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Genome‑scale metabolic modelling 
enables deciphering ethanol 
metabolism via the acrylate pathway 
in the propionate‑producer Anaerotignum 
neopropionicum
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Abstract 

Background:  Microbial production of propionate from diluted streams of ethanol (e.g., deriving from syngas fermen‑
tation) is a sustainable alternative to the petrochemical production route. Yet, few ethanol-fermenting propionigenic 
bacteria are known, and understanding of their metabolism is limited. Anaerotignum neopropionicum is a propionate-
producing bacterium that uses the acrylate pathway to ferment ethanol and CO2 to propionate and acetate. In this 
work, we used computational and experimental methods to study the metabolism of A. neopropionicum and, in 
particular, the pathway for conversion of ethanol into propionate.

Results:  Our work describes iANEO_SB607, the first genome-scale metabolic model (GEM) of A. neopropionicum. 
The model was built combining the use of automatic tools with an extensive manual curation process, and it was 
validated with experimental data from this and published studies. The model predicted growth of A. neopropionicum 
on ethanol, lactate, sugars and amino acids, matching observed phenotypes. In addition, the model was used to 
implement a dynamic flux balance analysis (dFBA) approach that accurately predicted the fermentation profile of A. 
neopropionicum during batch growth on ethanol. A systematic analysis of the metabolism of A. neopropionicum com‑
bined with model simulations shed light into the mechanism of ethanol fermentation via the acrylate pathway, and 
revealed the presence of the electron-transferring complexes NADH-dependent reduced ferredoxin:NADP+ oxidore‑
ductase (Nfn) and acryloyl-CoA reductase-EtfAB, identified for the first time in this bacterium.

Conclusions:  The realisation of the GEM iANEO_SB607 is a stepping stone towards the understanding of the 
metabolism of the propionate-producer A. neopropionicum. With it, we have gained insight into the functioning of 
the acrylate pathway and energetic aspects of the cell, with focus on the fermentation of ethanol. Overall, this study 
provides a basis to further exploit the potential of propionigenic bacteria as microbial cell factories.
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Background
Propionic acid is a naturally-occurring carboxylic acid 
produced by propionigenic bacteria as end-product of 
their anaerobic metabolism. It is an important inter-
mediate in anaerobic fermentative processes such as 
those occurring in the human gut, anaerobic digest-
ers and cheese production. It is also an essential plat-
form chemical in the manufacture of cellulose-derived 
plastics, cosmetics and pharmaceuticals and, due to its 
antimicrobial properties, it can be used as food pre-
servative [1, 2]. At present, industrial production of 
propionic acid is based on petrochemical processes, 
but efforts are being made to develop sustainable pro-
duction platforms based on the use of propionigenic 
bacteria as biocatalysts [1, 2]. Microbial production of 
propionic acid has been researched for over 150 years, 
however industrial implementation is still limited 
mainly due to low productivities, which render such 
processes economically noncompetitive [1–3]. So far, 
most approaches have considered strains of the genus 
Propionibacterium - well-studied due to their involve-
ment in cheese production [2] -, and have focused on 
the use of sugars as feedstock. However, the chemi-
cal industry is increasingly required to rely on the 
use of non-conventional, inexpensive raw materials 
to minimize its carbon footprint [4]. Ethanol, a low-
priced common end-product of many fermentations, 
is regarded as one of such feedstocks [4, 5]. Moreover, 
ethanol can be synthesised from CO, CO2 and H2 (syn-
gas) by acetogenic bacteria. Syngas-to-ethanol fermen-
tation technology has been deployed at large scale, and 
recent advances are expected to accelerate its develop-
ment in the years to come [6–8].

Anaerotignum neopropionicum, formerly Clostridium 
neopropionicum [9], was the first representative of the 
ethanol-fermenting, propionate-producing bacteria. It 
was isolated in 1982 from an anaerobic digester treat-
ing wastewater from vegetable cannery [10]. The abil-
ity of converting ethanol to propionate is shared with 
only three other microbial species: the closest relative 
Anaerotignum propionicum [11] (formerly, Clostridium 
propionicum [9]), the sulphate-reducing bacterium 
Desulfobulbus propionicus [12, 13], and Pelobacter 
propionicus [14]. In these four microorganisms, etha-
nol oxidation to propionate occurs in the presence of 
CO2 with concomitant production of acetate, accord-
ing to the theoretical Eq. 1. This ability of propionigenic 
bacteria could be exploited to upgrade dilute ethanol 

streams from beer production or syngas fermentation, 
among others. For example, Moreira et al. showed that 
co-cultures of acetogens and ethanol-consuming pro-
pionigenic bacteria can convert syngas into propion-
ate [15]. In their study, the acetogen Acetobacterium 
wieringae was co-cultivated with A. neopropionicum; A. 
wieringae converted CO to ethanol, which was used by 
A. neopropionicum to produce propionate.

�Go
= −124kJ .

Two main pathways have been described for the fer-
mentative production of propionic acid in bacteria: the 
methylmalonyl-CoA (also termed succinate pathway or 
Wood-Werkman cycle) and the acrylate pathway [1, 16]. 
Most of the known propionigenic bacteria, including 
strains of the genera Propionibacterium and Cutibacte-
rium, use the methylmalonyl-CoA pathway for growth. 
The acrylate pathway is mostly found within members of 
the phylum Firmicutes [16]. Sugars and lactate are com-
mon substrates for these pathways. Ethanol fermenters 
D. propionicus and P. propionicus use the methylmalonyl-
CoA pathway [13, 14], whereas A. neopropionicum and A. 
propionicum use the acrylate pathway [17].

To fully exploit the potential of microorganisms for 
biotechnological applications, it is fundamental to 
understand their metabolism and cellular processes. 
Genome-scale metabolic models (GEMs) and their anal-
ysis with COnstraint-Based Reconstruction and Analy-
sis (COBRA) methods [18] have become indispensable 
tools in this regard [19, 20]. Flux balance analysis (FBA) 
is often used as the mathematical approach to explore 
the intracellular fluxes of GEMs under steady-state con-
ditions (e.g., in chemostat cultivations) [21]. FBA can be 
extended to dynamic FBA (dFBA), which simulates the 
time-step evolution of individual steady-states that take 
place in time-varying processes, such as batch and fed-
batch cultures [22]. A wide range of GEMs have been 
successfully implemented to unravel novel metabolic 
features of microorganisms, guide experimental design 
or improve bioprocess operation in mono- and co-cul-
tivation. For instance, the reconstruction of the first 
GEM of Clostridium ljungdahlii (iHN637) demonstrated 
the essential role of flavin-based electron bifurcation in 
energy conservation during autotrophic growth [23]. 
FBA enabled the estimation of intracellular metabolic 
fluxes in the GEM of the acetogen Clostridium autoetha-
nogenum (iCLAU786), helping to understand the effects 

(1)3CH3CH2OH + 2CO2 ↔ 2CH3CH2COO
−
+ CH3COO

−
+ 3H

+
+H2O,

Keywords:  Genome-scale, constraint-based metabolic model, Dynamic flux balance analysis, Anaerotignum 
neopropionicum, Acrylate pathway, Ethanol metabolism, Propionic acid
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of CO supplementation on CO2/H2-growing cultures 
[24]. A multi-species GEM was recently developed that 
described a syngas-fermenting co-culture composed 
of C. autoethanogenum and Clostridium kluyveri; the 
model provided valuable insight into the microbial inter-
actions between the two microorganisms and predicted 
strategies for enhanced production of the end products 
butyrate and hexanoate [25].

Many propionigenic bacteria have been sequenced to 
date [26–31], including the ethanol fermenters D. pro-
pionicus [32], P. propionicus [33], A. propionicum [29] 
and A. neopropionicum [31]. This has enabled the recon-
struction of GEMs of some of these species. All GEMs of 
propionigenic bacteria published to date concern strains 
that harbour the methylmalonyl-CoA pathway. One of 
these works described the reconstruction of five Propi-
onibacterium freudenreichii species using pan-genome 
guided metabolic analysis [34]. Navone et. al used the 
Propionibacterium subsp. shermanii and the pan-Propi-
onibacterium GEMs to guide genetic engineering strate-
gies for increased propionic acid production [35]. Sun et. 
al developed a constrained-based GEM of P. propionicus 
and validated fermentative growth of this strain on etha-
nol [36].

Here we describe iANEO_SB607, the first GEM of 
A. neopropionicum and the first to model the acrylate 
pathway in a propionigenic microorganism. The model 
was reconstructed using automatic tools followed by an 
extensive manual curation, which led us to the identifi-
cation of electron-transferring enzymes involved in the 
acrylate pathway, cofactor regeneration and energy con-
servation. In addition, a physiological characterisation 
of A. neopropionicum in batch cultures was performed 
to validate and complement the reconstruction of the 
model. FBA was used to assess growth phenotypes on 
several carbon sources, and dFBA was applied to simu-
late batch growth of A. neopropionicum on ethanol, and 
ethanol plus acetate. The combination of in-depth mod-
elling and experimentation has enabled us to examine 
in detail the metabolism of ethanol fermentation in this 
bacterium and to address pre-existing ambiguities.

Materials and methods
Reconstruction of the GEM iANEO_SB607
The genome-scale metabolic network of A. neopropi-
onicum was reconstructed in four main steps. First, the 
genome sequence of A. neopropionicum DSM 3847T 
(GCA​_001571775.1) [31] was retrieved from the Euro-
pean Nucleotide Archive in FASTA format and was 
annotated using RAST [37]. An additional re-annotation 
was carried out using eggNOG-mapper [38]. The anno-
tation file can be found in the public Gitlab repository: 
https://​gitlab.​com/​wurssb/​Model​ling/​Anaer​otign​um_​

neopr​opion​icum. The second step was the generation 
of the draft model using ModelSEED [39]. For this, the 
RAST annotation file was imported into ModelSEED 
and a Gram-positive template was chosen to reproduce 
growth on rich medium. The draft model was down-
loaded in table format and SBML format. The third step 
consisted on the manual curation and refinement of the 
draft model. Every reaction entry was analysed individu-
ally and modifications were made on the table format 
file. Specifically, (i) unbalanced reactions were corrected 
based on charged formulas with the corresponding addi-
tion/deletion of H+ or H2O molecules; (ii) reaction direc-
tion was adjusted using eQuilibrator [40]. Reactions were 
considered reversible if the change in Gibbs free energy 
was between -30 and 30 kJ mol-1 at standard conditions 
for reactants/products, pH 7.3 and ionic strength 0.1 
M. In cases where eQuilibrator did not retrieve infor-
mation for a specific reaction, reaction direction was 
adjusted based on information from MetaCyc [41] and 
BIGG [42] databases. (iii) EC numbers were corrected 
or inserted for every reaction based on information from 
KEGG [43] and MetaCyc [41]. (iv) The original genes in 
Patric format [44] were replaced by the locus tag format 
(’CLNEO_XXXXX’) found in UniProt [45] and BRENDA 
[46] databases. The re-annotation file was used to iden-
tify potential gene(s) associated to reactions that lacked 
a gene in the original RAST annotation. (v) The final step 
consisted of gap-filling, where reactions were added or 
removed to reproduce known or observed phenotypes. 
Gap-filling was done combining a computational and a 
manual approach: an automatic gap-filling process was 
run using the KBase pipeline[47], while the manual cura-
tion was based on experimental data obtained in this 
study and published  works. The final model, iANEO_
SB607, can be found in the git repository in Table format, 
json and SBML L3V1 [48] standardization. Further-
more, the different versions together with a Memote and 
FROG report (https://​www.​ebi.​ac.​uk/​biomo​dels/​curat​
ion/​fbc) were combined in an OMEX archive file [49] 
deposited in BioModels [50] and assigned the identifier 
MODEL2201310001.

Generation of the biomass synthesis reaction and sensitivity 
analysis
The biomass reaction of A. neopropionicum was adapted 
from the biomass reactions of Clostridium beijerinckii 
(GEM iCM925 [51]) and C. autoethanogenum (GEM 
iCLAU786 [52]). The composition of the main build-
ing blocks was maintained but, based on the protocol 
of Thiele and Palsson [53], protons were stoichiometri-
cally added to the hydrolysis part of the biomass synthe-
sis reaction. Protons were also added to the reactions of 
DNA, RNA, proteins, teichoic acids and peptidoglycans 

https://gitlab.com/wurssb/Modelling/Anaerotignum_neopropionicum
https://gitlab.com/wurssb/Modelling/Anaerotignum_neopropionicum
https://www.ebi.ac.uk/biomodels/curation/fbc
https://www.ebi.ac.uk/biomodels/curation/fbc
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synthesis in line with the ATP associated to polimeriza-
tion. The DNA composition was determined based on 
the GC content of the genome of A. neopropionicum and 
it was adjusted in the reaction associated to the biosyn-
thesis of DNA. The fatty acids composition was adjusted 
based on reported experimental data for A. neopropioni-
cum [9].

A sensitivity analysis was performed by modifying the 
content of proteins, phospholipids (plipids) and cell wall 
components, considering cell wall components as the 
sum of teichoic acid, peptidoglycans and carbohydrates 
composition. The rest of components—DNA, RNA and 
trace- were kept fixed, as together they only represent 
10% of the biomass. The composition of proteins and 
plipids was randomly selected within ± 10% of their 
original value. In this way, the total cell wall components 
composition was calculated following equation 2.

Consecutively, the value of each cell component was dis-
tributed within teichoic acid, peptidoglycans and carbo-
hydrates following the same proportion as they had in the 
original biomass synthesis reaction. For each randomly 
selected value, a new biomass synthesis reaction was 
obtained. This new biomass synthesis reaction was max-
imised as the objective function using FBA in COBRApy 
[54] maintaining fixed ethanol and CO2 uptake rates. We 
repeated this process 1000 times, so that we obtained 
1000 different biomass synthesis reactions. The composi-
tion of the cell wall components, proteins and phospho-
lipids was stored for each biomass synthesis reaction, 
together with the growth rate, and acetate and propion-
ate production rates. The obtained growth rate, acetate 
and propionate production rates were normalised with 
respect the original values and were plotted against each 
biomass building block (Additional file 1: Fig. S1) Addi-
tionally, we also studied the effect of varying GAM on the 
growth rate. In this analysis, the original fractions of the 
biomass components shown in equation  2 were main-
tained, and we randomly selected different GAM values 
within ±20% of the original value. We repeated this pro-
cess 1000 times and calculated the growth rate for each 
GAM value. The obtained growth rate was normalised 
with respect the original growth rate and was plotted 
against GAM (Additional file 1: Fig. S2; git repository).

Model simulations at steady‑state
The model was qualitatively validated by assessing 
growth capabilities and product profile on several car-
bon sources in steady-state. Model simulations were 

(2)

Cell wall components =1− protein− plipids

− (DNA+ RNA+ trace)

done using COBRApy, version 0.24.0 [54], and Python 
3.6.9. The maximum empirical ethanol uptake rate across 
cultivations was 30 to 40 mmol gDW

-1 h-1 (see Quantita-
tive assessment of iANEO_SB607 through dFBA). Based 
on this, the lower bound of the substrate uptake rate 
per time point was constrained to 30 mmol gDW

-1 h-1 to 
assess growth on a single carbon source, and to 30 mmol 
gDW

-1 h-1 in total to assess growth on more than one 
carbon source, unless specified otherwise. The biomass 
synthesis reaction was used as the objective function. 
Growth was considered when the growth rate was higher 
than 0.0001 h-1. To better explore the solution space, the 
fluxes compatible with the applied constraints were sam-
pled using the sample function with the ’achr’ method 
in the flux_analysis submodule of COBRApy [55]. The 
lower bound of the biomass synthesis reaction was con-
strained to be at least 99% of the maximum growth rate 
calculated by FBA. Presented results are the average and 
standard deviation based on 5000 iterations generated at 
each condition.

Dynamic flux balance analysis simulations
The reconstructed GEM iANEO_SB607 was subjected to 
dFBA to simulate batch growth of A. neopropionicum on 
ethanol and ethanol plus acetate. Model simulations were 
done using COBRApy, version 0.24.0 [54], IBM ILOG 
CPLEX 128, and Python 3.6.9 (see git repository). The 
maximum uptake rate, maximum growth rate and ini-
tial substrate and biomass concentration, obtained from 
batch cultivations, were used as model inputs. To con-
strain the feasible flux space, ethanol uptake was speci-
fied to follow a Michaelis-Menten-like kinetics (Eq.  3) 
with parameters qSi,max and Km,i:

where qSi is the uptake rate of substrate i (mmol gDW−1 
h −1 ); qSi,max is the maximum uptake rate of substrate i 
(mmol gDW−1 h −1 ); Km,i is the Michaelis-Menten constant 
(mM) for substrate i and Si is the concentration of sub-
strate i (mM). Km,i was determined based on experimen-
tal data and model fitting (Additional file  1: Table  S1). 
qSi,max was calculated from experimental data of batch 
fermentations. Concentrations of substrates, products 
and biomass over time were determined as follows. First, 
the Vsi was calculated using Eq. 3 for each given time step 
and the defined initial concentrations. Then, FBA was 
applied under those constraints to compute the fluxes at 
maximum growth rate. After that, the following ordinary 
differential equations (ODE) were solved:

(3)qSi =
qSi,maxSi

Km,i + Si
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where Xi is the biomass concentration (g L-1); µ is the 
specific growth rate (h-1); Si is the concentration of sub-
strate i (mM); qSi is the uptake rate of substrate i (mmol 
gDW−1 h −1 ); qPj is the production rate of product j (mmol 
gDW−1 h −1 ), and Pj is the concentration of product j 
(mM). Equations  4,5 and 6 were used to calculate X, Si 
and Pj, respectively. Si is used as input to calculate the 
next state following Eq.  3. The objective function was 
changed to maximise the ATP generation (“rxn00062_
c0”) once the model became infeasible due to the low 
concentration of ethanol. For each time step, the concen-
tration of biomass, substrate and products was computed 
and the calculated values were stored and plotted.

Experimental batch fermentation data
Cultivation conditions
A. neopropionicum DSM 3847T was obtained from the 
German Collection of Microorganisms and Cell Cul-
tures (DSMZ, Braunschweig, Germay). Batch fermenta-
tions were done in 117 mL serum bottles containing 50 
mL medium with the following composition (per litre): 
0.9 g NH4Cl, 0.3 g NaCl, 0.8 g KCl, 0.2 g KH2PO4, 0.4 g 
K2HPO4, 0.2 MgSO4 x 7 H2O, 0.04 CaCl2 x 2 H2O, 3.36 
g NaHCO3, 10 mL trace element solution from DSM 
medium 318, 1 mL vitamin solution, 0.5 g yeast extract, 
0.3 g Na2S x x H2O (x=9-11) as reducing agent and 0.5 
mg resazurin as redox indicator. The vitamin solution 
contained (per liter): 0.5 g pyridoxine, 0.2 g thiamine, 0.2 
g nicotinic acid, 0.1 g p-aminobenzoate, 0.1 g riboflavin, 
0.1 g pantothenic acid, 0.1 g cobalamin, 0.05 g folic acid, 
0.05 g thioctic acid and 0.02 g biotin. The headspace of 
the bottles was filled with a gas mixture of N2/CO2 (80:20 
% v/v; 170 kPa). To test growth in the presence of H2, the 
headspace of bottles was filled instead with a gas mix-
ture of H2/CO2/N2 (10:20:70 and 80:20:0 % v/v; 170 kPa). 
Growth was assessed on the following substrates: etha-
nol, lactate, glucose and xylose, at an initial concentration 
of 25 mM. Where indicated, acetate (10 or 25 mM) was 
added to ethanol-fed cultures. The pH of the medium 
was 7.1 - 7.2. Cultures were incubated at 30oC statically.

Analytical techniques
Liquid and headspace samples were taken periodically 
over the course of batch fermentations and analysed for 

(4)
dXi

dt
= µXi,

(5)
dSi

dt
= qSiXi,

(6)
dPj

dt
= qPjXi,

biomass, substrate and product concentrations. Bio-
mass growth was measured by optical density at 600 nm 
(OD600). Biomass concentration (mgCDW L-1) was esti-
mated from OD600 measurements using the correlation: 
mgCDW L-1 = (OD600 - 0.016)/0.0032, which was experi-
mentally determined from A. neopropionicum cultures 
grown on ethanol. Concentrations of soluble compounds 
in the supernatant of liquid samples were determined 
using high-pressure liquid chromatography (HPLC) (LC-
2030C Plus, Shimadzu, USA). The HPLC was equipped 
with a Shodex SH1821 column operated at 65oC. A solu-
tion of 0.1 N H2SO4 was used as mobile phase, at a flow-
rate of 1 mL/min. Detection was done via a refractive 
index detector. Concentrations below 0.2 mM could not 
be accurately quantified and are considered traces. Con-
centrations of gases in headspace samples were deter-
mined via gas chromatography (GC) (Compact GC 4.0, 
Global Analyser Solutions, The Netherlands). To analyse 
H2, a Molsieve 5A column operated at 140oC coupled to a 
Carboxen 1010 column was used. CO2 was analysed in a 
RT-Q-BOND column at 60oC.

Results
Reconstruction of iANEO_SB607, the first GEM of A. 
neopropionicum
A draft model of the metabolism of A. neopropioni-
cum was developed by automatic reconstruction using 
the publicly available genome sequence of the micro-
organism (DDBJ/EMBL/GenBank accession number: 
LRVM00000000; [31]). The draft model comprised 491 
genes, 855 metabolites and 907 reactions. This prelimi-
nary model predicted growth only on rich medium sup-
plemented with amino acids and biomass precursors, and 
it did not predict the production of propionate and ace-
tate. We performed an extensive manual curation process 
that resulted in the deletion, modification or addition of 
reactions, metabolites and genes (see git repository). The 
final model, iANEO_SB607, comprises 607 genes, 815 

Table 1  Composition of iANEO_SB607

Features Amount

Genes 607

 Metabolites 815

  Intracellular metabolites 742

  Extracellular metabolites 73

 Reactions 932

  Metabolic reactions 771

  Transport reactions 88

  Exchange reactions 73

  Reactions associated with genes 733

  Reactions non-associated with genes 199
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metabolites and 932 reactions (Table 1). This is the first 
GEM of the propionigenic bacterium A. neopropionicum.

Two compartments are recognised in the model: the 
intracellular compartment (id: ’c0’) and the extracellu-
lar compartment (id: ’e0’). Metabolites are assigned to 
either one of the compartments. Reactions are classified 
as metabolic reactions, transport reactions and exchange 
reactions. Metabolic reactions describe the biochemi-
cal conversion of metabolites within the intracellular 
compartment. Transport reactions describe the trans-
port of metabolites across the intracellular and extracel-
lular compartments. Exchange reactions simulate the 
excretion of metabolites outside the cell or the uptake of 
metabolites into the cell. Reactions are distributed within 
cell subsystems (Fig.  1), except exchange reactions. The 
model also includes reactions involved in the production 
of acetate, propionate, butyrate, propanol, isobutyrate 
and isovalerate. Approximately 80 % of reactions could 
be associated to genes present in the genome of A. neo-
propionicum. The remaining 20  % of reactions are not 
associated with genes. Half of these reactions are mostly 
exchange reactions and diffusion transport reactions. The 
other half are spontaneous reactions or gap-filled reac-
tions describing, in a summarised manner, the biosynthe-
sis of biomass building blocks (e.g., lipids, carbohydrates).

Sensitivity analysis of the biomass synthesis reaction
The constructed biomass synthesis reaction (BIO-
MASS_Aneopro_w_GAM) accounts for the production 
of DNA, RNA, proteins, peptidoglycans, phospholipids, 
teichoic acids and trace, and it is normalised to 1 gram 
per mmol. It also includes the growth-associated ATP 
maintenance (GAM) as an hydrolysis reaction, and the 
non-growth associated ATP maintenance (NGAM) as a 
reaction of ATP phosphohydrolase (rxn00062_c0). GAM 
was assumed to be 40 mmol ATP/gDW, as in the GEM of 
C. acetobutylicum [56]. The lower bound of this reaction 

was constrained to a rate of 8.4 mmol ATP gDW
-1 h-1, an 

estimation based on the models of C. beijerinckii [51] and 
C. autoethanogenum [52].

Since the biomass synthesis reaction of A. neopropi-
onicum was developed based on these two other species, 
we performed a sensitivity analysis to test its robustness. 
The analysis showed the effect of modifying the propor-
tion of the main biomass components from the biomass 
synthesis reaction on model predictions (i.e., growth and 
production rates). In all scenarios tested, growth and 
production rates remained virtually unaffected (Addi-
tional file 1: Fig. S1). The largest deviation of the growth 
rate, acetate and propionate production rates were ± 
0.0005 h-1, ± 0.005 mmol gDW

-1 h-1 and ± 0.0025 mmol 
gDW

-1 h-1, respectively, which are negligible as they only 
represent 3, 0.025 and 0.025 %, respectively. The effect 
of varying other biomass components -DNA, RNA and 
trace- was also considered negligible given that they rep-
resent a minor fraction of the biomass (10%). The growth 
rate was slightly more affected when GAM was changed. 
The largest deviation was ± 0.00175 h-1, which corre-
sponds to 10.8 % difference compared to the original 
growth rate. The biomass synthesis reaction was there-
fore considered a reliable representation of the biomass 
composition of A. neopropionicum.

Quality of the GEM iANEO_SB607
The quality of the iANEO_SB607 model was evaluated 
using the SBML validator [57] and the test suite Memote 
[58]. Additionally, we have run a FROG analysis to verify 
the reproducibility of the model. The GEM was correctly 
defined in SBML format, level 3, version 1. The GEM 
obtained an overall Memote score of 72 %. All metabo-
lites, reactions and genes were fully annotated. The anno-
tation per database of reactions and metabolites scored 
83 %, however the annotation per database of genes 
scored a much lower value, 33 %. Reactions are mass 

Fig. 1  Distribution of the reactions of the iANEO_SB607 model within cellular subsystems
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and charge balanced, except for reactions associated to 
the synthesis of biomass precursors. The model does not 
have infeasible cycles and all metabolites are connected. 
However, the model is only partly consistent (55 % scor-
ing); this is due to the creation of metabolites to account 
for biomass precursors. These metabolites (e.g., RNA) 
lack a defined formula or a correct charge and, thus, their 
associated reactions are considered stoichiometrically 
inconsistent, decreasing the global consistency score. 
Memote identifies 102 metabolites that can only be con-
sumed or produced, resulting in 422 blocked reactions 
in the model under the restrictive constraints. When the 
model does not have constraints, FVA analysis finds 354 
blocked reactions,which is in line with the average % of 
blocked reactions in GEMs (20-40%) [59].

Qualitative assessment of iANEO_SB607 through analysis 
of growth phenotypes
The iANEO_SB607 model was qualitatively validated by 
assessing growth of A. neopropionicum on several car-
bon sources and contrasting the results with experimen-
tal data. Model predictions matched most of the growth 
phenotypes observed in cultivation experiments from 
this and previous studies (Table 2; full data is available in 
the git repository and Additional file 1: Table S2).

The model predicts growth of A. neopropionicum on 
ethanol. Growth on xylose and on glucose is also pre-
dicted by the model and supported by experimental evi-
dence, with exception of one study, which reported no 
growth of A. neopropionicum on glucose [9]. According 
to a previous work, A. neopropionicum can also grow 
on D-lactate, but not on L-lactate [17]. In our batch cul-
tivations with DL-lactate as substrate, we repeatedly 
observed that only ≈ 50 % of the substrate was used. The 
purity of the L- enantiomer in the racemic mixture solu-
tion was, according to the manufacturer, 27 - 33 %. This 
indicates that D-lactate is indeed used by A. neopropioni-
cum, but it does not exclude the possibility that L-lactate 
is also metabolised. Yet, since the latter could not be con-
firmed, the model considers only the utilisation of D-lac-
tate. The model predicts growth on pyruvate as well as 
on one pyruvate-derived amino acid, alanine. Serine also 
supports growth of A. neopropionicum, as predicted by 
the model and observed in cultivation experiments. The 
model indicates that branched-chain amino acids (valine, 
leucine and isoleucine) as well as TCA-derived amino 
acids (lysine and proline), with exception of threonine, 
are not utilised.

Further model validation was performed by assessing 
the product profile on a number of substrates from which 
sufficient experimental data was available, specifically: 
ethanol, lactate, glucose, xylose, L-threonine, L-serine, 
L-alanine, ethanol plus acetate, ethanol plus L-serine 

and ethanol plus L-alanine. For all the substrates tested, 
the model predicted mixed secretion of propionate and 
acetate, in accordance with experimental evidence (Fig. 2; 
full data is available in the git repository and Additional 
file  1: Table  S2). Model analysis shows that secretion of 
product mixture is a requisite for energy generation and 
redox cofactor regeneration. The involved pathways and 
their stoichiometry are described in following sections.

Butyrate, propanol, lactate, isobutyrate and isovalerate 
are also predicted by the model as fermentation prod-
ucts in all cases, albeit in different proportions. Butyrate 
appears as a minor product in all the simulations and 
cultivation experiments, except for in the fermentation 
of L-threonine; in this case, the model predicts butyrate 
as a major end product, as previously reported [9]. 
According to model simulations and in agreement with 
our experimental data, lactate, an intermediate of the 
acrylate pathway, and propanol are produced in minor 
amounts. In batch cultivations carried out in this study, 
isobutyrate and isovalerate were detected as traces with 
ethanol (plus acetate), glucose or xylose as substrates, but 
not with lactate. The model predicted both products to 
be produced as traces with these substrates. Model sim-
ulations predicted enhanced production of isobutyrate 

Table 2  Growth phenotypes of A. neopropionicum on different 
substrates, predicted by the iANEO_SB607 model and observed 
in experiments from this and previous studies

+ Positive, − negative, w weakly positive, ND no available data
a  L-Alanine
b  L-Serine
c  (L-D)-Lactate

Substrates iANEO_SB607 This 
study 
(exp.)

[17] [9] [15]

Ethanol + + + + +
Ethanol and acetate + + + ND ND

Ethanol and alanine +[a] ND ND ND +
Ethanol and serine +[b] ND ND ND +
Pyruvate + ND + + ND

D-Lactate + + + w[c] ND

D-Glucose + + + - ND

Xylose + + + + ND

L-Threonine + ND + + ND

L-serine + ND + + ND

L-Alanine + ND + + ND

D-Alanine + ND + ND ND

L-Valine – ND – w ND

L-Leucine – ND ND w ND

L-Isoleucine – ND ND w ND

Lysine – ND – ND ND

L-Proline - ND – – ND
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and isovalerate with ethanol plus L-valine and ethanol 
plus L-leucine as substrates, respectively (not shown), as 
observed in one study [9]. The model also predicted the 
production of isovalerate when L-alanine or L-serine are 
co-substrates with ethanol, which is in agreement with 
observations from a recent work [15].

H2 was not detected as product in any of the fermen-
tations of A. neopropionicum carried out in this study 
(with substrates: ethanol (plus acetate), lactate, glucose, 
xylose). In addition, H2 was not utilised nor affected the 
growth or the product profile of A. neopropionicum cul-
tures growing on ethanol (Additional file 1: Fig. S3). Pre-
vious works reported the same observations [17, 60]. A 
ferredoxin hydrogenase is annotated in the genome of 
A. neopropionicum (CLNEO_18070; EC 1.12.7.2; model 
id:’rxn05759_c0’); yet, given the collected evidence, this 
reaction was blocked in the model.

Quantitative assessment of iANEO_SB607 through dFBA
The iANEO_SB607 model of A. neopropionicum was 
evaluated quantitatively by simulating the dynamics of 
batch fermentation using dFBA. Three conditions were 
considered, with regard to the substrates present: 25 mM 
ethanol, 25 mM ethanol plus 10 mM acetate, and 25 mM 
ethanol plus 25 mM acetate. To constrain the model, we 
used empirical data of ethanol consumption, product 
formation and cell growth from cultivation experiments. 
The fermentation profiles obtained by dFBA were con-
trasted with the experimental data of batch incubations. 
Across cultivations, carbon balance was 85 - 96 %, not 
completely closed likely due to the difficulty to accurately 
quantify CO2 and to slight evaporation of ethanol in the 
bottles, as reported by others [61].

For the condition with only ethanol (and CO2) as sub-
strate, the time-course data obtained through dFBA 
accurately reproduced the fermentation profile, with only 
small deviations (Fig.  3). Exponential growth of A. neo-
propionicum began after a relatively short lag phase of 
≈ 13 hours. During the exponential phase, ethanol was 
uptaken (together with CO2; not shown) at an empirical 
maximum consumption rate (qS,max) of 36.2 ± 5.5 mmol 

ethanol gDW
-1 h-1. Modeled ethanol consumption fit-

ted the experimental data with a small margin of error. 
Propionate and acetate were produced simultaneously 
during the exponential phase, at empirical maximum 
production rates (qP,max and qA,max) of 12.0 ± 0.1 mmol 
propionate gDW

-1 h-1 and 8.6 ± 0.5 mmol acetate gDW
-1 

h-1, respectively. The production profile of propionate 
was well predicted by dFBA, estimating a final propionate 
concentration (10.9 mM) close to the experimental value 
(9.5 mM). However, dFBA predicted a final concentration 
of acetate (11.5 mM) moderately higher than experimen-
tally observed (8.6 mM). The empirical maximum spe-
cific growth rate of A. neopropionicum ( µmax) was 0.082 
± 0.006 h-1 (duplication time = 8.4 h), which was used to 
constrain the model. In incubations, the biomass concen-
tration peaked (44.7 ± 1.3 mgDW L-1) at ≈ 47 hours, and 
decreased afterwards. The simulation predicted a slightly 
deviated pattern of biomass formation during the expo-
nential phase, and it did not predict the observed drop 
in the stationary phase. Yet, the predicted maximum bio-
mass concentration (44 mgDW L-1) matched the empiri-
cal value. Propanol (1.3 mM) and butyrate (1 mM) were 
detected as minor products in batch incubations; the 
evolution of both products was predicted correctly by the 
dFBA simulations. Traces of isobutyrate and isovalerate 
were also detected and predicted by dFBA (not shown).

To further evaluate the ability of A. neopropionicum to 
upgrade dilute ethanol streams from syngas fermenta-
tion, we considered a scenario with ethanol and acetate 
as co-substrates. Acetate is produced by acetogens as a 
major product of autotrophic metabolism, and it is there-
fore found in variable proportions in syngas fermenta-
tion effluent. A. neopropionicum can utilise acetate in 
the presence of propanol [10] or ethanol [17] as electron 
donors. To investigate the effect of acetate as co-substrate 
on ethanol-fermenting cultures of A. neopropionicum, 
incubations were set up with ethanol (25 mM) and ace-
tate (10 and 25 mM) as susbtrates, and dFBA was used 
to simulate the dynamics of these fermentations. dFBA 
reproduced with high accuracy the fermentation profile 
of incubations containing ethanol plus 10 mM acetate 

Fig. 2  Product profile of the fermentation of different substrates by A. neopropionicum, predicted by the GEM iANEO_SB607 and observed in 
experiments from this and previous studies. P: Propionate; A: acetate; B: butyrate; Poh: propanol; L: lactate; iB: isobutyrate and iV: isovalerate. White 
spaces indicate the product is not reported produced. Grey areas indicate no available data
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(Fig.  4). In this condition, the observed µmax was 0.098 
± 0.005 h-1 (duplication time = 7.1 h); 19 % higher than 
in the incubations without acetate. However, less bio-
mass was formed in comparison; the maximum biomass 

concentration was 41.1 ± 0.8 mgDW L-1 ( ≈ 9% lower), 
which was also predicted by dFBA. The presence of 10 
mM acetate also affected the consumption and produc-
tion rates; ethanol consumption was faster than in the 

Fig. 3  Fermentation of ethanol (25 mM) by A. neopropionicum in batch cultivation. Dots indicate experimental data, and solid lines indicate the 
result of dFBA. Background colours distinguish fermentation phases: lag (blue), exponential (green) and stationary (orange)

Fig. 4  Fermentation of ethanol (25 mM) and acetate (10 mM) by A. neopropionicum in batch cultivation. Dots indicate experimental data and solid 
lines indicate the result of dFBA. Background colours distinguish fermentation phases: lag (blue), exponential (green) and stationary (orange)
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absence of acetate; the qS,max was 43.3 ± 4.3 mmol etha-
nol gDW h-1, a 20 % increase. The qA,max in this condition 
dropped to 3.1 ± 0.6 mmol acetate gDW h-1. The biggest 
difference was in the qP,max, which was 16.4 ± 0.8 mmol 
propionate gDW h-1, a 37 % increase compared to the con-
dition without acetate. The final propionate concentra-
tion was also slightly higher, 11.3 mM (vs. 9.5 mM). Here, 
again, the simulation predicted a similar propionate con-
centration to the observed value (12.2 mM), and a higher 
final acetate concentration (18.3 mM) than observed 
(16.7 mM). The incubations containing 25 mM acetate at 
the start followed a different trend than the incubations 
with 10 mM acetate (fermentation profile not shown). In 
batch bottles, the biomass concentration reached a simi-
lar value to that obtained in the condition with 10 mM 
acetate, but the µmax, qP,max and qA,max were similar to 
the condition without acetate (data not shown). The final 
propionate concentration was 12.5 mM, the highest of 
the three conditions tested.

The presence of acetate had an effect on the utilisation 
of ethanol by A. neopropionicum, which is reflected in the 
fermentation yields. The biomass yield (YX/S) was slightly 
lower in the presence of both 10 and 25 mM acetate (1.4 
gDW mol ethanol-1 vs. 1.6 gDW mol ethanol-1 when no 
acetate was present). With acetate present at the start 
of incubations, more ethanol was invested in propionate 
production, as indicated by the propionate yields (YP/S, 

mol mol-1), which were 0.33, 0.38 and 0.42 for the con-
ditions with no acetate, 10 mM acetate and 25 mM ace-
tate, respectively. The production of acetate followed the 
inverse trend; acetate yields (YA/S, mol mol-1) were 0.29, 
0.18 and 0.06 for the conditions with no acetate, 10 mM 
acetate and 25 mM acetate, respectively. Similarly, lower 
yields were obtained for propanol and butyrate when ace-
tate was present (data now shown).

Ethanol fermentation via the acrylate pathway
The reconstructed iANEO_SB607 model describes the 
metabolism of ethanol fermentation and propionate pro-
duction via the acrylate pathway in A. neopropionicum 
(Fig.  5). Model simulations provided new insights into 
the enzymatic reactions involved in propionate forma-
tion, cofactor regeneration and the energy metabolism of 
the cell.

Ethanol is oxidised to acetyl-CoA via acetaldehyde 
through alcohol and acetaldehyde dehydrogenases. The 
genome of A. neopropionicum harbours a bifunctional 
NAD+-dependent alcohol-aldehyde dehydrogenase 
(AdhE; CLNEO_13930) that can catalyse this two-step 
conversion. According to our model, two other alco-
hol dehydrogenases, encoded by adh (CLNEO_16910) 
and adhB (CLNEO_00480), could also drive the oxi-
dation of ethanol to acetaldehyde. Initially, the model 
also predicted this reaction to be catalysed by NAD(P)

Fig. 5  Proposed metabolism of ethanol fermentation to propionate via the acrylate pathway in A. neopropionicum. Coloured areas designate the 
following modules: ethanol oxidation (blue), acetate production (green), pyruvate synthesis (yellow), lactate production and acrylate pathway 
(purple), redox cofactor regeneration and ATPase (red). Numbers in reactions correspond to the following enzymes and reaction ids in the 
model: 1,2, aldehyde-alcohol dehydrogenase (rxn00543_c0 and rxn00171_c0); 3, phosphate acetyltransferase (rxn00173_c0); 4, acetate kinase 
(rxn00225_c0); 5, pyruvate:ferredoxin oxidoreductase (PFOR; rxn05938_c0); 6, NAD-dependent D-lactate dehydrogenase (rxn00500_c0); 7, 
propionate-CoA:lactoyl-CoA transferase (rxn01056_c0); 8, lactoyl-CoA dehydratase (rxn02123_c0); 9, acryloyl-CoA reductase (rxn40050_c0); 10, 
ATPase (rxn10042_c0); 11, Rnf complex (Rnf_c0)
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H-dependent butanol dehydrogenase (BdhA), encoded 
by bdhA (CLNEO_09740; rxn00536_c0). However, the 
well-characterised BdhA of C. acetobutylicum, which 
shares 60.7 % identity with that of A. neopropionicum, 
is known to contribute primarily to butanol produc-
tion and it is the alcohol dehydrogenase least involved in 
ethanol metabolism [62]. Thus, we reasoned that BdhA 
would likely not be involved in ethanol oxidation in A. 
neopropionicum and excluded this reaction from model 
simulations.

Acetyl-CoA is partly used in the reductive reactions of 
the metabolism and partly invested in the formation of 
acetate, an energy-generating step. Acetate is synthesised 
via phosphate acetyltransferase (Pta; CLNEO_28570) and 
acetate kinase (Ack; CLNEO_28580), yielding ATP via 
substrate-level phosphorylation (SLP). In the reductive 
path, acetyl-CoA is converted to pyruvate through the 
CO2-fixating reaction catalysed by pyruvate:ferredoxin 
oxidoreductase (PFOR; CLNEO_15240 or CLNEO_19010 
or CLNEO_17780 or CLNEO_03040 or CLNEO_04330 
or CLNEO_24550). This conversion requires reduced 
ferredoxin (Fd2-) as electron carrier. Our hypothesis, sup-
ported by model predictions, is that Fd2- is produced in the 
Na+-translocating ferredoxin:NAD+ oxidoreductase (Rnf) 
complex. The Rnf complex is a membrane-bound respira-
tory enzyme involved in energy conservation in anaerobic 
microorganisms [63]. During growth on high-energy sub-
strates, it catalyses the exergonic reduction of NAD+ with 
electrons from Fd2- coupled to the translocation of two cat-
ions (H+ or Na+) across the membrane. The electrochemi-
cal potential established by the Rnf complex can then be 
used by a membrane-bound ATP synthase for energy gen-
eration. The Rnf complex can also operate in the reverse 
direction to produce Fd2- at the expense of ATP [64]. The 
genome of A. neopropionicum harbours a complete rnf 
cluster, composed of the genes rnfA (CLNEO_01390), 
rnfB (CLNEO_01400), rnfC (CLNEO_01350), rnfD 
(CLNEO_01360), rnfE (CLNEO_01380) and rnfG 
(CLNEO_01370). With ethanol as substrate, our assump-
tion is that the Rnf complex of A. neopropionicum oper-
ates in reverse, generating Fd2-. The endergonic reduction 
of ferredoxin (Eo’= - 500 to - 420 mV) with NADH (Eo’= 
- 320 mV) is driven by reverse electron transport across 
the membrane which, in turn, is an energy-driven pro-
cess. A membrane-bound V-type ATPase is present in 
the genome of A. neopropionicum, encoded by the genes 
atpA/ntpA (CLNEO_280), atpB/ntpB (CLNEO_290), 
ntpC, (CLNEO_260), atpD/ntpD (CLNEO_23400), atpE 
(CLNEO_250), ntpG (CLNEO_270), ntpK (CLNEO_240) 
and ntpI (CLNEO_23330). We theorise that ATP is 
hydrolysed in the ATPase to create a proton- or sodium-
motive-force that is used by the Rnf complex to cata-
lyse the reduction of ferredoxin. The production of 

Fd2- is an energy costly process, the implications of which 
are addressed later in this section.

Pyruvate produced by the PFOR is subsequently 
reduced to lactate with NADH via D-lactate dehydro-
genase (CLNEO_28010). We assumed NADPH is not 
used as electron carrier in this reaction, since lactate 
dehydrogenases have a strict specificity for NAD+/
NADH [65, 66]. Lactate then enters the acrylate path-
way, a cyclic chain of reactions involving the intermedi-
ates lactoyl-CoA, acryloyl-CoA and propionyl-CoA. The 
characteristic enzyme of this pathway is propionate-
CoA:lactoyl-CoA transferase (Pct, EC 2.8.3.1), which 
exchanges the CoA moiety between propionyl-CoA and 
lactate, generating lactoyl-CoA and propionate as end 
product [67, 68]. Our first annotation of the genome of 
A. neopropionicum did not include Pct. However, an 
acetate CoA-transferase was present, encoded by the 
gene ydiF (CLNEO_17700), that shared 96 % identity 
with the purified and well-characterised Pct of A. pro-
pionicum [68]. Thus, we deduced that ydiF encodes for 
Pct in A. neopropionicum and included this reaction in 
the model. Lactoyl-CoA dehydratase (CLNEO_17710 
and CLNEO_17720) catalyses the dehydration of lactoyl-
CoA to acryloyl-CoA, which is subsequently reduced to 
propionyl-CoA by acryloyl-CoA reductase. Our genome 
annotation revealed that the acryloyl reductase of A. 
neopropionicum forms an enzymatic complex with an 
electron-transferring flavoprotein (EtfAB). The com-
plex, hereafter named acryloyl-CoA reductase-EtfAB 
(Acr-EtfAB), is also present and has been well charac-
terised in A. propionicum [69]. Three gene clusters pre-
dicted to encode for acryloyl-CoA reductase (acrC) 
or EtfAB (acrA,acrB) were found in the genome: (i) 
CLNEO_21740 (acrC), CLNEO_21750 (acrB_1) and 
CLNEO_21760 (acrA); (ii) CLNEO_26130 (acdA_1) 
and CLNEO_26120 (acrB_2); and (iii) CLNEO_29850 
(acdA_2) and CLNEO_29840 (acrB_3). The acdA_1 
and acdA_2 genes encode for acyl-CoA dehydrogenases 
that share low identity (46 and 54 %, respectively) with 
the acryloyl-CoA reductase encoded by acrC; thus, we 
assumed that the former two enzymes are not responsi-
ble for acryloyl-CoA reductase activity. The first cluster is 
the only complete one, composed of acryloyl-CoA reduc-
tase (acrC) and the A (acrA) and B (acrB_1) subunits of 
EtfAB. The proteins encoded by these three genes share 
an identity of 92.9 %, 89.7 % and 89.1 %, respectively, 
with their homologues from the Acr-EtfAB complex of A. 
propionicum. The Acr-EtfAB of A. propionicum is a non-
bifurcating soluble enzyme that catalyses the irreversible 
reduction of acryloyl-CoA to propionyl-CoA with NADH 
via electron transfer to a flavin moiety and appears not to 
be involved in energy conservation [69, 70]. Given their 
high similarity, we deduced the same features apply to 
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the Acr-EtfAB of A. neopropionicum. To our knowledge, 
this is the first time that the Acr-EtfAB complex is identi-
fied in this microorganism.

According to the theoretical stoichiometry, the fer-
mentation of ethanol yields propionate and acetate in a 
2:1 ratio (Eq.  1). However, this ratio is not observed in 
cultures of A. neopropionicum; rather, ethanol fermen-
tation resulted in a ≈ 1.2:1 propionate to acetate ratio 
(Fig. 3 and Additional file 1: Table S2). We reasoned that 
the theoretical ratio cannot be achieved in A. neopropi-
onicum due to energetic constraints of the cell, specifi-
cally, due to the requirement of Fd2-. Model simulations 
were performed to confirm this. The oxidation of three 
moles of ethanol generates six moles of NADH and three 
moles of acetyl-CoA. To fit the theoretical 2:1 propion-
ate to acetate ratio, two moles of acetyl-CoA would have 
to be used in the reductive part of the metabolism, and 
one mole of acetyl-CoA should be invested in acetate, 
with the concomitant production of one mole of ATP via 
SLP. The synthesis of two moles of pyruvate from acetyl-
CoA would require two moles of Fd2-, which is produced 
at the Rnf complex at the expense of ATP. However, the 
hydrolysis of one mole of ATP ( �Go = -32 kJ mol-1; [71]) 
could drive the reduction with NADH of no more than 
≈ 1.3 moles of ferredoxin ( �Go = -25 kJ mol-1; [72]). 
Moreover, two other issues arise: i) even if this one mole 
of ATP would solely be invested in the reduction of ferre-
doxin, this would leave no net ATP for growth, and ii) 
such a scenario would result in excess reducing equiva-
lents from ethanol oxidation that could not be recycled 
in the production of propionate. Our model predictions 
confirmed this inconsistencies and are in agreement 
with the hypothesis that the propionate to acetate 2:1 
ratio cannot be achieved in A. neopropionicum during 
the fermentation of ethanol. Instead, cells must invest 
more than one mole of acetyl-CoA in acetate produc-
tion to obtain net ATP to support growth. This leaves 
less than two moles of acetyl-CoA available for propion-
ate production and, overall, a propionate to acetate ratio 
lower than the theoretical 2:1. The actual propionate to 
acetate ratio (close to 1.2:1, based on the fermentation 
balance) depends on how much Fd2- can be produced 
per hydrolysed ATP, which in turn depends not only on 
the Gibbs free energies of ATP hydrolysis and ferredoxin 
reduction with NADH under physiological conditions 
but also on the coupling ratio of the ATPase (number of 
cations translocated per ATP hydrolised). While the Rnf 
complex can be assumed to translocate two cations per 
ferredoxin reduced/oxidised, the coupling ratio of the 
ATPase remains unknown for A. neopropionicum. Our 
model fitted with a coupling ratio of the ATPase of 3 to 
3.5 H+ or Na+ translocated per ATP.

Propanol and butyrate production pathways
A. neopropionicum produces propanol and butyrate 
as minor products of the fermentation of several sub-
strates (Fig. 2). Propanol is formed from propionyl-CoA 
via propionaldehyde in a two-step reductive conversion 
catalysed by AdhE (Fig.  6). Reduction of propionalde-
hyde could also be catalysed by NAD+-dependent alco-
hol dehydrogenases adh (CLNEO_16910) and adhB 
(CLNEO_00480).

Butyrate production in A. neopropionicum takes place 
via the acetyl-CoA pathway (Fig.  6). In this pathway, 
acetyl-CoA is first converted to butyryl-CoA, which 
eventually yields butyrate. Most enzymes of the pathway 
were either present in the genome, were assigned dur-
ing the re-annotation or were identified through protein 
sequence alignment. Only one enzyme was not found: 
acetoacetyl-CoA thiolase (EC 2.3.1.9), which catalyses 
the condensation of two molecules of acetyl-CoA to form 
acetoacetyl-CoA. However, since the rest of genes of the 
pathway were identified (see Additional file 2), we added 
this reaction to the model during the gap-filling process.

A key enzyme of this pathway is the butyryl-CoA 
dehydrogenase/electron-transferring flavoprotein com-
plex (Bcd-EtfAB). Bcd-EtfAB is an electron-bifurcating 
enzyme that couples the reduction of crotonyl-CoA to 
butyryl-CoA (Eo’= -10 mV) by NADH to the endergonic 
reduction of Fd by NADH [63]. Our model predicts that, 

Fig. 6  Putative pathways for the production of propanol (blue) 
and butyrate (orange) in A. neopropionicum. Numbers in reactions 
correspond to the following enzymes as annotated in the 
genome, and reaction ids in the model: 1 and 2, aldehyde-alcohol 
dehydrogenase (rxn09944_c0 and rxn01710_c0); 3, acetoacetyl-CoA 
thiolase (rxn00178_c0); 4, 3-oxoacyl reductase (rxn03861_c0); 
5, 3-hydroxyacyl dehydratase (rxn03874_c0); 6, acryloyl-CoA 
reductase-EtfAB (rxn00868_c0) or acyl-CoA dehydrogenase-EtfAB; 7, 
propionate-CoA:lactoyl-CoA transferase (rxn00875_c0)
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in A. neopropionicum, reduction of crotonyl-CoA could 
be catalysed by the Acr-EtfAB complex or by either of 
the two acyl-CoA dehydrogenases that cluster with subu-
nits of the EtfAB complex (acdA_1-acrB_2 and acdA_2-
acrB_3). Among the three, the acyl-CoA dehydrogenase 
encoded by acdA_2 showed the highest identity with 
the butyryl-CoA dehydrogenases (Bcd) of C. acetobu-
tylicum and of C. kluyveri (64 and 63 %, respectively). It 
remains a question whether, in A. neopropionicum, the 
latter two complexes could be involved in the reduction 
of ferredoxin.

Two distinct routes have been described for the last 
step of the pathway, the conversion of butyryl-CoA to 
butyrate. The first route, identified in C. acetobutyli-
cum [73], involves phosphate butyryltransferase (Ptb; 
EC 2.3.1.19) and butyrate kinase (Buk; EC 2.7.2.7) and 
yields ATP via SLP. The second route relies on butyryl-
CoA:acetate CoA-transferase (But; EC 2.8.3.8). Co-
occurrence of both pathways is rare among butyrate 
producers [74]. The genome of A. neopropionicum does 
not encode for Ptb nor Buk, yet our annotation initially 
assigned these activities to phosphate acetyltransferase 
(Pta) and acetate kinase (Ack). The Ack of A. neopropion-
icum is significantly similar to the well-characterised Buk 
(71 % identity) of C. acetobutylicum. We have considered 
this similarity to arise from the fact that the two enzymes 
belong to the same family, yet it has been established that 
they do not have the same function, since differences in 
the substrate binding site ultimately determine substrate 
specificity [75–77]. Thus, we assumed that Pta and Ack 
are not involved in butyrate production in A. neopropi-
onicum. Instead, we hypothesise that butyrate production 
in A. neopropionicum takes place via butyryl-CoA:acetate 
CoA-transferase activity. Our model predicts that the 
propionate-CoA:lactoyl-CoA transferase (Pct) encoded 
by the gene ydiF catalyses this reaction. The Pct of A. pro-
pionicum exhibits broad substrate specificity for mono-
carboxylic acids, including butyrate, supporting the 
model prediction [68].

Identification of the NADH‑dependent reduced 
ferredoxin:NADP+ oxidoreductase (Nfn)
During the genome re-annotation and manual curation 
process, we identified the enzyme NADH-dependent 
reduced ferredoxin:NADP+ oxidoreductase (Nfn). Nfn 
is an iron-sulfur flavoprotein complex with electron-
confurcating/bifurcating activity that reversibly catalyses 
the endergonic reduction of NADP+ by NADH coupled 
with the exergonic reduction of NADP+ by Fd2- [78]. 
Nfn is composed of two subunits, NfnA and NfnB, 
whose coding genes were both found in the genome of 
A. neopropionicum under the locus tags CLNEO_00270 
and CLNEO_00280, respectively. In the initial 

automatic annotation, these two genes were assigned to 
ferredoxin:NADP+ oxidoreductase and glutamate syn-
thase, respectively. It has been reported that NfnA/B 
share sequence similarities with these two enzymes [78]. 
Upon manual inspection, we observed that the protein 
complex showed a significant identity (60 - 66 % ) with the 
Nfn complexes of C. kluyveri [79] and of C. autoethano-
genum [80], which lead us to the re-assignation of the two 
proteins as NfnA and NfnB.

We used modelling to look into the role of the Nfn 
complex in the metabolism of A. neopropionicum during 
growth on ethanol. The model shows that the Nfn gener-
ates NADPH from NADH and Fd2- for NADPH-depend-
ent reactions of the cell. For instance, NADPH is required 
during butyrate production in the reduction of acetoa-
cetyl-CoA to 3-hydroxybutyryl-CoA, a reaction catalysed 
by a NADPH-dependent 3-oxoacyl reductase. NADPH is 
also required in the biosynthesis of amino acids and bio-
mass precursors. In our model, the Nfn complex does not 
function in the reverse direction, the production of Fd2-, 
during growth on ethanol; this would require NADPH, 
and ethanol oxidation is assumed to occur only via 
NAD+-dependent reactions.

Fermentation of other carbon sources: the case of lactate
Besides ethanol, A. neopropionicum can grow on lactate, 
sugars and some pyruvate-derived amino acids (Table 2). 
The fermentation of these carbon sources proceeds with 
key differences compared to the fermentation of ethanol. 
To illustrate this with an example, we used the model to 
describe the case of lactate fermentation, since lactate is 
a typical substrate of propionate-producing bacteria and, 
in particular, of species that use the acrylate pathway [16, 
67].

Lactate is metabolised in both oxidative and reductive 
reactions. In the oxidative branch, lactate is oxidised to 
pyruvate via lactate dehydrogenase, generating NADH. 
PFOR then catalyses the decarboxylation of pyruvate 
to acetyl-CoA and CO2, a reaction that generates Fd2-. 
The PFOR reaction is reversible; here, it functions in the 
opposite direction to what occurs with ethanol as sub-
strate. This enables the utilisation of lactate, sugars and 
pyruvate-derived amino acids. This implies that, contrary 
to the fermentation of ethanol, the oxidation of these 
substrates generates directly Fd2-, which can contribute 
to energy conservation. Acetyl-CoA is used for acetate 
production via Pta and Ack, yielding ATP via SLP. In 
the reductive branch, lactate is converted to propionate 
via the reactions of the acrylate pathway. In this conver-
sion, NADH is needed for the reduction of acryloyl-CoA 
to propionyl-CoA, but the amount of NADH obtained 
in the oxidation of lactate is insufficient. Our model 
predicts that additional NADH is produced in the Rnf 
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complex. Opposite to the scenario with ethanol as sub-
strate, here the Rnf catalyses the exergonic reduction of 
NAD+ with electrons from Fd2-. This reaction is coupled 
to the translocation of two cations across the membrane, 
generating an ion-motive force that can be used by the 
ATPase to produce ATP. Thus, in the fermentation of car-
bon sources other than ethanol, ATP is generated both by 
SLP via acetate production and by chemiosmosis driven 
by the oxidation of Fd2-.

Discussion
In this study, we have presented iANEO_SB607, the first 
GEM of the propionate-producer A. neopropionicum. 
The overall Memote score of 72 % indicates the high qual-
ity of the model. The low score of gene annotation per 
database (33 %) was expected, since there were almost 
no available annotations of the genome of A. neopropi-
onicum in public databases recognised by Memote. A 
limitation of the GEM is the lack of an organism-specific 
biomass composition and GAM/NGAM measurements. 
Our sensitivity analysis showed a maximum deviation of 
10.8 % of the growth rate when varying the composition 
of biomass components or the GAM. NGAM has a more 
limited impact on growth rate predictions, given that it 
does not directly relate to the biomass synthesis reaction, 
still dedicated measurements of these parameters could 
furthe improve the predictive power of the model. Here, 
our focus has been on gaining insight into the metabo-
lism of ethanol fermentation to propionate, which in this 
bacterium occurs via the acrylate pathway.

We have also addressed an important issue regarding 
the energetic metabolism of A. neopropionicum. During 
growth on ethanol, Fd2- is required to reduce acetyl-CoA 
to pyruvate. In the earliest description of the metabolism 
of A. neopropionicum, authors suggested that the oxida-
tion of acetaldehyde proceeded with ferredoxin as elec-
tron carrier, thus fulfilling this demand [17]. However, at 
the present time it is acknowledged that aldehyde dehy-
drogenases are NAD(P)-dependent enzymes [81], which 
invalidates that theory. Theoretically, the Acr-EtfAB 
complex could drive the reduction of Fd (Eo’= - 500 
to - 420 mV) with NADH (Eo’= - 320 mV) via electron 
bifurcation, given the high reduction potential of the 
acryloyl-CoA/propionyl-CoA pair (Eo’= + 70 mV). Yet, 
this complex appears not to be involved in the reduc-
tion of ferredoxin [69], most likely to prevent transient 
accumulation of the very reactive intermediate acryloyl-
CoA [82, 83]. Instead, our model predicted that Fd2- is 
produced in the Rnf complex, as previously reported for 
other anaerobes during growth on low-energy substrates 
[64]. The Rnf complex had been previously identified in 
the close relative A. propionicum [29]. Here, through the 
re-annotation an a thorough manual curation process, we 

identified all its subunits (rnfA-E, rnfG) and via modelling 
we verified its involvement in the metabolism of the cell.

Our annotation of the genome of A. neopropionicum 
revealed the presence of another key enzyme of the 
metabolism of anaerobes: the Nfn complex. Our model 
showed that the Nfn generates NADPH for NADPH-
dependent reactions of the metabolism, which is essential 
during growth. Further investigation is needed to define 
the instances in which the Nfn operates in the reverse 
direction, bifurcating electrons from NADPH to produce 
Fd2- and NADH. The directionality and role of Nfn will 
depend on the cofactor requirements of the cell.

Butyrate and propanol are produced by A. neopropioni-
cum as minor products during the fermentation of sev-
eral substrates (Fig. 2), probably as a means to dispose of 
excess reducing equivalents generated during substrate 
oxidation. Our model showed that propanol is produced 
from propionyl-CoA with propionaldehyde as interme-
diate via NAD+-dependent reactions, as Tholozan et  al. 
suggested [17]. The butyrate production pathway had 
not been described yet in this microorganism and fur-
ther research is needed to confirm whether Pct is indeed 
involved in this pathway as observed in vitro in A. propi-
onicum [68] and E. coli K-12 [84].

Another aspect of the metabolism that we aimed to 
clarify was the ability of A. neopropionicum to produce 
and consume H2. In our batch cultivations on differ-
ent substrates, H2 was not produced nor consumed, as 
previously reported [17]. Our results also confirm that 
neither the product profile nor the growth of ethanol-
growing cultures of A. neopropionicum are affected by 
the presence of H2 (Additional file 1, Figure S3). This is 
an advantageous trait when considering this strain for its 
application in syngas-fermenting co-cultures, since syn-
gas contains H2. Interestingly, H2 tolerance is manifested 
differently in functionally-related strains. While P. pro-
pionicus and D. propionicus both use the methylmalonyl 
pathway to metabolise ethanol, the first is not affected by 
the presence of H2 while the second is strongly inhibited 
by it [14].

The GEM iANEO_SB607 accurately reproduced 
observed growth phenotypes on typical substrates (eth-
anol, sugars, lactate and amino acids). For glucose and 
xylose, model predictions agree with our batch incuba-
tions that A. neopropionicum can utilize these sugars 
(Additional file  1: Table  S2). These analyses solve con-
tradictions in literature most likely attributable to dif-
ferences in media compositions across studies [9, 11, 
17, 85]. Our results also indicate that D-lactate, and not 
L-lactate, support growth of A. neopropionicum, as pre-
viously observed [17]. Yet, the latter authors reported 
lactate dehydrogenase activity in cell-free extracts with 
D-, L- and DL-lactate, and hypothesised the presence 
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of a lactate racemase which is absent in our annotated 
genome. However, A. neopropionicum has both L- and 
D-lactate dehydrogenases, so it cannot be excluded that 
L-lactate is also metabolised, perhaps at a much slower 
rate [86].

dFBA simulations showed good agreement with the 
dynamics of ethanol (and ethanol plus acetate) fermen-
tation by A. neopropionicum in batch cultivation (Fig. 3 
and Fig.  4). With ethanol as substrate, the theoreti-
cal 2:1 molar ratio of propionate to acetate (Eq.  1) was 
not achieved; instead, this ratio was ≈ 1.2:1 (Fig.  3 and 
Additional file 1, Table S2), matching previous observa-
tions [9, 17]. The model helped clarify this aspect. During 
growth on ethanol, ATP is solely produced via SLP. Net 
ATP generation required to sustain growth and to drive 
ferredoxin reduction needed by PFOR appear as the 
main cause of the observed propionate to acetate ratio of 
1.2:1. In addition, cells might favour acetate over propi-
onate synthesis to prevent accumulation of acryloyl-CoA 
[67]. Finally, propanol production at the end of the fer-
mentation, likely to halt further acidification of the envi-
ronment, also contributes to decrease the propionate to 
acetate ratio observed in batch cultures.

Interestingly, we observed that a low acetate concentra-
tion (< 25 mM) or low acetate:ethanol ratio (< 1) at the 
start boosted the growth rate and propionate produc-
tion rate of A. neopropionicum during growth on ethanol. 
However, despite higher rates, final biomass concen-
trations in batch cultivations were slightly lower in the 
presence of acetate (10 or 25 mM). Our model showed 
increase flux through acetate:CoA ligase (acs; EC 6.2.1.1) 
in the presence of acetate (10 mM). This reaction assimi-
lates acetate consuming ATP, which would explain the 
lower biomass concentrations observed. Model predic-
tions showed that, in this scenario, more acetyl-CoA is 
converted to pyruvate through PFOR, which is another 
energy-consuming step. We also observed a higher flux 
through butanoyl-CoA:acetate CoA-transferase (cata-
lysed by Pct). Batch cultivation experiments did not show 
a noticeable increase in butyrate concentration when ace-
tate was present, rather lower. Therefore, we hypothesise 
that, in  vivo, most acetate consumed is assimilated via 
acetate:CoA ligase, as our model predicts, or via reverse 
direction of PTAr and ACKr, instead of Pct. This devia-
tion to the model is likely due to the fact that biomass 
synthesis was set as maximization objective in dFBA 
which would be achieved by a higher flux of acetate 
towards butyrate instead of assimilating it, saving ATP.

Overall, this work shows the advantages of using a 
model-driven approach to gain insight into the metabo-
lism of microorganisms. The new findings fill in knowl-
edge gaps and unravel key metabolic features of A. 
neopropionicum. As a result, this study means a step 

forward to further exploit this species as a cell factory for 
propionate production in mono-culture or in co-cultiva-
tion from sustainable feedstocks, e.g., syngas, as recently 
stated by Moreira et  al. [15]. Additionally, A. neopropi-
onicum can act as an intermediate species to extend the 
range of products from propionate to longer odd-chain 
carboxylic acids.

Conclusions
In this study, we have constructed iANEO_SB607, the 
first GEM of A. neopropionicum. Combining experi-
mental data with a manual curation of the annotated 
genome and a comprehensive network reconstruction, 
we have gained insight into the central carbon and ener-
getic metabolism of this microorganism. The model pre-
dicted the metabolic capabilities of A. neopropionicum 
with high accuracy, which allowed us to investigate with 
detail the enzymatic routes involved in the fermenta-
tion of ethanol to propionate. Our analysis showed that 
A. neopropionicum produces propionate via propionate-
CoA:lactoyl-CoA transferase, the characteristic enzyme 
of the acrylate pathway. Our in silico analysis revealed, for 
the first time in this microorganism, the presence of the 
electron-bifurcating Nfn complex. This model provides 
the basis to explore the capabilities of A. neopropioni-
cum as microbial platform for the production of propi-
onate from dilute ethanol as substrate. While beyond the 
scope of this study, the construction of this model signi-
fies a step closer towards the development of multi-spe-
cies models that describe syngas-fermenting co-cultures 
comprised of acetogens with ethanol-consuming propi-
onigenic bacteria. Follow-up studies that integrate, e.g., 
omics analyses with data from steady-state fermentations 
should help improve this GEM.
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Additional file 1: Figure S1. Sensitivity analysis of the biomass reaction. 
Effect of varying the composition of main biomass building blocks on the 
growth rate and product formation. Growth rate and product formation 
are represented as the difference between the values obtained when 
the new biomass reaction is defined as objective function and the values 
obtained when the original biomass synthesis reaction is defined as 
objective function. Figure S2. Effect of varying the growth-associated 
maintenance (GAM) of the biomass composition on the growth rate. 
The effect is represented as the difference between the values obtained 
when the new biomass reaction is defined as objective function and the 
values obtained when the original biomass synthesis reaction is defined 
as objective function. Table S1. Parameters used to simulate batch 
fermentations through dFBA. Column ‘Source’ indicates whether the 
parameter was constrained based on the experimental value (consider‑
ing standard deviation error) or by model fitting. Figure S3. Effect of H2 
on ethanol-growing cultures of Anaerotignum neopropionicum. A) Cell 
growth profiles, determined by optical density at 600 nm (OD600). B) End 
products and ethanol consumed at the end of batch fermentations. Error 
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bars indicate the standard deviation of biological triplicates. Table S2. Fer‑
mentation balance of batch cultures of A. neopropionicum cultivated on 
different substrates. Note that CO2, present in the headspace of bottles, is 
consumed but not included in this table. iBut: isobutyrate; iVal: isovalerate. 
Traces are concentrations < 0.2 mM. The hyphen symbol indicates unde‑
tected products. ND indicates not determined. 

Additional file 2. Genes and homologos of the acrylate and butyrate 
pathways found in other Clostridium species.
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