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1
Human physiological health 

The World Health Organization (WHO) defines health as ‘a state of complete, physical, 
mental, and social well-being and not merely the absence of disease or infirmity’, 
a definition that has not been changed since it was adopted in 1948 (1). While this 
definition covers health, it is also a definition that is impractical, especially because 
it does not define the word complete and considers only one state of health. On 
the other hand, given the fact that there are numerous disease-inducing pathways 
and conditions, a negative definition of health as ‘the nonexistence of any kind of 
pathology’ is also impractical (2). Health can also be addressed in a positive and 
describing fashion that considers physical and mental fitness coupled to normal 
physiological function (3). This has the advantage of stressing that health is more 
than a physiological state and accurately includes mental and societal aspects, 
yet this broadness makes it also difficult to address health and quantify health 
status. For this reason, specialists from various fields often address different 
aspects of health and focus on disease, i.e. the absence of health. These specialists 
generally operate from the perspective of specific disorders: physicians treat 
physiological disorders, i.e., diseases, psychologists and psychiatrists treat mental 
disorders, and a wide range of professionals deal with social problems. This makes 
sense, as different aspects of health are important for wellbeing and patient 
treatment, but for the development and improvement of scientific concepts and 
tools it is necessary to reduce complexity, for example by focusing on one aspect 
of health. In this thesis, I therefore focus on metabolism as a key aspect of human 
physiological health, aiming to develop concepts and tools that will allow for 
defining metabolic health and offer ways to improve this. I will go beyond the 
negative definition of health as absence of disease, but rather consider health as 
a continuum from a heathy state to a disease state, including different states of 
health and the transition from health to disease. For a difference in health states 
one can consider healthy individuals of high and low levels physical activity, since 
high physical activity levels are associated improved health outcomes, such as 
improved immune system functioning (4), and reduced risk for development of 
later life disease (5,6). 

Human physiological health is based on a complex network of interactions between 
molecules, mechanisms, pathways, and processes that result in a crosstalk between 
cells, tissues, organs, and systems (2). Biochemical and physiological mechanisms 
act as a buffering system to maintain homeostasis during continuously external 
perturbations, such as food intake, exercise, infections, or cold temperature (3). 
A healthy organism can maintain physiological homeostasis during such changing 
circumstances, which means that it can mount a protective response, reduce the 
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potential for harm, and restore its equilibrium when confronted with physiological 
stress (3). In case this coping strategy is not successful, the organism develops 
physiological damage, which results in reduced and later impaired physiological 
health, that could ultimately lead to disease development (2,3). On the other hand, 
reinforcement of these intrinsic, self-regulating mechanisms increases physiological 
resilience and robustness, and contributes to health improvement. Quantification 
of these dynamic states of human physiology is therefore needed to measure and 
monitor health improvements. In this thesis I will define and analyse several 
physiological parameters that are related to healthy metabolic physiologies, which 
will contribute to a better understanding of physiological health and transition 
from health to disease states. 

Assessment of human physiological health 

Health optimization strategies aim to achieve or improve health. However, biomarkers 
that assess ‘health’ are poorly applicable to measure health improvements and 
are rather exclusively suitable to establish an unhealthy state. The levels of classical 
clinical diagnostic biomarkers such as levels of blood glucose, triglycerides, 
c-reactive protein (CRP), and interleukin 6 (IL6) are clinically used as indicators of 
an unhealthy state, with levels above a certain threshold indicative of an increased 
risk for cardiometabolic or inflammation-related disease (7–9). From this cut-off level 
upward, these biomarkers can reflect ranges of disease progression. However, 
the tranisition from a healthy to less healthy state is mostly not considered or not 
even studied. In summary, these classical clinical diagnostic biomarkers have 
been studied extensively for detecting differences between health and disease, 
but are very limited in detecting differences between optimal health, health, and 
the different steps in the trajectory towards disease, i.e. they are not yet suited to 
monitor the continuum of health to disease. Since differences in health states may 
be distinct and are likely more subtle than differences between health and disease, 
biomarkers that measure health states could differ and require another level of 
sensitivity than disease biomarkers (10–12). Health biomarkers (or health state 
biomarkers) should thus allow the detection of relevant physiological differences 
between healthy individuals. Such physiological differences may not come to the 
surface by detecting individual levels of classical clinical diagnostic biomarkers, 
which are mostly circulating bioactive molecules with a short lifetime and acute 
signaling roles. Instead, they may potentially be encapsulated in functional 
parameters in cells or tissues, which have a longer lifespan and may imprint these 
subtle differences. In addition, linking individual levels of circulating bioactive 
compounds to underlying physiological processes and studying these processes 
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relative to each other may also give more insight in factors that contribute to 
physiological health. In theory, classical clinical diagnostic biomarkers could be 
imagined as ‘the tip of the iceberg’, whereas the relevant health differences are 
most likely below the surface, and can be revealed by diving deeper into dynamic 
physiological processes on the tissue and cellular level (Figure 1). Thus, to monitor 
the progression from health to optimized health conditions in humans and vice 
versa, biomarkers that respond to physiological differences in healthy individuals 
are needed. Such biomarkers are good candidates to act as a future health 
biomarker that can be implemented to monitor health promotion strategies.

Metabolic parameters as potential health biomarkers

Metabolism is a fundamental process in all living organisms and is required to 
perform all physiological functions and maintain life. It manifests as a complex 
metabolic network that includes metabolic pathways, which are complex sequences  
of controlled biochemical reactions involving enzymes, substrates, products,  
and cofactors, which generate energy and supply building blocks (13). Energy is 
generated via catabolism of macronutrients (carbohydrates, lipids, and proteins) 
and consumed during anabolic reactions to promote cellular functions, such as 
muscle contraction (14), nerve impulse propagation (15), ion signaling (16), and 
synthesis of biochemical compounds (17). At the cellular level, metabolic reactions 

Figure 1: Graphical illustration of the concept of physiological health assessment that is 
studied in this thesis.
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use energy in the form of adenosine triphosphate (ATP). ATP is the energy currency 
of a cell and provides readily releasable energy via hydrolysis to adenosine 
diphosphate (ADP) and inorganic phosphate (Pi). ATP is mostly synthesized via 
cytosolic glycolysis coupled to mitochondrial oxidative phosphorylation (OXPHOS) 
(Figure 2). During cellular respiration, glucose is catabolized by glycolysis into 
pyruvate simultaneously generating 2 moles of ATP per mole of glucose. Pyruvate 
is then shuttled into the mitochondria, generating a further 30 moles of ATP per 
mole of glucose. In more detail, pyruvate is converted to acetyl-coenzyme A 
(CoA), which enters the tricarboxylic acid (TCA) cycle and undergoes complete 
oxidation to carbon dioxide (CO2), yielding reduced nicotinamide adenine dinucleotide 
(NADH) and hydroquinone flavin adenine dinucleotide (FADH2). NADH and FADH2 
feed the electron transport complexes of the mitochondrial inner membrane, 
principally consisting of four multi-protein electron transport complexes (complex I - IV,  
CI – CIV) that compose the electron transport system (ETS). Together with 
F1F0-ATP synthase (complex V, CV), the ETS forms the OXPHOS system. 
The function of the ETS is to generate an electrochemical gradient over the 
mitochondrial inner membrane by pumping protons from the mitochondrial matrix  
to the intermembrane space, which is needed to generate ATP via CV. To perform 
this function, the ETS takes up electrons from NADH at CI or from succinate, 
with FADH2 as an intermediate, at CII, which are transferred to CIII via ubiquinone. 
Cytochrome C transfers the electrons from CIII to CIV where they react with 
oxygen to form water. Oxygen is thus the final electron acceptor, and the use of 
oxygen (O2) by the OXHPOS system can be quantified as a proxy for mitochondrial 
ATP production (18). During certain conditions, including limited or absent oxygen 
availability and specific cellular conditions, such as rapid cell proliferation, cytosolic 
ATP can also be produced via glycolysis alone. Glycolytic metabolism produces 
much less ATP (2 ATP versus 32 ATP per glucose for oxidative metabolism) and 
provides lactate as energy containing ‘waste product’. Lactate is then transported 
out of the cell, resulting in extracellular acidification. Energy metabolism thus 
provides several readily measurable metabolites (CO2, O2 and acid efflux) that can 
be used for functional characterization of cells in the context of health physiology.

Quantification of cellular energy metabolism 

Measurement of cellular oxygen consumption as a proxy for mitochondrial 
respiration is well established (19,20). Classically, Clark-type electrodes have 
been used to measure oxygen consumption in real-time (19,20). Development  
of the Oroboros respirometric system improved the sensitivity and precision of 
oxygen consumption rate measurements, and enabled the sequential addition of 
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mitochondrial substrates, modulators, and inhibitors to probe multiple parameters 
of respiration (18). More recently, it have become possible to measure oxygen 
consumption rate in a multi-well format using extracellular flux (XF) analysis, which 
strongly increases the number of samples and conditions to be analyzed (21). 
XF analysis measures the oxygen consumption rate (OCR) and extracellular 
acidification rate (ECAR) as a proxy for mitochondrial and glycolytic ATP production, 
respectively (21) (Figure 2). OCR and ECAR are simultaneously measured in culture 
plates using fluorescent sensors in a Seahorse XF analyzer (21). The multi-well 

Figure 2: Schematic overview of cellular energy metabolism and quanitification of mito-
chondrial respiration and glycolysis. Abbreviations: TCA cycle = tricarboxylic acid cycle, 
NADH = reduced form of nicotinamide adenine dinucleotide (NAD), FADH2 = hydroquinone 
form flavin adenine dinucleotide (FAD), Q = coenzyme Q, C = cytochrome C, CO2 = carbon 
dioxide, O2 = oxygen, H2O = water, ADP = adenosine diphosphate, Pi = inorganic phosphate, 
ATP = adenosine triphosphate, OMM = outer mitochondrial membrane, IMM = inner mito-
chondrial membrane, OCR = oxygen consumption rate, ECAR = extracellular acidification rate.
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format allows the addition of multiple injections sequentially or in parallel to probe 
multiple parameters of mitochondrial respiration and glycolysis, which enables the 
assessment of metabolic flexibility and capacity on top of steady-state basal 
metabolic rate, metabolic parameters that could be useful for the characterization 
of human physiological health. Thus, the ability to concomitantly measure OCR 
and ECAR in a high-throughput manner has enabled a technology to generate a 
comprehensive overview of cellular bioenergetics and identify changes that are 
associated with alterations in cell physiology or pathophysiology.

Beyond energy metabolism: the role of mitochondria
in biosynthesis and cellular signaling

Mitochondria are dynamic cellular organelles central to cellular metabolism. They 
are not only critical for sustainable cellular energy metabolism, but also function in 
other cellular processes, including macromolecule biosynthesis and intracellular 
signaling (22). Mitochondria generate metabolic building blocks that are used  
for the biosynthesis of macromolecules, such as DNA, RNA, lipids, proteins,  
heme, and iron-sulfur (FeS) clusters (22). Furthermore, they play a role in redox 
signaling by compartmentalization of redox equivalents (22) and by generating, 
sequestering, and interconverting reactive oxygen species (ROS) (23). ROS are 
highly reactive biomolecules such as superoxide (O2-) and hydrogen peroxide 
(H2O2) that can react with DNA, lipids, and proteins. They can be generated in the 
mitochondrial ETS, during mitochondrial substrate oxidation, or via the activity of 
enzymes such as nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 
in the cytosol (23). While some ROS are highly damaging, such as O2-, others also 
have the properties of a signaling molecule, such as H2O2. H2O2 at physiological 
levels can serve as an alarm to notify the cell that the extracellular environment is 
changing, and can trigger redox signaling events, such as cell proliferation, cell 
differentiation, cell repair, and immune signaling (24). Cellular homeostasis is 
maintained through antioxidant systems that detoxify ROS. Usually, mitochondrial 
generated O2- is rapidly converted by superoxide dismutases to H2O2. Various 
antioxidant systems then play a role in subsequent H2O2 homeostasis, including 
the glutathione (GSH) antioxidant system (24). GSH can react with H2O2 to form 
glutathione disulfide (GSSG) and water (H2O), protecting the cell from oxidative 
damage. The balance between ROS production and detoxification determines 
redox homeostasis (23). Antioxidant systems require NADPH for regeneration, 
and the ratio between NADPH and NADP+ determines the cellular redox state 
(22). In addition to regulating redox signaling, mitochondria orchestrate other 
cellular signaling routes. They can initiate cell death by releasing mitochondrial 
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cytochrome C (25) and can instruct nuclear signaling routes involved in cell death 
decisions and immune signaling (26). Considering the multidisciplinary role of 
mitochondria in cellular metabolism, bioenergetics, biosynthesis, and intracellular 
signaling, it is of great interest to study mitochondrial function as a biomarker for 
physiological health.

The link between mitochondrial function and aerobic fitness

Regular physical activity, especially regular aerobic exercise, is associated with an 
increase in mitochondrial mass, function, and quality in skeletal muscles (27,28). 
Together with other physiological adaptations, such as an increase in stroke 
volume and increased vascularization and oxygen extraction in skeletal muscle, 
these factors contribute to increased aerobic fitness (29). Aerobic fitness refers to 
the capacity of the circulatory and respiratory systems to take up oxygen from the 
atmosphere and supply it to skeletal muscle mitochondria for ATP production (30). 
It is measured as whole-body maximal or peak oxygen consumption (V̇O2max or 
V̇O2peak) that is assessed using an incremental exercise test (31). Since aerobic 
fitness quantifies the functional capacity of an individual and is directly related to 
the integrated function of numerous physiological systems, aerobic fitness is 
considered a reflection of total body health (29). Studying the link between 
mitochondrial function parameters and levels of aerobic fitness in healthy 
individuals is therefore of great relevance to better characterize human 
physiological health. A classical method for mitochondrial function analysis is ex 
vivo respirometry in isolated skeletal muscle fibers (32). While the use of 
permeabilized skeletal muscle fibers has improved the sensitivity and robustness 
of respirometry, the need for fresh tissue, the limited amount of available tissue, 
the heterogeneity of skeletal muscle tissue (33,34), the requirement for technical 
expertise, and the invasiveness of tissue sampling pose major application 
limitations. Therefore, less invasive methods that can routinely and robustly assess 
in vivo or ex vivo mitochondrial function over time are needed.
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Non-invasive assessment of in vivo skeletal muscle 
mitochondrial capacity using NIRS

A technique that can assess mitochondrial function non-invasively is based on 
near-infrared (NIR) spectroscopy (NIRS). It can be used to indirectly quantify in vivo 
skeletal muscle mitochondrial capacity (32,35,36). NIRS makes use of the 
difference in light absorption of oxygenated and deoxygenated haemoglobin 
(O2Hb and HHb) and myoglobin (O2Mb and HMb), respectively the oxygen-binding 
molecules in blood and myofibrils, in the NIR region to quantify oxygen use (37). In 
combination with arterial occlusions, NIRS allows for the measurement of muscle 
oxygen consumption (mV̇O2). Upon blood flow occlusion, there is no supply of 
fresh, oxygenated blood and the change from O2Hb and O2Mb to the deoxygenated 
forms reflects oxygen use under the NIRS probe (38,39) (Figure 3A). It is assumed 
that mV̇O2 reflects oxygen consumption in mitochondria during aerobic ATP 
production, hence the rate of mV̇O2 recovery is used as a proxy for skeletal 
muscle mitochondrial capacity (40). Using NIRS, it was previously shown that 
skeletal muscle mitochondrial capacity differed between endurance-trained 
athletes and untrained, inactive individuals with a large difference in V̇O2peak (41), 
yet it is incompletely understood whether NIRS can also detect possible smaller 
differences in mitochondrial capacity, for example between recreationally active 
healthy individuals with a smaller difference in aerobic fitness level. Recently, our 
group showed that NIRS can detect differences in skeletal muscle mitochondrial 
capacity between recreationally active males with high and low V̇O2peak (42). 

Figure 3: Schematic representation of the NIRS method. (A) Oxygen consumption in 
skeletal muscle mitochondria during blood flow occlusions is used as a reflection for 
skeletal muscle mitochondrial capacity. (B) Graphical illustration of the penetration depth  
of the NIRS signal. Abbreviations: O2Hb = oxygenated haemoglobin, HHb = deoxygenated 
haemoglobin, O2Mb = oxygenated myoglobin, HMb = deoxygenated myoglobin, ADP = 
adenosine diphosphate, Pi = inorganic phosphate, ATP = adenosine triphosphate, ATT = 
adipose tissue thickness.
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However, it is not known whether these results can be extrapolated to females.  
It is technically more challenging to use NIRS for determination of skeletal  
muscle mitochondrial capacity in females, because females typically show higher 
subcutaneous adipose tissue thickness (ATT) than males (43), which limits the 
penetration of the NIRS signal into skeletal muscle (Figure 3B). Indeed, the amount 
of NIRS signal recovered from skeletal muscle decreases with increased adiposity 
and subcutaneous ATT (44,45). Although studies in mixed populations have 
confirmed the application of NIRS in both sexes (32,41,46,47), it is currently not 
known whether NIRS can detect physiologically relevant differences in skeletal 
muscle mitochondrial capacity in an exclusively female population with different 
levels of aerobic fitess, i.e. in the normal physiological range. 

Non-invasive assessment of ex vivo PBMC 
mitochondrial metabolism 

In addition to measuring mitochondrial capacity in vivo using NIRS, mitochondrial 
function can be analyzed ex vivo using Seahorse XF analysis. Measurement of 
mitochondrial respiration is an indicator of mitochondrial function, since it reflects 
the activity of the ETS complexes and ATP synthase and responds to changes in 
the inner mitochondrial membrane potential, which occurs during alterations in 
cellular physiology. Seahorse XF analysis can be applied to peripheral blood 
mononuclear cells (PBMCs). PBMCs are white blood cells that have a single round 
nucleus and mainly include T- and B-lymphocytes, monocytes, dendritic cells, and 
natural killer (NK) cells (48,49). The potential of mitochondrial PBMC function as a 
biomarker has emerged during the past decades (50–56), especially because 
PBMCs are a readily accessible source of fresh cells from individuals that can be 
sampled with relative ease, low invasiveness, high viability and over repeated 
periods in time (57). A further advantage of PBMCs is their acute metabolic 
response upon immunological stimulation (58), which enables the assessment of 
metabolic flexibility on top of steady-state metabolic analysis and the determination 
of metabolic capacity. Using Seahorse XF analysis, several studies have shown 
defects in mitochondrial PBMC function in patients with cardiovascular disease 
(54), neurodegenerative disease (55,56), and recently also in patients with 
coronavirus disease 19 (COVID 19) (52), which supports their potential for 
monitoring disease progression. However, to evaluate the potential of PBMCs as 
a health biomarker, studies that compare mitochondrial PBMC function between 
healthy individuals with a physiologically relevant difference are needed. Yet, 
these studies are scarce compared to the studies in individuals with disease. 
Furthermore, to implement PBMC mitochondrial function analysis as a robust 
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health biomarker, several obstacles must be tackled, that have been previously 
either been overlooked or only been taken along sparsely. First, normalization  
of Seahorse XF assay data is critical for accurate and consistent interpretation  
and comparison of PBMC metabolic analyses. Yet, the current normalization 
methods are poorly applicable to non-adherent and dynamic cells such as PBMCs. 
Therefore, a normalization method that reliably measures, compares, and extra- 
polates PBMC XF assay data must be developed and integrated in the Seahorse 
XF assay workflow. Second, PBMCs are pooled cells that are not only immuno
logically, but also metabolically distinct (59,60). Differences or changes in PBMC 
composition could thus affect the interpretation of PBMC metabolic outcomes,  
but most studies do not consider the impact of PBMC composition on metabolic 
PBMC outcomes. For example, recent evidence in healthy individuals has suggested 
that metabolic PBMC profiles can respond to regular and acute aerobic exercise 
(61,62). Yet, it is not clear whether these metabolic alterations in PBMCs are 
primarily related to alterations in cellular metabolism per se, or whether these 
responses reflect changes in PBMC composition since acute exercise has also 
been associated with a change in PBMC subsets (63,64). Therefore, to establish 
the influence of PBMC composition and long- and short-term exercise on PBMC 
metabolic outcomes, both PBMC metabolism and PBMC composition should be 
measured at baseline and after a single exercise session in individuals with different 
regular aerobic exercise activities. This information is essential to evaluate the 
potential of PBMC metabolism as a health biomarker. Furthermore, a study in 
female individuals is of particular relevance, since PBMC metabolism was found to 
differ between males and females (65) and previous studies have been mainly 
performed in males (66,67). 

Circulating biomarkers in relation to physiological 
processes to monitor health 

In addition to studying metabolic responses at the tissue and cellular level for 
human physiological health, another opportunity is to explore whether classical 
clinical diagnostic biomarkers that are mainly used as disease risk indexes could 
also act as biomarkers that reflect health. Most of these biomarkers have not been 
examined in healthy individuals for discriminative potential between different 
health states. Likely, these biomarkers will have difficulty capturing early deviations 
in the trajectory from a healthy towards an more unhealthy state unless the 
individual is acutely challenged (68). This is due to the fact that a functional, even 
suboptimal, homeostasis tends to maintain the levels of circulating bioactive 
molecules (i.e., hormones, cytokines, metabolites) within a certain range of values 
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(69). This is particularly true for individual biomarkers. However, the sensitivity 
may increase if multiple biomarkers are measured simultaneously and their joined 
responses are evaluated. Measuring multiple biomarkers was a major hurdle 
some time ago, but the advent of multi-parameter ‘omics’ approaches now permits 
simultaneous analysis of many parameters in small blood volumes (70,71). A further 
improvement may be obtained by physiological grouping of biomarkers in over- 
arching physiological processes that are considered to play a role in determining 
health state and in disease development. Three major overarching physiological 
processes are metabolism, inflammation, and oxidative stress (10). By analysing 
biomarkers grouped in the context of these physiological processes, additional 
sensitivity and resolution may be obtained. In other words, when considered 
separately, small changes in the levels of these biomarkers may not stand out as 
relevant but changes may become more relevant when considering multiple 
biomarkers that are linked to the same physiological process. Furthermore, this 
approach enables examination of the behaviour of these biomarkers relative to 
each other. In this way, small changes in the overall homeostasis that contribute to 
early deviations from an optimal health state might be captured and could be of 
relevance to monitor the health to disease trajectory. While this approach is 
attractive, studying the individual and grouped behaviour of multiple biomarkers 
in the context of specific physiological processes has hardly been examined 
individuals that differ in aerobic fitness level, and it has especially not been studied 
which biomarkers respond in a corresponding manner. Since most of these 
biomarkers have a short lifetime and acute signaling function, their levels change 
in response to a physiological perturbation such as a single exercise session 
(4,72,73). Importantly, this exercise-induced response can differ between high 
physically active (regularly exercising) and sedentary individuals, due to the 
adaptations in many physiological systems in response to regular exercise (73). 
However, it is not completely clear how exercise performance on the day prior to 
blood sampling impacts the levels of many of these biomarkers, and whether this 
impact depends on an individual’s aerobic fitness level, while this information is 
important to evaluate whether standardization of exercise activities prior to blood 
sampling is required in such studies. 

Regulation of cellular energy metabolism by B-vitamins 

The B-vitamins are essential for maintaining healthy physiology (74). The B-vitamins, 
thiamine (B1), riboflavin (B2), niacin (B3), pantothenate (B5), pyridoxine (B6), biotine 
(B8/B7), folate (B11/B9) and cobalamin (B12) are structurally unrelated, but are 
grouped because of their primary function in energy metabolism, with interrelated 
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and principal roles in mitochondrial and one-carbon metabolism (75,76). They 
support the biosynthesis of metabolic intermediates that are used for DNA/RNA 
synthesis, FeS cluster generation, and redox signaling, and they regulate the 
activity of mitochondrial enzymes to drive ATP generation (75,76). Because 
B-vitamins are important for energy generation, B-vitamin deficiencies are always 
associated with various types of fatigue. Although it is well recognized that severe 
B-vitamin deficiency promotes disease, milder marginal deficiencies have also 
been shown to impair physiological functions (77). For example, a marginal vitamin 
B1 (thiamine) deficiency has been linked to fatigue, low appetite, and sleep 
disturbance (78). Maintaining a balanced cellular pool of B-vitamins is thus important  
to support metabolism and health. Since B-vitamins are essential nutrients that 
must be derived from dietary intake, sufficient consumption of foods with B-vitamins  
is recommended (79). While sufficient intake is important, lifestyle activities may 
affect the need and use of B-vitamins. For example, it has been suggested that 
exercise performance could affect the need for B-vitamins in several metabolic 
reactions, particularly in the mitochondria (80). Exercise increases cellular energy 
demands to enable skeletal muscle contractions and relaxations, putting a high 
demand on mitochondrial reactions that are supported by B-vitamins. At the same 
time, exercise generates ROS as a by-product, which enhances antioxidant defense 
systems, including those that rely on B-vitamin-derived cofactors (81–83). B-vitamin 
status may thus change in individuals that perform regular exercise (80), but this  
is incompletely understood. Of note, mitochondria do not operate in isolation,  
but active communication exists between mitochondria-derived metabolic signals 
and the nucleus (26). In view of the essential role of B-vitamins in energy metabolism 
and mitochondrial function, they also likely play a role in this communication, but 
an overview is currently lacking. 

The link between vitamin B2 status and exercise 

Vitamin B2 (riboflavin) is of special interest in metabolism since this B-vitamin is an 
essential gatekeeper of mitochondrial ATP production and redox balance. Vitamin 
B2 is the precursor for the electron carriers flavin mononucleotide (FMN) and 
flavin adenine dinucleotide (FAD), which are both essential mitochondrial 
co-enzymes of OXPHOS CI and CII, respectively (84,85). In addition, FAD is an 
essential cofactor for the antioxidant enzyme glutathione reductase (GR), which 
catalyzes the conversion of GSSG (oxidized glutathione) to GSH (reduced 
glutathione) with concomitant reduction of NADPH to NADP+ (Figure 4) (84,86). 
The subsequent catalytic activity of the enzyme glutathione peroxidase (GPx) 
regenerates GSSG from GSH via oxidation of a selenium group and the formation 



 General Introduction | 21

1
of H2O from H2O2, thereby clearing ROS and maintaining redox homeostasis (82). 
In exercise studies, systemic vitamin B2 status is commonly assessed by the 
erythrocyte glutathione reductase activation coefficient (EGRAC) biomarker 
(80,87). This coefficient represents the ratio between erythrocyte GR (EGR) activity 
in the presence and absence of its cofactor FAD (88,89). Higher EGR activity in the 
presence of FAD compared to the activity in its absence reflects incomplete 
occupancy of EGR by FAD in vivo, resulting in a lower vitamin B2 status that is 
reflected by a higher EGRAC. Since aerobic exercise puts a high demand on 
metabolic processes that are essentially dependent on the vitamin B2-derived 
cofactors FMN and FAD, especially athletes and recreationally active, high 
aerobically fit individuals, are thought to benefit from an optimal vitamin B2 status 
(80). However, studies that investigate the link between vitamin B2 status and 
aerobic fitness level are contradictory (90–94), potentially because the long- and 
short-term exercise effects on vitamin B2 status could differ (94–96), but this has 
not yet been investigated. Since these outcomes could influence future dietary 
recommendations for exercising individuals, additional insight in the link between 
vitamin B2 status, aerobic fitness level, and exercise is necessary. 

Better understanding of physiological health in females 

Males and females differ in body composition (97) and metabolic health (98). 
Females have proportionally higher levels of adipose tissue than males (97). Males 
accumulate adipose tissue around the abdomen, while females deposit adipose 
tissue around the hips and thighs (97). Sex differences have been shown to affect 
health outcomes (99) and disease risk and development (43,100), but also the 
response to drug treatment (101) and exercise (102). For example, because the 

Figure 4: The glutathione cycle. NADPH = reduced form of nicotinamide adenine dinu- 
cleotide phosphate (NADP+), GR = glutathione reductase, GPx = glutathione peroxidase, 
FAD = flavin adenine dinucleotide, GSSG = oxidized glutathione, GSH = reduced glutathione, 
H2O2 = hydrogen peroxide, Se = selenium.
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distribution of adipose tissue is a stronger determinant of cardiovascular disease 
development than total adipose tissue, males have a higher cardiometabolic 
disease risk than females (103). However, most research has been conducted in 
males only, and there is a large bias for research in males in a variety of research 
areas (104,105). Females are underrepresented, but are important to study 
because they represent 50% of the human population. Therefore, the research in 
this thesis will be conducted in females. 

Aims and outline of this thesis 

The overall aim of this thesis is to study how metabolic measurements in healthy 
females with high and low levels of aerobic fitness can contribute to a better 
understanding of human physiological health. This may allow for the quantification of 
physiological health states and evaluation of the trajectory from health to disease, 
which may translate into strategies to improve health and prevent disease.

Specific aims of this thesis are: 
1)	 To study the link between skeletal muscle mitochondrial capacity and aerobic 

fitness level. 
2)	 To evaluate the potential of PBMC metabolism as a health biomarker, by:
	 a.	 Developing a normalization method for PBMC metabolic XF analysis. 
	 b.	 Examining the link between PBMC metabolism and aerobic fitness level. 
3)	 To explore the relationship between systemic metabolism biomarkers and 

aerobic fitness level.
4)	 To describe the state-of-the-art on the role of B-vitamins in mitochondrial 

metabolism and the communication with the nucleus.
5)	 To study the link between vitamin B2 status parameters and aerobic fitness 

level.

The aim of Chapter 2 of this thesis was to measure mitochondrial capacity in 
skeletal muscle using NIRS in high aerobically fit (high-fit) and low aerobically fit 
(low-fit) females and to study whether NIRS can detect a physiologically relevant 
difference in a recreationally active population of healthy females. Females show 
increased adiposity as compared to males, which could hamper the penetration of 
NIR-light in the muscle and makes NIRS measurements in females more difficult. 
Chapter 3 aimed to develop, optimize, and validate a normalization method for XF 
metabolic analysis of PBMCs. Correct normalization of XF assay data is crucial  
to reliably measure, compare, and extrapolate XF assay results, but the currently used 
normalization methods are poorly applicable to PBMCs. This new normalization 
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method was integrated into the Seahorse XF experimental set-up, providing a 
standardized workflow for XF analysis of human PBMCs. In Chapter 4, PBMC 
metabolism and PBMC composition were measured using our new standardized 
workflow in high-fit and low-fit females at baseline and after a recent bout of 
exercise. This allowed us to investigate the impact of longer- and short-term 
exercise on PBMC metabolism and PBMC composition, and to examine the 
influence of PBMC composition on the interpretation of PBMC metabolic outcomes. 
These findings improve our understanding on the use of PBMC metabolism as a 
biomarker in healthy individuals and contribute to the evaluation of its potential  
as a health biomarker. In Chapter 5, the aim was to measure the levels of multiple 
systemic biomarkers in serum and plasma of high-fit and low-fit females in a 
steady-state and after a recent bout of exercise, and analyze the individual and 
joined responses of these biomarkers in the context of specific physiological 
processes. These biomarkers have been extensively studied in the context of 
disease, but it is poorly understood how these biomarkers behave in healthy 
individuals with a physiological difference in aerobic fitness, and how these 
biomarkers respond relative to each other. Furthermore, linking each biomarker to 
a physiological health process may result in functional biomarker categories  
that could prove to be be relevant for characterization of human physiological 
health. In Chapter 6, I described the role of B-vitamins on mitochondrial metabolite-
mediated nuclear signaling routes, also called mito-nuclear communiction pathways. 
These pathways are important in the regulation of (patho)physiology, but an 
overview of the role of B-vitamins in these signaling routes is currently lacking.  
As vitamin B2 status may change in individuals that perform regular aerobic 
exercise, and it is incompletely understood whether these effects are affected by 
a single exercise session, the aim of Chapter 7 was to measure vitamin B2 status 
in high-fit and low-fit females and to examine whether parameters of vitamin B2 
status change in response to a recent bout of exercise. In the final chapter of this 
thesis, Chapter 8, I discuss the main findings of this thesis, the implications, and 
the directions for future research. 
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Abstract

The recovery of muscle oxygen consumption (mV̇O2) after exercise measured 
using near-infrared (NIR) spectroscopy (NIRS) provides a measure of skeletal 
muscle mitochondrial capacity. Nevertheless, due to sex differences in factors 
that can influence scattering and thus penetration depth of the NIRS signal in the 
tissue, e.g. subcutaneous adipose tissue thickness and intramuscular myoglobin 
and hemoglobin, it is unknown whether results in males can be extrapolated to  
a female population. Therefore, the aim of this study was to measure skeletal 
muscle mitochondrial capacity in females at different levels of aerobic fitness,  
to test whether NIRS can measure relevant differences in mitochondrial capacity. 
Mitochondrial capacity was analyzed in the gastrocnemius muscle and the wrist 
flexors of 32 young female adults, equally divided in a relatively high (V̇O2peak 
≥ 47 mL/kg/min) and relatively low aerobic fitness group (V̇O2peak ≤ 37 mL/kg/min). 
mV̇O2 recovery was significantly faster in the high-fitness compared to the 
low-fitness group in the gastrocnemius, but not in the wrist flexors (P = 0.009 and 
P = 0.0528, respectively). Furthermore, V̇O2peak was significantly correlated to 
mV̇O2 recovery in both gastrocnemius (R2 = 0.27, P = 0.0051) and wrist flexors (R2 
= 0.13, P = 0.0393). In conclusion, NIRS measurements can be used to assess 
differences in mitochondrial capacity within a female population and is correlated 
to V̇O2peak. This further supports NIRS assessment of muscle mitochondrial 
capacity providing additional evidence for NIRS as a promising approach to 
monitor mitochondrial capacity, also in an exclusively female population.
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Introduction

Regular endurance exercise increases whole-body peak oxygen uptake (V̇O2peak) 
due to bodily adaptations that increase oxygen transport, delivery and consumption. 
At the level of the skeletal muscle, maximal oxygen consumption increases due to 
an increase in muscle mitochondrial mass and function (1). The exact contribution 
of this increased skeletal muscle oxidative capacity to the improved V̇O2peak 
after regular endurance exercise remains debated. Nevertheless, there appears 
to be a strong link between mitochondrial mass and V̇O2peak (2). Furthermore, 
skeletal muscle oxidative capacity is suggested to be a determining factor in 
prolonged strenuous exercise performance (3). Classically, skeletal muscle 
oxidative or mitochondrial capacity is analyzed ex vivo, by measuring oxygen 
consumption in permeabilized muscle fibers from muscle biopsies. The invasive 
nature of this technique, the isolation of the tissue from its physiological environment, 
as well as the infringement of cell integrity by the permeabilization procedure 
provides a rationale for non-invasive assessment of muscle mitochondrial capacity 
in an intact system.

A near-infrared spectroscopy (NIRS)-based technique has been developed to 
assess skeletal muscle mitochondrial capacity in vivo (4). Using multiple, transient 
vascular occlusions after a short bout of exercise it allows for the measurement 
of post-exercise recovery of mV̇O2 (5). The underlying assumption is that post- 
exercise regeneration of readily available energy carriers, i.e., ATP and phospho-
creatine (PCr), is directly linked to aerobic metabolism and, therefore, a higher 
mitochondrial capacity will be associated with a faster recovery to the pre-exercise 
state (6). NIRS offers advantages over other non-invasive techniques, such as 
magnetic resonance spectroscopy (31P-MRS), due to its higher portability and 
relatively low-costs, making it more suitable for on-site and routine measurements. 
However, a limitation of the NIRS technique is the limited penetration depth in the 
tissue, as the greater the distance the NIR light has to travel to reach muscle tissue, 
the lower the resolution (7). Therefore, factors that influence the scattering of the 
signal, such as differences in subcutaneous adipose tissue thickness (ATT), but 
also skin thickness, skin pigmentation and blood flow (7–9) can affect the NIRS 
measurement of post-exercise recovery of mV̇O2. 

In a normally active male population, we previously showed that NIRS is able to 
detect differences in mitochondrial capacity in the gastrocnemius muscle between 
relatively high- fitness and low-fitness subjects, and this NIRS-derived measure of 
mitochondrial capacity was correlated to V̇O2peak (10). Nevertheless, it is unsure 
if these results are easily extrapolated to a female population, because of the 
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aforementioned factors that could affect the signal to noise ratio, such as ATT 
thickness, which can be anticipated to be larger in females, and total hemoglobin 
and myoglobin, which was shown to be lower in females in the gastrocnemius 
muscle, but not in other muscles, e.g. wrist flexors, compared to males (9). 
Additionally, it could be that possible sex differences in the relationship between 
mitochondrial capacity V̇O2peak also affect this relationship. For instance, males 
showed a larger stimulation of mitochondrial biogenesis than females upon sprint 
interval training (11). Indeed, straightforward extrapolation is warned, as a recent 
NIRS study showed no correlation between mitochondrial capacity in the 
gastrocnemius muscle and V̇O2peak when males and females were combined 
(12), which contrasted our previous findings in males only (10).

Thus, even though studies in mixed population indicate the application of the 
technique in both sexes (13–17), it is unknown whether NIRS is able to detect 
physiologically relevant differences within an exclusively female population, 
a population also often underrepresented in sports and exercise research (18). 
Therefore, the aim of this study was to measure skeletal muscle mitochondrial 
capacity in healthy females at different levels of aerobic fitness to further support 
the applicability of NIRS assessment of mitochondrial capacity in this population. 
Mitochondrial capacity was measured in both the frequently activated gastrocnemius 
muscle and the often-undertrained wrist flexors in 32 recreationally active,  
healthy females divided into a relatively low and a relatively high-fitness group. 
We hypothesized that high-fitness females will show a higher mitochondrial 
capacity compared to low-fitness females in both muscles.

Materials and Methods 

Ethical approval
The study was approved by the medical ethical committee of Wageningen University 
& Research with reference number NL70136.081.19. All procedures performed 
were in accordance with the ethical standards of the institutional and/or national 
research committee and with the 1964 Helsinki declaration and its later amendments 
or comparable ethical standards (Fortaleza, Brazil 2013). The study is registered in 
the Dutch trial register (NL7891). Written informed consent was obtained from all 
individual participants included in the study.

Subjects 
Healthy females between the age of 18-28 years were recruited from the local 
university and community population. None of the subjects had a history of 
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cardiovascular, respiratory or metabolic disease. None of the subjects were a 
regular smoker (> 5 cigarettes per week), used recreational drugs during the study 
or reported recent use of performance enhancing drugs or supplements. Subjects 
were non-anaemic (haemoglobin concentration > 12 g/dL), verified by using 
HemoCue Hb 201 microcuvette (HemoCue AB, Sweden). None of the subjects 
were pregnant or lactating. 17 bèta-estradiol levels were measured with at Erasmus 
Medical Centre, the Netherlands using chemiluminescent immunoassay on 
Lumipulse G1200 analyzer (Fujirebio Inc, Japan). Subjects that used any other 
monophasic oral contraceptive containing low synthetic estradiol and progesterone 
were excluded from participation. Test days were planned within the end of the 
follicular phase until menstruation, based on self-reported occurrence of last 
menstruation or during final 14 days of pill cycle.

Pre-experimental screening protocol 
Subjects were selected based on V̇O2peak, measured using an incremental 
exercise test on electrically braked bicycle ergometer (Corival CPET, Lode, the 
Netherlands). Subjects were asked to refrain themselves from vigorous exercise 
for 48 hours and to have consumed their last meal two hours before this test. 
Oxygen consumption, carbon dioxide production and air flow were measured 
using MAX-II metabolic cart (AEI technologies, USA). Exhaled air was continuously 
sampled from a mixing chamber and heart rate was measured with a strap-on 
chest heart rate monitor (Polar Electro, Finland). After a 3-minute unloaded cycling 
warming-up, the protocol started at a workload of 50 W for subjects who exercised 
< 3 times a week or 75 W for subjects who exercised > 3 times per week and was 
increased every minute in increments of 15 W. Subjects were instructed to maintain 
a self-selected pedal rate between 70 – 80 revolutions per minute (RPM). Inability 
to pedal at a rate above 60 RPM for 10 seconds was considered point of exhaustion 
and the end of the test. For the test to be valid, two out of three of the following 
criteria should have been met: 1) A maximal heart rate within 10 beats of the 
predicted maximum (220 – age), 2) Attainment of a plateau in V̇O2, i.e. V̇O2 failing 
to increase with 150 mL/min, despite an increase in workload, 3) Achievement of 
an RER ≥ 1.1. V̇O2peak was determined by binning data in 15 seconds intervals. 
Sixteen relatively high-fitness (V̇O2peak ≥ 47 mL/kg/min) and sixteen relatively 
low-fitness subjects (V̇O2peak ≤ 37 mL/kg/min) were selected to take part in the 
study, based on chosen cut offs. Main exercise modalities in the high-fitness group 
were running/athletics (6x), rowing (3x), kickboxing (2x), hockey (1x), swimming (1x), 
ice skating (1x), climbing (1x) and weightlifting (1x). Main exercise modalities in 
low-fitness group were aerobics (2x), horseback riding (1x), weightlifting (1x), 
climbing (1x), walking (1x), dancing (1x), badminton (1x) or no regular exercise (8x).  
A total of 111 exercise tests were conducted to end up with the desired sample size. 
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Experimental protocol 
The subjects refrained from heavy physical exercise 48 hours prior to testing and 
from any exercise and consumption of alcohol 24 hours prior to testing. Maximal 
Voluntary Contraction (MVC) hand grip strength of the non-dominant and dominant 
hand was measured using a Jamar Hydraulic Hand Dynamometer (Performance 
Health, IL, USA). Highest value out of three 5 seconds isometric contractions was 
set as MVC. Body fat percentage was measured according to the four-site method 
by Durnin-Womersley using the skinfold measurements of the triceps, biceps,  
sub scapula and supra iliac, measured using a skinfold caliper (Harpenden, UK). 
Furthermore, skinfold between NIRS receiver and transmitter was measured on 
the calf and the forearm.

NIRS measurements 
Deoxyhaemoglobin (HHb) and oxyhaemoglobin (O2Hb) were continuously 
measured using the continuous wave Oxymon, dual-wavelength NIRS system 
(760 and 850 nm; Artinis Medical Systems, The Netherlands) at three optode 
distances 15 mm, 45 mm and 55 mm. Data were collected via bluetooth at 10 Hz  
using Oxysoft software (Artinis Medical Systems). The NIRS probe was placed 
longitudinally on the belly of the muscle, identified by palpation by an experienced 
investigator, on the medial gastrocnemius and on the wrist flexors of the 
non-dominant side. To secure the probe and protect it from environmental light, 
the probe was tightly taped to the skin. To measure oxygen consumption, a blood 
pressure cuff (Hokanson SC5 and SC12; D.E. Hokanson Inc., Bellevue, WA) was 
placed proximally of the probe above the knee joint and on the upper arm.  
The cuff was powered and controlled by a rapid cuff inflator system (Hokanson 
E20 and AG101 Air source; D.E. Hokanson Inc.) set to a pressure of 230-250 mm 
Hg. Post-exercise muscle oxygen consumption recovery was assessed similar to 
previously published protocols (19). In summary, the protocol consists of three 
30-second rest measurements of resting oxygen consumption. To calibrate the 
signal between individuals, the minimal-oxygenation (0%) of the tissue underneath 
the probe was determined by 30-second maximal hand grip exercise for wrist 
flexors or by plantar flexion exercise using a rubber resistance band for 
gastrocnemius, followed by a 4-minute arterial occlusion. The hyperemic response 
after the cuff was released was considered maximal oxygenation (100%). Recovery 
of muscle oxygen consumption after exercise was measured after 30 seconds of 
intermittent (approximately 0.5 Hz) handgrip exercise at 40% of MVC for the wrist 
flexors or plantar flexion exercise using a rubber resistance band until 50% of 
maximal oxygenation for gastrocnemius. Right after exercise, a series of transient 
occlusions (5 * 5 seconds on / 5 seconds off, 5 * 7 seconds on / 7 seconds off, 10 * 
10 seconds on / 10 seconds off) was used to measure the recovery of muscle 
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oxygen consumption after exercise. Recovery measurements were performed in 
duplicate with 2 minutes rest in between tests.

Analysis of muscle oxygen consumption data
NIRS data were analyzed using Matlab-based (The Mathworks, MA, USA) analysis 
software (NIRS_UGA, GA, USA). Optode distance of 45 mm or 55 mm was used, 
based on inspection of data of raw light counts during measurements. Data were 
analyzed as % of maximal oxygenation. mV̇O2 was calculated during every arterial 
occlusion using the slope of the change in HHb and O2Hb (Hb difference) for  
3 seconds for the 5-second occlusions, for 5 seconds for the 7-second occlusions, 
7 seconds for the 10-second occlusions and 15 seconds for the basal measurements. 
A blood volume correction factor was used for each data point (20) to correct for 
redistribution of blood distally from the cuff. In short; changes in HHb and O2Hb 
should be proportional during arterial occlusions. A blood volume correction 
factor (β) was calculated to account for possible changes and was used to correct 
each data point. mV̇O2 recovery measurements post-exercise were fitted to a 
mono-exponential curve:

with y representing the mV̇O2 during the arterial occlusions; End being the mV̇O2 
immediately after the cessation of exercise; delta (∆) being the difference between 
mV̇O2 after exercise and mV̇O2 during rest; k being the rate constant expressed 
in time units; t being time. Recovery of muscle oxygen consumption follows mo-
no-exponential curve (21), therefore data points outside curve were considered 
artifacts and omitted from curve fitting. Data were analyzed blinded by two 
researchers. In case of discrepancy between analyses, third researcher analyzed 
data set (blinded) and consensus was reached. Rate constants calculated from 
curve fitting with R2 < 0.95 were excluded from analysis as a measure of poor data 
quality. Rate constants of duplicates were averaged. 

Statistical analyses
Data are presented as mean ± standard deviation (SD), unless indicated otherwise. 
Statistical analyses were performed using GraphPad Prism v.5 (GraphPad Software, 
CA, USA). Means between the two groups were compared using a Students 
unpaired t-test. Correlations between variables were compared using regression 
analysis. Significance was accepted at P < 0.05. Normality was tested using Shapiro- 
Wilk normality test. Not-normal data were compared using Mann-Whitney tests.
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Results

Physical characteristics are shown in Table 1. All subjects completed all tests 
without any contraindications. All maximal exercise tests met at least two out of 
three preset criteria. Subjects were either on monophasic oral contraceptive 
containing synthetic estradiol and progesterone (N = 13), used a copper spiral  
(N = 1) or did not use any contraceptives (N = 18). The use of oral control contraceptives 
was N = 7 in high-fitness and N = 6 in low-fitness group. No significant difference 
in 17bèta-estradiol levels was observed between the high-fitness and low-fitness 
group in subjects that did not use hormonal birth control contraceptives (Table 1). 

Recovery of mV̇O2 in gastrocnemius and wrist flexors
The NIRS protocol, which was used both for the gastrocnemius and wrist flexors, 
included 3 measurements of basal mV̇O2, assessment of minimal and maximal 
oxygenation level and the repeated occlusions to assess recovery of oxygen 
consumption after a short exercise protocol (Figure 1A). For gastrocnemius, two 
data sets were excluded due to R2 < 0.95, two were excluded due to failed calibration 
measurement, i.e. no plateau for minimal oxygenation was reached, and one data 

Table 1  Subjects characteristics

Low-fitness (N = 16) High-fitness (N = 16)

Age (years) 24.0 [21.3 - 25.5] 21.8 [21.5 - 23.6]

Ethnicity Caucasian (11), Asian (1), Indo-pacific (4) All Caucasian

Weight (kg) 59.2 ± 7.2 60.8 ± 6.9

Height (m) 1.63 ± 0.07 1.68 ± 0.04 *

Fat mass (% of weight) 28.9 ± 3.9 24.6 ± 4.7 **

V̇O2peak (mL ·kg ˉ¹ · min ˉ¹) 35.1 [32.2 - 35.7] 51.0 [49.2 - 55.4] ***

MVC dominant arm 30.0 [25.3 - 33.5] 36.5 [32.0 - 39.50] *

MVC non-dominant arm 27.5 [24.0 - 33.5] 33.5 [30.3 - 37.0] *

Hemoglobin (mM) 8.4 ± 0.6 8.5 ± 0.6

Usage of birth control pill  6/16 7/16

 If not; 17bèta-estradiol (pM) 470.9 [337 - 590] 153.8 [84 - 806]

ATT wrist flexors (mm) 5.3 [4.3 - 6.9] 4.0 [2.3 - 5.0] *

ATT GAS (mm)  8.6 [6.9 - 10.6] 6.9 [6.0 - 7.9] *

V̇ O2peak = Maximal oxygen consumption, MVC = maximal voluntary contraction handgrip strength, 
ATT = adipose tissue thickness, GAS = gastrocnemius. Values are mean ± SD for normally distributed data, 
and median [interquartile range (IQR)] for not normally distributed data. *P < 0.05, **P < 0.01, ***P < 0.001.
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set was excluded due to technical issues (only had 15 mm channel). For all other 
measurements, plateau for minimal oxygenation was reached. Recovery rate constants 
were significantly different between the high and low- fitness group for gastrocnemius 
(2.06 ± 0.57 vs. 1.48 ± 0.47, P = 0.009, Figure 1B, C), but not for the wrist flexors 
(1.24 ± 0.23 vs. 1.10 ± 0.15, P = 0.0528, Figure 1D, E). 

Figure 1: Representative plot of NIRS protocol and recovery constants in high-fitness and 
low-fitness females. (A) Red line represents NIRS signal of the Hb difference during protocol 
as percentage of maximal oxygenation. Repeated measurement mV̇O2 (red dots) are fitted 
to a monoexponential curve fit (grey line) from which a recovery constant is derived. (B, D) 
Average curve fits for the low-fitness (grey) and high-fitness (blue) group for mV̇O2 recovery 
presented as percentage of basal mV̇O2 after 30s of plantar flexion exercise in gastrocnemius 
(B) and after a handgrip exercise in wrist flexors (D). (C, E) Recovery constants derived from 
monoexponentially curve fits for gastrocnemius (C) and wrist flexors (E). For gastrocnemius 
muscle N = 12 vs. N = 15. Values are represented as mean ± SD. **P < 0.01.
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Relationship between mV̇O2 recovery and whole-body oxygen uptake
In order to test the relationship between endurance capacity, measured as 
V̇O2peak, and mV̇O2 recovery, measured using NIRS, a correlation analysis was 
performed. The mV̇O2 recovery constant of the gastrocnemius was significantly 
correlated to V̇O2peak (R2 = 0.27, P = 0.0051, Figure 2A). Furthermore, in the wrist 
flexors a significant correlation was observed between mV̇O2 recovery constant 
and V̇O2peak (R2 = 0.13, P = 0.0393, Figure 2B).

Discussion

The aim of this study was to measure skeletal muscle mitochondrial capacity using 
NIRS in healthy females in the gastrocnemius and wrist flexors muscles to test 
whether NIRS can measure relevant differences in mitochondrial capacity and to 
further support NIRS assessment of mitochondrial capacity in this population. We 
are the first to show that recovery of mV̇O2 after a short bout of exercise as 
measure for mitochondrial capacity is significantly faster in the gastrocnemius 
muscle of high-fitness compared to low-fitness individuals in an exclusively female 
population. Recovery of mV̇O2 in the wrist flexors muscle was not statistically 
different in between two groups. Furthermore, when taking both groups together, 
we found a significant correlation between V̇O2peak and recovery of mV̇O2 in the 
gastrocnemius and wrist flexors. 

Figure 2: Correlation between aerobic fitness level and recovery constants. Correlation 
between maximal oxygen consumption (V̇O2peak) measured during an incremental exercise 
test and recovery constants for muscle oxygen consumption recovery (mV̇ O2) measured 
using NIRS in gastrocnemius (A) calculated after 30s of plantar flexion and wrist flexors (B) 
calculated after 30 seconds of handgrip exercise at 50% of MVC in the high-fitness (blue) 
and low-fitness (grey) group. 
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mV̇O2 recovery in gastrocnemius between high and low-fitness females
This study shows that NIRS is able to detect physiological relevant differences in 
mitochondrial capacity in a healthy, recreationally active female population. The 
differences in mitochondrial capacity likely reflect a higher mitochondrial capacity 
in high-fitness individuals, i.e., more or more efficient mitochondria were able to 
reinstate muscle homeostasis faster. In a previous, but unique, study we showed a 
40% faster mV̇O2 recovery in the gastrocnemius muscle of high-fitness compared 
to low-fitness males (10). The difference in magnitude of V̇O2peak was comparable 
with the current study, in which we likewise observed a 40% faster mV̇O2 recovery 
in high-fitness compared to low-fitness females. Brizendine et al. showed an 
approximate doubling of mitochondrial capacity in the vastus lateralis muscle  
in endurance athletes compared to inactive individuals (15). Although this study 
included both males and females, the vast majority of the endurance athletes 
were males and with an absolute difference in V̇O2peak of 40 mL/kg/min between 
the groups, the distinction between the groups was twice as large compared to 
the current study. Therefore, the present study highlights the sensitivity of NIRS 
measurements of mV̇O2 recovery to detect smaller differences in mitochondrial 
capacity and further extends the applicability of the technique, also in an exclusively 
female population. 

The highly comparable results between in mV̇O2 recovery in the gastrocnemius 
muscle between the two sexes indicates the applicability of this NIRS-based 
technique to detect physiological relevant differences also in an exclusively 
female population. This is an important finding, as sex differences that could affect 
the light scattering, and thus the mV̇O2 recovery measurement, have been 
identified, such as a lower total hemoglobin and myoglobin in the gastrocnemius 
(9) and generally higher ATT in females compared to males. Higher levels of ATT 
can greatly affect the NIR-signal and consequently the signal to noise ratio of the 
measurement (7,9). Even though in the current experimental protocol the difference 
in ATT was accounted for by normalization of the signal within each person using 
a physiological calibration (22). Still, interrogation depth of the muscle is decreased 
with increasing ATT and this can result in a substantial attenuation of the signal 
from muscle tissue, such that a doubling of ATT from 4 to 8 mm reduces the 
contribution of total-[Hb+Mb] to the signal by 50% using a 20 mm source-detector 
distance (9). In the current population, average ATT on the gastrocnemius muscle 
was 8.1 mm, which was expectedly higher than previously observed in males  
(5.9 mm) (10). Not many studies have measured in these ranges of ATT in females 
(7,12,15,23,24). Yet, studies that did measure close to our range in ATT either 
reported difficulties (23), adapted the penetration depth according to the ATT  
per individual (14,19) or used a frequency-domain NIRS device that can better 
quantify the degree of light scattering (13). 
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To overcome the relatively high ATT, we used a greater source-detector distance 
of 45mm or 55mm in females, compared to 35mm in males. A greater source-
detector distances allows for deeper tissue penetration and consequently increased 
attribution of muscle to the NIR-signal. Nevertheless, increasing source-detector 
distance will also cause less light to reach the detector, as more signal is lost due 
scattering in the tissue. Still, our results showed that with a distance of 45 mm and 
55 mm, tissue penetration and signal to noise ratios were sufficiently high to obtain 
reliable, i.e. R2 > 0.95, mV̇O2 recovery curves and to were able to identify differences 
in mV̇O2 recovery between two fitness groups in the gastrocnemius muscle a 
healthy, recreationally active female population. Nevertheless, two data sets were 
excluded from analysis due to low curve fitting, or R2. The data sets excluded for 
low R2 were among the highest in ATT thickness (10.95 mm and 11.05 mm). 
Therefore, although other measurements with higher ATT (e.g., 11.05 and 11.35 mm) 
were successful, and the NIR signal is also affected by other factors such as 
optode placement, exercise execution and movement artifacts, it could be that 
the larger contribution of adipose tissue to the NIR signal negatively affected  
the reliability of the mV̇O2 recovery curves. Therefore, our results suggest that 
increasing the source-detector distance is an effective, yet limited, approach for 
the application of NIRS to assess mitochondrial capacity in muscles with a 
substantial ATT. 

All test days were planned within the end of the follicular phase until menstruation, 
i.e. luteal phase, based on self-reported occurrence of last menstruation. Due to 
variation of estradiol levels in luteal phase and the effect of 17bèta-estradiol on 
mitochondrial capacity (25), differences in 17bèta-estradiol levels could have 
affected the mV̇O2 recovery measurements. Yet, we observed no difference in 
17bèta-estradiol between the two groups and we did not observe a correlation 
between 17bèta-estradiol and mV̇O2 recovery (data not shown). For these reasons, 
it is unlikely that differences in circulating levels 17bèta-estradiol could explain the 
significant difference in mV̇O2 recovery between the two groups. Nevertheless, 
we cannot rule out effects of the menstrual cyclical patterns, as, for example, 
neuromuscular function and fatigability showed modulations based of the phase 
of menstrual cycle in knee extensor muscles (26). Yet, because the current study 
also included monophasic oral contraceptive users, effects of menstrual cycle on 
the outcome measures were expected to be limited

The relationship between aerobic fitness and mV̇O2 recovery
Although our primary aim was to find differences in mV̇O2 recovery in high and 
low-fitness females, when taking both groups together, we found a significant 
correlation between V̇O2peak and recovery of mV̇O2 in the gastrocnemius. 
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A correlation between mitochondrial capacity of skeletal muscle tissue and 
V̇O2peak has been established before. For instance, several NIRS studies describe a 
correlation between mV̇O2recovery and V̇O2peak, in particular in the  gastrocnemius 
muscle of males (10), and in the vastus lateralis of mixed populations (12,15).  
Such a correlation has also been observed in a female population, using 31P-MRS, 
showing the rate of PCr resynthesis in the gastrocnemius muscle was correlated 
to V̇O2peak (27). Comparable to NIRS, 31P-MRS uses the recovery of muscle 
homeostasis after exercise, assessed by measuring the regeneration of PCr as  
a proxy for mitochondrial capacity (4,21) and the two techniques show a good 
agreement (16,19). Even though the correlations in the current study should be 
treated with caution because of the discontinuous distribution of the V̇O2peak 
values, our data are in agreement with the established correlation between skeletal 
muscle mitochondrial capacity and V̇O2peak, further supporting the applicability 
and physiological relevance of this technique in females.

mV̇O2 recovery in wrist flexors between high and low-fitness females
Although a significant difference was found in mV̇O2 recovery in the gastrocnemius 
muscle, a significant difference in mV̇O2 recovery was not observed in wrist flexors 
between high-fitness and low-fitness females. This result is similar to data obtained 
in males with similar differences in V̇O2peak (10). However, with a P-value near 
significance and the weak correlation between mV̇O2 recovery and V̇O2peak, 
one might argue that a slight increase in sample size would have resulted in a 
statistically significant difference. Nevertheless, not considering statistical significance, 
the difference mV̇O2 recovery kinetics is rather small and could be less biologically 
relevant. This discrepancy between the wrist flexor and gastrocnemius muscle 
might be attributed to less frequent activation of the wrist flexors during endurance 
exercise and consequently less mitochondrial adaptations, such as increased 
amount and the efficiency of the mitochondria (28). Therefore, although the wrist 
flexors are a convenient muscle group to measure due to low ATT levels and 
exercise standardization, it is likely a poorer reflection of aerobic fitness. Therefore, 
mV̇O2 recovery kinetics in this muscle should therefore not be used as a predictor 
for aerobic capacity or exercise performance.

Conclusion and further perspectives
This study provides evidence for sensitive measurements of mitochondrial capacity 
using NIRS in a female population. In a population of healthy, recreationally active 
females, mitochondrial capacity was significantly higher in the gastrocnemius of 
high-fitness compared to low-fitness females. Furthermore, mitochondrial capacity 
was significantly correlated to V̇O2peak. These results further substantiate the 
use of mV̇O2 recovery as a measure for mitochondrial capacity measured non- 
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invasively using NIRS as a relevant physiological parameter. Furthermore, these 
results support the applicability of this technique to detect relevant physiological 
differences in a female population with higher ATT by using a physiological 
calibration and greater source-detector distances. However, increasing source-
detector distance comes with limitations, such as decreased signal intensity at  
the detector due to the scattering of light in the tissue. Furthermore, one has  
to consider portability, as commercially available portable NIRS often have a 
smaller maximal source-detector distance compared to wired NIRS optodes (29). 
Portability, besides relative faster testing and lower costs, is a promising feature of 
the NIRS assessment of mitochondrial capacity, allowing measurements in an 
onsite, field-based setting. Therefore, testing different populations should be 
considered good practice to further increase applicability of the technique. 

Additionally, in a recent study looking at predictors of exercise performance on a 
time-to-completion cycling trial, it was shown that mV̇O2 recovery measured using 
NIRS best predicted performance on the trial (30). This supports the physiological 
relevance of NIRS assessment of mV̇O2 recovery assessment as a relevant marker 
in sports and exercise science. Additionally, NIRS has advantages over established 
techniques, such as less invasive than a muscle biopsy and more portable and 
lower cost compared to 31P-MRS. Moreover, recently it has been shown that using 
a 6-occlusion protocol is a valid and reproducible alternative to protocols using 
more occlusions, such as the current one (31). Using a shorter protocol reduces 
testing time or could, if desired, increase replicates to increase precision of the 
measurement. The strong prediction for exercise performance, relative fast testing 
and the portability, appoint mV̇O2 recovery measurements using NIRS as a 
promising approach to monitor aerobic performance in both laboratory and 
field-based settings, also in females.
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Abstract

Analyzing metabolism of peripheral blood mononuclear cells (PBMCs) provides 
key opportunities to study the pathophysiology of several diseases, such as type 
2 diabetes, obesity, and cancer. Extracellular flux (XF) assays provide dynamic 
metabolic analysis of living cells that can capture ex vivo cellular metabolic 
responses to biological stressors. To obtain reliable data from PBMCs from 
individuals, novel methods are needed that allow for standardization and take into 
account the non-adherent and highly dynamic nature of PBMCs. We developed a 
novel method for extracellular flux analysis of PBMCs, where we combined 
brightfield imaging with metabolic flux analysis and data integration in R. Multiple 
buffy coat donors were used to demonstrate assay linearity with low levels of 
variation. Our method allowed for accurate and precise estimation of XF assay 
parameters by reducing the standard score and standard score interquartile range 
of PBMC basal oxygen consumption rate and glycolytic rate. We applied our 
method to freshly isolated PBMCs from sixteen healthy subjects and demonstrated 
that our method reduced the coefficient of variation in group mean basal oxygen 
consumption rate and basal glycolytic rate, thereby decreasing the variation 
between PBMC donors. Our novel brightfield image procedure is a robust, 
sensitive and practical normalization method to reliably measure, compare and 
extrapolate XF assay data using PBMCs, thereby increasing the relevance for 
PBMCs as marker tissue in future clinical and biological studies and enabling the 
use of primary blood cells instead of immortalized cell lines for immunometabolic 
experiments.
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Introduction

Immune cells have a critical role in host defense and tissue homeostasis. They 
dynamically respond to environmental signals such as infectious stimuli and physio- 
logical stresses, which initiate immune cell activation, proliferation, differentiation, 
and migration. Recent evidence has linked these functional immunological 
parameters to alterations in cellular metabolism. Metabolic pathways do not only 
provide energy substrates and metabolic building blocks for immune cell proliferation, 
but also dictate differentiation and effector functions of immune cells (1,2). This 
dynamic and intimate crosstalk between cellular metabolism and immune cells 
has resulted in the emergence of the research field that is called immunometabo-
lism (1,2). Dysregulation of immunometabolic pathways was shown to play a critical 
role in the development and progression of chronic metabolic diseases such as 
type 2 diabetes and obesity (3) and autoimmune disorders such as rheumatoid 
arthritis (4,5). Furthermore, immunomodulation of tumor cell survival can be 
targeted using enhancers or inhibitors of metabolic pathways resulting in lowering 
tumor burden in pre-clinical models.

Peripheral blood mononuclear cells (PBMCs) are a readily accessible source of 
cells from individuals and are commonly used in immunometabolic research. 
PBMCs have a single round nucleus and mainly include T- and B-lymphocytes, 
monocytes, dendritic cells and natural killer cells. To study how metabolic pathways 
serve immune cell function, PBMCs are often artificially stimulated with mitogenic 
compounds or vaccines (6–12). PBMCs are also used as a surrogate tissue to 
monitor nutritional responses (13,14) and provide predictive disease risk markers 
(15), because they can be sampled relatively easy and with little invasiveness. 
Studies in model animals have shown that certain metabolic responses of PBMCs 
can reflect responses in tissues that cannot or can hardly be sampled in humans, 
such as liver (16,17) and brain (18). As marker tissue or liquid biopsy, bioenergetic 
profiles of PBMCs are increasingly studied in the context of multiple physiological 
and pathological conditions (19–25).

To correctly interpret results from immunometabolic studies, good understanding of 
cellular metabolism is essential. Metabolic pathways are a complex set of controlled 
biochemical reactions that convert energy substrates in metabolic building blocks 
and ATP (26). ATP is mostly generated via oxidative phosphorylation in the mito- 
chondria and glycolysis in the cytosol. Mitochondrial and glycolytic ATP production 
rates are fueled by metabolic reactions. Oxygen consumption in the oxidative 
phosphorylation pathway is needed for the oxidation of reducing equivalents  
that are generated from pyruvate and other energy substrates, which drives the 
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generation of mitochondrial ATP. Extracellular acidification results from lactate 
production in the glycolysis pathway that allows for NAD regeneration and ATP 
production, as well as from CO2 production in the mitochondria. Therefore, 
measurement of extracellular oxygen fluxes (27–29) and proton fluxes (30,31) can 
reflect the rate and source of cellular ATP production. In extracellular flux assays, 
cellular oxygen consumption rates (OCR) and extracellular acidification rates 
(ECAR) are simultaneously measured in real-time in culture well-plates using 
fluorescent sensors in a Seahorse extracellular flux (XF) analyzer (32), and provides 
a powerful tool to study immune cell bioenergetics.

Normalization of XF assay results is critical for accurate and consistent data 
interpretation and comparison. Multiple parameters for XF assay data normalization 
in PBMCs have been used, of which normalization to the number of plated cells via 
pre-XF assay cell counting has been mostly applied (20,21,24,33–35). However, 
cell number and cell layer distribution are affected by daily and operator variation 
in counting, plating and handling, which can lead to inaccurate normalization. 
Alternative strategies such as determination of post-XF assay cellular protein 
content (19,22,25) or genomic DNA levels has been largely applied when using 
adherent cells but can introduce variation when using non-adherent cells such as 
PBMCs. Recent advances in XF assay normalization methods now also enable 
normalization to post-XF assay cell number via fluorescent imaging of Hoechst 
33342 stained nuclei (36,37) or post-XF assay mitochondrial content via fluorescent 
imaging of MitoTracker (37). These are strategies that limit post-XF assay sample 
handling but requires compatibility of the XF assay chemicals with the fluorescent 
dyes in order to monitor the XF assay wells and might not be applicable to all cell 
types. Brightfield imaging of PBMCs prior to the XF assay would be a rapid and 
sensitive normalization strategy that limits post-assay handling of cells, performs 
independently of XF assay chemicals and minimizes variation introduced by 
counting, plating and handling. Therefore, we aim to optimize and validate 
brightfield image analysis of PBMCs and standardize the Seahorse XF assay 
workflow for human PBMCs. 

Materials and Methods

Chemicals 
Carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP, C2920), antimycin 
A (A8674), rotenone (R8875), monensin sodium salt (monensin, M5273), 2-deoxy
glucose (2-DG, D6134), Hoechst 33342 (Hoechst, B2261), Concanavalin A (Con A, 
C2010), lipopolysaccharides (LPS) from Escherichia coli (L2637),  bovine serum 
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albumin (BSA, A6003), Triton-X 100 (T8787), sodium chloride (S9888) and Roswell 
Park Memorial Institute (RPMI) 1640 medium powder without phenol red and 
HEPES (R8755) were purchased from Sigma-Aldrich (St. Louis, Missouri, USA). 
RPMI 1640 medium without phenol red and HEPES (11835030), Dulbecco’s phos-
phate-buffered saline (DPBS, 14190094), Hanks’ Balanced Salt Solution (HBSS, 
14175095), and penicillin-streptomycin (15140122) were purchased from Thermo 
Fisher Scientific (Pittsburgh, Pennsylvania, USA). XF RPMI assay medium pH 7.4 
(103576-100), XF 1.0 M glucose (103576-100), XF 100 mM pyruvate (103578-100) 
and XF 200 mM glutamine (103579-100) were purchased from Seahorse 
Biosciences, Agilent Technologies (Santa Clara, California, USA). Interleukin 4 (IL4, 
214-14) and interferon-gamma (IFNγ, 315-05) were purchased from Peprotech 
(London, UK). 

PBMC donors 
Buffy coats (50 mL) obtained from three individual healthy blood donors (donor A,  
B and C) were independently received from Sanquin Blood Bank (Nijmegen, 
the Netherlands) and used for development, optimization and validation of the 
method on independent days. The optimized and validated method was applied to 
PBMC analysis of freshly drawn blood samples from sixteen healthy young female 
individuals (18 – 28 years of age, BMI 18.5 – 25 kg/m2) from the local university and 
community population. None of the participants had a history of cardiovascular, 
respiratory, hematological or metabolic disease including any medication. None 
of the participants had anemia (hemoglobin concentration < 12 g/dL), which was 
verified by using a HemoCue Hb 201 microcuvette (HemoCue AB, Sweden).  
None of the subjects were regular smokers (having more than 5 cigarettes per 
week) or used recreational drugs during the study. Subjects were not pregnant or 
lactating and did not use any hormonal contraceptives with exception of the birth 
control pill. All subjects were measured within the end of the follicular phase until 
menstruation. Written informed consent was obtained from every participant 
included in the study. The protocol for collection and handling of human samples 
was ethically approved by the medical ethical committee of Wageningen University 
& Research with reference number NL70136.081.19 and registered in the Dutch 
trial register (NL7891). All procedures performed were in accordance with the 
ethical standards of the institutional and/or national research committee and with 
the 1964 Helsinki declaration. Blood samples (5 x 10 mL) were collected from 
these participants by venipuncture in vacutainers containing dipotassium (K2-) 
ethylenediaminetetraacetic acid (EDTA) (K2-EDTA, BD Biosciences, Vianen, the 
Netherlands, 367525) as anticoagulant and processed within 30 minutes after 
blood collection. 
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PBMC isolation 
Buffy coats and EDTA-collected blood were diluted with DPBS (1X) without 
magnesium and calcium supplemented with sodium citrate buffer (1% v/v) as 
anticoagulant in a ratio of 1:4 and 1:1, respectively. Diluted blood was carefully 
poured into Leucosep tubes (Thermo Fisher Scientific, Pittsburgh, Pennsylvania, 
USA, 227289) that were filled with Ficoll Paque Plus (15 mL, GE Healthcare, 
Marlborough, Massachusetts, USA, 17144003) followed by density gradient 
centrifugation for 10 minutes at 1000g at room temperature (RT) with acceleration 
five and zero braking. The PBMC fraction was collected using sterile Pasteur 
pipettes and centrifugated for 10 minutes at 600g at RT with brake to concentrate 
the PBMC layer and facilitate removal of residual Ficoll and plasma. Supernatant 
was discarded and cells were three times washed using DPBS (1X, 20 mL) without 
magnesium and calcium supplemented with sodium citrate buffer (1% v/v) and fetal 
bovine serum (FBS, 2% v/v) and centrifugated for 7 minutes at 250g at RT. 
Supernatant was discarded and cells were resuspended in RPMI 1640 medium 
without phenol red and HEPES (30 mL, Thermo Fisher Scientific, 11835030) 
supplemented with FBS (10% v/v). Total PBMC number and PBMC viability was 
determined for each donor in a 1:10 dilution using acridine orange and propidium 
iodide staining (ViaStain, Nexcelom Bioscience, Lawrence, Massachusetts, USA, 
CS2-0106) in a Nexcelcom Cell Counter (Nexcelcom Bioscience) in fluorescent 
mode (n = 8). Cell viability was evaluated as absolute numbers of viable and 
non-viable cells and the percentage of viable over non-viable cells. All cell 
viabilities were > 97% as assessed using acridine orange and propidium iodide 
staining.

Monocyte isolation 
PBMCs were diluted to 50 x 106 cells/mL in RPMI 1640 medium with phenol red 
and without HEPES (Thermo Fisher Scientific, 11875085). 120 - 150 x 106 PBMCs (3 
mL) were loaded over hyperosmotic Percoll Plus solution (10 mL) containing 48.5% 
Percoll Plus (17544502 Cytiva, Marlborough, Massachusetts, USA), 41.5% sterile 
Milli-Q, and 10% 1.6M NaCl, followed by density gradient centrifugation for 15 
minutes at 580g at RT with acceleration five and zero braking. The monocyte 
fraction was collected using sterile Pasteur pipettes and cells were washed three 
times with DPBS (1X, 50 mL) without magnesium and calcium supplemented with 
sodium citrate buffer (1% v/v) and fetal bovine serum (FBS, 2% v/v) and centrifugated 
for 7 minutes at 400g at RT. Supernatant was discarded and cells were resuspended 
in RPMI 1640 medium with phenol red and without HEPES (10 mL, Thermo Fisher 
Scientific, 11875085) supplemented with 10% FBS. Total monocyte number and 
monocyte viability was determined for each donor using ViaStain in a Nexcelcom 
Cell Counter in fluorescent mode (n = 8). Cell viability was evaluated as absolute 
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numbers of viable and non-viable cells and the percentage of viable over 
non-viable cells. All cell viabilities were > 97% as assessed using acridine orange 
and propidium iodide staining. XF assay measurements and total protein analysis 
were performed as described below. 

RAW 264.7 cell culture 
RAW 264.7 mouse macrophage-like cells (ATCC, Rockville, USA) were cultured at 
50 x 103 cells / well (n = 8) in Seahorse XF96 cell plates (Seahorse Bioscience, 
Agilent Technologies, Santa Clara, USA) in prepared RPMI 1640 without phenol 
red and HEPES (Sigma-Aldrich, R8755) supplemented with FBS (10% v/v), penicil-
lin-streptomycin (5% v/v) and sodium bicarbonate (2 g/L) and were left unstimulated 
(M0 macrophages) or were incubated with LPS (1 μg/mL) plus IFNγ (20 ng/mL, M1 
macrophages) or IL4 (20 ng/mL, M2 macrophages) for 24 hours in a humidified 
atmosphere at 37°C and 5% CO2 level. On the next day, XF assay measurements 
were performed as described below. Afterwards, medium was discarded by 
gentle pipetting and cells were washed with HBSS (1X) without magnesium and 
calcium followed by cell lysis in NaOH (0.1M, Merck Millipore, Burlington, 
Massachusetts, United States, 106462). Samples were stored at -20°C for later 
protein level determination.

XF analysis with Seahorse XFe96 analyzer 
OCR and ECAR measurements were performed in a Seahorse XFe96 Analyzer 
(Seahorse Biosciences). For PBMCs isolated from donor A, B and C, 50 – 300,000 
PBMCs per well (n = 14 – 16) were plated onto Cell-Tak (Corning, New York, USA, 
354240) coated XF96 cell plates in XF RPMI assay medium pH 7.4 (50 μL, XF 
assay medium) supplemented with XF glucose (11 mM), XF pyruvate (1 mM) and XF 
glutamine (2 mM) and left for 10 minutes at RT. For PBMCs isolated from the sixteen 
healthy young female adults, 75 – 300,000 PBMCs per well (n = 3 – 4) were plated 
for the calibration curve used for normalization and 225,000 PBMCs per well  
(n = 8) were plated for reliable determination of basal OCR and GR responses. For 
monocytes used for total protein analysis, monocytes from donor X, Y and Z were 
plated at 150 – 300,000 cells per well (n = 8) and for monocytes used for PIXI 
analysis, monocytes from donor D, E and F were plated at 75 – 225,000 cells per 
well (n = 8). After seeding, cell plate was centrifugated for 1.5 minutes at 200g at 
RT with acceleration one and zero braking. Afterwards, an additional volume of XF 
assay medium (130 μL) was added to the cells and cells were incubated for 30 
minutes at 37°C without CO2. XF measurements included serial injections of FCCP 
(1.25 μM), antimycin A (2.5 μM) plus rotenone (1.25 μM), and monensin (20 μM) plus 
Hoechst (4 μM) or XF assay medium plus Hoechst (4 μM). The XF assay protocol 
consisted of twelve measurement cycles in total of which each cycle included 5 
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minutes of which 2 minutes mixing, 0 minutes waiting, 3 minutes measuring. In 
real-time activation XF assays, an additional injection of Con A (25 μg/mL, for 
real-time activated PBMCs) or XF assay medium (for quiescent PBMCs) followed 
by six measurement cycles (30 minutes activation) prior to the injection of FCCP 
and the final injection consisting of XF assay medium plus Hoechst (4 μM) was 
substituted by 2-DG (50 mM) plus Hoechst (4 μM). After the XF assay, medium was 
discarded via gentle pipetting and cells were washed with HBSS (1X) without 
magnesium and calcium followed by cell lysis in Triton X-100 (0.1%) in Tris-HCl pH 
7.5 (50 mM). Samples were stored at -20°C for later protein level determination. 

High contrast brightfield imaging 
High contrast brightfield images of the inner-probe area from each well of the 
XF96 cell plate were obtained prior to the XF assay run using the Cytation 1 Cell 
Imaging Multi-Mode Reader (BioTek, Winooski, Vermont, USA) set at 37°C using a 
4x objective. For one experiment (Figure 1C), post-XF assay brightfield images 
were also obtained. LED intensity (5) and integration time (70 ms) were kept 
constant between donors and study subjects; focal height was adjusted per plate 
to obtain the suitable focus for proper image analysis (as represented at the top of 
Figure 2B). Image quality was checked based on visual inspection of the pictures.

Brightfield image analysis in R
Original brightfield images were processed and quantified using an in-house 
generated R script that used the EBImage package available in Bioconductor (38) 
and included four steps. First a Gaussian blur low-pass filter was applied to 
generate a background image, followed by subtraction of the background image 
from the original image. Thereafter the background corrected image was inverted 
and as a final step 5% of the inverted image was cropped to remove potential 
boundary noise from the XF assay plate nodges. This in-house generated R script 
is available from the corresponding author upon request. The final processed 
images were used to calculate the total pixel intensity. 

Cellular protein level determination 
Protein content in each well was determined using the DC Protein Assay kit 
(5000111, Bio-Rad, Hercules, California, USA) according to the manufacturer’s 
protocol for M0, M1 and M2 RAW 264.7 macrophages (n = 8) and PBMCs from 
three independent donors (A, B and C, n = 14 – 16). Absorbance was measured 
using a BioTek Synergy HT plate reader and a standard curve of BSA (0.2%) in 
Triton X-100 (0.1%) in Tris-HCl pH 7.5 (50 mM) or NaOH (0.1M, Merck Millipore, 
Burlington, Massachusetts, United States, 106462).
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Hoechst staining and high-content fluorescent imaging 
Hoechst (4 μM final concentration) was added as a final 10x injection in the XF 
assay to stain PBMC nuclei. Fluorescent images of the inner-probe area from each 
well of the XF96 cell plate were obtained immediately after the XF assay run using 
the Cytation 1 imaging reader (BioTek, Winooski, Vermont, USA) set at 37°C, using 
a 4x objective and a 365 nm LED in combination with an EX337 EM447 filter cube

Statistical analysis
Data are presented as mean ± standard deviation (SD), unless indicated otherwise. 
Statistical analyses were performed using GraphPad Prism v.8 (GraphPad 
Software, CA, USA). Regression analyses using polynomial fits were used to 
transform total pixel intensity values into cell numbers and to compare correlations 
between variables. Normality was tested using Shapiro-Wilk normality tests, and 
Brown-Forsythe tests were used to test for equal variances. Mean OCR and GR 
levels between donors were compared one-way ANOVA analysis with Tukey 
post-hoc testing for multiple comparisons. Raw and normalized means were 
compared using a two-sided paired Student’s t-test. All statistical tests assumed 
normality and equal variances. P-values < 0.05 were considered as statistically 
significant. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. 

Results

PBMC post-XF assay normalization using total protein analysis or 
fluorescent nuclear staining introduces high well to well variation
Since variation in plating efficiency could introduce bias in analyzing XF assay 
results, we tested whether total protein analysis would be suitable for normalizing 
PBMC XF assay results. For this, we plated human-derived PBMCs on Cell-Tak 
coated assay plates, to have the PBMC stick to the bottom of the well. For 
comparison, we used adherent RAW 264.7 macrophages (M0) and stimulated 
them towards LPS/IFNγ-induced (M1) and IL4-induced (M2) states, and we used 
human-derived monocytes that were plated on Cell-Tak coated assay plates, but 
have the intrinsic property of attaching to wells better than PBMCs (39). The mean 
coefficient of variation (CV) of total protein concentration for RAW264.7 cells was 
10.3 ± 3.2%, 7.8 ± 2.9% and 9.5 ± 3.1% for M0, M1 and M2 RAW 264.7 macrophages, 
respectively (Figure 1A). For monocytes, mean CV of post-XF assay total protein 
concentration were 5.18 ± 1.96%, 4.88 ± 2.27% and 3.22 ± 1.16% for donor X, Y and 
Z, respectively (Figure 1B). On the other hand, mean CV total protein concentration 
in wells for PBMC analysis was 46.8 ± 18.0%, 35.4 ± 19.5% and 46.1 ± 29.3% for 
PBMCs independently obtained from three different donors, A, B and C, 
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respectively (Figure 1C). The relatively high CV for PBMCs as compared to RAW 
264.7 macrophages and monocytes indicated that determination of total protein 
levels introduced higher variation between wells for PBMC XF assays than for XF 
assays with adherent RAW264.7 macrophages and monocytes, likely due to a 
higher loss of PBMCs compared to RAW 264.7 macrophages and monocytes after 
removal of XF assay medium and washing of the cells.

To determine cell number in XF assay plates for PBMC XF analysis, we next used 
a method in which cells are quantified using Hoechst stained nuclei (36,37). 
Although clear nuclear staining signals were observed, overlay of fluorescence 
images with brightfield images showed that not all PBMCs were stained with (inset 
Figure 1D). Especially, when XF assays were performed with injections of the Na+/
K+-ATPase activator monensin, which maximizes glycolytic rate, we only observed 
partial staining of wells (Figure 1D) and nuclei were clearly less stained than 
without monensin injection (inset Figure 1D and Supplementary Figure S1), 
possibly indicating that monensin limits the accumulation of Hoechst in PBMCs.

Seahorse XF assay experimental set-ups allow additions of multiple acute immuno- 
logical or chemical stimuli sequentially or in parallel. The use of immunological 
stimuli that alter metabolic and immunological cell states can also lead to changes 
in morphological characteristics of PBMCs, which could hamper post-XF assay 
image analysis of Hoechst-stained cells. Therefore, we compared the response of 
naïve PBMCs that remain in their quiescent, steady state during the time course of 
the XF assay with the response of PBMCs that were in situ activated with 25 μg/mL  
Con A, a mitogenic lectin that induces T-lymphocyte activation and proliferation 
(12,40) in the presence of monocytes (41). Whereas cell morphology and localization 
of quiescent PBMCs remain unaffected during the time course of the XF assay 
(inset Figure 1E and Supplementary Figure S1), real-time activation of T-lymphocyte 
subsets within the PBMC pool resulted in blast transformation of T-lymphocytes 
and migration of the cells within the monolayer on the XF cell plate (inset Figure 1E  
and Supplementary Figure S1), which impeded counting of separate Hoechst 
stained nuclei (Supplementary Figure S1) compared to quiescent PBMCs 
(Supplementary Figure S1). This effect was even more pronounced after monensin 
injection (Supplementary Figure S1) which was similar to our observations with 
quiescent PBMCs (Figure 1D and Supplementary Figure S1). Thus, in our hands, 
Hoechst staining to normalize XF assay data to cell number was not applicable, 
especially in assays where we stimulated PBMCs with immunological, metabolic 
or chemical stimuli. 
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Figure 1: Normalization strategies that rely on post-XF assay measurements introduce 
high variation when using PBMCs. (A) Coefficients of variation (CV in %) in post-XF assay 
total protein levels of adherent RAW 264.7 macrophages in an unpolarized (M0), LPS/IFNγ 
induced (M1 polarized) and IL4 induced (M2 polarized) state (50 x 103 cells / well / n = 8), 
determined for each XF assay condition (  ) and represented as median + range (  ); means are 
represented as χ-bar. (B) CV’s in post-XF assay protein levels of adherent monocytes (150 
- 300 x 103 cells / well, n = 8) from three donors, calculated for each seeding density (  ) and 
represented as median + range (  ); means are represented as χ-bar. (C) CV’s in post-XF 
assay protein levels of non-adherent PBMCs (50 - 300 x 103 cells / well, n = 14 - 16) from 
three independent donors, calculated for each seeding density (  ) and represented as 
median + range (  ); means are represented as χ-bar. (D) The effect of XF assay injection 
strategies on post-XF assay fluorescent imaging. Brightfield images were obtained after 
the XF assay in naive PBMCs injected with Hoechst (4 μM) plus 2-deoxyglucose (50 mM, 
top, no monensin) or Hoechst (4 μM) plus monensin (20 μM, bottom) (225 x 103 cells / well, 
n = 16). Representative images of the middle of the wells is shown (4x objective). (E) The 
effect of in situ PBMC activation during the XF assay run on post-XF assay cell morphology. 
Brightfield images were taken prior to the XF assay (left) and after the XF assay (right) in 
naive, unstimulated PBMCs (top) and in PBMCs that were in situ stimulated with Con A for 
90 minutes during the XF assay run (bottom) (225 x 103 cells / well, n = 16). Representative 
images of the middle of the wells are shown (4x objective). 
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Development of a pre-XF assay brightfield imaging tool 
Since post-XF assay total protein analysis and nuclear Hoechst staining was found 
unsuitable for PBMC XF assay normalization, we set-out to validate a new method 
for normalizing PBMC XF assay data based on brightfield image analysis prior to 
the XF assay (Figure 2A). To build this brightfield image analysis tool, PBMCs were 
plated onto coated XF cell plates in seeding densities ranging from 50,000 to 
300,000 cells per well (Figure 2B, top). This range was chosen to achieve a stepwise 
increase in plated cell number until the cell monolayer covered the entire well. 
Brightfield images of the inner-probe area from each well were taken using the 
Cytation 1 imaging reader and processed and quantified using an in-house 
generated R script (Figure 2B, bottom). The combined brightfield imaging procedure 
and image analysis was called ‘R-integrated pixel intensity (PIXI) analysis’, with 
total pixel intensity as normalization parameter. To examine if the size of the 
original brightfield image had an effect on the relationship between the number of 
plated cells and total pixel intensity, each border of the processed image was 
cropped with percentages ranging from 5 to 25% (Figure 2C). Total pixel intensity 
was significantly correlated to the number of plated cells for all cropping 
percentages (Pearson R2 = 0.97 – 0.98, P < 0.001, Figure 2D), showing a strong 
linear relationship and indicating that cropping did not alter the relative differences 
in total pixel intensity between the seeding densities. To rule out possible imaging 
artefacts that could be introduced with imprecise positioning of the wells under 
the microscope (Supplementary Figure S2), we used 5% border cropping of all 
images in further experiments. Next, we assessed cell subset contributions to the 
overall brightfield image in each well, based on the analysis of cell diameter using 
automated analysis in the Cytation 1 Cell Analysis software. Different cell 
populations were clearly distinguishable and were accurately quantified. The 
distribution of cell subsets in images of different cell densities were not uniform 
and appeared not to be linear with plated cell density (Supplementary Figure S3). 
At higher cell plating densities, the contribution of the smallest cell types, like the 
platelets, becomes much smaller than at lower cell plating densities, indicating 
that XF analysis at high cell densities might not be representative for the whole 
PBMC population and thus plating density should be carefully considered when 
performing PBMC XF assay experiments. 

PIXI analysis from brightfield images as a reproducible image
analysis tool 
To investigate whether the linear relationship between total pixel intensity, and  
the number of plated PBMCs isolated from buffy coats was reproducible across 
multiple, independently measured PBMC donors, brightfield images from three 
different donors were analyzed. Significant correlations between total pixel intensity 
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Figure 2: R-integrated pixel intensity (PIXI) analysis from brightfield images integrated in 
the PBMC XF assay workflow. (A) Method workflow for PBMC XF assay data normalization 
using brightfield image analysis. (B) Original pre-XF assay brightfield images (top, 4x 
objective) were processed using an in-house generated R script, generating images in 
which the total pixel intensity was quantified (bottom). A magnification from the middle of 
the brightfield image is shown for each seeding density (n = 14 - 16), for one donor. (C) Effect 
of 0%, 10% and 25% image border cropping on the size of the processed image at a seeding 
density of 200,000 cells/well. Images have the same scale bar. (D) Effect of border cropping 
percentage (0 - 25%) on the curve fit of plated cells vs. total pixel intensity values.

A

B
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and the number of plated cells were found for donor A, B and C, respectively 
(Pearson R2 = 0.98, 0.99 and 0.98, P < 0.001, Figure 3A). Although many studies 
use PBMCs for their immunometabolic assays, individual PBMC subpopulations, 
such as monocytes (42,43) or T-lymphocytes (44,45), are often separated from the 
total PBMC pool for specific downstream immunological or metabolic assays. 
Therefore, monocytes were isolated from the total PBMC pools of three buffy coat 
donors and plated onto Cell-Tak coated assay plates in seeding densities ranging 
from 75,000 to 225,000 cells per well, followed by brightfield imaging and PIXI 
analysis (Supplementary Figure S4A). Significant correlations between total pixel 
intensity and the number of plated monocytes were found for donor D, E and F, 
respectively (Pearson R2 = 0.99 (P < 0.01, 0.97 (P < 0.05) and 0.98 (p < 0.01), 
Supplementary Figure S4B), showing the potency of PIXI analysis in more specific 
fields of PBMC research.

The calibration curve between PBMC cell number and total pixel intensity was 
used to transform total pixel intensity to the corresponding cell number for each 
individual well using second-order polynomial regression analyses, referred to as 
‘PIXI analyzed cells’. Next, we compared the mean CVs of replicate wells of 
identical conditions, with the mean CVs of the cell counting results of the different 
donors. To determine the technical variation of the PIXI analysis tool, mean CVs 
were calculated and compared to the mean CVs obtained with cell counts of the 
total PBMC pool as an alternative and widely used pre-XF assay normalization 
parameter. Mean CVs in total pixel intensity between wells were 7.1 ± 4.1%, 7.1 ± 
4.5% and 8.3 ± 5.2% for donor A, B and C, respectively, whereas the CV in cell 
counts were 13.0%, 10.2% and 12.4% for (Figure 3B). Since the cell plating and 
processing steps subsequently to cell counting also introduce variation, and 
brightfield images are obtained without additional steps before the XF assay, PIXI 
analysis outperforms cell counts, even though mean CV differences between PIXI 
analysis and cell counts were small. From these experiments we concluded that 
PIXI analysis from brightfield images can be used as a reproducible image analysis 
tool to quantify PBMCs with low levels of technical variation. 

Response of XF assay parameters to increasing cell density is preserved 
after PIXI analysis
To determine the effect of brightfield image normalization on XF assay parameters, 
initial OCR, basal OCR, FCCP-uncoupled OCR, basal glycolytic rate (GR) and 
monensin-induced GR were plotted against the number of plated cells or the 
number of PIXI analyzed cells. We used GR instead of ECAR, because GR estimates 
glycolysis more accurately compared to ECAR due to correction for the contribution 
of mitochondrial-derived CO2 production to acidification of the XF assay medium 
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(46). Initial OCR (Pearson R2 = 0.96, 0.97 and 0.98, P < 0.0001), basal OCR (Pearson 
R2 = 0.92, 0.92 and 0.97, P < 0.0001), FCCP-uncoupled OCR (Pearson R2 = 0.95, 
0.95 and 0.98, P < 0.0001), basal GR (Pearson R2 = 0.51, 0.79 and 0.67, P < 0.0001) 
and monensin-induced GR (Pearson R2 = 0.77, 0.87 and 0.86, P < 0.0001) all 
showed significant positive correlations with the number of plated cells for donor 
A, B and C, respectively (Figure 4A – E). Transforming the number of plated cells 
into the number of PIXI analyzed cells resulted in similar, significant positive 
correlations for initial OCR (Pearson R2 = 0.96, 0.96 and 0.97, P < 0.0001), basal 
OCR (Pearson R2 = 0.94, 0.93 and 0.96, P < 0.0001), FCCP-uncoupled OCR 
(Pearson R2 = 0.96 for all donors, P < 0.0001), basal GR (Pearson R2 = 0.52, 0.79 
and 0.64, P < 0.0001) and monensin-induced GR (Pearson R2 = 0.72, 0.87 and 
0.85, P < 0.0001 for donor A, B and C, respectively (Figure 4F – J). To study if 
transformation to the number of PIXI analyzed cells altered the mean differences 
in XF assay parameters between donors, mean OCR and GR levels at 200,000 
plated cells per well (plated cell values) were compared to mean OCR and GR 
levels at 200,000 PIXI analyzed cells per well (PIXI analyzed cell values). PIXI 
analysis resulted in the same or similar levels of significance between donor A, B 
and C for all measured XF assay parameters, without or with small changes in the 
corresponding p-values (Figure 4K – O). Based on these findings, we concluded 
that PIXI analysis did not interfere with biological XF assay responses, since 
transforming the number of plated cells into the number of PIXI analyzed cells 
preserved similar correlations with XF assay parameters. 

Figure 3: R-integrated pixel intensity (PIXI) analysis from brightfield images as a reproducible 
image analysis tool. (A) Curve fit of the number of plated cells (50 - 300 x 103 cells / well, 
n = 14 - 16) vs. total brightfield pixel intensity values, indicated by Pearson correlation 
coefficients (R2). Data is represented as mean ± SD. Calibration curves were used to 
transform total pixel intensity values back into cell numbers using second-order polynomial 
regression analyses. (B) Coefficients of variation (CV in %) within each donor for the cell counts  
of the total PBMC pool before seeding (n = 8, represented as mean) and the brightfield 
image PIXI analysis (represented as median ± range; means are visualized by χ-bar).
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Figure 4: PIXI analysis preserves the correlations between the number of plated cells and 
XF assay parameters. (A – J) Comparison of the linear relationship between initial OCR, 
basal OCR, FCCP-uncoupled OCR, basal GR or monensin-induced GR and number of 
plated cells (A – E) or number of PIXI analyzed cells (F – J) (50 - 300 x 103 cells / well, n = 14 
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Brightfield image analysis is a robust normalization technique
for PBMCs 
To validate if brightfield image analysis is a robust method for XF assay data 
normalization, we studied the effect of PIXI analysis normalization on the accuracy 
and precision of XF assay parameter determination. The accuracy of brightfield 
image analysis was tested by assessing if individual observations, i.e. technical 
replicate values, were closer to the overall group mean after transforming the 
number of plated cells to the number of PIXI analyzed cells, using standard scores. 
Standard scores that come closer to zero indicate that individual observations are 
better predictors of the overall mean and therefore correspond to a higher level of 
accuracy. Normalization to the number of PIXI analyzed cells decreased the 
average standard score of initial OCR (from 0.694 to 0.663), basal OCR (from 
0.684 to 0.654) and basal GR (from 0.675 to 0.668) (Figure 5A and Table 1), 
indicating that PIXI analysis improved the accuracy of mean XF assay parameter 
estimation between technical replicates. To test the precision of brightfield image 
analysis, the effect of PIXI analysis on the distribution of standard scores was 
calculated via calculation of standard score interquartile ranges (IQR). If IQRs are 
smaller, individual standard scores deviate less from the mean standard scores, 
and therefore correspond to a higher level of precision. Normalization to the 
number of PIXI analyzed cells lowered the average IQR of initial OCR (from 1.520 
to 1.332), basal OCR (from 1.435 to 1.297) and basal GR (from 1.499 to 1.382) (Figure 5B 
and Table 1) which indicated that PIXI analysis resulted in higher levels of precision 
when estimating mean XF assay parameters between technical replicates. Overall, 
these results indicated that PIXI analysis resulted in accurate and precise estimation of 
XF assay parameters, and can therefore be considered as a robust normalization 
technique.

Integration of brightfield image analysis in the Seahorse XF assay 
workflow in clinical studies reduced the between donor variation 
Clinical studies that investigate PBMC metabolism in individuals usually perform 
multiple Seahorse XF assays across several weeks or months, since the necessary 
sample size is often larger than the amount of PBMC donors that can reliably be 
measured within one XF assay. To assess if brightfield image analysis can reduce 

- 16). Means at each seeding density (A - D) are represented by a dash (–). (K – O) Comparison  
of mean OCR and GR levels between donor A, B and C at 200,000 plated cells (left) or at 
200,000 PIXI analyzed cells (right) per well (n = 16). Data is represented as mean ± range. 
Means are represented by a plus sign (+).*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001, 
ns = not significant.
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the variation between distinct PBMC donors analyzed on different days, we 
integrated PIXI analysis in the XF analysis of freshly isolated PBMCs from sixteen 
healthy lean individuals (females, 18 – 25 years of age, BMI 18.5 – 25 kg/m2). 
Importantly, for each donor we used a calibration curve on the same plate and 
was assayed for XF analysis as well as image analysis. Since the outcome for each 
donor is biased by both biological and technical variation, we aimed to reduce 
technical variation with our PIXI analysis, which can be reflected by a reduction in 
the coefficient of variation of the group mean. The CV of basal OCR and basal GR 

Figure 5: The effects of PIXI analysis normalization on the standard scores and standard 
score interquartile ranges. Mean standard scores and standard score interquartile ranges 
(IQR) of all technical replicates within each cell density (50 - 300 x 103 cells / well, n = 14 - 16) 
were averaged and used to create an overall average standard score and standard score 
IQR for each XF assay parameter (N = 18) as a measure of accuracy (standard score) and 
precision (IQR). (A, B) Effects of brightfield image PIXI analysis normalization on the average 
standard score (A) or standard score IQR (B) in initial OCR, basal OCR and basal GR (not 
significant).

Table 1  �Summary of the changes in average standard score and average IQR 
(represented as χ-bar) after brightfield image PIXI analysis normalization.

Initial OCR Basal OCR Basal GR

Standard 
score ( )

IQR ( ) Standard 
score ( )

IQR ( ) Standard 
score ( )

IQR ( )

Before normalization 0.694 1.520 0.684 1.435 0.675 1.499

After PIXI normalization 0.663 1.322 0.654 1.297 0.668 1.382

Effect of normalization -0.030 -0.199 -0.030 -0.138 -0.007 -0.116
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decreased from 17.7% to 14.0% and 18.8 to 18.7%, respectively, when PIXI analysis 
was applied instead of standard analysis, i.e. normalization to the counted number 
of plated PBMCs (Table 2), indicating that PIXI analysis contributed to a reduction 
of the between donor variation in basal OCR. Basal GR variation between donors 
reduced only to a limited extent. To provide insight in the effect of PIXI analysis 
normalization on individual PBMC donors, it was assessed how PIXI analysis 
contributed to the relative improvement in the estimation of group mean basal 
OCR and basal GR. Individual basal OCR values moved closer to the group mean 
by PIXI analysis, compared to cell counting, in 9 out of 16 individuals with more 
than 5%, with an average improvement of 10.9% (Figure 6A). Individual basal OCR 
values from the remaining 7 individuals did not move closer to the group mean, 
although the average decrease was only 4.1%, with only 2 individuals showing a 
worsening of more than 5% (Figure 6A). This demonstrated that PIXI analysis 
overall contributed to a more precise estimation of the group basal OCR. Estimation 
of basal GR improved similarly, as 10 out of 16 individuals moved closer to the 
group mean, with an average improvement of 8.2% and 8 out of 10 individuals 
improving more than 5%, while the average percentage by which basal GR moved 
away from the group mean again was smaller (6.1%) and seen in a smaller number 
of individuals (6 out of 16, with 4 worsening more than 5%) (Figure 6B). This showed 
that PIXI analysis estimated the group mean basal GR more precisely. Based on 
these results, we concluded that integration of PIXI analysis in the Seahorse XF 
assay workflow decreased the variation between donors, and overall contributed 
to a more precise estimation of the group mean XF assay that is calculated from 
multiple XF assays with distinct PBMC donors.

Figure 6: Effects of PIXI analysis on the variation between PBMC donors. (A, B) The 
percentage by which individual donor basal OCR (A) and basal GR (B) levels moved closer 
to the group mean after PIXI analysis.
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Discussion

The aim of this study was to optimize and validate a Seahorse XF assay workflow 
for human PBMCs based on brightfield imaging. This is the first study that describes 
the application of brightfield image analysis to obtain a normalization parameter 
that ensures more accurate, precise and consistent XF assay data interpretation. 
We developed a combined brightfield imaging and image analysis procedure called 
PIXI analysis that was integrated in the Seahorse XF assay workflow. The inclusion 
of a unique calibration curve for each donor creates a solid link between the 
normalization parameter and number of PBMCs per well. Brightfield image analysis 
showed relatively low technical variation compared to commonly used normalization 
methods and reduced the between donor variation when measuring different 
PBMC donors, highlighting the relevance of this novel normalization strategy. 

Applying the PIXI method for analyzing PBMC metabolism in a young healthy 
human population, lowered the technical variation in OCR, allowing for better 
estimation of differences in PBMC OCR responses between populations. Another 
advantage of our brightfield image analysis method is that our procedure does not 
involve additional plate and cell handling steps after the XF assay, which can 
damage or influence the attached cell monolayer. Moreover, in-line injection of 
typical XF assay chemicals, like FCCP and monensin, can induce morphological 
changes or even cell detachment in some cell types or metabolic conditions, 
which will hamper normalization techniques based on post-XF assay protein, DNA 
or nuclei analysis. Another advantage is that pre-XF assay brightfield image 

Table 2  Effects of PIXI analysis on the variation between PBMC donors.

Basal OCR Basal GR 

mean ± SD 
(pmol/min)

CV (%) mean ± SD 
(mpH/min)

CV (%)

Standard analysis 28.96 ± 5.11 17.7 6.38 ± 1.20 18.8

PIXI analysis 26.69 ± 3.74 14.0 5.94 ± 1.11 18.7

Effect of PIXI analysis -2.27 ± -1.37 -3.7 -0.44 ± -0.09 -0.1

PBMCs were isolated from sixteen healthy lean individuals (18 – 25 years of age, BMI 18.5 – 25 kg/m2) 
and plated at 75 - 300 x 103 cells / well (n = 3 - 4) to generate a calibration curve that was used to 
transform total pixel intensity values into PIXI analyzed cell numbers. XF assay measurements were 
performed at 225 x 103 cells / well (n = 8) and basal OCR and basal GR levels were normalized against 
the number of plated cells (standard analysis) or PIXI analyzed cells (PIXI analysis). Here a summary of 
the changes in group mean, SD and CV for basal OCR and basal GR after standard analysis or PIXI 
analysis is represented.
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analysis allows for proper quality control and inspection of plated cells, because 
all 96 wells are captured and stored in a database. Since brightfield images were 
obtained during the necessary 30 – 60 minutes degassing step with XF assay 
medium at 37°C before start of the XF assay, this procedure is directly incorporated 
within the existing XF assay workflow. Since brightfield image PIXI analysis in 
isolated monocytes generated similar results as obtained in PBMCs, the PIXI 
method can be integrated in XF assays with isolated PBMC subsets, increasing 
the relevance and applicability of PIXI analysis in studies using other immune cell 
types than PBMCs. 

We observed that brightfield image analysis to quantify PBMC number showed 
lower technical variation than post-XF assay total protein analysis or Hoechst 
nuclear staining. Brightfield image analysis did not involve any additional post-XF 
assay sample preparation, which is necessary for total protein content normalization 
(19,22,25) and demonstrated high levels of variation in our assays with non-adherent 
PBMCs compared to adherent RAW 264.7 cells or monocytes. Furthermore, 
brightfield image analysis does not require the nuclear stain Hoechst 33342 
(36,37), which is especially advantageous when XF assay injections limit effective 
nuclear staining by Hoechst, as was observed for monensin. This ionophore 
increases cellular ATP demand by activating Na+/K+-ATPases (47) and boosts 
glycolytic ATP production when mitochondrial respiration is fully inhibited (48). 
Limited nuclear staining in the presence of monensin can potentially be attributed 
to monensin-induced upregulation of P-glycoprotein expression and function (49), 
which in turn could promote cellular exclusion of Hoechst (50–52). Brightfield 
image analysis is therefore especially suitable in XF assays that affect substrates 
for multidrug transport proteins acting on fluorescent dyes. In addition, brightfield 
imaging analysis could be relevant for studies aiming at metabolic characterization  
of multi-drug resistant cells using XF assays, as these cell types have often high 
expression of multidrug transport proteins such as P-glycoprotein (53,54).

Brightfield image analysis contributed to better standardization of the Seahorse 
XF assay workflow for human PBMCs, which is of crucial importance due to the 
highly dynamic nature of metabolic PBMC responses. A standardized XF assay 
protocol ensures reliable and comparable results across different PBMC donors, 
which increases the applicability of human PBMCs in experimental studies. Over 
the past decade, several clinical studies tested the applicability of metabolic 
PBMC responses as a marker in the context of multiple disease pathologies such 
as diabetes (19,20,34,55,56), cardiovascular disease (35,57), obesity (21), inherited 
metabolic diseases (22,58), neurodegenerative diseases (23,59), autoimmune 
disease (24) and schizophrenia (60), as well as in the context of altered physiological 
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conditions such as pregnancy (25) or responses to changed micronutrient status 
(33). Future use of brightfield image analysis in such studies will standardize the 
XF assay workflow and improve data interpretation and comparison across studies 
This further advances the use of PBMCs as a marker tissue or liquid biopsy, which 
is especially relevant because PBMCs can be sampled with relative ease and is 
less invasive as compared to taking biopsies from other tissues. Next to the 
application of PBMCs in cross-sectional study designs, a standardized and 
validated XF assay protocol for PBMCs will likely motivate future studies to 
consider the use of PBMCs to investigate the effect of drug therapies, nutritional 
interventions, or physiological diversities.

Whereas OCR from all three donors were linearly correlated with cell number, GR 
correlated to a lesser extent with cell number, especially at higher cell densities. 
Since OCR, GR and cell number are analyzed in the same well, it seems that 
cellular GR is relatively inhibited at higher cell densities. Possibly this can be 
explained by a reduced glucose absorption or increased reabsorption of 
extracellular lactate when the XF assay medium is increasingly being acidified at 
higher cell densities. Indeed, adding excessive lactate to monocyte cultures 
repressed glycolysis (43,61), indicating that accumulation of lactate because of 
high cell density might lower GR which could explain why we did not observe a 
linear relationship between GR and cell number. Furthermore, although mean 
OCR levels were similar between donor A, B and C, mean GR levels were markedly 
different. A similar difference in GR between donors was observed in a study with 
PBMC subsets that found that PBMC derived monocytes and lymphocytes showed 
similar OCR but distinct extracellular acidification levels (62). Furthermore, XF 
analyses with freshly isolated lymphocytes has shown that in vivo activation of T- 
and B-lymphocytes also upregulates their glycolytic machinery (63,64), which 
suggests that glycolytic metabolism is sensitive to in vivo physiological alterations. 
Therefore, our observed OCR and GR responses might be a consequence of 
distinct lymphocyte to monocyte ratios within the total PBMC pool, or differences 
in physiological conditions between donors. 

Previous studies have also focused on optimization of the XF assay workflow for 
human PBMCs (25,55,62,65) and have identified multiple factors that influence  
XF assay measurements and data interpretation. For example, in an attempt to 
minimize technical variation and donor heterogeneity in larger cohort studies, the 
effect of PBMC cryopreservation on XF assay results has been studied (25,55,65). 
Although mixed results have been reported, cryopreserved and resuscitated 
PBMCs demonstrated generally lower mitochondrial function (25,65), and higher 
(65) or similar (25) glycolysis compared to freshly isolated PBMCs, indicating that 
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analysis of freshly isolated PBMCs is preferred. To commit to analyzing PBMCs 
freshly, available sample volume can become a limiting factor, especially when 
PBMC subsets are isolated. We showed that using our method, we were able to 
get accurate readings above a limit of 20 pmol/min OCR using 150,000 PBMCs 
per well, which is 2 to 4-fold lower than the frequently used seeding densities that 
range from 300,00 to 700,000 PBMCs per well (19–21,33,55). Furthermore, basal 
OCR and GR were still linear with cell number at this seeding density. Therefore, 
the use of brightfield image analysis allows researchers to obtain reliable XF assay 
measurements with smaller sampled blood volumes, which contributes to the 
refinement of human studies. Another aspect that we optimized in XF assays with 
PBMCs is the correction for the between donor variation and day-to-day variation. 
In order to account for these variations, we now performed PBMC calibration 
curves on all assay plates that we ran, making internal calibration possible for 
imaging and XF assays. Although some studies used baselining as standardization 
method to lower the between donor variation for Seahorse analysis (55), this is 
likely not a preferred method, because valuable data will be lost and only relative 
comparisons can be performed essentially within one experiment, making data 
sharing and reproducibility more difficult to achieve. Of note, our study population 
was a relatively homogenous population consisting of healthy young females. 
Thus, we analyzed PBMC metabolism in a condition where we expected relatively 
low level of variation to ensure validity of our findings.

Nevertheless, our study also entails some limitations. Firstly, PIXI analysis does 
not account for the heterogeneity of PBMCs, which can possibly influence the 
interpretation of XF assay results. PBMC subset frequencies can vary across 
individuals, but PBMCs typically consist of 70 – 85% T-lymphocytes, 5 – 10% 
B-lymphocytes, 5 – 20% natural killer cells, 10 – 20% monocytes and 1 – 2% 
dendritic cells (66,67), which are not only immunologically, but also metabolically 
distinct (62,68), especially upon immune cell activation (2,68–71). Therefore, 
pathological conditions that drive an increase in pro- or anti-inflammatory PBMC 
subsets will likely cause a shift in the overall bioenergetic PBMC response as well. 
For example, increased numbers of T-helper 17 (Th17) lymphocytes and decreased 
numbers of regulatory T (Treg) lymphocytes were found in type 2 diabetic patients, 
who showed insulin resistance and chronic low-grade inflammation (72). Whereas 
the anti-inflammatory properties of Treg lymphocytes drive fatty acid oxidation 
and thus oxidative metabolism (69), Th17 lymphocytes strongly upregulate their 
glycolytic machinery upon activation to boost their pro-inflammatory response 
(73). Together with an increased expression of pro-inflammatory markers in 
monocytes (74) and enhancement of the pro-inflammatory function of Th17 cells by 
B-lymphocytes (75), the overall PBMC profile of type 2 diabetic patients has a 
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pro-inflammatory phenotype compared to healthy controls, which should be taken 
into account in the biological interpretation of XF assay results from patient cohorts. 
Importantly, PBMC subset variation does not affect pre-XF assay brightfield image 
acquisition and PIXI analysis, and thus our proposed method is suitable for XF assay 
normalization in samples from patients with metabolic disease. To get additional 
insight into the biological interpretation of XF assay data in PBMCs, especially in 
pathophysiological conditions, it is needed to combine PIXI analysis with additional 
flow cytometry experiments for characterization of the PBMC pool. A second 
limitation of our study was that we did not evaluate possible (dietary) confounding 
factors that could influence metabolic profiles of individuals. For example, vitamin 
D status has been shown to influence PBMC metabolism (33,76) and vitamin D 
status could have thus acted as a potential confounding factor in our study 
population. Calton et al. showed that PBMCs from adults with low vitamin D status 
displayed higher oxidative and glycolytic metabolism as well as increased 
systemic inflammation markers, which both decreased when vitamin D status 
improved (33,76). Since all our study subjects have been measured in late autumn 
and winter season, at least seasonal variation in vitamin D status, as indicated by 
Calton et al. (33), is likely not contributing to the observed heterogeneity in our 
study population. It would be interesting to assess vitamin D status and the 
influence of other (marginal) vitamin deficiencies on PBMC metabolism in follow up 
studies. Since effects of (marginal) vitamin deficiencies on PBMC metabolism are 
likely small, using PIXI analysis will likely improve the data quality and will allow for 
lower sample sizes.

In conclusion, we optimized, validated and standardized the Seahorse XF assay 
workflow for human PBMCs by using a combined brightfield imaging and analysis 
approach called ‘R-integrated pixel intensity (PIXI) analysis’. We demonstrated that 
brightfield image analysis is a robust, sensitive and practical normalization method 
to reliably measure, compare and extrapolate XF assay data using PBMCs, thereby 
increasing the relevance for PBMCs as marker tissue in future clinical studies  
and enabling the use of primary blood cells instead of immortalized cell lines for 
immunometabolic experiments. 
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Supplementary materials

Supplementary Figure S1: XF assay measurement conditions affect nuclear staining by 
Hoechst in PBMCs. (A – D) Brightfield images were taken prior to the XF assay run (225 x 
103 cells / well, 4x objective). XF measurements were performed in quiescent, unstimulated 
PBMCs (left panel) and in PBMCs that were in situ stimulated with Con A for 90 minutes 
during the XF assay run (right panel). (E – H) The effects of in situ PBMC activation and 
monensin injection on post-XF assay imaging. For all images a representation of the middle 
of the well is shown.
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3Supplementary Figure S2: A 5% border cropping percentage prevents imaging artefacts 
due to XF assay plate positioning. Presence of the XF assay plate nodge within the original 
brightfield image (A) contributed to the total pixel intensity in the processed image (B), 
resulting in an overestimation of the total pixel intensity of an image when using a 0% 
cropping percentage. The application of a 5% cropping percentage prevents overestimation 
and excludes XF assay plate positioning artefacts.

Supplementary Figure S3: Contribution of cell subset counts to the overall brightfield 
image. Brightfield images of PBMCs were obtained at 50 – 300 x 103 cells/well (n = 14 - 16) 
using Cytation 1 (LED intensity 7, integration time 50 ms). PBMC cell subsets were counted 
based on the analysis of cell diameter using automated analysis in the Cytation Cell Analysis 
software.
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Supplementary Figure S4: Implementation of R-integrated pixel intensity (PIXI) analysis  
in experiments with isolated primary monocytes. (A) Monocytes were isolated from PBMCs  
of using density gradient separation and plated at 75 - 225 x 103 cells / well (n = 6 - 8). Original 
brightfield images were taken prior to the XF assay run (top, 4x objective) and processed 
using the in-house generated R-script that was validated for PBMCs (bottom). A magnification 
from the middle of the brightfield image is shown for each seeding density, for one donor. 
(B) Curve fit of the number of plated cells vs. total brightfield pixel intensity values, indicated 
by Pearson correlation coefficients (R2). Data is represented as mean ± SD.
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Abstract 	

Analyzing metabolism of peripheral blood mononuclear cells (PBMCs) can possibly 
serve as a cellular metabolic read-out for lifestyle factors and lifestyle interventions. 
However, the impact of PBMC composition on PBMC metabolism is not yet clear, 
neither is the differential impact of a longer-term lifestyle factor vs. a short-term 
lifestyle intervention. We investigated the effect of aerobic fitness level and a 
recent exercise bout on PBMC metabolism in females. PBMCs from 31 young 
female adults divided into a high-fit (V̇O2peak ≥ 47 mL/kg/min, N = 15) and low-fit 
(V̇O2peak ≤ 37 mL/kg/min, N = 16) group were isolated at baseline and overnight 
after a single bout of exercise (60 minutes, 70% V̇O2peak). Oxygen consumption 
rate (OCR) and glycolytic rate (GR) were measured using extracellular flux (XF) 
assays and PBMC subsets were characterized using fluorescence-activated cell 
sorting (FACS). Basal OCR, FCCP-induced OCR, spare respiratory capacity, 
ATP-linked OCR, and proton leak were significantly higher in high-fit compared to 
low-fit females (all P < 0.01), while no significant differences in glycolytic rate (GR) 
were found (all P > 0.05). A recent exercise bout did not significantly affect GR or 
OCR parameters (all P > 0.05). The overall PBMC composition was similar between 
high-fit and low-fit females. Mitochondrial PBMC function was significantly higher 
in PBMCs from high-fit compared to low-fit females, which was unrelated to PBMC 
composition and not impacted by a recent bout of exercise. Our study reveals a 
link between PBMC metabolism and levels of aerobic fitness, increasing the 
relevance of PBMC metabolism as a marker to study the impact of lifestyle factors 
on human health.
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Introduction	

Lifestyle factors play a dominant role in health maintenance and the prevention of 
chronic diseases, such as type 2 diabetes (1), cardiovascular disease (2), and 
cancer (3). Adopting a healthy lifestyle that includes regular physical activity, a 
balanced diet, a healthy body mass index (BMI), and avoidance of smoking and 
alcohol intake, is associated with a lower chronic disease risk (4). Many biomarkers 
are available to assess the impact of lifestyle factors on chronic disease risk or 
disease progression (5), yet biomarkers that assess how lifestyle factors can 
contribute to optimizing human health have been less investigated. To this end, 
accurate, reproducible, clinically relevant and sensitive biomarkers are needed, 
especially because metabolic differences between healthy individuals are smaller 
as compared to differences observed during disease pathology. 

Immune cells are highly dynamic and reactive to acute environmental signals, 
such as infectious stimuli, but they can also respond to chronic lifestyle factors, 
such as physical activity (6), diet (7), and smoking (8). Peripheral blood mononuclear 
cells (PBMCs) are a readily accessible source of live immune cells from individuals 
and have been found to provide predictive disease markers for metabolic 
disorders, including obesity (9,10). Additionally, PBMCs have been used as 
surrogate tissue to monitor nutritional and metabolic responses (10,11). Using 
animal models, it was shown that PBMCs can display specific metabolic alterations 
in response to e.g., unbalanced diets (12) and fasting and refeeding (13). Since 
PBMCs could thus memorize or reflect metabolic alterations and can be readily 
obtained from individuals and, they are of particularly interest for studying the 
effect of lifestyle and lifestyle interventions on health outcomes in humans. 

PBMCs are white blood cells with a single round nucleus that comprise several 
immune cell classes, including T- and B-lymphocytes, natural killer (NK) cells, 
monocytes, and dendritic cells (14,15). Typically, 70 – 90% of the PBMCs are 
lymphocytes, 10 – 20% monocytes and 1 – 2% dendritic cells. Cell type frequencies 
within the lymphocyte population include 70 – 85% cluster of differentiation (CD)3+ 

T cells, 5 – 10% B cells and 5 – 20% NK cells. The CD3+ T cells are composed of 
CD4+ and CD8+ T cells, roughly in a 2:1 ratio. Different PBMC subsets do not only 
provoke different immune responses; they can also display distinct metabolic 
states (16–18). Importantly, apart from providing energy substrates and metabolic 
building blocks for immune cell proliferation and synthesis of macromolecules 
(e.g., cytokines), metabolic pathways have recently been shown to not only act as 
a consequence but also as driver of immune cell differentiation (16), which further 
increases the relevance of monitoring cellular metabolism as a biomarker for 
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health. PBMCs are sampled with relative ease, low invasiveness and high viability 
(19) and are thus highly suitable for metabolic profiling of immune cells ex vivo. A 
further advantage of PBMCs is their immediate metabolic response that is seen 
upon activation (20), which enables the assessment of metabolic flexibility on top 
of steady-state metabolic analysis and determination of metabolic capacity.

PBMC metabolism was found to be altered in several disease conditions, including 
type 2 diabetes (21), cardiovascular diseases (22), and obesity (23), and could 
possibly also be used as a cellular metabolic read-out of lifestyle factors and 
targeted lifestyle interventions for optimizing human health. To evaluate this 
potential in healthy individuals, we should better understand how longer-term 
lifestyle factors impact PBMC metabolism, and whether this is affected by a 
short-term lifestyle intervention. For example, previous studies have shown that 
PBMC metabolism responds to longer-term exercise training (24) but also to an 
acute exercise challenge (25). Since a single exercise bout often elicits a transient 
pro-inflammatory response whereas regular bouts of exercise induce an anti-in-
flammatory state (6,26), the impact of regular physical activity (long-term effect) 
and a single exercise session (short-term effect) on PBMC metabolism could differ, 
yet this has not been studied in detail. Furthermore, it is not yet clear whether the 
metabolic responses in PBMCs upon these exercise interventions are primarily 
related to alterations in cellular energy metabolism per se, or that these responses 
reflect changes in PBMC composition, since changes in PBMC subset frequencies 
have been demonstrated in response to exercise (27–29), and PBMC subsets are 
not only immunologically but also metabolically distinct (17,18). Better understanding 
of the variation in PBMC subsets and overall PBMC composition between healthy 
donors and their contribution to the overall metabolic outcomes in PBMCs is 
therefore also needed.  

We investigated in females how PBMC metabolism and PBMC composition are 
affected by high and low levels of aerobic fitness, i.e., a difference in longer-term 
physical activity, by comparing endurance-trained (high-fit) and untrained (low-fit) 
females at baseline and after a recent bout of exercise (21 hours before blood 
sampling). This study will improve our understanding of the use of PBMC 
metabolism as a biomarker to study the impact of lifestyle factors and lifestyle 
interventions on human health.
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Materials and Methods 

Ethical approval and study registration
The protocol for collection and handling of human samples was ethically approved 
by the medical ethical committee of Wageningen University and Research with 
reference number NL70136.081.19 and registered in the Dutch trial register 
(NL7891) on 2019-07-23. All procedures performed were in accordance with the 
ethical standards of the institutional and/or national research committee and with 
the 1964 Helsinki declaration. Written informed consent was obtained from all 
individual subjects included in the study. 

Study subjects
Healthy young females (18 – 28 years of age, BMI 18.5 – 25 kg/m2) were recruited 
from the local university and community population. Exclusion criteria were: 
history of cardiovascular, respiratory, hematological, or metabolic disease; use of 
prescribed chronic medication; anemia (hemoglobin concentration < 12 g/dL); 
blood donation within two months before the start of the study; smoking (> 5 
cigarettes per week); recreational drug use or over the counter drug use during 
the study; use of performance-enhancing supplements; pregnancy or lactating. 
The use of oral contraceptives was not excluded; only the use of monophasic oral 
contraceptives containing low synthetic estradiol and progesterone was allowed 
and was controlled for (N = 7 in the high-fit and N = 6 in the low-fit group).  Subjects 
were selected if they had a V̇O2peak ≥ 47 mL/kg/min (high-fit group) or ≤ 37 mL/
kg/min (low-fit group) determined using a maximal exercise test, measured using 
the validated screening protocol of Lagerwaard et al. (30,31), which minimized the 
risk for selective bias. The V̇O2peak cut-offs were based on previous findings 
from our lab in high-fit (trained) and low-fit (untrained) males (31) and previous 
studies in high-fit (trained) and low-fit (untrained) females (32–34). Sixteen high-fit 
and sixteen low-fit subjects were included. A total of 111 exercise tests were 
performed to end up with the desired sample size. One subject was excluded due 
to medication intake. For sufficient power, we focused on one sex, because PBMC 
metabolism was found to differ between males and females (35) and previous 
exercise studies have been mainly performed in males (36–38). The V̇O2peak 
data and results of skeletal muscle mitochondrial capacity of these included 
subjects has been published previously by our group (30). 

Study design
Subjects refrained from heavy physical exercise 48 hours prior to the first study 
day and from any physical exercise and alcohol consumption 24 hours prior to the 
first study day. Subjects adhered to dietary guidelines 24 hours prior to each study 
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day, which included the consumption of a standardized evening meal (73% 
carbohydrates/16% protein/11% fat, 1818 kJ) before 8:00PM and dietary guidelines 
for the consumption of breakfast, lunch, drinks, and snacks. After an overnight 
fast, blood was collected in the morning of the first study day (= baseline timepoint) 
and on the morning of the second study day, i.e., 21 hours after a single bout of 
exercise (= post-exercise timepoint). Blood samples (5 x 10 mL) were collected  
by venipuncture in vacutainers containing dipotassium (K2-) ethylenediamine
tetraacetic acid (EDTA) (K2-EDTA, BD Biosciences, Vianen, the Netherlands, 
367525) as anticoagulant and processed within 30 minutes after blood collection. 
Body fat percentage was measured according to the four-site method by 
Durnin-Womersley using the skinfold measurements of the triceps, biceps, sub 
scapula and supra iliac, measured using a skinfold calliper (Harpenden, UK). 
Subjects received breakfast and after two hours, subjects completed an 
individualized exercise protocol consisting of 60 minutes cycling on an electrically 
braked bicycle ergometer (Corival CPET, Lode, the Netherlands) at a workload 
aiming to equal 70% of their V̇O2peak. Oxygen consumption, carbon dioxide 
production, and air flow were measured using MAX-II metabolic cart (AEI 
technologies, Landivisiau, France). Exhaled air was continuously sampled from a 
mixing chamber and averaged over 15-second time windows. Oxygen consumption 
was measured in the first and last 15 minutes of the exercise test and used to 
confirm the relative oxygen consumption. If needed, small adjustments in workload 
were made to reach 70%. After the exercise protocol subjects went home and 
refrained from moderate to heavy physical activity, kept low levels of light physical 
activity, and refrained alcohol consumption until blood collection on the second 
study day. The habitual dietary intake of the study subjects was determined via a 
validated food frequency questionnaire (FFQ) that assessed dietary intake in the 
past four weeks (39). The self-reported diets of the high-fit and low-fit subjects 
were similar with no significant differences in total daily energy intake, carbohydrate 
intake, protein intake or fat intake (Supplementary Figure S1 (40)).

Chemicals
Carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP, C2920), oligomycin 
(OM, O4867, antimycin A (AA, A8674), rotenone (Rot, R8875), monensin sodium 
salt (MON, M5273), 2-deoxyglucose (2-DG, D6134), Concanavalin A (Con A, 
C2010), bovine serum albumin (BSA, A6003), sodium chloride (S9888) and Roswell 
Park Memorial Institute (RPMI) 1640 medium without phenol red and HEPES 
(11835030) were purchased from Sigma-Aldrich (St. Louis, MO, USA). Dulbecco’s 
phosphate-buffered saline (DPBS, 14190094) and Hanks’ Balanced Salt Solution 
(HBSS, 14175095) were purchased from Thermo Fisher Scientific (Pittsburgh, 
Pennsylvania, USA). XF RPMI assay medium pH 7.4 (103576-100), XF 1.0 M glucose 
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(103576-100), XF 100 mM pyruvate (103578-100) and XF 200 mM glutamine 
(103579-100) were purchased from Seahorse Biosciences, Agilent Technologies 
(Santa Clara, California, USA). 

PBMC isolation 
EDTA-collected blood (50 mL ± 1 mL, except for two samplings where we took 48 
and 45 mL blood) was diluted with DPBS (1X) without magnesium and calcium 
supplemented with sodium citrate buffer (1% v/v) as anticoagulant in a 1:1 ratio. 
Diluted blood was carefully poured into Leucosep tubes (Thermo Fisher Scientific, 
227289) that were filled with Ficoll Paque Plus (15 mL, GE Healthcare, Marlborough, 
Massachusetts, USA, 17144003), followed by density gradient centrifugation for  
10 minutes at 1000g at room temperature (RT) with acceleration five and zero 
braking. The PBMC fraction was collected using sterile Pasteur pipettes and 
centrifugated for 10 minutes at 600g at RT with brake to concentrate the PBMC 
layer and facilitate removal of residual Ficoll and plasma. Supernatant was 
discarded, and cells were three times washed using DPBS (1X, 20 mL) without 
magnesium and calcium, supplemented with sodium citrate buffer (1% v/v) and 
fetal bovine serum (FBS, 2% v/v, DPBS-1% citrate-2% FBS) and centrifugated for  
7 minutes at 250g at RT. Supernatant was discarded, and cells were resuspended  
in RPMI 1640 medium without phenol red and HEPES (30 mL, Thermo Fisher 
Scientific, 11835030), supplemented with FBS (10% v/v). Total PBMC number and 
PBMC viability was determined for each donor in a 1:10 dilution using acridine 
orange and propidium iodide staining (ViaStain, Nexcelom Bioscience, Lawrence, 
Massachusetts, USA, CS2-0106) in a Nexcelcom Cell Counter (Nexcelcom 
Bioscience) in fluorescent mode (n = 8). PBMCs were directly used for XF assay 
measurements or cryopreserved and stored in liquid nitrogen for later FACS staining 
and analysis. For cryopreservation, 6 x 106 PBMCs were washed with DPBS-1% 
citrate-2% FBS and centrifugated for 5 minutes at 400g at RT. Supernatant was 
discarded and cells were resuspended with ice-cold FBS (1 mL), followed by gentle 
droplet wise addition of ice-cold FBS-DMSO (80% / 20% v/v, 1 mL) to achieve a 
final FBS-DMSO concentration of 90% / 10% v/v), and transferred to cold cryovials  
(3 x 106 PBMCs per vial). Cryovials were inserted in a cold (4°C) isopropanol chamber, 
stored overnight at -80°C, and transferred to liquid nitrogen the next day. 

High contrast brightfield imaging and image analysis 
High contrast brightfield images were obtained prior to the XF assay run using the 
Cytation 1 Cell Imaging Multi-Mode Reader (BioTek, Winooski, Vermont, USA) 
followed by image analysis according to our previously published ‘R-integrated 
pixel intensity (PIXI) analysis’ protocol for normalization of XF assay data (41).
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XF analysis with Seahorse XFe96 analyzer 
Oxygen consumption rate (OCR) and proton efflux rate (PER) measurements were 
performed in a Seahorse extracellular flux (XF)e96 Analyzer (Seahorse Biosciences). 
225 x 103  PBMCs per well (n = 8) were plated onto Cell-Tak (Corning, New York, 
USA, 354240) coated XF96 cell plates in XF RPMI assay medium pH 7.4 (50 μL,  
XF assay medium) supplemented with XF glucose (11 mM), XF pyruvate (1 mM) and 
XF glutamine (2 mM) and left for 10 minutes at RT. Additionally, 75 – 300 x 103 
PBMCs per well (n = 3 – 4) were plated for the internal calibration curve that was 
used for normalization. Cell plate was centrifugated for 1.5 minutes at 200g at  
RT with acceleration one and zero braking. Afterwards, an additional volume of  
XF assay medium (130 μL) was added to the cells and cells were incubated for  
30 minutes at 37°C without CO2. XF measurements included two injection 
strategies (A and B) that were used in parallel. Injection strategy A included serial 
injections of FCCP (1.25 μM), AA plus Rot (AA/Rot, 2.5 μM/1.25 μM) and 2-DG  
(50 mM), injection strategy B included serial injections of OM (1.5 μM), AA/Rot  
(2.5 μM/1.25 μM) and MON (20 μM). These injection strategies were preceded  
by injection with XF assay medium (for non-activated, control PBMCs) or Con A  
(25 μg/mL, for real-time activated PBMCs). The total XF assay protocol consisted 
of eighteen measurement cycles of which each cycle included 5 minutes of which 
2 minutes mixing, 0 minutes waiting, 3 minutes measuring. The first injection  
(XF assay medium or Con A) was inserted after three measurement cycles and 
was followed by six measurement cycles without injection to allow PBMC 
activation. Each injection strategy (A with XF assay medium, A with Con A, B with 
XF assay medium, B with Con A) included 2 to 8 technical replicates per subject. 
The time window (from isolated PBMCs until the start of the Seahorse assay) was 
on average 180 ± 26 min. Glycolytic PER (glycoPER) values were calculated by 
subtracting mitochondrial PER (= OCR * 0.61) values from total PER values in order  
to correct for the contribution of mitochondrial-derived CO2 production to 
acidification of the XF assay medium (42) and reported as glycolytic rate (GR). OCR 
and GR values were normalized against the number of PIXI analyzed cells (41).

Flow cytometry staining and analysis 
PBMCs were stained with fluorochrome-conjugated antibodies against extra-
cellular markers for cell phenotyping (Table 1). Every antibody was titrated 
individually within the recommended range (4, 2, 1, 0.5, 0 µL/sample). The staining 
index (SI) was calculated, and the highest value was selected as the optimal 
concentration for FACS staining. The optimal antibody concentrations are 
presented in Supplementary Table S1. For FACS staining, 3.0 x 106 PBMCs were 
quickly thawed in a 37°C water bath under continuous agitation and transferred to 
a pre-filled 50 mL tube containing RPMI-1640 medium supplemented with FBS 
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(20% v/v, 10 mL). Cell suspension was centrifugated for 10 minutes at 300g at RT 
and the supernatant was discarded. Cells were washed twice with RPMI-1640 with 
FBS (20% v/v, 10 mL) and centrifugated for 10 minutes at 300g at RT. Supernatant 
was discarded, and cells were resuspended in RPMI-1640 with FBS (20% v/v, 500 
µL). 1.5 x 106 PBMCs per well (250 µL) was added to a 96 well NUNC plate (Thermo 
Fisher Scientific, 267245) and cells were washed by adding DPBS (1x, 100 µL) 
followed by plate centrifugation for 4 minutes at 400g at RT. Supernatant was 
discarded and cells were washed again with DPBS (1x, 200 µL) and the plate was 
centrifugated for 4 minutes at 400g at RT. For live/dead staining, Zombie 
near-infrared (NIR) viability solution (Biolegend, San Diego, CA, USA, 423105) was 
500x diluted in DPBS and added (100 µL) followed by incubated for 25 minutes at 
RT, in the dark. Supernatant was discarded and cells were washed with FACS 
buffer (200 µL) containing DPBS (1X) supplemented with BSA (0.5% v/v), EDTA, 2.5 
mM, and sodium azide (NaN3, 10% v/v) (final pH 7.4). The plate was centrifugated 
for 3 minutes at 400g at RT and fluid was discarded. The mixture of antibodies 
(Table 1) diluted in FACS buffer was added to the cells and the plate was incubated 
for 30 minutes at 4°C in the dark. Cells were washed three times by adding cold 
FACS buffer (200 µL) and plate centrifugation for 3 minutes at 400g at 4°C. 

Table 1  Fluorochrome-conjugated antibodies used for FACS staining
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anti-CD3 AF700 Human κ UCHT1 Biolegend 300424 AB_493741

anti-CD4 BV510 Human κ OKT4 Biolegend 317444 AB_2561866

anti-CD8a BV650 Human κ RPA-T8 Biolegend 301042 AB_2563505

anti-CD25 BV421 Human κ BC96 Biolegend 302630 AB_11126749

anti-CD127 APC Human κ A019D5 Biolegend 351342 AB_2564137

anti-CD14 BV605 Human κ 63D3 Biolegend 367126 AB_2716231

anti-HLA-DR† FITC Human κ L243 Biolegend 307632 AB_1089142

anti-CD56 PE Human κ 5.1H11 Biolegend 362524 AB_2564161

anti-CD19 PE/Cy7 Human κ HIB19 Biolegend 302216 AB_314246

anti-CD20 PE/Daz594 Human κ 2H7 Biolegend 302348 AB_2564387

anti-CD45 PerCp Human κ 2D1 Biolegend 368506 AB_2566358

†Human Leukocyte Antigen – DR isotype 
#All antibodies were developed, produced, and distributed by Biolegend. 
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Supernatant was discarded, and the cell pellet was resuspended in FACS buffer 
(300 µL) and measured on CytoFLEX LX (Beckman Coulter’s, Indianapolis, IN, 
USA). The generated flow cytometry data were analyzed using Flowjo v10 (FlowJo 
LLC, Ashland, OR, USA, RRID:SCR_008520). Cell frequencies are depicted as the 
percentage CD45+NIR- leukocytes (% viable leukocytes) determined by live/dead 
staining. 

Statistical analyses 
Statistical analyses were performed using IBM SPSS Statistics for Windows 
(Version 25.0, IBM Corp, Armonk, NY, USA, RRID:SCR_002865). Graphs were 
created using GraphPad Prism (Version 8.0, Graphpad Software, CA, USA, 
RRID:SCR_002798). Normality was checked using Shapiro-Wilk normality tests. 
Data is presented as mean ± standard deviation (SD) for normally distributed data 
and as median [interquartile range (IQR)] for not normally distributed data. Not 
normally distributed data was log-transformed for statistical analysis. Repeat-
ed-measures ANOVA (RM-ANOVA) was used to study the effect of fitness level 
(between-subjects factor) and the effect of a recent bout of exercise or ex vivo 
Con A stimulation (within-subjects factors) on the response of XF assay parameters 
and the interaction between them. All assumptions for RM-ANOVA were met. 
Two-sided unpaired Student’s t-tests were used to compare the normally 
distributed subject characteristics and the relative Con A-induced differences 
between high-fit and low-fit females. Mann-Whitney U tests were used to compare 
not normally distributed subject characteristics. P-values < 0.05 were considered 
as statistically significant. 

Results

Total PBMC number is not affected by fitness level, but lower upon a 
recent bout of exercise
PBMC were isolated from females with high (V̇O2peak ≥ 47 mL/kg/min, N = 15) and 
low (V̇O2peak ≤ 37 mL/kg/min, N = 16) levels of aerobic fitness representing 
trained, physically active females and untrained, low physically active females, 
respectively. Subject characteristics are shown in Table 2. The total number of 
isolated PBMCs per total blood volume was not significantly different between 
high-fit (102.5 ± 29.6 x 106 cells) and low-fit (104.3 ± 27.1 x 106 cells) females (Pgroup 
= 0.829) and significantly lower after the recent bout of exercise in both groups 
(95.2 ± 22.2 x 106 cells and 97.04 ± 18.1 x 106 cells respectively, Pexercise = 0.036), 
but again not different between the two groups (P = 0.981). All cell viabilities were 
> 97% and not significantly different between high-fit (97.6 ± 0.5%) and low-fit (97.8  
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4± 0.4%) females (Pgroup = 0.182) and not significantly impacted by the recent bout 
of exercise (Pexercise = 0.580).

The overall PBMC composition is not significantly affected by fitness 
level and a recent bout of exercise
To investigate how physical fitness level is related to metabolic PBMC activity,  
we first characterized various cell subsets in PBMCs from high- and low-fit females 
and studied whether these subsets are affected by a recent bout of exercise. 
We used lineage-specific antibodies against T cells, B cells, NK cells, and 
monocytes (Supplementary Figure S2 (43)) and found that the overall PBMC 
composition was similar between high-fit and low-fit females at baseline as well as 
after a recent bout of exercise (Figure 1A). The number of viable leukocytes 
(CD45+NIR- leukocytes) was >90% after thawing. In line with overall similar PBMC 
composition, subset analysis at baseline showed that frequencies of CD56+ NK 
cells, CD19+CD20+ B cells, and CD3+ total T cells, including CD3+CD4+ T helper 
(Th) cells and CD3+CD8+ cytotoxic T cells, were not significantly different between 
PBMCs from high-fit and low-fit females (Pgroup = 0.137, 0.291, 0.528, 0.478, 0.660, 
respectively). We did observe that PBMCs from high-fit and low-fit females 
significantly differed in frequencies of CD14+ monocytes (7.52 ± 2.35% in high-fit 
compared to 5.69 ± 2.15% in low-fit females, Pgroup = 0.047) and of CD3+CD4+CD25+ 
activated T cells (3.10% [2.30 – 4.20%] in PBMCs from high-fit compared to 2.35% 
[1.70 – 2.90%] in PBMCs from low-fit females, Pgroup = 0.014, Figure 1B – H). When 
co-expression of CD127 and CD25 was analyzed, PBMCs from high-fit and low-fit 
females did not significantly differ in the frequencies CD3+CD4+CD25+CD127- Treg 
cells (1.77 ± 0.48% in high-fit compared to 1.52 ± 0.50% in low-fit females, Pgroup = 

Table 2 Subject characteristics

Low-fit (N = 16) High-fit (N = 15)

Age (years) 24.0 [21.3 - 25.5] 21.8 [21.6 - 23.7]

Ethnicity Caucasian (11), Asian (1), Indo-pacific (4) All Caucasian

Weight (kg) 59.2 ± 7.2 61.2 ± 7.0

Height (m) 1.63 ± 0.08 * 1.68 ± 0.05 *

Fat mass (% of weight) 28.9 ± 3.9 * 25.1 ± 4.4 *

V̇O2peak (mL ·kg ˉ¹ · min ˉ¹) 35.1 [32.2 - 35.7] **** 50.4 [49.0 – 54.0] ****

Baecke total score 7.3 ± 1.0 **** 9.5 ± 0.8 ****

Hemoglobin (mM) 8.4 ± 0.6 8.5 ± 0.6

V̇ O2peak = maximal oxygen consumption values. Values are mean ± SD for normally distributed data, 
and median [IQR] for not normally distributed data. *P < 0.05, **** P < 0.0001.
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0.124, Figure 1I), yet frequencies CD3+CD4+CD25+CD127+ non-Treg cells, i.e., 
effector and memory T cells, were significantly different between PBMCs from 
high-fit (1.30% [0.80 – 1.90%]) compared to PBMCs from low-fit 0.75% [0.38 – 1.25%] 
females, Pgroup = 0.009, Figure 1J). Although there is a 24% difference in CD14+ 

monocyte frequency between the two groups, just like the CD3+CD4+CD25+ 
activated T cells, they constitute a relative minor part of the total PBMC fraction (< 
10%), and thus changes are likely not substantially affecting the overall PBMC 
composition. PBMC cell type frequencies were also not significantly altered after 
a recent exercise bout (Pexercise > 0.05 for all, Figure 1B – G and I), except for the 
small subset of CD3+CD4+CD25+ activated T cells (Pexercise < 0.001, Figure 1H) and 
CD3+CD4+CD25+CD127+ T cells (Pexercise < 0.001, Figure 1J).

Baseline and post-exercise mitochondrial function is significantly 
higher in PBMCs from high-fit compared to low-fit females 
Next, we aimed to study whether PBMCs from high-fit and low-fit females are 
metabolically different by analyzing oxidative and glycolytic metabolism using XF 
analysis. We used a standardized experimental set-up that was validated for low 
technical variation and sampling of many individuals on multiple days (41). Using 
two different injection strategies (injection strategy A (Figure 2A, 3A) and injection 
strategy B (Figure 2B, 3B), we were able to probe a complete set of parameters of 
mitochondrial and glycolytic function and capacity, in a relatively short run time. 
PBMCs from high-fit females had significantly higher basal OCR (14.23 ± 1.44 pmol 
O2/min/105 cells) compared to PBMCs from low-fit females (11.65 ± 1.65 pmol O2/
min/105 cells, Pgroup < 0.001, Figure 2C). Similarly, FCCP-induced OCR was 
significantly higher in PBMCs from high-fit (52.01 ± 6.79 pmol O2/min/105 cells) 
compared to PBMCs from low-fit (40.36 ± 7.64 pmol O2/min/105 cells) females 
(Pgroup < 0.001, Figure 2D). Since spare respiratory capacity (SRC) was also 
significantly higher in PBMCs from high-fit (300 ± 26%) compared to PBMCs from 
low-fit (264 ± 33%) females (Pgroup < 0.001, Figure 2E), mitochondrial respiratory 
capacity was significantly higher in PBMCs from high-fit females. Adenosine 

Figure 1: Characterization of PBMC cell types in high-fit and low-fit females at baseline 
and after a recent bout of exercise. (A – J) Stacked (A) and single (B – J) percentages of 
CD14+ (B), CD56+ (C), CD19+CD20+ (D), CD3+CD8-CD4- (E), CD3+CD8+ (F), CD3+CD4+ (G), 
CD3+CD4+CD25+ (H), CD3+CD4+CD25+CD127- (I) and CD3+CD4+CD25+CD127+ (J) subsets 
relative to the total number of viable PBMCs (%) at baseline and post-exercise in low-fit  
(N = 16, left in stacked plot, grey in single plots) and high-fit (N = 15, right in stacked plot, 
colored in single plots) females. Main effects (fitness level and recent exercise) and 
interaction effects were analyzed using RM-ANOVA. Significant P-values (< 0.05) are 
indicated in bold.
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Figure 2: Mitochondrial PBMC function in high-fit and low-fit females at baseline and after 
a recent bout of exercise. (A, B) Representation of mitochondrial parameters derived from 
the XF assay using injection strategy A (A) or B (B) and traces for low-fit (N = 16, white) and 
high-fit (N = 15, black) at baseline (dots) and post-exercise (triangles). (C - E) Basal OCR (C), 
FCCP-induced OCR (D) and corresponding spare respiratory capacity (E). (F – H) ATP-linked 
OCR (F), proton leak (G) and corresponding coupling efficiency (H). Parameters are 
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triphosphate (ATP)-linked OCR and mitochondrial proton leak were significantly 
higher in PBMCs from high-fit females (13.10 ± 1.10 pmol O2/min/105 cells and 3.09 
± 0.92 pmol O2/min/105 cells, respectively) compared to PBMCs from low-fit 
females (11.09 ± 1.37 pmol O2/min/105 cells and 2.29 ± 0.76 pmol O2/min/105 cells 
Pgroup < 0.001 and P = 0.005, respectively (Figure 2F, G). However, the percentage 
of mitochondrial respiration that is linked to ATP production, also defined as 
mitochondrial coupling efficiency, was not significantly different between high-fit 
(91.7% [88.7 – 93.8%]) and low-fit (91.1% [87.2 – 94.3%]) females (Pgroup = 0.889, 
Figure 2H). The recent exercise bout allows us to analyze the effect of a single, 
short-term exercise intervention on PBMC metabolism, while simultaneously 
minimizing the impact of a temporary shift in PBMC subsets upon acute exercise, 
which has returned to baseline within 24 hours after exercise completion (27–29). 
PBMC mitochondrial respiration and respiratory capacity were not significantly 
affected by the recent bout of exercise (Pexercise > 0.05 for all OCR parameters), 
and the exercise response did not significantly differ between high-fit and low-fit 
females (Pexercise*group > 0.05 for all OCR parameters (Figure 2C – H). Thus, 
mitochondrial function was significantly higher in PBMCs from high-fit as compared 
to low-fit females, at baseline as well as after a recent exercise intervention. 

Glycolytic function does not significantly differ between PBMCs from 
high-fit and low-fit females
In a similar way, we studied whether parameters of glycolytic function were 
affected by fitness level and a recent bout of exercise. Basal GR was not 
significantly different between PBMCs from high-fit (14.58 [12.13 – 19.04] pmol H+/
min/105 cells) and low-fit (13.55 [11.19 – 16.31] pmol H+/min/105 cells) females (Pgroup 
= 0.739, Figure 3C). To assess PBMC glycolytic capacity, we first blocked 
mitochondrial respiration using AA and Rot injection, which forces the cells to 
upregulate their glycolytic machinery to compensate for the respiratory loss of 
ATP, which is therefore defined as compensatory glycolysis. Next, we injected the 
ionophore monensin (MON), which promotes cellular Na+ import and stimulates 
ATP hydrolysis by Na+/K+-ATPase (44), thereby further increasing cellular ATP 
demands and maximizing the glycolytic rate when mitochondrial respiration is fully 
blocked (45). We did not find a significant difference in compensatory GR, 

calculated for low-fit (N = 16, grey) and high-fit (N = 15, blue) females at baseline (clear bars) 
or post-exercise (striped bars). Values are depicted per 105 PIXI analyzed cells for absolute 
rates or as a percentage (%) for ratios of corresponding values. Main effects (fitness level 
and recent exercise) and interaction effects were analyzed using RM-ANOVA. Significant 
P-values (< 0.05) are indicated in bold.
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Figure 3: Glycolytic PBMC function in high-fit and low-fit females at baseline and after a 
recent bout of exercise. (A, B) Representation of glycolytic parameters derived from the XF 
assay using injection strategy A (A) or B (B) and traces for low-fit (N = 16, white) and high-fit 
(N = 15, black) females at baseline (dots) and post-exercise (triangles). (C – F) Basal GR (C), 
compensatory GR (D), MON-induced GR (E) and the glycolytic reserve calculated as the 
ratio between MON-induced GR and basal GR (F). Parameters are calculated for low-fit  
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MON-induced GR or glycolytic reserve between PBMCs from high-fit (37.45 ± 4.86 
pmol H+/min/105 cells, 62.76 ± 9.86 pmol H+/min/105 cells and 433 ± 165%, 
respectively) and PBMCs from low-fit females (35.02 ± 7.33 pmol H+/min/105 cells, 
60.94 ± 10.62 pmol H+/min/105 cells and 378 ± 101%, respectively, Pgroup = 0.235, 
0.182, 0.484, Figure 3D – F). Furthermore, PBMC glycolytic function and capacity 
were not significantly affected by a recent bout of exercise (Pexercise > 0.05 for all 
GR parameters) and high-fit and low-fit females did not respond differently to 
exercise (Pexercise*group > 0.05 for all GR parameters (Figure 3C – F). Thus, glycolytic 
function parameters did not significantly differ between PBMCs from high-fit and 
low-fit females, and were not significantly affected by a recent bout of exercise.

Acute immunometabolic stimulation of PBMCs with Con A does not 
impact the relative differences in PBMC metabolism between high-fit 
and low-fit females
To study alterations in metabolic pathways in response to immune cell activation, 
PBMCs are often ex vivo stimulated with mitogenic compounds (20,46–49). 
To investigate whether fitness level influences the acute metabolic switch that is 
seen upon mitogenic stimulation, we measured oxidative and glycolytic metabolism  
in in situ activated PBMCs and compared this to naïve, quiescent PBMCs. 
Concanavalin A (Con A) was used as a mitogenic lectin, which upregulates the 
respiratory and glycolytic machinery to provide the increased energy requirements 
that is necessary to support Con A-induced T cell activation and proliferation 
(20,50), which includes for example enhanced ion signaling and increased 
cytokine synthesis (51,52). Indeed, we demonstrated that acute PBMC stimulation 
with Con A upregulated mitochondrial respiration and glycolytic rate in PBMCs 
(Figure 4A, B). This resulted in a significant elevation of basal OCR (acutely 
activated OCR) and FCCP-induced OCR, in PBMCs from both high-fit and low-fit 
females (both Pactivation < 0.001, Figure 4C, D). The absolute Con A-induced 
increase in basal OCR and FCCP-induced OCR was significantly higher in high-fit 
compared to low-fit females (Pactivation*group = 0.010 and 0.006, respectively, Figure 4C, 
D). When plotted relatively to non-activated PBMCs, the Con A-induced increase  
in basal OCR and FCCP-induced OCR did not significantly differ between the two 
groups (P = 0.558 and P = 0.725, respectively, Figure 4E, F). Similarly, Con A 

(N = 16, grey) and high-fit (N = 15, turquoise) females at baseline (clear bars) or post-exercise 
(striped bars). Values are depicted per 105 PIXI analyzed cells for absolute rates or as a 
percentage (%) for ratios of corresponding values. Main effects (fitness level and recent 
exercise) and interaction effects were analyzed using RM-ANOVA. Significant P-values  
(< 0.05) are indicated in bold. 



100 | Chapter 4

Figure 4: The effect of acute PBMC stimulation on mitochondrial and glycolytic PBMC 
function in high-fit and low-fit females. (A, B) Representation of the mitochondrial (A) and 
glycolytic (B) parameters derived from the induced XF assay using a first injection with XF 
assay medium for quiescent, control PBMCs (dots) or the mitogen Con A for activated 
PBMCs (diamonds) followed by injection strategy A (A) or B (B) for low-fit (N = 16, white) and 
high-fit (N = 15, black) females. (C, D) Acutely activated (C) and FCCP-induced (D) OCR per 
105 PIXI analyzed cells in control PBMCs (clear bars) or Con A stimulated PBMCs (striped 
bars) from low-fit (N = 16, grey) and high-fit (N = 15, blue) females. (E – F) The acute increase 
in OCR (E) and FCCP-induced OCR (F) in Con A stimulated PBMCs compared to control 
PBMCs (%) in low-fit (N = 16, grey) and high-fit (N = 15, blue) females. (G, H) Acutely activated 
(G) and MON-induced (H) GR per 105 PIXI analyzed cells in control PBMCs (clear bars) or 

A

C

G

D

H

E

I

F

J

B



 PBMC metabolism in high-fit and low-fit females | 101

4

stimulation resulted in a significant increase in basal GR (acutely activated GR) and 
MON-induced GR, in PBMCs from both high-fit and low-fit females (both Pactivation 
< 0.001, Figure 4G, H). Here, the absolute Con A-induced increase in basal and 
MON-induced GR was not significantly different between high- and low-fit females 
(Pactivation*group = 0.355 and 0.504, respectively, Figure 4G, H), neither were the 
relative increases (P = 0.285 and 0.473, respectively, Figure 4I, J). Thus, PBMCs 
from high-fit females showed higher mitochondrial respiration and capacity in 
response to Con A stimulation compared to low-fit females, but the relative 
metabolic response was not different between the two groups. 

Discussion

This study demonstrates that high-fit females had significantly higher PBMC 
mitochondrial function parameters than low-fit females, whereas glycolytic 
parameters were not different. Furthermore, either a recent exercise challenge, or 
an ex vivo immunological challenge did not significantly alter metabolic function in 
isolated PBMCs. This indicated that especially long-term lifestyle differences can 
be imprinted in PBMC metabolism, whereas a short-term, recent exercise 
intervention is not reflected in PBMC metabolic functions. We also showed that 
the overall PBMC composition was similar between high-fit and low-fit females, 
i.e., the major contributing PBMC subsets were not significantly affected by fitness 
level or a recent bout of exercise. 

We are the first study that revealed a link between levels of aerobic fitness and 
mitochondrial function in PBMCs, by showing that mitochondrial respiration and 
capacity was significantly higher in high-fit (trained) than low-fit (untrained or 
sedentary) young female adults, which was unrelated to immune cell composition. 
We also demonstrated that a recent bout of exercise did not alter PBMC 
mitochondrial function neither high-fit and low-fit female individuals, indicating 
that a longer period of aerobic exercise training exposure might be required 
before the effects are reflected in metabolic PBMC profiles. This is in line with 

Con A stimulated PBMCs (striped bars) from low-fit (N = 16, grey) and high-fit (N = 15, 
turquoise) females. (I, J) The acute increase in GR (I) and MON-induced GR (J) in Con A 
stimulated PBMCs compared to control PBMCs (%) in low-fit (N = 16, grey) and high-fit  
(N = 15, turquoise) females. Main effects (fitness level and Con A) and interaction effects 
were analyzed using RM-ANOVA (Figure 4C, D, G, H) and the relative Con A induced 
differences were analyzed using unpaired Student’s t-tests (Figure 4E, F, I, J). Significant 
P-values (< 0.05) are indicated in bold, ns = not significant.
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previous studies, which showed that six or twelve weeks of aerobic exercise 
training increased mitochondrial function in respectively lymphocytes (36) and 
PBMCs (24) and found that protein and gene expression levels of mitochondrial 
markers in PBMCs were enhanced with eight weeks of aerobic exercise training 
(38), while a two-week aerobic exercise protocol did not alter mitochondrial 
function in PBMCs (37), indeed suggesting that longer-, but not shorter-term 
training status impacts PBMC mitochondrial function. 

The bodily adaptations that occur upon regular exercise could possibly underly 
our observation that PBMC metabolism is different between high-fit and low-fit 
females (53). Exercise triggers the release of biologically active proteins and 
metabolites by multiple tissues that are secreted into the systemic circulation and 
impact other organs and physiological systems (26,54). For example, interleukin 
(IL) 6 (IL6) is a cytokine that is acutely secreted from contracting skeletal muscle, 
which promotes the release of the anti-inflammatory cytokines IL10 and IL1 
receptor antagonist (IL-1RA) and increases the mobilization of nutrients from liver 
and adipose tissue (55). Regular exercise has been suggested to lower the 
magnitude of the IL6 response to exercise as well as resting IL6 levels (55), and 
IL6 levels were shown to negatively correlate with mitochondrial PBMC function 
(22,23). Furthermore, serum lipid metabolite levels, such as triglycerides, fatty 
acids, and glycoproteins, were found to differ between high-fit and low-fit 
individuals (56). Since circulating lipid metabolites have been found to alter gene 
and protein expression levels of mitochondrial markers in isolated PBMCs (57) as 
well as ex vivo cytokine production in isolated PBMCs (58,59), the altered 
metabolic make-up of the plasma upon regular aerobic exercise could imprint a 
long-lasting adaptation of PBMC mitochondrial function. Given that a single, recent 
exercise bout or an ex vivo immunological stimulus did not alter mitochondrial 
function in our study, it is likely that prolonged alteration of the plasma metabolome 
and/or cytokine levels is needed to observe changes in PBMC mitochondrial 
function. Previously, metabolic markers in PBMCs have been shown to respond to 
alterations in dietary intake (60,61) and body weight (62). Our study demonstrates 
that PBMCs can also reflect differences in aerobic fitness level in healthy adult 
females, which further increases the potential of PBMCs as a biomarker to study 
the impact of lifestyle factors on human health. 

Our study also demonstrated that a single, recent bout of exercise did not affect 
mitochondrial nor glycolytic metabolism in PBMCs from high-fit or low-fit females. 
However, a single bout of exercise was shown to increase mitochondrial PBMC 
metabolism in a previous study (25). Differences in sampling time might underlie 
these different observations, as Liepinsh et al. sampled directly after exercise (25) 
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while we sampled 21 hours after exercise. Since PBMC subsets are metabolically 
different (17,18) and substantial shifts in PBMC subsets have been described after 
acute exercise (27–29), the increased mitochondrial PBMC function as observed 
by Liepinsh et al. could possibly be related to large differences in analyzed PBMC 
subsets between the two timepoints, while in our study PBMC composition was 
similar at baseline and after the recent bout  of exercise. Secondly, differences in 
the metabolic substrates provided to the PBMCs during metabolic analysis might 
play a role. Fatty acid-dependent mitochondrial respiration was increased in 
permeabilized PBMCs after acute exercise (25), yet our study did not focus on 
substrate-dependent PBMC metabolism. Interestingly, in skeletal muscle, an 
acute, single bout of aerobic exercise is associated with alterations in metabolic 
fuel utilization, whereas regular bouts of aerobic exercise are associated with 
skeletal muscle adaptations, such as an increased number and function of 
mitochondria (63). This indicates that the impact of short- and longer-term exercise 
on cellular energy metabolism could be substantially different, and that differences 
between baseline and post-exercise PBMC metabolism in our study could possibly 
have been detected when using different levels or combinations of metabolic 
substrates. 

For comprehensive analysis of PBMC metabolism, we analysed PBMC composition 
using flow cytometry in addition to our XF assays and showed that the major 
contributing PBMC cell types (~90%) were not significantly different between 
high-fit and low-fit female individuals. This is in line with findings from previous 
studies (28,64–67), although some studies also have shown that some lymphocyte 
subsets (e.g. CD3+, CD56+) were lower (68,69) or higher (69) in high-fit compared 
to low-fit individuals. We also demonstrated that high-fit females had significantly 
higher monocyte (CD14+) and activated T cell (CD3+CD4+CD25+) frequencies as 
compared to low-fit females. However, we consider it unlikely that these differences 
impact our metabolic findings, because glycolytic PBMC function was not 
significantly different between the two groups, while monocytes and activated  
T cells were shown to rely more on glycolysis than the other PBMC subsets that 
we analysed (17,70). Furthermore, the contribution of the monocyte and activated 
T cell subset to the total PBMC pool is only ~10% and the difference between the 
high-fit and low-fit group was only ~2.4% of total, while respiration differences for 
the total population were around the magnitude of 20%. The overall stability in 
PBMC composition does not only temper the concerns for the influence of PBMC 
subset variability on PBMC biomarker responses, it also enforces the notion of 
PBMCs as a relevant biomarker tissue to examine lifestyle interventions. 
Importantly, studies that deal with major shifts in PBMC cell types, such as studies 
that include acute exercise interventions or disease pathology, might experience 
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confounding by PBMC heterogeneity. Our study also included some limitations, 
such as the fact that we did not evaluate the effect of nutritional status on PBMC 
metabolism. For example, vitamin D status has been linked to mitochondrial PBMC 
function (61,71). As we measured all our subjects in late autumn and winter, vitamin 
D intake from food becomes more important compared to summer. However, 
dietary vitamin D intake and status was not controlled for and could thus have 
acted as a potential confounder in our study. 

In conclusion, using XF analysis of PBMC metabolism we showed that PBMCs 
from high-fit female individuals had increased mitochondrial function, which was 
not explained by changes in PBMC subsets, but instead implies an inherent higher 
oxygen consumption. Our study reveals a link between PBMC metabolism and 
levels of aerobic fitness, increasing the relevance of PBMC metabolism as a 
marker to study the impact of lifestyle factors on human health in future clinical 
and biological studies.
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Supplementary materials 

Supplementary Figure S1: Habitual dietary intake of the study subjects. Dietary intake of 
the subjects was assessed with a validated food frequency questionnaire (FFQ) and total 
daily energy intake (A) and intake of carbohydrates (B), proteins (C), and fats (D) were 
calculated for high-fit (blue) and low-fit (grey) females.
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Supplementary Table S1  Dilutions for fluorochrome-conjugated antibodies and 
optimal concentrations

Antibody Company Catalog number Range tested
(µL / 50 µL)

Optimal conc.
(µL / 50 µL)

anti-CD3 Biolegend 300424 4, 2, 1, 0.5, 0 1

anti-CD4 Biolegend 317444 4, 2, 1, 0.5, 0 2

anti-CD8a Biolegend 301042 4, 2, 1, 0.5, 0 1

anti-CD25 Biolegend 302630 4, 2, 1, 0.5, 0 1

anti-CD127 Biolegend 351342 4, 2, 1, 0.5, 0 1

anti-CD14 Biolegend 367126 4, 2, 1, 0.5, 0 1

anti-HLA-DR Biolegend 307632 4, 2, 1, 0.5, 0 1

anti-CD56 Biolegend 362524 4, 2, 1, 0.5, 0 1

anti-CD19 Biolegend 302216 4, 2, 1, 0.5, 0 1

anti-CD20 Biolegend 302348 4, 2, 1, 0.5, 0 1

anti-CD45 Biolegend 368506 4, 2, 1, 0.5, 0 1
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Abstract

Biomarkers are important in the assessment of health and disease but are poorly 
studied in healthy individuals. Especially responses of biomarkers in the systemic 
circulation to longer-term and short-term lifestyle interventions are incompletely 
understood, neither is their relative response to each other. This study investigated 
how single biomarkers, functional biomarker categories and total biomarker 
profiles respond to a difference in longer-term physical activity and to recent 
exercise in healthy individuals. A total of 102 biomarkers were analysed in serum 
or plasma samples from 30 young, healthy, female adults divided into a high-fit 
(V̇O2peak ≥ 47 mL/kg/min, N = 15) and low-fit (V̇O2peak ≤ 37 mL/kg/min, N = 15) 
group, at baseline and overnight after a single bout of exercise (60 min, 70% 
V̇O2peak). Total biomarker profiles were similar between high-fit and low-fit 
females, with only significantly lower leptin levels in high-fit females (adj.Pgroup= 
0.076). Recent exercise significantly affected several single biomarkers related to 
inflammation and lipid metabolism, and adiponectin (all adj.Pexercise< 0.01). 
Furthermore, functional biomarker categories corresponded to biomarker clusters 
generated via hierarchical clustering models. This study provides insight in the 
single and joined behaviour of circulating biomarkers in healthy females, and 
identified functional biomarker categories that may be used for characterization of 
human health physiology. 
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Introduction	

Lifestyle factors play a dominant role in health maintenance and the prevention of 
chronic diseases, such as type 2 diabetes (1), cardiovascular disease (2), and 
cancer (3). Adopting a healthy lifestyle, including regular physical activity 
performance, is associated with a lower chronic disease risk (4). Biomarkers are 
important in the assessment of the impact of lifestyles on health status (5). For 
monitoring disease risk and the progression from a healthy to an unhealthier state, 
the use of biomarkers that reflect key physiological processes, such as metabolism, 
inflammation, and oxidative stress, has been proposed (6). The dynamics of 
biomarkers has often been studied in disease conditions, but it is hardly 
understood how these biomarkers behave in healthy individuals adhering to 
different lifestyles and how they respond to a short-term lifestyle interventions. 
Moreover, many of these biomarkers have not been studied relatively to each 
other, especially not in healthy individuals. 

Physical activity is one of the lifestyle factors that has been associated with 
systemic changes that are linked to a reduced chronic disease risk (7). High levels 
of physical activity has been shown to reduce insulin resistance (8), improve 
lipoprotein profiles (9), and lower interleukin (IL)6 levels on the long-term (10), 
which contributes to a lower chronic disease risk (11–14). However, short-term 
exercise, e.g., a single bout of exercise, also provokes acute systemic changes, 
which can last for up to 24 hours (15–17). These short-term exercise responses can 
differ between individuals with high and low levels of physical activity, due to the 
metabolic and physiological adaptations of the body to regular exercise (18,19). 
Hence, not only the basal levels of circulating biomarkers could differ between 
high- and low physically active individuals, but the biomarker response to a single 
exercise session might also be affected. This, however, has been studied only to a 
limited extent, with most studies focusing on male individuals (15), while physiological 
responses between males and females can be strikingly different (20). 

This study investigated how serum and plasma biomarkers are affected by 
different longer-term physical activity levels and by recent exercise. Routine 
physiological biomarkers such as insulin, LDL cholesterol, and c-reactive protein 
(CRP) were included as well as markers that represent other metabolic, immuno
logical, and oxidative stress-related processes. All biomarkers were allocated to 
three functional biomarker categories: 1) peptide hormones, 2) inflammation and 
oxidative stress-related markers, and 3) metabolism markers, the latter comprising 
protein, carbohydrate, and lipid metabolism. Biomarker analysis was performed in 
high aerobically fit (high-fit) and low aerobically fit (low-fit) females with a validated 
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difference in V̇O2peak to reflect a difference in training status. Previously, we 
found a significant difference in skeletal muscle mitochondrial capacity (21) and 
mitochondrial function in peripheral blood mononuclear cells (PBMCs) (22) in our 
healthy study population. Biomarker analysis in this study will now show whether 
single biomarkers, functional biomarker categories and total biomarker profiles 
differ between these high-fit and low-fit females, and how these biomarkers 
respond to a recent bout of exercise. This information will improve our 
understanding on the effect of longer-term lifestyle differences and recent lifestyle 
interventions on biomarkers of health and disease and contribute to the application 
of preventative and health improvement interventions.

Materials and Methods 

Ethical approval and study registration
The protocol for collection and handling of human samples was ethically approved 
by the medical ethical committee (METC) of Wageningen University (since January 
2021 replaced by METC Oost-Nederland) with reference number NL70136.081.19 
and registered in the Dutch trial register (NL7891) on 2019-07-23. All procedures 
performed were in accordance with institutional ethical standards, national law 
(WMO, The Hague, 1998) and with the 1964 Helsinki declaration and its 
amendments. Written informed consent was obtained from all individual subjects 
included in the study. 

Study subjects
Healthy young females (18 – 28 years of age, BMI 18.5 – 25 kg/m2) were recruited 
from the local university and community population. Exclusion criteria were as 
follows: history of cardiovascular, respiratory, hematological, or metabolic disease; 
use of prescribed chronic medication; anemia (hemoglobin concentration < 12 g/dL); 
blood donation within two months before the start of the study; smoking  
(> 5 cigarettes per week); recreational drug use or over the counter drug use 
during the study; use of performance-enhancing supplements; pregnancy or 
lactating. Subjects were selected if they had a V̇O2peak ≥ 47 mL/kg/min (high-fit 
group) or ≤ 37 mL/kg/min (low-fit group) determined using a maximal exercise test, 
measured using the validated screening protocol of Lagerwaard et al. (21,23), 
which minimized the risk for selective bias. Sixteen high-fit and sixteen low-fit 
subjects were included. The V̇O2peak data and results of skeletal muscle 
mitochondrial capacity of these subjects has been published previously by our 
group (21). A total of 111 maximal exercise tests were performed to end up with the 
desired sample size. One subject was excluded due to medication intake and one 
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subject was excluded due to symptoms of illness directly after completion of the 
study protocol. The use of oral contraceptives (OC) was not excluded; only the use 
of monophasic OC containing low synthetic estradiol and progesterone was 
allowed and was controlled for (N = 7 in the high-fit and N = 6 in the low-fit group). 
The 17bèta-estradiol levels were measured using a chemiluminescent immunoassay 
on a Lumipulse G1200 analyzer (Fujirebio Incl) at the Erasmus Medical Centre 
(Rotterdam, the Netherlands) and were not significantly different between those 
high-fit (527.7 [353.1 – 610.0]) and low-fit females (217.4 [109.1 – 895.2]) that did not 
use oral OC (P = 0.321). 

Study design
Subjects refrained from heavy physical exercise 48 hours prior to the first study 
day and from any physical exercise and alcohol consumption 24 hours prior to the 
first study day. Subjects adhered to dietary guidelines 24 hours prior to each study 
day, which included the consumption of a standardized evening meal (73% 
carbohydrates/16% protein/11% fat, 1818 kJ) before 8:00PM and dietary guidelines 
for the consumption of breakfast, lunch, drinks, and snacks. After an overnight 
fast, blood was collected in the morning of the first study day (= baseline timepoint) 
and on the morning of the second study day, i.e., 21 hours after a single bout of 
exercise (= post-exercise timepoint). Blood samples (3 x 6 mL) were collected by 
venipuncture in vacutainers containing dipotassium dipotassium (K2-) ethylenedi-
aminetetraacetic acid (EDTA) (K2-EDTA) as anticoagulant for plasma collection (2 x 
6 mL, BD Biosciences, Vianen, the Netherlands, 367525) and a vacutainer 
containing silica as a clot activator for serum collection (1 x 6 mL, BD Biosciences, 
Vianen, the Netherlands, 367837). Blood tubes for plasma collection were kept on 
ice-water and processed within 30 minutes after blood collection. Blood tubes for 
serum collection were kept at room temperature (RT) for 60 minutes to allow 
clotting and immediately processed afterwards. Body fat percentage was 
measured according to the four-site method by Durnin-Womersley using the 
skinfold measurements of the triceps, biceps, sub scapula and supra iliac, 
measured using a skinfold calliper (Harpenden, UK). Subjects received breakfast 
and after two hours, subjects completed an individualized exercise protocol 
consisting of 60 minutes cycling on an electrically braked bicycle ergometer 
(Corival CPET, Lode, the Netherlands) at a workload aiming to equal 70% of their 
V̇O2peak. Oxygen consumption, carbon dioxide production, and air flow were 
measured using MAX-II metabolic cart (AEI technologies, Landivisiau, France). 
Exhaled air was continuously sampled from a mixing chamber and averaged over 
15-second time windows. Oxygen consumption was measured in the first and last 
15 minutes of the exercise test and used to confirm the relative oxygen consumption. 
If needed, small adjustments in workload were made to reach 70% of the V̇O2 
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peak of the individual. After the exercise protocol subjects went home, refrained 
from moderate to heavy physical activity, were instructed to keep low levels of 
light physical activity, and refrained alcohol consumption until blood collection on 
the second study day. The habitual dietary intake of the study subjects was 
determined via a validated food frequency questionnaire (FFQ) that assessed 
dietary intake in the past four weeks (24). The self-reported diets of the high-fit 
and low-fit subjects were similar with no significant differences in total daily energy 
intake, carbohydrate intake, protein intake or fat intake (Supplementary Figure S1).

Plasma and serum isolation
Plasma tubes were centrifuged for 10 minutes at 1200g at 4°C, and the supernatant 
(plasma) was collected, transferred to a new tube, and mixed. In case of turbid 
plasma, samples were centrifuged again for 10 minutes at 1200g at 4°C to remove 
any insoluble matter. Plasma samples were snap-frozen in liquid nitrogen and 
afterwards cryopreserved at -80°C. Serum tubes were centrifuged for 10 minutes 
at 1300g at RT, and the supernatant (serum) was collected, transferred to a new 
tube, and mixed. In case of turbid serum, samples were centrifuged again for 10 
minutes at 1300g at RT to remove any insoluble matter. Serum samples were 
snap-frozen in liquid nitrogen and afterwards cryopreserved at -80°C. For 
biomarker analysis, plasma and serum samples were thawed on ice and individually 
mixed until a clear solution was reached. 

ELISAs in serum and plasma
Commercially available enzyme-linked immunoassay (ELISA) kits were used to 
analyse serum levels of the peptide hormones leptin, insulin, and adiponectin and 
the plasma levels of inflammatory and oxidative stress-related markers (tumour 
necrosis factor (TNF), IL6, IL10, CRP, the soluble monocyte differentiation antigen 
cluster of differentiation 14 (CD14), monocyte chemoattractant protein 1 (CCL2, 
better known as MCP1), soluble intercellular adhesion molecule 1 (ICAM1), lipopoly-
saccharide binding protein (LBP), and oxidized low density lipoprotein (oxidized 
LDL) according to the manufacturers’ instructions (Table 1).

Proton NMR (1H NMR) in plasma 
EDTA-plasma samples were measured using the standardized, targeted high- 
throughput proton NMR (1H NMR) metabolomics from Nightingale Health (Nightingale 
Health Ltd., Helsinki, Finland, nightingalehealth.com/biomarkers). This platform 
provides simultaneous quantification of 162 individual metabolites and 87 
metabolite ratios or sizes. For analysis of this study, all individual metabolites were 
selected, except for metabolite concentrations within lipoproteins or lipoprotein 
subclasses (e.g., ‘total lipids in VLDL’), and concentrations of clinical LDL cholesterol, 
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remnant cholesterol, total cholesterol minus HDL cholesterol and total branched- 
chain amino acids (BCAAs). All metabolite ratios or sizes were also excluded from 
analysis. A complete list of the selected metabolites included in the analysis can 
be found in Supplementary Table S1. 

Proton NMR (1H NMR) in serum 
Serum samples were measured using targeted high throughput 1H NMR 
metabolomics at the EURECAT Technology Centre (Barcelona, Spain). For metabolite 
extraction, samples were placed in 2 mL 96 deep well plates using 200 mL 
methanol:water (8:1, for aqueous extraction) or 100 mL methyl-tert-butylether  
(MTBE):methanol:water (3:10:2, for lipidic extraction) in an automated fashion in  
the Bravo liquid handler (Agilent Technologies Santa Clara, California, USA). 
Methanol and MTBE were purchased at Merck (Darmstadt, Germany). After 
extraction, solvents from the samples were removed using a speed vacuum 
concentrator and samples were stored at -80°C until analysis. Some samples were 
lyophilized before 1H NMR analysis. For 1H NMR measurements, the hydrophilic 
extracts were reconstituted in 600 μL deuterium oxide (D2O, Deutero, Kastellaun, 
Germany) PBS (Sigma-Aldrich, St. Louis, MO, USA), 0.05 mM, pH 7.4, 99.5% D2O) 
containing 0.73 mM 3-(Trimethylsilyl) propionic-2,2,3,3-d4 acid sodium salt (TSP, 

Table 1  ELISA kits used for serum and plasma biomarker analysis

Biomarker Matrix Company Catalogue number

Leptin Serum R&D Systemsa DLP00

Insulin Serum Mercodiab 10-1113-01

Adiponectin Serum R&D Systems DRP300

TNF Plasma R&D Systems HSTA00E

IL6 Plasma R&D Systems HS600C

IL10 Plasma Invitrogenc BMS215HS

CRP Plasma R&D Systems DCRP00

CD14 Plasma R&D Systems DC140

MCP1 Plasma R&D Systems DCP00

Soluble ICAM 1 Plasma R&D Systems BBE1B

LBP Plasma Hycult Biotechd HK315-01

Oxidized LDL Plasma Mercodia 10-1143-01

aR&D systems Inc., Minneapolis, MN, Canada
bMercodia, Uppsala, Sweden
cInvitrogen, Thermo Fisher Scientific, Inc., Waltham, MA, USA
dHycult Biotech, Uden, the Netherlands
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Sigma-Aldrich), and the dried lipophilic extracts were reconstituted with a solution 
of deuterated chloroform (CDCL3)/deuterated methanol (CD3OD) (2:1, chloroform 
d-1 and methanol d-4 from Deutero) containing 1.18 mM tetramethylsilane (TMS, 
Sigma-Aldrich) and then vortexed. Both extracts were transferred into 5 mm NMR 
glass tube for 1H NMR analysis. 1H NMR spectra were recorded at 300 K on an 
Avance III 600 spectrometer (Bruker, Billerica, Massachusetts, MA, USA) operating 
at a proton frequency of 600.20 MHz using a 5 mm PABBO gradient probe. 
Aqueous extracted samples were measured and recorded in processing number 
(procno) 11. For aqueous extracts one-dimensional 1H pulse experiments were 
carried out using the nuclear Overhauser effect spectroscopy (NOESY) 
presaturation sequence (RD–90°–t1–90°–tm–90° ACQ) to suppress the residual 
water peak, and the mixing time was set at 100 milliseconds. Solvent presaturation 
with irradiation power of 160 mW was applied during recycling delay (RD = 5 
seconds) and mixing time. The 90° pulse length was calibrated for each sample 
and varied from 9.72 to 10.06 μs. The spectral width was 12 kHz (20 ppm), and a 
total of 256 transients were collected into 64 k data points for each 1H spectrum. 
Lipidic extracted samples were measured and recorded in procno 22. In the case 
of lipophilic extracts, a 90º pulse with presaturation sequence (zgpr) was used to 
suppress water residual signal of methanol. A RD of 5.0 seconds with acquisition 
time of 2.94 seconds were used. The 90º pulse length was calibrated for each 
sample and varied from 9.92 to 10.04 μs. After 4 dummy scans, a total of 128 scans 
were collected into 64K data points with a spectral with of 18.6 ppm. The 
exponential line broadening applied before Fourier transformation was of 0.3 Hz. 
The frequency domain spectra were phased, baseline-corrected and referenced 
to TSP or TMS signal (d = 0 ppm) using TopSpin software (version 3.6, Bruker). All 
acquired 1H NMR were compared to standards of the pure selected compounds 
from AMIX spectra database (Bruker®), HMDB, and Chenomx databases for 
metabolite identification. In addition, we assigned metabolites by 1H–1H 
homonuclear correlation (COSY and TOCSY) and 1H–13C heteronuclear (HSQC) 
2D NMR experiments and by correlation with pure compounds run in-house when 
were needed. After pre-processing, specific 1H NMR regions identified in the 
spectra were integrated using the AMIX 3.9 software package. Curated identified 
regions across the spectra that were integrated using the same AMIX 3.9 software 
package were exported to Excel to evaluate the robustness of the different 1H 
NMR signals and to calculate the concentrations.

LC-MS/MS in plasma
Plasma acylcarnitines were quantified or semi-quantitated in plasma by liquid 
chromatography with tandem mass spectrometry (LC-MS/MS). Plasma samples 
were thawed at 4ºC and 30 μL sample were mixed with 270 μL 100% methanol 
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containing the set of labelled internal standards (see Supplementary Table S2). 
The mixture was vortexed for 15 seconds and centrifuged for 10 minutes at 3800g 
at 4ºC. The supernatant was transferred into a new plate and injected onto a 
Kinetex 2.6 μm Polar C18 column, 100 Å, 150 x 2.1 mm (Phenomenex, Torrance, CA, 
USA) using a UHPLC 1290 Infinity II Series system coupled to a QqQ/MS 6470 
Series system (Agilent Technologies, Santa Clara, CA, USA). Metabolite extraction 
was carried out with a semi-automated process using Agilent Bravo Automated 
Liquid Handling Platform (Agilent Technologies, Santa Clara, CA, USA). 

Statistical analyses 
Statistical analyses were performed using IBM SPSS Statistics for Windows 
(Version 25.0, IBM Corp, Armonk, NY, USA), and R (Version 4.1.2. R Core Team, 
Vienna, Austria). Graphs were created using GraphPad Prism (Version 9.0, 
Graphpad Software, CA, USA) and R. In total 102 variables were included in the 
main analyses (RM-ANOVA, main effect analysis, PCA, heatmaps, correlation 
matrices). In the comparative analysis between identical metabolites in serum and 
plasma, 16 variables per platform (Nightingale or EURECAT) were included. 

Data representation and transformation 
Normality was checked using Shapiro-Wilk normality tests and tests for skewness 
and kurtosis. Normally distributed data is presented as mean ± standard deviation 
(SD) and not normally distributed data is presented as median [interquartile range 
(IQR)]. For univariate analyses (repeated-measures analysis of variance (RM-ANOVA) 
and main effect analysis), not normally distributed data was transformed (log, 
inverse, square, inverse square root). For multivariate analyses (principal component 
analysis (PCA), hierarchical clustering and heatmap plotting and correlation matrix 
analyses) all data was range scaled using the formula (x – min(x)) / (max(x) – min(x)) 
(25) because all biomarkers were measured in different units. Scaling resulted in a 
value ranging from 0 – 1 for every variable but preserved the dynamic range within 
each biomarker. One sample on the EURECAT platform did not pass the quality 
assurance tests during 1H NMR analysis and was excluded from the analysis, 
resulting in N = 14 samples for the low-fit and N = 15 samples for the high-fit group 
for some analytes. 

Bivariate tests, RM-ANOVA and main effects analysis 
Subject characteristics were compared using a Student’s unpaired t-test or 
Mann-Whitney U test. RM-ANOVA was used to study the effect of fitness level 
(between-subjects factor) and the effect of a recent bout of exercise (within-
subjects factor) on single biomarker levels and the interaction between these two 
factors. All assumptions for RM-ANOVA were met. Partial eta square (η2) is given  



122 | Chapter 5

per effect as measure for effect size. Since our study includes two repeated 
measures and the non-parametric alternative for a RM-ANOVA (Friedman ANOVA) 
requires three repeated measures, the six variables that did not achieve normality 
after data transformation were analysed using non-parametric bivariate analyses. 
Mann-Whitney U tests on the ranked baseline values were used to study the 
fitness level effect and on the ranked difference between baseline and 
post-exercise values to study the interaction effect. Wilcoxon-Signed rank tests 
on the ranked baseline and post-exercise values were used to study the exercise 
effect. No partial effect size measure could be calculated for these non-parametric 
tests. Raw P-values were corrected for multiple testing using Benjamini-Hochberg 
correction in the R package ‘FSA’ (26) and a false discovery rate (FDR) set at 10%. 
FDR-corrected P-values < 0.10 (adjusted P (Padj.)) were considered statistically 
significant. None of the interactions between fitness level and the recent bout of 
exercise (Pgroup*exercise) were < 0.10 and the main effects of fitness level and the 
recent bout of exercise were therefore also analysed in a model without the 
interaction term (Supplementary Tables S6, S7, S8).

PCA, hierarchical clustering and heatmap plotting 
For PCA, the covariance matrix was computed, eigenvector decomposition was 
performed for principal component identification, and the first and second largest 
principal components were plotted in a projection matrix, using the R packages 
‘ggplot2’ (27), ‘tidyverse’ (28), ‘factoextra’ (29) and ‘FactoMineR’ (30). Hierarchical 
clustering was performed using Euclidean distance as the dissimilarity measure 
and complete linkage as the similarity measure between the clusters using the 
hclust function from R (31). Heatmaps were generated using the R package 
‘ComplexHeatmap’ (32). 

Correlation analyses
Levels of identical metabolites measured in serum (EURECAT) and plasma 
(Nightingale) were compared using Spearman rank (for not normally distributed 
data) or Pearson (for normally distributed data) correlations on the raw data (16 
variables per platform) to compare relative as well as absolute values. Spearman 
rho (ρ) or Pearson r (r) are given as effect size measures and P-values < 0.05 were 
considered statistically significant. The correlation matrix was generated by 
performing Spearman rank correlation analyses for all biomarker pairs. All scaled 
biomarker data (102 variables) of high-fit and low-fit subjects at baseline as well as 
at post-exercise (Figure 5) or at baseline only (Supplementary Figure S4) was 
included. The correlation analysis used all scaled biomarker values without 
considering the fitness level or recent exercise effect. The correlation matrix was 
generated using the hclust function from R (31) and the R packages ‘corrplot’ (33) 
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and ‘Hmisc’ (34), returning a correlation plot based on hierarchically clustered 
biomarkers. Significant correlations (P < 0.05) are depicted by coloured wells and 
non-significant correlations (P > 0.05) are left blank.

Results

All 102 biomarkers were analysed in samples from a well characterized study 
(21,22,35) of healthy females. This study population represents trained, physically 
active (high-fit; V̇O2peak ≥ 47 mL/kg/min, N = 15) and untrained, low physically 
active (low-fit; V̇O2peak ≤ 37 mL/kg/min, N = 15) females (Table 2), which was 
supported by a significantly higher skeletal muscle mitochondrial capacity (21)  
and a better mitochondrial function in PBMCs (22) in the high-fit compared to the 
low-fit females. Both groups were assessed at baseline and 21 hours after a single  
bout of exercise. To establish the reproducibility of the biomarker determination, 
a random subset of 16 biomarkers involved in protein and lipid metabolism, 
was also determined using a similar 1H NMR technology, but with different matrices 
and laboratories. Significant correlations were observed for all 16 markers,  
with correlation coefficients between 0.59 – 0.90 for the amino acids (all eight 
P < 0.0001), 0.42 – 0.65 for the six fatty acids (one P < 0.01, three P < 0.001,  
two P < 0.0001) and 0.63 and 0.86 for the two ketone bodies (both P<0.0001, 
Supplementary Figure S2). This supports the validity of these biomarker 
measurements and demonstrates the robustness of our approach.

Single biomarker analysis demonstrates a similar biomarker profile 
between high-fit and low-fit females 
To better evaluate which functional processes are affected upon alterations in 
biomarker levels, we first linked each biomarker to one of the following 
physiological processes: hormone signaling, inflammation and oxidative stress 
responses, and metabolism. This resulted in three overarching, functional 
biomarker categories: 1) peptide hormones (Supplementary Table S3), 2) 
inflammation and oxidative stress responses (Supplementary Table S4), and 3) 
metabolism (which was further divided in protein, carbohydrate, and lipid 
metabolites, Supplementary Table S5). Since many biomarkers were related to 
lipid metabolism, this subcategory was further subdivided into fatty acids, cholines, 
ketone bodies, acylcarnitines, cholesterol metabolites and lipoproteins. All mean 
or median biomarker values and ranges for high-fit and low-fit females at baseline 
and after recent exercise are in Supplementary Table S3. To assess the effect of 
fitness level and the recent bout of exercise on the individual biomarker responses, 
RM-ANOVA on the raw data (for normally distributed biomarkers) or transformed 
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data (for not normally distributed biomarkers) was performed. This resulted in a 
fitness level effect (rawPgroup), a recent exercise effect (rawPexercise), and an 
interaction effect (rawPgroup*exercise) for each biomarker, and these raw P-values 
were corrected for multiple testing, with a significance cut-off of < 0.10 for adj.
Pgroup, adj.Pexercise and adj.Pgroup*exercise. The detailed results of these analyses 
and the measure of effect size (η2) are in Supplementary Tables S3 – S5. None of 
the individual biomarkers was significantly impacted by fitness level, except for 
the ‘peptide hormone’ leptin (Figure 1), which was significantly higher in low-fit 
females compared to high-fit females (adj.Pgroup= 0.076, Figure 2A). Thus, none of 
the markers related to inflammation, oxidative stress, or metabolism was 
significantly impacted by fitness level in our healthy females, indicating that high-fit 
and low-fit females have similar biomarker profiles.

Recent exercise regulates single biomarkers related to inflammation, 
lipid metabolism and hormone signaling 
Next, we assessed whether recent exercise altered individual biomarker levels 
and examined whether high-fit and low-fit females responded differently to recent 
exercise. Recent exercise significantly regulated 35 of the 102 biomarkers, related 
to hormone signaling, inflammation and oxidative stress, lipid metabolism, and 

Table 2  Subject characteristics

Low-fit (N = 15) High-fit (N = 15)

Age (years) 24.5 [22.9 – 25.6] 21.8 [21.6 - 23.7]

Ethnicity Caucasian (11), Asian (1),  
Indo-pacific (4)

All Caucasian

Weight (kg) 59.7 ± 7.1 61.2 ± 7.0

Height (m) 1.63 ± 0.08 1.68 ± 0.05

BMI (kg/m2) 22.4 ± 1.4 21.7 ± 1.9

Fat mass (% of weight) 28.7 ± 3.9 25.1 ± 4.4 *

Hemoglobin (mM) 8.4 ± 0.6 8.5 ± 0.6

Use of birth control pill 6 / 15 7 / 15

V̇O2peak (mL ·kg ˉ¹ · min ˉ¹) 35.0 [31.6 - 35.6] 50.4 [49.0 – 54.0] ****

Baecke total score 7.3 ± 1.0 9.5 ± 0.8 ****

mV̇O2 recovery constant (% · min ˉ¹) 1.53 ± 0.46# 2.06 ± 0.57 *

BMI = body mass index, V̇ O2peak = maximal oxygen consumption values, mV̇ O2 = maximal oxygenation 
recovery constant in the gastrocnemius as proxy for skeletal muscle mitochondrial capacity. #N = 11. 
Values are mean ± SD for normally distributed data, and median [IQR] for not normally distributed data. 
*P < 0.05, *** P < 0.001, **** P < 0.0001.
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protein metabolism (Figure 1). The peptide hormone adiponectin was significantly 

increased after exercise in both groups (adj.Pexercise = 0.001, Figure 2B). Of the 10 
biomarkers that are related to inflammation and oxidative stress, 7 were significantly 
regulated by exercise, the top-5 being N-acetylglycoproteins (up; adj.Pexercise =  
4.16x10-6), MCP1 (down, adj.Pexercise = 4.16x10-6), TNF (down, adj.Pexercise = 
3.09x10-4), CRP (up, adj.Pexercise = 0.003), and IL10 (down, adj.Pexercise = 0.003, 
Figure 2C – G). In total 27 metabolic markers were significantly regulated by 
exercise, with the top-5 all linked to lipid metabolism, with increased levels of lys-
ophosphatidylcholine (adj.Pexercise = 3.51x10-6, Figure 2H) and increased levels of 
apolipoprotein A1, total esterified cholesterol, total cholesterol, and HDL 
cholesterol (Figure 2I – L, all adj.Pexercise = 0.001). Importantly, for none of the  

Figure 1: The effect of fitness level and a recent exercise bout on individual biomarker 
levels. Graphical summary representing the fitness level effect (PadjGroup), recent exercise 
effect (PadjExercise) and interaction effect (PadjGroup*Exercise, shown as PadjInteraction) on 
individual biomarker levels within each functional biomarker category (indicated by colour). 
Significant fitness level effects (adj.Pgroup < 0.10) or recent exercise effects (adj.Pexercise  
< 0.10) are depicted by upward and downward green triangles that indicate the direction  
of the effect. Non-significant effects (adj.Pgroup, adj.Pexercise or adj.Pgroup*exercise > 0.10) are 
depicted in grey squares (all interaction effects were not significant). Main effects (fitness 
level and recent exercise) and interaction effects were analyzed using RM-ANOVA.
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102 biomarkers, the exercise response significantly differed between high-fit and 
low-fit females (all adj.Pgroup*exercise > 0.10). We therefore performed an additional 
main effect analysis without the interaction term, which resulted in the same 
significantly regulated biomarkers as compared to the full interaction model, 
except for MUFA (adj.Pexercise = 0.101, Supplementary Tables S4, S5, S6). 

In summary, this single biomarker analysis demonstrated that various biomarkers 
linked to inflammation, lipid and protein metabolism, and adiponectin were 
significantly regulated by recent exercise, while only leptin was affected by fitness 
level in these healthy females (Figure 3). 

Data-driven biomarker clusters link with functional biomarker categories 
Next, we studied the joined dynamics of these biomarkers. Hierarchical clustering 
was applied on the scaled biomarker levels and visualized in a heatmap (Figure 4). 
The heatmap generated multiple biomarker clusters that corresponded to our 
predefined functional biomarker categories, indicated by clustering of inflammation 
and oxidative stress related markers, amino acids, fatty acids, ketone bodies, 
acylcarnitines, lipoproteins and cholesterol metabolites along the y-axis (Figure 4). 
Although some of these functional biomarker categories also displayed x-axis 
clustering (e.g., the lipoproteins and fatty acids), the overall heatmap pattern was 
only slightly related to fitness level and not related to recent exercise. Instead, the 
intra-individual biomarker response, i.e., baseline and post-exercise values within 
one subject, accounted for most of the x-axis clustering. The notion that biomarker 
levels were primarily affected by interindividual differences, rather than fitness 
level or the recent bout of exercise, was confirmed by PCA, where no clear 
separation was observed between our experimental conditions (Supplementary 
Figure S3). To obtain a more detailed understanding on data-driven relationships 
between biomarkers, a hierarchically clustered (P < 0.05) correlation matrix was 
generated, with significant Spearman ρ > 0.6 or < 0.6 correlations indicated as 
potential physiological relevant links (Figure 5). As above, these data-driven 
correlations corresponded to functional categories, such as amino acids (especially  
the branched-chain amino acids (BCAAs)), fatty acids, ketone bodies, acylcarnitines, 
cholesterol metabolites and lipoproteins (Figure 5). However, some data-driven 
correlated biomarkers were not in line with our predefined functional biomarker 
categories, such as CRP and glycine (r = -0.72), glutamine and hydroxyisovaleryl-
carnitine (C5:0-OH, r = 0.60), tyrosine and hydroxyisovalerylcarnitine (C5:0-OH,  
r = 0.64), tyrosine and methylcrotonylcarnitine (C5:1, r = 0.66), betaine and 
octadecadienylcarnitine (C18:2, r = 0.65), and N-acetylglycoproteins and lyso-
phosphatidylcholine (r = 0.65), all having a P < 1.0x10-7. Of note, similar patterns 
were observed when only the baseline levels from high-fit and low-fit females 
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were included (Supplementary Figure S4). Overall, this integrated biomarker 
analysis demonstrated that data-driven biomarker clusters include biomarkers 
that are also functionally linked, and that various of these clusters correspond with 
our predefined functional biomarker categories.

Figure 3: The effect of fitness level and a recent exercise bout on biomarker category 
responses. Graphical summary representing the number of significantly regulated biomarkers 
between high-fit and low-fit females (fitness level effect, left bars) and the number of 
significantly regulated biomarkers between baseline and post-exercise (recent exercise 
effect, right bars). Non-significant effects (adj.Pgroup or adj.Pexercise > 0.10) are depicted in 
light coloured bars and significant effects (adj.Pgroup or adj.Pexercise < 0.10) are depicted in 
dark coloured, dashed bars. The filled area is calculated relatively to the number of 
biomarkers within the corresponding functional category. 
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Figure 5: Correlation matrix showing the relationships between biomarker pairs. The 
correlation matrix based on Spearman correlation coefficients between biomarker pairs. 
Spearman rank correlation analysis was performed on the scaled biomarker values for all 
biomarker pairs using the combined data of high-fit and low-fit females at baseline and 
post-exercise. Relationships were considered statistically significant when P < 0.05. 
Significant relationships are indicated in red (negative correlation) or blue (positive 
correlation). Non-significant relationships (P > 0.05) are left blank.
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Discussion

We performed an elaborate analysis of 102 circulating biomarkers, previously 
studied in disease conditions such as type 2 diabetes, obesity, and cardiovascular 
disease (36–39), but hardly in healthy individuals with different lifestyles. Analysis 
of a selection of these biomarkers across two platforms showed similar results, 
underpinning their reliability, and indicating the robustness of these platforms. 
Except for leptin, individual biomarker levels were not significantly different 
between high and low aerobically fit females. Since leptin levels have been 
positively correlated to body fat percentage (40,41), the difference in leptin 
presumably results from a significant difference in body fat percentage between 
high-fit and low-fit females, further underpinning the validity of our data. Our 
observation that all other biomarkers were similar between the two groups, while 
previous studies in high and low aerobically fit individuals found significant 
differences in e.g., lipid and protein metabolites (42–47), is likely related to our 
standardized experimental set-up, as compared to other studies. We studied 
healthy, young-adult females of similar age and body mass index (BMI) in a highly 
controlled setting, while previous studies were performed with metabolically 
impaired individuals (38) and individuals with different BMI (42–44,47) or wider 
age ranges (42,47), in experimental conditions that were less standardized 
(42–45,47), and especially these factors impact circulating metabolite levels 
(38,42,43). Given that the levels of the analysed biomarkers were similar among 
the healthy females in our study, and multiple of these biomarkers showed 
dysregulation during disease, our findings imply that this biomarker set could be 
used to monitor progress from a healthy to an unhealthier state and may be use in 
health improvement interventions. 

Studies that focus on recent exercise effects, i.e., effects on the day after exercise 
completion, are scarce compared to studies on acute or chronic exercise (15,18). 
Yet, recent exercise is especially relevant for biomarkers, as they can indicate 
whether physical activity of study subjects should be controlled prior to sampling. 
Here, we demonstrated that adiponectin, lipid metabolites, and inflammatory 
markers were most responsive to recent exercise, which is line with data from 
other studies (48–51). These findings suggest that future biomarker studies should 
consider standardization of study subjects’ physical activity 24 hours prior to 
blood sampling, especially when they include hormones, and markers related to 
lipid metabolism and inflammation. 
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Multiple separate clusters that were obtained in the heatmap and correlation 
matrix included biomarkers that corresponded to biomarkers embedded in our 
predefined, functional biomarker categories. Examples are the BCAAs, fatty acids, 
ketone bodies, short-chain acylcarnitines, long-chain acylcarnitines, cholesterol 
metabolites, and lipoproteins, which suggests that the response of biomarkers 
within these (sub)categories are interdependent. This has two important 
implications. First, one biomarker within a cluster could be considered as 
representative of the total cluster (e.g., isoleucine for the BCAAs), which could be 
of relevance for studies that measure only one or a limited number of biomarkers 
from one correlated cluster. Second, it provides opportunities for future studies to 
compute one total, standardized score for all biomarkers within a cluster that are 
strongly correlated (e.g., a total BCAA score). From a disease risk assessment 
point of view, such an integrated score will likely have a larger power and stronger 
predictive value as compared to individual biomarker levels. Previously, Wang et 
al. have found that BCAA levels could predict type 2 diabetes risk (36). Integrated 
BCAA analysis is therefore promising as health-status biomarker. Not all biomarkers 
from functional categories can be integrated because of differences in the 
individual responses (e.g., peptide hormones, inflammation markers, and short- 
vs. longer-chain acylcarnitines). Clustering outside the functional category was 
also observed. The inverse association between CRP and the amino acid glycine 
has also been demonstrated previously (52,53) and likely results from the 
inflammation modulating capacity of glycine (54,55). The positive association 
between N-acetylglycoprotein and lysophosphatidylcholine is also likely mediated 
via inflammation, since N-acetyglycoproteins plasma levels correlate with lipopro-
tein-associated phospholipase A2 levels (56), which generates lysophosphatidyl-
choline to promote inflammation (57,58). Direct positive links between glutamine, 
tyrosine, C5:0-OH and C5:1 acylcarnitines have not yet been described, but could 
be mediated by BCAA breakdown (59,60). The positive link between betaine and 
C18:2 acylcarnitine has not yet been demonstrated in humans, but may be related 
to fatty acid incorporation, as previously demonstrated in pigs (61). The observed 
correlations imply some revision of our a-priory functional categorization and, 
importantly, provide leads for biomarker integration and functional interpretation 
of changes in biomarker levels. 

Next to the functional links between biomarker pairs, the hierarchical clustering 
models also showed that the degree of clustering for the intraindividual biomarker 
response i.e., the baseline and post-exercise biomarker values of one subject, 
was higher than the degree of clustering of the group (high-fit vs. low-fit) and the 
timepoint (baseline vs. post-exercise) biomarker responses. This finding suggests 
a considerable level of interindividual variation in our study population, which 
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might also explain our observation that ~35% of the biomarkers was significantly 
impacted by recent exercise, but that clustering did not separate total baseline 
and post-exercise biomarker profiles. Since Krug et al., also showed that the inter-
individual variability was increased by using challenge tests (62), one could 
speculate that the challenged biomarker responses within one individual over 
time might act as a better predictor of health status, as compared to a singular 
analysis of the average biomarker levels of a larger group during basal homeostasis. 

Our study included some strengths and limitations. One of the strengths is the 
integrated approach to analyze single as well as joined biomarker behavior in a 
healthy, homogenous study population at basal as well as challenged conditions, 
which provides us better insight in the behavior of biomarkers relatively to each 
other. An understanding of biomarkers in the healthy individuals is a prerequisite 
for their use in preventive health, for example biomarker guided dietary advise for 
health improvement. Another strength of our study is the focus on female 
individuals, since sex can affect metabolic responses (20,42), and females are 
often underrepresented in biomarker studies (15). One of the limitations of our 
study is that we could not determine the contribution of intraindividual variation, 
i.e., the day-to-day variation within an individual, as we sampled only twice in a 
relatively short time span. Although previous studies have demonstrated that the 
intraindividual variation for circulating adipokines (63), inflammatory markers 
(63,64), and metabolites (65,66) is smaller than the interindividual variation, we 
cannot exclude this source of error in our study. Second, we did not include 
additional post-exercise sampling timepoints, e.g., immediately post-exercise or a 
few hours post-exercise. Since the levels of most inflammatory markers, oxidative 
stress related markers and metabolites change acutely or in the first few hours 
after exercise, with each marker having its own kinetic profile (15,18) and the fact 
that biomarker kinetics can also differ between individuals as a result of interindi-
vidual variation (62), sampling at multiple timepoints after the exercise bout would 
have given insight in the exercise-induced biomarker behavior over time. Third, 
our study focused on a total of 102 biomarkers related to hormone signaling, 
inflammation and oxidative stress, and metabolism, while fitness level and single 
exercise stimulation have been associated with alterations in markers that were 
not included in our study, such as vitamins (44,45), ceramides (38), and individual 
lysophosphatidylcholines (38,42), which could possibly have provided additional 
insights in these biomarkers in view of the homogeneity of our study subjects 
characteristics and high level of study standardization.
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In conclusion, we showed that the overall circulating biomarker profiles were 
similar between high-fit and low-fit young, healthy, adult females. Although recent 
exercise had a limited impact on the overall biomarker profiles, it significantly 
affected a selected number of individual biomarkers. This study provides insight 
in the single and joined behaviour of circulating biomarkers in healthy females, 
and identified functional biomarker categories that may be used for characteriza-
tion of human health physiology.
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Supplementary materials

Supplementary Figure S1: Habitual dietary intake of the study subjects. Dietary intake of 
the subjects was assessed with a validated food frequency questionnaire (FFQ) and total 
daily energy intake (A) and intake of carbohydrates (B), proteins (C), and fats (D) were 
calculated for high-fit (blue) and low-fit (grey) females.
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Supplementary Figure S2: Correlations between biomarkers in serum and plasma with 
two platforms. (A - P) Correlations of amino acid derivatives (A - H, blue) or fatty acids (I - P, 
beige) analyzed in serum at Eurecat (x-axis) or in plasma at Nightingale (y-axis). All 
concentrations are in mM. Pearson correlation coefficients (r) were calculated normally 
distributed variables and Spearman rank correlation coefficients (ρ) were calculated for 
not-normally distributed variables. ****P < 0.0001, ***P < 0.001, **P < 0.01.
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Supplementary Figure S3: Principal component analysis (PCA) of the biomarker profiles. 
(A) PCA scores plot showing the separation of high-fit females at baseline (blue) and 
post-exercise (orange), and low-fit females at baseline (green) and post-exercise (red) on 
PC1 and PC2. (B) PCA loadings plot showing the biomarker contribution (indicating by cos2) 
to PC1 and PC2. Small contributions are indicated in turquoise and large contributions are 
indicated in dark orange.
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Supplementary Figure S4: Correlation matrix showing the relationships between biomarker 
pairs. The correlation matrix based on Spearman correlation coefficients between biomarker 
pairs. Spearman rank correlation analysis was performed on the scaled biomarker values 
for all biomarker pairs using the combined data of high-fit and low-fit females at baseline. 
Relationships were considered statistically significant when P < 0.05. Significant relation-
ships are indicated in red (negative correlation) or blue (positive correlation). Non-significant 
relationships (P > 0.05) are left blank.
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Supplementary Table S1  Standards and internal standards used for 
LC-MS/MS analyses

Standards Company# Catalogue number #

L-carnitine (C0) CIL NSK-B-US-1

O-acetyl-L-carnitine (C2:0) CIL NSK-B-US-1

O-propionyl-L-carnitine (C3:0) CIL NSK-B-US-1

O-butyryl-L-carnitine (C4:0) CIL NSK-B-US-1

O-isovaleryl-L-carnitine (C5:0) CIL NSK-B-US-1

O-glutaryl-L-carnitine (C5:0-DC) CIL NSK-B-G1-US-1

O-3-hydroxyisolaveryl-L-carnitine (C5:0-OH CIL NSK-B-G1-US-1

O-octanoyl-L-carnitine (C8:0) CIL NSK-B-US-1

O-dodecanoyl-L-carnitine (C12:0) CIL NSK-B-G1-US-1

O-myristoyl-L-carnitine (C14:0) CIL NSK-B-US-1

O-palmitoyl-L-carnitine (C16:0) CIL NSK-B-US-1

O-2-DL-hydroxypalmitoyl-L-carnitine (C16:0-OH) CIL NSK-B-G1-US-1

O-octadecanoyl-L-carnitine (C18:0) CIL NSK-B-G1-US-1

Internal standards Company# Catalogue number #

L-carnitine (C0) CIL NSK-B-1

O-acetyl-L-carnitine (C2:0) CIL NSK-B-1

O-propionyl-L-carnitine (C3:0) CIL NSK-B-1

O-butyryl-L-carnitine (C4:0) CIL NSK-B-1

O-isovaleryl-L-carnitine (C5:0) CIL NSK-B-1

O-octanoyl-L-carnitine (C8:0) CIL NSK-B-1

O-myristoyl-L-carnitine (C14:0) CIL NSK-B-1

O-palmitoyl-L-carnitine (C16:0) CIL NSK-B-1

#CIL = Cambridge Isotope Laboratories
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Supplementary Table S2 Selected metabolites from Nightingale platform

Metabolite Performed analyses*

Isoleucine B

Leucine B

Valine B

Alanine B

Glutamine B

Glycine B

Phenylalanine B

Tyrosine B

Glucose A

Lactate A

Pyruvate A

Citrate A

Total fatty acids (FAs) B

Polyunsaturated fatty acids (PUFA) B

Monounsaturated fatty acids (MUFA) B

Saturated fatty acids (SFA) B

Linoleic acid B

Docosahexaenoic acid (DHA) B

Phosphoglycerides A

3-Hydroxybutyrate A, B

Acetate A, B

Acetoacetate A

Acetone A

Total cholesterol A

VLDL cholesterol A

LDL cholesterol A

HDL cholesterol A

Total esterified cholesterol A

Total free cholesterol A

Apolipoprotein B A

Apolipoprotein A1 A

Total concentration of lipoprotein particles A

Concentration of VLDL particles A

Concentration of LDL particles A

Concentration of HDL particles A
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Supplementary Table S2 Continued

Metabolite Performed analyses*

Concentration of chylomicrons and extremely large VLDL particles A

Concentration of very large VLDL particles A

Concentration of large VLDL particles A

Concentration of medium VLDL particles A

Concentration of small VLDL particles A

Concentration of very small VLDL particles A

Concentration of IDL particles A

Concentration of large LDL particles A

Concentration of medium LDL particles A

Concentration of small LDL particles A

Concentration of very large HDL particles A

Concentration of large HDL particles A

Concentration of medium HDL particles A

Concentration of small HDL particles A

Creatinine A

Albumin A

*A = used for main analyses (RM-ANOVA, main effects, PCA, heatmaps, correlation matrices), B = used 
for correlation analysis (comparison with serum levels in Eurecat platform) 
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Supplementary Table S3 Peptide hormone markers
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Leptin Serum ELISA ng/mL 12.8 [7.1 – 18.1] 16.8 [8.8 – 24.5] 5.6 [3.9 – 6.6] 4.4 [3.7 – 5.6] Log 0.001 0.076 0.339 0.391 0.570 0.026 0.067 0.346 0.114

Insulin Serum ELISA mU/L 4.1 [3.4 – 5.0] 3.9 [2.8 – 4.8] 3.3 [2.6 – 4.3] 2.5 [2.2 – 3.7] Log 0.039 0.464 0.144 0.037 0.105 0.148 0.439 0.656 0.022

Adiponectin Serum ELISA µg/mL 24.0 [16.0 – 29.6] 28.6 [21.3 – 33.6] 19.4 [13.9 – 27.4] 32.9 [27.2 – 38.9] Log 0.914 0.931 4.29E-04 1.55E-04 0.001 0.405 0.143 0.409 0.075

Data is represented as median [IQR]. Raw P-values were adjusted using an FDR of 10%.  
Significant raw P-values are indicated in bold.  
Significant FDR-adjusted P-values (Padj < 0.10) are indicated in underlined bold. 
#Log-transformation was applied on not normally distributed variables. 
aAnalyzed using the EURECAT platform. 

Supplementary Table S4 Inflammation and oxidative stress related markers
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TNF Plasma ELISA pg/mL 0.44 [0.38 – 0.58] 0.39 [0.36 – 0.43] 0.60 [0.49 – 0.78] 0.34 [0.28 – 0.39] Log 0.693 0.897 0.006 1.20E-05 3.09E-04 0.502 0.009 0.247 0.220

IL6 Plasma ELISA pg/mL 1.02 [0.64 – 1.29] 0.66 [0.41 – 1.16] 0.76 [0.55 – 1.41] 0.43 [0.26 – 0.58] Log 0.154 0.640 0.071 0.004 0.017 0.256 0.036 0.325 0.147

IL10 Plasma ELISA pg/mL 0.57 [0.31 – 8.61] 0.33 [0.09 – 0.60] 7.93 [4.82 – 11.2] 0.43 [0.21 – 0.70] Log 0.025 0.464 0.167 3.46E-04 0.003 0.372 0.116 0.372 0.086

CRP Serum ELISA µg/mL 0.66 [0.51 – 1.78] 0.85 [0.63 – 2.27] 0.31 [0.14 – 1.91] 0.43 [0.22 – 2.17] Log 0.065 0.606 0.117 3.31E-04 0.003 0.374 0.250 0.547 0.047

Soluble CD14 Plasma ELISA µg/mL 1.26 [1.15 – 1.43] 1.38 [1.23 – 1.46] 1.33 [1.15 – 1.43] 1.56 [1.26 – 1.68] Log 0.546 0.897 0.013 0.004 0.015 0.265 0.082 0.352 0.104

MCP1 Plasma ELISA pg/mL 166 [144 – 267] 131 [111 – 144] 244 [212 – 280] 100 [89.1 – 111] Inverse 0.379 0.855 0.028 1.21E-07 4.16E-06 0.638 0.005 0.247 0.247

Soluble ICAM1 Plasma ELISA ng/mL 161 [117 – 184] 151 [129 – 189] 169 [165 – 182] 189 [129 – 197] Square 0.160 0.640 0.069 0.939 0.972 2.14x10-4 0.709 0.815 0.005

LBP Plasma ELISA µg/µL 6.84 [5.82 – 8.89] 6.62 [5.66 – 10.3] 6.35 [5.49 – 8.37] 6.21 [5.84 – 7.72] Log 0.604 0.897 0.010 0.620 0.718 0.009 0.967 0.989 6.20E-05

N-acetyl 
glycoproteins

Serum NMR mmol/L 0.07 [0.06 – 0.08] 0.11 [0.10 – 0.13] 0.08 [0.06 – 0.09] 0.12 [0.11 – 0.13] Log 0.513 0.897 0.015 1.02E-07 4.16E-06 0.642 0.938 0.982 2.24E-04

Oxidized LDL Plasma ELISA U/L 103 [86 – 151] 85 [66 – 120] 190 [27 – 389] 82 [65 – 123] Log 0.679 0.897 0.006 0.315 0.508 0.036 0.581 0.739 0.011

Normally distributed data is represented as mean (SD) and non-normally distributed data is represented
as median [IQR]. Raw P-values were adjusted using an FDR of 10%. Significant raw P-values are indicated in bold. 
Significant FDR-adjusted P-values (Padj < 0.10) are indicated in underlined bold. 
#Transformations (log, inverse, square) were applied on not normally distributed variables. 
aAnalyzed using the EURECAT platform.
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Supplementary Table S3 Peptide hormone markers
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Leptin Serum ELISA ng/mL 12.8 [7.1 – 18.1] 16.8 [8.8 – 24.5] 5.6 [3.9 – 6.6] 4.4 [3.7 – 5.6] Log 0.001 0.076 0.339 0.391 0.570 0.026 0.067 0.346 0.114

Insulin Serum ELISA mU/L 4.1 [3.4 – 5.0] 3.9 [2.8 – 4.8] 3.3 [2.6 – 4.3] 2.5 [2.2 – 3.7] Log 0.039 0.464 0.144 0.037 0.105 0.148 0.439 0.656 0.022

Adiponectin Serum ELISA µg/mL 24.0 [16.0 – 29.6] 28.6 [21.3 – 33.6] 19.4 [13.9 – 27.4] 32.9 [27.2 – 38.9] Log 0.914 0.931 4.29E-04 1.55E-04 0.001 0.405 0.143 0.409 0.075

Data is represented as median [IQR]. Raw P-values were adjusted using an FDR of 10%.  
Significant raw P-values are indicated in bold.  
Significant FDR-adjusted P-values (Padj < 0.10) are indicated in underlined bold. 
#Log-transformation was applied on not normally distributed variables. 
aAnalyzed using the EURECAT platform. 
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TNF Plasma ELISA pg/mL 0.44 [0.38 – 0.58] 0.39 [0.36 – 0.43] 0.60 [0.49 – 0.78] 0.34 [0.28 – 0.39] Log 0.693 0.897 0.006 1.20E-05 3.09E-04 0.502 0.009 0.247 0.220

IL6 Plasma ELISA pg/mL 1.02 [0.64 – 1.29] 0.66 [0.41 – 1.16] 0.76 [0.55 – 1.41] 0.43 [0.26 – 0.58] Log 0.154 0.640 0.071 0.004 0.017 0.256 0.036 0.325 0.147

IL10 Plasma ELISA pg/mL 0.57 [0.31 – 8.61] 0.33 [0.09 – 0.60] 7.93 [4.82 – 11.2] 0.43 [0.21 – 0.70] Log 0.025 0.464 0.167 3.46E-04 0.003 0.372 0.116 0.372 0.086

CRP Serum ELISA µg/mL 0.66 [0.51 – 1.78] 0.85 [0.63 – 2.27] 0.31 [0.14 – 1.91] 0.43 [0.22 – 2.17] Log 0.065 0.606 0.117 3.31E-04 0.003 0.374 0.250 0.547 0.047

Soluble CD14 Plasma ELISA µg/mL 1.26 [1.15 – 1.43] 1.38 [1.23 – 1.46] 1.33 [1.15 – 1.43] 1.56 [1.26 – 1.68] Log 0.546 0.897 0.013 0.004 0.015 0.265 0.082 0.352 0.104

MCP1 Plasma ELISA pg/mL 166 [144 – 267] 131 [111 – 144] 244 [212 – 280] 100 [89.1 – 111] Inverse 0.379 0.855 0.028 1.21E-07 4.16E-06 0.638 0.005 0.247 0.247

Soluble ICAM1 Plasma ELISA ng/mL 161 [117 – 184] 151 [129 – 189] 169 [165 – 182] 189 [129 – 197] Square 0.160 0.640 0.069 0.939 0.972 2.14x10-4 0.709 0.815 0.005

LBP Plasma ELISA µg/µL 6.84 [5.82 – 8.89] 6.62 [5.66 – 10.3] 6.35 [5.49 – 8.37] 6.21 [5.84 – 7.72] Log 0.604 0.897 0.010 0.620 0.718 0.009 0.967 0.989 6.20E-05

N-acetyl 
glycoproteins

Serum NMR mmol/L 0.07 [0.06 – 0.08] 0.11 [0.10 – 0.13] 0.08 [0.06 – 0.09] 0.12 [0.11 – 0.13] Log 0.513 0.897 0.015 1.02E-07 4.16E-06 0.642 0.938 0.982 2.24E-04

Oxidized LDL Plasma ELISA U/L 103 [86 – 151] 85 [66 – 120] 190 [27 – 389] 82 [65 – 123] Log 0.679 0.897 0.006 0.315 0.508 0.036 0.581 0.739 0.011

Normally distributed data is represented as mean (SD) and non-normally distributed data is represented
as median [IQR]. Raw P-values were adjusted using an FDR of 10%. Significant raw P-values are indicated in bold. 
Significant FDR-adjusted P-values (Padj < 0.10) are indicated in underlined bold. 
#Transformations (log, inverse, square) were applied on not normally distributed variables. 
aAnalyzed using the EURECAT platform.
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Supplementary Table S5 Metabolism markers
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Protein and amino acid 
related metabolitesa

Isoleucine Serum NMR mmol/L 0.05 (0.01) 0.054 (0.010) 0.054 (0.006) 0.058 (0.009) - 0.287 0.806 0.042 0.447 0.622 0.022 0.447 0.657 0.022
Leucine Serum NMR mmol/L 0.10 (0.01) 0.099 (0.014) 0.097 (0.011) 0.109 (0.019) - 0.081 0.640 0.108 0.298 0.508 0.040 0.812 0.889 0.002
Valine Serum NMR mmol/L 0.20 (0.03) 0.204 (0.028) 0.185 (0.017) 0.202 (0.030) - 0.991 0.931 0.000 0.002 0.009 0.316 0.764 0.855 0.003

Alanine Serum NMR mmol/L 0.36 (0.06) 0.355 (0.057) 0.341 (0.073) 0.402 (0.085) - 0.187 0.664 0.064 0.060 0.146 0.125 0.385 0.615 0.028
Phenylalanine Serum NMR mmol/L 0.04 (0.01) 0.044 (0.005) 0.047 (0.007) 0.051 (0.010) - 0.129 0.640 0.083 0.927 0.972 3.18E-04 0.054 0.346 0.131

Glutamine Serum NMR mmol/L 0.42 [0.40 – 0.45] 0.422 [0.398 – 0.454] 0.389 [0.348 – 0.473] 0.465 [0.397 – 0.516] Log 0.406 0.855 0.026 0.005 0.018 0.257 0.720 0.815 0.005
Glutamate Serum NMR mmol/L 0.07 [0.06 – 0.08] 0.071 [0.064 – 0.082] 0.080 [0.065 – 0.095] 0.065 [0.060 – 0.089] Log 0.315 0.812 0.037 0.984 0.972 1.40E-05 0.170 0.443 0.069

Glycine Serum NMR mmol/L 0.20 [0.18 – 0.24] 0.204 [0.182 – 0.238] 0.218 [0.186 – 0.229] 0.233 [0.200 – 0.306] Log 0.148 0.640 0.076 0.566 0.685 0.012 0.371 0.615 0.030
Methionine Serum NMR mmol/L 0.017 (0.007) 0.017 (0.007) 0.021 (0.014) 0.032 (0.014) - 0.010 0.376 0.221 0.963 0.972 8.10E-05 0.188 0.450 0.063

Tyrosine Serum NMR mmol/L 0.047 (0.014) 0.047 (0.014) 0.048 (0.014) 0.051 (0.016) - 0.676 0.897 0.007 0.549 0.673 0.013 0.320 0.615 0.037
Tryptophan Serum NMR mmol/L 0.057 (0.013) 0.057 (0.013) 0.051 (0.017) 0.053 (0.019) - 0.592 0.897 0.011 0.270 0.472 0.045 0.685 0.812 0.006

Betaine Serum NMR mmol/L 0.03 [0.02 – 0.04] 0.031 [0.022 – 0.036] 0.027 [0.019 – 0.033] 0.032 [0.022 – 0.041] Inverse Sqrt 0.740 0.897 0.004 0.002 0.011 0.293 0.477 0.680 0.019
Carbohydrate and TCA 

cycle metabolitesb
Glucose Plasma NMR mmol/L 4.80 (0.28) 4.78 (0.32) 4.85 (0.22) 4.81 (0.10) - 0.620 0.897 0.009 0.363 0.559 0.030 0.710 0.815 0.005
Lactate Plasma NMR mmol/L 0.72 (0.16) 0.71 (0.192) 0.79 (0.17) 0.75 (0.23) - 0.382 0.855 0.027 0.589 0.698 0.011 0.809 0.889 0.002

Pyruvate Plasma NMR mmol/L 0.054 (0.014) 0.056 (0.009) 0.054 (0.010) 0.061 (0.015) - 0.531 0.897 0.014 0.123 0.257 0.083 0.343 0.615 0.032
Citrate Plasma NMR mmol/L 0.066 (0.009) 0.065 (0.013) 0.067 (0.010) 0.073 (0.012) - 0.204 0.677 0.057 0.238 0.435 0.049 0.143 0.409 0.075

Lipid metabolites –
Fatty acidsa, $

Total FA chains Serum NMR mmol/L 99 [92 – 105] 94 [90 – 100] 91 [83 – 110] 84 [76 – 98] Log 0.310 0.812 0.038 0.040 0.111 0.147 0.344 0.615 0.033
PUFA Serum NMR mmol/L 1.63 (0.47) 2.00 (0.44) 1.58 (0.47) 1.57 (0.48) - 0.127 0.640 0.084 0.074 0.169 0.114 0.056 0.346 0.129

Omega-3 FA Serum NMR mmol/L 0.167 (0.021) 0.179 (0.030) 0.161 (0.043) 0.160 (0.037) - 0.197 0.677 0.061 0.515 0.655 0.016 0.475 0.680 0.019
ARA & EPA Serum NMR mmol/L 0.450 (0.085) 0.514 (0.086) 0.439 (0.101) 0.442 (0.086) - 0.158 0.640 0.072 0.097 0.208 0.099 0.122 0.380 0.086

DHA Serum NMR mmol/L 0.074 (0.020) 0.065 (0.018) 0.060 (0.022) 0.051 (0.019) - 0.041 0.464 0.146 0.032 0.095 0.159 0.987 0.989 1.10x10-5

Linoleic acid Serum NMR mmol/L 1.88 (0.44) 2.57 (0.47) 1.94 (0.63) 2.00 (0.74) - 0.165 0.640 0.070 0.012 0.041 0.213 0.031 0.325 0.162
MUFA Serum NMR mmol/L 4.28 (0.95) 5.72 (1.03) 4.52 (1.50) 4.62 (1.57) - 0.276 0.806 0.044 0.023 0.070 0.177 0.046 0.336 0.140

Oleic acid Serum NMR mmol/L 1.63 [1.41 – 1.75] 2.03 [1.89 – 2.32] 1.60 [1.27 – 1.90] 1.74 [1.22 – 2.12] Log 0.426 0.878 0.024 0.053 0.134 0.132 0.076 0.352 0.112
SFA Serum NMR mmol/L 93 [87 – 98] 86 [82 – 91] 86 [79 – 103] 79 [71 – 91] Log 0.351 0.855 0.032 0.012 0.041 0.213 0.434 0.656 0.023

Phosphoglyceridesb Plasma NMR mmol/L 2.15 [1.92 – 2.32] 2.02 [1.84 – 2.26] 2.15 [1.99 – 2.40] 2.11 [1.87 – 2.22] Log 0.814 0.897 0.002 2.24E-04 0.002 0.390 0.614 0.772 0.009
Acetateb Plasma NMR mmol/L 0.046 [0.039 – 0.074] 0.068 [0.052 – 0.072] 0.050 [0.045 – 0.057] 0.051 [0.043 – 0.062] Log 0.166 0.640 0.067 0.160 0.318 0.069 0.294 0.613 0.039

Lipid metabolites –
Cholinesb

Choline Serum NMR mmol/L 0.047 (0.009) 0.055 (0.014) 0.054 (0.008) 0.059 (0.016) - 0.191 0.664 0.062 0.015 0.049 0.201 0.560 0.737 0.013
Lysophosphatidylcholine Serum NMR mmol/L 0.261 (0.030) 0.316 (0.028) 0.240 (0.028) 0.317 (0.038) - 0.257 0.803 0.047 3.41E-08 3.51E-06 0.682 0.197 0.461 0.061

Lipid metabolites –  
Ketone bodiesb

3-Hydroxybutyrate Plasma NMR mmol/L 0.064 [0.052 – 0.136] 0.078 [0.043 – 0.103] 0.056 [0.028 – 0.076] 0.061 [0.038 – 0.079] Log 0.142 0.640 0.075 0.159 0.318 0.070 0.388 0.615 0.027
Acetoacetate Plasma NMR mmol/L 0.032 [0.022 – 0.071] 0.036 [0.025 – 0.048] 0.027 [0.017 – 0.035] 0.030 [0.021 – 0.042] Log 0.143 0.640 0.075 0.241 0.435 0.049 0.540 0.722 0.014

Acetone Plasma NMR mmol/L 0.018 [0.015 – 0.022] 0.018 [0.015 – 0.023] 0.016 [0.016 – 0.020] 0.019 [0.015 – 0.023] Log 0.610 0.897 0.009 0.310 0.508 0.037 0.348 0.615 0.032
Lipid metabolites – 

Acylcarnitinesa
Carnitine (C:0) Plasma LC/MS µmol/L 20.7 (4.7) 19.9 (4.5) 18.7 (5.0) 19.3 (4.7) - 0.466 0.897 0.019 0.878 0.946 0.001 0.039 0.325 0.144

Acetylcarnitine (C2:0) Plasma LC/MS µmol/L 11.4 (3.0) 11.9 (2.5) 9.6 (2.4) 9.9 (1.9) - 0.030 0.464 0.157 0.374 0.566 0.028 0.881 0.946 0.001
Propionylcarnitine (C3:0) Plasma LC/MS µmol/L 0.319 [0.257 – 0.382] 0.299 [0.249 – 0.382] 0.302 [0.228 – 0.344] 0.295 [0.250 – 0.357] Log 0.357 0.855 0.030 0.906 0.962 0.001 0.380 0.615 0.028

Butyrylcarnitine (C4:0) Plasma LC/MS µmol/L 0.159 [0.137 – 0.222] 0.187 [0.139 – 0.219] 0.131 [0.114 – 0.166] 0.123 [0.109 – 0.168] Log 0.034 0.464 0.151 0.882 0.946 0.001 0.574 0.739 0.011
Isobutyrylcarnitine (C4:0-iso) Plasma LC/MS µmol/L 0.093 [0.069 – 0.121] 0.079 [0.070 – 0.120] 0.087 [0.060 – 0.171] 0.099 [0.068 – 0.147] Log 0.640 0.897 0.008 0.713 0.807 0.005 0.854 0.926 0.001
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Protein and amino acid 
related metabolitesa

Isoleucine Serum NMR mmol/L 0.05 (0.01) 0.054 (0.010) 0.054 (0.006) 0.058 (0.009) - 0.287 0.806 0.042 0.447 0.622 0.022 0.447 0.657 0.022
Leucine Serum NMR mmol/L 0.10 (0.01) 0.099 (0.014) 0.097 (0.011) 0.109 (0.019) - 0.081 0.640 0.108 0.298 0.508 0.040 0.812 0.889 0.002
Valine Serum NMR mmol/L 0.20 (0.03) 0.204 (0.028) 0.185 (0.017) 0.202 (0.030) - 0.991 0.931 0.000 0.002 0.009 0.316 0.764 0.855 0.003

Alanine Serum NMR mmol/L 0.36 (0.06) 0.355 (0.057) 0.341 (0.073) 0.402 (0.085) - 0.187 0.664 0.064 0.060 0.146 0.125 0.385 0.615 0.028
Phenylalanine Serum NMR mmol/L 0.04 (0.01) 0.044 (0.005) 0.047 (0.007) 0.051 (0.010) - 0.129 0.640 0.083 0.927 0.972 3.18E-04 0.054 0.346 0.131

Glutamine Serum NMR mmol/L 0.42 [0.40 – 0.45] 0.422 [0.398 – 0.454] 0.389 [0.348 – 0.473] 0.465 [0.397 – 0.516] Log 0.406 0.855 0.026 0.005 0.018 0.257 0.720 0.815 0.005
Glutamate Serum NMR mmol/L 0.07 [0.06 – 0.08] 0.071 [0.064 – 0.082] 0.080 [0.065 – 0.095] 0.065 [0.060 – 0.089] Log 0.315 0.812 0.037 0.984 0.972 1.40E-05 0.170 0.443 0.069

Glycine Serum NMR mmol/L 0.20 [0.18 – 0.24] 0.204 [0.182 – 0.238] 0.218 [0.186 – 0.229] 0.233 [0.200 – 0.306] Log 0.148 0.640 0.076 0.566 0.685 0.012 0.371 0.615 0.030
Methionine Serum NMR mmol/L 0.017 (0.007) 0.017 (0.007) 0.021 (0.014) 0.032 (0.014) - 0.010 0.376 0.221 0.963 0.972 8.10E-05 0.188 0.450 0.063

Tyrosine Serum NMR mmol/L 0.047 (0.014) 0.047 (0.014) 0.048 (0.014) 0.051 (0.016) - 0.676 0.897 0.007 0.549 0.673 0.013 0.320 0.615 0.037
Tryptophan Serum NMR mmol/L 0.057 (0.013) 0.057 (0.013) 0.051 (0.017) 0.053 (0.019) - 0.592 0.897 0.011 0.270 0.472 0.045 0.685 0.812 0.006

Betaine Serum NMR mmol/L 0.03 [0.02 – 0.04] 0.031 [0.022 – 0.036] 0.027 [0.019 – 0.033] 0.032 [0.022 – 0.041] Inverse Sqrt 0.740 0.897 0.004 0.002 0.011 0.293 0.477 0.680 0.019
Carbohydrate and TCA 

cycle metabolitesb
Glucose Plasma NMR mmol/L 4.80 (0.28) 4.78 (0.32) 4.85 (0.22) 4.81 (0.10) - 0.620 0.897 0.009 0.363 0.559 0.030 0.710 0.815 0.005
Lactate Plasma NMR mmol/L 0.72 (0.16) 0.71 (0.192) 0.79 (0.17) 0.75 (0.23) - 0.382 0.855 0.027 0.589 0.698 0.011 0.809 0.889 0.002

Pyruvate Plasma NMR mmol/L 0.054 (0.014) 0.056 (0.009) 0.054 (0.010) 0.061 (0.015) - 0.531 0.897 0.014 0.123 0.257 0.083 0.343 0.615 0.032
Citrate Plasma NMR mmol/L 0.066 (0.009) 0.065 (0.013) 0.067 (0.010) 0.073 (0.012) - 0.204 0.677 0.057 0.238 0.435 0.049 0.143 0.409 0.075

Lipid metabolites –
Fatty acidsa, $

Total FA chains Serum NMR mmol/L 99 [92 – 105] 94 [90 – 100] 91 [83 – 110] 84 [76 – 98] Log 0.310 0.812 0.038 0.040 0.111 0.147 0.344 0.615 0.033
PUFA Serum NMR mmol/L 1.63 (0.47) 2.00 (0.44) 1.58 (0.47) 1.57 (0.48) - 0.127 0.640 0.084 0.074 0.169 0.114 0.056 0.346 0.129

Omega-3 FA Serum NMR mmol/L 0.167 (0.021) 0.179 (0.030) 0.161 (0.043) 0.160 (0.037) - 0.197 0.677 0.061 0.515 0.655 0.016 0.475 0.680 0.019
ARA & EPA Serum NMR mmol/L 0.450 (0.085) 0.514 (0.086) 0.439 (0.101) 0.442 (0.086) - 0.158 0.640 0.072 0.097 0.208 0.099 0.122 0.380 0.086

DHA Serum NMR mmol/L 0.074 (0.020) 0.065 (0.018) 0.060 (0.022) 0.051 (0.019) - 0.041 0.464 0.146 0.032 0.095 0.159 0.987 0.989 1.10x10-5

Linoleic acid Serum NMR mmol/L 1.88 (0.44) 2.57 (0.47) 1.94 (0.63) 2.00 (0.74) - 0.165 0.640 0.070 0.012 0.041 0.213 0.031 0.325 0.162
MUFA Serum NMR mmol/L 4.28 (0.95) 5.72 (1.03) 4.52 (1.50) 4.62 (1.57) - 0.276 0.806 0.044 0.023 0.070 0.177 0.046 0.336 0.140

Oleic acid Serum NMR mmol/L 1.63 [1.41 – 1.75] 2.03 [1.89 – 2.32] 1.60 [1.27 – 1.90] 1.74 [1.22 – 2.12] Log 0.426 0.878 0.024 0.053 0.134 0.132 0.076 0.352 0.112
SFA Serum NMR mmol/L 93 [87 – 98] 86 [82 – 91] 86 [79 – 103] 79 [71 – 91] Log 0.351 0.855 0.032 0.012 0.041 0.213 0.434 0.656 0.023

Phosphoglyceridesb Plasma NMR mmol/L 2.15 [1.92 – 2.32] 2.02 [1.84 – 2.26] 2.15 [1.99 – 2.40] 2.11 [1.87 – 2.22] Log 0.814 0.897 0.002 2.24E-04 0.002 0.390 0.614 0.772 0.009
Acetateb Plasma NMR mmol/L 0.046 [0.039 – 0.074] 0.068 [0.052 – 0.072] 0.050 [0.045 – 0.057] 0.051 [0.043 – 0.062] Log 0.166 0.640 0.067 0.160 0.318 0.069 0.294 0.613 0.039

Lipid metabolites –
Cholinesb

Choline Serum NMR mmol/L 0.047 (0.009) 0.055 (0.014) 0.054 (0.008) 0.059 (0.016) - 0.191 0.664 0.062 0.015 0.049 0.201 0.560 0.737 0.013
Lysophosphatidylcholine Serum NMR mmol/L 0.261 (0.030) 0.316 (0.028) 0.240 (0.028) 0.317 (0.038) - 0.257 0.803 0.047 3.41E-08 3.51E-06 0.682 0.197 0.461 0.061

Lipid metabolites –  
Ketone bodiesb

3-Hydroxybutyrate Plasma NMR mmol/L 0.064 [0.052 – 0.136] 0.078 [0.043 – 0.103] 0.056 [0.028 – 0.076] 0.061 [0.038 – 0.079] Log 0.142 0.640 0.075 0.159 0.318 0.070 0.388 0.615 0.027
Acetoacetate Plasma NMR mmol/L 0.032 [0.022 – 0.071] 0.036 [0.025 – 0.048] 0.027 [0.017 – 0.035] 0.030 [0.021 – 0.042] Log 0.143 0.640 0.075 0.241 0.435 0.049 0.540 0.722 0.014

Acetone Plasma NMR mmol/L 0.018 [0.015 – 0.022] 0.018 [0.015 – 0.023] 0.016 [0.016 – 0.020] 0.019 [0.015 – 0.023] Log 0.610 0.897 0.009 0.310 0.508 0.037 0.348 0.615 0.032
Lipid metabolites – 

Acylcarnitinesa
Carnitine (C:0) Plasma LC/MS µmol/L 20.7 (4.7) 19.9 (4.5) 18.7 (5.0) 19.3 (4.7) - 0.466 0.897 0.019 0.878 0.946 0.001 0.039 0.325 0.144

Acetylcarnitine (C2:0) Plasma LC/MS µmol/L 11.4 (3.0) 11.9 (2.5) 9.6 (2.4) 9.9 (1.9) - 0.030 0.464 0.157 0.374 0.566 0.028 0.881 0.946 0.001
Propionylcarnitine (C3:0) Plasma LC/MS µmol/L 0.319 [0.257 – 0.382] 0.299 [0.249 – 0.382] 0.302 [0.228 – 0.344] 0.295 [0.250 – 0.357] Log 0.357 0.855 0.030 0.906 0.962 0.001 0.380 0.615 0.028

Butyrylcarnitine (C4:0) Plasma LC/MS µmol/L 0.159 [0.137 – 0.222] 0.187 [0.139 – 0.219] 0.131 [0.114 – 0.166] 0.123 [0.109 – 0.168] Log 0.034 0.464 0.151 0.882 0.946 0.001 0.574 0.739 0.011
Isobutyrylcarnitine (C4:0-iso) Plasma LC/MS µmol/L 0.093 [0.069 – 0.121] 0.079 [0.070 – 0.120] 0.087 [0.060 – 0.171] 0.099 [0.068 – 0.147] Log 0.640 0.897 0.008 0.713 0.807 0.005 0.854 0.926 0.001
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Lipid metabolites – 
Acylcarnitinesa

Valerylcarnitine (C5)† Plasma LC/MS µmol/L 0.076 [0.066 – 0.100] 0.077 [0.068 – 0.098] 0.076 [0.059 – 0.088] 0.073 [0.068 – 0.091] Log 0.366 0.855 0.028 0.427 0.613 0.024 0.180 0.443 0.064
Hydroxyisovalerylcarnitine 

(C5:0-OH)
Plasma LC/MS µmol/L 0.034 [0.030 – 0.049] 0.036 [0.030 – 0.047] 0.038 [0.032 – 0.043] 0.040 [0.032 – 0.042] X 0.806* 0.897* NA 0.187* 0.357* NA 0.305* 0.615* NA

Glutarylcarnitine (C5:0-DC) Plasma LC/MS µmol/L 0.069 [0.063 – 0.082] 0.067 [0.061 – 0.080] 0.079 [0.071 – 0.087] 0.081 [0.079 – 0.085] Log 0.140 0.640 0.076 0.537 0.666 0.014 0.089 0.353 0.100
Methylglutarylcarnitine (C5-M-DC) Plasma LC/MS µmol/L 0.050 [0.037 – 0.057] 0.047 [0.038 – 0.056] 0.039 [0.035 – 0.055] 0.042 [0.036 – 0.063] Inverse 0.922 0.931 0.000 0.066 0.155 0.115 0.022 0.325 0.173

Methylcrotonylcarnitine (C5:1) Plasma LC/MS µmol/L 0.010 [0.009 – 0.014] 0.011 [0.010 – 0.012] 0.011 [0.010 – 0.014] 0.013 [0.010 – 0.014] X 0.174* 0.641* NA 0.253* 0.449* NA 0.775* 0.855* NA
Hexanoylcarnitine (C6:0) Plasma LC/MS µmol/L 0.044 [0.038 – 0.049] 0.042 [0.039 – 0.065] 0.036 [0.034 – 0.044] 0.036 [0.031 – 0.039] Inverse 0.011 0.376 0.210 0.861 0.943 0.001 0.086 0.353 0.101
Octanoylcarnitine (C8:0) Plasma LC/MS µmol/L 0.145 [0.119 – 0.208] 0.156 [0.131 – 0.254] 0.159 [0.131 – 0.176] 0.147 [0.126 – 0.165] Inverse 0.402 0.855 0.025 0.532 0.666 0.014 0.026 0.325 0.165
Octenoylcarnitine (C8:1) Plasma LC/MS µmol/L 0.138 [0.101 – 0.159] 0.143 [0.125 – 0.170] 0.117 [0.085 – 0.138] 0.135 [0.101 – 0.155] Log 0.241 0.775 0.049 0.005 0.018 0.251 0.941 0.982 0.000

Decanoylcarnitine (C10:0) Plasma LC/MS µmol/L 0.284 [0.216 – 0.425] 0.320 [0.261 – 0.565] 0.347 [0.255 – 0.398] 0.306 [0.238 – 0.371] Inverse 0.745 0.897 0.004 0.478 0.648 0.018 0.038 0.325 0.145
Decenoylcarnitine (C10:1) Plasma LC/MS µmol/L 0.177 [0.162 – 0.193] 0.189 [0.178 – 0.281] 0.213 [0.178 – 0.262] 0.213 [0.160 – 0.228] Inverse 0.822 0.897 0.002 0.748 0.829 0.004 0.065 0.346 0.117

Dodecanoylcarnitine (C12:0) Plasma LC/MS µmol/L 0.093 [0.073 – 0.128] 0.116 [0.088 – 0.160] 0.123 [0.094 – 0.166] 0.097 [0.087 – 0.172] Log 0.808 0.897 0.002 0.514 0.655 0.015 0.081 0.352 0.105
Hydroxydodecanoylcarnitine-a 

(C12:0-OH-a)
Plasma LC/MS µmol/L 0.012 [0.008 – 0.013] 0.015 [0.012 – 0.021] 0.019 [0.014 – 0.025] 0.016 [0.014 – 0.024] Log 0.036 0.464 0.148 0.052 0.133 0.129 0.061 0.346 0.120

Hydroxydodecanoylcarnitine-a 
(C12:0-OH-b)

Plasma LC/MS µmol/L 0.024 [0.015 – 0.027] 0.023 [0.018 – 0.027] 0.030 [0.022 – 0.035] 0.024 [0.021 – 0.030] Log 0.168 0.640 0.067 0.393 0.570 0.026 0.648 0.783 0.008

Dodecenylcarnitine (C12:1) Plasma LC/MS µmol/L 0.127 [0.094 – 0.139] 0.135 [0.103 – 0.171] 0.154 [0.125 – 0.185] 0.134 [0.116 – 0.172] Log 0.298 0.806 0.040 0.736 0.824 0.004 0.112 0.372 0.088
Tetradecanoylcarnitine (C14:0) Plasma LC/MS µmol/L 0.045 [0.039 – 0.058] 0.051 [0.041 – 0.059] 0.045 [0.037 – 0.057] 0.042 [0.037 – 0.056] Log 0.407 0.855 0.025 0.961 0.972 8.90E-05 0.340 0.615 0.032
Hydroxytetradecanoylcarnitine 

(C14:0-OH)
Plasma LC/MS µmol/L 0.024 [0.020 – 0.029] 0.027 [0.024 – 0.029] 0.028 [0.025 – 0.036] 0.029 [0.025 – 0.032] Log 0.281 0.806 0.041 0.588 0.698 0.011 0.244 0.547 0.048

Tetradecenoylcarnitine (C14:1) Plasma LC/MS µmol/L 0.184 [0.130 – 0.200] 0.188 [0.155 – 0.248] 0.186 [0.158 – 0.251] 0.170 [0.152 – 0.267] Log 0.828 0.897 0.002 0.435 0.613 0.022 0.137 0.409 0.077
Tetradecadienylcarnitine (C14:2) Plasma LC/MS µmol/L 0.064 [0.057 – 0.074] 0.080 [0.066 – 0.096] 0.086 [0.064 – 0.102] 0.075 [0.062 – 0.104] Log 0.658 0.897 0.007 0.638 0.730 0.008 0.107 0.367 0.090
Hexadecanoylcarnitine (C16:0) Plasma LC/MS µmol/L 0.102 [0.087 – 0.111] 0.092 [0.088 – 0.107] 0.093 [0.087 – 0.099] 0.086 [0.088 – 0.091] Log 0.088 0.640 0.101 0.084 0.183 0.103 0.944 0.982 1.7E-04
Hydroxyhexadecanoylcarnitine 

(C16:0-OH)
Plasma LC/MS µmol/L 0.004 (0.002) 0.004 (0.001) 0.003 (0.001) 0.003 (0.001) - 0.123 0.640 0.083 0.304 0.508 0.038 0.654 0.783 0.007

Hexadecenylcarnitine (C16:1) Plasma LC/MS µmol/L 0.036 [0.031 – 0.045] 0.036 [0.031 – 0.048] 0.038 [0.032 – 0.043] 0.037 [0.033 – 0.039] Log 0.685 0.897 0.006 0.607 0.711 0.010 0.101 0.367 0.093
Octadecanoylcarnitine (C18:0) Plasma LC/MS µmol/L 0.058 [0.051 – 0.075] 0.058 [0.050 – 0.067] 0.057 [0.052 – 0.062] 0.061 [0.048 – 0.068] Log 0.714 0.897 0.005 0.327 0.511 0.034 0.642 0.783 0.008
Octadecenoylcarnitine (C18:1) Plasma LC/MS µmol/L 0.112 (0.028) 0.112 (0.028) 0.114 (0.020) 0.109 (0.019) - 0.907 0.931 4.98E-04 0.468 0.643 0.019 0.515 0.708 0.015

Octadecadienylcarnitine (C18:2) Plasma LC/MS µmol/L 0.037 [0.032 – 0.046] 0.042 [0.032 – 0.045] 0.039 [0.035 – 0.042] 0.038 [0.036 – 0.042] Log 0.822 0.897 0.002 0.497 0.648 0.017 0.491 0.684 0.017
Lipid metabolites – 

Cholesterol metabolitesb
Total cholesterol Plasma NMR mmol/L 4.07 [3.82 – 4.61] 4.03 [3.72 – 4.24] 4.17 [3.88 – 4.56] 3.87 [3.48 – 4.35] Log 0.899 0.931 0.001 9.70E-05 0.001 0.424 0.398 0.622 0.026
VLDL cholesterol Plasma NMR mmol/L 0.48 (0.08) 0.44 (0.07) 0.44 (0.13) 0.45 (0.15) - 0.745 0.897 0.004 0.175 0.339 0.065 0.010 0.247 0.216
LDL cholesterol Plasma NMR mmol/L 1.57 (0.31) 1.50 (0.23) 1.55 (0.30) 1.40 (0.28) - 0.567 0.897 0.012 0.002 0.010 0.292 0.229 0.524 0.051
HDL cholesterol Plasma NMR mmol/L 1.55 [1.35 – 1.61] 1.45 [1.32 – 1.57] 1.47 [1.41 – 1.68] 1.40 [1.30 – 1.58] Log 0.626 0.897 0.009 1.06E-04 0.001 0.421 0.169 0.443 0.066

Total esterified cholesterol Plasma NMR mmol/L 3.04 [2.80 – 3.42] 2.99 [2.76 – 3.14] 3.12 [2.91 – 3.36] 2.83 [2.57 – 3.23] Log 0.908 0.931 4.80E-05 9.50E-05 0.001 0.425 0.298 0.613 0.039
Total free cholesterol Plasma NMR mmol/L 1.05 [1.01 – 1.18] 1.04 [0.95 – 1.09] 1.10 [0.98 – 1.19] 1.01 [0.91 – 1.13] Log 0.894 0.931 0.001 1.49E-04 0.001 0.407 0.980 0.989 0.000
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Lipid metabolites – 
Acylcarnitinesa

Valerylcarnitine (C5)† Plasma LC/MS µmol/L 0.076 [0.066 – 0.100] 0.077 [0.068 – 0.098] 0.076 [0.059 – 0.088] 0.073 [0.068 – 0.091] Log 0.366 0.855 0.028 0.427 0.613 0.024 0.180 0.443 0.064
Hydroxyisovalerylcarnitine 

(C5:0-OH)
Plasma LC/MS µmol/L 0.034 [0.030 – 0.049] 0.036 [0.030 – 0.047] 0.038 [0.032 – 0.043] 0.040 [0.032 – 0.042] X 0.806* 0.897* NA 0.187* 0.357* NA 0.305* 0.615* NA

Glutarylcarnitine (C5:0-DC) Plasma LC/MS µmol/L 0.069 [0.063 – 0.082] 0.067 [0.061 – 0.080] 0.079 [0.071 – 0.087] 0.081 [0.079 – 0.085] Log 0.140 0.640 0.076 0.537 0.666 0.014 0.089 0.353 0.100
Methylglutarylcarnitine (C5-M-DC) Plasma LC/MS µmol/L 0.050 [0.037 – 0.057] 0.047 [0.038 – 0.056] 0.039 [0.035 – 0.055] 0.042 [0.036 – 0.063] Inverse 0.922 0.931 0.000 0.066 0.155 0.115 0.022 0.325 0.173

Methylcrotonylcarnitine (C5:1) Plasma LC/MS µmol/L 0.010 [0.009 – 0.014] 0.011 [0.010 – 0.012] 0.011 [0.010 – 0.014] 0.013 [0.010 – 0.014] X 0.174* 0.641* NA 0.253* 0.449* NA 0.775* 0.855* NA
Hexanoylcarnitine (C6:0) Plasma LC/MS µmol/L 0.044 [0.038 – 0.049] 0.042 [0.039 – 0.065] 0.036 [0.034 – 0.044] 0.036 [0.031 – 0.039] Inverse 0.011 0.376 0.210 0.861 0.943 0.001 0.086 0.353 0.101
Octanoylcarnitine (C8:0) Plasma LC/MS µmol/L 0.145 [0.119 – 0.208] 0.156 [0.131 – 0.254] 0.159 [0.131 – 0.176] 0.147 [0.126 – 0.165] Inverse 0.402 0.855 0.025 0.532 0.666 0.014 0.026 0.325 0.165
Octenoylcarnitine (C8:1) Plasma LC/MS µmol/L 0.138 [0.101 – 0.159] 0.143 [0.125 – 0.170] 0.117 [0.085 – 0.138] 0.135 [0.101 – 0.155] Log 0.241 0.775 0.049 0.005 0.018 0.251 0.941 0.982 0.000

Decanoylcarnitine (C10:0) Plasma LC/MS µmol/L 0.284 [0.216 – 0.425] 0.320 [0.261 – 0.565] 0.347 [0.255 – 0.398] 0.306 [0.238 – 0.371] Inverse 0.745 0.897 0.004 0.478 0.648 0.018 0.038 0.325 0.145
Decenoylcarnitine (C10:1) Plasma LC/MS µmol/L 0.177 [0.162 – 0.193] 0.189 [0.178 – 0.281] 0.213 [0.178 – 0.262] 0.213 [0.160 – 0.228] Inverse 0.822 0.897 0.002 0.748 0.829 0.004 0.065 0.346 0.117

Dodecanoylcarnitine (C12:0) Plasma LC/MS µmol/L 0.093 [0.073 – 0.128] 0.116 [0.088 – 0.160] 0.123 [0.094 – 0.166] 0.097 [0.087 – 0.172] Log 0.808 0.897 0.002 0.514 0.655 0.015 0.081 0.352 0.105
Hydroxydodecanoylcarnitine-a 

(C12:0-OH-a)
Plasma LC/MS µmol/L 0.012 [0.008 – 0.013] 0.015 [0.012 – 0.021] 0.019 [0.014 – 0.025] 0.016 [0.014 – 0.024] Log 0.036 0.464 0.148 0.052 0.133 0.129 0.061 0.346 0.120

Hydroxydodecanoylcarnitine-a 
(C12:0-OH-b)

Plasma LC/MS µmol/L 0.024 [0.015 – 0.027] 0.023 [0.018 – 0.027] 0.030 [0.022 – 0.035] 0.024 [0.021 – 0.030] Log 0.168 0.640 0.067 0.393 0.570 0.026 0.648 0.783 0.008

Dodecenylcarnitine (C12:1) Plasma LC/MS µmol/L 0.127 [0.094 – 0.139] 0.135 [0.103 – 0.171] 0.154 [0.125 – 0.185] 0.134 [0.116 – 0.172] Log 0.298 0.806 0.040 0.736 0.824 0.004 0.112 0.372 0.088
Tetradecanoylcarnitine (C14:0) Plasma LC/MS µmol/L 0.045 [0.039 – 0.058] 0.051 [0.041 – 0.059] 0.045 [0.037 – 0.057] 0.042 [0.037 – 0.056] Log 0.407 0.855 0.025 0.961 0.972 8.90E-05 0.340 0.615 0.032
Hydroxytetradecanoylcarnitine 

(C14:0-OH)
Plasma LC/MS µmol/L 0.024 [0.020 – 0.029] 0.027 [0.024 – 0.029] 0.028 [0.025 – 0.036] 0.029 [0.025 – 0.032] Log 0.281 0.806 0.041 0.588 0.698 0.011 0.244 0.547 0.048

Tetradecenoylcarnitine (C14:1) Plasma LC/MS µmol/L 0.184 [0.130 – 0.200] 0.188 [0.155 – 0.248] 0.186 [0.158 – 0.251] 0.170 [0.152 – 0.267] Log 0.828 0.897 0.002 0.435 0.613 0.022 0.137 0.409 0.077
Tetradecadienylcarnitine (C14:2) Plasma LC/MS µmol/L 0.064 [0.057 – 0.074] 0.080 [0.066 – 0.096] 0.086 [0.064 – 0.102] 0.075 [0.062 – 0.104] Log 0.658 0.897 0.007 0.638 0.730 0.008 0.107 0.367 0.090
Hexadecanoylcarnitine (C16:0) Plasma LC/MS µmol/L 0.102 [0.087 – 0.111] 0.092 [0.088 – 0.107] 0.093 [0.087 – 0.099] 0.086 [0.088 – 0.091] Log 0.088 0.640 0.101 0.084 0.183 0.103 0.944 0.982 1.7E-04
Hydroxyhexadecanoylcarnitine 

(C16:0-OH)
Plasma LC/MS µmol/L 0.004 (0.002) 0.004 (0.001) 0.003 (0.001) 0.003 (0.001) - 0.123 0.640 0.083 0.304 0.508 0.038 0.654 0.783 0.007

Hexadecenylcarnitine (C16:1) Plasma LC/MS µmol/L 0.036 [0.031 – 0.045] 0.036 [0.031 – 0.048] 0.038 [0.032 – 0.043] 0.037 [0.033 – 0.039] Log 0.685 0.897 0.006 0.607 0.711 0.010 0.101 0.367 0.093
Octadecanoylcarnitine (C18:0) Plasma LC/MS µmol/L 0.058 [0.051 – 0.075] 0.058 [0.050 – 0.067] 0.057 [0.052 – 0.062] 0.061 [0.048 – 0.068] Log 0.714 0.897 0.005 0.327 0.511 0.034 0.642 0.783 0.008
Octadecenoylcarnitine (C18:1) Plasma LC/MS µmol/L 0.112 (0.028) 0.112 (0.028) 0.114 (0.020) 0.109 (0.019) - 0.907 0.931 4.98E-04 0.468 0.643 0.019 0.515 0.708 0.015

Octadecadienylcarnitine (C18:2) Plasma LC/MS µmol/L 0.037 [0.032 – 0.046] 0.042 [0.032 – 0.045] 0.039 [0.035 – 0.042] 0.038 [0.036 – 0.042] Log 0.822 0.897 0.002 0.497 0.648 0.017 0.491 0.684 0.017
Lipid metabolites – 

Cholesterol metabolitesb
Total cholesterol Plasma NMR mmol/L 4.07 [3.82 – 4.61] 4.03 [3.72 – 4.24] 4.17 [3.88 – 4.56] 3.87 [3.48 – 4.35] Log 0.899 0.931 0.001 9.70E-05 0.001 0.424 0.398 0.622 0.026
VLDL cholesterol Plasma NMR mmol/L 0.48 (0.08) 0.44 (0.07) 0.44 (0.13) 0.45 (0.15) - 0.745 0.897 0.004 0.175 0.339 0.065 0.010 0.247 0.216
LDL cholesterol Plasma NMR mmol/L 1.57 (0.31) 1.50 (0.23) 1.55 (0.30) 1.40 (0.28) - 0.567 0.897 0.012 0.002 0.010 0.292 0.229 0.524 0.051
HDL cholesterol Plasma NMR mmol/L 1.55 [1.35 – 1.61] 1.45 [1.32 – 1.57] 1.47 [1.41 – 1.68] 1.40 [1.30 – 1.58] Log 0.626 0.897 0.009 1.06E-04 0.001 0.421 0.169 0.443 0.066

Total esterified cholesterol Plasma NMR mmol/L 3.04 [2.80 – 3.42] 2.99 [2.76 – 3.14] 3.12 [2.91 – 3.36] 2.83 [2.57 – 3.23] Log 0.908 0.931 4.80E-05 9.50E-05 0.001 0.425 0.298 0.613 0.039
Total free cholesterol Plasma NMR mmol/L 1.05 [1.01 – 1.18] 1.04 [0.95 – 1.09] 1.10 [0.98 – 1.19] 1.01 [0.91 – 1.13] Log 0.894 0.931 0.001 1.49E-04 0.001 0.407 0.980 0.989 0.000
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Lipid metabolites – 
Apolipoproteinsb

Apolipoprotein B Plasma NMR mmol/L 0.706 (0.106) 0.676 (0.086) 0.694 (0.114) 0.664 (0.115) - 0.763 0.897 0.003 0.001 0.008 0.317 0.989 0.989 7.00x10-6

Apolipoprotein A1 Plasma NMR mmol/L 1.53 (0.19) 1.48 (0.16) 1.58 (0.19) 1.50 (0.19) - 0.615 0.897 0.009 1.33E-04 0.001 0.412 0.384 0.615 0.027

Lipid metabolites – 
Lipoproteinsb, $

Total lipoprotein particles Plasma NMR µmol/L 18.1 [15.5 – 18.9] 17.2 [15.4 – 18.6] 18.3 [16.3 – 18.7] 16.1 [15.4 – 18.2] X 0.595* 0.897* NA 0.002* 0.010* NA 0.187* 0.443* NA
VLDL particles Plasma NMR µmol/L 0.108 [0.100 – 0.116] 0.098 [0.089 – 0.106] 0.102 [0.076 – 0.116] 0.101 [0.077 – 0.114] Log 0.610 0.897 0.009 0.048 0.126 0.133 0.065 0.346 0.116
LDL particles Plasma NMR µmol/L 1.02 (0.17) 0.99 (0.14) 1.01 (0.17) 0.95 (0.17) - 0.825 0.897 0.002 4.20E-04 0.003 0.364 0.326 0.615 0.034
HDL particles Plasma NMR µmol/L 16.8 [14.2 – 17.7] 15.9 [14.1 – 17.1] 16.9 [14.7 – 17.3] 14.8 [14.3 – 16.8] X 0.567* 0.897* NA 0.003* 0.013* NA 0.148* 0.412* NA

Chylomicrons & XXL-VLDL particles Plasma NMR nmol/L 0.18 [0.03 – 0.60] 0.09 [0.03 – 0.43] 0.02 [0.02 – 0.23] 0.35 [0.04 – 0.62] X 0.045* 0.464* NA 0.229* 0.429 NA 0.007* 0.247* NA
XL-VLDL particles Plasma NMR nmol/L 1.85 [1.56 – 2.39] 1.58 [1.26 – 2.04] 1.68 [1.19 – 1.85] 1.64 [1.21 – 1.99] X 0.174* 0.640* NA 0.491* 0.648* NA 0.041* 0.325* NA
L-VLDL particles Plasma NMR nmol/L 6.79 [6.21 – 8.06] 6.03 [5.05 – 7.57] 6.32 [5.02 – 7.13] 5.94 [4.60 – 6.98] Log 0.312 0.812 0.037 0.083 0.183 0.104 0.103 0.367 0.092
M-VLDL particles Plasma NMR nmol/L 25.3 [23.4 – 29.7] 24.5 [21.2 – 27.2] 26.1 [17.8 – 28.4] 23.0 [17.7 – 27.2] Log 0.403 0.855 0.025 0.016 0.051 0.191 0.363 0.615 0.030
S-VLDL particles Plasma NMR nmol/L 30.5 [27.9 – 34.1] 28.9 [24.9 – 33.3] 32.1 [20.0 – 34.8] 27.7 [20.3 – 32.7] Log 0.516 0.897 0.015 0.125 0.257 0.082 0.347 0.615 0.032

XS-VLDL particles Plasma NMR nmol/L 40.0 [35.6 – 43.7] 37.0 [34.0 – 39.9] 38.2 [33.7– 45.1] 39.7 [34.1 – 44.3] Log 0.795 0.897 0.002 0.316 0.508 0.036 0.014 0.294 0.196
IDL particles Plasma NMR nmol/L 246 (36) 231 (28) 247 (32) 242 (36) - 0.678 0.897 0.006 0.002 0.010 0.297 0.079 0.352 0.106

L-LDL particles Plasma NMR nmol/L 617 (87) 598 (85) 601 (99) 591 (105) - 0.739 0.897 0.004 0.042 0.114 0.140 0.482 0.680 0.018
M-LDL particles Plasma NMR nmol/L 254 (57) 244 (40) 255 (60) 222 (48) - 0.574 0.897 0.011 0.004 0.015 0.265 0.093 0.354 0.098
S-LDL particles Plasma NMR nmol/L 152 (28) 145 (21) 149 (22) 138 (20) - 0.544 0.897 0.013 0.001 0.008 0.315 0.410 0.631 0.024

XL-HDL particles Plasma NMR nmol/L 240 [205 – 261] 224 [193 – 270] 216 [183 – 283] 236 [191 – 279] Log 0.560 0.897 0.012 0.497 0.648 0.017 0.267 0.574 0.044
L-HDL particles Plasma NMR µmol/L 1.78 [1.53 – 1.98] 1.70 [1.35 – 1.83] 1.61 [1.32 – 2.18] 1.63 [1.30 – 1.98] Log 0.558 0.897 0.012 0.066 0.155 0.116 0.526 0.713 0.014
M-HDL particles Plasma NMR µmol/L 4.21 (0.73) 4.02 (0.62) 4.37 (0.71) 4.09 (0.67) - 0.644 0.897 0.008 1.41E-04 0.001 0.409 0.380 0.615 0.028
S-HDL particles Plasma NMR µmol/L 10.03 (1.29) 9.81 (0.99) 10.11 (1.19) 9.38 (0.965) - 0.644 0.897 0.008 0.016 0.051 0.189 0.181 0.443 0.063

Other metabolites – Fluid 
balanceb

Creatinine Plasma NMR µmol/L 60.6 [59.1 – 66.1] 59.8 [55.4 – 66.9] 63.0 [61.1 – 69.6] 67.9 [64.1 – 71.1] Log 0.078 0.640 0.107 0.382 0.570 0.027 0.035 0.325 0.149
Albumin Plasma NMR g/L 38.2 (2.6) 38.3 (2.1) 39.1 (2.8) 38.9 (1.9) - 0.370 0.855 0.029 0.951 0.972 1.36E-04 0.623 0.773 0.009

Normally distributed data is represented as mean (SD) and non-normally distributed data is represented as median [IQR]. Raw P-values were 
adjusted using an FDR of 10%. Significant raw P-values are indicated in bold. Significant FDR-adjusted P-values (Padj < 0.10) are indicated in 
underlined bold. 
#Transformations (log, inverse, inverse square root) were applied on not normally distributed variables. Variables that did not achieve a normal 
distribution after transformation are represented with an X. For these variables non-parametric tests were used: the fitness level effect (Pgroup) 
was analyzed using a Mann-Whitney U test on the ranked baseline values; the exercise effect (Pexercise) was analyzed using a Wilcoxon-Signed 
rank test on the ranked baseline and post-exercise values; the interaction effect (Pgroup*exercise) was analyzed using a Mann-Whitney U test on the 
ranked difference between baseline and post-exercise values. These p-values are marked with an asterisk (*). NA = not applicable 
$Abbreviations: FA = fatty acid, PUFA = polyunsaturated fatty acid, ARA & EPA = arachidonic acid & eicosapentaenoic acid, DHA = docosahexae-
noic acid, MUFA = monounsaturated fatty acid, SFA = saturated fatty acid, XXL = extremely large, XL = very large, L = large, M = medium, I = 
intermediate, S = small, XS = very small.
†Refer to the two isomers 2-methylburytylcarnitine (C4:0-2M) and isovalerylcarnitine (C5:0).
aAnalyzed using the EURECAT platform. 
bAnalyzed using the Nightingale platform.
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Lipid metabolites – 
Apolipoproteinsb

Apolipoprotein B Plasma NMR mmol/L 0.706 (0.106) 0.676 (0.086) 0.694 (0.114) 0.664 (0.115) - 0.763 0.897 0.003 0.001 0.008 0.317 0.989 0.989 7.00x10-6

Apolipoprotein A1 Plasma NMR mmol/L 1.53 (0.19) 1.48 (0.16) 1.58 (0.19) 1.50 (0.19) - 0.615 0.897 0.009 1.33E-04 0.001 0.412 0.384 0.615 0.027

Lipid metabolites – 
Lipoproteinsb, $

Total lipoprotein particles Plasma NMR µmol/L 18.1 [15.5 – 18.9] 17.2 [15.4 – 18.6] 18.3 [16.3 – 18.7] 16.1 [15.4 – 18.2] X 0.595* 0.897* NA 0.002* 0.010* NA 0.187* 0.443* NA
VLDL particles Plasma NMR µmol/L 0.108 [0.100 – 0.116] 0.098 [0.089 – 0.106] 0.102 [0.076 – 0.116] 0.101 [0.077 – 0.114] Log 0.610 0.897 0.009 0.048 0.126 0.133 0.065 0.346 0.116
LDL particles Plasma NMR µmol/L 1.02 (0.17) 0.99 (0.14) 1.01 (0.17) 0.95 (0.17) - 0.825 0.897 0.002 4.20E-04 0.003 0.364 0.326 0.615 0.034
HDL particles Plasma NMR µmol/L 16.8 [14.2 – 17.7] 15.9 [14.1 – 17.1] 16.9 [14.7 – 17.3] 14.8 [14.3 – 16.8] X 0.567* 0.897* NA 0.003* 0.013* NA 0.148* 0.412* NA

Chylomicrons & XXL-VLDL particles Plasma NMR nmol/L 0.18 [0.03 – 0.60] 0.09 [0.03 – 0.43] 0.02 [0.02 – 0.23] 0.35 [0.04 – 0.62] X 0.045* 0.464* NA 0.229* 0.429 NA 0.007* 0.247* NA
XL-VLDL particles Plasma NMR nmol/L 1.85 [1.56 – 2.39] 1.58 [1.26 – 2.04] 1.68 [1.19 – 1.85] 1.64 [1.21 – 1.99] X 0.174* 0.640* NA 0.491* 0.648* NA 0.041* 0.325* NA
L-VLDL particles Plasma NMR nmol/L 6.79 [6.21 – 8.06] 6.03 [5.05 – 7.57] 6.32 [5.02 – 7.13] 5.94 [4.60 – 6.98] Log 0.312 0.812 0.037 0.083 0.183 0.104 0.103 0.367 0.092
M-VLDL particles Plasma NMR nmol/L 25.3 [23.4 – 29.7] 24.5 [21.2 – 27.2] 26.1 [17.8 – 28.4] 23.0 [17.7 – 27.2] Log 0.403 0.855 0.025 0.016 0.051 0.191 0.363 0.615 0.030
S-VLDL particles Plasma NMR nmol/L 30.5 [27.9 – 34.1] 28.9 [24.9 – 33.3] 32.1 [20.0 – 34.8] 27.7 [20.3 – 32.7] Log 0.516 0.897 0.015 0.125 0.257 0.082 0.347 0.615 0.032

XS-VLDL particles Plasma NMR nmol/L 40.0 [35.6 – 43.7] 37.0 [34.0 – 39.9] 38.2 [33.7– 45.1] 39.7 [34.1 – 44.3] Log 0.795 0.897 0.002 0.316 0.508 0.036 0.014 0.294 0.196
IDL particles Plasma NMR nmol/L 246 (36) 231 (28) 247 (32) 242 (36) - 0.678 0.897 0.006 0.002 0.010 0.297 0.079 0.352 0.106

L-LDL particles Plasma NMR nmol/L 617 (87) 598 (85) 601 (99) 591 (105) - 0.739 0.897 0.004 0.042 0.114 0.140 0.482 0.680 0.018
M-LDL particles Plasma NMR nmol/L 254 (57) 244 (40) 255 (60) 222 (48) - 0.574 0.897 0.011 0.004 0.015 0.265 0.093 0.354 0.098
S-LDL particles Plasma NMR nmol/L 152 (28) 145 (21) 149 (22) 138 (20) - 0.544 0.897 0.013 0.001 0.008 0.315 0.410 0.631 0.024

XL-HDL particles Plasma NMR nmol/L 240 [205 – 261] 224 [193 – 270] 216 [183 – 283] 236 [191 – 279] Log 0.560 0.897 0.012 0.497 0.648 0.017 0.267 0.574 0.044
L-HDL particles Plasma NMR µmol/L 1.78 [1.53 – 1.98] 1.70 [1.35 – 1.83] 1.61 [1.32 – 2.18] 1.63 [1.30 – 1.98] Log 0.558 0.897 0.012 0.066 0.155 0.116 0.526 0.713 0.014
M-HDL particles Plasma NMR µmol/L 4.21 (0.73) 4.02 (0.62) 4.37 (0.71) 4.09 (0.67) - 0.644 0.897 0.008 1.41E-04 0.001 0.409 0.380 0.615 0.028
S-HDL particles Plasma NMR µmol/L 10.03 (1.29) 9.81 (0.99) 10.11 (1.19) 9.38 (0.965) - 0.644 0.897 0.008 0.016 0.051 0.189 0.181 0.443 0.063

Other metabolites – Fluid 
balanceb

Creatinine Plasma NMR µmol/L 60.6 [59.1 – 66.1] 59.8 [55.4 – 66.9] 63.0 [61.1 – 69.6] 67.9 [64.1 – 71.1] Log 0.078 0.640 0.107 0.382 0.570 0.027 0.035 0.325 0.149
Albumin Plasma NMR g/L 38.2 (2.6) 38.3 (2.1) 39.1 (2.8) 38.9 (1.9) - 0.370 0.855 0.029 0.951 0.972 1.36E-04 0.623 0.773 0.009
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Abstract 	

Mitochondria are cellular organelles that control metabolic homeostasis and  
ATP generation, but also play an important role in other processes, like cell death 
decisions and immune signaling. Mitochondria produce a diverse array of 
metabolites that act in the mitochondria itself, but also function as signaling 
molecules to other parts of the cell. Communication of mitochondria with the 
nucleus by metabolites that are produced by the mitochondria provides the cells 
with a dynamic regulatory system that is able to respond to changing metabolic 
conditions. Dysregulation of the interplay between mitochondrial metabolites  
and the nucleus has been shown to play a role in disease etiology, such as cancer 
and type 2 diabetes. Multiple recent studies emphasize the crucial role of 
nutritional cofactors in regulating these metabolic networks. Since B-vitamins 
directly regulate mitochondrial metabolism, understanding the role of B-vitamins 
in mito-nuclear communication is relevant for therapeutic applications and optimal 
dietary lifestyle. In this review, we will highlight emerging concepts in mito-nuclear 
communication and will describe the role of B-vitamins in mitochondrial metabolite-
mediated nuclear signaling. 
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Introduction	

B-vitamins are water-soluble vitamins (Figure 1) that are essential nutrients in 
supporting mitochondrial function, predominantly by serving as nutritional cofactors or 
coenzymes for enzymes that are located in mitochondria (Figure 2, Table 1) (1–3). 
Five out of the eight B-vitamins are directly involved in functioning of the 
tricarboxylic acid (TCA) cycle (B1, B2, B3, B5 and B8/B7) (Figure 2). Vitamin B6 is 
required for iron-sulfur (FeS) biosynthesis, de novo synthesis of nicotinamide 
adenine dinucleotide (NAD+) and substrate metabolism, whereas vitamin B11/B9 
and B12 are essential in nucleotide biosynthesis and amino acid metabolism 
(Figure 2). Vitamin B12 is also crucial for the generation of succinyl-CoA from 
methylmalonyl-CoA in the mitochondria (Figure 2). Since the activity of mito-
chondrial enzymes is regulated by B-vitamin levels, maintaining a balanced pool 
of B-vitamins in the mitochondria is essential to support the metabolic and other 
biochemical reactions that are orchestrated by these mitochondrial enzymes. 

In order to maintain a balanced B-vitamin pool, dietary consumption of foods rich 
in B-vitamins is necessary, as B-vitamins cannot be synthesized by the body and 
must be derived from the diet. The European Food and Safety Authority (EFSA) 
has established the daily intake requirement for each B-vitamin (Table 1). Daily 
intake requirements are expressed as population reference intake (PRI) or 
adequate intake (AI) and are dependent on population group, age and/or gender. 
To meet these requirements, it is recommended to have a daily consumption of 
dietary sources that are rich in B-vitamins (Table 1). Some of these food products 
contain only one of the B-vitamins, whereas others provide several B-vitamins.  
For example, dark leafy green vegetables are rich in vitamin B11, whereas eggs 
contain vitamin B2, B5, B8 as well as B12. In general, a diverse diet will meet the 
recommended daily intake requirements, but insufficient intake of a food group that 
exclusively provides a specific B-vitamin requires alternative dietary adjustments.  
For example, vitamin B12 is mainly provided by animal sources, especially meat, 
and cannot be derived from plant sources. Individuals who do not consume meat 
products, such as vegetarian or veganists, should consider the consumption of 
alternative foods that are fortified with vitamin B12 or should perhaps take supple-
mentation with vitamin B12.

Sufficient B-vitamin intake is essential to maintain mitochondrial function, control 
levels of mitochondrial metabolites and prevent disease. Evidence is emerging 
that the wide array of metabolites that are produced in the mitochondria do not only 
support mitochondrial respiration and adenosine triphosphate (ATP) generation, 
but can also communicate with other parts of the cell, including the nucleus (4). 
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This retrograde signaling from mitochondria to the nucleus is called mito-nuclear 
communication and allows mitochondria to regulate multiple cellular processes, 
including cell cycle decisions, cell signaling and epigenetic regulation (5,6). 
Dysregulation of the interplay between mitochondrial metabolites and the nucleus 
has been established to play a direct role in aging and several disease pathologies 
(7), including cancer (6,8), inflammation (9), and ischemia/reperfusion (I/R) events 
(10). Although B-vitamins have direct effects on mitochondrial function, the role of 
B-vitamins in mito-nuclear communication has been poorly described. Understanding 
the role of B-vitamins can be relevant for designing novel therapeutic applications 
or developing new studies that focus on dietary lifestyle changes. Here, we will 
outline the role of B-vitamins in mitochondrial function, highlight the emerging 
concepts in the communication between mitochondrial metabolites and the nucleus 
and identify how B-vitamins can regulate mito-nuclear communication. 

Regulation of mitochondrial metabolism by B-vitamins

Vitamin B1 – thiamine-diphosphate
Vitamin B1 (thiamine) is highly enriched within the mitochondria, as they contain 
more than 90% of all cellular thiamine (~30 µM) (19). The active form of thiamine, 
thiamine-diphosphate, is an essential cofactor of multiple mitochondrial dehydro-
genase complexes, including the pyruvate dehydrogenase (PDH) complex, the alpha- 
ketoglutarate (alpha-KG) dehydrogenase (OGDH) complex and branched-chain 
keto-acid dehydrogenase complex (BCKDH) (Figure 2). Recent analyses also showed 
that thiamine and its derivatives can allosterically regulate malate dehydrogenase 
and glutamate dehydrogenase, both involved in the malate-aspartate shuttle, 
thereby decreasing the efflux of citrate from the mitochondria and increasing 
citrate flux through the TCA cycle (20).

Vitamin B2 – FAD and FMN
Vitamin B2 (riboflavin) exists in two bioactive forms, flavin adenine dinucleotide 
(FAD) and flavin mononucleotide (FMN). Riboflavin is first phosphorylated by 
riboflavin kinase, generating FMN, which can be further converted into FAD by 
FAD synthase (FADS) that subsequently transfers an adenosine monophosphate 
(AMP) unit from ATP to FMN. By acting as electron carriers, FAD and FMN comprise 
the essential prosthetic groups in flavoproteins. About 90 flavoproteins are 
identified in humans (21), the majority harboring FAD. They are mainly located in 
the mitochondria and catalyze a variety of redox reactions, including oxidation, 
reduction and dehydrogenase reactions (Figure 2). For example, mitochondrial 
acyl-CoA dehydrogenases, which perform the first step in fatty acid beta-
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oxidation, compromise a large group of FAD-dependent flavoproteins. Riboflavin 
also supports the redox reactions catalyzed by succinate dehydrogenase (SDH) 
and glutathione reductase (GR) by supplying FAD. Reduction of FAD to FADH2 is 
an intermediary step in the oxidation of succinate to fumarate by SDH. Reduction 
of oxidized glutathione (GSSG) to 2 molecules of glutathione (GSH) by FAD- 
dependent GR utilizes the reduction of FAD to FADH2 as an intermediate step, 
which is also coupled to the reduction of NADPH to NADP+. In this way, riboflavin 
supports anti-oxidant defense mechanisms by serving GSH metabolism (22), but 
riboflavin is also proposed to act as an anti-oxidant by its own oxidation (23). 
Riboflavin also supports NADPH-dependent biliverdin reductase B (BLVRB) (24), 
which is involved in protection against I/R oxidative injuries (22,25). 

Vitamin B3 – NAD+ and NADP+

Vitamin B3 is also referred to as niacin, which comprises the various dietary forms 
of vitamin B3, nicotinic acid (NA), nicotinamide (NAM), as well as the recently 
recognized nicotinamide riboside (NR), and nicotinamide mononucleotide (NMN) 
(26). These forms have different bioactivation routes towards NAD+. In addition, 
NAD+ can also be synthesized de novo from the essential amino acid tryptophan 
in a ratio of approximately one to 60, meaning that sixty times as much milligrams 
of tryptophan is needed to generate each gram of NAD+, than is generated from 
each milligram of vitamin B3. As a coenzyme, NAD+ is principally used as an 
electron acceptor (Figure 2) (27). Furthermore, NAD+ can be converted in a 
second, distinct cofactor form, NADP+, with a principal role in lipid metabolism and 
redox homeostasis. NAD+ is reduced to NADH by two electrons that are donated 
mostly by catabolic intermediates in mitochondrial substrate oxidation, especially 
in the TCA cycle. NADH is primarily used to feed electrons to the electron transport 
system (ETS) and to provide reduction equivalents to regenerate redox systems, 
including NADPH. Nicotinamide nucleotide transhydrogenase (NNT) catalyzes 
NADPH generation from NADH in a proton gradient dependent manner (28). 
NADPH can also be generated from other sources, including the pentose 
phosphate pathway, the serine synthesis pathway and glutamate dehydrogenase 
(29,30).

Apart from mediating mitochondrial metabolic signals via the electron carrier 
properties, especially NAD+ is also a direct regulator of protein post-translational 
acylation and ADP-ribosylation modifications (31). NAD+ is a co-substrate for three 
protein modifying enzyme families; the NAD-dependent deacylases (sirtuins, SIRT), 
poly-ADP ribosylation polymerases (PARPs) and mono-ADP ribosyltransferases 
(ARTs) (32,33). For each protein modification catalyzed by these enzymes, one 
NAD+ molecule is consumed. Recent studies demonstrated that these reactions 
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account for the use of two-thirds of the total cellular pool of NAD+ (34), highlighting 
the importance of NAD+ as precursor for protein modifications in the cell.

Vitamin B5 – Coenzyme A
Vitamin B5 (pantothenate) is the precursor for biosynthesis of Coenzyme A (CoA). 
Lipmann et al. (35) were the first to describe CoA as a coenzyme that transfers acyl 
groups and functions as a carrier of acyl moieties (35). In addition to its role in acyl 
transferase reactions (Figure 2) (36,37), CoA is the balancing factor between 
carbohydrate and lipid metabolism during glucose oxidation in the TCA cycle vs. 
fatty acid oxidation (38), and it is a required cofactor for the biosynthesis of ketone 
bodies (39,40). These metabolic functions explain why CoA is predominantly 
present in the mitochondria (2.2 mM), with less occurrence in the peroxisomes (20 
– 140 μM) and to some extent in the cytoplasm (less than 15 μM) (41). 

Vitamin B6 – pyridoxalphosphate
The active form of vitamin B6 (pyridoxalphosphate) is generated by distinct 
modification pathways that depend on the form of vitamin B6 (pyridoxal, pyridoxol 
or pyridoxamine) that is available. Pyridoxalphosphate plays a major role in energy 
metabolism, but is particularly involved in amino acid metabolism, de novo NAD+ 
and FeS biosynthesis, and by functioning as a cofactor for several aminotransfer-
ases and decarboxylases (Figure 2) (2,42). FeS clusters are integral parts of many 
metabolic protein complexes, such as aconitase and ETS complexes, as well as 
other cellular protein complexes, such as DNA polymerases and helicases (42). 
Furthermore, pyridoxalphosphate is the essential coenzyme for mitochondrial 
aminolevulinate synthase, which is essential for synthesis of heme (43).

Vitamin B8/B7 - biotin
Vitamin B8/B7 (biotin) is used in organisms without further chemical or enzymatic 
modification. The cellular localization of biotin is consistent with its function, with 
enriched fractions in the mitochondria and cytosol (44). Biotin acts as an essential 
coenzyme for five carboxylases from which four are located within the mitochondria 
(Figure 2). These carboxylases are carboxyl transferases that catalyze the addition 
of a carboxylic acid group to an organic compound, a reaction that utilizes CO2. 
Pyruvate carboxylase (PC) converts pyruvate into oxaloacetate (OAA) and 
functions to resupply the TCA cycle, but also in the initial step of gluconeogenesis 
(in liver and kidney) and lipogenesis (in adipose tissue, liver, brain). Propionyl-CoA 
carboxylase (PCC) converts propionyl-CoA to methylmalonyl-CoA with a key role 
in the catabolism of amino acids (isoleucine, valine, methionine and threonine) and 
odd-chain fatty acids. Methylcrotonyl-CoA carboxylase (MCCC) converts 3-meth-
ylcrotonyl-CoA to 3-methylglutaconyl-CoA, thus having a critical step in leucine 
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and isovaleric acid catabolism. Acetyl-CoA carboxylase B (ACACB) is a biotin 
carboxyl carrier protein and can function as a biotin carboxylase and carboxyl-
transferase. As carboxyltransferase, it catalyzes the ATP-dependent carboxylation 
of acetyl-CoA to malonyl-CoA. It is localized in the mitochondrial outer membrane 
and associates with carnitine palmitoyltransferase 1 (CPT1) allowing it to perform its 
decisive role in channeling acetyl-CoA towards either lipid synthesis in the cytosol 
or mitochondrial beta-oxidation. Cytoplasmic biotin containing acetyl-CoA carboxylase 
(ACACA) has similar metabolic functions and has a key role in long-chain fatty acid 
biosynthesis. 

Vitamin B11/B9 – folate, methyltetrahydrofolate, and others
Folate is the generic name for various different forms of this vitamin, also being 
referred to as vitamin B11 or B9. Several key steps of folate metabolism occur in 
mitochondria, and 30 – 50% of all cellular folate is located within the mitochondria 
(45,46). Similar to vitamin B3 metabolism, folate metabolism is highly complex, 
especially because of the wide variety of reactions in which folate is involved 
(2,47,48). Folate in its various cofactor forms is essential for the synthesis of ADP 
and GDP, synthesis of purines and thymidylate, providing the methylation donor 
S-adenosylmethionine (SAM), for cellular GSH metabolism, and for amino acid 
metabolism, with methionine recycling occurring in the cytoplasm and serine- 
glycine interconversion taking place in mitochondria (Figure 2) (49,50). The methionine 
derivative SAM supports more than 100 transmethylation reactions by acting as a 
universal methyl donor. 

Vitamin B12 – deoxyadenosylcobalamin and methylcobalamin
Vitamin B12 (cobalamin) is structurally the most complex and largest B-vitamin and 
is required as a coenzyme in both the mitochondria and cytosol. Deoxyadenosyl-
cobalamin is the essential cofactor of methylmalonyl-Coenzyme A mutase (MUT) 
in mitochondria, which converts methylmalonyl-CoA into succinyl-CoA, and has a 
role in the degradation of the amino acids and odd-chain fatty acid, just like PCC 
(Figure 2). Adenosylcobalamin was shown to support the catabolism of branched- 
chain amino acids (BCAAs) that are utilized for fatty acid synthesis in differentiating 
adipocytes (51). Adenosylcobalamin deficiency also resulted in accumulation 
of methyl-malonic acid (MMA), methylmalonyl-CoA, and odd-chain fatty acids, 
indicating that cobalamin is crucial for MUT function (51). Methylcobalamin is the 
cofactor for cytosolic 5-methyltetrahydrofolate-homocysteine methyltransferase 
(MTR), also known as methionine synthase (MS), which catalyzes the transmethylation 
of homocysteine by methyltetrahydrofolate (MTHF) to methionine (Figure 2) 
(52,53). The other product of the MS reaction is THF, the fully reduced form of 
folate, making folate metabolism critically dependent on sufficient availability of 
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methylcobalamin (54). Furthermore, by acting as coenzyme for MS, methylcobala-
min contributes to the synthesis of GSH (55). 

Regulation of mito-nuclear communication by B-vitamins

In the different mitochondrial reactions that are supported by B-vitamins, a diverse 
array of metabolites are generated. These metabolites are not only drivers of 
cellular metabolism and respiration, they can also forward metabolic signals to the 
nucleus. In this way, they maintain metabolic homeostasis, but also facilitate the 
cell to dynamically respond to environmental stress signals, like nutrient 
deprivation and oxidative stress (4). Mitochondrial metabolites that perform key 
signaling roles in mito-nuclear communication are generated in the TCA cycle, in 
fatty acid and amino acid oxidation pathways, as well as in the ETS. Their signaling 
roles center mainly around 1) regulating cytosolic and nuclear dioxygenases, 
hydroxylases and NAD-dependent deacylases, 2) functioning as substrate or 
precursor for protein post-translational modification (PTM), and 3) acting as 
electron donor or acceptor for redox reactions. B-vitamins alter the levels of 
mitochondrial signaling metabolites, and consequently impact their mito-nuclear 
signaling roles.

Below, we will describe four mito-nuclear communication pathways involving 
mitochondrial metabolites, and highlight the impact of B-vitamins on these 
pathways. Firstly, hypoxia-inducible factor 1 (HIF1) signaling is regulated by the 
TCA cycle intermediates alpha-KG, succinate and fumarate via activating or 
inhibiting HIF1-regulating hydroxylases. Second, the same TCA cycle intermediates 
also mediate the regulation of dioxygenases involved in methylation status of 
DNA and histones in the nucleus. Third, acyl-CoA molecules coming from TCA 
cycle, fatty acid oxidation and amino acid metabolism, are substrates for acylation 
modifications of histones. Fourth, antioxidant and redox signaling pathways are 
altered by TCA cycle intermediates as well as mitochondrial-derived reactive 
oxygen species (ROS). 

HIF1 signaling
Hypoxia-inducible factor 1 (HIF1) signaling mediates the physiological response to 
hypoxia. Dimerization of hypoxia-inducible factor 1 alpha (HIF1A) with the aryl 
hydrocarbon receptor nuclear translocator, ARNT (HIF1B), allows the transcription 
factor to bind to the hypoxia responsive elements (HRE) in a variety of genes that 
orchestrate adaptation to hypoxia and restoration of oxygen supply (56) (Figure 3).  
HIF mediated transcription is dependent on the binding of the co-activators 
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EP300 (E1A binding protein p300) and Creb binding protein (CREBBP). Apart from 
regulating cellular metabolic pathways in response to hypoxia, HIF1 also regulates 
red blood cell biosynthesis, iron metabolism and the formation of new blood 
vessels by coordinating the expression of angiogenic growth factors. In this way it 
plays a crucial role in regulating the response to hypoxia (57) as well as vascular-
ization of the developing embryo (58). Dysregulation of the HIF1 signaling pathway 
occurs in multiple pathologies. Cancer cells benefit from altered control of the 
HIF1 signaling pathway (59), HIF1 is often associated with acute or chronic 
inflammatory disorders (60), and HIF1 plays a role in the pathology of insulin 
resistance as well as non-alcoholic fatty liver disease (61).

The oxygen-sensitive HIF1A subunit is regulated by the Egl-Nine (EGLN, also 
called PHD) prolyl hydroxylase enzymes. EGLNs are part of a large Fe(II)/alpha-KG 
dependent dioxygenase family, that also consists of the ten-eleven translocation (TET) 
dioxygenases and the Jumonji C-domain-containing histone lysine demethylases 
(JmJ-KDM). EGLN catalyzes the hydroxylation of prolyl residues on HIF1A, which 
allows the interaction with von Hippel-Lindau protein (pVHL) that is part of a 
multimeric protein complex that contains ubiquitin E3 ligase activity. Ubiquitination 
by the pVHL complex promotes the degradation of HIF1A when normal oxygen 
levels are present (Figure 3) (56). In low oxygen levels (i.e., hypoxia), HIF1A escapes 
proteosomal degradation, because EGLN cannot hydroxylate HIF1A, which allows 
HIF1A to bind to ARNT and translocate to the nucleus. Here, the functional HIF1 
complex is fully assembled, thereby promoting the expression of multiple genes 
involved in cellular survival during hypoxia (Figure 3) (56,62,63). Assembly of the 
functional HIF1 complex in the nucleus, i.e., the binding to EP3000 and CREBBP, 
is also dependent on the absence of HIF asparaginyl hydroxylation by HIF1AN 
(hypoxia-inducible factor 1, alpha subunit inhibitor; also called FIH). Similar to 
EGLN, HIF1AN is dependent on oxygen, Fe(II), ascorbate and alpha-KG (64). 
EGLNs and HIF1AN use the TCA cycle intermediate alpha-KG as co-substrate to 
catalyze their Fe(II)-dependent hydroxylation reaction (Figure 3). One oxygen 
atom of O2 is donated to CO2 when alpha-KG is converted to succinate, whereas 
the other oxygen of O2 is used for the hydroxylation of the proline residues (63). 
The direct involvement of alpha-KG in the EGLN and HIF1AN reaction connects 
mitochondrial-derived alpha-KG directly to HIF1 signaling. Moreover, both 
succinate and fumarate have been shown to interfere with the alpha-KG dependent 
EGLN reaction (65–67), whereas citrate was shown to interfere with HIF1AN and 
EGLN in vitro as well (65,68). This links multiple TCA cycle metabolites other than 
alpha-KG to HIF1 signaling. In normal cell physiology it was shown that alpha-KG 
was needed and could be limiting for activation of EGLNs upon reoxygenation 
after anoxic culturing conditions (66). When cells were cultured in low nutrient 
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conditions and oxygen deprivation, the EGLN co-substrate alpha-KG was low, 
whereas the EGLN inhibitor fumarate was normal, indicating that limiting alpha-KG 
levels could prevent EGLN activation upon reoxygenation and thus prevent the 
proteasomal breakdown of HIF1 (66).

Since HIF1 signaling is often found to be upregulated in tumors and mutations in 
the pVHL gene are causing the hereditary cancer syndrome, von Hippel-Lindau 
disease, HIF1 signaling is studied extensively in the context of cancer (59). The 
TCA cycle metabolites fumarate and succinate are now known to be able to 
behave as oncometabolites in cancers. Oncometabolites have been defined as 
small molecule components of normal metabolism whose accumulation causes 
cellular dysregulation and consequently primes cells allowing future progression 
to cancer (69). Since oncometabolites are structurally similar to alpha-KG, they can 
activate tumorigenic pathways by acting as competitive inhibitors of Fe(II)/alpha-
KG-dependent EGLNs, as well as other dioxygenases, to interfere with HIF1 signaling, 
finally contributing to tumorigenesis (70). Many studies have demonstrated that 
succinate and fumarate promote tumorigenesis by stabilizing HIF1A via EGLN 
inhibition (Figure 3) (65,71–76), although succinate was also found to alter EGLN 
activity via a HIF-independent mechanism (77). 

In addition to several cancer pathologies, succinate-induced HIF1A stabilization 
has been demonstrated to play a role in inflammation (78–80) and rheumatoid 
arthritis (81,82). Activation of macrophages with lipopolysaccharide (LPS) impaired 
SDH function, thereby boosting the levels of succinate (78), and inducing 
HIF1-mediated secretion of pro-inflammatory interleukin (IL)1bèta (78,80). In an in 
vivo model of rheumatoid arthritis, transforming growth factor bèta (TGF-bèta) 
induction also resulted in accumulating succinate levels, which were found to 
activate the NLRP3 inflammasome in a HIF1A-dependent manner (81). The same 
authors recently demonstrated that succinate also boosted HIF1A-mediated 
vascular endothelial growth factor production and angiogenesis (82).

B-vitamin regulation of HIF1 signaling
Multiple B-vitamins maintain mitochondrial function. Therefore, alterations in the 
TCA cycle intermediates alpha-KG, succinate and fumarate caused by alterations 
in B-vitamin levels, likely impact HIF1 signaling through the alpha-KG-dependent 
EGLNs. Indeed, dysregulation of mitochondrial NAD+ metabolism by knockdown 
of the NNT gene in cells, caused accumulation of alpha-KG relative to succinate 
levels, which lowered HIF1A stability and HIF1A target gene expression (83). HIF1A 
could be stabilized again by addition of dimethylsuccinate, a cell permeable form 
of succinate (83). Vitamin B3 supplementation (in the form of NMN) was able to
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rescue a pseudo-hypoxic state, characterized by HIF1A stability in muscle during 
normoxia, that was induced by aging in mice (84). NMN supplementation failed to 
rescue pseudo-hypoxia in EGLN knockout (KO) mice as well as in SIRT1 KO mice 
(84), implying either a direct role of NAD+ availability on SIRT1 activity and HIF1 
signaling or an indirect role via regulation of TCA cycle metabolites. This also 
shows that alterations in TCA cycle metabolites by NMN supplementation could 
directly impact EGLN activity and thus HIF1 stability. Furthermore, in a glaucoma 
mouse model, mitochondrial aberrations and low NAD+ were observed in retina 
with increasing age, which made mice more vulnerable to high intra-ocular 
pressure which is an important risk factor for glaucoma (85). Increasing NAD+ 

levels by administering vitamin B3 (in the form of nicotinamide), prevented the 
mice from developing glaucoma. Interestingly, levels of HIF1 were observed to be 
increased in glaucoma mice, and expression of HIF1 was decreased by vitamin B3 
administration (85).

Nicotinamide has also been shown to have a protective role in I/R events. 
Nicotinamide administration to rats before an experimentally induced ischemic 
event in the brain, lowered infarct volume, which was attributed to elevated NAD+ 
levels in specific brain areas (86). Also, NMN, administered during reperfusion 
after an ischemic event in mice, reduced hippocampal injury significantly by 
increasing brain NAD+ levels (87). Although the mechanisms behind the effects of 
vitamins or NAD+ on I/R are not completely clear, both ROS signaling and TCA 
cycle metabolite signaling to HIF1 could play a role. Activation of HIF1A is generally 
considered to be protective in I/R, but sustained HIF1A expression could also be 
detrimental in the long-term (88). Ischemic preconditioning of the heart protects 
the heart from experimental, otherwise lethal, ischemic events. Mitochondrial ROS 
generation and stabilization of HIF1A were shown to play a role in the protective 
effect of ischemic preconditioning (89).

Vitamin B2 generates the necessary FAD for complex (C) II (SDH) to function in the 
mitochondrial ETS. Mutations in SDH can either cause a hereditary form of cancer 
or results in a genetic mitochondrial respiratory chain defect, clinically characterized  
by a mitochondrial encephalomyopathy (90). In fibroblasts derived from patients 
with a clinical CII deficiency, due to mutations in a SDH assembly protein (SDH 
assembly factor 1, SDHAF1), HIF1A expression was increased, likely because of 
accumulation of succinate, that would competitively inhibit EGLNs (91). Interestingly, 
vitamin B2 supplementation lowered succinate levels, by stabilizing the SDH 
complex, which concomitantly lowered HIF1A expression (91). This is in line with 
clinical data showing that patients with SDHAF1 mutations responded positively to 
oral riboflavin therapy (92), and highlighting that increasing mitochondrial vitamin 
B2 impacts HIF1 signaling. 
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Apart from regulating (pseudo)hypoxia by TCA cycle intermediates, also pyruvate 
and lactate have been shown to induce a pseudo-hypoxic state. Pyruvate has 
been suggested to bind to EGLNs catalytic site, thereby inhibiting EGLN activity 
and stabilizing HIF1A (93). Since vitamin B1 (thiamine) is essential for enzymatic 
activity of PDH and OGDH, thiamine deficiency decreases the activities of both 
PDH and OGDH (Figure 3), which is clinically characterized by increased plasma 
levels of pyruvate and lactate (94–98). The elevated pyruvate levels observed in 
B1 deficiency could impact HIF1 signaling. Although increased levels of alpha-KG 
are expected to induce HIF1A degradation and would thus have opposite effects 
on HIF1A signaling compared to above described effect, the consequences of 
increased alpha-KG levels, as reported in thiamine deficiency (99), on alpha-KG-in-
duced nuclear signaling pathways, have not been studied in detail. 

Combined, multiple studies point to a role of B-vitamins in regulating HIF1 signaling, 
but the mechanisms are not sufficiently understood yet. It is likely that B-vitamins 
could alter the dynamic interplay between TCA cycle metabolites, ROS as well as 
other metabolites that have been shown to interfere with EGLN activities, which 
will result in B-vitamin mediated control over the HIF1 signaling pathway.

Histone and DNA methylation regulation
Apart from regulation of HIF1 signaling by the B-vitamins, other mito-nuclear 
signaling pathways are also targeted by the B-vitamins. Dioxygenases similar to 
the EGLN prolyl hydroxylases, regulate demethylation of DNA and histones.  
The TET dioxygenases catalyze DNA demethylations through 5-methylcytosine 
(5-mC) hydroxylation (100), and the KDM lysine demethylases catalyze 
demethylation of histone proteins (101). Again, as is the case for EGLN, these 
oxidative reactions use O2 and alpha-KG to generate CO2 and succinate as 
co-products, the latter acting also as a competitive inhibitor of the alpha-KG 
dependent dioxygenases reaction itself (Figure 4) (68). Thus, alpha-KG, succinate 
and fumarate are able to alter the dynamics of DNA and histone methylation 
through their interaction with TET and KDM demethylation proteins, resulting in 
the regulation of the epigenetic code and corresponding gene expression 
programs (102). Several studies have demonstrated that reduced alpha-KG 
availability drives cancer and stem cell development by lowering dioxygenase 
activities. For example, reduced levels of alpha-KG due to BCAA transaminase 1 
(BCAT1) overexpression in acute myeloid leukemia (AML) cells were found to 
inhibit TET demethylase activity, thereby inducing DNA hypermethylation, which 
promoted AML cell survival and lead to decreased clinical outcome (103). 
Furthermore, exogenous alpha-KG supplementation was found to restore the 
reduced levels of alpha-KG, increase TET demethylase activity and normalize 
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methylation patterns that were observed to be hypermethylated in cardiac 
mesenchymal stem cell (CMSCs) from diabetic individuals (104). Importantly, the 
functional and clinical outcomes of alpha-KG-induced epigenetic modifications on 
stem cells have been shown to differ between species and cell types, indicating 
that the consequences of alpha-KG-induced epigenetic modifications are 
dependent on its context. alpha-KG supplementation induced maintenance of 
pluripotency in mouse naive embryonic stem cells (ESC) by upregulating TET and 
KDM enzymatic activities (105), whereas alpha-KG supplementation was shown to 
promote differentiation in primed human ESC (106). 

Both fumarate and succinate compete with alpha-KG for the binding pocket of the 
Fe(II)/alpha-KG dependent dioxygenases, including TET and KDM demethylases, 
thereby altering the epigenetic landscape of several mammalian cells (Figure 4). 
Succinate-induced inhibition of KDMs and TETs was shown to initiate histone and 
DNA hypermethylation, which had large effects on the expression of genes that 
regulate cancer cell progression (107–110) and the induction of epithelial-to-mes-
enchymal transition (EMT) (111). In a similar fashion, accumulating fumarate induced 
hypermethylation of a class of anti-metastatic miRNAs (miR-200) in fumarate 
hydratase (FH)-deficient renal cancer cells (112). Whereas miR-200 normally 
suppressed transcription factors that mediate EMT initiation (113), fumarate-in-
duced hypermethylation of miR-200 prevented this suppression and activated the 
EMT (112). Combined, mitochondrial-derived alpha-KG, fumarate and succinate 
have been shown in cancer cells and stem cells to drive the nuclear epigenetic 
landscape. 

B-vitamin regulation of histone and DNA methylation
Vitamin B2, in the form of FAD, is a co-factor for the lysine demethylase, KDM1, 
which is an alpha-KG-independent histone demethylase with amine oxidase 
activity (114). KDM1 lysine demethylases are involved in demethylation of H3K4 and 
H3K9, which are associated with transcriptional repression and activation, 
respectively (114,115). One of these KDM1 family members, the lysine demethylase 
(KDM1A or lysine-specific histone demethylase 1A (LSD1)), is particularly sensitive 
to FAD availability (Figure 4) (116–118). FAD availability was found to alter histone 
methylation in adipocytes (116). Silencing of riboflavin kinase and FADS inhibited 
KDM1A demethylase activity, resulting in increased methylation of histones and 
loss of repression of genes related to energy expenditure and ultimately to 
increased mitochondrial respiration and the induction of lipolysis (116). Impaired 
KDM1A demethylase activity due to vitamin B2 deficiency was also found to skew 
immune cells towards a pro-inflammatory phenotype (118). Vitamin B2 deficiency 
resulted in an increased methylation of histones on genes encoding pro-inflam-
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matory cytokines, like tumor necrosis factor-alpha and IL-1bèta, highlighting a role 
for vitamin B2 deficiency in immune signaling (118).

Methylation of histones and DNA requires methyl-donors. The B-vitamins, B2, B6, 
B11 (folate) and B12 (cobalamin), are necessary to produce the methyl donor SAM 
from pathways that drive one-carbon metabolism (Figure 4). The folate and 
methionine cycle consist of a complex set of reactions operating in both the 
mitochondria and the cytosol. Mitochondria-derived serine is the major precursor 
for the methionine that forms SAM (119). SAM is a substrate for nuclear histone and 
DNA methylase enzymes that transfer the methyl group of SAM to histone lysines 
or DNA cytosines. Vitamin B11 (folate) deficiency leads to neural tube defects, 
which can be attributed to impaired DNA synthesis, but has also been shown to 
be associated with alterations in the methylation landscape during embryonic 
development of the brain (120). In adult humans, lowered folate intake was 
associated with DNA hypomethylation in lymphocytes (121). 

In a study using human embryonic stem cells (hESCs), it was shown that nicotin-
amide-N-methyl transferase (NNMT) expression keeps hESC in a pluripotent 
state, by consuming methyl donors, lowering SAM levels and concomitantly 
lowering methylation of H3K27 at specific loci (122). Among the loci affected were 
the EGLN1 gene as well as genes from the Wnt signaling pathway. Interestingly, 
the observed mechanism integrates multiple aspects of B-vitamin regulation of 
mito-nuclear signaling. NNMT not only lowers the availability of the methyl donor 
SAM, it also lowers the availability of nicotinamide for NAD+ synthesis. Since NAD+ 
availability also impacts histone acylation via SIRT regulation, this could imply that 
a crosstalk exists between regulation of the synthesis of NAD+ and SAM, to 
maintain methylation and acylation epigenetic states in the nucleus. Furthermore, 
the NNMT mechanism of maintaining pluripotency also demonstrates an interaction 
between histone methylation status and HIF1 signaling via regulation of the EGLN 
locus (122). This interaction between nuclear methylation and HIF1 signaling was 
also demonstrated to occur via FAD (vitamin B2) regulation of KDM1A, where FAD 
regulated HIF1A stability in a KDM1-dependent fashion in cancer cells (123). 

Vitamin B12 (cobalamin) is involved in the methionine cycle through its role as an 
essential co-factor for the MS protein (Figure 4). Maternal cobalamin status has 
been linked to methylation status at specific loci in the offspring, also a weak 
association between maternal cobalamin status and child’s cognition was 
observed (124). Furthermore, in a mouse model of reduced cobalamin import into 
the brain generated by knocking out the CD320 cobalamin receptor, global brain 
DNA hypomethylation was observed (125,126). Vitamin B6 is mainly shown to 
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regulate DNA synthesis via its role in one-carbon metabolism (2), but dietary 
vitamin B6 intake was also shown to be linked to hypermethylation of the MLH1 
promotor in colorectal tumors in humans (127). 

Similar to the role of the B-vitamins in regulating EGLNs via TCA cycle intermediates 
in HIF1 signaling, altering TCA cycle intermediates could also impact DNA and 
histone methylation status via the regulation of the TET and KDM demethylases. 
Evidence for a direct role of B-vitamins on nuclear methylation via TCA cycle 
intermediates is lacking. Likely, because both vitamin B1 and vitamin B2 are 
directly involved in regulating either methyl donor availability or FAD-dependent 
histone demethylase activity, respectively. However, maintaining TCA cycle 
function by vitamin B1, B2 and B3 is likely to also play a role in regulating DNA and 
histone methylation in the nucleus (Figure 4).

Regulation of histone acylation
Citrate was one of the first mitochondrial metabolites that was shown to serve 
metabolic, as well as non-metabolic functions outside mitochondria. In the 1950s, 
it was demonstrated that citrate is not only oxidized for ATP generation in 
mitochondria, but also stimulates fatty acid synthesis in the cytosol (128,129). 
Citrate is generated from acetyl-CoA and OAA condensation catalyzed by the 
mitochondrial enzyme citrate synthase (CS). Mitochondrial-derived citrate can be 
exported to the cytosol by the citrate carrier (SLC25A1) where citrate can be 
regenerated to acetyl-CoA and OAA by ATP citrate lyase (ACLY) (Figure 5). 
Whereas OAA is shuttled back into the mitochondria in the form of malate, citrate-
derived acetyl-CoA can subsequently be used to fuel anabolic reactions, such as 
biosynthesis of fatty acids, amino acids and steroids (36,130). 

In addition to serve as an anabolic intermediate and cytosolic signaling molecule, 
citrate provides a source of nuclear acetyl-CoA for histone acetyltransferase (HAT 
or lysine acetyltransferase; KAT) activity and promotes acetylation reactions in the 
nucleus (Figure 5) (131). In histone acetylation, the cleaved acetyl-group from 
acetyl-CoA is transferred to an ε-N-lysine residue of histones in chromatin 
structures to produce ε-N-acetyllysine residues (132). Histone lysine acetylation 
plays a pivotal role in nuclear gene expression (133). Addition of negatively 
charged acetyl-groups neutralizes the positively charged lysine residues on the 
histone tails. This unlocks the tight interactions between negatively charged DNA 
and positively charged histones and allows transcription factor binding. Multiple 
studies have demonstrated that nuclear and cytosolic acetylation is dependent 
on citrate efflux from the mitochondria, since loss of enzymes that generate, 
transport or cleave citrate hampers cytosolic acetyl-CoA production and protein 
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acetylation (131,134–139). For example, ACLY-dependent acetylation was recently 
found to induce the expression of cell migration and adhesion genes, promoting 
malignant tumor formation (139). Silencing ACLY was also shown to decrease 
histone acetylation in several mammalian cell types (131,138), indicating that mito-
chondrial-derived citrate plays a role in tumorigenesis by indirect alterations in 
transcriptional programs that dictate cancer cell formation and progression. 
Acetate-derived acetyl-CoA in the nucleocytoplasmic compartment was found to 
rescue histone acetylation in ACLY deficient colon cancer cells, also indicating 
that acetyl-CoA can also be produced from extra-mitochondrial citrate and acetate 
(131).

Fatty acids are a major source of acetyl-CoA as well as other acyl-CoAs, which 
form the acyl donors for histone acylation (Figure 5). Acyl-CoAs can be generated 
in different compartments of the cell, and mitochondrial-derived acyl-CoAs have 
been shown to be a source for histone acylation, allowing for metabolic control of 
histone acylation and gene transcription by acyl-CoA molecules from inside the 
mitochondria. Export of acyl-CoAs out of the mitochondria is mediated by reversing 
parts of the machinery of the carnitine shuttle. Carnitine palmitoyltransferase 2 
(CPT2) is able to convert medium and long-chain acyl-CoAs into acylcarnitines 
(140), whereas an additional enzyme called carnitine acetyl transferase (CRAT) 
takes care of the conversion of short-chain acyl-CoAs into acylcarnitines (140). 
Acylcarnitines are likely to be translocated over the mitochondrial inner membrane 
by carnitine-acylcarnitine translocase (CACT), making them available for the cytosol 
and the nucleus.

Although histone acetylation is the major contributor to chromatin regulation and 
is partly regulated by mitochondrial acetyl-CoA levels (141), recent compelling data 
have shown that histones are modified by a variety of acylation reactions (Figure 5) (142). 
Among them, propionylation, butyrylation, crotonylation, hydroxy-isobutyrylation 
and succinylation have now been characterized biologically to some extent as 
well. Propionylation at H3K14 was enriched at transcription start sites and promotors  
in mouse livers (143). H3K14 propionylation marks overlapped substantially with 
active H3K9Ac and H3K4me3 marks, providing opportunities for more sophisticated 
recruitment of transcriptional regulators (143). Interestingly, histone propionylation 
levels were altered by deleting the mitochondrial propiony-CoA generating 
enzyme propionyl-CoA carboxylase, demonstrating that mitochondrial derived 
propionyl-CoA impacts nuclear histone propionylation (143). In another study, 
increased H3K14 propionylation induced by elevated propionyl-CoA in nuclear 
extracts lowered H3K14 acetylation levels (144), highlighting the dynamic interplay 
between different lysine acylation modifications via acyl-CoA substrate levels. 
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Other histone sites have also been shown to be functionally propionylated. 
Overexpression of a newly identified propionyltransferase (MOF) increased 
histone propionylation levels on multiple histone marks, such as H4K16, H4K12, 
H2Ak5 and H2K9 (145), and H3K23 propionylation levels were lowered upon 
monocytic differentiation in cultured U937 cells (146). Butyrylation of histones was 
shown to play a role in dynamically regulating genome organization during sper-
matogenesis, by mediating Brdt bromodomain binding to histone marks (147). Brdt 
recognized acetylated H4K5 sites but did not bind to butyrylated sites on the 
same H3K5 lysines (147), again showing the interplay between different acylations.

Histone crotonylation is different from other short-chain acylation modification in 
that the crotonyl modification contains an unsaturated bond, making this modification 
more rigid and thus could exert unique biological functions. Crotonyl-CoA is a 
mitochondrial fatty acid oxidation intermediate generated in the first step of 
butyryl-CoA oxidation, which is in turn derived mainly from longer chain fatty 
acyl-CoAs. Short-chain acyl CoA dehydrogenase (SCAD) catalyzes the reaction 
making the trans-2-enoyl-CoA from the short-chain fatty acyl-CoA. Moreover, 
crotonyl-CoA is formed from glutaryl-CoA during tryptophan and lysine 
degradation by glutaryl-CoA dehydrogenase (GCDH). Although crotonyl-CoA is 
generally converted by the enoyl-CoA hydratase, crotonase, into 3-hydroxybutyryl-
CoA it can also be converted to crotonylcarnitine and/or crotonate. It is likely that 
mitochondrial crotonyl-CoA can be a source for nuclear histone lysine crotonylation, 
but it has not been directly established yet. Histone crotonylation was first 
discovered by the group of Yingming Zhao (142), using sensitive mass spectrometry 
proteomics techniques and was demonstrated to mark X-linked genes that are 
post-meiotically expressed in round spermatids (142). In stages of late meiosis 
during spermatogenesis most of the genes are silenced, but a selection of genes 
can become activated after meiosis. Mostly the genes associated with the histone 
crotonylation marks are enriched for escaping chromosome inactivation (142). 
Again, it has been shown in multiple studies that dynamically regulating the levels 
of crotonyl-CoA, also regulates the levels of histone crotonylation (148). Incubating 
cultured cells with high concentrations of short-chain fatty acids, generally increases 
respective lysine modifications globally in the cell (149,150). In line, incubating 
RAW264.7 macrophages with crotonate, increased histone crotonylation, and at 
the same time activated the excretion of cytokines upon LPS stimulation, which 
differentiates macrophages into a pro-inflammatory state (148). This activation 
could be turned off when the enzyme that is likely responsible for turning crotonate 
into crotonyl-CoA (acetyl-CoA synthetase 2, ACSS2) was knocked down (148), 
demonstrating that crotonyl-CoA levels are drivers of the activated gene expression 
signature in RAW264.7 macrophages. Similar studies have been performed for the 
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novel histone modification lysine beta-hydroxybutyrylation, where metabolic 
states of increased beta-hydroxybutyrate where associated with specific increases 
in histone beta-hydroxybutyrylation marks (151). In an effort to identify novel histone 
crotonyltransferase enzymes, Liu et al. (152) discovered that the chromodomain 
protein CDYL lowers histone crotonylation instead of increases it, hinting at a 
different function for this protein than a histone crotonyltransferase. Intriguingly, 
the CDYL protein possessed enoyl-CoA hydratase activity, which allowed CDYL 
to convert crotonyl-CoA into hydroxybutryl-CoA and thereby lowering the available 
pool of crotonyl-CoA for histone crotonylation (152). Thus, apart from mitochondrial 
regulation of acyl-CoA levels, a fine-tuning machinery likely exist inside the 
nucleus to regulate crotonyl-CoA levels as well as levels of other acyl-CoAs.

Lysine succinylation was first discovered to be primarily a modification that occurs 
inside the mitochondria (153–155), other studies soon identified lysine succinylation 
in the cytosol and the nucleus as well (156). The first succinylation on histone 
peptides in yeast and mammalian cells were discovered by Xie et al. (157) and 
functional consequences of altering histone lysines with dicarboxylic acid 
modification, like succinylation, were identified more recently (158,159). H3K122 
succinylation was shown to play a role in regulating the DNA-damage response 
(159). SIRT7, a NAD-dependent deacylase protein from the SIRT family, was 
identified as histone desuccinylation enzyme (159). SIRT7 was recruited to DNA 
double-strand breaks, where SIRT7 desuccinylated H3K122, which ultimately 
promoted DNA damage repair and cell survival (159). SIRT7 has already been 
shown extensively to have multiple roles in nuclear processes, but it was previously 
only understood to exert its action by lysine deacetylation, instead of lysine 
desuccinylation (160).

That mitochondrial alteration of succinate and succinyl-CoA levels could impact 
nuclear histone succinylation directly, was shown by Smestad et al. (158). Mouse 
embryonic fibroblasts deficient for SDH accumulated succinate and succinyl-CoA 
(158). This in turn elevated global lysine succinylation levels and altered histone 
lysine succinylation distributions (158). Histone succinylation was specifically 
enriched 600bp from TSS and was abundant at highly expressed genes. Moreover, 
in line with the observed DNA damage response defect in the SIRT7 deficient 
cells (159), SDH deficient cells presented with elevated DNA damage, as was 
shown by analyzing phospho-γH2A.X, making them more sensitive to the 
genotoxic drugs, etoposide and gemcitabine (158). Although it is currently not 
precisely known how succinate from the mitochondria is converted into 
succinyl-CoA in the nucleus, because succinyl-CoA synthetase activities have not 
been clearly established in nucleo/cytosolic compartments, other succinyl-CoA 
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generating enzymes are mainly localized in mitochondria and peroxisomes, and 
succinylcarnitine is not a substrate for nucleo/cytosolic acetyltransferases, this 
study does highlight the important role of mitochondrial signaling to the nucleus 
via mitochondrial generated metabolites. An alternative nuclear succinyl-CoA 
source was shown to be alpha-KG (161). The OGDH complex, which was previously 
thought to only reside in the mitochondria, was demonstrated to be present in the 
nucleus of mammalian cells and was bound and recruited by the histone acetyl-
transferase GCN5 (KAT2A) to histones (161). This mechanism allows for the local 
production of succinyl-CoA from the mitochondrial-derived metabolite alpha-KG.

B-vitamin regulation of histone acylation
Already in 1948 it was demonstrated that vitamin B5 (pantothenate) deficiency in 
rats causes decreased levels of acetylation of p-aminobenzoic acid (PABA) (162), 
but experimental evidence that vitamin B5 could regulate histone acylation is 
scarce. In a study using drosophila, histone acetylation has been linked with 
decreased availability of CoA (163). By interfering with pantothenate kinase 
activity, either via chemical inhibition or genetic knockdown in drosophila and 
mammalian cell models, these authors showed that de novo CoA biosynthesis is 
essential to support histone and tubulin acetylation (163). Since other studies have 
demonstrated that reduced levels of histone and tubulin acetylation are associated 
with neurodegeneration, it was speculated that at least part of the neurodegener-
ation observed in pantothenate kinase-associated neurodegeneration (PKAN) 
might be attributed to altered protein acetylation states that occur as a 
consequence of impaired CoA metabolism (163). In a follow-up study, addition of 
extracellular CoA was able to reverse the effects of decreased CoA availability on 
histone acetylation (164), demonstrating that increasing CoA levels could impact 
histone acetylation.

Other critical regulators of lysine acylation that are B-vitamin sensitive are the 
vitamin B3 (NAD+)-dependent sirtuins (Figure 5), with SIRT3-5 primarily localized 
in the mitochondria and SIRT1, SIRT2, SIRT6 and SIRT7 primarily localized in the 
nucleocytoplasmic compartment, although other sirtuins have been proposed to 
reside in the nucleus as well (165). SIRT1, SIRT6 and SIRT7 have a plethora of 
nuclear proteins targets, especially those affecting metabolism directly or indirectly 
(166,167). SIRT1 deacetylates multiple histones directly in a NAD-dependent 
fashion (168). SIRT1 regulation of histone acetylation could program the epigenetic 
code and play an important role in chromatin regulation. SIRT1 redistributes to 
double strand breaks upon DNA damage, promote repair and alter gene 
expression (169). Interestingly, among its many nuclear targets, SIRT1 also regulates 
the EP300-acetyltransferase which functions as a general histone acetyltransfer-
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ase (168). Also, SIRT6 and SIRT7 are able to deacetylate histone targets making 
them important regulators of many cellular activities, such as cell proliferation, 
ribosome biogenesis, metabolic homeostasis, and DNA damage repair (170,171). 

Since fatty acid oxidation provides many of the acyl-CoAs needed for histone 
acylation, B-vitamins involved in regulation of fatty acid oxidation could play a role 
in regulating acylation in general and histone acylation in specific. Mitochondrial 
acyl-CoA dehydrogenases, the enzymes that perform the first step in fatty acid 
beta-oxidation, are flavoproteins that require FAD and thus vitamin B2 (riboflavin) 
(Figure 5). Levels of multiple acyl-CoA dehydrogenases, mitochondrial CoA pools, 
as well as the levels of fatty acid derivatives are altered in riboflavin deficiency 
(172–174). The sensitivity of these metabolic enzymes for FAD deprivation can not 
only have consequences for mitochondrial lipid metabolism, but are also likely to 
alter mito-nuclear signaling pathways that are modulated by acyl-CoAs. Using a 
proteomic approach on livers of Pekin Ducks, Tang et al. (175) identified that 
especially mitochondrial enzymes involved in lipid metabolism and respiration are 
sensitive to vitamin B2 deficiency (175), whereas the impact of vitamin B2 deficiency 
on histone acylation was not studied. 
 
Biotin (vitamin B8/B7) facilitates the metabolic reaction that is catalyzed by 
propionyl-CoA carboxylase, which converts propionyl-CoA into methylmalo-
nyl-CoA in the mitochondria (Figure 5). Deficiency of biotin leads to elevated 
levels of mitochondrial CoA intermediates, including 3-methylcrotonyl-CoA and 
propionyl-CoA (176,177). Accumulating levels of propionyl-CoA can induce 
mitochondrial toxicity by inhibiting PDH and OGDH and impairing the activity of 
CIII within the ETS (178) (Figure 5). Although the impact of biotin deficiency on 
nuclear acylation reactions, such as propionylation, have not been studied so far, 
alterations in biotin availability are likely to alter cellular protein propionylation 
levels and could impact the dynamic interplay between multiple acylation reaction 
on histones, such as histone acetylation and propionylation.

The levels of methylmalonyl-CoA are elevated upon a deficiency in cobalamin 
(vitamin B12), which is the co-factor for MUT (Figure 5). Cobalamin deficiency is 
therefore characterized by accumulating levels of MMA in plasma and urine (179). 
Several studies reported that MMA impairs mitochondrial function by acting as a 
mitochondrial toxin that inhibits SDH (180,181). Whereas some studies did not find 
MMA-induced SDH inhibition when MUT was dysfunctional (182), other studies 
suggested that instead of MMA, alternative metabolites that accumulate upon 
MUT deficiency (2-methylcitric acid, malonic acid, and propionyl-CoA) synergisti-
cally induce mitochondrial dysfunction (183). Other complexes of the ETS were 
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also reported to be inhibited in MUT deficiency (179,184,185). Interestingly, other 
new acyl-CoAs were recently also linked to cobalamin and MUT (186). Itaconyl-CoA 
and citramalyl-CoA both accumulated in cells with a mutation in citrate lyase 
subunit beta (CLYBL), leading to impaired mitochondrial cobalamin metabolism 
(186). Mechanistically, itaconyl-CoA and citramalyl-CoA impair MUT activity by 
poisoning adenosylcobalamin, which cannot be regenerated and induces 
cobalamin deficiency (186). Again, these acyl-CoAs could also interfere with other 
more abundant histone acylation marks or could act as novel PTMs on histones, 
giving that they are able to reach the nucleus. Thus, cobalamin deficiency 
deficiency could affect mito-nuclear communication via regulation of specific 
acyl-CoA species.

ROS and redox signaling 
ROS are highly reactive biomolecules that are able to react with lipids, DNA and 
proteins. They are produced as a result of mitochondrial metabolism but also by 
other enzymes such as NADPH oxidases (Figure 6). Cells also possess powerful 
anti-oxidant systems to detoxify ROS, and the balance between ROS production 
and detoxification determines the cellular redox state. It is nowadays known that 
this cellular redox state plays an important role in cellular (patho)physiology (187). 
Regulating vascular tonality, enzyme activity, gene expression, cellular proliferation 
and differentiation are a few physiological examples that can be modulated by 
ROS (188). Increased ROS production and/or decreased detoxification is linked to 
aging (189) as well as pathological conditions such as cancer, Alzheimer’s disease 
and diabetes (190–193).

One of the main functions of mitochondria is the production of ATP to drive cellular 
processes. Mitochondrial ATP generation is ensured by the ETS consisting of 4 
multi-protein complexes, which together with the F1Fo-ATP synthase (CV) forms 
the oxidative phosphorylation (OXPHOS) system (Figure 6). The function of the 
ETS is to generate an electrochemical gradient over the inner mitochondrial 
membrane by pumping protons from the matrix to the inter membrane space, 
which is needed to generate ATP via CV (194). To perform this function, the ETS 
takes up electrons from NADH at CI or succinate, with FADH2 as an intermediate, 
at CII, which are transferred to CIII via ubiquinone (Figure 6). Cytochrome c 
transfers the electrons from CIII to CIV where they react with oxygen to form water. 
Most literature states that 0.5 – 2% of the electrons leak out of the ETS and react 
with oxygen to form ROS (195,196). Superoxide (O2-) and hydrogen peroxide 
(H2O2) can be formed at the FMN site in CI (197,198) and CII (199–201) and 
superoxide is also formed at the quinol-oxidizing site of CI and CIII and the FeS 
cluster of CIII (Figure 6) (198,202,203). Although ROS production by the ETS is 
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clearly demonstrated, the ETS is not the only source of ROS in mitochondria. Two 
other mitochondrial proteins playing an important role in ROS formation are PDH 
and OGDH, as they both contain a similar flavosubunit that can be a source of 
superoxide (Figure 6) (204–206). Other mitochondrial proteins involved in ROS 
production are aconitase (207,208), S(n)-glycerol-3-phosphate dehydrogenase 
dehydrogenase (209), dihydroorotate dehydrogenase (199,210), monoamine 
oxidases and p66shc/cytochrome-c (211,212). However, how much a protein 
contributes to the total production of mitochondrial ROS depends on the substrates 
being used by the mitochondria. Still, in most cases CI, CII, and CIII combined have 
the highest contribution, varying between 75 – 100% of the total mitochondrial 
ROS production (213).

To act as a metabolic signal in the nucleus, mitochondrial ROS should travel a 
certain distance and pass various membranes. Superoxide is negatively charged 
and is therefore unlikely to pass the (mitochondrial) membranes, although it might 
use the voltage dependent anion channel to diffuse to the cytoplasm (214). 
Furthermore, the diffusion capacity of superoxide is affected by superoxide 
dismutase (SOD) activity, which can reduce the lifetime of superoxide from 100 ms 
to 35 µs (215,216), thereby limiting the traveling distance to 400 nm. Hydrogen 
peroxide is uncharged and shows physical characteristics similar to water and can 
therefore freely diffuse through membranes, depending on its form and 
composition and the presence of aquaporins (217–220). More importantly, many 
anti-oxidant systems limit the diffusion distance. When taking the cellular 
concentrations of peroxiredoxin (Prx) 2, glutathione peroxidase (Gpx) 1 and GSH 
into account, the diffusion distance is estimated to be 4, 6 and 1600 µm, 
respectively (221). Taken together, mitochondrial ROS might not always be able  
to directly exert nuclear signaling or signaling is limited to perinuclear located 
mitochondria. Interestingly, it has been proposed that in plant cells, hydrogen 
peroxide can diffuse over distances up to 10 µm at a frequency up to 2 Hz (222), 
implying that hydrogen peroxide potentially encodes a cellular message 
depending on amplitude, frequency and localization. The observation that 
oscillations of the mitochondrial membrane potential are dependent on cellular 
redox status, suggests that mitochondria could act as relay stations to send out a 
ROS-mediated message throughout the cell (223). How this eventually is 
transformed into a cellular response remains unknown.

But how can mitochondria and mitochondrial metabolites affect nuclear signaling 
via redox balance? One well-described way to affect nuclear signaling is via the 
stabilization of HIF1A. In vivo, the mitochondrial ETS was shown to be essential for 
HIF1A stabilization and further in vitro studies indicated that CIII-derived 
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mitochondrial ROS played an important role in stabilizing HIF1A (224). Importantly, 
these effects can be reversed by overexpressing catalase (CAT) and GPx, but not 
mitochondrial targeted-CAT, SOD1 and SOD2 (225–227), suggesting that superoxide 
formed at CIII needs to be converted into hydrogen peroxide in the cytoplasm 
before it can stabilize HIF1A levels (Figure 6). Although the exact mechanism by 
which HIF1A is stabilized is still not clear, EGLNs are most likely involved, because 
ROS competes with oxygen in EGLNs, which stalls the hydroxylation reaction and 
results in stabilization of HIF1A. 

Fumarate is able to regulate ROS levels by interfering with anti-oxidant systems 
such as GSH (228). Sullivan and colleagues were the first to show that fumarate, 
which accumulated due to fumarate hydratase deficiency, can induce succination 
of GSH, generating succinated GSH (succinic-GSH) (Figure 6) (228). Succinic-GSH 
would support cancer cell proliferation by increasing oxidative stress levels in the 
mitochondria that subsequently activate HIF1A (228). Mechanistically, succinic-GSH 
acts as an alternative substrate for GR, thereby lowering NADPH levels, which 
limits the pool of NADPH that is available to be used as a cofactor for hydrogen 
peroxide detoxification (228). Two years later, this mechanism was argued by 
Zheng et al. (229). Although they agreed that succinic-GSH-induced oxidative 
stress was the leading cause for the clinical manifestations of FH-deficiency, they 
argued against the mechanism by which succinic-GSH and concurrent NADPH 
depletion enhanced oxidative stress (229). Instead of detoxification of succinic-GSH 
by GR as an enhancer of oxidative stress, Zheng et al. (229) demonstrated that 
succinic-GSH depleted the cells of GSH, and that NADPH requirements were 
increased to sustain GSH biosynthesis (229). These redox imbalances were not 
only relevant for anti-oxidative defense, but also for cancer cell fate (229).

Apart from GSH succination, fumarate can also have a signaling role via its ability 
to act as substrate for succination of other proteins (230–232). Multiple proteins 
are subjected to succination (Figure 6) (231–233), including Kelch-like ECH-
associated protein 1 (KEAP1) (234), aconitase (208), iron regulatory protein 1 (IRP1) 
(235), FeS cluster binding proteins (236), and glyceraldehyde-3-phosphate 
dehydrogenase (GAPDH) (237,238). Succination leads to protein dysfunction and 
disruption of redox homeostasis (228,229) and therefore contributes to the 
pathology of various chronic diseases, including cancer (228–230,235,239) and 
diabetes (240–242). In cancer, elevated levels of fumarate increased succination 
of KEAP1, impairing its function, which induced nuclear translocation of nuclear 
factor-like 2 (Nrf2) and thereby activating antioxidant response element (ARE)-
controlled genes to neutralize oxidative stress and to create an advantageous 
growth environment for cancer cells (Figure 6) (239,243). Remarkably, although 
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fumarate-induced Nrf2 stabilization lead to adverse effects in the kidney, 
the upregulation of ARE-controlled genes exhibits cardioprotective properties  
in the heart (244). Furthermore, via concurrent activation of Nrf2 and succination 
of IRP1, fumarate was found to enhance transcription and translation of the ferritin 
gene, respectively. As a consequence, ferritin levels increased, which promoted 
the expression of promitotic transcription factor Forkhead box protein M1 (FOXM1), 
inducing cell cycle progression (235).

Another PTM in the KEAP1-Nrf2 pathway, is also derived from mitochondrial 
metabolism. Mills et al. (245) demonstrated that itaconate alkylated cysteine 
residues of KEAP1 in LPS-activated macrophages. Whereas KEAP1 prevents 
nuclear migration of Nrf2 by forming a cluster under normal physiological 
conditions, alkylation of KEAP1 by itaconate separates Nrf2 from KEAP1 (Figure 6) 
(245), liberating Nrf2 for migration to the nucleus, where it activates the transcription 
of genes involved in anti-oxidant and anti-inflammatory signaling routes (245,246). 
Bambouskova et al. (247) also identified an anti-inflammatory role of itaconate in 
cells. Itaconate inhibited the production of a subset of pro-inflammatory cytokines 
IL6 and IL12 by inhibiting nuclear IkBζ, a key player in the secondary transcription-
al response upon primary NF-κB activation (247). Although the anti-inflammatory 
role of itaconate via its nuclear signaling routes have only recently been 
discovered, these studies highlight the important role of the aconitate-derived 
itaconate in mito-nuclear communication in immune cells.

B-vitamin regulation of ROS and redox signaling
Vitamin B2 and B3 act as cofactors for respectively CII and CI, and assist in redox 
reactions catalysed by GR, in which GSSG is reduced to GSH. Vitamin B2 and B3 
are therefore regulators of ROS balance, and dysregulated vitamin B2 or B3 
metabolism leads to increased levels of oxidative stress and mitochondrial ROS 
production (Figure 6) (22,248). Amongst the signaling pathways that are affected 
by mitochondrial ROS, especially lipid peroxidation and oxidative stress injuries 
that are caused by I/R, have been found to increase upon vitamin B2 deficiency 
(22,25). Furthermore, chronic supplementation with the vitamin B3 (in the form of 
NAM) was shown to reduce hepatic lipid accumulation in vivo, which was suggested  
to ameliorate the oxidative stress response that occurred during liver steatosis 
(249). Similarly, NR has been shown to lower oxidative stress in mice in an 
LPS-induced sepsis model, resulting in lower mortality (250). Although multiple 
studies have shown beneficial effects of NR (26), others have also shown that high 
doses of NR in mice can be detrimental for mouse metabolic physiology (251), 
which can possibly be explained by differences in genetic backgrounds or 
composition of the diets.
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High levels of NADH, the reduced form of vitamin B3, drive electron flow through 
the ETS, while high levels of ATP and low levels of oxygen impede electron flow. 
Recently it was shown that acute physiological hypoxia increases NADH levels 
and induces ROS, especially in the intermembrane space (248). At the same time 
the activity of SDH was inhibited, resulting in increased levels of succinate (248). 
NADH levels also play a role during I/R, where increased NADH levels drive 
malate to fumarate conversion during ischemia, and the increased succinate levels 
at CII that are produced during reperfusion cause increased mitochondrial ROS 
production, which accounts for the oxidative damage and cell death during I/R 
(252). Although no studies have been performed that focus on the relation 
between NADH levels, mitochondrial ROS, succinate and nuclear pathways, 
it would be interesting to see how succinate communicates with nuclear 
dioxygenases upon increased mitochondrial ROS. Although this communication 
remains elusive, a recent study illustrated how vitamin B3 metabolism, anti-oxidant 
responses and nuclear signaling are connected (253). Wei et al. (253) showed that 
supplementation of NMN could alter nuclear signaling via modulation of Nrf2 
expression and its translocation to the nucleus (253). 

In addition to vitamin B2 and B3, vitamin B6 and B12 also play a pivotal role in 
redox homeostasis as they both operate in GSH metabolism (Figure 6). So far only 
a few studies have focused on the possible protective role of vitamin B6 
(pyridoxine) or pyridoxine derivatives in amelioration of oxidative stress (254–256). 
Pyridoxine increased antioxidant responses, possibly via upregulation of nuclear 
Nrf2 gene expression, and decreased levels of mitochondrial ROS (254). Pyridox-
al-5’-phosphate supplementation resulted in reduced NLRP3 inflammasome 
activation and inflammatory cytokine production in peritoneal macrophages (255), 
which couples mitochondrial-derived ROS production to nuclear signaling 
pathways in immune cells. However, Zhang et al. (255) also pointed out that the 
outcomes for different pyridoxine derivatives are not always similar (255), indicating 
that more research is needed to elucidate the mechanisms by which pyridoxine 
potentially prevents ROS-induced oxidative stress, and how these signals are 
possibly transferred to the nucleus. 

Methylcobalamin (vitamin B12) contributes to GSH synthesis by acting as coenzyme 
for MS. The lack of methylcobalamin that is observed upon cobalamin deficiency 
is therefore associated with dysregulated GSH metabolism and increased ROS 
levels (Figure 6) (55), and cobalamin deficiency is clinically characterized by 
reduced plasma levels of GSH and impaired anti-oxidant capacity (257). Of note, 
although adenosylcobalamin is not directly involved in the GSH cycle, a lack of 
adenosylcobalamin that is observed during MUT dysfunction is also linked to 
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impaired GSH metabolism and increased ROS levels as it hampers mitochondrial 
function (179,258). 

Although vitamin B1 (thiamine) and vitamin B11 (folate) do not directly assist the ETS 
or GSH metabolism, both B-vitamins can alter cellular redox states. Thiamine can 
influence mitochondrial ROS production by acting as a cofactor for PDH and 
OGDH, two other major sources of mitochondrial superoxide (Figure 6). Thiamine 
deficiency is therefore linked to increased mitochondrial ROS formation (259,260). 
Since CIII-derived mitochondrial ROS can alter HIF1 signaling (224), the higher 
levels of ROS that are observed in thiamine deficiency have perhaps also a 
signaling role towards HIF1. This would also partly explain why thiamine deficiency 
is associated with HIF1A stabilization (261). Another interesting link between 
vitamin B1 and redox state was discovered recently (262). Benfotiamine, a synthetic 
S-acyl derivative of thiamine, was found to induce the expression of Nrf2 and 
ARE-dependent genes (262). It even restored mitochondrial function in a mouse 
model of Alzheimer’s disease, which indicates that this thiamine derivative can link 
vitamin B1 metabolism and mitochondrial function to nuclear anti-oxidant defense 
systems (262). Furthermore, it has also been shown that folate metabolism is 
linked to cellular redox states, in addition to its predominant role in supporting 
nucleic acid synthesis (263). Using quantitative flux analyses, the authors observed 
that oxidation of MTHF to 10-formyl-tetrahydrofolate was coupled to the reduction 
of NADP+ to NADPH, which showed that folate metabolism is essential to create 
reducing power in the cell (263). They also demonstrated that depletion of 
cytosolic as well as mitochondrial MTHFD resulted in lower NADPH/NADP+ and 
GSH/GSSG ratios with concomitant increased sensitivity to oxidative stress. These 
results showed that folate metabolism contributes to cellular redox states (263).

Recently, it was also identified that vitamin B5 (CoA) has an important role in redox 
regulation by functioning as a protective thiol (264,265). CoA was covalently 
linked to cellular proteins of mammalian cells in response to oxidizing agents and 
metabolic stress and induced a reversible PTM that was identified as protein 
CoAlation (Figure 6) (264,265). Proteins involved in redox homeostasis are 
particularly sensitive for CoAlation as they exhibit reactive thiol residues that can 
form homo- and heterodisulphides with CoA, such as GSH (266). Therefore, CoA 
has now also been implicated as an important regulator of redox homeostasis and 
could possibly also have nuclear targets.
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Conclusion

Overall, B-vitamins are of critical importance for regulating mitochondria, mito-
chondrial metabolites and signaling of mitochondrial metabolites to the nucleus. 
Although B-vitamins are among the oldest studied molecules in relation to  
health and disease, the revival of studying metabolism in pathologies, which were 
previously less well understood to be of metabolic origin, like cancer and 
immunological diseases, makes the B-vitamins highly relevant to be studied in 
light of novel therapeutic target development. In addition, the role of B-vitamins as 
essential dietary components makes it important to understand their nutritional 
role in relation to mito-nuclear signaling. All together this could serve as a proxy 
for understanding healthy dietary life styles and healthy aging.
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Abstract 	

High-fitness individuals have been suggested to be at risk of a poor vitamin B2 
(riboflavin) status due to a potentially higher vitamin B2 demand, as measured by 
the erythrocyte glutathione reductase (EGR) activation coefficient (EGRAC). 
Longer-term exercise interventions have been shown to result in a lower vitamin 
B2 status, but studies are contradictory. Short-term exercise effects potentially 
contribute to discrepancies between studies but have only been tested in limited 
study populations. This study investigated if vitamin B2 status, measured by 
EGRAC, is affected by a single exercise bout in females who differ in fitness levels, 
representing a difference in long-term physical activity. At baseline and overnight 
after a 60-minute cycling bout at 70% V̇O2peak, EGR activity and EGRAC were 
measured in 31 young female adults, divided into a high-fit (V̇O2peak ≥ 47 mL/kg/
min, N = 15) and low-fit (V̇O2peak ≤ 37 mL/kg/min, N = 16) group. A single exercise 
bout significantly increased EGR activity in high-fit and low-fit females (Pexercise = 
0.006). This response was not affected by fitness level (Pexercise*group = 0.256). The 
effect of exercise on EGRAC was not significant (Pexercise  = 0.079) and not 
influenced by EGR activity. The exercise response of EGRAC was not significantly 
different between high-fit and low-fit females (Pexercise*group = 0.141). Thus, a single 
exercise bout increased EGR activity, but did not affect EGRAC, indicating that 
vitamin B2 status was not affected. The exercise response on EGRAC and EGR did 
not differ between high-fit and low-fit females. 
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Introduction	

Exercise requires chemical energy (adenosine triphosphate, ATP) to enable muscle 
contractions and relaxations (1). At the same time, exercise generates reactive 
oxygen species (ROS) as a by-product, which enhance antioxidant defense 
systems (2–4), including those that depend on glutathione (3). One essential 
gatekeeper of energy and redox metabolism is vitamin B2 (riboflavin) (5). Vitamin 
B2 acts as a precursor for the electron carriers flavin mononucleotide (FMN) and 
flavin adenine dinucleotide (FAD), which are both essential mitochondrial cofactors 
of oxidative phosphorylation (OXPHOS) complexes I and II, respectively (6,7). 
In addition, FAD is an essential cofactor for the antioxidant enzyme glutathione 
reductase (GR) (6,8) that catalyzes the conversion of oxidized glutathione (GSSG) 
to reduced glutathione (GSH), thereby clearing ROS and supporting redox 
homeostasis. Since aerobic exercise puts a high demand on processes that are 
essentially dependent on the vitamin B2-derived cofactors FMN and FAD, especially 
athletes and recreationally active individuals, i.e., high-fitness (high-fit) individuals, 
are thought to benefit from an optimal vitamin B2 status (9).

In exercise studies, systemic vitamin B2 status is commonly assessed by the 
erythrocyte glutathione reductase activation coefficient (EGRAC) biomarker (9,10). 
This coefficient represents the ratio between erythrocyte GR (EGR) activity in the 
absence and presence of its cofactor FAD (11,12). Higher GR activity in the presence 
of FAD compared to the activity in its absence reflects the incomplete occupancy  
of GR by FAD and therefore a lower vitamin B2 status (13). Using this EGRAC assay, 
studies have demonstrated that longer-term exercise interventions of three weeks  
up to three months resulted in a lower vitamin B2 status (14–19). However, not all 
exercise studies confirm these findings (20,21); one study failed to show a change 
in vitamin B2 status (20), whereas another study even showed an improved vitamin 
B2 status following a longer-term exercise intervention (21). Large observational 
studies comparing the vitamin B2 status in athletes and recreationally active 
individuals also show inconsistent results (22–27). Differences in experimental 
set-up, including the selection of the study population (14,15,24,26–28,16–23) and 
the assessment of subjects’ fitness levels (24,27) could be of importance. However,  
the inconsistent findings could also be related to alterations in the EGR enzymatic 
activity itself. EGR enzymatic activity was shown to increase upon a longer-term 
exercise intervention (21), but has also been found to alter upon a single bout  
of exercise (21,28–30) and importantly, this has been linked to a lower EGRAC 
(21,28). This implies that the long- and short-term effects of exercise on vitamin B2 
status parameters could differ, but this has not yet been investigated, nor has the 
effect of long-term exercise on the EGRAC response to short-term exercise.
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This study investigates the effect of a single bout of exercise, i.e., short-term 
exercise, on EGRAC and EGR activity in high-fit compared to low-fit females, i.e., 
females that differ in long-term physical activity. We chose to study females, 
because females have been shown to be at risk for a poor vitamin B2 status (31), 
especially upon exercise (14,16). We hypothesize that a single bout of exercise 
affects these vitamin B2 status parameters, and that the longer-term physiological 
adaptations to regular aerobic exercise will increase vitamin B2 demand, resulting 
in a higher EGRAC and lower vitamin B2 status in high-fit females as compared to 
low-fit females in response to a single bout of exercise. 

Materials and Methods 

Ethical approval
The protocol for collection and handling of human samples was ethically approved 
by the medical ethical committee of Wageningen University and Research with 
reference number NL70136.081.19 and registered in the Dutch Trial Register 
(NL7891). All procedures performed were in accordance with the ethical standards 
of the institutional and/or national research committee and with the 1964 Helsinki 
Declaration. Written informed consent was obtained from all individual subjects 
included in the study.

Study subjects
Healthy young females (18–28 years of age, BMI 18.5–25 kg/m2) were recruited 
from the local university and community population. Exclusion criteria were: 
history of cardiovascular, respiratory, hematological or metabolic disease; use of 
prescribed chronic medication; anemia (hemoglobin concentration < 12 g/dL); 
blood donation within two months before the start of the study; smoking (> 5 
cigarettes per week); veganism; recreational drug use or over-the-counter drug 
use during the study; supplement use (performance enhancers or supplements 
containing vitamin B2); pregnancy or lactating. Subjects were selected if they had 
a V̇O2peak ≥ 47 mL/kg/min (high-fit group) or ≤ 37 mL/kg/min (low-fit group). This 
was determined using a maximal exercise test on a bicycle ergometer (Corival 
CPET, Lode, the Netherlands), and measured using the screening protocol of 
Lagerwaard et al. (2019) (32). The power analysis was based on findings from 
previous studies that examined the effect of exercise interventions on vitamin B2 
status (14,16,17). This yielded a sample size of N = 14 per group using the G*power 
software program with 90% power (β), 0.05 level of significance (α), a two-tailed 
confidence interval, and comparing two dependent (paired) means. Taking a 10% 
drop-out rate into account, this resulted in a sample size of N = 16 per group. 
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Sixteen high-fit subjects (representing physically active, trained individuals) and 
sixteen low-fit subjects (representing untrained individuals) were included. The 
V̇O2peak data and results of the skeletal muscle mitochondrial capacity of these 
included subjects have been published previously by our group (33). A total of  
111 maximal exercise tests were conducted to result in the desired sample size of 
32 (N = 16 per group), i.e., 79 subjects had a V̇O2peak ≥ 37 and ≤ 47 mL/kg/min. 
The use of oral contraceptives (OC) was not excluded; only the use of monophasic 
OC containing low synthetic estradiol and progesterone was allowed and was 
controlled for (N = 7 in the high-fit and N = 6 in the low-fit group). The 17bèta-
estradiol levels were measured using a chemiluminescent immunoassay on a 
Lumipulse G1200 analyzer (Fujirebio Incl) at the Erasmus Medical Centre (NL) and 
were not significantly different between those high-fit and low-fit females that did 
not use OC (Table 1) and were not correlated with basal EGRAC (Supplementary 
Figure S1).

Study design
Subjects refrained from heavy physical exercise 48 hours prior to the first study 
day and from any physical exercise and consumption of alcohol 24 hours prior to 
the first study day. Subjects adhered to dietary guidelines 24 hours before each 
study day, which included a list of product choices containing low levels of vitamin  
B2, and recorded their food intake in a food diary. They also consumed a 
standardized evening meal (73% carbohydrates/16% protein/11% fat, 1818 kJ) 
before 8:00 PM.; subjects were not allowed to eat after 8:00 PM. After the 
overnight fast, blood was collected on the morning of the first study day (baseline) 
and overnight after a single bout of exercise, i.e., the morning of the second study 
day (21 hours post-exercise). Subjects received breakfast and after two hours, 
subjects completed an individualized exercise protocol consisting of 60 minutes 
cycling on an electrically braked bicycle ergometer (Corival CPET, Lode, the 
Netherlands) at a workload aiming to equal 70% of their individual V̇O2peak that 
was determined during the maximal exercise test. Oxygen consumption, carbon 
dioxide production, and air flow were measured using the MAX-II metabolic cart 
(AEI technologies, Landivisiau, France). Exhaled air was continuously sampled 
from a mixing chamber and averaged over 15 second time windows. Oxygen 
consumption was measured the first and last 15 minutes of the exercise test and 
used to confirm the relative workload. Body fat percentage was measured 
according to the four-site method by Durnin–Womersley using the skinfold 
measurements of the triceps, biceps, sub scapula, and supra iliac, measured using 
a skinfold calliper (Harpenden, UK). After the exercise, the protocol subjects went 
home and refrained from moderate to heavy physical activity, kept low levels of 
light physical activity, and refrained from alcohol consumption until blood collection  
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on the second study day. Physical activity was monitored using a wearable 
accelerometer (wGT3X-BT, Actigraph, FL, USA) during this period. Habitual vitamin 
B2 intake was determined via a food frequency questionnaire (FFQ) that assessed 
dietary intake in the past four weeks (34). 

Blood sampling and hemolysate preparation
Blood samples (1 x 6 mL) were collected from the subjects by venapuncture in 
vacutainers containing dipotassium (K2-) ethylenediaminetetraacetic acid (EDTA) 
(K2-EDTA, BD Biosciences, Vianen, the Netherlands), kept on ice-water, and processed 
within 30 minutes. Blood was centrifugated for 10 minutes at 1200g at 4°C. Plasma 
and buffy coat were removed and 2 mL of erythrocytes were collected and 
transferred to a new sample tube. Erythrocytes were washed twice in 10 mL of 1X 
Dulbecco’s phosphate-buffered saline (DPBS, Thermo Fisher Scientific, Pittsburgh, 
PA, USA) and centrifugated for 5 minutes at 2000g at 4°C. The supernatant was 
discarded, and the erythrocyte pellet was gently resuspended in sterile Milli-Q 
(MQ) to induce an osmotic burst. Hemolysates were stored at -20°C for 30 minutes 
and transferred to -80°C afterwards. EGRAC assays were performed within six 
months after blood collection. For the EGRAC assay, hemolysates were thawed 
on ice, 10x diluted with MQ, and centrifugated for 2 minutes at 13,000g at 4°C to 
remove cellular debris. The supernatant was transferred to a new vial and protein 
content was determined. Thawed hemolysates and samples were kept on ice and 
protected from light.

Protein content determination
The hemolysate protein content was determined in 100x diluted samples using the DC 
Protein Assay kit (Bio-Rad, Hercules, CA, USA) according to the manufacturer’s 
protocol and a standard curve of bovine serum albumin (BSA, Sigma-Aldrich, St. 
Louis, MO, USA) in MQ. Absorbance was measured using a BioTek Synergy HT 
plate reader. Hemolysate protein content was optimized (0 – 300 µg) to achieve 
linearity of the EGR enzymatic reaction within the 30-minute measurement period 
and the absorbance detection limit. The final protein input was set to 112.5 µg.

Erythrocyte glutathione reductase activity coefficient (EGRAC) assay 
The EGRAC assay quantifies the reduction of oxidized glutathione (GSSG) to 
reduced glutathione (GSH) with the concomitant oxidation of NADPH to NADP+ in 
the presence and absence of its essential cofactor FAD (11,12). The assay was 
based on the method of Hill et al. (2009) (35) and optimized for the in-house 
analysis. All reagents were prepared fresh daily. Samples were diluted to 5 µg/µL 
protein and a 270 µL sample was incubated for 30 minutes at 37°C in the presence 
of 30 µL 15 µM FAD (final concentration 1.5 µM, Sigma-Aldrich, St. Louis, MO, USA)
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dissolved in 100 mM/3.4 mM H2KPO4/EDTA buffer pH 7.6 (for FAD-stimulated EGR 
activity) or with 30 µL H2KPO4/EDTA buffer only (for unstimulated EGR activity). 
After incubation, a 25 µL sample was aliquoted in octuplicate in a 96-well 
microplate (final protein input 112.5 µg). To each sample, 125 µL of the cofactor 0.33 
mM beta-nicotinamide adenine dinucleotide (NADPH, final concentration 0.16 
mM, Sigma-Aldrich) in H2KPO4/EDTA buffer (NADPH mix, 37°C) and 50 µL MQ 
(37°C) was added. Absorbance was measured every minute for 5 minutes at 340 
nm at 37°C using a BioTek Synergy HT plate reader. The enzymatic reaction was 
started by adding 50 µL 5 mM oxidized glutathione (GSSG, final concentration  
1 mM, Sigma-Aldrich, 37°C) as a substrate. The reaction was monitored every  
30 seconds for 30 minutes at 340 nm at 37°C. Reaction slopes (0 - 30 minutes) 
were calculated using a linear regression analysis. Each assay included a reference 
blood sample to assess intra-assay variation, a positive control (GR from baker’s 
yeast (6.25 units/µg protein, Sigma-Aldrich) in 1% BSA in H2KPO4/EDTA buffer), 
and negative controls for the background, substrate, cofactor, and enzyme. EGR 
enzymatic activity was calculated using the Beer–Lambert law:

where c is the concentration of NADPH (mM), ΔA is the decrease in NADPH 
absorbance per minute, ε is the molecular absorbance of NADPH at 340 nm (6.22 
× 103 mmol/L/cm), and λ is the optical pathlength (0.69 cm). Activity was expressed 
as nmol NADPH oxidized per minute after adjustment for well volume (250 µL). 
The EGRAC ratio was calculated as FAD-stimulated EGR activity/unstimulated 
EGR activity using the reaction slopes (all R2 > 0.99). An EGRAC of 1.0 reflects 
complete FAD saturation and an EGRAC of > 1.3 was used as a cut-off for suboptimal 
vitamin B2 status (10). The intra-assay coefficient of variation (CV) for EGR activity 
was 3.7%; the inter-assay CV was 2.8% for EGRAC and 12.3% for EGR activity.

Statistical analyses 
Statistical analyses were performed using IBM SPSS Statistics for Windows 
(Version 25.0, IBM Corp, Armonk, NY, USA). Graphs were created using GraphPad 
Prism (Version 8.0, Graphpad Software, CA, USA). Data were presented as  
mean ± standard deviation (SD) or as median ± interquartile range [IQR]. Normality 
was checked using Shapiro–Wilk normality tests. A repeated-measures ANOVA 
(RM-ANOVA) was used to study the effect of a single exercise bout on the 
response of EGRAC and EGRAC-related parameters, with the exercise bout as  
the within-subjects factor (time) and fitness level as the between-subjects factor 
(group). All assumptions for the RM-ANOVA analysis were met. Pearson correlation 
coefficients (r) were used to compare associations between variables, and p-values 
< 0.05 were considered as statistically significant. 
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Results

In total, 31 of the 32 subjects finished the study protocol. One subject was excluded 
due to protocol violation (i.e., medication intake). The conducted V̇O2peak 
measurements were considered valid on the posed criteria. Subject characteristics  
are shown in Table 1. All submaximal exercise tests were performed at a workload 
corresponding to approximately 70% V̇O2peak (67.2 ± 8.1% in high-fit and 71.8 ± 
5.7% in low-fit females). Average group values from the exercise test are shown  
in Supplementary Figure S2. Two subjects from the low-fit group terminated the 
submaximal exercise test prematurely due to feelings of presyncope and 
exhaustion; one subject cycled for 40 minutes at an intensity of 71% and one 
subject cycled for 48 minutes and at an intensity of 71.9%. Average habitual vitamin 
B2 intake was not significantly different between high-fit (1.40 ± 0.35 mg/day) and 
low-fit (1.32 ± 0.46 mg/day) females (P = 0.595).

EGR enzymatic activities were increased after a single bout of 
exercise, but were not significantly different in high-fit compared to 
low-fit females
Compared to baseline, a single bout of exercise significantly increased unstimulated 
EGR activity (Pexercise = 0.006), but fitness level did not influence this outcome 
(Pgroup = 0.163) (Figure 1A). The exercise-induced increase (0.260 ± 0.031 to 0.273 
± 0.060 nmol NADPH per minute) in unstimulated EGR activity in low-fit females 
was not significantly different from the increase (0.282 ± 0.063 to 0.309 ± 0.079 
nmol NADPH per minute) in high-fit females (Pexercise*group = 0.256). FAD-stimulated 

Table 1. Subject characteristics.

Low-fit (N = 16) High-fit (N = 15)

Age (years) 24.0 [21.3 – 25.5] 21.8 [21.6 – 23.7]

Weight (kg) 59.2 ± 7.2 61.2 ± 7.0

Height (m) 1.63 ± 0.08 1.68 ± 0.05 *

Fat mass (% of weight) 28.9 ± 3.9 25.1 ± 4.4 *

V̇O2peak (mL ·kg ˉ¹ · min ˉ¹) 35.1 [32.2 – 35.7] 50.4 [49.0 – 54.0] ****

Baecke total score 7.3 ± 1.0 9.5 ± 0.8 ****

Hemoglobin (mM) 8.4 ± 0.6 8.5 ± 0.6

Use of birth control pill 6/16 7/15

If not; 17bèta-estradiol (pmol/L) 470.9 (337.2 – 590.1) 217.4 (109.1 – 895.2)

V̇ O2peak = maximal oxygen consumption values. Values are mean ± SD for normally distributed data, 
and median [IQR] for not normally distributed data. *P < 0.05, ****P < 0.0001.
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EGR activity increased after the exercise bout, but this did not reach statistical 
significance (Pexercise = 0.056) (Figure 1B). Again here, fitness level had no influence 
on this finding (Pgroup = 0.619). The exercise-induced increase in FAD-stimulated 
EGR activity in low-fit females (0.397 ± 0.046 to 0.401 ± 0.096 nmol NADPH per 
minute) was not significantly different from the increase (0.393 ± 0.078 to 0.427 ± 
0.100 nmol NADPH per minute) in high-fit females (Pexercise*group = 0.126). 

The EGRAC response to a single bout of exercise is not different between 
high-fit and low-fit females and not related to the EGR response 
A single bout of exercise did not affect the vitamin B2 status as reflected by 
EGRAC (Pexercise = 0.079), and fitness level did not have a significant effect (Pgroup 
= 0.057) (Figure 2A). The exercise-induced decrease (1.54 ± 0.14 to 1.47 ± 0.17) in 
EGRAC in low-fit females was not significantly different from the decrease (1.41 ± 
0.14 to 1.40 ± 0.15) in high-fit females (Pexercise*group = 0.141). The individual exercise 
responses of EGRAC and unstimulated EGR activity were analyzed per subject 
and plotted against each other with the two groups combined. The change in 
unstimulated EGR activity after exercise (Δ unstimulated EGR activity) was not 
correlated (r = 0.06, P = 0.74) to the change in EGRAC after exercise (Δ EGRAC) 
(Figure 2B). 

Figure 1: The effect of a single exercise bout on unstimulated and FAD-stimulated EGR 
activity in high-fit and low-fit females. Baseline and post-exercise unstimulated EGR 
activity (expressed as nmol NADPH converted per minute (A), and FAD-stimulated EGR 
activity (expressed as nmol NADPH converted per minute (B), in low-fit (N = 16, white) and 
high-fit (N = 15, grey) females.
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Discussion

Our results indicate that the effect of a single bout of exercise on EGRAC and EGR 
was not different between high- and low-fit females. The exercise bout significantly 
increased unstimulated EGR activity and tended to increase FAD-stimulated EGR 
activity, yet this exercise response was not different between high-fit and low-fit 
females. The decrease in EGRAC in response to a bout of exercise was not 
significant; neither was this response significantly different between high-fit and 
low-fit females. There was a lack of association between the change in EGR and 
EGRAC in response to a bout of exercise. 

We hypothesized that the single bout of exercise could affect vitamin B2 status as 
determined by EGRAC, as the short-term effects (< 24 hours) of exercise on EGR 
activity have been reported by previous studies (21,28,30). We also hypothesized 
that the EGRAC values after the single bout of exercise would be higher, i.e., 
vitamin B2 status would be lower in high-fit compared to low-fit individuals, as 
regular aerobic exercise enhances vitamin B2-dependent processes that could 
increase vitamin B2 demand. Indeed, we observed that EGR activity was 
significantly increased after the single bout of exercise, but EGRAC was not 

Figure 2: The effect of a single exercise bout on vitamin B2 status (EGRAC) in high-fit and 
low-fit females. Baseline and post-exercise EGRAC in low-fit (N = 16, white) and high-fit (N = 15, 
grey) females (A). Correlation between the individual exercise response of unstimulated 
EGR activity (Δ unstimulated EGR activity, expressed as nmol NADPH per minute) and the 
exercise response of EGRAC (Δ EGRAC); the high-fit and low-fit groups are plotted together (B).
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significantly affected, neither was the change in unstimulated EGR activity related 
to the change in EGRAC. The first finding implies that a short-term exercise 
intervention on the day prior to blood sampling does not affect the reliability of 
using EGRAC for vitamin B2 status determination. Moreover, our observations are 
similar to previous findings (21,28,30). Ohno et al. (30) demonstrated in 11 untrained 
males (age 20.3 ± 0.3 years) that a single bout of exercise (30-minute cycling test 
at 75% V̇O2peak) significantly increased FAD-stimulated EGR activity and non-sig-
nificantly increased unstimulated EGR activity (30), but EGRAC values were 
lacking. Evelo et al. (21) observed significantly higher EGR activity and significantly 
decreased EGRAC in trained males and females (N = 23 and 18, age 18–41 years) 
one day after running a 15-km contest or a half marathon. Similar effects of exercise 
on EGR activity and EGRAC were found by Frank et al. (28) in females (N = 5) and 
males (N = 5 and 55, age 25–65 years) that participated in a 100-km walking 
contest and showed a non-significantly increased EGR activity and a significantly 
decreased EGRAC. These two studies cited above (21,28) used longer-duration 
exercises, i.e., a 15-km running contest or 100-km walking contest, which may 
explain why they found a significant effect on EGRAC, while our results were not 
significant. Despite this, previous studies have thus also consistently shown that 
short-term exercise elevated EGR activity (21,28,30) and decreased EGRAC 
(21,28), yet we are the first study that examined this effect in both high-fit and 
low-fit individuals. High-fit and low-fit individuals could have responded differently 
to the single bout of exercise, as the redox metabolism can adapt in response to 
regular aerobic training (2,36). That is, the increase in exercise-induced oxidative 
damage seems higher in untrained compared to trained individuals (36). 
Consequently, a single bout of exercise could have resulted in different redox 
enzyme activity between high-fit and low-fit females; however, our study indicated 
that the response of EGR activity and EGRAC to a single bout of exercise did not 
significantly differ between the two groups. Furthermore, our study demonstrates 
that the change in EGR activity was not correlated to the change in EGRAC after 
exercise. Apparently, short-term exercise could influence EGR activity without 
affecting EGR saturation with FAD in the short-term. Fitness level does not seem 
to be important, indicating that other factors, such as vitamin B2 intake (28,37,38), 
could be more important determining factors for short-term EGRAC responses. In 
our study, the habitual vitamin B2 intake was not different between high-fit and 
low-fit females; therefore, this may have resulted in similar EGRAC responses 
between the two groups.

Our results indicated that fitness level did not significantly affect EGRAC. Studies 
have described that vitamin B2-dependent processes can adapt in response to 
training, including an increased mitochondrial number and function (39,40) and an 
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increased production of FAD- and FMN-dependent enzymes, such as succinate 
dehydrogenase and long-chain acyl-CoA dehydrogenase, but also GR (41–43), 
which could increase vitamin B2 flux. Several longer-term exercise intervention 
studies have translated this into an increased vitamin B2 requirement for athletes 
and physically active individuals in response to regular aerobic exercise (14–18). 
This was supported by increased EGRAC after regular aerobic exercise while 
vitamin B2 intake was controlled (14–18), but was not confirmed by other 
intervention studies (20,21,28). Observational studies also did not find EGRAC 
differences between trained and untrained subjects (23–25), which is similar to 
the lack of a fitness level effect in our study. Based on the results of our study, we 
suggest that regular aerobic training could possibly change vitamin B2 status, but 
that the training adaptations in high-fit individuals do not necessarily result in an 
increased vitamin B2 requirement during exercise; if this was the case, we would 
likely have found a difference in the EGRAC response to the single exercise bout 
between high-fit and low-fit females, as well as increased rather than decreased 
EGRAC after exercise. We cannot exclude that EGRAC may change following 
more strenuous exercise performed over a longer period of time, since EGRAC 
was found to be significantly decreased following a 15-km running contest or 
100-km walking contest (21,28). However, in those cases a decrease rather than 
an increase in EGRAC was observed. 

Our findings suggest that vitamin B2 status was suboptimal (EGRAC > 1.3) in almost 
all females (15 out of 16 low-fit and 13 out of 15 high-fit females). The risks of vitamin 
B2 deficiency have been observed in other exercise studies (14–16,18–20,44,45), 
but also in other study populations, including adolescents, young women, adults, 
and the elderly from developed countries such as the United Kingdom, Spain, and 
France (31,46–49). In the Netherlands, vitamin B2 status studies are scarce; one 
cross-sectional study from 1989 showed that the mean EGRAC in adult (18–64 
years) females was 1.11 (50), and the first Dutch food consumption survey from 
1987–1988 showed that the average vitamin B2 intake among females aged 
22–49 years was 1.49 mg/day (51). The mean habitual vitamin B2 intake across 
subjects in our study was close to the RDA of 1.4 mg (10,52), and it is thus remarkable 
that we found a suboptimal vitamin B2 status. The controlled, low vitamin B2 intake 
during the study could possibly play a role, although we deem this unlikely since 
EGRAC is considered a vitamin B2 status rather than a vitamin B2 intake marker 
(10). Furthermore, an EGRAC > 1.3 is generally accepted as a cut-off point for a 
suboptimal vitamin B2 status (10), but cut-off points of 1.2 to 1.4 have also been 
used (13,46,48). Details in experimental protocols between studies differ (11,12,53), 
which are unlikely to affect relative EGRAC outcomes, but may impact absolute 
EGRAC values. This has been proposed earlier by Hill et al. (35), who indicated 
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that details of the EGRAC method should be standardized and the EGRAC cut-off 
point should be re-evaluated. Although this was not the focus of our study, we 
recommend future studies to focus on validation of the EGRAC cut-off point to 
better understand the consequences of a suboptimal vitamin B2 status, especially 
since it may dispose a person to enhanced (metabolic) disease susceptibility. 

The strength of our study is the use of a well-characterized study population 
including high-fit and low-fit individuals with a validated difference in V̇O2peak, 
while previous studies included only a high-fit or low-fit group that received 
exercise interventions (14–17,21,28,30) or selected their study population by 
exercise routines or physical activity questionnaires (20,24,27,44). Another 
strength of our study is that we sampled blood the day after the exercise 
intervention to mimic a situation that allowed us to examine if the recent effects of 
exercise could interfere with the EGRAC determination on the next day. A limitation 
is that we only sampled at one timepoint, while more insight may have been 
obtained by a time-course since the effects of exercise on EGR can be maintained 
up to 24 hours after exercise (21) and the kinetics may differ between individuals. 
Another limitation is the assessment of habitual vitamin B2 intake using the FFQ, 
which is based on selected foods from the food consumption data of the Dutch 
National Food Consumption Survey of 1998 (34), but may be influenced by the 
inter-individual variation in the relatively small population used in our study. Lastly, 
our data did not show a significant effect of fitness level on EGRAC. The relatively 
small sample size of our study may have contributed to this. Vitamin B2 status 
tended to be better rather than worse in high-fit females, which would possibly 
have statistically been confirmed with a larger sample size.

In conclusion, the effect of a single bout of exercise on EGRAC and EGR was not 
different between high-fit and low-fit females. A single bout of exercise significantly 
increased EGR activity, but did not affect EGRAC values, indicating that a single 
bout of exercise did not affect vitamin B2 status. Our findings help to better 
understand the influence of short-term exercise on vitamin B2 status and 
contribute to the interpretation of EGRAC as a vitamin B2 status parameter.
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Supplementary materials

Supplementary Figure S1: The effect of oral contraceptives (OC) use and 17β-estradiol 
levels on vitamin B2 status. (A) Baseline EGRAC in OC users (N = 13, white) and non-OC 
users (N = 18, dark grey). (B) Correlation between levels of 17bèta-estradiol and baseline 
EGRAC in non-OC users (N = 18). ns = not significant.
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Supplementary Figure S2: Submaximal exercise test characteristics. The average oxygen 
consumption (mL / min) was calculated between 9 - 14 minutes in low-fit (N = 16, white) and 
high-fit (N = 15, dark grey) females (A) and between 53 - 58 minutes in low-fit (N = 14, white) 
and high-fit (N = 15, dark grey) females (B) of the 60-minutes exercise protocol. (C) The mean 
intensity of the exercise test as a percentage to an individual’s V̇O2peak. ns = not significant; 
****P < 0.0001.
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The research presented in this thesis was performed to develop concepts and 
tools that allow for a better understanding of human physiological health. 
Physiological health was not considered as the absence of disease but rather 
described as a continuum that includes different health states and the transition 
from optimal health to disease. This allows for quantification of health states and 
evaluation of the trajectory from health to disease, which may translate into 
strategies to improve health and prevent disease. Since differences in health 
states are likely more subtle than differences between a healthy and disease 
state, health biomarkers should allow for the detection of small but physiologically 
relevant differences between health states, and could possibly serve, after future 
validation, as prognostic disease markers. Sufficient detection resolution may not 
be achieved by analyzing individual levels of classical clinical diagnostic markers 
that are mainly used for detecting differences between health and disease, since 
a functional, even suboptimal homeostasis tends to maintain these biomarkers 
within a certain range of values. These diagnostic biomarkers will thus have 
difficulty capturing early deviations in the trajectory from a healthy toward an 
unhealthier state, unless the individual is acutely challenged. This is inherent to 
these markers’ short lifetime and acute signaling role. Therefore, in this thesis,  
I studied functional readouts in healthy individuals as potential health biomarkers, 
and focused on metabolism as a key aspect of physiological health. I used two 
innovative approaches with a potential for robust and sensitive physiological 
health quantification: 1) examining metabolic function in cells and tissues that have 
a longer lifespan and may thus imprint physiologically relevant health differences, 
and 2) investigating the behavior of multiple classical clinical diagnostic metabolic 
biomarkers simultaneously and evaluate their joined response in the context of 
physiological health processes. These concepts were studied in healthy, young, 
adult females with high and low levels of aerobic fitness. High aerobic fitness 
levels, compared to low aerobic fitness levels, represents a healthier state due to 
its association with improved health outcomes, such as lower blood pressure and 
visceral fat levels (1,2), and a reduced risk for the development of later life disease, 
including cardiovascular disease (CVD) and type 2 diabetes (1,3). Therefore, the 
overall aim of this thesis was to study how metabolic measurements in healthy 
females with high and low levels of aerobic fitness can contribute to a better 
understanding of human physiological health. 
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Main findings 

The first aim of this thesis was to study the link between skeletal muscle 
mitochondrial capacity and aerobic fitness level. In Chapter 2 we demonstrated 
that mitochondrial capacity was significantly higher in the gastrocnemius muscle 
of high aerobically fit (high-fit) compared to low aerobically fit (low-fit) females. The 
second aim was to evaluate the potential of PBMC metabolism as a health 
biomarker by 1) developing a normalization method for PBMC metabolic XF 
analysis, and 2) evaluating the link between PBMC metabolism and aerobic fitness 
level. In Chapter 3 we developed a brightfield imaging method for normalization of 
PBMC metabolic XF analysis that improved the reliable measurement, comparison, 
and extrapolation of XF assay results in PBMCs. Chapter 4 showed that mito-
chondrial PBMC metabolism was significantly higher in high-fit compared to low-fit 
females and that this effect was unrelated to PBMC subset composition and not 
affected by a recent bout of exercise. The third aim was to explore the relationship 
between systemic metabolism biomarkers and aerobic fitness level. In Chapter 5 
we found that the levels of these systemic biomarkers were similar between 
high-fit and low-fit females, but that a recent exercise bout significantly changed 
the levels of biomarkers, mainly those that are related to inflammation and lipid 
metabolism. We also showed that linking each biomarker to a physiological health 
process resulted in functional biomarker categories that could be relevant for 
characterization of human physiological health, and that there was a considerable 
level of interindividual variation in biomarker responses. The fourth aim was to 
describe the state-of-the-art on the role of B-vitamins in mitochondrial metabolism 
and the communication with the nucleus. Chapter 6 showed how B-vitamins could 
modulate the signaling of mitochondria-derived metabolites to the nucleus and 
highlighted the crucial importance of B-vitamins for maintaining physiological 
health. The final aim of this thesis was to study the link between vitamin B2 status 
parameters and aerobic fitness level, because regular exercise may alter the use 
and need of vitamin B2. In Chapter 7 we demonstrated that vitamin B2 status was 
not different between high-fit and low-fit females, indicating that there was no link 
between vitamin B2 status and aerobic fitness level. Recent exercise did also not 
impact vitamin B2 status, although the activity of the metabolic enzyme that is 
used for vitamin B2 status assessment was increased after exercise. 
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The way ahead for PBMC metabolism as a biomarker
in health and disease 

Levels of aerobic fitness are imprinted in mitochondrial PBMC 
metabolism 
In this thesis, a link between mitochondrial PBMC metabolism and aerobic fitness 
level was revealed (Chapter 4). This novel finding strongly increased the potential for 
using PBMC metabolism as a health biomarker, as it showed that PBMC metabolism 
can imprint a physiological health difference. Since PBMCs circulate through  
the body and infiltrate into various tissues, the physiological alterations driven  
by regular exercise may not only induce molecular changes into the key tissues, 
such as skeletal muscle (4) (Chapter 2) and liver (5), but also in the blood cells that 
interact with them. We proposed in Chapter 4 that several physiological factors 
could possibly underlie our observation that PBMC metabolism responds to a 
difference in aerobic fitness level, such as the systemic release of biologically 
active proteins from skeletal muscle, also defined as myokines (6), and alterations 
in the metabolic makeup of the blood plasma (7,8). With respect to this metabolic 
makeup, systemic levels of several lipid metabolites, such as several triglycerides, 
fatty acids, glycoproteins, and cholesterol markers, are examples of metabolites that 
have been shown to differ between high-fit and low-fit individuals (7,8). Interestingly, 
plasma or serum levels of the myocytokines IL6 and IL10 as well as multiple lipid 
metabolites, such as fatty acids, cholesterol markers, and acylcarnitines were 
analyzed in Chapter 5. Here, we found that baseline plasma levels of IL6, IL10  
and lipid metabolites were not significantly different between high-fit and low-fit 
females, but that particularly these biomarker categories significantly responded 
to the recent bout of exercise (Chapter 5). Exercise-induced responses of 
cytokines and lipid metabolites have been demonstrated previously, with different 
responses with time after exercise (9–13). For example, the fall in skeletal muscle 
glycogen content acts as a major stimulus for IL6 release by skeletal muscle, 
resulting in a manifold increase in plasma IL6 (14). Subsequently, the rise in 
circulating IL6 promotes an increase in the plasma levels of IL10 and IL1 receptor 
alpha, which are anti-inflammatory cytokines that counterbalance exercise-in-
duced inflammatory responses and prevent high systemic inflammation (14). 
Hence, the time-dependent release of pro- and anti-inflammatory cytokines 
restores the immunological equilibrium to maintain physiological homeostasis. 
Although immediate and short-term (< 12 hours) post-exercise responses have 
been often investigated, late (> 20 hours) post-exercise responses have been 
little studied. However, they are highly relevant in view of biomarker analysis 
because it implies that the physical activity status of the study subject prior to the 
analysis should be controlled. 
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everal systemic biomarkers significantly changed in response to the recent bout 
of exercise, mitochondrial and glycolytic PBMC metabolic values did not, and 
resulted in similar baseline as well as post-exercise values and a consistent 
elevation of mitochondrial PBMC metabolism in high-fit compared to low-fit 
females (Chapter 4). To examine whether short-term cytokine and metabolite 
release could possibly program PBMC metabolic responses, I studied whether 
these responses were correlated. No strongly significant correlations between 
mitochondrial PBMC metabolism (represented here as basal OCR) and plasma 
levels of IL6, IL10, or total fatty acids were observed (Figure 1), which could be due 
to the timepoints that were analyzed. IL6, IL10 and various metabolites could have 
been acutely released upon exercise with manifold increased levels, as have 
been observed before in other studies (10,12,13,15). However, since in our study we 
did not sample blood and cells immediately after the single exercise bout, but 

Figure 1: Correlations between mitochondrial PBMC metabolism and circulating biomarkers. 
Correlations of basal OCR and IL6 (A), IL10 (B) and total fatty acids (C) at baseline (blue) or 
post-exercise (grey). Spearman rank correlation coefficients (ρ) were calculated. *P < 0.05.
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rather after 21 hours, the levels of IL6, IL10 and various metabolites levels could 
have been already normalized (16–18), which could also explain why they were 
decreased rather than increased 21 hours post-exercise (Chapter 5). It can thus 
not be excluded that IL6, IL10, or total fatty acids induced longer-term metabolic 
reprogramming in PBMCs. However, also other myokines and metabolites may 
have been involved (6,13), as well as other physiological factors, such as changes 
in blood flow and endothelial function (19) or ROS release by skeletal muscle (20). 
To study how metabolic alterations in PBMCs arise is of interest, not only 
scientifically, but also to better understand their value as a biomarker.

Systemic release of exercise-induced signals may underlie metabolic 
changes in PBMCs from high-fit females 
Metabolic programming is not an unlikely event and there are indications for several 
possibilities how myokines and plasma metabolites could impact mitochondrial 
PBMC metabolism. Recently, it has been demonstrated that IL10 exposure improved 
mitochondrial fitness, i.e., mitochondrial function and quality, in bone marrow- 
derived macrophages (21). This IL10-enhanced oxidative program could act as a 
potential driver behind anti-inflammatory macrophage responses (21). Although 
the capacity of IL10 to modify cellular metabolism was only studied in macrophages, 
the differentiated monocyte population, IL10 has also been demonstrated to  
limit the pro-inflammatory cytokine production in activated PBMCs (22). Since 
pro-inflammatory immune responses are often accompanied by upregulation of 
glycolytic programs, while anti-inflammatory immune responses enhance oxidative 
metabolism (23), these findings could indicate that IL10 release could impact PBMC 
metabolism by specifically enhancing mitochondrial metabolism in monocytes. 
Similar to IL10, IL6 has also been reported to impact mitochondrial metabolism  
in immune cells. IL6 improved the motility fitness of activated CD4+ T cells by 
enhancing and sustaining mitochondrial calcium levels, which mediates the 
migration of CD4+ T cells to the sites of infection or inflammation to reach their cell 
targets (24). Of note, IL6 only functioned in the presence of T cell activators, but 
enhanced CD4+ T cell motility and migration even in the absence of chemokines 
such as the chemokine (C-C motif) ligand 19 (CCL19), indicating that the 
IL6-mediated trigger on mitochondrial calcium can improve the motility fitness of 
CD4+ T cells independently of chemokines (24). 

Besides IL6 and IL10, other myokines that may program mitochondrial PBMC 
metabolism are IL15 (25,26) and growth differentiation factor 15 (GDF15) (27). IL15 
has been shown to promote mitochondrial biogenesis and expression of carnitine 
palmitoyl transferase (CPT1A), a metabolic enzyme that regulates import of fatty 
acids into the mitochondria, in CD8+ memory T cells (25). In addition, acute IL15 
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exposure to skeletal muscle cells was found to enhance basal mitochondrial 
respiration (26) and promote activation of the AMP-dependent protein kinase 
(AMPK), which is one of the cellular nutrient sensors that promotes glucose 
transport, mitochondrial function, and mitochondrial biogenesis when the cellular 
adenosine monophosphate (AMP) and adenosine triphosphate (ADP) to ATP ratios 
increases, as typically occurs during exercise in muscle (28). GDF15 is also acutely 
released upon exercise (29) and has been particularly associated with the 
integrated mitochondrial-induced stress responses (30). GDF15 was found to 
increase mitochondrial capacity and promoted an anti-inflammatory, fatty acid 
oxidizing phenotype in adipose-tissue macrophages (31), which acts as a signal to 
dampen the inflammatory activation during exercise, therewith driving the inflam-
mation-immunosuppression axis (32). Of note, the receptor for GDF15, glial 
cell-derived neurotropic family receptor alpha-like (GFRAL), is not expressed on 
immune cells, yet the evidence for immunosuppressive effects exists (32). 
Although studies that investigate the direct impact of exercise-induced myokine 
release on the collective PBMC pool are scarce, it was recently shown that 
mitochondrial metabolism was enhanced in PBMCs after an acute bout of exercise 
(33,34). These observations may be linked to the above-described ability of 
myokines to reprogram cellular metabolism. However, since our study did not find 
differences in mitochondrial PBMC metabolism 21 hours post-exercise (Chapter 4), 
the systemic release of myokines during each bout of exercise may not only 
acutely reprogram PBMC metabolism via the mobilization of nutrients and switch 
in metabolic fuels, but may also induce long-lasting metabolic adaptations, and 
epigenetic modifications could play a role in this. 

For example, it has been recently demonstrated that histone deacetylases 
(HDACs) in PBMC nuclear fractions respond to exercise-induced systemic signals, 
thereby altering histone acetylation patterns that regulate transcription levels of 
inflammatory genes in PBMCs (35). Furthermore, acute exercise has been shown 
to alter DNA methylation patterns and microRNA expression that promote cell 
signaling pathways involved in cell growth, proliferation, and differentiation in 
PBMCs from healthy young adults (36,37). Interestingly, it has recently been 
demonstrated that exercise-regulated plasma metabolites could act as epigenetic 
programmers (38). Lactate, the well-known muscle-derived “waste” product that 
accumulates during exercise in both muscle and blood (39), which has also 
recently been shown to act as an important metabolic substrate for several tissues 
in humans (40), has now been proposed as a novel epigenetic modifier of immune 
cells (38). Lactate was found to promote anti-inflammatory gene expression in 
macrophages, via so-called lactylation of histones (38,41). Although lactylation 
has not yet been described in monocytes, earlier it has been demonstrated that 
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lactate promoted an anti-inflammatory phenotype in monocytes (42), which 
suggest that lactate may also affect unpolarized monocytes. Importantly, this 
phenotypic shift was accompanied by an increase in mitochondrial metabolism 
and a decrease in glycolysis (42). Although in this thesis glycolytic PBMC 
metabolism was not affected, the study from Ratter et al. (42) indicates that this 
exercise-associated metabolite is indeed able to modify the metabolism of a 
specific PBMC subset. Interestingly, studies have suggested that HDACs can also 
be modulated by gut-derived short-chain fatty acids (SCFA), i.e., acetate, 
propionate, and butyrate, which can promote anti-inflammatory responses by 
inhibiting HDAC activity (43). Since recent studies have indicated that systemic 
levels of SCFA, particularly butyrate, are increased in regularly exercising 
individuals (44,45), exercise-associated SCFA release may also affect PBMC 
metabolic programs via modulating HDAC activities. Furthermore, in addition to 
lactate or SCFA, other exercise-induced changes in mitochondrial substrates and 
ROS may also induce alterations in the level of mitochondrial acyl-CoAs that could 
be forwarded to the cell nucleus, which may also contribute to the observed 
epigenetic changes (Chapter 6). 

Thus, the release of systemic signals during each bout of exercise may impact the 
epigenetic machinery and subsequent up- and downregulation of transcriptional 
programs in PBMCs. This potential mechanism is supported by recent studies that 
show increased protein and gene expression levels of mitochondrial markers in 
PBMCs in response to aerobic exercise training (46,47) and increased gene 
expression levels of mitochondrial OXPHOS and biogenesis in endurance-trained 
athletes as compared to sedentary controls (48). Because the different cell types 
present in the PBMCs have different lifespans, with monocytes, and effector T- 
and B-lymphocytes being relatively short-lived (lifespan up to ~7 days) (49) 
compared to long-lived naïve T lymphocytes (lifespan ~months to years) (50), it is 
likely that such epigenetic modifications do not only impact the established PBMC 
population, but also affect the PBMC progenitor cells in lymphoid tissues that give 
rise to the next generation of PBMCs. Whether muscle-derived lactate and myokines, 
as well as gut-derived SCFA that are produced during regular exercise could thus 
impact circulating PBMC epigenetics and, in this way affect PBMC mitochondrial 
metabolism, is an interesting avenue for future studies. Scientists begin to 
understand the exercise-induced epigenetic modifications in skeletal muscle (51), 
yet the role of epigenetics in PBMC metabolic responses is still in its infancy (52). 
Considering the intimate crosstalk between systemic signals, intracellular signaling 
pathways, epigenetic modifications, and metabolic reprogramming, studying 
transcriptomic, proteomic, and metabolomic PBMC patterns in relation to PBMC 
metabolism in the context of aerobic exercise is of great relevance to better 
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understand which molecular pathways could mediate our observed alterations in 
PBMC metabolism. 

Understanding PBMC metabolism as a biomarker in health and disease 
In this thesis, the link between PBMC metabolism and aerobic fitness level was 
unrelated to the composition of PBMCs for specific immune subsets (Chapter 4), 
which indicates that PBMC metabolism could capture early deviations from 
steady-state physiology and underpins the suitability of PBMC metabolism as an 
early health biomarker. Yet, to date, PBMC metabolism has been mainly studied as 
a biomarker in disease pathologies, such as type 2 diabetes (53,54), obesity 
(55,56), CVD (57,58), inherited metabolic diseases (59,60), autoimmune disease 
(61,62) and recently also in coronavirus disease 19 (COVID19) (63). These studies 
often conclude that PBMC metabolic function has the potential to act as a dis-
ease-specific biomarker. However, in those studies, it is challenging to establish 
whether the outcomes are primarily related to centralized metabolic adaptations 
within PBMC subsets, or whether they are more likely to reflect differences in 
metabolic phenotypes between different PBMC subsets particularly because 
PBMC subset composition often changes in disease pathologies. For example, in 
type 2 diabetes (64,65), the number of T-helper 17 (Th17) lymphocytes, which 
typically display a glycolytic profile, increases (66), and the number of regulatory 
T (Treg) lymphocytes, that typically rely heavily on fatty acid oxidation, decreases 
(67). Thus, shifts in the overall PBMC bioenergetic profile may at least be a partial 
reflection of a shift in PBMC subsets. When scientists and clinicians are aware that 
the observed metabolic differences likely result from distinct levels of specialized 
PBMC subsets, it does not necessarily have to impair the biological interpretation. 
However, PBMC subset transitions may become a disrupting factor when the 
effect of lifestyle interventions or health promotion strategies are evaluated across 
the complete health to disease window. For example, exercise interventions and 
weight-loss strategies have been shown to be effective in type 2 diabetes 
management (68). In Chapter 4 we showed that improved cardiorespiratory 
fitness, a plausible consequence of such exercise interventions, drive PBMCs to a 
more oxidative state. These interventions are also associated with improved 
metabolic health (69) and alleviated inflammation (14), which may induce a shift in 
PBMC subset composition back to pre-disease levels, becoming more comparable 
to healthy controls. Consequently, exercise-induced PBMC metabolic changes 
will in the case of disease-related biomarker studies not only reflect exercise-in-
duced physiological adaptations, but also a shift in PBMC subset composition, 
thereby lowering its predictive value. Hence, for the development of PBMC 
metabolism as a biomarker across the full health to disease trajectory, a better 
understanding of the dynamics between PBMC metabolism and PBMC subset 
composition in physiology and pathophysiology is needed. 
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Although respirometric analysis has been applied to understand the metabolic 
preference of individual PBMC subtypes (70), this has not yet been longitudinally 
studied from physiological to pathophysiological health conditions. Recent 
advances in single cell multiomics technologies have now enabled large-scale 
metabolic characterization of specialized PBMC subtypes, to study the contribution 
of different metabolic pathways to the overarching cellular metabolism (71,72). 
Interestingly, using single-cell transcriptomics combined with plasma metabolomics 
and proteomics, metabolic changes in PBMCs during coronavirus disease 19 
(COVID19) development have been monitored (72). PBMC metabolism was 
strikingly different between healthy controls and COVID19 patients, and the 
degree of COVID19 severity was driven by small, metabolically hyperactive 
subpopulations (72). Therefore, to study the dynamics between PBMC metabolism 
and PBMC subset composition from the health to disease window, and for a better 
understanding of the molecular mechanisms that underlie our observations, such 
multiomics technologies are of high interest for underpinning XF metabolic PBMC 
analysis in future studies. In the end, analysis of PBMCs as a biomarker for the 
health to disease trajectory may consist of metabolic flux analysis and 
complementary PBMC subset phenotyping. Furthermore, although many studies 
have demonstrated that distinct metabolic pathways in specialized PBMC subsets 
are the drivers behind their pro- or anti-inflammatory effector functions (23,73), it 
is not yet clear how the total metabolic function of the overall PBMC pool affects 
immune system functioning. Therefore, it is also relevant to study the contribution 
of PBMC immunometabolic pathways to immune-related health and disease 
processes. 

Moving the use of PBMCs as a future health biomarker forward
Besides imprinting aerobic fitness levels, it is also interesting to speculate whether 
other physiological health differences could also induce metabolic alterations in 
PBMCs, such as lifestyle-related differences in body weight or dietary intake. At 
the gene expression level, studies have shown that PBMCs can reflect differences 
in body weight and body composition (74). In rodents, the expression levels of 
genes involved in lipid metabolism were significantly different between normal 
weight and obese rats (75,76) and these findings have been recently confirmed in 
humans (77). The latter study is of special interest, since here it was found that 
PBMC transcripts could reflect impaired metabolic health in overweight-obese 
individuals who did not yet develop pathological alterations in clinical biomarkers 
(e.g., levels of fasting plasma glucose and triglycerides) and reinforces the use of 
PBMCs as an early biomarker of metabolic health (77). Furthermore, PBMC 
antioxidant enzyme levels and activity have recently been shown to increase 
progressively with body mass index (BMI), which likely results from the oxidative 
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stress that is related to body fat accumulation (56). Next to the reflection of 
metabolic changes associated with increased body fat percentage, PBMCs could 
also be useful to monitor diet-induced metabolic changes (78–82) or nutrient 
status (83). For example, supplementation of polyunsaturated fatty acids (PUFA), 
polyphenols and L-carnitine has been demonstrated to increase the expression of 
fatty oxidation genes in PBMCs from obese adults (79), thus showing that PBMC 
lipid metabolism could also reflect diet-induced alterations in metabolic health. 
Furthermore, the consumption of a Mediterranean (80) or Nordic (81) diet, which 
has beneficial effects on metabolic and cardiovascular health, has been found to 
lower the expression of mitochondrial OXPHOS genes in PBMCs from obese (81) 
or overweight (80) adults. Lower mitochondrial OXPHOS gene expression was 
suggested to be associated with diet-induced alleviation of the oxidative stress 
that was induced by mitochondrial ROS (80,81). Of note, at the cellular level, lower 
mitochondrial respiration through OXPHOS has been linked to increased cardio-
metabolic risk factors (57,84), suggesting mixed findings on the regulation of 
PBMC mitochondrial metabolism, although there seems sufficient evidence that 
PBMCs could reflect diet-induced alterations.

Emerging evidence thus suggest that PBMC metabolic readouts may act as a 
novel biomarker for human physiological health. At this moment, PBMC-based 
biomarker profiling is still largely in the research domain, principally because the 
mechanisms how PBMC readouts underpin physiological health status are not yet 
fully understood. The rapid advancement of state-of-the-art technologies and the 
development of computational methods to analyze high-throughput omics data, 
such as transcriptomics, proteomics, and metabolomics, could mechanistically 
relate PBMC metabolic function to PBMC transcripts, proteins, metabolites, as well 
as to classical biomarkers, which may unveil the underlying physiological 
processes and provide a link with whole-body physiology. There are already 
some notable studies that have linked the PBMC transcriptome, proteome or 
metabolome to whole-body health status (72,77,85). Although studies that 
recommend analyzing PBMCs at the subset level (70,86) or the single-cell level 
(71,72) are gaining traction, here we show that the collective PBMC pool, which is 
easier to obtain and isolate than single PBMC subsets, can also act as a highly 
informatic metabolic pick-up line. 
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Measuring skeletal muscle mitochondrial capacity
for human physiological health 

The differences in skeletal muscle mitochondrial capacity between high-fit and 
low-fit females, as detected by NIRS (Chapter 2), were of similar magnitude as 
previously demonstrated by our group in males (87). This highlights that NIRS can 
detect similar differences in mitochondrial capacity in both males and females 
(Figure 2A). However, two data sets from low-fit individuals that were amongst the 
highest in adipose tissue thickness (ATT) thickness (Figure 2B) were excluded 
from this study due to low curve fitting. A proper V̇O2 vs. time during the recovery 
phase after occlusion with R2 >0.95 is a technical quality control for calculation of 
the recovery rate constant k. It remains unknown whether the low curve fitting was 
related to the ATT or to other factors, especially since other NIRS measurements 
with higher ATT were successful. Of note, subcutaneous adiposity, but not BMI 
seem to be important for NIRS assessment (Figure 2C, 2D). The healthy females 
in our study and the healthy males in our previous study had healthy body fat 
percentage (24.6% for high-fit, 28.9% for low-fit females, and 18.7% for high-fit, 
12.5% for low-fit males) (88) but the two unsuccessful NIRS measurements at the 
upper adiposity limit indicate that unhealthy body fat percentages may hamper 
reliable NIRS assessment. Since females have a relatively higher level of 
subcutaneous adipose tissue, NIRS measurements may be impaired in slightly 
overweight (BMI 25-30 kg/m2) females (generally showing body fat percentages 
>35%) but not in overweight males (generally showing body fat percentages 
>24%) (88). In fact, in males NIRS may even generate reliable results in obese 
subjects (BMI > 30 kg/m2) as adiposity levels can still be at 28% (88). Since 
overweight and obesity have also been associated with impaired skeletal muscle 
mitochondrial function (89), NIRS is a highly attractive too to better understand the 
effect of weight loss or physical activity interventions on mitochondrial function in 
skeletal muscle. Yet at this point, this may be best achieved in male individuals. 
Thus, the limitation of ATT must be overcome before NIRS can be widely applied 
in all study populations, including overweight and obese females (90,91). 

In Chapter 2, we demonstrated that skeletal muscle mitochondrial capacity was 
significantly higher in high-fit than low-fit females, which further confirms the 
association between aerobic capacity at the level of skeletal muscle (mV̇O2) with 
whole-body aerobic capacity (92,93). Aerobic fitness level is an important 
determinant of physiological health status (1), and peak oxygen uptake (V̇O2peak) 
tests are currently the golden standard for aerobic fitness level determination, yet 
it is demanding for the subjects. We show that NIRS can also reflect aerobic 
capacity but with much less demand, which makes NIRS is a promising tool to 
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monitor physiological health. Importantly, NIRS can even be used in a lying 
position to reliably measure mitochondrial capacity, which thus also enables the 
assessment of skeletal muscle mitochondrial capacity in individuals with 
disabilities, elderly subjects or community-dwelling individuals. Furthermore, its 
portability and the low costs of NIRS over other non-invasive techniques such as 
magnetic resonance spectroscopy (31P-MRS) (94) makes NIRS highly relevant for 
monitoring physiological health differences in response to lifestyle interventions. 

Figure 2: Comparison of skeletal muscle mitochondrial capacity and body composition 
between high-fit and low-fit males and females. (A – D): Muscle oxygen consumption 
recovery constant (mV̇O2) measured using NIRS in gastrocnemius (A), adipose tissue 
thickness (ATT) in gastrocnemius (B), body fat percentage (C) and body mass index (BMI) (D) 
in high-fit and low-fit females (blue) and males (grey). The datasets that were excluded due 
to low curve fitting (R2 < 0.95) are indicated in orange. *P < 0.05, **P < 0.01.
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By operating at the level of skeletal muscle, NIRS is obviously relevant for 
interventions that directly target skeletal muscle mitochondria, such as endurance 
exercise (95). However, besides being useful for studying exercise-induced 
improvements in skeletal muscle mitochondrial capacity, NIRS may also be 
relevant for monitoring effects of nutrient (96) or pharmaceutical interventions (97) 
and to study the decline in skeletal muscle mitochondrial capacity in response to 
alternative physiological factors, such as physical inactivity (98) or ageing (99,100), 
as well as to disease pathologies (90), such as type 2 diabetes (101) and COPD 
(102). Thus, NIRS is a relevant technique to monitor skeletal muscle mitochondrial 
function as a biomarker in the trajectory from optimal healthy physiologies to 
impaired physiologies, and ultimately to disease. 

Vitamin B2 status determination in exercise studies 

In this thesis, we demonstrated that vitamin B2 status, as determined by the 
erythrocyte glutathione reductase coefficient (EGRAC), was not different between 
high-fit and low-fit females and was not impacted by a single recent bout of 
exercise (Chapter 7). Although the EGRAC remained unchanged after exercise, 
we showed that EGR enzymatic activity increased post-exercise, suggesting that 
short-term exercise could influence EGR activity without affecting its saturation 
with FAD. From the biomarker perspective, the latter finding could call into 
question whether vitamin B2 status was truly unaffected in our study population, 
or whether we were not able to detect a potential change in vitamin B2 demand 
using the EGRAC. In general, FAD and FMN are not covalently bound to 
flavoproteins (103). Nevertheless, their anchoring into flavoproteins to support 
redox reactions is strong (103). This also holds for EGR; FAD is not dissociated from 
EGR after each GSSG oxidation cycle, but remains tightly bound (104–106). 
Therefore, temporal upregulation of EGR activity, which can occur during exer-
cise-induced ROS production (107) may accelerate FAD recycling without 
necessarily increasing FAD usage. This mechanism could possibly explain why we 
observed increased EGR activity, but a similar EGRAC after the recent exercise 
bout in our study (Chapter 7). 

On the other hand, increased FAD usage, i.e., FAD consumption, may be a 
consequence of regular aerobic exercise performance, since this can enhance de 
novo flavoprotein synthesis (108,109). For example, increased levels of succinate 
dehydrogenase (complex II), alpha-ketoglutarate dehydrogenase, and acyl-CoA 
dehydrogenase have been found in skeletal muscle mitochondria after aerobic 
exercise training (108,109). Since these flavoproteins must incorporate FAD to 
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increase their catalytic activity, extracellular FAD levels will decrease if FAD is not 
synthesized de novo, which could in turn decrease plasma FAD levels and 
ultimately lower vitamin B2 status. Thus, due to the assumed difference between 
short- and long-term exercise effects on EGR and FAD physiologies, the EGRAC 
was hypothesized to respond to regular exercise training. Yet, reported in this 
thesis (Chapter 7), and in other studies in young healthy adults, no link between 
fitness level and EGRAC was found. Currently, we still do not completely 
understand whether there is truly no effect of exercise on FAD/FMN levels and 
vitamin B2 status, or whether there is an effect, but it is difficult to detect in healthy 
individuals with the EGRAC method. This could be because the EGRAC has some 
technical limitations (110) that may impact its sensitivity to detect small differences 
in vitamin B2 status, such as differences induced by regular exercise. Therefore, to 
study exercise-induced differences on vitamin B2 status, although the EGRAC is 
considered the golden standard for long-term vitamin B2 status (111), alternative 
methods may be more appropriate. 

The currently suggested alternative vitamin B2 status biomarker includes 
determination of vitamin B2 levels in 24-hour urine, which is more demanding than 
a single blood sample, and requires estimation of vitamin B2 intake because 
urinary vitamin B2 excretion levels are based on vitamin B2 intake minus use (111). 
Recently, the pyridoxamine phosphate oxidase (PPO) activation coefficient 
(PPOAC) has been proposed as an alternative enzymatic determination of vitamin 
B2 status (112). PPO is a FMN-dependent flavoenzyme that coverts pyridoxine and 
pyridoxamine (vitamin B6) to the bioactive form of vitamin B6, pyridoxal phosphate 
(PLP) (112). PLP is required as a cofactor for enzymes that are involved in protein 
metabolism and glycogen breakdown, metabolic processes that are also 
enhanced during exercise (113,114). Although it is interesting to study whether the 
PPOAC can detect exercise-induced alterations in vitamin B2 status, it seems to 
respond like EGRAC (112). Furthermore, the PPOAC may partially depend on 
vitamin B6 status, since the plasma PLP level is the recommended vitamin B6 
status biomarker (115). Therefore, it is relevant to consider alternative approaches 
that may be more suitable for detecting small differences in vitamin B2 status 
between healthy individuals. 

As a starting point, it would be interesting to identify the metabolic enzymes that 
are the first being affected by subtle alterations in vitamin B2 availability, since 
these enzymes will likely also be the first to be affected by exercise-induced 
changes in FAD consumption. Currently, most available studies have focused on 
severe vitamin B2 deficiency, yet they demonstrate that vitamin B2 can act as a 
regulator of tissue protein abundancies (116). For example, vitamin B2 deficiency 
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has been linked to a significant reduced abundance of multiple flavoproteins, 
especially some involved in fatty acid bèta-oxidation, the TCA cycle, the 
mitochondrial ETS, and iron metabolism in the human liver cell line HepG2 (117), 
like what has been demonstrated in the liver proteome of Pekin ducks (118) and 
rats (119). Hence, it is of interest to study which flavoenzymes are most sensitive to 
a marginal vitamin B2 deficiency in red blood cells, PBMCs, platelets or whole 
blood. Once the most sensitive flavoenzymes have been identified, the protein 
expression of these enzymes in blood cells should be measured, followed by 
studies that investigate whether these enzymes could be useful biomarkers to 
predict vitamin B2 status. These studies may ultimately lead to the development 
of a biomarker that is suitable to study small, but physiologically relevant changes 
in vitamin B2 status in healthy individuals. 

Functional mapping of human physiological health 

Alternative blood-based biomarker tissues for characterizing human 
physiological health
In this thesis, PBMCs were studied as a non-invasive blood-based biomarker 
tissue, but alternative circulating blood components, such as red blood cells, 
platelets, and extracellular vesicles (EVs), also carry relevant information on human 
physiological health. For example, platelets have received special interest in 
biomarker research in disease conditions (84,120). Platelets are the tiny, anucleated 
blood cells that contain a relatively small number of mitochondria, yet these 
mitochondria are fully operational and show high rates of ATP turnover (84,121). 
Indeed, platelet mitochondrial function has been studied as a biomarker in multiple 
disease pathologies (120), although they are of particular interest for monitoring 
CVD management due to their primary role in blood coagulation (84). Interestingly, 
studies have demonstrated that platelet mitochondria also respond to exercise in 
healthy individuals (122,123) as well as patients suffering from various CVDs 
(124–126). Platelet mitochondrial respiration and function were enhanced after 
regular exercise training (122,124–126) as well as after short-term, yet extreme 
(duration ~12 hours) exercise (123). Mechanistically, exercise has been suggested 
to blunt the oxidative stress and ameliorate the hypoxia-induced mitochondrial 
dysfunction in platelets, which may contribute to a lower risk of developing 
CVD-related events such as thrombosis (122,125). Although both platelets and 
PBMCs (Chapter 4) could thus be useful biomarkers to monitor exercise 
interventions, the mechanisms that underpin the exercise-induced alterations are 
likely different. Platelets do not contain cell nuclei; hence the exercise-induced 
alterations cannot be established via epigenetic modifications as we described 
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above for PBMCs. In this regard, it has been suggested that the exercise-induced 
metabolic alterations in platelets are probably linked to improved ETS efficiency 
rather than increased mitochondrial biogenesis (122). Furthermore, platelets have 
a lifespan of approximately 10 days (127) and PBMCs include different immune cell 
subsets with lifespans ranging from one day to years (49,50). Hence, the way how 
platelet and PBMCs react to exercise may differ, depending on the (patho)
physiological context. Examining whether platelet mitochondrial function could 
also be used to monitor other lifestyle interventions is therefore also of interest for 
future research. 

Red blood cells have been extensively used for biomarker analysis in relation to 
disease but can also be relevant for health biomarker analysis. They are now 
mainly used for the determination of micronutrient status (111,115,128,129), including 
vitamin B2 status (Chapter 7). Recently the red blood cell (erythrocyte) plasma 
lipidome was also shown to reflect health status (130–133) and to be amendable to 
exercise (134) and dietary (135) lifestyle interventions. For example, higher 
erythrocyte levels of omega-6 PUFAs, which mediate pro-inflammatory responses, 
have been found in children with overweight and obesity as compared to their 
normal weight peers (130) as well as in sedentary as compared to exercise-trained 
rodents (134). This shows that erythrocytes can reflect metabolic signatures that 
are associated with inflammation, and is further supported by studies that have 
linked high omega-3 PUFA erythrocyte levels to improved metabolic health 
outcomes (132,133). Thus, although red blood cells lack mitochondria and a 
nucleus, they can reflect metabolic changes that are associated with improved or 
impaired physiological health. 

Circulating EVs are another emerging option as blood-based biomarker source 
(136,137). They are shedded from cells and have a role in intercellular communication 
(138). EVs can carry nucleic acids, (including RNAs, microRNAs, and DNA sequences), 
proteins, lipids, metabolites, and cell organelles that can stimulate signaling pathways 
or provide nutritional support to recipient cells (138). They are an emerging tool  
to follow the progression of multiple disease pathologies (136), and have been 
suggested as a promising source to monitor dietary intake (137) or exercise 
interventions (139). It has been suggested that unbalanced diets (e.g., high-fat 
diets) drive EV shedding to convey pro-inflammatory or pro-atherogenic signals, 
which may ultimately contribute to the increased risk for metabolic diseases such 
as type 2 diabetes and obesity (137). Indeed, overweight, obese and type 2 
diabetic individuals display enhanced levels of multiple pro-inflammatory and 
pro-atherogenic EVs as compared to normal weight individuals (140–142), which 
can be lowered via dietary modifications, such as caloric restriction (141) or 
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increased intake of complex carbohydrates (143). Furthermore, EV shedding  
may also be triggered by exercise (144,145). For example, a single bout of exercise 
was shown to promote the release of EV from platelets, endothelial cells, and 
leukocytes (145). This exercise-induced EV release has been suggested to provide 
the multisystemic signalling between different tissues and cells, which subsequently 
mediates the acute physiological alterations to exercise, such as an increase in 
oxidative stress (145). Although the use of EV as a biomarker is currently in its 
infancy, its gaining traction because they provide a novel way of conveying 
fundamental information between cells and tissues. In the future, platelets, 
red blood cells, and EVs, may thus serve as novel biomarkers, or may serve  
to underpin health status and substantiate the health relevance of circulating 
metabolite and protein biomarkers. 

How circulating biomarkers can discriminate differences in health states 
The data from Chapter 5 offered valuable insights in the levels of multiple 
circulating metabolite and protein biomarkers in the context of physiological 
processes. Since these biomarkers, except for leptin, were similar between 
healthy females and multiple of these biomarkers are dysregulated during disease, 
our findings imply that this biomarker set is promising to monitor the trajectory 
from a healthy to an unhealthier or disease state. The functional classification of 
these biomarkers and the computation of an integrated biomarker score (also 
called multibiomarker panels (146)) may increase their predictive value. Still, the 
fact that these biomarkers were not linked to aerobic fitness level, while we have 
demonstrated in Chapter 2 and Chapter 4 that high-fit and low-fit females display 
physiologically relevant differences, may thus indicate that these biomarkers have 
difficulty in capturing early deviations from health, possibly unless the individual is 
challenged (147). Challenge tests can induce acute physiological perturbations, 
which could reveal differences that may be obscured during the steady state. 
They are especially attractive to monitor physiological responses in time, thereby 
measuring the capacity of physiological processes to return to homeostasis after 
a short-term perturbation, also called metabolic flexibility (148–151). Interestingly, it 
has recently been demonstrated that a standardized nutritional challenge, the 
phenotypic flexibility (‘PhenFlex’) test, allowed for the discrimination of metabolic 
health levels of healthy individuals (148). Markedly different physiological responses  
in phenotypic flexibility between young individuals with low and normal body fat 
percentages and also between older individuals with normal to high body fat 
percentages were observed (148). Furthermore, similar nutritional challenges 
have also allowed for the discrimination of type 2 diabetic subjects from healthy 
individuals (149,151). Here, it was shown that the circulating biomarker levels after 
the nutritional challenge displayed a higher sensitivity as compared to fasting 



252 | Chapter 8

circulating biomarker levels, which stressed the relevance of the challenge test 
(149). In addition to nutritional challenges, other challenge tests, such as acute 
physical exercise or cold stress are also relevant to consider, especially because 
these have also shown to increase metabolite variability in healthy individuals 
(150). Thus, challenge tests may provide additional insight in the interindividual 
variation in biomarker responses. It is unclear whether acute challenges would 
have revealed differences in biomarker responses between the high-fit and low-fit 
females in our study. Although the differences in body fat percentage between 
the high-fit and low-fit females in our study are very small as compared to the 
individuals in the study that showed differences in phenotypic flexibility between 
young individuals with low and normal body fat percentages (148), it cannot be 
excluded that the nutritional PhenFlex test would have revealed a difference, 
especially since we observed metabolic differences in the basal state in PBMCs 
(Chapter 4) and 21 hours post-exercise in lipid metabolic parameters (Chapter 5). 
Challenge test could thus help to provide a better discrimination of metabolic 
health in healthy individuals (147). To further advance the development of 
health-related biomarkers, it has been suggested to measure them longitudinally 
and on a regular basis. This would generate a timeline of an individual’s health 
trajectory, and create a so-called ‘biopassport’ (146). The increased possibilities of 
self-sampling and digital monitoring during remote clinical trials and the increased 
use of smartphones and smartwatches during remote clinical trials could play a 
major role in accelerating such developments. 

Considering sex as a biological variable in scientific research 
The research in this thesis was conducted in females, because females are under-
represented in biomedical and exercise research (152,153), but are important to 
study because they represent 50% of the human population and may differ from 
males because of their differences in body composition (154) and metabolic health 
(155). We showed that NIRS was able to detect a similar physiological difference  
in skeletal muscle mitochondrial capacity between high-fit and low-fit females 
(Chapter 2) as was previously demonstrated in males (87) (Figure 2A). Furthermore, 
the differences in mitochondrial PBMC metabolism between high-fit and low-fit 
females (Chapter 4) were similar to the differences that we previously observed  
in our lab between high-fit and low-fit males (unpublished findings). The relative 
difference between high-fit and low-fit individuals in skeletal muscle mitochondrial 
capacity and PBMC mitochondrial function was thus highly similar between males 
and females, although the absolute values differed. It has been suggested to 
normalize V̇O2peak to lean body mass to account for the sex-associated difference in 
skeletal muscle metabolism (93,156). Although females indeed show proportionally 
higher adiposity levels than males of similar BMI (154) (Figure 2C, 2D), correcting 
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V̇O2peak for lean body mass would likely have removed part of the aerobic fitness 
level effect, because the body fat percentages were also significantly different 
between high-fit and low-fit males and females (Figure 2C, 2D). Therefore, due to 
the primary interest of our study in the link between mitochondrial function and 
aerobic fitness, V̇O2peak was normalized to body weight rather than to lean body 
mass in our studies. 

Sex-associated differences are not only important for the interpretation, validation, 
and generalizability of research findings, but should also be considered in the 
study design and data analysis (153,157). For example, in the 55 – 64 age range, 
men have more than double the rate of coronary heart disease (CHD) than women, 
while in the 85 – 94 age range, male CHD rates are only 10% higher than those in 
females (158). Thus, when researchers aim to study the incidence of CHD in a 
cohort of males and females aged 50, they should include more females to 
achieve equivalent statistical power in both sexes. Currently, most studies are 
underpowered to examine associations separately for males and females (157). 
This is particularly true for studies that were not powered to examine subgroup 
differences with sex as a biological variable, but analyze their data by sex in 
secondary analyses, which could result in false-negative results. Therefore, it is 
recommended to include both males and females and consider sex as a separate 
biological variable in the power calculation of studies (153,157). When the current 
scientific evidence primarily focuses on one sex and there is a lack of research in 
the other sex, researchers can also include either males or females to further 
substantiate the current findings, as shown in this thesis. 

Conclusions

Overall, the research conducted in this thesis showed that metabolic readouts in 
cells, tissues and blood can act as potential biomarkers of human physiological 
health. Mitochondrial metabolism in PBMCs was significantly higher in healthy 
females with high levels of aerobic fitness (high-fit females) than in healthy females 
with low levels of aerobic fitness (low-fit females), an effect that was unrelated to 
PBMC subset composition. Although the molecular mechanisms underpinning this 
effect must be identified, our findings imply that PBMC metabolism can imprint a 
physiologically relevant health difference. We also developed a novel normalization 
method that allowed for a more reliable estimation of metabolic PBMC function. 
Together these findings offer opportunities for the further development and 
validation of PBMC metabolism as a health biomarker. Besides PBMCs, skeletal 
muscle was also shown to reflect a difference in aerobic fitness level. NIRS-derived 
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mitochondrial capacity was significantly higher in the gastrocnemius muscle of 
high-fit compared to low-fit females, which indicates that measuring skeletal 
muscle mitochondrial capacity using NIRS could be also a relevant technique for 
monitoring human physiological health. Yet, at this point, the technical limitation of 
ATT must be overcome before NIRS can be widely applied in all study populations, 
including metabolically impaired females with higher body fat percentages. This 
thesis also demonstrated that the levels of multiple classical metabolite and 
protein biomarkers in plasma and serum were not significantly different between 
high-fit and low-fit females, but that evaluation of these biomarkers in the context 
of functional physiological health processes, i.e., a more integrated biomarker 
analysis, could be relevant for the characterization of human physiological health. 
Thus, mitochondrial PBMC metabolism, skeletal muscle mitochondrial capacity, 
and the integrated analysis of circulating biomarkers may act as potential novel 
biomarkers that reflect human physiological health (Figure 3). This thesis also 
described the relevance of B-vitamins in the signalling of mitochondria-derived 
metabolites to the cell nucleus, which further highlighted the crucial importance  
of B-vitamins for maintaining physiological health. In addition, we showed that 
vitamin B2 status was not different between high-fit and low-fit females, and we 
discussed the challenges for studying differences in vitamin B2 status between 
healthy individuals. Overall, this thesis contributed to a better understanding of 
human physiological health by functional metabolic mapping of healthy individuals 
with high and low levels of aerobic fitness. Metabolic readouts can allow for the 
quantification of physiological health states, and may be of great relevance for 
monitoring health improvement strategies in the future.
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Figure 3: The concept of physiological health assessment that was studied in this thesis 
and that revealed PBMC mitochondrial metabolism, skeletal muscle mitochondrial capacity, 
and the integrated analysis of circulating biomarkers as new biomarkers for human 
physiological health.
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Summary

Health optimization strategies aim to achieve or improve health. To monitor their 
effectiveness, we should be able to quantify physiological health using tools 
(biomarkers) that reflect different states of health. Health biomarkers should 
therefore allow for the detection of small but physiologically relevant health 
differences. Yet, the classical clinical diagnostic markers that are used to assess 
health have been extensively studied for detecting the difference between health 
and disease but are very limited in detecting differences between health states, 
since a functional, even suboptimal homeostasis tends to maintain these 
biomarkers within a certain range of values. These biomarkers will thus have 
difficulty capturing early deviations in the trajectory from a healthy toward an 
unhealthier state. Thus, to monitor the progression from health to optimized health 
conditions in humans and vice versa, biomarkers that respond to physiological 
differences in healthy individuals are needed. Metabolism is the fundament to  
all physiological processes in the human body and provides several readily 
measurable parameters that can be used for characterization of a healthy 
physiology Therefore, in this thesis, the potential of metabolic readouts for the 
quantification of human physiological health was studied. These metabolic 
readouts were measured in healthy, young, adult females with high and low levels 
of aerobic fitness. A high aerobic fitness level, compared to a low aerobic fitness 
level, is associated with improved health outcomes and a reduced risk for the 
development of later life disease and can thus represent a healthier state. Females 
were studied because they are largely underrepresented in scientific research 
and may respond differently from males. Therefore, the overall aim of this thesis 
was to study how metabolic measurements in healthy females with high and low 
levels of aerobic fitness can contribute to a better understanding of human 
physiological health.

Since mitochondria are cellular organelles with a key role in energy metabolism, 
studying mitochondrial function parameters is of great relevance for characteriza-
tion of human physiological health. Mitochondrial function is classically analyzed 
via ex vivo respirometry of tissues biopsies, but this is invasive and a burden for 
study subjects, and it requires fresh tissue and technical expertise. A technique 
that can assess mitochondrial function non-invasively is based on near-infrared 
spectroscopy (NIRS). It indirectly quantifies in vivo skeletal muscle mitochondrial 
capacity. Therefore, the first aim of this thesis was to study the link between 
skeletal muscle mitochondrial capacity and aerobic fitness level. In Chapter 2  
we demonstrated that mitochondrial capacity was significantly higher in the 
gastrocnemius muscle of high aerobically fit (high-fit) than low aerobically fit (low-fit) 
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females. NIRS can thus detect a physiologically relevant difference between 
healthy individuals with different aerobic capacities, hence NIRS is a relevant 
technique to monitor skeletal muscle mitochondrial function as a biomarker for 
human physiological health. 

In addition to measuring mitochondrial capacity in vivo using NIRS, emerging 
evidence suggests that mitochondrial function of peripheral blood mononuclear 
cells (PBMC) may act as a novel health biomarker. Mitochondrial PBMC function 
can be analyzed ex vivo in a Seahorse extracellular flux (XF) analyzer, which 
concomitantly measures glycolysis and thus provides a proxy for total PBMC 
metabolic profiles. The second aim was to evaluate the potential of PBMC 
metabolism as a health biomarker. In Chapter 3 we developed a normalization 
method based on brightfield imaging that improved the measurement, comparison, 
and extrapolation of PBMC metabolic XF analysis. Chapter 4 showed that mito-
chondrial PBMC metabolism was higher in high-fit than low-fit females. Importantly, 
it was also demonstrated that these observations were unrelated to alterations in 
the PBMC subset composition, which was important due to the heterogeneity of 
PBMCs. Although the molecular mechanisms underpinning this effect have yet to 
be identified, our findings imply that PBMCs can imprint a physiologically relevant 
metabolic difference and are promising to monitor as a biomarker for human 
physiological health. 

The third aim was to explore the relationship between systemic metabolism 
biomarkers and aerobic fitness level. Although these biomarkers will likely have 
difficulty capturing early deviations from a healthy state because a functional, 
even suboptimal homeostasis tends to maintain their levels within a certain range, 
most of these biomarkers have not been examined for their discriminative potential 
between different health states. We hypothesized that their sensitivity may increase  
if the joined response of multiple biomarkers is evaluated in the context of 
overarching physiological processes. In Chapter 5 we found that the levels of 
these systemic biomarkers were similar between high-fit and low-fit females and 
that analyzing joined biomarker responses in the context of functional physiological 
processes could be relevant for the characterization of human physiological 
health. Moreover, we observed that a recent exercise bout significantly changed 
the levels of inflammatory and lipid-related biomarkers, indicating that exercise 
performance on the day prior to blood sampling should be prevented when aiming 
to study baseline biomarker levels. 

B-vitamins are essential nutrients that support many metabolic enzymes, including 
the ones located in mitochondria. Importantly, mitochondria-derived metabolic 
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signals can actively communicate with the cell nucleus. In view of the essential 
role of B-vitamins in mitochondrial function, B-vitamins may also play a role in this 
mitochondria-to-nucleus communication, but an overview is lacking. The fourth 
aim was  to describe the state-of-the-art on the role of B-vitamins in mitochondrial 
metabolism and the communication with the nucleus. Chapter 6 described how 
B-vitamins could modulate the signaling of mitochondria-derived metabolites to 
the nucleus, further highlighting the crucial importance of B-vitamins for maintaining 
physiological health. 

To maintain the cellular pool of B-vitamins and prevent deficiencies, sufficient 
intake of B-vitamins is important. However, it has been suggested that lifestyle 
activities, including regular exercise, may also affect the need and use of 
B-vitamins, particularly vitamin B2. Vitamin B2 status may thus change in regular 
exercising individuals with high levels of aerobic fitness. Therefore, the final aim of 
this thesis was to study the link between vitamin B2 status parameters and aerobic 
fitness level. Chapter 7 demonstrated that vitamin B2 status was not different 
between high-fit and low-fit females. However, the metabolic enzyme that is used 
for this ‘golden standard’ vitamin B2 status determination was increased after a 
recent exercise bout. This sheds some doubt on whether this is the best manner 
to determine vitamin B2 status, at least to study exercise effects, and alternative 
measures may need to be developed to reliably determine exercise-induced 
vitamin B2 status in healthy individuals. 

In Chapter 8, the main findings of the thesis, perspectives, and recommendations 
for future research are discussed. The main conclusion is that PBMC mitochondrial 
metabolism, skeletal muscle mitochondrial capacity, and the integrated analysis  
of systemic metabolic biomarkers are promising metabolic readouts to quantify 
physiological health states, and may be of great relevance for monitoring health 
improvement strategies in the future. 
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