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A B S T R A C T   

A novel case of combining deep learning and chemometrics for spectral image processing is presented. The case 
involved the application of deep transfer learning for detecting and locating the fruit centroid to extract pixels for 
spectral model development and application. The selected fruit case involved a non-symmetrical fruit pear where 
the interesting area for spectral model application is not the centroid of the whole fruit unlike fruit such as apples 
but the centroid of the belly part of the pear fruit. Hence, the task of object detection is replaced with the task of 
symmetrical region (fruit belly) detection on the pear fruit such that the spectral model can be applied in the 
centroid pixels of the symmetrical region. For spectral modelling, the latent variables based regression technique 
called partial least-square (PLS) regression was used. For spectral modelling, PLS was preferred over deep 
learning as there was a low number of samples points to train a deep spectral model. The deep transfer learning 
allowed 100 % correct detection of the pear fruit belly part with the intersection over union score of 0.82. 
Furthermore, the RMSEP = 0.77 % was attained with the PLS modelling to predict dry matter. The presented 
approach can support the wide application of spectral imaging for fresh fruit analysis, particularly when imaging 
is performed simultaneously on multiple objects and the objects are non-symmetrical in shape.   

1. Introduction 

Spectral imaging of fresh fruit in the visible and short-wave near- 
infra-red range (400–1000 nm) of the electromagnetic spectrum is 
widely performed for the prediction of key quality traits such as dry 
matter (DM) and soluble solids content (SSC) (Lu et al., 2020). The 
spectral imaging in 400–1000 nm instead of > 1000 nm is preferred for 
many reasons. For example, it captures both the colour and 3rd over
tones of chemical bond overtones (OH, CH, NH) for macro chemical 
components in fruit such as water, protein and sugars (Mishra et al., 
2020; Walsh et al., 2020), the light penetration depths for the 
short-wave near-infrared region (700–1000 nm) is higher than the short 
wave infrared (>1000 nm) (Lammertyn et al., 2000), thus bringing more 
information from the fruit flesh below the peel. Also, cost-wise, the 
visible and short-wave near-infrared spectral sensors are up to three 
times lower in cost as they use the silicon-based detector compared to 
the InGaAs based detector used by short wave infrared spectral sensors 
(Mahlein et al., 2018). 

For fruit analysis, spectral imaging has the main advantage of being 
high-throughput compared to the point-based spectral sensing of fruit 
where the user needs to scan each fruit (Lu et al., 2020). The main 
advantage of spectral imaging over point-based spectroscopy is the 
simultaneous procurement of spatial and spectral information from the 
fruit, allowing the provision of the spatial distribution of physico
chemical parameters, which enhances the perception of quality changes 
within the fruit (Lin et al., 2021; Rungpichayapichet et al., 2017). For 
instance, spectral imaging has been applied to visualize the spatial dis
tribution of firmness, total soluble solids and titratable acidity within the 
mango, which demonstrated that fruit ripening started from the shoul
der toward to tip part (Rungpichayapichet et al., 2017). However, the 
spectral imaging in terms of fresh fruit analysis is still far from routine 
usage compared to the point-based sensing approaches. For example, the 
point spectral sensing (Anderson et al., 2020; Subedi and Walsh, 2020) 
for fresh fruit analysis is now readily available in market with 
pre-calibrated fruit models. The spectral cameras are still available as 
sensors that often requires the user to build their own systems and in 
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most cases also requires the development of calibration models for fruit 
property prediction from scratch (Mishra et al., 2022b). 

Recently, a new approach to fully standardised imaging of fresh fruit 
called all-in-one spectral imaging (ASI) was proposed (Mishra et al., 
2022b; Mishra, 2021). The ASI approach to spectral imaging involves 
integration of all necessary hardware (camera, translation stage, 
computing system, white reference) and software (acquisition and 
model deployment) components to control the spectral imaging as well 
as simultaneous deployment of spectral models for fresh fruit properties 
prediction. In the ASI framework, the acquisition of images is uniform 
and standardised for all kinds of fruits. One of the main challenge with 
the spectral imaging is that it requires controlled illumination (no 
interference from external illumination) which is achieved with the 
close cabinet form of the spectral system presented in the recent study 
(Mishra et al., 2022b). In the ASI framework to spectral imaging, the 
predictive models can directly be integrated to the computing software 
such that the data and models can be reused in future applications. 

In spectral imaging modelling of fresh fruit for practical application, 
there are two main steps involved. The first step is the detection of the 
object while the second step is predicting the chemical properties such 
as DM in the case of fresh fruit using chemometric analysis. The second 
step of chemometric analysis depends on object detection as only after 
object detection the relevant spectra can be extracted for chemometric 
model development or application. For fresh fruit, the chemometric 
analysis using the centroid pixels or the region around is desired. This is 
because most fruits have a curvy shape and the centroid part of a lying 
fruit is the one that can be considered the most flat, thus, having minimal 
angular reflections. Such centroid pixels can usually be obtained as the 
centroid of the detected object marked by the bounding box. However, 
there are some inherent challenges in the detection of fruit, for example, 
many times in non-laboratory imaging conditions fruit are touching 
each other and traditional approaches for fruit detection such as using 
vegetation indexes combined with threshold are not desirable (Xu and 
Mishra, 2022). Recently, deep learning was proposed as a solution to 
perfom object detection in the spectral images (Xu and Mishra, 2022). 
The approach involved using the already pre-trained object detection 
models (YOLOv4) and fine-tuning it using some spectral images to 
detect fruit in the spectral imaged scene. However, such an approach to 
object detection works when fresh fruit are symmetrical in nature, for 
example, apples, round berries, grapes as the centroid of the bounding 
box is the centroid of the fruit which can be used for chemometric 
analysis. For asymmetrical fruit such as pear, in spite of correctly 
detecting and localizing the entire fruit using the bounding box, such an 

approach can only provide the centroid of the bounding box enclosing 
the complete fruit, which is not representative of the centroid of the 
region of interest. In such a case, the object detector requires to be 
modified and updated in order to detect/identify the useful region of 
interest of fruit of whom centroid matches with the centroid of the 
bounding boxes. In the case of pear, the key idea is to train the object 
detector for detecting the belly of the pear fruit. The detection of the 
belly part of the pear is of great importance and interest because the 
belly area is often used (by a fruit analyst) for explaining the DM and SSC 
in pear fruit (Mishra et al., 2021b). Although previous work has 
demonstrated that the YOLOv4 object detector allows the detection of 
the whole pear, the potential to identify and localize only the belly part 
remains unknown, which deserves further investigation since it is 
practical and relevant in the real application scenario. 

The objective of this study was to use deep transfer learning for 
detecting representable parts on non-symmetrical pear fruit which can 
later be used for the application of the chemometric models to predict 
the fruit property. For spectral modelling, latent variables based 
regression technique called partial least-squares regression was used. 

2. Materials and methods 

2.1. Dataset 

The data set can be understood as having two parts i.e., data for deep 
transfer learning based object detection and the data for predictive 
spectral modelling. For DTS, the data consisted of 117 spectral images 
captured using the ASI setup. The 117 spectral images of ‘Conference’ 
pear fruit (Pyrus communis L.), origin The Netherlands, were collected in 
diverse experiments (the year 2020–2021) in the Food & Biobased 
Research, The Netherlands. The spectral images in the ASI setup were 
acquired in the spectral range of 398–1000 nm with a spectral spectra 
interval of ~3 nm with a visible and short-wave near-infrared spectral 
camera (Fx10, Specim, Oulu, Finland) (Fig. 1). The default exposure 
time of the camera was 20 ms and the data were recorded in spectral 
binnin of 2. The speed of the translation stage was set to 30 mm/s. The 
illumination in ASI was provided using six halogen lights (25 W each) 
(supplied by Specim, Oulu, Finland) (Fig. 1). The ASI setup is fully 
automated for acquisition controls such as the speed of the translation 
stage, exposure time, number of frames, etc. For white reference, the ASI 
setup has an inbuilt white reference (Teflon). For dark reference, the 
spectral camera uses automatic shutter closure prior to image acquisi
tion. The captured images were also automatically radiometrically 

Fig. 1. The All-In-One spectral imaging (Mishra et al., 2022b) system used for spectral image acquisition (Xu and Mishra, 2022).  
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corrected using the white and the dark references to provide reflectance 
data. Note that in this study to perform the deep transfer learning, a 
subset RGB data set was generated by sampling the spectra bands 671, 
534, and 430 nm. The deep transfer learning was performed on RGB 
images using the pre-trained YOLOv4 model which is trained using the 
RGB images available in the computer vision domain. 

For spectral modelling, 18 spectral images were used as for the fruit 
imaged (total 216) in those images, reference DM was also estimated. 
The DM was estimated by sampling a circular disc from the centroid of 
the fruit belly as described in earlier studies (Mishra et al., 2021b). The 
circular disk was weighted (XS10001 L, Mettler-Toledo GmbH, Giessen, 
Germany) before and after hot-air oven drying (FP 720, Binder GmbH, 
Tuttlingen, Germany) at 80 ◦C for 96 h. The DM content was then esti
mated as the ratio of dried to the fresh weight of the samples and 
expressed in percent (%). 

2.2. Deep learning for pear fruit centroid detection 

2.2.1. Image labelling for ground truth bounding boxes 
The deep transfer learning, there was a need for supervised labelled 

spectral images for fining tuning the object detector. Hence, at first, for 
each image, the ground truth bounding box for each pear was manually 
labelled by selecting a rectangle enclosing the belly of the pear. The 
manual section was implemented using MATLAB (release R2021a, The 
MathWorks, Inc., Natick, MA, USA) built-in function drawrectangle. 

2.2.2. Deep transfer learning 
A pretrained YOLOv4 object detection network followed by transfer 

learning was employed for this task (Xu and Mishra, 2022). All pro
gramming was conducted in the MATLAB computing environment with 
the computing system of Intel(R) Core (TM) i7–6700 CPU@3.40 GHz 
processor. The application of deep transfer learning was based on the 
open-source scripts downloaded from: https://github.com/matlab-dee 
p-learning/pretrained-yolo-v4. A detailed description regarding the 
network architecture can be found in earlier realted work (Xu and 
Mishra, 2022). 

The objective of this work was to adapt the pre-trained YOLO v4 
network to detect the pear fruit belly part. The training set consists of 
1818 pears (from 111 images), while the test set has 72 pears (from 6 
images), as exhibited in Table 1. The test set consisted of 6 images only 
as the 6 images belonged to the fruit stored at lower relative humidity 
conditions and can be considered as a new batch of data. Data 
augmentation including random horizontal flip, random scaling, and 
colour jitter augmentation in HSV space were also applied to increase 
the variety of training data. Random horizontal flip refers to the pro
cedure of flipping the entire image horizontally. Random scaling was 
implemented by randomly changing the scale of the image. Colour jitter 
augmentation in HSV space was performed by randomly changing the 
brightness, contrast and saturation of the image. This work applied the 
Matlab built-in function jitterColorHSV to adjust the colour of RGB image 
with a randomly selected value of brightness, contrast and saturation 
from the HSV color space, with the range of each type of adjustment 
specified as 0.3, 0.4 and 0.2, respectively. The applied data augmenta
tion methods allowed the generation of the artificial data to increase 
training data size, which was useful to improve the performance and 
outcomes of the deep learning model. The intial starting point for the 
model were the same pre-trained YOLOv4 weights as the earlier model 
(Xu and Mishra, 2022). The learning rate was set to 0.0001, batch size 
was 4, and the number of epochs was 90. The number of classes was set 

to 1, meaning that the model either detects the pear fruit belly or re
mains undetected. 

To evaluate the model performance, a series of metrics that were 
obtained from the test set. First and utmost, the precision-recall curve 
allowed calculation of average precision (AP) that is defined as the 
averaged precision across all recall values between 0 and 1 at various 
Intersection over Union (IoU) ratio thresholds. AP represents the area 
under the curve of the precision-recall curve after interpolating across 
all points. The IoU ratio, which computes intersection over the union of 
the bounding box between the ground truth and the predicted bounding 
box, is also deemed important for model assessment. An IoU close to 1 
shows the perfection prediction that the predicted bounding box has 
been perfectly overlapped with the ground truth. 

2.3. Chemometric modelling for fruit property prediction 

The chemometric modelling of the spectral data to predict DM was 
performed using the PLS modelling. The PLS modelling was chosen over 
the deep learning modelling as there was a low number of data points to 
train a deep spectral model. The model training was performed on the 
hydrated fruit samples (144 total) while the model independent testing 
was performed on the dehydrated fruit samples (72 total). The fruit were 
stored in two different air-tight 550 L controlled-flow storage containers 
(80 % N2, 20 % O2 and <0.7 % CO2). The container lid was fitted in an 
empty water-lock for active dehydration treatments. For dehydration, 
2.0 kg of silica gel (Merck KGaA, Darmstadt, Germany) was placed on 
the top of the container to generate two different dehydration envi
ronments for the pears. Silica gel was exchanged every 4 days for dried 
silica-gel to achieve dehydration. Pear fruit were stored under these 
conditions for 4 weeks and prior to spectral analysis were acclimated at 
20 ◦C overnight. The fruit skin dehydration changes its physical struc
ture (Mishra et al., 2022c). Since the spectral measurements were per
fomed through the fruit skin it is expected that the dehydrated fruit had 
extra variation due to dehydrated skin which may challenge the PLS 
model based on hydrated fruit (Mishra et al., 2022a). The DM range for 
the training set was 13.52 ± 0.95 % and for the test set was 13.73 
± 1.01 %. Note that for PLS modelling, the spectra extracted from the 
centroid regions were used. For the test set, those centroids were first 
identified with the deep transfer learning based pear fruit belly detection 
as explained in an earlier section. Furthermore, in this study, the effect 
of the window width for extracting the mean spectral signal on PLS 
modelling was also explored. In total, 4 different spectral options for PLS 
calibration were explored i.e., the spectra correspond to centroid pixels, 
and the mean spectra obtained from three different windows of sizes (3, 
7 and 11) surrounding the centroid pixel. Hence, in total, 4 PLS cali
brations were performed to find the best option to extract the mean 
spectra for DM prediction in pear fruit. The best option was then used in 
combination with the object detecting to simultaneously detect the fruit 
belly and predict the DM in pear fruit. The PLS analysis was carried out 
using the data in the spectra range of 606–1000 nm as the data below 
606 nm was noisier. The data were also pre-processed with the standard 
normal variate pre-processing (Barnes et al., 1989) to remove the ad
ditive and multiplicative effects usually disturbing the PLS modelling. 
The model performances were evaluated using the root mean squared 
error of prediction (RMSEP). 

3. Results and discussion 

3.1. Detection of pear fruit belly 

An earlier study (Xu and Mishra, 2022) has shown the potential use 
of the YOLOv4 object detector for detecting multiple fruit types 
including apple, pear, black grape, green grape, blueberry, and kiwi. 
However, the model developed in earlier study is only suitbale when the 
fruit are symetterical. To visually show and compare the performance of 
the YOLOv4 object detector used in earlier work (Xu and Mishra, 2022) 

Table 1 
YOLOv4 model performance for detecting pear belly after transfer learning.  

Training (Number 
of objects) 

Test (Number of 
objects) 

Average 
precision 

Mean intersection over 
union score  

1818  72  1.00  0.82  

J. Xu and P. Mishra                                                                                                                                                                                                                            

https://github.com/matlab-deep-learning/pretrained-yolo-v4
https://github.com/matlab-deep-learning/pretrained-yolo-v4


Postharvest Biology and Technology 192 (2022) 112013

4

and the fruit belly detection model from this work, the object detection 
maps are displayed in Fig. 2A and B, respectively. Notice that all the 
training and test images of this work were coming from the new batch 
that was not used in the earlier work. Fig. 2A demonstrated the per
formance in terms of recognizing and localizing all pear fruit with 
detection probability scores higher than 0.99, suggesting that the object 
detector from earlier work (Xu and Mishra, 2022) has good predictive 
ability encountering independent and unseen samples. Although the 
entire pear has been well identified, the centroid pixel (marked in a red 
cross) of each bounding box is not located on the wanted belly part due 
to the asymmetrical nature of pear fruit, which brings up the need for 
this work. In Fig. 2B, it can be seen that the current object detector is 
capable of localizing the belly part of the pear, providing the satisfying 
centroid pixel which can be used for chemometric predictive modelling. 
Additionally, high probability scores (>0.99) were also witnessed. The 
performance metrics of applying the pre-trained YOLOv4 object detector 
combined with transfer learning to detector the belly area of pears are 
shown in Table 1. The precision-recall curve is not presented because 
precision values were always equal to 1 at various thresholds, showing 
that the model performed well. The strong prediction capability for the 
detection of the belly part of the pear was also confirmed with the AP of 
1. Fig. 3 presents the predicted bounding versus ground truth centroid 
pixels. Optimal matching (with a correlation coefficient of 1) between 

Fig. 2. : The detection results (bounding boxes, labels and probability scores) of applying YOLOv4 object detector from earlier work (Xu and Mishra, 2022) (A) and 
from this work aiming at the belly part of pears (B). The centroid pixel of each bounding box was indicated in the red cross. 

Fig. 3. Prediction plots for ground truth and predicted centroids. (A) x-coordinate of the centorids, and (B) y-coordinate of the centorids. The RMSEP unit is pixels.  

Fig. 4. 5-fold cross-validation analysis for PLS modelling performed on mean 
spectra extracted using different window widths. The size (pixels× pixels) ex
plains the window width used to estimate the mean spectra for fruit. 
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predicted and actual centroids was noted, consistent with the high value 
of mean IoU (0.82). Note that the IoU scores was not 1 due to the fact 
that for some samples the human labelling was not perfect compared to 
the detection by the deep learning model. The average processing time 
calculated from running 100 times of applying the object detector on 
one image of the test set was found to be 0.46 s. Dividing by 12 pear 
objects, results implied that deploying the current object detection 
model to localize the belly area of each pear requires the processing time 
of 0.038 s, having the potential to fulfil the requirement for real-time 
applications. 

3.2. Chemometric model application on the centroid of fruit belly 

In earlier study (Xu and Mishra, 2022), it was found that the selection 
of the window width for estimating the mean spectral responses from the 
object can have a big influence on the chemometric model performance. 
For example, choosing a low window width can lead to poor perfor
mance than the large window width. In this study, the effect of changing 
the window width on the PLS model calibration and the test was 
explored. The results of cross-validation analysis based on mean spectra 
extracted using different window width sizes are shown in Fig. 4. It can 
be noted that as the window width increases the cross-validation error 
become lower, indicating that the choice of using the single centroid 
pixel for chemometric modelling was the worst. The results were further 
confirmed when the models were calibrated and tested using the same 
number of latent variables = 9. The prediction error (RMSEP) was lower 
for the PLS analysis carried out using the mean spectra extracted with a 
window width of 11 compared to the PLS analysis based on a single 
centroid pixel. Such lower prediction error led to the choice of the 

window width = 11 as the optimal for the final model application. The 
trend of the RMSECV (Fig. 4) and RMSEP (Fig. 5), indicates that 
increasing the window width beyond 11 can further reduce the errors, 
however, increasing the window size beyond 11 can make the window 
width greater than the fruit and end up including the non-fruit pixels for 
the average which can naturally deteriorate the model performance. The 
RMSEP = 0.77% is what is usually noted with the NIR technique for pear 
fruit analysis (Mishra et al., 2021a; Mishra and Woltering, 2021; Mishra 
et al., 2021b; Travers et al., 2014). 

Due to the advances in computer vision, the application of deep 
learning models for the task of fruit detection and localisation has been 
reported over recent years (Koirala et al., 2019). A recent study (Parico 
and Ahamed, 2021) was published to develop a real-time pear fruit 
counter for mobile applications using YOLOv4 models, producing the 
optimal average precision of 0.98. This work generates a higher AP 
partly because of a simpler indoor background in our case compared to 
the reported study (Parico and Ahamed, 2021) that was performed in the 
orchard. It is also worth pointing out that most reported studies 
attempted to detect the entire fruit, yet in our case, we innovatively 
apply a deep learning model to detect the area of interest from the fruit. 

In many scientific works related to hyperspectral imaging of fruit (Lu 
et al., 2020), the experiments are performed with customised imaging 
setups. This is because currently, the spectral cameras are readily 
available but always require system integration before their use. 
Different scientific practitioners usually end up developing their spectral 
imaging systems which may influence the repeatability of the hyper
spectral imaging technology. In that regard, the ASI system (Fig. 1) for 
hyperspectral imaging allows to perform standardised spectral imaging 
measurements on fruit samples as all the hardware and image 

Fig. 5. Prediction plots for PLS models calibration using mean spectra extracted using different window widths. (A) Centroid pixels, (B) mean spectra extracted with 
window width of 3, (C) mean spectra extracted with window width of 7, and (D) mean spectra extracted with window width of 11. 
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acquisition settings are fixed. The emergence of deep learning ap
proaches for hyperspectral image processing for fresh fruit is also a new 
topic. In some earlier studies deep learning based approaches such as 
stacked autoencoders were used (Yu et al., 2018b,a), however, those 
studies mainly used deep learning to perform predictive modelling to 
replace PLS based analysis. However, in some recent studies, it has been 
shown that for spectral data modelling PLS approach is more generalised 
compared to the current state-of-the-art deep learning approaches such 
as one-dimensional convolutional neural networks (Mishra and Passos, 
2021) and stacked autoencoders (Mishra et al., 2021c). This was also the 
motivation that this study only used deep learning for object detection 
and not for predictive modelling. The predictive modelling was carried 
out using the PLS analysis. 

One of the main motivations behind the use of hyperspectral imaging 
for fruit analysis is its capability to provide the spatial distribution of 
properties in fruit (Lu et al., 2020). However, in the current work, the 
aim was not to explore the spatial properties but was high-throughput 
prediction of average DM content in pears. For example, in the current 
ASI system (Fig. 1), a crate full of fruit can be analysed for DM with a 
single scan. In any case, if the interest is to predict spatial distribution 
then instead of estimating the average DM, the prediction can be made 
pixel-wise leading to prediction maps. Nevertheless, the acquisition, 
storing and processing of hyperspectral images covering a big scene is 
inevitably time-consuming and computationally expensive. In this re
gard, this work has opened new possibilities for real-time applications 
by taking full advantage of DL and chemometrics. For a real-time 
application scenario, an extended RGB image is first collected, based 
on which the area of interest of individual fruit objects can be success
fully detected and localized using YOLOv4 object detector. The relevant 
spectral image or spectroscopy only needs to be collected from these 
areas of interest to predict the chemical properties, which will remark
ably speed up the entire pipeline of analysis. 

4. Conclusions 

A novel case of combining deep learning and chemometric modelling 
to process spectral images was demonstrated. Particularly, the study 
involved detection of symmetrical part in asymmetrical objects to locate 
the object centroid. In the presented case of pear fruit analysis, the deep 
transfer learning using 111 spectral images allowed to train a high 
precision (100 %) fruit belly detection model which simplified the 
development and application of the PLS predictive model. It was also 
found that the choice of the window width for extracting the mean 
spectra of fruit can have a big influence on the PLS model learning and 
predictive performance. In the presented case, a window width of 11 
(extracting 121 pixels) was found to be delivering the lowest prediction 
errors RMSEP = 0.77 %. Furthermore, both the object detector com
bined with the PLS predictive model provided a practical approach to 
spectral image processing where the deep learning was able to deal with 
the image processing challenges and the PLS modelling allowed dealing 
with the spectral modelling. The presented approach can have wide 
implications for automating spectral image processing, particularly 
when real practical applications of spectral imaging need to be 
developed. 

CRediT authorship contribution statement 

Junli Xu: Conceptualization, Methodology, Software, Formal anal
ysis, Writing - Original Draft Puneet Mishra: Conceptualization, 
Methodology, Software, Formal analysis, Writing - Original Draft. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgements 

Puneet Mishra acknowledges that a part of data used in this study for 
training deep learning model was generated during the LNV (Dutch 
Ministry of Agriculture, Nature and Food Quality, The Netherlands) 
funded Sensing Potential project (ref: KB-38–001-008). 

References 

Anderson, N.T., Walsh, K.B., Subedi, P.P., Hayes, C.H., 2020. Achieving robustness across 
season, location and cultivar for a NIRS model for intact mango fruit dry matter 
content. Postharvest Biol. Technol. 168 (111202). 

Barnes, R.J., Dhanoa, M.S., Lister, S.J., 1989. Standard normal variate transformation 
and de-trending of near-infrared diffuse reflectance spectra. Appl. Spectrosc. 43 (5), 
772–777. 

Koirala, A., Walsh, K.B., Wang, Z., McCarthy, C., 2019. Deep learning – method overview 
and review of use for fruit detection and yield estimation. Comput. Electron. Agric. 
162 (219–234). 

Lammertyn, J., Peirs, A., De Baerdemaeker, J., Nicolaı̈, B., 2000. Light penetration 
properties of NIR radiation in fruit with respect to non-destructive quality 
assessment. Postharvest Biol. Technol. 18 (2), 121–132. 

Lin, X., Xu, J.-L., Sun, D.-W., 2021. Comparison of moisture uniformity between 
microwave-vacuum and hot-air dried ginger slices using hyperspectral information 
combined with semivariogram. Dry. Technol. 39 (8), 1044–1058. 

Lu, Y., Saeys, W., Kim, M., Peng, Y., Lu, R., 2020. Hyperspectral imaging technology for 
quality and safety evaluation of horticultural products: A review and celebration of 
the past 20-year progress. Postharvest Biol. Technol. 170 (111318). 

Mahlein, A.K., Kuska, M.T., Behmann, J., Polder, G., Walter, A., 2018. Hyperspectral 
sensors and imaging technologies in phytopathology: state of the art. Annu. Rev. 
Phytopathol. 56 (1), 535–558. 

Mishra, P., 2021. Deep generative neural networks for spectral image processing. Anal. 
Chim. Acta 1191, 339308. 

Mishra, P., Passos, D., 2021. Deep chemometrics: Validation and transfer of a global deep 
near-infrared fruit model to use it on a new portable instrument. J. Chemom. 35 
(10), e3367. 

Mishra, P., Woltering, E., 2021. Handling batch-to-batch variability in portable 
spectroscopy of fresh fruit with minimal parameter adjustment. Anal. Chim. Acta 
1177 (338771). 

Mishra, P., Lohumi, S., Ahmad Khan, H., Nordon, A., 2020. Close-range hyperspectral 
imaging of whole plants for digital phenotyping: Recent applications and 
illumination correction approaches. Comput. Electron. Agric. 178 (105780). 

Mishra, P., Roger, J.-M., Rutledge, D.N., 2021. A short note on achieving similar 
performance to deep learning with practical chemometrics. Chemom. Intell. Lab. 
Syst. 214 (104336). 

Mishra, P., Marini, F., Brouwer, B., Roger, J.M., Biancolillo, A., Woltering, E., Echtelt, E., 
H.-v, 2021a. Sequential fusion of information from two portable spectrometers for 
improved prediction of moisture and soluble solids content in pear fruit. Talanta 223 
(121733). 

Mishra, P., Woltering, E., Brouwer, B., Hogeveen-van Echtelt, E., 2021b. Improving 
moisture and soluble solids content prediction in pear fruit using near-infrared 
spectroscopy with variable selection and model updating approach. Postharvest Biol. 
Technol. 171 (111348). 

Mishra, P., Brouwer, B., Meesters, L., 2022. Improved understanding and prediction of 
pear fruit firmness with variation partitioning and sequential multi-block modelling. 
Chemom. Intell. Lab. Syst. 222 (104517). 

Mishra, P., Paillart, M., Meesters, L., Woltering, E., Chauhan, A., 2022a. Avocado 
dehydration negatively affects the performance of visible and near-infrared 
spectroscopy models for dry matter prediction. Postharvest Biol. Technol. 183 
(111739). 

Mishra, P., Sytsma, M., Chauhan, A., Polder, G., Pekkeriet, E., 2022b. All-in-one: A 
spectral imaging laboratory system for standardised automated image acquisition 
and real-time spectral model deployment. Anal. Chim. Acta 1190 (339235).  

Parico, A.I.B., Ahamed, T., 2021. Real time pear fruit detection and counting using 
YOLOv4 models and deep SORT’. Sensors 21 (14), 4803. 

Rungpichayapichet, P., Nagle, M., Yuwanbun, P., Khuwijitjaru, P., Mahayothee, B., 
Müller, J., 2017. Prediction mapping of physicochemical properties in mango by 
hyperspectral imaging. Biosyst. Eng. 159 (109–120). 

Subedi, P.P., Walsh, K.B., 2020. Assessment of avocado fruit dry matter content using 
portable near infrared spectroscopy: Method and instrumentation optimisation. 
Postharvest Biol. Technol. 161. 

Travers, S., Bertelsen, M.G., Petersen, K.K., Kucheryavskiy, S.V., 2014. Predicting pear 
(cv. Clara Frijs) dry matter and soluble solids content with near infrared 
spectroscopy. Lwt-Food Sci. Technol. 59 (2), 1107–1113. 

Walsh, K.B., Blasco, J., Zude-Sasse, M., Sun, X., 2020. Visible-NIR ‘point’ spectroscopy in 
postharvest fruit and vegetable assessment: the science behind three decades of 
commercial use. Postharvest Biol. Technol. 168 (111246). 

J. Xu and P. Mishra                                                                                                                                                                                                                            

http://refhub.elsevier.com/S0925-5214(22)00181-8/sbref1
http://refhub.elsevier.com/S0925-5214(22)00181-8/sbref1
http://refhub.elsevier.com/S0925-5214(22)00181-8/sbref1
http://refhub.elsevier.com/S0925-5214(22)00181-8/sbref2
http://refhub.elsevier.com/S0925-5214(22)00181-8/sbref2
http://refhub.elsevier.com/S0925-5214(22)00181-8/sbref2
http://refhub.elsevier.com/S0925-5214(22)00181-8/sbref3
http://refhub.elsevier.com/S0925-5214(22)00181-8/sbref3
http://refhub.elsevier.com/S0925-5214(22)00181-8/sbref3
http://refhub.elsevier.com/S0925-5214(22)00181-8/sbref4
http://refhub.elsevier.com/S0925-5214(22)00181-8/sbref4
http://refhub.elsevier.com/S0925-5214(22)00181-8/sbref4
http://refhub.elsevier.com/S0925-5214(22)00181-8/sbref5
http://refhub.elsevier.com/S0925-5214(22)00181-8/sbref5
http://refhub.elsevier.com/S0925-5214(22)00181-8/sbref5
http://refhub.elsevier.com/S0925-5214(22)00181-8/sbref6
http://refhub.elsevier.com/S0925-5214(22)00181-8/sbref6
http://refhub.elsevier.com/S0925-5214(22)00181-8/sbref6
http://refhub.elsevier.com/S0925-5214(22)00181-8/sbref7
http://refhub.elsevier.com/S0925-5214(22)00181-8/sbref7
http://refhub.elsevier.com/S0925-5214(22)00181-8/sbref7
http://refhub.elsevier.com/S0925-5214(22)00181-8/sbref8
http://refhub.elsevier.com/S0925-5214(22)00181-8/sbref8
http://refhub.elsevier.com/S0925-5214(22)00181-8/sbref9
http://refhub.elsevier.com/S0925-5214(22)00181-8/sbref9
http://refhub.elsevier.com/S0925-5214(22)00181-8/sbref9
http://refhub.elsevier.com/S0925-5214(22)00181-8/sbref10
http://refhub.elsevier.com/S0925-5214(22)00181-8/sbref10
http://refhub.elsevier.com/S0925-5214(22)00181-8/sbref10
http://refhub.elsevier.com/S0925-5214(22)00181-8/sbref11
http://refhub.elsevier.com/S0925-5214(22)00181-8/sbref11
http://refhub.elsevier.com/S0925-5214(22)00181-8/sbref11
http://refhub.elsevier.com/S0925-5214(22)00181-8/sbref12
http://refhub.elsevier.com/S0925-5214(22)00181-8/sbref12
http://refhub.elsevier.com/S0925-5214(22)00181-8/sbref12
http://refhub.elsevier.com/S0925-5214(22)00181-8/sbref13
http://refhub.elsevier.com/S0925-5214(22)00181-8/sbref13
http://refhub.elsevier.com/S0925-5214(22)00181-8/sbref13
http://refhub.elsevier.com/S0925-5214(22)00181-8/sbref13
http://refhub.elsevier.com/S0925-5214(22)00181-8/sbref14
http://refhub.elsevier.com/S0925-5214(22)00181-8/sbref14
http://refhub.elsevier.com/S0925-5214(22)00181-8/sbref14
http://refhub.elsevier.com/S0925-5214(22)00181-8/sbref14
http://refhub.elsevier.com/S0925-5214(22)00181-8/sbref15
http://refhub.elsevier.com/S0925-5214(22)00181-8/sbref15
http://refhub.elsevier.com/S0925-5214(22)00181-8/sbref15
http://refhub.elsevier.com/S0925-5214(22)00181-8/sbref16
http://refhub.elsevier.com/S0925-5214(22)00181-8/sbref16
http://refhub.elsevier.com/S0925-5214(22)00181-8/sbref16
http://refhub.elsevier.com/S0925-5214(22)00181-8/sbref16
http://refhub.elsevier.com/S0925-5214(22)00181-8/sbref17
http://refhub.elsevier.com/S0925-5214(22)00181-8/sbref17
http://refhub.elsevier.com/S0925-5214(22)00181-8/sbref17
http://refhub.elsevier.com/S0925-5214(22)00181-8/sbref18
http://refhub.elsevier.com/S0925-5214(22)00181-8/sbref18
http://refhub.elsevier.com/S0925-5214(22)00181-8/sbref19
http://refhub.elsevier.com/S0925-5214(22)00181-8/sbref19
http://refhub.elsevier.com/S0925-5214(22)00181-8/sbref19
http://refhub.elsevier.com/S0925-5214(22)00181-8/sbref20
http://refhub.elsevier.com/S0925-5214(22)00181-8/sbref20
http://refhub.elsevier.com/S0925-5214(22)00181-8/sbref20
http://refhub.elsevier.com/S0925-5214(22)00181-8/sbref21
http://refhub.elsevier.com/S0925-5214(22)00181-8/sbref21
http://refhub.elsevier.com/S0925-5214(22)00181-8/sbref21
http://refhub.elsevier.com/S0925-5214(22)00181-8/sbref22
http://refhub.elsevier.com/S0925-5214(22)00181-8/sbref22
http://refhub.elsevier.com/S0925-5214(22)00181-8/sbref22


Postharvest Biology and Technology 192 (2022) 112013

7

Xu, J., Mishra, P., 2022. Combining deep learning with chemometrics when it is really 
needed: a case of real time object detection and spectral model application for 
spectral image processing. Anal. Chim. Acta 339668. 

Yu, X., Lu, H., Liu, Q., 2018. Deep-learning-based regression model and hyperspectral 
imaging for rapid detection of nitrogen concentration in oilseed rape (Brassica napus 
L.) leaf. Chemom. Intell. Lab. Syst. 172 (188–193). 

Yu, X.J., Lu, H.D., Wu, D., 2018. Development of deep learning method for predicting 
firmness and soluble solid content of postharvest Korla fragrant pear using Vis/NIR 
hyperspectral reflectance imaging. Postharvest Biol. Technol. 141 (39–49). 

J. Xu and P. Mishra                                                                                                                                                                                                                            

http://refhub.elsevier.com/S0925-5214(22)00181-8/sbref23
http://refhub.elsevier.com/S0925-5214(22)00181-8/sbref23
http://refhub.elsevier.com/S0925-5214(22)00181-8/sbref23
http://refhub.elsevier.com/S0925-5214(22)00181-8/sbref24
http://refhub.elsevier.com/S0925-5214(22)00181-8/sbref24
http://refhub.elsevier.com/S0925-5214(22)00181-8/sbref24
http://refhub.elsevier.com/S0925-5214(22)00181-8/sbref25
http://refhub.elsevier.com/S0925-5214(22)00181-8/sbref25
http://refhub.elsevier.com/S0925-5214(22)00181-8/sbref25

	Complementary deep learning and chemometrics: A case of pear fruit centroid detection and spectral model application for fr ...
	1 Introduction
	2 Materials and methods
	2.1 Dataset
	2.2 Deep learning for pear fruit centroid detection
	2.2.1 Image labelling for ground truth bounding boxes
	2.2.2 Deep transfer learning

	2.3 Chemometric modelling for fruit property prediction

	3 Results and discussion
	3.1 Detection of pear fruit belly
	3.2 Chemometric model application on the centroid of fruit belly

	4 Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgements
	References


