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A B S T R A C T   

In the present contribution, the feasibility of portable Fourier transform infrared spectroscopy (FTIR) combined 
with multivariate classification techniques is assessed for classification of minced beef, lamb, chicken and pork 
samples. In this regard, both attenuated total reflectance-FTIR (ATR-FTIR) and diffuse reflectance-FTIR (DR- 
FTIR) methods are evaluated. First, principal component analysis (PCA) was used for exploring FT-IR spectra of 
four meat species to find similarities and dissimilarities among samples. Additionally, one-class classification 
(OCC) was utilized as a new approach for halal meat species certification. For OCC, two scenarios were defined: 
(i) 100% correct classification for pork, and (ii) a most favorable overall classification rate for all species 
investigated simultaneously. With the OCC approach, both ATR and DR methods were found to produce high 
false-positive scores in scenario (i), whilst the DR method scored the best in scenario (ii) with an overall score of 
89% correct classification. In the next step, partial least squares-discriminant analysis (PLS-DA) and support 
vector machine (SVM) with radial basis function (RBF) as kernel function were evaluated for meat speciation. On 
this matter, SVM showed better classification performance in terms of total accuracy for both ATR-FTIR (98%) 
and DR-FTIR (100%) datasets over PLS-DA (90% and 98%, respectively). 

The promising results of both portable ATR-FTIR and DR-FTIR combined with OCC approach and discriminant 
analysis indicated for the first time their use as successful non-destructive, cost-effective and rapid routine 
screening methods for on-site analysis of meat speciation and halal meat species certification which could be 
useful for quality control officers to manage and control meat authenticity at various stages of the supply chain.   

1. Introduction 

The continuous expansion of the meat supply chain and the partic-
ipation of different stakeholders in the chain has led to increased 
concern about meat authenticity for authorities, food producers, and 
consumers [1]. In the meat supply chain, meat speciation is seen as a 

significant authenticity issue. For religious (e.g. halal), public health (e. 
g. red meat) and economic reasons the detection of animal species in the 
meat supply chain is imperative [2–4]. Nowadays, increasing the de-
mand for halal meat products and implementation of a halal assurance 
system have become a global concern. From an economic perspective, 
the Muslim community spend globally 1.37 trillion (US) dollars for food 
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in 2018 and it is anticipated to reach 2 trillion dollars by 2024 with meat 
and meat products being an important part of the halal food supply 
chain [3,5]. Analysis of the DNA and protein for meat speciation are 
common practice and a notable number of analytical methods have been 
developed to detect the origin of species [6,7]. These methods include 
traditional and real-time polymerase chain reaction (PCR) as a DNA- 
based method and gel electrophoresis, liquid chromatography-mass 
spectrometry (LC-MS) and immunoassays techniques as a protein- 
based method [8]. Most of these methods are expensive, laborious and 
destructive and need complicated laboratory procedures. 

Fourier transform infrared (FTIR) spectroscopy is a spectral finger-
printing technique operating in the mid-infrared (MIR) range of the 
electromagnetic spectrum. When FTIR spectral data is combined with 
chemometric methods, it can be used as a fast, simple, low-cost, non- 
destructive and environmentally friendly screening method for meat 
adulteration and authenticity monitoring [9]. The MIR spectral band-
width is ranging from 2500 to 25,000 nm and spectra represent the 
characteristic fundamental stretching (changes in bond length), bending 
(bond angle), and rotating vibrations of functional groups present in the 
sample molecules [10,11]. FTIR spectroscopy has different types of 
sample presentation methods and spectral recording techniques, which 
are, amongst others, attenuated total reflection FTIR (ATR-FTIR) and 
diffuse reflection FTIR (DR-FTIR). ATR-FTIR is a direct sample contact 
technique for measuring the spectra of solids, semisolids, liquids, and 
thin films. ATR-FTIR has required little or no sample preparation. Pre-
vious studies reporting on meat speciation with FTIR mainly deploy the 
ATR-FTIR spectral analysis on lipid extracts from meat samples 
[9,12,13]. The classification of different meat species is therefore solely 
based on triacylglyceride and derived structures and other fat-soluble 
compounds present in the lipid extracts. Although the fat associated 
with each meat type may give species discrimination, to reduce the 
samples preparation procedure, in the current study it was decided to try 
this spectroscopic method on the lean meat itself without prior 
extraction. 

DR-FTIR is a non-contact technique for measuring the spectra of 
solids samples. Samples preparation (combined with KBr salt) is neces-
sary before analysis. For the specific case of meat, dehydration of the 
sample is required, resulting in a sample mass loss of up to 80% (w/w). 
This means that with DR-FTIR, the solids present in the meat sample are 
present in higher concentrations. For meat speciation, DR-FTIR is a 
technique that is not often reported upon, due to a relatively laborious 
sample preparation procedure. Still, in comparison with the effort 
required for DNA analysis, DR-ATR might serve as an alternative to 
gather detailed spectral information of meat samples [14,15]. For halal 
meat certification, the first concern is meat speciation, meaning that a 
halal meat product is made entirely of halal species such as ovine or 
bovine and does not contain non-halal species [16]. An FTIR spectra 
based classification model should therefore ideally have the target class 
‘pork’ or ‘non-halal’ to efficiently exclude all other halal meats. The 
second concern is to establish if Islamic ritual slaughtering methods 
have been applied in a correct way [16]. As it is unknown how this af-
fects the chemical composition of halal meat products versus non-halal 
meat products, this halal requirement is not considered in this work. 

In order to disclose the chemical sample information from the FTIR 
spectra, usually, multivariate statistics methods are used. In addition to 
the chemical information, FTIR spectra contain unwanted ambient and 
instrumental noise and scattering effects, which require a robust data 
pre-processing and chemometric methodology for the extraction of the 
relevant chemical sample information from the acquired spectra 
[17–19]. In previous studies, different multivariate methods such as 
partial least squares (PLS), support vector machine (SVM), K-nearest 
neighbor (KNN) and soft independent modelling of class analogy 
(SIMCA) were used in combination with an appropriate (combination 
of) data pre-processing method(s) for successful meat speciation. In 
these studies, there isn’t a suitable comparison between OCC approach 
on the one hand and linear and non-linear discriminant approach on the 

other hand, as a tool for halal species certification [2,9,12,13]. As a 
plausible and more efficient chemometric modelling strategy for finding 
fraud, one-class classification (OCC) can be considered. OCC only de-
scribes a target class, in this case, the non-halal class pork, and returns 
predictions of samples being out or in the respective target class. Hence, 
samples that are “in”, do contain pork and are therefore not halal and 
samples that are “out” do not contain pork and may be certified as halal 
species [3,20,21]. 

The known analytical techniques used to detect the origin of species 
include PCR, LC-MS and immunoassays [6–8,22]. These methods are 
destructive, expensive, laborious, time-consuming, require a specialized 
laboratory, involve chemical usage and/or need complicated laboratory 
procedures. Therefore, there is the need to seek other alternatives, and 
visible and infrared spectroscopies could be very helpful. In this regard, 
previous studies have mainly used bulky benchtop NIR and FTIR in-
struments for the application of halal from non-halal meat-species 
discrimination. Considering the huge meat adulteration from one hand 
and the need for its rapid detection at various stages of meat supply 
chain on other hand, there is an urgent need to develop non-destructive, 
cost-effective and rapid portable and/or handheld spectroscopy tech-
niques for on-site analysis of meat species at various stages of meat 
supply chain. In this regard, we recently assessed the feasibility of two 
handheld sensors (400–1000 nm and 900–1700 nm) for meat speciation 
and halal meat certification [21]. The results showed that Vis-NIR sensor 
was most successful in the halal certification (OCC approaches) and 
speciation (discriminant approaches) for both intact and ground meat 
using SVM. This research, presents the feasibility study on the use of 
portable ATR-FTIR and DR-FTIR techniques as rapid and cost-effective 
screening tools combined with multivariate analysis for halal meat 
species certification (pork vs. other species) as well as for speciation of 
four different types of meat (lamb, beef, pork and chicken) in food 
supply chains. We show the application of discriminant chemometric 
approaches (linear and non-linear methods) and OCC on data obtained 
using both FTIR spectral recording techniques. 

2. Materials and methods 

2.1. Sample collection 

Forty-eight lamb (Ovis aries) muscle samples (fore and hind shank), 
53 beef (Bos taurus) muscle samples (fore and hind shank, chuck, brisket 
and round), and 40 chicken (Gallus gallus domesticus) muscle samples 
(breast and drumstick) were obtained at least 24 h and maximum 72 h 
after slaughtering from local butchers in different cities of Iran. Addi-
tionally, 32 pork (Sus scrofa domesticus) muscle samples (shoulder and 
leg) were collected from Azerbaijan country. All meat samples were 
purchased from December 2018 to August 2020 (for consideration of 
season variety) in intact form and transported under ice-chilled condi-
tions to the laboratory. Fresh meat samples were stored at 4 ◦C until the 
preparation and analysis. 

2.2. Sample preparation 

Visible skin, fat and connective tissue were excised that could 
interfere in the analysis, and then about 100–200 g of meat was ho-
mogenized by a Moulinex Meat Grinder (1000 W, France) for 30 s. The 
fresh ground meat samples were used for ATR-FTIR. For compatibility 
with DR-FTIR, all ground meat samples were dried with a freeze-dryer 
(Christ Alpha 1–2 LDPlus, France) for 24 h or until dry to remove the 
excess water. Each dried meat sample was mixed with dry Potassium -
bromide (KBr, Merck) salt (1:10 ratio (w/w)) and homogenized with 
mortar before DR-FTIR analysis. 

2.3. Data acquisition 

ATR-FTIR spectra of the fresh ground meat samples were acquired on 
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a Cary 630 FTIR spectrometer (Agilent Technologies, USA). The in-
strument was equipped with a ZnSe ATR interface. The instrument was 
equipped with a deuterated triglycine sulfate (DTGS) detector and KBR 
as the beam splitter. Meat samples were placed in good contact with a 
horizontal positioned attenuated total reflectance element at room 
temperature. The surface of the ATR interface was cleaned with ethanol 
and dried before measuring the next sample. Before each sample scan, a 
new reference air background spectrum (an average of 32 scans) was 
acquired. The spectra were recorded in the range between 650 and 4000 
cm− 1 (2500 to 15 384 nm) at a resolution of 16 cm− 1 with 200 scans. All 
ATR-FTIR spectra were recorded as transmittance values at each data 
point but they were converted to absorbance (log1/transmittance). The 
Cary 630 MicroLab PC software was used for data collection. Finally, the 
ATR-FTIR data matrix consisted of 160 spectra (160 samples) with 451 
points (variables). 

For DR-FTIR spectra, each sample was mixed with KBr (1/10 ratio 
(w/w)) and approximately 500 mg of homogenized samples were 
transferred to the DR-FTIR sample holder cup and the top of the sample 
was leveled off for spectral acquisition. The Agilent Cary 630 FTIR 
spectrometer was operated using the diffuse reflectance sample inter-
face. Each sample was scanned from 650 to 4000 cm− 1 at a resolution of 
8 cm− 1 with 60 scans. The spectrum of the gold reference mirror was 
used as background (an average of 20 scans). All measurements were 
performed in a dry controlled atmosphere at room temperature. All DR- 
FTIR spectra were recorded as transmittance values at each data point 
but they were converted to absorbance (log1/transmittance). The Cary 
630 MicroLab PC software was used for data collection. Finally, the DR- 
FTIR data matrix consisted of 173 spectra (173 samples) with 900 points 
(variables). 

2.4. Data analysis 

Prior to OCC and discriminant analysis, the FTIR data were visually 
inspected and further examined using unsupervised principal compo-
nent analysis (PCA). To evaluate the power of discriminant classification 
models for each species, classification figures of merit including sensi-
tivity (Sen), specificity (Spe), error rate (ER) and accuracy (Acc) were 
used. These performance parameters are usually derived from a confu-
sion matrix, to better assess the classification performance. 

2.4.1. OCC approach 
OCC was applied as previously described by Weesepoel et al [30] and 

Mueller-Maatsch et al [31] using R 3.6.1 (R Core Team, 2018). In this 
work, SNV, SNV followed by baseline correction (SNV detrend, DT), 1st 
or 2nd derivative (Savitzky-Golay) with an 11-point filter length, 
discrete wavelet transformation (DWT) after interpolating the spectrum 
into 128 points (applying d2 Daubechies, filter length 2 or a la8 Least 
Asymmetric, filter length 8 transformations), and spectrum splitting 
(either full or split into 4 equal quarter spectra modeled separately) was 
performed. As OCC methods Soft Independent Modelling of Class 
Analogies (SIMCA), distance to k-Nearest Neighbour (kNN), Principal 
Components Analysis (PCA) residual, Mahalanobis distance, and One- 
Class Support Vector Machine (OCSVM) with radial basis kernel were 
used. The combinations were evaluated using 80 times repeated random 
cross-validation (70% split) on the target class (pork). The performance 
of the (combination of) pre-processing and OCC models were evaluated 
by calculating the ‘area under the receiver operating characteristic’ 
(AUROC) of the target class pork against lamb, beef and chicken, 
respectively. Three models were selected manually as they covered 
jointly the highest obtained AUROCs for each of the classes. A decision 
tree was implemented that flagged a sample as “not pork meat” when 
two or more out of the 3 models classified a sample as ‘out-of-class’. The 
decision tree was optimized for two different scenarios. The first sce-
nario comprises the 100% correct identification of pork, whilst the 
second scenario was tuned for a balanced false-positive and false- 
negative rate. 

2.4.2. Discriminant analysis 
Discriminant analysis of FTIR data was performed in MATLAB 

R2013a. For preprocessing of raw data the PLS-Toolbox version, 7.8 
(Eigenvector, WA, USA) was used. The duplex method was used for 
splitting the original spectra into training (70%) and test (30%) sets. 
Duplex algorithm was utilized to ensure that all species were repre-
sented in the test set. It leads to the formation of two balanced sets (with 
the same diversity) [23]. The training (calibration) set was used for 
calculating the model. The predictive classification models were vali-
dated using cross-validation (Venetian blinds (10 splits and 1 sample per 
split)) as internal validation. After training, tuning and evaluation of the 
model, the test set was used for the final performance assessment 
(external validation). The data analysis pipeline of the presented work is 
shown in Fig. 1. Data pre-processing of the data was used for removing 
or reducing redundant information (random noise and/or unwanted 
systematic variations) without affecting the chemical information pre-
sent in the FTIR spectra [20,24]. Different data preprocessing techniques 
were assessed being standard normal variate (SNV), 1st derivative, 2nd 
derivative (Savitzky–Golay and Gap Segment, 5, 11, 15 and 21-point 
filter length), mean centering, orthogonal signal correction (OSC), 
baseline filtering, external parameter orthogonalization (EPO), multi-
plicative signal correction (MSC), weighted normalization, baseline 
removal, and median ratio normalization, were assessed. Two discrim-
inant analysis techniques, being PLS-DA and SVM (with a non-linear 
kernel of radial basis function, RBF) were used in this study. Venetian 
blinds cross-validation (Number of data split: 10, thickness: 1) was used 
for cross-validation. In order to use the best combination of pre- 
processing techniques and the optimum number of latent variables 
(LVs) for PLS-DA, the lowest values of the root-mean-square error of 
calibration (RMSEC) and cross-validation (RMSECV) were used as se-
lection criteria. Other attempts such as variable selection using variable 
importance in projection (VIP) with “greater than one” rule [25] and 
outlier detection using Q-residuals/Hotelling’s T2 [26] were done to 
increase PLS-DA classification performance of the optimum pre- 
processing and LV combination. For finding the optimum SVM model, 
the model’s gamma and C parameters combination is optimized by 
assessing the highest classification rate in a matrix calculation with 
ranging values gamma (15 values from 10− 6 to 10, spaced uniformly in 
log) and cost (11 values from 10− 3 to 100, spaced uniformly in log). In 
order to prevent SVM overfitting, values of gamma and C were chosen 
with a maximum difference of a factor 10 in values [27–29]. To assess 
the performance of PLS-DA and SVM models, classification figures of 
merit including sensitivity (Sen), specificity (Spe), error rate (ER) and 
accuracy (Acc) were used. 

3. Results and discussion 

3.1. FTIR spectral analysis 

ATR-FTIR and DR-FTIR spectra of four meat species (lamb, beef, 
chicken and pork) are shown in Fig. 2. The mean spectra of the classes 
show visual differences, especially in 3000–2800 cm− 1, 1800–1700 and 
1700–1000 cm− 1 regions that are mainly related to lipid and protein 
composition. In general, the absorption bands between 3200 and 3500 
cm− 1 correspond to the stretching vibration of O–H and N–H bonds. N–H 
bonds are associated with protein amino acids and are not visible in the 
ATR spectra due to the presence of excess water. However, upon 
removal of water, the DR spectra showed the N–H stretching vibrations 
[32,33]. The band around 2800 to 3200 cm− 1 is related to the C–H 
asymmetric and symmetric stretching and is associated with lipids 
[32,33]. The region 1800–1600 cm− 1 allocated to C = C and C = O 
bonds and these can be related to phospholipids (~1740 cm− 1) [32–34]. 
Furthermore, the bands ~1650 and ~1540 cm− 1 are associated with 
amid I and II of protein amino groups. The band ~1650 cm− 1 is asso-
ciated with the N–H bond vibration and C═C stretching vibration of 
alkenes. The bond around 1540 cm− 1 is linked to the combination of 
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C–H bond stretching vibration and N–H bond bending. Approximately, 
the range from 1500 to 1000 cm-1 was related to the ̏fingerprint region“, 
and many different bands appear in this region. There is a clear differ-
ence between pork and other species in fingerprinting region. The 
interpretation of this region for meat matrices cannot be unequivocally 
done as the many molecules present to contribute to the FTIR spectra by 
specific types of vibrations. Different vibrations, including C-0, C–C, and 
C-N single bond stretches and C–H bending vibrations are found in this 
wavenumber region [32–34]. Fig. 1a and 1b reveal that beef and lamb 
resemble each other closely. The lipid content and composition 
(particularly 1700–1800 and 2800–3000 cm− 1) are a major source of 
variation between the different types of species especially pork samples. 
On the one hand, lipid composition can be linked to the type of animal 
and the age of the animal, whilst on the other hand, the leanness and the 
type of cut can also play a role [2]. For the ATR-FTIR, the average pork 
spectrum is deviating from the other three types of samples. A similar 
observation can be done in the DR-FTIR spectra. It can be concluded 
from observation of the spectra that a chemometrics approach would be 
feasible to use ATR and DR-FTIR for speciation of the four meat sample 
types. 

3.2. Exploratory data analysis using PCA 

PCA was used for the exploration and evaluation of differences be-
tween four meat species spectra. After visual assessment of different pre- 
processing methods, the suitable preprocessing methods were baseline 
correction (automatic Whittaker filter) followed by EPO (2PCs) for ATR- 
FTIR data and mean centering followed by EPO (3 PCs) for DR-FTIR 
spectra. Fig. 3a and 3c show the ATR-FTIR and DR-FTIR PCA scores 
plot for lamb, beef, pork, and chicken spectra. The PC1 scores for ATR 
were accounted for 52% of the explained variance and less separation 

between classes could be related to the high water content of the sam-
ples. Relatively samples separation can be observed on PC3 and PC4. 
Therefore, the remaining variance in spectral data did not result in full 
clustering into four different groups. For the DR spectra, better clus-
tering was observed in the PCA plot, due to the removal of the excess 
water. In contrast, in DR-FTIR a better sample separation can be 
observed on PC1 (40% variance) and there was less scattering of the 
samples. In summary, PCA analysis can provide an estimation of the 
sample’s distribution based on their ATR-FTIR and DR-FTIR spectra 
(Fig. 3a and c). However, DR-FTIR can provide better discrimination 
(clustering) of the samples compared to ATR-FTIR. The better separation 
between the species in PCA score plots of DR-FTIR spectra compared 
with ATR-FTIR spectra may be caused by the type of information 
collection and removal of water content from meat samples [14,15,33]. 
Furthermore, the loading plots of the PC1, PC2 and PC3 for ATR-FTIR 
and DR-FTIR are represented in Fig. 3(b and d). Wavenumbers with 
higher value are important to explain the variance and are potential 
wavenumbers to differentiate the four species. Analysis of the PCA 
loading plots reveals that the major features are mostly related to the 
lipid and protein content of the samples. Namely, moreover the bands at 
~1650 and ~1540 cm− 1, are related to amide I and II, the bands at 
2800–3200 cm− 1 and most important, the band at ~1740 cm− 1 are due 
to lipid content. 

3.3. OCC modeling 

The application of OCC for pork speciation was a powerful tool to 
identify any type of sample which do not belong to the pork class. By 
only defining the ‘pork’-class, potential unknown out-of-class samples 
can be identified and only one sample class needs to be measured. As 
OCC models are known to be less sensitive or accurate than the usual 

Fig. 1. Data analysis pipeline.  
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supervised classification methods, it was chosen to use the results of the 
three OCC models with the most favorite AUROC scores in the four 
different settings (i.e. pork vs lamb, pork vs beef, pork vs chicken and 
pork vs all) as displayed in Table 1. The three individual models were 
then optimized for two different scenarios by using different class limits 
and thresholds (Table 2). In scenario 1, 100% of the pork samples were 
correctly identified as pork. For Halal meat certification, a 100% correct 
identification of fraudulent samples is important, as false negatives are 
unacceptable in this setting. As a draw-back of this scenario, many false 
positives will be found, leading, therefore, to an increase in laboratory 
reference method work. This was especially the case for lamb and beef in 
the ATR setting, whilst a very low correct rate of 23 % was observed for 
chicken meat in the DR configuration. These low scores are a direct 
artifact of the forced zero false-negative rates set for the pork. Due to 
these extreme settings, scores from negative classes can be reduced 
dramatically with no obvious physical or chemical reason. Therefore in 
scenario 2, the number of false positives and false negatives was 
balanced to counter the high amount of false positives from scenario 1. 
In scenario 2, approximately 75–77% of the pork samples were 

identified correctly. Especially for the DR setting in scenario 2, the 
scores of the negative samples were all above 90 %, whilst for the ATR 
setting negative sample rates were slightly lower. It can therefore be 
concluded that the added value of the DR set-up with its more elaborated 
sample preparation, gives a slight advantage over the ATR methods. 
Both sample presentation methods may be used for the preliminary 
screening of meat samples using the OCC approach and the scenario 
which fits best to the envisioned application. In this work, we have only 
demonstrated 2 OCC scenarios, though one can imagine that several 
different scenarios can be possible. Also, OCC can be combined with 
supervised discriminant models (Section Discriminant modeling). When 
a sample in the OCC approach is detected as a halal meat species (out-of- 
class), the discriminant approach may be used for the discrimination of 
chicken, beef, lamb and pork samples. 

3.4. Discriminant modeling 

The ATR and DR FTIR spectral data were subjected to supervised 
discriminant analysis. Both PLS-DA and SVM methods were explored to 

Fig. 2. Mean of (a) ATR-FTIR spectra and (b) DR-FTIR spectra of lamb, beef, chicken, and pork samples.  
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gain classification models for allocating categories to meat samples. In 
this regard, different preprocessing strategies were assessed and the 
most appropriate preprocessing strategy was chosen according to the 
highest Sen, Spe and lowest Err. The best PLS-DA models for ATR-FTIR 
and DR-FTIR were achieved with EPO (2 PCs) + OSC and extended 
multiplicative signal correction (EMSC) + OSC, respectively (Fig. S1). 
The DR method results in spectra where the pork and lamb can be easily 
distinguished from the beef and chicken. In the test set, the greatest total 
accuracy values of PLS-DA for ATR-FTIR and DR-FTIR were 90% and 
98%, respectively (Tables 3 and 4). Furthermore, outlier detection using 

Q-residuals/Hotelling’s T2 and variable selection using variable 
importance in projection (VIP) was performed to improve PLS-DA 
classification but did not result in any significant improvement in both 
methods (Figure S2 and Table S1). After that, for assessing non-linear 
methods, SVM (RBF kernel) model was used. The best SVM models for 
ATR-FTIR and DR-FTIR were obtained with EPO (4 PCs) and Gap 
Segment 1st derivative (gap: 5, segment: 5), respectively. The maximum 
total accuracy values of SVM for ATR-FTIR and DR-FTIR were 98% and 
100%, respectively (Tables 3 and 4). According to the above results, DR- 
FTIR and SVM model (with non-linear kernel function) presented a 
relatively better performance rather than ATR-FTIR and PLS-DA. These 
findings may be associated with types of information collected from 
samples that in ATR-FTIR is mainly from a solid surface, while DR-FTIR 
presents information from the entire solid matrix and its information is a 
combination of internal and external reflection. DR-FTIR presented 
spectra with higher intensity of absorption in comparison to ATR-FTIR 
and removal of the water content of meat samples could improve 
spectral interpretation. However, DR-FTIR requires more sample prep-
aration than ATR-FTIR, and samples must be dried and combined with 
KBr salt prior to analysis [14,15,33]. Furthermore, the results of this 

Fig. 3. The PCA score and loading plots, (a) PCA score plot of ATR-FTIR (3000–2830 and 1760–1000 cm− 1) preprocessed with baseline correction (automatic 
Whittaker filter) + EPO (2PCs), (b) PCA loading plot of ATR-FTIR (full spectra) preprocessed with baseline correction (automatic Whittaker filter) + EPO (2PCs), (c) 
PCA score plot of DR-FTIR preprocessed with mean center + EPO (3 PCs), (d) PCA loading plot of DR-FTIR (full spectra) preprocessed with mean center + EPO 
(3 PCs). 

Table 1 
Top 3 of pre-processing and OCC algorithm combination and AUROCs on the manually picked OCC models for ATR-FTIR and DR-FTIR respectively.   

Model Pre-processing Algorithm AUROC 

SNV Derivative Subset DWT Pork Pork Pork Pork 

vs vs vs vs 

lamb beef chicken all 

ATR-FTIR 1 – 1st 4th – kNN (2neighbors)  0.81  0.86  0.92  0.86 
2 – 2nd 2nd – kNN (2neighbors)  0.82  0.84  0.89  0.85 
3 – – 2nd – Mahalanobis  0.75  0.68  0.85  0.75  

DR-FTIR 1 – 1st 3rd – kNN (2neighbors)  0.92  0.94  0.95  0.94 
2 – 1st (full) – kNN (2neighbors)  0.88  0.9  0.88  0.89 
3 – 1st 3rd – Mahalanobis  0.92  0.84  0.85  0.87  

Table 2 
Correct classification rate of samples in two scenarios.  

Scenario ATR-FTIR DR-FTIR 

1 2 1 2 

Pork 100% 77% 100% 75% 
Lamb 52% 85% 69% 90% 
Beef 58% 87% 57% 94% 
Chicken 70% 93% 23% 98%  
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study revealed that SVM (RBF kernel as a non-linear kernel) has a 
relatively better performance compared with PLS-DA (as a linear model) 
for meat speciation in both techniques (Tables 3 and 4). The better self- 
learning and self-adjustment capacity of the SVM technique might be 
attributed to the optimal performance exhibited by the SVM model. In 
some studies, it has been shown that SVM models had better perfor-
mance for authenticity and quality control [35,36]. In previous studies, 
it has been reported that DR-FTIR (in which the samples are dried) 
presented a better performance than ATR-FTIR in some authenticity 
studies [37,38]. 

4. Conclusion 

Regarding increasing meat fraud during these years and demand for 
screening methods for meat authenticity, in this study, the application of 
portable ATR-FTIR and DR-FTIR spectroscopy combined with different 
chemometric methods was assessed for discrimination of lamb, beef, 
chicken and pork meat. In the present contribution, DR-FTIR and SVM 
discriminant modeling gave the highest classification rates. The multi-
variate statistics models investigated in this study, with the performance 
of 90%-100% accuracy reveal that ATR-FTIR and DR-FTIR combined 
with appropriate OCC and discriminant approaches have the potential to 
be used as a screening method and part of a two-tiered system for meat 
authenticity and halal species certification. Crucial for the performance 
of this screening method is the choice of sample presentation (ATR and 
DR) and multivariate data analysis approach. DR-FTIR combined with 
SVM showed better performance rather than ATR-FTIR followed by PLS- 
DA. A potential disadvantage is the more elaborated sample preparation 
required for DR-FTIR. The OCC screening approach with both ATR-FTIR 
and DR-FTIR can decrease the number of samples to be evaluated and 
put forward for confirmatory PCR methods, although the OCC models 
explored in this study could not match the performance of the 
discriminant models. Further validation of the spectral databases built in 
this study can be done by adding more sample variability, and by 
incorporating samples from different geographical areas and seasons. 
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