitoring results in Europe 
from a grain trader association (185 records) at country level, and c) 
monitoring results from the Dutch official control program for animal 
feed, as far as concerns mycotoxins (2818 records), at country level. The 
field survey data (a) were collected via identical questionnaires over the 
entire study period, which were distributed among commercial farmers. 
Participating farmers were asked to record agronomic and wheat 
phenology information about their wheat field, and to collect a sample 
of 1 kg of wheat kernels collected from the combine at harvest of the 
field. Samples were analyzed at Wageningen Food Safety Research 
(WFSR) for the presence of DON, using LC-MS/MS with different limits 
of quantification (LOQ) for each mycotoxin. In addition, locations of 
wheat fields in the Netherlands were collected per year from 2013 to 
2020 from the platform PDOK (https://www.pdok.nl/) which provided 
high-quality geodata related to wheat fields. Data (b) were from one 
large grain trader organization covering monitoring results for myco-
toxins in wheat. Wheat samples were collected shortly after harvest in 
Europe. Samples were analyzed at commercial laboratories using mostly 
LC-MS/MS and some cases ELISA for the presence of several mycotoxins. 
In the course of the Dutch official control program for animal feed (c), 
every year, a predefined number of samples are collected from different 
feed ingredients, including unprocessed wheat. Samples are sent to 
WFSR for analyses of multiple mycotoxins, using LC-MS/MS.Obtained 
mycotoxin monitoring data from the three sources include the 
following information: sampling date, crop type (winter wheat in this 
case), country of origin (cultivation) of the wheat, specific location or 
postal code of the wheat, mycotoxin type, the respective limit of quan-
tification (LOQ) of the analytical method used for each mycotoxin (max 
LOQ for each mycotoxin could be applied as standard according to 
different requirements), and the mycotoxin concentration (in mg/kg). 
For each of the considered six mycotoxins in wheat, the European 
Commission (EC) legal maximum limit for aflatoxins, and respective 
guidance values for the remaining mycotoxins in feed were added to the 
dataset. The maximum limit for the presence of aflatoxins in wheat 
intended for animal feed was derived from Commission Regulation No 
574/2011, and the guidance values for the presence of the other my-
cotoxins in wheat as animal feed or cereal products were derived from 
Commission Recommendations (Commission Regulation, 2010; Euro-
pean Commission, 2006, 2013). Since there is no guidance value for the 
presence of FBs in wheat, the guidance value for maize was considered. 
The EC maximum limit for aflatoxins (0.02 mg/kg for AFB1) and the 
guidance value for the other mycotoxins (60 mg/kg for FBs, 8 mg/kg for 
DON, 2 mg/kg for ZEN, 0.25 mg/kg for OTA, 0.1 mg/kg for T2 + HT2) 
were linked to the respective mycotoxins. 

The majority (90%) of the monitoring results referred to mycotoxin 
concentrations that were below the respective LOQ of the analytical 
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methods used, and 99% referred to concentrations below the respective 
EC maximum limit or guidance value. Due to this unbalanced nature of 
the mycotoxin concentration data, the tenth of the respective maximum 
limit or guidance value for the mycotoxins were used as the threshold to 
keep the data more balanced for model development (another threshold 
or legislative limit could be applied based on different requirements). 
Mycotoxin concentrations below the respective LOQ1 were set at zero to 
calculate averages. The yearly average concentration of each mycotoxin 
in wheat and the corresponding contamination level were calculated at 
the grid level (25 km × 25 km) by using location information in the 
database (such as country, province, city, or postal code). The contam-
ination level of each mycotoxin was determined as three levels: low 
(≤respective limits of quantification (LOQ), set at zero), medium (>LOQ 
and < respective threshold value), and high (≥respective threshold 
value). 

For data description, the 11-years average concentration 
(2010–2020) of each mycotoxin in wheat grown in each country was 
calculated, and the corresponding contamination level (low, medium, 
high) was determined to describe the overall contamination condition 
over the 11 years at the country level. 

2.1.2. Crop phenology data 
Wheat phenology variables flowering dates (FD) and full maturation 

dates were estimated using the WOFOST (WOrld FOod STudies) model 
developed under the EU Monitoring Agricultural ResourceS (MARS) 
project (Supit & van der E, 2003). These two variables were calculated 
using the WOFOST outputs emergence date and temperature sum 
(TSUM) per grid cell (25 km × 25 km) from 2010 to 2020 in Europe. 
TSUM1 is the accumulated daily average temperature from wheat 
emergence until wheat flowering. TSUM2 is the accumulated daily 
average temperature from the wheat flowering till full maturation. The 
full maturation date was used as the proxy for the wheat harvest date 
(HD). JRC temperature data from the MARS project were used. Gridded 
TSUM1 and TSUM2 values were then used to estimate wheat FD (using 
TSUM1) and HD (TSUM1 + TSUM2) for each grid cell. FD and HD were 
further used as the critical time window for the selection of weather 
data, and in the case of the Netherlands, also satellite images data. 

2.1.3. Weather data 
Daily weather data were derived from the European Commission 

Joint Research Centre (JRC) in Europe for the period 2010–2020. Data 
covered various meteorological variables from weather stations inter-
polated to 25 km × 25 km grids (same grid cells as crop phenology data) 
and are available via the Agri4Cast Data Portal (agri4cast.jrc.ec.europa. 
eu/DataPortal/). The derived daily weather variables included: 
maximum air temperature (̊C) (Maxt), minimum air temperature (̊C) 
(Mint), mean air temperature (̊C) (Meant), sum of precipitation (mm) 
(Sump), mean vapour pressure (hPa) (Vp), and mean relative humidity 
(%) (RH) calculated from vapour pressure and saturation vapour pres-
sure (Allen, Pereira, Raes, & Smith, 1998). The daily weather data were 
used to calculate the weekly values of Maxt, Mint, Meant, Sump, and RH, 
for each week in the period FD to HD per grid. These weekly weather 
values per grid were used for model development. 

2.1.4. Satellite data 
Satellite images covering the sampling locations used in the field 

survey in the Netherlands were derived from Landsat 8 (L8) surface 

reflectance product (USGS Landsat 8 Collection 1 Tier 1 and Real-Time 
data OLI Raw Scenes) which provides long time-series spectral images 
with 16-day temporal resolution and 30 m spatial resolution including 9 
bands2. Locations in the two other mycotoxin monitoring datasets were 
at the country level, and thus not detailed enough to link with satellite 
images. Spectral images from different periods were selected and tested 
in the model, such as monthly median band values of images from FD to 
HD. The period which gave the highest prediction performance was used 
in the final model. Band values were recalculated at the center (30 m ×
30 m buffer zone) of wheat fields which were linked to the specific 
location of the wheat field in the Dutch mycotoxin monitoring dataset. 
Images data included 1840 records in total, which is the product of 112 
records of DON concentration at the field (zip code) level and the 
number of wheat fields in each zip code area. 

To reflect the growth conditions (crop biophysical properties and 
disease stress) of wheat, several original band values were selected (from 
band 1 to band 7) and three different vegetation indexes (VIs)3 were 
calculated, using band values, as spectral indicators. Calculated VIs 
included Normalized Difference Vegetation Index (NDVI), Green 
Normalized Difference Vegetation Index (GNDVI), and Normalized 
Difference Water Index (NDWI). NDVI and GNDVI can be used to 
quantify vegetation greenness or to assess photosynthetic activity; 
NDWI can be used to describe crop water status (Cárdenas, Valencia, 
Velásquez, & Gonzalez, 2018; Gao, 1996). These original band values 
and three spectral indicators were then used as input variables for 
further model development. 

The four datasets, being mycotoxin monitoring, crop phenology, 
weather, and satellite images, were linked per grid cell (25 km × 25 km 
grid) in Europe, per year (Fig. 1). 

2.2. Machine learning module 

For model development, the mycotoxin type (one out of the six 
mycotoxins) was selected as the input variable, and the contamination 
level, being one out of the three risk levels of low, medium, or high, per 
grid were provided as model output. Here, a low contamination risk 
means that all six mycotoxins in wheat in one grid are in the low 
contamination level; medium means that at least one mycotoxin is in the 
medium level (and the other ones in low or medium contamination 
level); and high means that at least one mycotoxin is in the high 
contamination level, i.e., above the upper threshold. 

A machine learning module was developed to predict the presence of 
the different mycotoxins in wheat at the grid level in Europe, in three 
levels for the likelihood of the contamination (low, medium, high) using 
pre-processed weather variables (see Section 2.1), crop phenology, and – 
in case of the Netherlands – also spectral indicators (see Section 2.1) as 
input. The full linked dataset was divided into three sets by year for 
model training, internal validation, and external validation. The data 
from the years 2010–2018 was split randomly into a training set (80%) 
for model learning and a testing set (20%) for internal validation. Data 
from the years 2019 and 2020 were used for external validation only, to 
test the model prediction accuracy. In the next sections, the methods are 
described in the order of model development. 

2.2.1. Model training 
The random forest (RF) algorithm was applied to train the model 

using the model training dataset. RF is an ensemble tree-based model 
which is widely used by data scientists to deal with spatial data (Biau & 

1 The respetive LOQs were different for each mycotoxins depending on 
analytical methods used and years. In this dataset, the following LOQ were used 
for each mycotoxin: DON (0.2 and 0.5 mg/kg), ZEN (0.05 mg/kg), OTA (0.002 
and 0.025 mg/kg), AFB1 (and 0.005 mg/kg), FBs (0.1mg/kg), T2+HT2 (0.04 
mg/kg). We use two LOQ for both DON and OTA to the keep variations of 
concentration. The impact of using two LOQ for one toxin on calculating the 
average value for the distribution of contamiantion level was found to be small. 

2 band 1 Visible (0.43–0.45 µm) 30 m, band 2 Visible (0.450–0.51 µm) 30 m, 
band 3 Visible (0.53–0.59 µm) 30 m, band 4 Red (0.64–0.67 µm) 30 m, band 5 
Near-Infrared (0.85–0.88 µm) 30 m, band 6 SWIR 1(1.57–1.65 µm) 30 m, band 
7 SWIR 2 (2.11–2.29 µm) 30 m. 

3 GNDVI = (NIR-GREEN) /(NDVI+GREEN), NDWI=(NIRSWIR) / (NIR+S-
WIR), NDVI = (NIR – REDd) / (NIR + RED). 

X. Wang et al.                                                                                                                                                                                                                                   

http://agri4cast.jrc.ec.europa.eu/DataPortal/
http://agri4cast.jrc.ec.europa.eu/DataPortal/


Food Research International 159 (2022) 111588

4

Scornet, 2016). First, all variables were used for the development of a 
model that gives predictions for Europe. Then, as a case study, the model 
was run using weather variables or satellite data only for the 
Netherlands to test the individual influence of these two different types 
of data on model performance. 

2.2.2. Model internal and external validation 
The predicted mycotoxin contamination levels on the grid level in 

Europe were internally validated using the model testing set. Addi-
tionally, for the Dutch case study, prediction results were validated with 
the Dutch data in the testing set. The model was then run with the input 
variables of the external validation set. The predicted model results for 
2019 and 2020 were compared with the analyzed mycotoxin data (per 
contamination level) in these two years, separately. Confusion metrics, 
accuracy, and generalization ability were used as evaluation criteria to 
evaluate the performance of the predictive model. Feature importance 
was calculated based on their importance (effect on the reduction of Gini 
impurity) for constructing the RF model (Menze et al., 2009). Feature 
importance refers to techniques that assign a score to input features 
based on how useful they are at predicting a target variable. The features 
for each node are selected with the criterion of Gini impurity, which 
indicates how the features of a dataset should split nodes to form the 
tree. If a feature contains “low risk” only from three risk levels (high, 
medium, and low), this feature greatly decreased the impurity of the 
split. For each feature, we can calculate how it decreases the impurity on 
average. 

3. Results and discussion 

3.1. Descriptive analysis: Mycotoxin contamination of wheat in 
2010–2020 

To describe the mycotoxin monitoring data used in this study, some 
examples of mycotoxin contamination levels and the 11-years average 
value of mycotoxin concentrations in wheat per grid in Europe in the 
period 2010–2020 are shown in Fig. 2. Countries in which wheat 
cultivation is common, i.e., France, Ukraine, and Germany (FAOStat), 
have medium contamination levels for some of the mycotoxins. Other 
countries with low wheat production, such as Denmark, Spain, and 
Turkey, show to have low mycotoxin contamination. FB, AFB1, and OTA 
usually do not occur in wheat grown in Europe. Indeed FB and AFB1 
were not detected in wheat in concentrations above their LOQ. OTA was 
presented in a very low yearly average of 0.7 µg/kg. The reason that 
these 3 mycotoxins were included in this study is that 1) they were 
usually analyzed together using one analytical method, 2) this model is 
expected to be applied in the future when more data might be available. 

3.2. Machine learning model with internal validation results 

The prediction results of mycotoxin contamination (in levels) in 
wheat in Europe are presented in Fig. 3 as risk maps. These maps were 
developed using geo-referenced grid points to present the predicted 
mycotoxin contamination results. The model developed in this study 
gives an overall prediction accuracy of 0.90 using the internal testing 
dataset. The prediction accuracy for the high, medium, and low 
contamination levels were 0.91, 0.94, and 0.92, respectively (Fig. 4). 
The reason for the incorrect prediction results in the confusion matrix 
may be some unseen patterns in the testing dataset that were not learned 
during the model training step. The high prediction performance (0.90) 
is acceptable in this case, because avoiding overfitting and underfitting 
of the training and testing data is necessary to improve the generaliza-
tion ability (meaning the stable prediction performance in the unseen 
data) of the model. The map with predicted mycotoxin levels (Fig. 3, 
left) has a similar pattern as the map with the measured mycotoxin 
concentrations (Fig. 3, right), which indicates a good spatial prediction 
performance of the developed model. Note that the size of the test 
dataset is less than 20% of the whole dataset (2010–2020) and, hence, 
the measured mycotoxin data in Fig. 3 (right) are not exactly similar to 
these data in the whole dataset (Fig. 2). 

3.3. Internal validation results for the Netherlands case using 2010 – 
2018 data 

The median band value of spectral images in August gave the highest 
prediction performance of all images between FD and HD. The reason 
could be that the contamination in wheat was more obvious in images 
near HD. Therefore, the median band values of spectral images in August 
(2003–2020) with a cloud coverage of less than 10% were used in the 
final model for mycotoxin prediction. Fig. 5a shows the prediction re-
sults for mycotoxin contamination (low, medium, high) in wheat in the 
Netherlands using satellite data only. The prediction accuracies for high, 
medium, and low mycotoxin contamination levels were 0.56, 0.49, and 
0.91, respectively. The total prediction accuracy of the model using only 
satellite data was 0.55. Due to the small amount of satellite data (1830 
records), the prediction accuracy is not as high as when using weather 
data (Fig. 5b). Using weather variables only, the total prediction accu-
racy of the model for the Netherlands was 0.77. The model was then run 
with both satellite data and weather variables, resulting in an overall 
prediction accuracy of 0.81. Thus, results show that adding satellite data 
to the weather data could improve the overall mycotoxin prediction 
accuracy, as well as the accuracy for each contamination level. 

The high prediction performance of the model emphasizes that 
mycotoxin contamination in wheat is mainly influenced by the weather. 

Fig. 1. Linking the four datasets at grid level in Europe per year. The variables from four datasets, being risk level of mycotoxins, weekly weather features, and 
different vegetation indexes, from flowering to harvest, were linked per grid cell (25 km × 25 km grid) in Europe, per year. * Maxt: maximum air temperature (̊C), 
Mint: minimum air temperature (̊C), Meant: mean air temperature (̊C), Sump: sum of precipitation (mm), Vp: mean vapour pressure (hPa), RH: mean relative 
humidity (%), NDVI: Normalized Difference Vegetation Index, GNDVI: Green Normalized Difference Vegetation Index, NDWI: Normalized Difference Water Index, 
NIR: near-infrared, FD: flowering date, HD: maturation date. 
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Several combinations of the weather features, e.g., precipitation in two 
or three consecutive days when the temperature is between 15 and 25 
℃, had been used as model input variables. Results showed that adding 
these variables did not largely improve the model performance. The 
reason might be that the mycotoxin data were generated at the country 
level whereas the weather data were generated at the grid level. Having 
access to mycotoxin data collected from a smaller area could work better 
with these specific feature combinations. Although weather has an 
important role in predicting mycotoxin contamination, other factors are 
known to be relevant too. For example, geolocation of the fields (Liu, 
Manstretta, Rossi, & Van der Fels-Klerx, 2018; Torelli, Firrao, Bianchi, 
Saccardo, & Locci, 2012), fertilization, irrigation, pest control (Munk-
vold, 2014), the use of fungicides against Fusarium spp. around wheat 
flowering, crop rotation, and the use of resistant wheat cultivars (Liu, 
Manstretta, Rossi, & Van der Fels-Klerx, 2018; Torelli, Firrao, Bianchi, 
Saccardo, & Locci, 2012; van der Fels-Klerx, Focker, De Rijk, & Liu, 
2021). However, an eight-year field survey in the Netherlands showed 

that DON levels in wheat could only be influenced to a little extent by 
agronomic practices (van der Fels-Klerx, Focker, De Rijk, & Liu, 2021). 
Additionally, these field specific (agronomic) information are hardly 
available to the scientific community for model development and can 
only be collected via field surveys with wheat farmers. Also, when the 
models are used in practice, this information is not often available to 
collectors, buyers, and food safety authorities, so input parameter values 
are unknown. The largely available mycotoxin monitoring data from the 
cereal collectors or national monitoring programs often also lack 
detailed sample location and/or sampling time. Since sample location 
and sampling time are the two linking pins between mycotoxin detection 
data and all other prediction variables, such as weather and satellite 
images, this information is very important to register in the future. 

To our knowledge, the current study is the first one utilizing satellite 
images for multi-mycotoxin predictions. Many studies have paved the 
way to identify plant diseases with high resolution satellite images. Lin 
and co-authors indicated that the high resolution multispectral imagery 

Fig. 2. Average concentration of specific mycotoxin (mg/kg) (deoxynivalenol (DON), zearalenone (ZEN), T-2 toxin (T2) and HT-2 toxin (HT2), fumonisins (FBs), 
aflatoxin B1 (AFB1), and ochratoxin A (OTA)) and risk level in wheat between 2010 and 2020 in Europe. Levels considered are low (<respective limits of quan-
tification (LOQ)), medium (≥LOQ and < respective threshold), and high (≥respective threshold). 
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with proper classification techniques can be a useful tool for mapping 
powdery mildew in winter wheat (Yuan et al., 2014). Satellite images 
have shown large potential in accurately detecting and quantifying the 
incidence of wheat streak mosaic virus over large areas in the United 
States (Mirik et al., 2011). This type of data offers a repeatable and low 
cost solution during the wheat growing season. Satellite images with 
high spatial and temporal resolution can also provide more accurate 
wheat morphology, such as leaf color, and wheat phenology informa-
tion, for specific fields. 

Table 1 presents the twenty most important features of the prediction 
model. The feature “myco_zearalenone” showed the highest feature 
importance. The detection ratio of high, medium, and low levels of 
zearalenone in wheat is 0: 0.15: 0.85. In comparison, the detection ratio 
for ochratoxin A is 0.05: 0.04: 0.9. As compared to the feature 
“myco_ochratoxin A”, the feature “myco_zearalenone” only contains 
medium and low risk levels, and it could greatly decrease the impurity of 
the split, resulting into a higher feature importance than the feature 
“myco_ochratoxin A”. From the six considered mycotoxins, ZEN, DON, 

and AFB1 were the most important mycotoxins for predicting the 
probability of co-contamination in one grid. From the weather variables, 
the sum of daily average temperature in the weeks 18, 19, and 35, the 
average of daily minimum temperature in week 19, the average of daily 
vapor pressure in week 18, 19 and 23, the sum of daily precipitation in 
week 18 and 35, and the average of daily relative humidity in week 18 
and 21, were the most important ones. This result indicates, consistent 
with existing literature, that weather features around wheat flowering 
(FD) and around wheat maturation (HD) play an important role in the 
model. The date of wheat flowering (FD) and wheat maturation (HD) 
were calculated using the WOFOST model which has been applied 
operationally over the last 28 years as part of the MARS (Monitoring 
Agriculture with Remote Sensing) crop yield forecasting system (de Wit 
et al., 2019). The WOFOST model has been validated using the agro- 
phenological database, which contains >48,000 observational data re-
cords, with the key phenological stages of emergence, anthesis, and 
maturity, for winter soft wheat across Europe (Ceglar et al., 2019). The 
impact of delay in HD was not analyzed in our study, but Edwards and 

Fig. 3. Comparison of mycotoxin contamination levels, representing the probability of having at least one or more mycotoxins, in wheat in Europe in the period 2010 
– 2018: Predicted level (left) versus level based on analyzed mycotoxin concentration. The colour of dark blue, light blue, and white represents, respectively, the high 
risk, medium risk, and low probability of the grid being contaminated by at least one mycotoxin (out of the six mycotoxins of deoxynivalenol (DON), zearalenone 
(ZEN), T-2 toxin (T2) and HT-2 toxin (HT2), fumonisins (FBs), aflatoxin B1 (AFB1), and ochratoxin A (OTA)). (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.) 

Fig. 4. Confusion matrix (left), presenting internal model validation results using the test dataset (2010–2018) to predict the contamination level (low = 0, medium 
= 1, high = 2) of mycotoxins in wheat in Europe per grid, between 2010 and 2018. Normalised matrix (right) indicates the prediction accuracies for the high, 
medium and low contamination level. The horizontal axis represents the predicted levels and the vertical axis represents the actual levels for comparison. 
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Fig. 5. a). Internal validation results of predicted DON contamination levels in wheat in the NL using satellite data only as predictor. Overall prediction accuracy was 
0.55. b). Internal validation results of predicted DON contamination levels in wheat in the NL using weather data only. Overall prediction accuracy was 0.77. c). 
Internal validation results of predicted DON contamination levels in wheat in the NL using weather data and satellite data. Overall prediction accuracy was 0.81. The 
horizontal axis represents the predicted levels (low = 0, medium = 1, high = 2) and the vertical axis represents the actual levels for comparison. 
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Jennings (2018) concluded that harvest delay (e.g. due to rainy 
weather) could result in increased DON and ZEN concentration of 
wheat. 

3.4. External validation results of mycotoxin risk map in Europe in 2019 
and 2020 

Fig. 6 presents maps comparing the historical mycotoxin contami-
nation and the predicted mycotoxin contamination using monitoring 

data in 2019 and 2020 (external validation). The map of predicted re-
sults almost overlapped with the map of monitoring data in 2019. The 
mycotoxin prediction accuracy of the model for the year 2019 was 0.99, 
and the accuracy in the year 2020 was 0.90. The accuracy of 0.90 in 
2020 can be explained by the prediction performance being good for the 
low risk level, but so not good for the medium and high risk levels. The 
reason behind the lower prediction accuracy in 2020 as compared to 
2019 may be some unseen patterns in 2020 that were not learned by the 
model training using data in 2010–2018. The solution could be to extend 
the training dataset (adding data in more years) to facilitate the model 
learning as many patterns as possible. In addition, when a larger dataset 
would be available, deep learning could be applied to improve the 
generalization ability of the model. 

These results approved that machine learning algorithms can pro-
vide good prediction performance for the presence of mycotoxins in 
crops. A recent study of Camardo Leggieri and co-authors (Camardo 
Leggieri et al., 2021) concluded that the use of deep neural network 
algorithms to predict AFB1 and FBs in maize gave an accuracy of more 
than 75%, outperforming the weather-based mechanistic models AFLA- 
maize and FER-maize. Their argument for applying ML was that con-
ventional statistical methods were not suitable for the task at hand. A 
combined approach of using mechanistic and Bayesian network 
modeling also showed high prediction accuracy for aflatoxins and 
fumonisins in Serbian maize (Liu et al., 2021). The obtained improve-
ment in the above-mentioned studies is partly because machine learning 
algorithms can better deal with unbalanced datasets than statistical and 
empirical models. 

The machine learning algorithm explored in this study predicts the 
probabilities of finding all mycotoxins concentration at low, at least one 
mycotoxin at medium, and at least one mycotoxin detection at the high 
contamination range at the regional scale in Europe with a high 

Table 1 
Twenty most important features. Variables were sorted based on their 
importance on the reduction of impurity in each tree.   

Feature importance 

Myco_Zearalenone  0.067 
Temperature_Avg_Sum_35  0.045 
Temperature_Min_19  0.032 
Vaporpressure_19  0.03 
Myco_Deoxynivalenol (Don)  0.029 
Precipitation_Sum_35  0.022 
Vaporpressure_23  0.018 
Relativehumidity_18  0.017 
Temperature_Avg_Sum18  0.016 
Relativehumidity_21  0.014 
Temperature_Avg_Sum_19  0.014 
Temperature_Avg_19  0.013 
Temperature_Max28  0.013 
Myco_Fumonisin B1  0.013 
Vaporpressure_18  0.013 
Temperature_Max_19  0.013 
Precipitation_35  0.012 
Myco_Aflatoxin B1  0.012 
Vaporpressure_34  0.012  

Fig. 6. a). Mycotoxin contamination levels in 2019 in Europe, b). Predicted mycotoxins contamination levels in 2019 in Europe, c). Mycotoxin contamination levels 
in 2020 in Europe, d). Predicted mycotoxin contamination levels in 2020 in Europe. The colour of dark blue, light blue, and white represents the high risk, medium 
risk, and low risk (level) of the location being contaminated by at least one mycotoxins. (For interpretation of the references to color in this figure legend, the reader 
is referred to the web version of this article.) 
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prediction accuracy. These prediction results provide buyers, collectors, 
and food safety authorities assistance in the management of mycotoxins 
in the wheat supply chain and risk-based testing. Given EC regulation 
2017/625, food safety authorities need to apply more and more risk- 
based control (European Union, 2017). Regions with a predicted me-
dium or high mycotoxin contamination level can be sampled and tested 
for the presence of mycotoxins more intensively than regions with a low 
predicted mycotoxin contamination level. The contamination level 
represents the probability of one or more of the six major mycotoxins 
being present, given the fact multiple mycotoxins are analyzed in one 
sample, using LC-MS/MS or other instrumental methods, in govern-
mental monitoring programs. Collectors and buyers of wheat also can 
use the model predictions for deciding on testing frequencies, and they 
can use the predictions for routing and logistics in their wheat supply 
chain. 

The case study on the prediction of DON contamination levels, based 
on data from the Netherlands, with the use of satellite data, in addition 
to weather data, shows the great potential of using satellite images in 
machine learning. When future more detailed satellite images become 
available, this provides a great asset to further improve the prediction 
models based on open source data (crop phenology, weather, and sat-
ellite). The availability of mycotoxin monitoring data, with detailed 
information on the location of crop cultivation, is most hindering in this 
regard, and thus the collection of such data should be prioritized. 

4. Conclusions 

This study used machine learning algorithms to predict the proba-
bility of one or more mycotoxins being present in wheat in Europe at the 
regional level. As a case study, the use of satellite images for the pre-
diction of deoxynivalenol contamination in wheat in the Netherlands 
was tested as well. Results show high prediction performance of the 
Random forest algorithm, using weather data and wheat phenology as 
input. Internal validation showed 0.90 prediction accuracy, and external 
validation showed 0.90–0.99 prediction accuracy. Using satellite images 
only to predict deoxynivalenol contamination levels in wheat in the 
Netherlands resulted in average model performance, but combined with 
the weather data, it resulted in good prediction performance. It can be 
concluded that the use of machine learning algorithms for mycotoxin 
prediction in risk levels at the regional level in Europe provides good 
prediction results. Such models can be used by collectors, traders, and 
food safety authorities for logistics in the wheat supply chain, improved 
mycotoxin control, and risk-based testing. The use of satellite data is 
promising and needs to be explored with more data in future studies. 
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