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• Fish recruitment and habitat conditions
are studied in 46 river restoration pro-
jects.

• Flow conditions and lateral connectivity
are essential for young riverine fishes.

• Multiple spatial scales of habitat heteroge-
neity affect both abundance and diversity.

• There is no one-size-fits-all design to re-
store large rivers for fishes.

• River restoration projects should be com-
plementary to serve the entire fish com-
munity.
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 With a sixthmass extinction looming and freshwater biodiversity declining at unprecedented rates, evaluating ecolog-
ical efficacy of river restoration efforts is critical in combatting global biodiversity loss. Here, we present a comprehen-
sive study of the functioning forfishes of 46 river restoration projects in the river Rhine, one of theworld'smost heavily
engineered lowland rivers. Floodplains with permanent, either one- or two-sided lateral connectivity to themain chan-
nel, favour total fish abundance, and are essential as nursery areas for riverine fishes. Habitat heterogeneity had a
strong positive effect on species richness but was negatively related with fish abundances. However, the effects of en-
vironmental variables varied between ecological groups and spatial scales. Surprisingly, richness of critical rheophilic
fishes declinedwith large-scale habitat heterogeneity (~1000m), while it increased at small scales (~100m), possibly
because of the presence of unfavourable habitats for this ecological group at larger scales. Clearly, there is no one-size-
fits-all design for river restoration projects.Whether a river section is free-flowing or impounded dictates the scope and
efficacy of restoration projects and, within a river section,multiple complementary restoration projectsmight be key to
mitigate freshwater fish biodiversity loss. An essential element for success is that these projects should retain perma-
nent lateral connection to the main channel.
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1. Introduction

Our planet is in themiddle of a biodiversity crisis, with species numbers
declining faster than at any time in human history (Barnosky et al., 2011;
Cowie et al., 2022). Nowhere is this decline more severe than in freshwater
ecosystems (Sala et al., 2000; Harrison et al., 2018; Reid et al., 2019),which
cover 2.3 % of the Earth's surface, but contain over 10 % of the world's spe-
cies, a quarter of all vertebrate species, andmore than half of all fish species
(Reid et al., 2019; Deinet et al., 2020; Eschmeyer et al., 2022). At present,
nearly a third of all freshwater fish species are threatened with extinction,
and abundances of specialised migratory fishes, such as salmons
(Salmonidae), sturgeons (Acipenseridae) and eels (Anguillidae), have
even declined by >75 % over the last 50 years (Deinet et al., 2020).

Rivers belong to the most affected freshwater ecosystems globally, be-
cause historically, human societies modified them for the purpose of
flood safety, energy production, irrigation, and navigation. As a result,
only a third of all large rivers still flow freely from source to sea (Grill
et al., 2019), and an estimated 1million barriers in the form of hydropower
plants or dams fragment European rivers (Belletti et al., 2020). Further-
more, over a third of the world's wetlands and floodplains have been lost
through drainage, conversion, excessive irrigation, and river normalisation
and embankment since the 1970's (Tockner and Stanford, 2002; Gardner
and Finlayson, 2018). This resulted in the loss of important longitudinal
and lateral connectivity within river ecosystems, and in the degradation
or complete loss of essential habitats for healthy river fish communities
(van Puijenbroek et al., 2019; Su et al., 2021). These river modifications
have contributed to a homogenisation of the world's river fish faunas, and
hence to an overall decline of fish biodiversity (Villéger et al., 2011;
Deinet et al., 2020; Su et al., 2021). Other imminent threats to the diversity
and abundance of river fishes are: the introduction of invasive alien species
(Lusk et al., 2010; Clavero et al., 2013; Gallardo et al., 2016; Pyšek et al.,
2020); damaging and unsustainable fishing practises (McIntyre et al.,
2016); pollution with untreated waste (IPBES, 2019); light, noise and
microplastic pollution (Reid et al., 2019); and the impacts of climate change
(Poff et al., 2012; Barbarossa et al., 2021).

Most river fishes rely on a sequence of inter-connected functional habi-
tat types to complete their life history (Van Looy et al., 2019; Stoffers et al.,
2022). Anadromous and catadromousfishes that have spawningmigrations
between seas and (upstream) rivers are particularly sensitive to the pres-
ence of longitudinal barriers (Parrish et al., 1998; Winemiller et al.,
2016), whereas many sensitive rheophilic (flow-preferring) fish species
are bound to the lateral connectivity of lowland rivers with their flood-
plains and wetlands, which they use as spawning and/or nursery habitat
(Birnie-Gauvin et al., 2017; Stoffers et al., 2021). The protection and resto-
ration of such critical (nursery) habitats is therefore essential for the recov-
ery of river fish communities, and can be achieved through barrier removal
and reconnection to wetlands and floodplains (Tickner et al., 2020).

With this aim, many diverse river restoration initiatives have been
realised globally (Bernhardt and Palmer, 2011). In Europe alone, over
1400 river restoration projects in 31 countries have been implemented
over the last 30 years (Environment Agency, 2022), aided by national and
European environmental directives such as the EU Water Framework and
Nature Directives (Szałkiewicz et al., 2018).Many river restoration projects
have however failed to achieve the expected recovery of fish communities,
causing global concern about their efficacy (Palmer et al., 2010; Bernhardt
and Palmer, 2011; Wohl et al., 2015). For river restoration to be effective
for fishes, it is essential to understand fishes' environmental requirements
in terms of spatial scale and organisation of essential (micro)habitats for
shelter, food and spawning (Schlosser, 1995; Van Looy et al., 2019;
Stoffers et al., 2022). The fact that the spatial scale of habitat use varies
with species and mostly increases with fish size further complicates effec-
tive management of (future) river restoration projects (Wohl et al., 2015;
Wolter et al., 2016; Polvi et al., 2020).

Especially large temperate lowland rivers, such as the Mississippi, Dan-
ube, Rhine, and Murray-Darling rivers, have experienced and continue to
face huge anthropogenic pressures (Su et al., 2021). Therefore, knowledge
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of the ecological functioning of river restoration project in such modified
rivers is critical for implementing actions to combat global freshwater bio-
diversity loss (Tickner et al., 2020), but is largely inadequate. Here, we pro-
vide thefirst large-scale evaluation of the ecological efficacy as nursery area
for riverine fishes, of 46 river restoration projects in three branches of the
lower river Rhine. We introduce a novel approach, explicitly linking the ef-
fect of fish habitat to biodiversity and abundances of young-of-the-year
(YOY) riverine fish communities at three relevant spatial scales. Our ap-
proach uncovers generic processes essential for the successful recruitment
of riverine fishes, which are applicable for the effective restoration of mod-
ified lowland rivers around the world (Arlinghaus et al., 2016; Stoffers
et al., 2022). With a potential sixth mass extinction looming (Barnosky
et al., 2011; Cowie et al., 2022), studies contributing to the preservation
of riverine fish biodiversity and evaluating the ecological efficacy of river
floodplain restoration are of eminent importance.

2. Methods

2.1. Study area and sampling strategy

With a length of 1230 km and a catchment area of 220,000 km2, the
river Rhine is the second largest river system in Central and Western
Europe (Wantzen et al., 2022). This large lowland river originates in the
south-eastern Swiss Alps, and flows via France and Germany through the
Netherlands before reaching the North Sea. After entering the
Netherlands, the river Rhine splits into three branches: the river Waal (me-
dian annual discharge: 1473 m3·s−1), IJssel (317 m3·s−1), and Nederrijn/
Lek (160 m3·s−1) (Waterinfo, 2021). The rivers Waal and IJssel are free
flowing, whereas the river Nederrijn/Lek contains three weir complexes
to manage water levels for water supply and navigation purposes, hereby
limiting free water flow (Fig. 1A).

Over 60 floodplain restoration projects were realised in these rivers
since the 1990's (approximately one per 5 kmof river), aiming at improving
flood protection and habitat quality (Rijke et al., 2012). All projects are out-
side of residential areas, and the majority of them are open to the public.
There have been no marked differences in visitor numbers during the sam-
pling period due to the COVID-19 pandemic or other developments, and
therefore it is unlikely that this has impact the outcome of our study.
Based on their morphology and connectivity with the main channel, resto-
ration projects can be divided into two-sided connected channels (2SC),
one-sided connected channels (1SC), tidal channels, and isolated waters.
In this study, we evaluated the nursery function for riverine fishes of 46
of these restoration projects and 26 control sites (at the shoreline) in the
lower river Rhine (Figs. 1B; 3A). This large-scale evaluation study took
place in July from 2017 to 2020. To account for yearly variation in environ-
mental conditions and river discharge patterns, the vastmajority of the pro-
jects (41 out of 46) were evaluated at least 3 times in this period (overview
in Suppl. materials A1). Sampling strategies consisted of monitoring YOY
fish community and characterising the environment on three relevant spa-
tial scales. Sampling covered all different habitat types that could be visu-
ally identified to obtain a data set that is representative for the restoration
project.

2.2. Data collection

2.2.1. Fish community sampling
We collected YOY fish community data from 1253 sampling sites. To

sample a wide variety of aquatic environments a combination of two sam-
pling techniques was used: seine netting and electrofishing. We used
seine nets of 25 and 75 m length, 3–4 m depth, and with a maximum
stretched mesh size of 12 mm. Generally, seine netting was used in non-
to slow-flowing habitats with low structural complexity. Sampling was con-
ducted by at least two persons, one guiding the net on the shore and a sec-
ond person wading (25-m seine net) or navigating a small boat through the
water (75-m seine net). Electrofishing was performed from a boat (contin-
uous DC 6A, 200 V) or wading (pulsed DC 3A, 12 V), depending on the



Fig. 1. Branches of the river Rhine in the Netherlands with spatial scales for floodplain restoration project evaluation. (A) Geographical location of the river branches with
weirs indicated in red. (B) River level with floodplain restoration project types indicated with green triangles (2SC), red circles (1SC), turquoise squares (isolated water) and
purple stars (tidal channel). Smaller white circles show control sites (river shoreline). (C) Project level with an example of the geographical position of several individual res-
toration projects within the river Waal. (D) Sample level with the restoration project of Hurwenen (2SC) and a corresponding control site (river shoreline) as example. The
black line shows the outline of the project at average river discharge levels. Blue (seine net) and yellow (electro) areas indicate individual sampling sites.
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habitat type. In general, waded sampling was used in narrow, shallow,
standing waters with macrophytes, whereas electrofishing by boat was
used in deeper, flowing waters with high structural complexity. For both
methods, sample surface of the transect was obtained by multiplying tran-
sect area width by its length. Average surface area per seine net sample
was 580 m2, and for electrofishing 114 m2.

The collected fishes were kept in plastic tubs until sampling was com-
pleted. Representative subsamples were taken when fish numbers caused
handling time of the sample to interfere with fishes' health. This generally
occurred when total fish numbers exceeded 200. Fish were identified to
species level, measured to the nearest mm (total length), and released
again.
2.2.2. Environmental sampling
For each sample site, we characterised 46 habitat variables on three im-

portant spatial scales for YOY fish: sample level (~0.1 km), project level
(~1.0 km) and river (stretch) level (~10 km) (see also Fig. 1). We collected
variables related to water quality and local habitat (sample),
hydromorphology (project and river), habitat heterogeneity (sample and
project), shoreline habitat (sample and project), and daily water levels (pro-
ject). Many of the habitat variables were measured during field sampling,
while shoreline habitat and data on habitat heterogeneity were retrieved
from satellite images and aerial photographs. An overview of all habitat
variables collected in this study, as well as a detailed description on collec-
tion methods, can be found in Supplementary materials.
2.3. Data analysis

2.3.1. Fish community response variables
Given the focus on the nursery function of restoration projects, species-

specific cut-off sizes were used to select only YOY fishes for analysis (Suppl.
materials A6). Size limits were derived from length-frequency distributions,
consultation with fish ecology experts from the Netherlands, and a litera-
ture study by Stoffers et al. (2022). Hybrids and other fishes that could
not be identified to species level (0.007 % of total catch) were removed
prior to the analysis.

To understand the functioning of restoration projects for different as-
pects of the YOY fish community, we divided fish species into limnophilics
(preference for stagnant water bodies), eurytopics (no specific flow prefer-
ence), rheophilics (preference for flowing water), and critical rheophilics.
Fish species were classified in these ecological groups according to Aarts
et al. (2004) and van Treeck et al. (2020). For the critical rheophilics
group we removed ide (Leuciscus idus), because this species is generally
thought to be a less-critical rheophilic species in terms of habitat use in
the lower river Rhine (Stoffers et al., 2021; Stoffers et al., 2022), while it ac-
counted for almost 85 % of all rheophilic catches (Suppl. materials A6). For
all ecological groups and for the community as a whole (all species) we cal-
culated a set of four fish community response variables. Per sampling site,
we calculated abundances (both total number of fish and number per 100
m2) and species richness (α-diversity). For each restoration project we cal-
culated overall species richness (γ-diversity), as well as Whittaker's species
turnover rate (β-diversity) as a measure of the differentiation of species
richness amoung samples within a project (Table 1). An example of these
four community response variables in a project setting is given in Fig. 2
(for the 2SC of Hurwenen in the river Waal).
Table 1
YOY fish community response variable information.

Response variable Description

Abundances Total number of fish per sample
α-Diversity Species richness per sample
β-Diversity Differentiation of species richness amoung samples within a project
γ-Diversity Total species richness over all samples of a project
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2.3.2. Restoration project evaluation
The functioning of different types of restoration projects as nursery

areas for riverine fishes was assessed for communities as a whole (including
all species), and for rheophilic, eurytopic, and limnophilic fishes. We
assessed 2SCs, 1SCs, tidal channels, isolated waters, and control sites in
the main channel, and performed separate analyses for the seine and elec-
trofishing techniques. First, we calculated β- and γ-diversity per sampling
year for each restoration project and control site, as well as average abun-
dances (fish per 100 m2) and α-diversity. Then, fish responses were
summarised over all years for each project type (mean ± se), and means
were tested for significant differences between project types with a
Kruskal–Wallis H test (significance level α = 0.05). Lastly, Dunn's test
with Bonferroni correction was used to test for pairwise comparison be-
tween project types. These analyses were performed with R packages
(rstatix v0.7.0 and agricolae v1.3.3) running on RStudio (R Core Team,
2021).

2.3.3. Habitat variable selection
Prior to the analysis, data exploration was carried out following the pro-

tocol described in Zuur et al. (2010). Herein, habitat variables were
checked for extreme values (large and small) and for pairwise correlations
with a correlationmatrix based on Kendall's correlation coefficient (R pack-
ages: stats v4.0.2 and corrplot v0.90). Selection of habitat variables was
based on three criteria: (1) Kendall correlation between variable pairs
was <0.3, (2) a variable could only have one correlation >0.2 with another
variable, and (3) when two or more variables were correlated, we retained
the one with the clearest ecological interpretation and/or meaning for
floodplain restoration project management. The correlation matrix after
habitat variable selection can be found in Supplementary materials A7.
Table 2 shows the final set of 20 habitat variables including description
and information on assessment and data source. This set of habitat variables
was used for the multivariate analysis of fish-habitat relationships (see
Suppl. materials A11) and habitat requirements modelling.

2.3.4. Habitat requirements modelling
2SCs and 1SCs have the highest potential to function as nursery area for

riverine fishes. For the habitat requirements modelling we therefore only
used data on these two restoration project types. Modelling of fish-habitat
relationships took place on the lowest possible aggregation level to ensure
highest levels of detail. This means that depending on the spatial scale on
which the community response variable was obtained, the scale on which
we modelled was different (Table 1). For instance, fish abundances and
α-diversity were modelled on sample level, whereas habitat requirements
in relation to β-diversity and γ-diversity responses were assessed on restora-
tion project scale.

Bayesian hierarchical models, using integrated nested Laplace approxi-
mations (INLA) (Rue et al., 2009; Zuur et al., 2017; Zuur and Ieno, 2018),
were used to predict habitat requirements for the 12 fish community re-
sponse variables. To find optimal models for each response variable, a step-
wise modelling approach with INLAstep (R package: INLAutils v0.0.5) in
INLA (R package: INLA v21.02.23) was used to identify: (1) data distribu-
tion type, (2) important habitat variables, and (3) non-linear habitat effects.
Model validation was done according to Zuur et al. (2017). For each final
model we visualised individual parametric effects of the fixed and random
effects (with 95 % credible intervals) on the response variable. A detailed
description of the stepwise model selection and validation procedures, as
Spatial scale Calculation

Sample Abundance = number of fish (and number of fish per 100m2)
Sample α = number of species
Project Whittaker's species turnover: βW = (γ/α) − 1
Project γ = number of unique species



Fig. 2. An example of the quantification of fish response variables for the floodplain restoration projects (2SC) of Hurwenen.
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well as a list of the optimal Bayesian models, can be found in Supplemen-
tary materials A8.

3. Results

From 2017 to 2020, we collected fish community data for 46 floodplain
restoration projects and 26 control sites (river shoreline) in the lower river
Rhine, resulting in 1253 sampling events. Using seine nets and electrofish-
ing we sampled over 43 ha of potential nursery habitat and recorded
508,284 YOY fishes belonging to 38 species (overview in Suppl. materials
A6).

3.1. Restoration project evaluation

Fishwere recorded at each restoration project type, and species richness
and abundances varied greatly (Fig. 3B). Highest overall fish abundances
were found in 1SCs and 2SCs (Fig. 3B), both for seine netting and electro-
fishing (see Suppl. materials A12). Eurytopic abundances were on average
3 to 18 times lower at control sites and tidal channels than at 1SCs and
2SCs. Rheophilic fishes were found in significantly lower numbers than eu-
rytopics (Suppl. materials A12) and preferred 2SCs as nursery area over
1SCs, whereas highest abundances of eurytopics were found in 1SCs.

Species richness patterns of restoration project types were similar to
those of fish abundances, with highest species richness in 1SCs and 2SCs
(Fig. 3; Suppl. materials A12). Both eurytopic α- and γ-diversity was on av-
erage twice as high in 2SCs and 1SCs compared to tidal channels, isolated
water bodies and control sites in the main channel. Eurytopic α-diversity
differed most across 2SCs and 1SCs, as β-diversity was highest here.
Rheophilic species richness (both α- and γ-diversity) was highest in 2SCs.
In contrast to the other ecological groups, α-diversity of rheophilics was
not significantly different between control sites and 1SCs (Suppl. materials
A12). Rheophilic β-diversity was highest in both 1SCs and 2SCs.

3.2. Habitat requirements modelling

3.2.1. Abundances
YOY fish abundances declined with increasing amount of shade and

coarseness of the substratum at sample level (Fig. 4; Suppl. Materials B).
On project level, abundances also declined but with increasing river-
floodplain connectivity. A non-linear effect on abundances was observed
for project shallowness (depth < 1 m) and shoreline diversity for all fishes,
as well as for age and shoreline diversity for rheophilics. For abundances of
critical rheophilic species such as nase (Chondrostoma nasus), dace
(Leuciscus leuciscus), and barbel (Barbus barbus) we found an increase with
small-scale shoreline diversity (50 m). Shoreline diversity on project level
was not important. Increasing percentages of project shallowness and the
amount of river shoreline habitat available within a 10-km radius (river
5

shorelength) appear to be important in explaining critical rheophilic
abundances.
3.2.2. Local species richness
Species richness at sample level (α-diversity) of the fish community in-

creased with larger substratum sizes, increased organic matter coverage
and water chlorophyll concentrations (Fig. 4; Suppl. Materials B). At the
river scale, river shorelength had a positive effect on the α-diversity of all
fishes but was negative for rheophilic species. For both rheophilics and crit-
ical rheophilics, an increase of 2SC duration and project shallowness (depth
< 1 m) coincided with increasing local species richness, whereas with in-
creasing project age and shoreline diversity, α-diversity decreased for
rheophilic fishes. For critical rheophilic species however, we observed an
increase in α-diversity for higher local shoreline diversity. Local species
richness of critical rheophilic fishes was higher with increasing substratum
sizes and larger durations of submergedwoody vegetation six months prior
to sampling.
3.2.3. Species richness differentiation
The differentiation of species richness among habitats within a project

(β-diversity) for thefish community increasedwith restoration project shal-
lowness and shoreline diversity (Fig. 4; Suppl.Materials B). Shoreline diver-
sity also had a positive effect on the β-diversity of critical rheophilic species,
but β-diversity of this groupwas negatively affected by project shallowness.
Furthermore, increasing river-floodplain connectivity decreasedβ-diversity
of rheophilics.
3.2.4. Project species richness
Species richness of the fish community on project level (γ-diversity) in-

creased with river-floodplain connectivity, river shorelength and shoreline
diversity, and more shallow habitats in restoration projects favours
rheophilic γ-diversity (Fig. 4; Suppl. Materials B). In contrast, γ-diversity
of rheophilics and critical rheophilics declined with shoreline diversity
and project age.
3.2.5. Year and river effect
Despite that abundances were lowest in 2017 and highest in 2020, com-

munity responses revealed no evident year-effects (Suppl. Materials B). At
the same time, α-diversities were highest in 2017, while lowest in 2020.
Over half of the fish community responses were significantly affected by
river branch. IJssel had the highest overall α- and γ-diversity, whereas
Nederrijn had the lowest species richness. Rheophilics preferred the Waal
with the highest (critical) rheophilic abundances and α-diversity. The
impounded Nederrijn was least suited as nursery area for the sensitive
rheophilic fishes.



Table 2
General habitat characteristics per spatial scale that were used for floodplain restoration project evaluation.

Scale Category Variable
name

Abbreviation Description Type of
variable

Levels Data source

General Geographical River River Branch of the river Rhine Class 4 classes: (1) Waal, (2) IJssel, (3) Nederrijn,
(4) Lek

General
information

Temporal Year Year Sampling year Class 4 classes: (1) 2017, (2) 2018, (3) 2019, (4)
2020

General
information

Sample Water quality Conductivity Cond Electrical conductance of the water at
sampling site

Numeric Range: 241–1343 mS·cm-1 Field
measurements

Turbidity Turbidity Water turbidity at sampling site Numeric Range: 1–392 Nephelometric Turbidity Units
(NTU)

Field
measurements

Chlorophyll Chlorophyll Chlorophyll concentration of the water at
sampling site

Numeric Range: 0.3–150.0 μg·L-1 Field
measurements

O2 O2 Dissolved oxygen concentration of the
water at sampling site

Numeric Range: 4.69–21.34 mg·L-1 Field
measurements

Shade Shade Percentage of sampling area that is covered
in shade from woody shoreline vegetation

Ordinal 5 classes: (1) 0–20 %, (2) 21–40 %, (3)
41–60 %, (4) 61–80 %, (5) 81–100 %

Field
observation

Hydro-morphological Depth Depth Maximum depth at sampling site Numeric Range: 0.1–4.3 m Field
measurements

Substratum Substr Dominant substratum type at sampling site
based on particle size

Ordinal 5 classes: (1) clay/silt (<0.06 mm), (2) fine
sand (0.06–0.85 mm), (3) coarse sand
(0.85-2 mm), (4) gravel (2-65 mm), (5)
cobbles/boulders (>65 mm)

Field
observation

Organic
matter

OrgMatter Percentage of bottom covered by a layer of
organic matter (leaves, branches, etc.) at
sampling site

Ordinal 5 classes: (1) 0–20 %, (2) 21–40 %, (3)
41–60 %, (4) 61–80 %, (5) 81–100 %

Field
observation

Macrophytes Macrophytes Presence of macrophytes and/or
submerged shoreline vegetation at
sampling site

Ordinal 5 classes: (1) 0–20 %, (2) 21–40 %, (3)
41–60 %, (4) 61–80 %, (5) 81–100 %

Field
observation

Spatial organisation Shoreline
diversity 50
m

ShoreDiv50 Number of shoreline habitat types within a
radius of 50 m from sampling site

Numeric Range: 0–8 habitat types GIS analysisa

Shannon
index 50 m

Shannon50 Shannon-Wiener diversity index of
shoreline habitat within a radius of 50 m
from sampling site

Numeric Range: 0.00–0.36 GIS analysisa

Project Hydro-geographical 2SC
duration

2SCduration Percentage of time that restoration project
was two-sided connected with main
channel, within a period of 6 months prior
to sampling

Numeric Range: 0–100 % River water
level datab

Submerged
woody
vegetation

SubWVegDur Percentage of time that woody shoreline
vegetation (>2 m) of restoration project
was submerged, within a period of 6
months prior to sampling

Numeric Range: 0–41 % River water
level datab

Hydro-morphological Depth < 1 m Depth1m Percentage of shallow water habitat in
restoration project with <1 m depth at
median river discharge

Numeric Range: 1–100 % GIS analysisa

Spatial organisation Shoreline
diversity

ShoreDiv Total number of shoreline habitat types in
restoration project

Numeric Range: 3–12 habitat types GIS analysisa

Shannon
diversity

Shannon Shannon-Wiener diversity index of
shoreline habitat in restoration project

Numeric Range: 0.09–0.29 GIS analysisa

Temporal Age Age Age of restoration project Numeric Range: 0–30 years General
information

River Geographical River
shorelength

Shorelength Total available shoreline habitat at
restoration project side of the main channel
within a 5 km radius from restoration
project center

Numeric Range: 19.2–51.1 km GIS analysisa

a GIS analysis with river, restoration project, and shoreline habitat (ecotope) and bathymetry maps at Rijkswaterstaat (2021). See Geerling et al. (2008) for Shannon di-
versity calculations.

b Daily river water levels of the lower river Rhine, calibrated with satellite images for connectivity check of each restoration project.
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4. Discussion

Understanding environmental requirements of nursery areas, as well as
the spatial scale, organisation, and interconnectivity of habitat patches, is
critical for successful recruitment and population restoration of fishes (Beck
et al., 2001; Van Looy et al., 2019; Stoffers et al., 2022). Numerous concep-
tual models address habitat patch dynamics and spatial scaling in large
river ecosystems from either a metacommunity perspective (Brown et al.,
2011; Altermatt, 2013; Erős et al., 2017; López-Delgado et al., 2019), or a
landscape ecology perspective (Wiens, 2002; Lowe et al., 2006; Erős and
Lowe, 2019). Often, thesemodels postulate how habitat properties affect riv-
erine fishes on different spatial scales, but only a handful have supporting
empirical data (Winemiller et al., 2010; Erős et al., 2019). Here, we attempt
to operationalise these concepts with empirical data, using a large-scale
6

evaluation study of the ecological efficacy of 46 river restoration projects
and 26 control sites in the lower river Rhine. We introduced an innovative
approach, explicitly linking field sampling data of both habitat and fish com-
munities with spatial data derived from high-resolution satellite images,
using Bayesian modelling techniques (as proposed by Kuehne et al. (2017)
and Erős et al. (2019)). We explicitly addressed variable-response relation-
ships on different spatial scales, and identified their importance in the man-
agement of river restoration efforts to increase fish population health and
combat biodiversity loss in large lowland rivers.

Freshwaterfishes occupy a disproportionately large share of global biodi-
versity (Reid et al., 2019; Eschmeyer et al., 2022), with 18,253 described spe-
cies (>50% of all known fish species) inhabiting 2.3% of the Earth's surface.
This can be explained by high levels of geographical isolation and a complex
web of ecological niches in freshwater habitats (Ormerod, 2003). For our



Fig. 3. Schematised overview of the nursery functioning of river restoration projects in the river Rhine, based on the detailed assessment in Supplementary materials A12.
(A) Schematised lowland river with typical floodplain restoration projects: two-sided connected channel (2SC), one-sided connected channel (1SC), isolated water, tidal
channel and river shoreline (control). (B) Community responses per ecological group for each restoration project and control sites in the main channel. Abundances (fish
per 100 m2) and species richness numbers were averaged across seine and electrofishing.

T. Stoffers et al. Science of the Total Environment 838 (2022) 156509
analysis of how fishes utilise ecological niches in floodplain nursery areas,
taxonomic diversity is insufficient as indicator, and functional diversity is
commonly used (Naeem et al., 2012; Mouillot et al., 2013; Craven et al.,
2018; Brun et al., 2019). Riverinefishes are often classified into distinct func-
tional groups based on diet, reproduction, and flow preference (Aarts et al.,
2004). In large lowland rivers, water flow has a large influence on the phys-
ical habitat availability to riverine fishes at different phases of their lives
(Welcomme et al., 2006; Baumgartner et al., 2014; Bernhardt et al., 2022),
especially in early life-stages when swimming performance is limited
(Wolter and Arlinghaus, 2003). Therefore, we assumed that flow is the key
factor in determining the structure of YOY fish communities, and used an
ecological classification of fishes based on flow preference as indicator for
evaluating restoration project efficacy and nursery habitat requirements.

We also studied fish responses for critical rheophilics, in which we re-
moved ide (Leuciscus idus), as this species accounted for almost 85 % of all
rheophilic catches (Suppl. materials A6), and is less critical than the other
14 rheophilic species (Stoffers et al., 2021; Stoffers et al., 2022). It would
7

seem that removing just one species would have little effect on species rich-
ness indices. However local rheophilic species richness was so low that re-
moving ide reduced it from an average of 1.0 to 0.4 species, indicating that
at many sampling sites ide was the only rheophilic species. Notwithstanding,
the observed responses of critical and all rheophilic fishes were nearly iden-
tical (Fig. 4), suggesting that a wide range of rheophilic fish species have ge-
neric responses to environmental factors, such as flow and connectivity
(Aarts et al., 2004; Poff and Zimmerman, 2010), water depth (Stoffers
et al., 2022), and project age (Stoffers et al., 2021). There are no indications
that alien and native species showed different environmental responses after
being attributed to ecological groups, as abundances and species diversity
showed almost identical patterns (Suppl. Materials A13).

4.1. Spatial scaling and habitat heterogeneity

Because swimming capacity in YOY fish is not yet fully developed, the
proper scale, spatial organisation (heterogeneity), and interconnectivity of



T. Stoffers et al. Science of the Total Environment 838 (2022) 156509

8



T. Stoffers et al. Science of the Total Environment 838 (2022) 156509
key nursery habitats (for foraging and sheltering) is important for their re-
cruitment success (Schlosser, 1995; Van Looy et al., 2019) and survival
through extreme drought and flood events (Guerreiro et al., 2021;
Bernhardt et al., 2022). Daily activity for YOY fishes generally occurs on a
spatial scale of tens to hundreds of meters, whereas dynamic ecological pro-
cesses (e.g. sediment,flow, andwater level dynamics) that affect their day-to-
day survival typically take place at up to the river reach-scale (1–10 km)
(Wolter and Arlinghaus, 2003; Thorp et al., 2006; Wolter et al., 2016). Be-
cause these processes occur at relevant spatial scales for river restoration
andmanagement (Wolter et al., 2016), it is critical to understand how spatial
scaling affects fish-habitat relationships in order to effectively manage river
restoration projects (Wohl et al., 2015). Here, we systematically modelled
fish community response variables commonly used in the ecological evalua-
tion of river restoration project efficacy (Ward and Tockner, 2001; Buijse
et al., 2002; Erős et al., 2020) for a large data set of habitat components, in-
cluding habitat heterogeneity, on three relevant spatial scales.

We defined spatial habitat heterogeneity for YOY riverine fishes as the
spatial combination of shoreline habitat patches over a defined area,
based on fishes' movement potential. We assumed this area to be within
the project-reach scale (100–1000m;Wolter et al. (2016)). On both sample
(~100m) and project (~1000m) scale we used shoreline habitat diversity,
the total number of shoreline ecotopes, as a proxy for spatial habitat hetero-
geneity. Shoreline ecotopes are mostly homogeneous landscape units de-
fined by similarities and contrasts in vegetation structure, land use, and
geomorphic and hydrologic characteristics, and ecotope maps are widely
used as a reference point for policy and management river ecosystems
(Geerling et al., 2009). We are confident that such an ecotope map ade-
quately illustrates the spatial arrangement of fish nursery areas, because
of the intricate interactions between the terrestrial and aquatic part of
river ecosystems (Naiman et al., 1993; Weissteiner et al., 2016). The obser-
vation that project shoreline habitat diversity is important for 9 out of 12
fish community responses supports this assumption.

The observed fish community patterns provide an interesting insight
into the effects of habitat heterogeneity and spatial scaling in the assess-
ment of nursery habitat requirements. We found that the effects of environ-
mental variables on the YOY fish community varied between ecological
groups, response variables, and spatial scales. For instance, while shallow
water habitats and sample-scale shoreline habitat diversity had a positive
effect on critical rheophilic abundances, the presence of shallowwater hab-
itats and shoreline habitat diversity at the project scale had a negative im-
pact on overall fish community abundances (Fig. 4). Similarly, in the
lower Amazon river-floodplains, different spatial scales affected the relative
contribution of food sources to (juvenile) fish biomass (Arantes et al.,
2019). Food sources (e.g. benthos, macrophytes, and terrestrial plants) con-
tributing most to fish biomass at the regional scale were often unimportant
at the sample level, and vice versa.

In our study, diversity indices also revealed opposite patterns in overall
fish community responses and the rheophilic group to nursery habitat vari-
ables at different spatial scales. For instance, an increasing shoreline habitat
diversity within a restoration project correlated negatively with rheophilic
species richness, whereas the total number of species increased. Likewise,
local species richness of all rheophilics declined with the project scale shore-
line heterogeneity. When looking at the smaller sample scale however, this
habitat component positively affected local species richness of critical
rheophilic fishes. These contrasting observations at different spatial scales,
and the high contrast between preferred and non-preferred habitats (high
β-diversity values), imply that rheophilic fishes require a limited number of
highly specific interconnected nursery habitats within a restoration project
(Schlosser, 1991; Cowx and Welcomme, 1998; Erős et al., 2017).
Fig. 4. Fish community responses for individual habitat variables obtained from INLAm
To provide a tool for floodplain restoration project management, only non-categorica
parametric effects on response variables are shown in green, and negative effects in re
(see also Fig. 2) and habitat variables are grouped by the spatial scale they are colle
detailed plots and tables for all parametric effects.
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Spatial and temporal habitat heterogeneity are important factors affecting
YOY fish growth and survival in natural rivers (Petry et al., 2003; Winemiller
et al., 2010; Angeler and Allen, 2016). For instance, both species diversity and
abundances of YOY fishes in natural Amazon river-floodplains benefit from
habitat heterogeneity, shallow water depth, and macrophyte coverage
(Petry et al., 2003). When nursery areas are permanently connected to the
river, and both fish species richness and spatial-temporal habitat heterogene-
ity are high, fish communities aremore resilient to adverse conditions such as
flood pulses (Van Looy et al., 2019), and extreme temperatures (Collas et al.,
2019). Riparian ecotones are particularly important nursery areas for YOY
fishes in river ecosystems as they provide a variety of relatively shallow,
slow-flowing habitats with a wide range of substratum sizes, are generally
high in food, and warm up fast (Grift et al., 2001; Schiemer et al., 2001a;
Schiemer et al., 2001b; Nunn et al., 2012; Eick and Thiel, 2013; Pander and
Geist, 2018; Stoffers et al., 2022). Such heterogeneous riparian habitats are
vital for well-functioning restoration projects to increase diversity and miti-
gate spatial homogenisation of fish communities (Schiemer et al., 2013;
Arantes et al., 2019; Brennan et al., 2019; Van Looy et al., 2019).

4.2. Restoration project evaluation

Of all the investigated restoration project types, 1SCs and 2SCs provide
the best nursery conditions for YOY riverinefishes (highest abundances and
species richness) (Fig. 3). 1SCs and 2SCs are distinguished from other resto-
ration projects by their permanent connection to the main channel. Perma-
nent connection is essential for well-functioning nursery areas, as it affects
fish community processes through effects on emigration and immigration,
floodplain and channel habitat, and the continual interchange of biological
and organic material (Opperman et al., 2010; Stoffels et al., 2022). Further-
more, as many riverine fishes show daily migrations between river and
floodplain habitats for feeding (Baras andNindaba, 1999b), predator avoid-
ance (Copp and Jurajda, 1993; Baras and Nindaba, 1999a; Borcherding
et al., 2002), and thermoregulation (Hohausová et al., 2003; Armstrong
et al., 2013), permanent river-floodplain connectivity supports critical life
history processes. Permanent river-floodplain connection creates a dynamic
nursery area with a diverse range of interconnected and species-specific
habitat patches of sufficient quality for riverine fishes (Aarts et al., 2004;
Górski et al., 2011; Pander andGeist, 2018), hereby supporting high overall
species richness. Rheophilic fishes are more selective about their nursery
habitat, as they prefer shallow areas with flowing water and coarse substra-
tum (Stoffers et al., 2022). This specific combination of habitat characteris-
tics is primarily found in 2SCs, which explains why we observed highest
rheophilic species richness and abundances in these project types.

Temperate lowland rivers provide awide range of regulatory ecosystem
services, such as irrigation of agricultural land, food security through fresh-
water fisheries (FAO, 2020; Wantzen et al., 2022), and drinking water
(Opperman et al., 2018). River restoration efforts must operate within the
constraints imposed by these services. This means that restoration projects
are bound to the modified dynamic forces of these heavily regulated rivers,
and that full recovery to an undisturbed state is not possible (Buijse et al.,
2005). The context in which a restoration project operates is critical to its
success and affects how much of its ecological potential is realised. For in-
stance, we found that river restoration projects in the impounded river
Nederrijn-Lek, which has limited free-flowing events and lowest median
annual discharge, were very limited in their rheophilic nursery area poten-
tial (Suppl. materials B).

The timing of yearlyflood pulses and discharge patterns vary considerably
between temperate lowland rivers, and should be consideredwhen evaluating
the efficiency of river restoration projects in such ecosystems. During our
odels. Fitted lines with 95% credible intervals are used to indicate important trends.
l habitat variables occurring in more than one model are presented here. Positive
d. Responses are grouped for abundances, α-diversity, β-diversity, and γ-diversity
cted on (sample, project, or river level). See also Supplementary Materials B for
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study, we observed a variety of flood pulse events in early spring (February–
April), the months in which many riverine fish species spawn and larvae
emerge from their eggs (Suppl. materials A10). For example, in the Spring
of 2020 we saw a major rise in water level that lasted about two months, fill-
ing the floodplains up to the dikes. In contrast, the annual flood pulse in 2017
was limited to a small and short peak, with a maximum water level that was
>2.5 m lower than in 2020. By retreating water and creating additional
slackwater habitats, major flood pulses generally result in increased nutrient
enrichment and concentration in nursery areas. This boosts primary produc-
tion and food availability for newly-hatched fishes (Reckendorfer et al.,
1999; Hoagstrom and Turner, 2015), and could lead to strong cohorts and
increased abundances of certain fish species (Górski et al., 2011; Cruz et al.,
2020; Humphries et al., 2020). Following the major flooding of 2020, we ob-
served highest overall YOY abundances whereas in 2017, we found low fish
numbers. Especially abundances of the eurytopic species roach, bream and
bleakwere high in 2020, which could be linked to their preference for less dy-
namic and more productive (e.g. higher chlorophyll concentrations) habitats
in the more distant parts of the floodplains, which become accessible during
periods with high discharges (Suppl. materials A11).

4.3. Implications for river management

Based on decades of (traditional) ecological research, we know which
ecological factors are critical for preserving riverine biodiversity and devel-
oping healthy fish communities, and therefore we knowwhat set of restora-
tion actions we need to carry out (Palmer et al., 2005; Bernhardt and
Palmer, 2011). However, the extent to which these actions are acceptable
is strongly influenced by the ecological and societal context (Palmer
et al., 2014). For instance, the requirements imposed by water safety and
navigation generally take precedence over the restoration of ecological pro-
cesses in many large lowland rivers such as the river Rhine. Stakeholder in-
volvement may also have an influence on the design and performance of
restoration projects, which is often overlooked (Carter et al., 2007;
Szałkiewicz et al., 2018). The extent to which this may have played a role
in the assessed projects in this study has not been considered.

Below, we discuss what we believe are the most important steps for in-
creasing the efficacy of lowland river restoration projects, as well as how
this can be implemented to optimise large river systems to combat the global
freshwater biodiversity crisis. We discovered generic processes essential for
riverine fish recruitment that can be applied to improve the efficacy of
river restoration projects in modified lowland rivers across the world.

First, it is essential to determine the ecological objective of the river res-
toration project in advance.When the objective is the restoration of riverine
fish nurseries, it is then important to decide on whether the focus is on re-
storing fish biodiversity or on increasing abundances, and whether to
focus on the whole fish community or on specific ecological guilds. As the
impact of river restoration differ substantially across spatial scales and spe-
cific ecological groups (Fig. 4), the design andmanagement of river restora-
tion projects, as well as their ecological efficacy, are heavily dependent on
these initial decisions. In short: there is no ‘one size fits all’ approach in
floodplain restoration for fish nurseries in heavily modified lowland rivers.

Secondly, it is critical to align the restoration project's site, design, and
management with the fishes' environmental requirements. We observed
that different ecological groups of riverine fishes have distinct, often non-
overlapping, nursery habitat preferences (Fig. 4; Suppl. materials A11). It
is important that all of the target group's key nursery environments are pres-
ent within the nursery area. For example, abundances of critical rheophilic
fish benefit from a high percentage of shallow water habitats, while overall
fish abundances were negatively impacted by this habitat characteristic.
Optimising restoration projects for all fishes can be achieved by creating
nurseries with varying bathymetry and sloping banks, ensuring the pres-
ence of habitats with varying water depths at a wide range of river dis-
charge levels. A key habitat feature that benefits the majority of riverine
fishes is permanent lateral connectivity with the main channel (Figs. 3;
4), and therefore restoring connectivity is essential to achieve specific eco-
logical objectives (Stoffers et al., 2021; Knox et al., 2022). Such restoration
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objectives may include initiating an ecological succession process, or re-
maining within a specified stability range (Geerling et al., 2013). This
may require a cyclic management strategy in which ‘sand plugs’ at the pro-
ject inlet are regularly removed (Stoffers et al., 2021) or the presence of up-
stream sediment traps (Wohl et al., 2019). A series of restoration projects in
various stages of succession, on the other hand, is required to have a diver-
sity of nursery habitats that supports a wide range of fish species. As a re-
sult, the components of the fish community that need to be rehabilitated
dictate the intended management method.

Another important aspect of well-functioning nursery areas is the spatial
organisation (heterogeneity) of habitats (Brennan et al., 2019; Van Looy
et al., 2019; Stoffers et al., 2022). We found that the role and spatial scale
of habitat heterogeneity in restoration projects is ambiguous, as it is highly
dependent on both the ecological target group and the community response
variable in question (Fig. 4). Although we observed that project habitat het-
erogeneity increases species richness, we also found that diverse nursery
areas had a negative influence on total fish abundances. We recommend to
create slow flowing heterogeneous habitats by two-sided reconnection of
existing floodplains, such as former sand extraction pits, rather than the con-
struction of new restoration projects. When compared to newly constructed
projects, these existing floodplains generally contain a diverse range of hab-
itat types in an advanced stage of succession. By adding areas with flowing
water to these floodplains, they become a suitable nursery area for a wide
range of riverine fishes (Stoffers et al., 2021). Furthermore, former sand ex-
traction pits can serve as important refuge areas for many fishes during ex-
treme drought and flood events, which are predicted to become more
common as a result of climate change (Lennox et al., 2019). Furthermore,
river restoration efforts should be conducted in a site with the appropriate
river context. For example: constructing a restoration project for rheophilic
fishes, that require permanent river-floodplain connectivity and flow in
their nursery, in an impounded or tidal river result in suboptimal functioning.

Finally, in attempting to face the global freshwater biodiversity crisis, we
propose that river restoration efforts in heavilymodified lowland rivers focus
on establishing spatially heterogeneous patterns and processes in floodplain
restoration projects along the river (as in natural rivers), with primarily 1SC
and 2SC projects with the appropriate dimensions to retain continuous con-
nectivitywith themain channel. Floodplain channels that have been restored
should develop and maintain suitable environmental conditions in order to
continue to be effective for specific restoration goals, such as the presence
of target species and habitats (Palmer et al., 2005). This implies that in
anthropogenically modified lowland rivers, an appropriate project design is
required beforehand in order to reduce the need for maintenance. When
the specific objective of the restoration project is to maintain a suitable
nursery area for the most critical rheophilic fishes for several decades, a
management strategy involving cyclic rejuvenation throughhuman interven-
tion may be needed (Geerling et al., 2013). The frequency with which this
must be performed is determined by the rate of sand deposition and other
river-specific hydromorphological processes (Stoffers et al., 2021). Such a
management strategy should result in permanent flowing conditions, lateral
connection with the main channel, a variety of water depths and substratum
types, and heterogeneous shoreline habitat.
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