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General introduction



Chapter 1

Ruminants, counting an estimated 200 species, are one of the most adapted mammals
on earth, inhabiting environments from the arctic to the tropics (Hackmann and Spain,
2010). Over the approximately 50-million-year timespan of evolution, ruminants have
developed a symbiotic relationship with prokaryotic (bacteria, archaea) and eukaryotic
(fungi, protozoa) life forms, that has resulted in a complex rumen ecosystem which
enables them to efficiently utilize low-quality feed resources (e.g., forages, food by-
products and non-protein nitrogen) to produce energy-rich and high-quality protein-
rich products (e.g., milk and meat). An efficient digestibility and consecutive
conversion of nutrients into animal products relies on the symbiotic associations of
microorganisms in the rumen (Gruninger et al., 2019). This chapter will provide a
general overview of the rumen microbial composition, the application of omics
techniques to assess ruminal microbiome responses to different dietary energy sources

and the objective and outline of the research described in this thesis.

Rumen microbial ecosystem

The ruminal microbial ecosystem harbours billions of microorganisms including
bacteria (10'°-10'!/g rumen content), archaea (107-10%), protozoa (10*-10°) and fungi
(10°-10%) (Table 1.1) (Agarwal et al., 2015), which have a symbiotic relationship with

each other as well as the host.

Table 1.1. Composition of rumen microorganisms in domesticated ruminants

Microbe Number/g rumen content Mass (% of microbial mass)
Bacteria 10'-10M 40-50

Archaea 107-108 2-3

Protozoa 10%-10° 40-50

Fungi 10%-10° 34

Adapted from Agarwal et al. (2015).
Bacteria community

As the largest community, the bacteria are present in the rumen soon after birth and
contribute most to carbohydrate and nitrogen digestion. The bacteria can degrade the
substrates present in the feed (cellulose, hemicellulose, pectin, starch, protein, etc.) or
utilize the degraded products of these compounds (Bryant, 1959). The bacterial

population residing in the rumen can be subdivided into four categories: 1) liquid-
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associated population, which contains the bacteria detached from the feed particles and
the ones consuming soluble feed components from the rumen liquid (McAllister et al.,
1994), 2) solid-associated population, including the ones that are loosely or tightly
adhered to the feed particles (McAllister et al., 1994), 3) epithelium-associated
population, which includes the bacteria attaching to the rumen epithelium (Cheng et al.,
1979) and is more closely related to the host metabolic activities than the other
subpopulations (Wallace et al., 1979); and 4) eukaryote-associated population, which
is composed of the bacteria attaching to the surface of protozoa or fungal sporangia
(Miron et al., 2001). So far, most of the research has focused on the bacteria in the
liquid-associated and solid-associated communities (Zhou et al., 2015). Besides,
concerning their functions, bacteria can be classified as fibre-degrading (cellulose,
hemicelluloses and pectin) (fibrolytic), starch-degrading (amylolytic), protein-
degrading (proteolytic), lactic acid utilizers, etc. (Choudhury et al., 2015). The number
of active bacteria depends upon the animal species, type and chemical composition of
the diet, frequency of feeding and many more identified or unidentified factors (Zhou
et al., 2015). Although bacteria are better characterized compared to other microbes,
only a small fraction of the total species have been cultured in the laboratory (Morgavi
etal., 2013, Creevey et al., 2014), which indicates that a large number of novel microbes

in the rumen still need to be characterized.

Archaea community

The ruminal archaea contribute for 0.3 to 3.3% to the microbial small subunit (16S and
18S) ribosomal RNA (rRNA, Sharp et al., 1998, Janssen and Kirs, 2008). A large part
of the archaeal population in the rumen is made up of methanogens which can grow
using Hz and often formate as their energy source to produce methane with CO2 and
the electrons derived from Hz (or formate) (Janssen and Kirs, 2008). The hydrogen is
metabolized by the methanogenic archaea. Efficient H2 removal leads to a nutritionally
more favourable pattern of VFA formation and an increased rate of fermentation by
eliminating the inhibitory effect of H2 on microbial fermentation. Regarding the latter,
methanogenic archaea have an essential role in rumen functioning and animal nutrition

(Wolin, 1979, McAllister and Newbold, 2008).
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Protozoa community

Rumen protozoa account for only a small fraction (10+%ml) of the total number of
microbes (10'%!''/ml). But in terms of protozoal mass, it is almost equal to that of
bacteria present in the rumen (Table 1.1). Thus, rumen protozoa also play an important
role in feed fermentation. Protozoa have been identified to have two types of functions,
i.e., general functions of feed fermentation and the protection of easily fermentable
carbohydrates (starch and sugar) from starch-/sugar-utilizing bacteria (Kamra, 2005).
The majority of rumen protozoa are ciliates, and few are flagellates. The ciliates are
very important in fibre digestion and the modulation of the fermentation profiles. In
addition, between 20-45% of the ruminal amylolytic activity has been attributed to
protozoa (Coleman, 1986). Fibre and starch are digested by engulfment of the protozoa
with Hz, COz2, acetate, butyrate and glycerol as metabolites (Williams and Coleman,

1992).
Fungi community

Rumen fungi constitute 5-8% of total microbial biomass. The rumen fungi community
was identified only relatively late in the mid 70’s of last century (Orpin, 1975, Bauchop,
1979) compared to other microbes because of its small amount, slow growth rate and
difficulty to culture in the laboratory. When mode of action and enzyme profile were
studied in detail, it was realized that rumen fungi were potentially effective fibre
degraders (Akin et al., 1989, Akin et al., 1990). It is reported that the rumen bacteria
together with anaerobic rumen fungi had a higher degrading ability of wheat straw than
bacteria alone when using a semi continuous rumen simulation technique (Hillaire and
Jouany, 1989). The rumen fungi secrete a range of enzymes including esterases, which
cleave the ester bonds between hemicelluloses and lignin and release free celluloses

and hemicelluloses for the other microbes to digest (Yue et al., 2009).

Application of omics on the rumen microbiome

Due to the microbial diversity of the rumen and the ever-improving analytical
techniques, the community structure and metabolic pathways have been studied
intensively during the past years and have shown to be of great interest and value to the

animal nutritionist, in order to improve rumen functioning (Deusch et al., 2015,

10
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Denman et al., 2018). The rumen microbiome has been shown to be significantly
influenced by host species, diets and geographical location, with diet emerging as the
most influential factor (Henderson et al., 2015). Great efforts have been made to explore
the composition of the rumen microbial community and how it changes in response to
different diets. Traditional methodology to characterize microbial communities has
been based on the cultivation approach and pure culture characterization. However,
only a small number of ruminal microbes is culturable (Morgavi et al., 2013). As new
analytical techniques were developed, including metagenomics, metatranscriptomics,
metaproteomics and metabolomics (Figure 1.1), what originally involved the isolation
and detailed studies of single strains in the laboratory by cultivation approaches, has
now evolved into large-scale sequencing of 'total' rumen microbiota (Denman et al.,

2018, Gruninger et al., 2019).

Sequencing-based metagenomics has provided the collective genetic structure and
functional composition at the DNA level of microbial communities in the rumen in a
culture-independent manner, including previous labelled “uncharacterized” microbes
(Svartstrom et al., 2017, Stewart et al., 2018). Since its first application to rumen
material (Ferrer et al.,, 2005), metagenomics has been extensively utilized to study
ruminal fibre degradation (Krause et al., 2003), identify new microbes (Attwood et al.,
2008, Stewart et al., 2018), mine novel enzymes (Beloqui et al., 2006, Svartstrom et al.,

2017) and identify functional dynamics in response to various diets (Li et al., 2011).

However, metagenome characterization is not able to show how the genetic information
of a given microbiome is actually expressed. In this regard, metatranscriptomics can
provide a comprehensive picture of the microbial messenger RNA (mRNA) transcript
abundance, dynamics and regulation under various environmental conditions (Lim et
al., 2013). So far, metatranscriptomics has been applied to the rumen microbiome, for
instance, in order to detect carbohydrate-active enzymes and genes of the ruminal
microbiome in dairy cows (Dai et al., 2015, Shinkai et al., 2016), to explore metabolic
pathways between low and high feed intake cows (Shabat et al., 2016) and to identify

novel methanogenic archaea species (Poulsen et al., 2013).

Metaproteomics offers a comprehensive characterization of the gene products (proteins)
encoded in the metagenome and their posttranslational modifications and turnover.

Limited studies have been published on its applications on the rumen microbiome. In a

11
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recent metaproteomics study, 8,000 bacterial and 350 archaeal proteins were detected
from different rumen samples including ruminal fluid, particle-associated liquid and
solid matter in cows fed both forage- and grain-based diets (Deusch et al., 2017).
However, only a relatively small fraction of the gene products in complex gut
microbiota can be identified by metaproteomics, due to limitations in accurate detection

and mass measurement of peptides and their annotation (Li, 2015).

Metabolomics emerged in the omics field only recently, which offers the possibility to
extract a large amount of data related to metabolic phenotypes in mammals, plants and
microbes (Vinayavekhin et al., 2010). Metabolomics has opened new avenues in the
field of nutrition research, allowing scientists to explore the complex metabolic
pathways in response to diets. This technique was applied to explore the rumen
metabolite alterations of dairy cows receiving diets with different ratios of grains
(Ametaj et al., 2010). In addition, data on ruminal metabolites facilitate the study of
interactions between bacteria-specific metabolites and host proteins (Jacobsen et al.,
2013). Recently, the comprehensive database called Bovine Metabolome Database
(BMDB) was constructed containing all of the known chemical compounds that can be
detected in bovine milk, blood, urine, rumen fluid, muscle, liver and testes as well as

other biofluids and tissues (Foroutan et al., 2020).

As omic technologies develop, large numbers of data of high accuracy will be generated
regarding the composition and functioning of rumen microbes. Through the
integrations of these omic technologies, including metagenomics for DNA,
metatranscriptomics for RNA, metaproteomics for proteins and peptides and
metabolomics for metabolites, the relative abundance and shifts in microbial
populations are now being related to gene transcripts and proteins that explain changes
in detected metabolites. It can also be used to determine or map various genomic,
proteomic and metabolic pathways that make it easier to modulate rumen functioning

by just diet or other means.

12
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Figure 1.1. Workflow of possible methods to study the structure and function of the microbiota
in the rumen. qPCR, quantitative polymerase chain reaction; SRM, selective reaction monitoring.

Modified from Deusch et al. (2015) and created in BioRender.com.

Different dietary energy sources

The energy in the diets of dairy cows is mainly derived from the macronutrient
carbohydrates, fat and protein, in which carbohydrates form the most important energy
source. Corn is a major starch source in the diet of livestock under intensive farming
systems. To improve the digestibility of corn starch, multiple processing methods are
applied in practice including rolling, grinding, steam-flaking, etc. Steam-flaked corn is
more readily digestible due to changes in the structure of the starch granules than

ground ones (Cooper et al., 2002).

For ruminant animals, glucogenic nutrients in metabolism can originate from the
ruminal fermentation of dietary starch to propionate, rumen bypass of dietary starch
which is then digested in the small intestine and absorbed as glucose, or
gluconeogenesis (van Knegsel et al., 2005). In addition, lipogenic nutrients in
metabolism are supplied by acetate and butyrate from ruminal degradation of fibre or
dietary fat, if not derived from the mobilization of body fat reserves (van Knegsel et al.,

2005). Adjusting the glucogenic-to-lipogenic nutrient ratio in diets has been an
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important strategy to improve the energy status of dairy cows (van Knegsel et al., 2007a,
van Knegsel et al., 2007b). Previous research showed that glucogenic relative to
lipogenic diets could improve the energy status and decrease the milk fat content of
dairy cows, which was explained by a higher ruminal propionate production in animals
receiving the glucogenic diet (van Knegsel et al., 2007a). The alterations of rumen
microbial communities and functioning in response to a glucogenic vs lipogenic diet
remain to be clarified although amylolytic- and fibrolytic- microbes will have a
different response to dietary starch and fibre alterations in terms of community structure,

enzymes and metabolic pathways.

Objective and outline of this thesis

The main objective of the research described in this thesis is to 1) assess the alterations
in the community structure and functions of the ruminal microbiome when dairy cows
were fed either a lipogenic diet or two different glucogenic corn-based diets, in which
corn was subjected to contrasting processing conditions (grinding vs steam flaking),
and 2) evaluate the applications of omics techniques in detecting the alterations of

rumen microbiome in response to these diets.

Figure 1.2 visualizes the outline of the thesis. Chapter 2 reviews the identified
microbes and enzymes associated with amylolytic and cellulolytic activities in the
rumen and the application of metagenomics in studying rumen functioning. This
chapter provides key information on candidate microbes and enzymes, which is
evaluated in the following chapters. Chapters 3 and 4 study the changes in ruminal
fermentation when the above-mentioned lipogenic and glucogenic diets were incubated
with rumen fluid using an in vitro batch-culture technique. The parameters include the
microbial communities, molecular metabolites, pH values, the extent and kinetics of
gas production and other fermentation end-products such as volatile fatty acids,
ammonia-nitrogen and lactic acid. Utilising the results of the in vitro fermentation
studies, an animal trial was conducted to further investigate alterations in metabolic
mechanisms of ruminal microbes. In Chapter 5, responses of ruminal microbes in
terms of fermentation profiles, microbial community structure and metabolism
pathways when dairy cows are fed the three diets are evaluated through a combination
of 16S rRNA sequencing and metabolomics approaches. In Chapter 6, an integrated

analysis of the metagenomics and metaproteomics techniques is made on the

14
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community structure, metabolic pathways and enzymatic activities of the ruminal
microbiome in dairy cows fed the experimental diets. Chapter 7 provides a discussion
of the major research findings, the rumen microbial structure through the metagenomics
approach, the metabolic pathways involved in VFA synthesis and a future look about

the applications of multi-omics techniques on rumen functioning studies.

Chapter 1
_ General introduction

<>
Starch and cellulose degradation in the rumen and
applications of metagenomics on ruminal microorganisms

= L A

In vitrotrial ‘ In vivotrial
-
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affect in vitro lipogenic nutrient community and microbial
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Figure 1.2. The structure frame of the thesis. Created in BioRender.com
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Chapter 2

Abstract

Carbohydrates (e.g., starch and cellulose) are the main energy source in the diets of
dairy cows. The ruminal digestion of starch and cellulose is achieved by
microorganisms and digestive enzymes. In order to improve their digestibility, the
microbes and enzymes involved in starch and cellulose degradation should be identified
and their role(s) and activity known. As existing and new analytical techniques are
continuously being developed, our knowledge of the amylolytic and cellulolytic

microbial community in the rumen of dairy cows has been evolving rapidly.

Using traditional culture-based methods, the main amylolytic and cellulolytic bacteria,
fungi and protozoa in the rumen of dairy cows have been isolated. These culturable
microbes have been found to only account for a small fraction of the total population
of microorganisms present in the rumen. A more recent application of the culture-
independent approach of metagenomics has acquired a more complete genetic structure
and functional composition of the rumen microbial community. Metagenomics can be
divided into functional metagenomics and sequencing-based computational
metagenomics. Both approaches have been applied in determining the microbial
composition and function in the rumen. With these approaches, novel microbial species

and as well as enzymes especially glycosyl hydrolases were discovered.

This review summarizes the current state of knowledge regarding the major amylolytic
and cellulolytic microorganisms present in the rumen of dairy cows. The ruminal
amylases and cellulases are briefly discussed. The application of metagenomics
technology in investigating glycosyl hydrolases is provided and the novel enzymes are
compared in terms of glycosyl hydrolase families related to amylolytic and cellulolytic

activities.

Keywords: rumen, starch, cellulose, microbe, enzyme, metagenomics

22



Review: Starch and cellulose degradation in rumen

Introduction

The rumen ecosystem harbours a vast number of microorganisms fermenting the
ingested feedstuffs and producing various metabolites to meet the host’s nutritional
requirement. Nutritionists, microbiologists and physiologists among others, have been
studying the rumen microbial ecosystem in order to improve productivity and health

and reduce the environmental impact of dairy cows.

Unlike ruminants in the wild, starch and cellulose are the principal components in diets
for ruminant livestock worldwide, providing the primary energy to the rumen
microorganisms as well as the host. Starch and cellulose degradation in the rumen have
always been of key importance for ruminant livestock with numerous studies
investigating the ruminal microbes and enzymes involved in starch- and cellulose-
degrading (Huntington, 1997, Krause et al., 2003). Most of this research is based on
more traditional approaches which include culturing and microscopy (Huntington et al.,
2006). Over the last decades, more and more knowledge has been generated as the

advancement of existing and introduction of new analytical techniques occurred.

The exploration of the species and enzyme activities involved in ruminal cellulose and
starch digestions has been hampered by the limited number of rumen bacteria that can
be cultured (Edwards et al., 2004). Metagenomics, a culture-independent analysis
technique, has emerged in recent years as a powerful tool for exploring the collective
structure and functioning of microbial genomes within a complex ecosystem. The
application of metagenomics on rumen samples was first published in 2005 by Ferrer
et al. (2009) through functional screening technology. Since that, the metagenomic
approach has been widely utilized to discover rumen microbial communities and
enzymes. Li (2015) discussed the periodic progress prior to 2015 of the metagenomics
technologies in mining novel enzymes from the rumen microbiome including fibrolytic
and amylolytic enzymes. As high-throughput sequencing technologies developed,
sequence-based metagenomics combined with a functional metagenomic approach has
been used, through which additional novel enzymes and metabolic activities were
identified by comparison with multiple databases. The purpose of this review is to
describe: 1) our current understanding of the microbes and enzymes involved in starch

and cellulose degradation in the rumen of dairy cows and 2) recent developments in
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sequencing technology where sequence-based and functional metagenomics can
contribute to our knowledge of the structure and function of amylolytic and cellulolytic

microorganism in the rumen of dairy cows.

Starch and cellulose degradation in the rumen

Starch degradation

Starch-rich grain is the primary energy component used in the modern diet for dairy
cows, accounting for 20-40% of the ration of high-yielding cows. Due to the relatively
high price of starch-containing ingredients, dietary starch should be used wisely to
achieve cost-effectiveness and efficient production. Starch is a heterogeneous
polysaccharide containing two structurally distinct a-linked polymers of glucose:
amylose and amylopectin. The former is a linear D-glucose polymer containing ~99%
a-1,4-links and the latter is the most abundant component of starch with 95% a-1,4-

links and 5% a-1,6-links (Parker and Ring, 2001).

Unlike non-ruminants, starch degradation mainly occurs in the rumen, partly in the
small intestine with the remainder fermented in the hindgut of ruminants. Starch
degradation in each segment of the gastrointestinal tract is influenced by starch sources
(e.g., corn, wheat, sorghum, barley) and processing (moistening, heating, or mechanical
pressure) of the grain (Huntington et al., 2006). Data from 87 studies across a wide
range of starch intakes (1-5.7 kg/d) showed that, on average, 71% of the starch intake
was digested in the rumen (Offner and Sauvant, 2004). Harmon et al. (2004) analysed
data from 16 studies where the starch intake ranged from 1 to 5 kg/d and reported that
ruminal starch digestion/fermentation was typically 75-80% of starch intake, with 35-
60% of starch escaping rumen fermentation and digested in the small intestine. Between
35-50% of the starch that escapes small intestinal digestion was reported to be
fermented in the large intestine. The starch digestion in the small intestine consists of
three processes as reviewed previously (Harmon et al., 2004). Briefly, intestinal starch
digestion starts in the lumen of the duodenum by the action of pancreatic a-amylase
which hydrolyses amylose and amylopectin into maltose and other branched-chain
products. The second process occurs at the brush border membrane via the action of the

brush border carbohydrases (e.g., maltase, isomaltase) with the third process being
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glucose transportation from the intestinal lumen to the portal circulation (Huntington et

al., 2006).
Amylolytic organisms in the rumen
Amylolytic bacteria

The main starch-degrading microorganisms in the rumen are amylolytic bacteria,
followed by protozoa and fungi (Huntington, 1997). Previous research has reported that
bacterial digestion activities start with an attachment of bacteria to feed particles. The
commonly reported amylolytic bacteria present include Streptococcus bovis,
Ruminobacter amylophilus, Succinimonas amylolytica, Selenomonas ruminantium and

Bifidobacterium spp. (Table 2.1).

Streptococcus bovis can be easily isolated from the rumen fluid but only account for a
small number of the total bacteria present in the rumen (Hungate, 1966). Streptococcus
bovis, producing lactate as the main end-product, is present only when a large amount
of starch or sugar is available as a substrate and the pH of the rumen fluid is low
(Dehority, 2004). When conditions are favourable with high availability of starch or
sugar, this species can grow explosively which leads to the overwhelming production
of lactate and can result in rumen acidosis. Ruminobacter amylophilus is strictly
anaerobic and Gram-negative with multiple shapes, arrangements and sizes. This
species is capable of utilizing three forms of starch: amylose (linear a-1,4-linked
glucose polymer), amylopectin (a-1,6-linkage) and pullulan (linear polymer of
maltotriose residues linked by a-1,6-bonds) (Kevin, 2000), mainly producing formate,
acetate and succinate as end-products. The starch molecules bind to cell surface
receptors and are transported into the cell and hydrolysed by intracellular amylase
(Anderson, 1995). Succinimonas amylolytica is an anaerobic, Gram-negative,
nonspore-forming and straight rod with rounded ends which can be motile with polar
flagella. This species is less abundant among the ruminal bacteria when cattle are fed
forage rations but is among the predominant bacteria when dietary starch is offered in
the form of a grain mixture (Bryant et al., 1957). This species can hydrolyse starch
producing succinate as the main product as well as a small amount of acetate and
propionate. Selenomonas ruminantium is anaerobic and Gram-negative, and it consists

of motile rods of 0.8-1.0 um in width and 2-7 pm in length. This species was found to
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be more abundant in the rumen when animals were fed cereal grains compared to that
fed roughage (Caldwell and Bryant, 1966). Most strains can ferment a wide range of
substrates (Table 2.1). Lactate is the major fermentation end-product when high
concentrations of glucose are present, but this is replaced by acetate and propionate at
low glucose concentrations (Dehority, 2004). Besides the abovementioned amylolytic
bacteria, some strains of the cellulolytic bacteria like Fibrobacter succinogenes,
Butyrivibrio fibrisolvens and Clostridium spp. are also capable of unitizing starch under

certain conditions.
Amylolytic protozoa

The protozoa are also involved in degrading starch in the rumen. Between 20-45% of
the amylolytic activities in the rumen have been attributed to protozoa (Coleman, 1986).
The amylolytic protozoa digest starch through engulfment producing Hz, COz, acetate,
butyrate and glycerol as products. However, the rate of uptake of starch grains varies
greatly between species. The protozoa with high amylolytic activities include
Eremoplastron bovis, Diploplastron affine, Ophryoscolex caudatus and Polyplastron
multiesiculatum. The breakdown rate of starch by protozoa is by approximation
determined by the initial starch or amylopectin concentration inside the protozoa

(Coleman, 1986).

Protozoa also have the capacity of slowing down the ruminal starch-fermentation rate
because, on one hand, protozoa ingest amylolytic bacteria resulting in a decrease in
their population (Kurihara et al., 1978) while on the other hand, they need at most 36 h

to metabolize the engulfed starch granules (Coleman, 1992).
Amylolytic fungi

Fungi account for a small proportion (~8%) of the rumen biomass where they are
involved in degrading structural carbohydrates by producing a wide range of enzymes
(Akin et al., 1983). Neocallimastix frontalis was reported to hydrolyse starch by
generating an endo-hydrolytic o-amylase from which maltose, maltotriose and
maltotetraose were the major products (Mountfort and Asher, 1988). Another three
fungi species, Orpinomyces joyonii, Neocallimastix patriciarum and Piromyces
communis were also observed to be capable of digesting cereal grains (McAllister et al.,

1992).
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Ruminal starch-degrading enzymes

Due to their small size, bacteria cannot directly ingest starch granules or high-
molecular-weight starch (e.g., amylopectin), but generate enzymes which specifically
cleave the a-1,4-or a-1,6-bonds of amylose and amylopectin. These amylases can be
typically classified into three main categories of hydrolytic activity: endoamylases,

exoamylases and debranching enzymes (Table 2.2).

Endoamylases cleave the a-1,4-glucosidic linkages in the interior of the starch polymer
or oligosaccharides in a random manner leading to the production of linear and
branched oligosaccharides. a-Amylase is the most popular bacterial endoamylase
which mainly hydrolyses the internal a-1,4-bonds of amylose. A few types of a-
amylases are also capable of hydrolysing the a-1,6-bonds of amylopectin (Kevin, 2000).
a-Amylases have been classified into the glycosyl hydrolases (GH) superfamily 13 and
57 based on amino acid sequence similarity (Henrissat, 1991). Exoamylases hydrolyse
the a-1,4-linkages at the nonreducing end of the starch molecule, of which the end-
product is one predominant dextrin. B-Amylase which belongs to GH family 14 is an
exoenzyme that liberates maltose by hydrolysing 1,4-bonds. Because it cannot bypass
1,6-linkages, there always remain some [-limit dextrins after B-amylolysis. a-
Glucosidases are members of GH family 15 and 31 which hydrolyse the a-1,4-or a-1,6-
linkages on the nonreducing end in short saccharides produced by other enzymes.
Glucoamylases have the ability to degrade both 1,4- and 1,6-linkages, solely forming
glucose as an end-product. Some debranching enzymes are also capable of cleaving the
a-1,6-glucosyl link (Clark and Bauchop, 1977). Isoamylases can degrade various
branched structures of amylopectin, glycogen and branched oligosaccharides and
dextrins. The pullulanase cleaves the a-1,6-link of pullulan-producing maltotriose

which can then be hydrolysed by isopullulanases yielding isopanose
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Factors affecting ruminal starch degradation

Starch degradation in the rumen is influenced by intricate interrelations of multiple
factors, including starch sources, diet composition, amount of feed consumed per unit
time, mechanical alterations, chemical alterations and adapting degree of ruminal

microbiota to the starch ratios in diet (Huntington, 1997).

The rate and content of ruminal starch degradation vary with the type of cereal grains.
Usually, wheat and barley starch are degraded more rapidly in the rumen than corn or
sorghum starch (Nordin and Campling, 1976). Ruminal digestion of starch in the
ground, rolled, or cracked corn (50-90%) or sorghum (42-89%) is generally lower than
that in similarly processed barley (87-90%) (Theurer, 1986). Starch granules within the
grain endosperm are surrounded by a protein matrix. The protein matrix in corn is
extremely resistant to the invasion of amylolytic bacteria and can only be penetrated by
some fungi, while for barley and wheat the protein matrix is easily penetrated by a
variety of proteolytic bacteria. In this regard, the combination of slowly and rapidly

degraded grains was recommended (Mendoza et al., 1999).

Physical processing is another factor influencing ruminal starch degradation. Generally,
processed grains are more digestible in the rumen (Huntington et al., 2006). With the
rolling, cracking, or grinding of barley, a higher ratio of starch (87-90%) was digested
in the rumen compared to the maize or sorghum (50-90%) (Kotarski et al., 1991).
Steam-flacking as a processing technology increased the grain starch degradation in the
rumen, resulting in less starch available for the post ruminal fermentation (Xiong et al.,

1991).
Cellulose degradation

The rations for dairy cows are predominantly plant-based. The plant cell walls are
primarily composed of cellulose which accounts for 20-30% of the dry weight of the
primary cell wall. Cellulose is a homopolymer of glucose linked by linear 1,4-3-
glycosidic bonds. Cellulose molecules associate with each other to form microfibrils in

the form of crystalline formulations.
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Cellulolytic organisms in the rumen

A large number of anaerobic bacteria, protozoa and fungi possess very efficient
cellulolytic machinery which enables them to improve the feed conversion efficiency
of cellulose. Cellulolytic organisms are those microbes predominantly digesting
cellulose present in the diet, which were dominated by mainly bacteria, fungi and to a

lesser extent the protozoa (Krause et al., 2003).
Cellulolytic bacteria

The Ruminococcus flavefaciens, Ruminococcus albus and Fibrobacter succinogenes
are the major cellulolytic bacteria (Krause et al., 2003). Fibrobacter succinogenes is
one of the most widespread cellulolytic bacteria in the rumen, which contributes ~5-6%
of the total prokaryotic 16S rRNA in the rumen contents of cattle (Briesacher et al.,
1992). The species is strictly anaerobic and nonspore-forming with the cells Gram-
negative. Their growth requires valerate and isobutyrate and partly need biotin and p-
aminobenzoic acid (Bryant, 1959). Fibrobacter succinogenes strains were reported to
degrade cellulose, glucose and cellobiose mainly producing acetate and succinate
(Stewart and Flint, 1997). Some strains are capable of degrading some cellulose
allomorphs which are not susceptible to degradation by Ruminococcus flavefaciens.
Ruminococcus flavefaciens are usually Gram-positive or Gram-variable and often
generate a characteristic yellow pigment, particularly when grown on cellulose. Most
Ruminococcus flavefaciens strains are able to degrade quite recalcitrant forms of
cellulose which is difficult to digest by other species (Stewart et al., 1990). Previous
research showed that Ruminococcus flavefaciens mainly attach to the cut edges of the
epidermis, sclerenchyma and phloem cells when incubated with ryegrass leaves
(Latham et al., 1978), and the attachment occurred at the epidermis and parenchyma
bundle-sheath when incubated with orchard grass and Bermuda grass (Akin and Rigsby,
1985). Ruminococcus flavefaciens mostly degrade cellulose and cellobiose, while some
strains can also utilize glucose and other carbon compounds including maltose, lactose,
xylose and starch (Table 2.1). The main end-products include acetate, succinate,
formate and lactate, together with traces of hydrogen and COz. Ruminococcus albus
cells are usually single or diplococcic, 0.8-2.0 um in diameter and Gram-negative to
Gram-variable. Generally, in the rumen, Ruminococcus albus is more abundant than

Ruminococcus flavefaciens (Varel and Dehority, 1989). Ruminococcus albus strains are

31



Chapter 2

able to degrade cellulose and cellobiose but cannot utilize glucose or other sugars. The
main end-products of this degradation include acetate, ethanol, formate, lactate,
hydrogen and CO2 with different combinations and proportions as the major products.
Ruminococcus albus can produce ethanol, while the Ruminococcus flavefaciens
produce succinate instead. The abovementioned three cellulolytic bacteria share some
common features: 1) their growth needs a strict pH range from 6 to 7, 2) they are all
strictly anaerobic and cannot survive when exposed to oxygen, 3) they digest cellulose
by attachment to the cell surface through an extracellular glycocalyx, and 4) these

bacteria are majorly restricted to cellulose or the hydrolysed products of cellulose.

Apart from the above three major bacteria, some strains in Butyrivibrio fibrisolvens,
Eubacterium cellulosolvens and Clostridium spp. have also been reported to be
involved indirectly in cellulolytic activities (Krause et al., 2003). These cellulolytic
bacteria degrade cellulose via adherence to an extracellular structure, the cellulosome.
The processes for the adherence of bacteria to cellulose have been reviewed by Miron
et al. (2001) and Krause et al. (2003). In short, the adherence could be defined in four
steps: 1) non-motile bacteria are transported to the substrate, 2) bacteria adhere non-
specifically to available sites on the plant cell wall, 3) the ligands or adhesins on the
bacterial cell surface adhere specifically to the receptors on the substrate, and 4) the
adhered bacteria proliferate to create colonies on potentially digestible sites of a

substrate.
Cellulolytic fungi and protozoa

Cellulolytic activities have also been reported by fungal and protozoal populations in
the rumen. The ruminal fungi with cellulolytic capacity include Neocallimastix
frontalis, Neocallimastix patriciarum and Neocallimastix joyonii. The fungi also
possess cellulosome-like machinery, which aids in the adherence process to cellulose
(Steenbakkers et al., 2001). Furthermore, cellulolytic protozoa, such as Fudiplodinium
maggie, Ostracodinium album, Epidinium caudatum, etc. degrade cellulose by

engulfment (Castillo-Gonzalez et al., 2014).
Ruminal cellulose-degrading enzymes

Most cellulases are GH which are able to hydrolyse the glycosidic bonds within

carbohydrate molecules (Henrissat and Bairoch, 1993). In general, the hydrolases
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cleave the C-O, C-N, or C-C bonds of the glucosides producing sugar and another
compound, while cellulases mainly cleave the 1,4-B-glycosidic bonds between glucosyl

moieties in cellulose into its monomers.

Cellulose is hydrolysed to its monomeric glucose units by the synergistic action of three
major types of cellulases: 1) endoglucanases (endo-1,4-B-D-glucan hydrolases), 2)
exoglucanases (exo-1,4-B-D-glucan cellobiohydrolases) and 3) B-glucosidases (B-D-
glucosidases) (Krause et al., 2003, Table 2.3). These three cellulases break down
cellulose at different sites and work synergistically on cellulose hydrolysis (Lynd et al.,
2002, Figure 2.1). Briefly, the endoglucanase firstly randomly breaks down the
amorphous regions of cellulose creating new chain ends, then the exoglucanases attack
the non-reducing ends of cellulose or cellotetraose produced by endoglucanase,
yielding cellobiose and cellotriose as products. The products are finally hydrolysed to

glucose by B-glucosidases.

Table 2.3. Information on cellulose-degrading enzymes in the rumen

Enzyme Linkage Substrate Action

Endoglucanase 1,4-B-D-glucosidic cellulose cleave internal bonds at amorphous
linkage sites creating new chain ends

Exoglucanase 1,4-pB-D-glucosidic cellulose, cleave two to four units from the non-
linkage cellotetraose ~ reducing ends of the cellulose or

cellotetraose molecules produced by

endoglucanase
B-Glucosidase or  1,4-pB-D-glucosidic cellobiose, hydrolyse the exoglucanase products
cellobiase linkage cellotriose into individual monosaccharides
(glucose)

All these abovementioned cellulases have been isolated from the ruminal cellulolytic
microbes and classified into specific GH families, for example, the endoglucanases
mainly belong to the GH family 5 and 9, whereas, exoglucanases are mostly present in
the GH family 6, with the B-glucosidases mainly classified into GH family 3 (Vorgias
and Antranikian, 2000).
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Application of metagenomics on ruminal microorganisms
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Figure 2.1. Structure cellulose breakdown by three cellulases. Created in BioRender.com

To date, only a relatively small fraction of rumen microorganisms has been successfully
isolated and cultured. The largely unexplored microorganisms represent a huge
untapped source of novel enzymes, especially those with multiple functions. Thanks to
the development of next-generation sequencing technologies and bioinformatics tools
together with the rapid progress in reference databases, metagenomics has become a

powerful tool to study the rumen microbiome.

With metagenomics technologies, we can acquire the collective genetic structure and
functional composition of rumen microorganisms without culturing their inhabitants.
According to amino acid sequence similarity, GH and related enzymes are classified
into specific families with all members in one family possessing the conserved catalytic
mechanism. The public database of Carbohydrate Active enZyme (CAZy), which
contains and updates all GH families, has been frequently used to mine enzymes in the
rumen of dairy cows (Brulc et al., 2009). This section will summarize recent knowledge
of the metagenomic insights into the starch- and cellulose-degrading enzymes in the

rumen of dairy cows.
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Rumen metagenomics analysis comprises two areas, including: 1) functional
metagenomics, in which the high-throughput screening technique is used for
investigating gene products out of cloned expression libraries established by rumen
metagenome DNA and 2) sequencing-based metagenomics in which the genomes and
genes present in rumen microbes are explored through high-throughput next-generation

sequencing.
Functional metagenomics

Ferrer et al. (2005) first applied the functional metagenomics approach in identifying
hydrolytic enzymes involved in the ruminal digestion of plant polysaccharides, from
which nine endoglucanases and 12 esterases were detected from the metagenomic
library of dairy cows. Since then, more research has been conducted to investigate
specific polysaccharide-degrading enzymes from the rumen through metagenomic
libraries. Morgavi et al. (2013) summarized the studies before 2012 about the
applications of functional metagenomics for mining polysaccharide-degrading
enzymes from the rumen (Table 2.4). In this review, the cellulose-degrading enzymes
detected from the cow rumen by those studies mainly belonged to GH families 5, 3 and
26. Li (2015) reviewed the publications from 2012 to 2015, particularly on the
lignocellulose-degrading enzymes mined from the rumen through functional
metagenomic approaches (Table 2.4). They concluded that the new screened cellulases
in the cow rumen mostly belonged to GH families 5, 8, 9 and 48. Even though the
abovementioned studies have proven the applications of functional screening technique
in characterizing ruminal enzymes, many challenges remain e.g., 1) the expression
libraries can only show a small fraction of functional diversity because not all target
genes are easy to be expressed in foreign host systems, and 2) the present techniques
for detecting and screening desired functional activities need to be more efficient. To
overcome these difficulties, new approaches have been developed. For instance, the
habitat biasing methods were used to fractionate the microbial community in order to
decrease the complexity of the microbiome or to enrich desired activities (Ekkers et al.,
2012) or the combination of the in vitro compartmentalization and fluorescent-activated
cell sorting was able to improve the functional screening of complex microbial

ecosystems (Ferrer et al., 2009). With further evolutions of techniques, new enzymes
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and metabolic activities will be characterized by the rumen microbiome with functional

metagenomics.
Sequencing-based metagenomics

Sequencing-based metagenomics provides the collective genetic composition and
functional activities of a microbial community at the DNA level. The first publication
using next-generation sequencing-based rumen computational metagenomics for
cataloguing the genes and activities involved in ruminal fibre degradation was reported
in 2009 (Brulc et al., 2009). Later, Morgavi et al. (2013) compared the contributions of
four rumen fibrolytic bacteria to the GH families involved in plant polysaccharide
degradation. The cellulose-degrading GH families 3, 5, 8, 9 and 51 were represented in
the bacteria species of Fibrobacter succinogenes S85 and Ruminococcus albus. The
publications since 2015 on metagenomics application related to ruminal starch- and
cellulose-degrading enzymes of cows are summarized in Table 2.4. Most of these
studies were based on sequence-based metagenomics. Besides the cellulase GH
families mentioned by Li (2015), more novel cellulose-degrading enzymes were
detected from rumen microbiomes and mostly belonged to GH families 44, 45, 6, 7, 88,
10, 51 and 95. While the starch-degrading enzymes were mainly from 13, 97, 31, 57,
77 and 15. Gharechahi et al. (2021) compared the fibre-attached rumen-uncultured
microbiota and CAZyme produced after incubation with six lignocellulosic substrates,
in which they found the most abundant GH families containing the GH3, GH31 and
GH97 glucosidases and the GH51 endoglucanases. They also identified proteins that
were the main components of cellulosome complexes but also had the potential to
encode the a-amylases (GH13, GH13 6, GH13 7, GH13 15, GH13 28 and GH97)
and cellulases (GH5, GHS 2, GHS5 4, GH9, GH124 and GH128). Literature shows
most metagenomics studies mainly focus on the ruminal fibrolytic activities and the

efforts on starch degradation were relatively less.

In total, with the assistance of metagenomics tools, comprehensive studies as illustrated
above will broaden our knowledge of the ruminal microbial structure and enzymatic
activities, which in turn would allow for rumen manipulations to achieve a more
efficient fibre and starch degradation. For instance, 1) as more microbial amylases and
cellulases are identified out of the ruminal microbiome, it will be foreseeable to regulate

the ruminal microbial amylolytic and cellulolytic activities through supplementing
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exogenous enzymes in the form of feed additive, 2) newly identified species will
promote the process of isolating microbes out of the rumen and improve the
development of microbe-culture techniques, and 3) it will facilitate the commercial
applications of rumen enzymes in various industries including feed additives and

biofuel production.

Conclusion

This review has summarized the microbes and enzymes involved in starch and cellulose
degradation and discussed the state of metagenomics technology in mining novel
cellulases and amylases GH families in the rumen of dairy cows. To date, a number of
amylolytic and cellulolytic microorganisms, their characteristics and their metabolic
mechanisms in the rumen of dairy cows have been described. But still, uncharacterized
microbes and enzymes need to be identified. The recently emerging technologies like
metagenomics have become more efficient in exploring new microbial species and
strains, mining novel enzymes and monitoring microbial and enzymatic activities. This
will improve the development of new culturing techniques. In turn, the advancement of
our knowledge into the functioning of the microbiota of the rumen can facilitate the
directed regulation of specific microbial activities or supplementation of exogenous

enzymes.
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Table 2.4. Amylolytic and cellulolytic enzymes mined from the rumen of dairy cows through

metagenomics approach

Reference Enzyme Glycoside hydrolase family
Gharechahi et al. (2021) amylase 13,97
cellulase 4,5,8,9,124, 128
endocellulase 74
Shen et al. (2020) amylase 13,15,31,57,77
cellulase 97,9, 5, 88, 45,95, 44, 48
Zhao et al. (2020) amylase 13,15,31,4,57,63,77,97, 119
cellulase 5,6,8,9,10, 11, 26, 44, 45, 48
Wang et al. (2020) amylase 13,57
cellulase 5,9, 88,95
endocellulase 5,6,7,9,44,45
B-glucosidase 13, 88
Bohra et al. (2019) cellulase 5,9,44, 45
Terry et al. (2019) endocellulase 5,6,7,8,9,44, 45, 48
exocellulase 5,6,9,48
B-glucosidase 5,9
Jose et al. (2017) cellulase 5
endocellulase 6,7,9,44, 45
B-glucosidase 1,3
Shinkai et al. (2016) cellulase 5,6,8,9,44,45,48,74
Pitta et al. (2016) amylase 13, 27,77, 88
cellulase 5,9,48, 81

Kang et al. (2015)
Ko et al. (2013)
Gong et al. (2012)
Hess et al. (2011)
Zhao et al. (2010)
Wang et al. (2009)

Shedova et al. (2009)
Palackal et al. (2007)
Ferrer et al. (2005)

oligosaccharide degrading
enzymes

cellulase

exocellulase
endoglucanase cellulases
unspecified

a-amylase

B-glucosidase
endo-B-1,4-glucanase
endo-B-1,4-glucanase
glucanase/mannanase/xylanase

endo-glucanase

1,2,3,4, 13,27,29, 31, 35,37,
38,42, 57, 59, 63, 65, 88
5,6,7,8,9, 12,44, 45, 48
48

5,8,9

5,8,9,10,26

57

3

5

5

5,26

5,26
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Chapter 3

Abstract

This study was conducted to evaluate the effects of two glucogenic diets (C: ground corn and
corn silage; S: steam-flaked corn and corn silage) and a lipogenic diet (L: sugar beet pulp and
alfalfa silage) on the ruminal bacterial and archaeal structures, the metabolomic products, in
vitro rumen fermentation, gas production. Compared to the C and S diets, the L diet had a lower
dry matter digestibility (DMD), propionate production and ammonia-nitrogen concentration.
The two glucogenic diets performed worse in controlling methane and lactic acid production
compared to the L diet. The S diet produced the greatest cumulative gas volume at any time
point during incubation compared to the C and L diet. The metabolic analysis revealed that the
lipid digestion especially the fatty acids was improved, but the amino acid digestion was
decreased in the L diet than in other diets. Differences in rumen fermentation characteristics
were associated with (or resulting from) changes in the relative abundance of bacterial and
archaeal genera. The L diet had a significantly higher number of cellulolytic bacteria, including
the genera of Ruminococcus, Butyrivibrio, Eubacterium, Lachnospira, unclassified
Lachnospiraceae and unclassified Ruminococcaceae. The relative abundances of amylolytic
bacteria genera including Selenomonas 1, Ruminobacter and Succinivibrionaceae UCG-002
were higher in diets C and S. The results indicated that the two glucogenic diets had a greater
extent of gas production, a higher DMD and produced more propionate than diet L. The steam-

flaked corn did not show a better performance on fermentation end-products than ground corn.

Keywords: glucogenic/lipogenic diet, rumen fermentation, microbiota, gas production,

metabolomic, PICRUSt
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Introduction

Dietary carbohydrates, such as starch and fibre, provide substrates for rumen microbes.
Changes in carbohydrate composition and content in ruminant rations lead to the changes in
microbial community and subsequently to changes in fermentation end-products, including the
volatile fatty acids (VFAs), carbon dioxide (COz2), methane (CH4) and hydrogen (Hz) (Carberry
et al., 2012). The major ruminal VFAs include acetate, propionate and butyrate. Acetate is the
primary precursor of milk fatty acids and is termed a lipogenic nutrient, while propionate being
the primary precursor of milk lactose is a glucogenic nutrient (van Knegsel et al., 2005). For
ruminant animals, lipogenic nutrients in metabolism are supplied by acetate and butyrate from
ruminal degradation of fibre or dietary fat, if not derived from the mobilization of body fat
reserves. In contrast, glucogenic nutrients in metabolism can originate from the ruminal
fermentation of dietary starch to propionate, rumen bypass of dietary starch which is then
digested in the small intestine and absorbed as glucose, or gluconeogenesis (van Knegsel et al.,
2007). Previous research showed that glucogenic nutrients increased plasma glucose and insulin
concentrations, whereas lipogenic nutrients did not (van Knegsel et al., 2005). However,
changes in microbial communities and their metabolic activities under lipogenic and glucogenic
diets are also essential to investigate to unravel the production pathways of the affected

metabolites and better understand how rumen functioning is regulated.

Ground corn is a major dietary energy source because of its high amount of readily fermentable
starch. Steam-flaking can disintegrate the crystalline structure of cereal starch by gelatinisation
(Ding et al., 2007), and subsequently, this can increase the accessibility to the starch granules
of ruminal amylases and amylolytic microorganisms (Huntington, 1997). Previous studies
showed that steam-flaked corn improved the ruminal degradability of starch, resulting in high
production of ruminal propionate, and increased efficiency in microbial protein synthesis (Zhou

etal., 2015).

The effects of dietary treatments on the ruminal microbes and microbial metabolism when
incubated in vitro are rarely reported although the in vitro gas production technique is routinely
used to evaluate dry matter (DM) degradation rate, amount and proportion of VFAs production
and gas composition of various feeds and ingredients. This technique also yields valuable
information on the effects of feedstuff on rumen microbial activity and predicts the kinetics of

fermentation (Pellikaan et al., 2011a). With the 16S rRNA sequencing technology, a fast and
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cost-effective way of microbial analysis and their correlations with environment factors coupled
with liquid chromatography-mass spectrometry (LC-MS), an effective technique for
metabolomics analysis, more knowledge on changes in ruminal microbiota metabolism can be

generated.

Although studies on differences in rumen fermentation between glucogenic and lipogenic diets
have been conducted, rumen bacterial community changes and functions are not yet fully
understood. We hypothesized that glucogenic and lipogenic diets when evaluated using the in
vitro gas production technique should lead to clear differences in bacterial communities and
functions which affect intermediary metabolites besides the well-known differences in

fermentation end-products and CH4 production.

Materials and methods

Experimental design

Animal care followed the Chinese guidelines for animal welfare, and all protocols were
approved by the Animal Care and Use Committee of the Chinese Academy of Agricultural
Sciences (IAS2019-6).

In vitro incubation

Six lactating dairy cows (Holstein) were selected as rumen fluid donors for all three runs of this
in vitro study, with different two cows for each run. The cows received a diet containing (%
DM basis) a concentrated mixture (45%), alfalfa and oat hay (20%), corn silage (20%) and
alfalfa silage (15%). The cows were fed three time daily at 7:00, 13:00 and 19:00, and they had

free access to water and feed.

Three experimental diets were designed as fermenting substrates: two glucogenic diets
including a ground corn diet (C, which used ground corn and corn silage as the primary energy
sources) and a steam-flaked corn diet (S, which used steam-flaked corn and corn silage as the
primary energy sources) and a lipogenic diet (L) mainly containing sugar beet pulp and alfalfa
silage as the energy sources. In addition, other ingredients, including soybean meal, oat and
alfalfa hay and calcium hydrogen phosphate were used to balance the ration to meet the
nutritional requirements of dairy cattle (Table 3.1). Diets were isocaloric and were equal in

digestible crude protein.

48



Glucogenic and lipogenic diets fermented in vitro

Table 3.1. Ingredient and nutritional composition of two glucogenic (C, S) and a lipogenic (L) diet

Experimental diet

Item
C L S

Ingredient, % of dry matter
Ground corn 28.0 - -
Sugar beet pulp - 28.0 -
Steam flaked corn - - 28
Soybean meal 18.5 12.0 18.5
Oat hay 5.0 19.0 5
Alfalfa hay 10.0 10.0 10
Corn silage 38.0 - 38
Alfalfa silage - 30.0 -
Dicalcium phosphate 0.5 1.0 0.5

Composition, g/kg of dry matter
Crude protein 174.4 174.6 172.1
Ether extract 243 20.4 31.7
Starch 192.9 39.7 163.8
Neutral detergent fibre 326.0 562.2 320.2
Acid detergent fibre 197.9 348.9 199.1
Ash 47.6 98.7 47
Calcium 9.3 12.8 11.1
Phosphorus 10.4 4.9 11.9
NEL, MJ/kg of dry matter 73 79 7.4

Nutrient composition of the experimental diets was calculated according to NRC (2001). Diets: C, corn and
corn silage diet diet; L, sugar beet pulp and alfalfa silage diet; S, corn and steam-flaked corn diet. NE., net

energy for lactation and calculated according to NRC (2001).
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The fermentation substrates were the ground DM of each experimental diets. 0.5 g of substrates
were firstly weighed into 150-ml serum bottles, with three replicate bottles for each dietary
treatment within one fermentation run. A phosphate-bicarbonate buffer medium was

anaerobically prepared as described by Menke and Steingass (Menke and Steingass, 1988).

Equal volumes of fresh ruminal fluid were collected through a stomach tube from cows, two
hours after the first feeding (09:00 h), then poured into a sterilized and pre-warmed thermos
flask (2,000 ml) leaving no headspace in the flask. After transportation to the laboratory, the
rumen fluid was strained through four layers of cheesecloth and transferred into a flask placed
in a water bath of 39 °C maintaining anaerobic conditions. The strained rumen fluid inoculum
(25 ml) and anaerobic buffer (50 ml) were successively combined with substrates into each
bottle, with the COz continuously flushing in the headspace of bottles. After sealing with butyl
rubber stoppers, the serum bottles were connected to the gas inlets of an automated gas
production recording system (AGRS), as reported by Zhang and Yang (Zhang and Yang, 2011).

Each fermentation run lasted for 48 h and were repeated for three runs within two weeks.
Sampling and chemical analysis

Calibrated gas volumes were automatically recorded and cumulative gas production was
expressed against the time of incubation (Zhang and Yang, 2011). At 48 h of incubation, 20 pl
of gas was collected through a 20 pl gastight syringe from each bottle to test the CH4
concentration using gas chromatography (GC, 7890B, Agilent Technologies, USA). The GC
was equipped with a capillary column (USF727432H, 30 m x 0.25 mm x 0.25 pm, Agilent,
California, USA) and a flame ionization detector (FID). Nitrogen (N2, 99.99%) was used as the
carrier gas, with column settings as follows: the inlet pressure 18.85 psi, the total flow 30.2
ml/min, the column flow 1.7 ml/min, the linear speed 39.8 cm/s, the split ratio 15, the sweeping
flow 3 ml/min and the cycling flow 8 ml/min. The hydrogen and airflow were 40 ml/min and
400 ml/min, respectively. Temperatures were set to 100 °C for the injection point, 80 °C for the

column oven and 120 °C for the detector.

At 48 h, all bottles were transferred into an ice-water mixture to terminate the incubation. The
pH value of the fermented substrates was determined using a portable pH meter (PHB-4,
INESA, Shanghai, China). Then the substrates were filtered through a nylon bag (12 cm X 8 cm
i.d. and 50 pum of pore size) and the residue left in the bag was used to analyse apparent dry

matter digestibility (DMD) gravimetrically. A sample of 1 ml fluid was mixed with 0.25 ml of
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25% meta-phosphoric acid to evaluate the VFA contents via the GC (7890B, Agilent
Technologies, USA) (Mao et al., 2008). Also, 1 ml of fluid was collected to analyse the
ammonia nitrogen (NH3-N) according to the Berthelot reaction (Broderick and Kang, 1980).
Another 1 ml fluid was used to determine the lactic acid concentration using an enzymatic
method with the commercial kit (A019-2, Nanjing Jiancheng Bioengineering Institute, Nanjing,
China) at 530 nm according to the manufacturer’s instructions (Pan et al., 2016). Besides, two
replicated 3 ml fluid samples were collected and stored under -80 °C for subsequent microbial

and metabolomics analyses.
DNA extraction and amplification

The DNA of microbes was extracted from supernatant samples using the QlAamp DNA Stool
Mini Kit (M5635-02, OMEGA, USA). The concentration of DNA was evaluated with the
NanoDrop spectrophotometer (Thermo Scientific, USA), and then the agarose gel (1% w/v)

electrophoresis was used to check the DNA quality.

The 16S rRNA gene of bacteria and archaea were separately amplified with the general primers
(Supplementary material) based on the hypervariable region (V3-V4). The PCR was
performed (Supplementary material) and the products were firstly extracted from an agarose
gel (2% w/v), then purified with the commercial Extraction Kit (Axygen Biosciences, USA).
The DNA products were finally quantified with QuantiFluor™-ST (Promega, USA).

Illumina miSeq sequencing and analysis

Purified amplicons were mixed in an equimolar ratio and paired-end sequenced (2 % 300 bp)
through the MiSeq platform (Illumina, San Diego, USA) according to the manufacturer’s
standard (Majorbio Bio-Pharm Technology Co. Ltd., Shanghai, China).

The raw fastq was quality-filtered with FLASH following the protocol previously reported by
Pan et al. (2017). With a 97% sequence similarity cut-off, the operational taxonomic units
(OTUs) were clustered through UPARSE. The taxonomy was calculated with the ribosomal
database project (RDP) classifier against the SILVA (SSU123) 16S rRNA database with a
confidence threshold of 70%. The principal coordinates analysis (PCoA) was analysed with the
method of unweighted UniFrac distance to compare the interrelationships of bacterial

communities between diets using the R software (3.4.4). The community richness and diversity
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were analysed by the alpha diversity indexes including the OTU, Chao 1, ACE, Shannon and
Simpson (Hua et al., 2021).

Inferred metagenomics analysis

The metagenome functions of ruminal bacteria were predicted using the analysis of
Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt)
(Langille et al., 2013). Firstly, the closed OTU table was normalized by the 16S rRNA copy
number whereafter the results were exported into the Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways. The PCoA was conducted to calculate the similarities of the
predicted functions among groups by the R software (3.4.4). The top ten abundant functions
were further analysed to determine significant differences among diets using Welch's t-test in

R software (3.4.4).
Metabolomics processing

The method was modified from the procedure described by Wang et al. (2021). The rumen fluid
samples were firstly thawed under room temperature whereafter 200 pl supernatant of each
sample was collected into a 1.5 ml centrifuge tube and mixed with 800 pl extracting solution
(methanol:acetonitrile = 1:1 (v/v)). Each sample was then vortexed for 30 s and extracted
ultrasonically (40 kHz) at 5 °C for 30 min before being treated under -20 °C for 30 min. All
samples were centrifuged (13,000 x g, 4 °C, 15 min) and the supernatant transferred to a new
tube, mixed with 100 pl acetonitrile solution (acetonitrile:water = 1:1), vortexed for 30 s,
extracted ultrasonically (40 kHz) at 5 °C for 5 min, centrifuged (13,000 x g, 4 °C, 10 min),
where after 200 pl of the supernatant was carefully transferred to sample vials for LC-MS/MS
analysis. At the same time, 20 pl of supernatant was collected from each sample and mixed as

the quality control sample (QC) in order to obtain information regarding system repeatability.

Chromatographic separation of the metabolites was performed on the ultra-performance liquid
chromatography (UPLC) coupled with a triple time-of-flight (TOF) system (UPLC-Triple TOF,
AB Sciex, USA). The system was equipped with the ACQUITY UPLC HSS T3 column (100
mm x 2.1 mmi.d., 1.8 pm; Waters, Milford, USA). Mobile phase A consisted of 5% acetonitrile
water and 0.1% formic acid, the mobile phase B contained 95% acetonitrile-isopropanol (1:1,
v/v) and 0.1% formic acid. The injection volume was 10 pl, the flow rate was 0.4 ml/min, and
the column temperature was 40 °C. The elution gradient of the mobile phases is shown in the

supplementary material. After being treated with an electrospray ionization (ESI) source, the
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signals of mass spectra were scanned in both positive mode and negative mode. The optimal

conditions for mass spectra are shown in the supplementary material.
Metabolomics data analysis

After UPLC-TOF/MS analyses, the raw data were imported into Progenesis QI 2.3 (Waters
Corporation, Milford, USA) for a series of pre-processing, including filtration of the baseline,
identification and integration of the peak, correction of the retention time and alignment of the
peak. After the pre-processing, a data matrix was generated consisting of the retention time
(RT), mass-to-charge ratio (m/z) values and peak intensity. The MS and MS/MS information
was searched in the Human metabolome database (HMDB) (http://www.hmdb.ca/) and Metlin

database (https://metlin.scripps.edu/). Results were shown in the form of a data matrix.

After being pre-processed, the data matrix was analysed on the Majorbio Cloud Platform
(https://cloud.majorbio.com). Using the R package of ROPLS (versionl.6.2), a principal
component analysis (PCA) was applied to obtain an overview of the metabolic data, general
clustering, trends, or outliers whereafter orthogonal partial least squares discriminate analysis
(OPLS-DA) was performed to observe the global difference of the metabolites between
comparable groups. The variable importance in the projection (VIP) was calculated in the
OPLS-DA model, and the P-value was estimated with paired Student's t-test. Statistically
significant metabolites among groups were selected with VIP > 1 and P < 0.05. Differential
metabolites between every two groups were summarized into different metabolic groups and
mapped into their biochemical pathways through the KEGG database. The metabolic pathway
enrichment analysis of the metabolic groups was conducted with the Fisher's exact test using

the Python package of Scipy. stats (versionl1.0.0, SciPy.org).
Correlation between bacterial community and rumen metabolites

Correlation between the affected bacterial genera with a relative abundance > 0.5% and the
rumen fermentation parameters, as well as the correlation between these affected bacterial
genera and the differential metabolites (VIP > 1.5, fold change > 2 or < 0.5, P < 0.05), was
separately assessed by Pearson’s correlation analysis in R (version 3.4.4). These correlations

were visualized using the R package of Pheatmap.
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Curve fitting and calculations

Data of the cumulative gas production curve was in accordance with the monophasic model
using a non-linear least squares regression procedure NLIN in SAS 9.3 (SAS Institute Inc.,

Cary, NC) (Pellikaan et al., 2011b):
GP=A/(1+(C/tPB),

in which GP is the total gas produced (ml/g OM), A is the asymptotic gas production (ml/g
OM), B equals the switching characteristic of the curve and C is the time at which half of the
asymptote has been reached and t is the time (h). The maximum rate of gas production (Rmax,
ml/g OM/h) and the time when Rmax appears (TRmax, h) were separately calculated using the
equations below (Bauer et al., 2001):

Rmax= (A x CB x B X TRmaxB V) / (1 + (CB x TRmax®))%,
TRmax=C x ((B-1)/ (B + 1))1/B).
Statistical analysis

All fermentation end-products and gas kinetics data were analysed using PROC MIXED of
SAS 9.3 (SAS Institute Inc., Cary, NC). The statistical model was

Yij=pn + Di + Bj+ ejj,

where Yij is the dependent variable, p is the overall mean, Diis the fixed effect of diet (i = 1-3),
Bj is the random effect of run (j = 1-3), ejj is the random residual error. The Student-Newman-
Keuls (SNK) multiple comparison procedure in the LSMEANS statement was used to test
differences among treatments. Significance was considered at P < 0.05, and a trend was

declared at 0.05 < P <0.10.
Data availability

All microbiota data were submitted to the NCBI (National Centre of Biotechnology Information,
Bethesda, Maryland, USA) Sequence Read Archive (SRA) database (accession number,
SUB8089454).
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Results

Effect of treatments on gas production

The cumulative gas productions at 6, 12, 24 and 48 h of in vitro incubation showed the same
direction of effects (Table 3.2), where the diet S had the highest gas production compared to
the other two diets, while the diet L which composed of sugar beet pulp and alfalfa silage gave
the lowest gas production (P < 0.001). The CHa production in diet S was higher than that in diet
L (P =0.043), but both diets did not differ from the glucogenic diet composed of ground corn
and corn silage (C). The in vitro dry matter digestibility (DMD) of diet C and S was greater (P
< 0.001) than that of diet L.

The cumulative gas production curve derived from the monophasic model is shown in
Supplementary Figure S3.1. As for the curve fit parameter estimates (Table 3.2), the S diet
had the highest asymptotic gas production (A) compared to the other diets (P < 0.001), the
switching characteristic (B) of diet L was lower, while diet S had lower halftime (C), compared
to the other two diets (P < 0.001). The S diet had the highest maximum gas production rate
(Rmax) followed by diet L and C diet (P < 0.001).

Effect of treatments on fermentation end-products

The concentration of fermentation end-products and pH at 48 h are shown in Table 3.3.
Compared with the L diet, both C and S diets had greater DMD (P < 0.001) and higher lactic
acid concentration (P = 0.011) but lower pH value (P < 0.001). The L diet had a significantly
lower NH3-N concentration (P = 0.001) and the lowest lactic acid level (P =0.011). Both C and
S diets had greater propionate (P = 0.004) and butyrate (P = 0.015) concentrations and lower
acetate to propionate ratio (P < 0.001) compared to the L diet.
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Table 3.2. Comparison of cumulative gas production at 6, 12, 24 and 48 h, curve fit parameters, head
space methane concentration and dry matter digestibility at 48 h among two glucogenic (C, S) and a

lipogenic (L) diet under in vitro fermentation with rumen fluid of dairy cows

Experimental diet

Item SEM P-value
C L S
Gas production (ml/g OM)
6h 94.37° 73.06° 106.08* 3.783 <0.001
12h 118.14° 100.08° 132.452 3.671 <0.001
24 h 125.67° 108.68¢ 139.29 3.561 <0.001
48 h 128.24° 110.95¢ 141.40* 3.464 <0.001

Curve fit parameters

A (ml/g OM) 139.77° 124.60°¢ 155.84* 3.438 <0.001
B 1.41° 1.18¢ 1.36° 0.040 0.001
C(h) 3.91° 4.22* 3.57¢ 0.129 <0.001
Rmax (ml/h/g OM) 23.48° 24.49° 27.83* 0.936 <0.001
TRmax (h) 1.03% 0.51¢ 0.88° 0.100 <0.001
Methane (%, 48h) 11.64% 9.23% 13.45° 0.844 0.043
DMD (%, 48h) 87.72% 75.82° 87.64% 0.979 <0.001

A, asymptotic gas production; B, switching characteristic of the curve; C, time at which half of the asymptote
has been reached; Rmax, maximum rate of gas production; TRmax, time at which Rmax occurs. DMD, dry
matter digestibility. Diets: C, corn and corn silage diet; L, sugar beet pulp and alfalfa silage diet; S, steam-flaked
corn and corn silage diet. OM, organic matter. SEM, standard error of the mean.

&5¢ means within a row with different superscripts differ significantly (P < 0.05).
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Table 3.3. Effect of two glucogenic (C, S) and a lipogenic (L) diet on the ruminal pH and end-products

after 48 h in vitro fermentation with rumen fluid

Experimental diet

Item SEM P-value
C L S

pH 6.61° 6.74 6.62° 0.011 <0.001

NH;-N (mg/dl) 70.142 52.98° 65.70° 1.817 0.001

Volatile fatty acids (mmol/l)
Acetate 68.90 71.87 71.29 1.129 0.650
Propionate 27.58 24.42° 29.34° 0.582 0.004
Acetate:Propionate 2.50° 2.942 2430 0.037 <0.001
Butyrate 11.86 10.42° 12.312 0.258 0.015
Valerate 0.68 0.60 0.71 0.025 0.356
Isobutyrate 5.66 5.31 5.81 0.111 0.306
Isovalerate 7.34 6.66 7.39 0.165 0.208
Total VFA 124.5 122.2 129.3 2.10 0.492

Lactic acid (mmol/l) 0.51* 0.40° 0.50* 0.016 0.011

Diets: C, corn and corn silage diet; L, sugar beet pulp and alfalfa silage diet; S, steam-flaked corn and corn
silage diet. SEM, standard error of the mean. Total VFA, total volatile fatty acid (acetate + propionate + butyrate
+ valerate + isobutyrate + isovalerate).

&> means within a row with different superscripts differ significantly (P < 0.05).

Effect of treatments on ruminal bacteria and archaea

The alpha diversity measurements as influenced by the three diets are shown in Table 3.4. A
total of 1,070,928 quality sequence reads across all samples were acquired with an average read
length of 421 bp. The total number of reads from each sample varied from 28,949 to 70,861,
with an average reads number of 38,919. The entire sequences were assigned to 2,042
operational taxonomic units (OTUs) using a cut-off of 97% sequence similarity. The richness
and diversity estimators (Table 3.4) showed the total number of observed OTUs in the L diet
was higher than in the other diets (P = 0.031). No differences in other diversity estimators (Chao
1, ACE, Shannon and Simpson indices) were observed among the three groups. The alpha
diversity estimates of archaea (Table 3.4) showed that the total number of observed OTUs from
the C diet was lower compared to the S and L diets (P = 0.028). Both the C and S diets had a
significantly lower Shannon diversity index and a higher Simpson diversity index for archaca

in comparison with the L diet (P = 0.024).
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Table 3.4. Effect of two glucogenic (C, S) and a lipogenic (L) diet on the alpha diversity indices of ruminal

bacteria and archaea communities after 48 h in vitro fermentation with rumen fluid of dairy cows

Experimental diet

Item SEM P-value
C L S

Bacteria
OTU 1403° 14932 1408° 9.377 0.031
Chao 1 1652 1717 1655 6.734 0.241
ACE 1652 1717 1655 6.734 0.136
Shannon 5.58 5.78 5.56 0.026 0.339
Simpson 0.021 0.012 0.025 0.001 0.295

Archaea
OTU 152¢ 1822 173% 4.114 0.028
Chao 1 306 352 364 8.095 0.056
ACE 518 533 590 10.201 0.427
Shannon 1.10° 1.57* L.17° 0.068 0.018
Simpson 0.584* 0.357° 0.539* 0.032 0.024

Diets: C, corn and corn silage diet; L, sugar beet pulp and alfalfa silage diet; S, steam-flaked corn and corn
silage diet. ACE, abundance-based coverage estimator. OTU, operational taxonomic units. SEM, standard error
of the mean.

b.¢ means within a row with different superscripts differ significantly (P < 0.05).

To visualise the impact of the diets on overall rumen bacteria and archaea communities, a PCoA
was performed (Figures 3.1a and 3.1b). The rumen bacterial community showed a clear
separation between the S and L diet along PC1, explaining > 39% of the total variation, and the
L diet was separated from the C diet along PC2, explaining > 20% of the total variation (Figure
3.1a). The C and S diets had a minimal separation. The archaea composition of the L diet was
significantly different from the C and S diets, with approximately 76% of the variance explained

along PC1 (Figure 3.1b).
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Figure 3.1. Principal coordinate analysis (PCoA) of the ruminal bacterial a) and archaea b) communities
on OTU level among two glucogenic (C, S) and a lipogenic (L) diet after 48 h in vitro fermentation with
rumen fluid of dairy cows. PCoA plots were constructed using the Bray-Curtis method. Diets: C, corn and

corn silage diet; L, sugar beet pulp and alfalfa silage diet; S, steam-flaked corn and corn silage diet.

A total of 21 bacterial phyla were identified among all dietary treatments (Supplementary
Table S3.1), with Bacteroidetes, Firmicutes and Proteobacteria being the top three
predominant phyla, representing 45.0-49.4, 36.1-41.6 and 3.9-6.5% of all sequences,
respectively. The L diet showed a higher relative abundance of Tenericutes than the other two

diets (P = 0.042). The other predominant phyla were not affected by the treatments.

At the genus level, a total of 176 bacterial genera were identified which together accounted for
96% of all sequences. 89 of the identified genera which had a relative abundance of > 0.1% in
at least one sample were further analysed. Among all genera, 26 genera were affected by diet
(Supplementary Table S3.2), with the top 20 of these genera listed in Table 3.5. 12 of these

affected genera had higher relative abundances in the L diet compared to the other two diets,

including SP3-e08 (P = 0.011), Christensenellaceae R-7 group (P = 0.029),
Ruminococcaceae UCG-014 (P = 0.026), Family XIII-AD3011 group (P = 0.004),
unclassified o Clostridiales (P =  0.010), Selenomonas 1 (P =  0.005),

Lachnospiraceae ND3007 group (P = 0.025), [Eubacterium] coprostanoligenes_group (P <
0.001), unclassified f Lachnospiraceae (P = 0.014), unclassified f Ruminococcaceae (P =
0.001), Ruminococcaceae UCG 013 (P = 0.006), Ruminococcus 1 (P = 0.022),
Butyrivibrio 2 (P = 0.037), [Eubacterium] oxidoreducens group (P = 0.044) and
Family XIII UCG-002 (P = 0.026). However, the relative abundances of Ruminococcus 2 (P
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=0.018), Ruminobacter (P <0.001) and Succinivibrionaceae_UCG-002 (P =0.004) were lower
in the L diet. The S diet had a greater relative abundance of Selenomonas 1 (P = 0.005), while
the relative abundances of Family XIII UCG-002 (P = 0.026) and Family XIII
AD3011 group (P = 0.004) were lower compared to the other two diets. Compared with the S
diet, the C diet had a higher relative abundance of the Family XIII AD3011 group (P =0.004),
Family XIII UCG-002 (P = 0.026) and Succinivibrionaceae_ UCG-002 (P = 0.004).

In terms of the archaea community, the Euryarchaeota was the most predominant phylum. At
the genus level, five archaeal genera were identified from all samples (Supplementary Table
S3.3), and the affected ones by treatments are shown in Table 3.5. Compared to the L diet, both
C and S diets had a significantly higher relative abundance of Methanobrevibacter (P = 0.014)
but a lower relative abundance of Candidatus Methanomethylophilus (P = 0.001) and tended
to have a higher relative abundance of Halostagnicola (P = 0.076).

Predicted metagenomic functions of the ruminal bacteria

The functional prediction was conducted with PICRUSt in order to further understand the
functioning of ruminal bacteria. Forty functional pathways (level 2) were predicted out of all
samples (Supplementary Table S3.4), with amino acid metabolism, carbohydrate metabolism
and membrane transport being the top three functions. The PCoA analysis showed that samples
from the L diet clustered differently from those in the C and S diets (Figure 3.2a). The
differences among groups of the top 15 most abundant functions are presented in Figure 3.2.
Compared to the C diet, the S diet had a higher (P = 0.044) relative abundance in energy
metabolism (Figure 3.2b), while the L diet had a higher (P = 0.045) relative abundance of
membrane transport functions but lower relative abundances in amino acid metabolism (P =
0.027), replication and repair (P = 0.01), translation (P = 0.015), metabolisms of cofactors and
vitamins (P = 0.025), nucleotide metabolism (P = 0.034) and cellular processes and signalling
(P =0.003) (Figure 3.2¢). Compared to diet L, the S diet was higher in the relative abundances
in amino acid metabolism (P = 0.022), translation (P = 0.018), replication and repair (P = 0.01)
and cellular processes and signalling (P = 0.003) (Figure 3.2d).
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Rumen metabolomics profiling

The total ion chromatogram of the QC samples in the positive and negative ion modes showed
the reliable repeatability and precision of the data obtained in this analysis (Supplementary
Figure S3.2). Metabolomic data were firstly examined by PCA in both positive and negative
ion mode to obtain an overview of the differences among groups (Figure 3.3a and b). The
results showed that samples of diet L could be separated from those of the other diets. The
OPLS-DA score plots were conducted to verify the differentiated metabolites between every
two groups showing a clear separation and discrimination between groups under both positive
(Supplementary Figure S3.3a, ¢ and e) and negative ion modes (Supplementary Figure
S3.4a, ¢ and e). Next, the response permutation test was to assess the OPLS-DA model in
distinguishing the metabolite data between two groups, in which the cumulative values of R°Y
in the positive (0.9880, 0.8027 and 0.8598 for C vs S, C vs L and L vs S, respectively;
Supplementary Figure S3.3b, d, and f) and negative (0.9856, 0.8697 and 0.8361 for C vs S,
Cvs Land L vs S, respectively; Supplementary Figure S3.4b, d, and f) ion models were all
above 0.80 indicating the stability and reliability of the model.

A total of 801 metabolites (460 in positive ion mode and 341 in negative ion mode) were
identified in the fermentation fluid from the three groups, containing 50.3% of the lipids and
lipid-like molecules, 13.9% of the organoheterocyclic compounds, 10.9% of the organic acids
and derivatives, 9.7% of organic oxygen compounds, 6.4% of both the benzenoids and the
phenylpropanoids and polyketides in the superclass level of the human metabolome database

(HMDB) classification (Supplementary Figure S3.2a).

Supplementary Table S3.5-S3.7 show that based on VIP > 1 and P < 0.05, a total of 272
significantly affected metabolites (168 positively and 104 negatively ionized metabolites) were
obtained from the comparison of L vs. C (Supplementary Table S3.5); 260 (157 positively
and 103 negatively ionized metabolites) from L vs. S (Supplementary Table S3.6); 89 (63
positively and 26 negatively ionized metabolites) from C vs. S (Supplementary Table S3.7).
Most of these significantly affected metabolites belonged to the fatty acids and conjugates, the
amino acids, peptides and analogues, the triterpenoids and the carbohydrates and carbohydrate
conjugates in the subclass level. At the superclass level, compared to diets C and S, the diet L
respectively up-regulated 68 out of 114 and 80 out of 118 metabolites in the lipids and lipid-
like molecules; but separately down-regulated 18 out of 24 and 17 out of 23 metabolites in the

organic acids and derivatives; separately down-regulated 11 out of 19 and 12 out of 20
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metabolites in the organic oxygen compounds; separately down-regulated 14 out of 27 and 11
out of 22 metabolites in the organoheterocyclic compounds. At the subclass level, as for the
metabolites belonging to fatty acids and conjugates, 12 out of 20 and 15 out of 20 were
separately up-regulated in diet L in comparison to diets C and S; 16 out of 19 and 18 out of 18
metabolites belonging to triterpenoids were individually up-regulated in diet L than diets C and

S; whilel5 out of 20 metabolites belonging to the amino acids, peptides and analogues were
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Figure 3.3. Principal component analysis (PCA) of metabolites following positive (a) and negative (b)

mode ionization based on metabolomics analysis in the ruminal fluid samples of dairy cows after 48 h in
vitro fermentation with two glucogenic and a lipogenic diet. Diets: C, corn and corn silage diet; L, sugar beet

pulp and alfalfa silage diet; S, steam-flaked corn and corn silage diet. QC, quality control samples.

down-regulated by the diet L compared to C and S. For the affected metabolites belonging to
carbohydrates and carbohydrate conjugates, 10 out of 14 were down-regulated by diet L
compared to C and S. Compared to diet S, the diet C significantly up-regulated 5 out of 6
metabolites belonging to the fatty acids and conjugates, 4 out of 4 metabolites belonging to the

triterpenoids and 11 out of 12 metabolites belonging to the amino acids, peptides and analogues.

Figure 3.4 shows the metabolic KEGG pathway enrichment analysis of all different metabolites
among all diets. The top three enriched pathways related to tryptophan metabolism, the cutin,

suberin and wax biosynthesis and the biosynthesis of phenylpropanoids.
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Figure 3.4. Metabolic pathway enrichment analysis of significant differential metabolites in the rumen fluid
of dairy cows after 48 h in vitro fermentation with two glucogenic and a lipogenic diet. The colour is to
distinguish the enrichment significance (P-value), the darker the colour, the more significantly the metabolic
pathway is enriched. The y axis indicates the name of the KEGG metabolic pathway (top 10). The x-axis indicates

the P-value. A larger size dot indicates a higher pathway enrichment.

Correlation between bacteria and the fermentation parameters

The Pearson correlation analysis was conducted to assess the correlation between the different
bacteria and the rumen fermentation parameters. As shown in Figure 3.5, the DMD was
negatively correlated with the Christensenellaceae_R-7 group,
[Eubacterium] coprostanoligenes_group, Ruminococcaceae UCG-014, Family XIII-
AD3011 group and Lachnospiraceae ND3007 group but positively correlated with the
Selenomonas_1, Ruminobacter, Succinivibrionaceae_ UCG-002 and Ruminococcus 2. The
NH3-N concentration was positively correlated with the Succinivibrionaceae UCG-002 and
Ruminococcus 2. Moreover, the acetate concentration was negatively correlated with the
Succinivibrionaceae_UCG-002 and Ruminobacter, while the propionate concentration was

positively correlated with the Selenomonas_1.
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Candidatus_Saccharimonas l
Christensenellaceas_R-7_group
Ruminococcaceae_UCG-014
Lachnospiraceae_MD3007_group
Family_xI1_AD3011_group
[Eubacterium]_coprostanoligenes_group

Selenomonas_1

Succinivibrionaceae_UCG-002

Ruminobacter

Ruminococcus_2

Figure 3.5. Correlation analysis between differential bacteria genus and differential fermentation
parameters in the rumen fluid of dairy cows after 48 h in vitro fermentation with two glucogenic and a
lipogenic diet. Each row represents a bacteria genus, only the genera with a relative abundance > 0.5% are
selected; each column represents a fermentation parameter. The colour blue means negative correlation, and the

colour red means positive correlation. * 0.01< P <0.05, ** 0.001< P <0.01, *** P <0.001.

Correlation between affected bacteria and the affected metabolites

As is shown in Figure 3.6, different abundant bacterial genera were closely correlated with the
different metabolites in the fermentation fluid. Specifically, the Family XIII-AD3011 group,
[Eubacterium] coprostanoligenes_group, Christensenellaceae R-7 group and
Ruminococcaceae UCG-010 were positively correlated to the dihydrocumambrin A,
norpropoxyphene, D-urobilin, stearoyllactic acid, 15(R)-15-methyl prostaglandin A2,
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ganoderic acid A, calenduloside E and 2-octenedioic acid, but negatively correlated with the
noreleagnine, captopril-cysteine disulfide, 2-hepteneoylglycine, 3-propyl-1,2-
cyclopentanedione, phenyl vinyl sulfide, N6-acetyl-5S-hydroxy-L-lysine and indoleacetic acid.
Similarly, the Lachnospiraceae ND3007 group was positively correlated to the
dihydrocumambrin A, norpropoxyphene, stearoyllactic acid, 15(R)-15-methyl prostaglandin
A2, ganoderic acid A, calenduloside E and 2-octenedioic acid, but negatively correlated with
the noreleagnine, captopril-cysteine disulfide, 2-hepteneoylglycine, 3-propyl-1,2-
cyclopentanedione, phenyl vinyl sulfide and N6-acetyl-5S-hydroxy-L-lysine. In addition,
Ruminobacter was negatively correlated with stearoyllactic acid, 15(R)-15-methyl
prostaglandin A2, ganoderic acid A, calenduloside E and 2-octenedioic acid, but positively
correlated with noreleagnine, captopril-cysteine disulfide, 2-hepteneoylglycine and phenyl
vinyl sulfide. The Succinivibrionaceae UCG-002 was negatively correlated with the
stearoyllactic acid and 15(R)-15-methyl prostaglandin A2, but positively correlated with 2-
hepteneoylglycine. Ruminococcus 2 was negatively correlated with the 15(R)-15-methyl
prostaglandin A2, ganoderic acid A, calenduloside E and 2-octenedioic acid, but positively
correlated with the captopril-cysteine disulfide and 2-hepteneoylglycine. The Selenomonas 1
was negatively correlated with the dihydrocumambrin A, D-urobilin, ganoderic acid A and 2-
octenedioic acid, but positively correlated with the N6-acetyl-5S-hydroxy-L-lysine and
indoleacetic acid. Moreover, Candidatus _saccharimonas was positively correlated with the
stearoyllactic acid but negatively correlated with the 2-hepteneoylglycine and phenyl vinyl
sulfide.
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Figure 3.6. Correlation analysis of differential bacteria genus and differential metabolites in the rumen
fluid of dairy cows after 48 h in vitro fermentation with two glucogenic and a lipogenic diet. Each row
represents a bacteria genus, only the genera with relative abundance > 0.5% are selected; each column represents
a metabolite, only the affected metabolites with VIP > 1.5, FC < 0.5 and >2 are considered. The color blue
means negative correlation, the color red means positive correlation. * 0.01< P <0.05, ** 0.001< P <0.01, ***

P <0.001.
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Discussion

The present research reports the influence of two glucogenic diets and a lipogenic diet on
ruminal fermentation end-products using an in vitro incubation system and provides the
unknown information on metabolites formed and the bacterial communities in response to the

glucogenic and lipogenic diets.
Influence on gas production

In the present study, the gas production of the ruminant feeds was highly correlated with their
digestibility and available energetic contents, agreeing with the early work of Menke and
Steingass (Menke and Steingass, 1988). The steam-flaked corn, compared to unprocessed corn,
increased the gas production of the total mixed rations (TMR) incubated with buffered rumen
liquor in vitro and increased the gas production rate, which agrees with the data of Qiao et al.
(2015). The processing conditions (increased moisture content, pressure and temperature)
involved in producing steam-flaking corn have been shown to improve the enzymatic
hydrolysis of starch in vitro, thereby improving the digestibility of corn (de Peters et al., 2003).
Starch digestibility was shown to be positively related to the percentage of starch that was
gelatinized in vitro (Huntington, 1997). The gelatinization of the starch in the steam-flaking

corn was highly likely the reason for their higher gas production.

Methanogenesis is an ancient metabolism of the methanogens belonging to the phylum
Euryarcheota, domain archaea (Hook et al., 2010). All methanogens belong to seven
euryarchaeal orders, including Methanococcales, Methanopyrales, Methanobacteriales,
Methanosarcinales, Methanomicrobiales, Methanocellales and Thermoplasmatales (Hook et
al., 2010). Three classical CHs-producing pathways were reported previously, including the
hydrogenotrophic methanogenesis mainly using CO2 and H: or formate as substrate,
acetoclastic methanogenesis with acetate as substrate and methylotrophic methanogenesis with
methylated C1 compounds as substrate (Hedderich and Whitman, 2006). Methanogens are
known to grow better syntrophically in vitro (Sakai et al., 2009). For ruminants,
Methanobrevibacter was recognised as the dominant genus producing CH4 (Leahy et al., 2013),
mainly through the CO2 and Hz pathway using CO: or formate as the elector acceptor and Hz
as the electron donor (Liu and Whitman, 2008). Our results are in line with the aforementioned
observations and illustrate that the relative abundance of the dominant genus
Methanobrevibacter followed the same trend as gas production and CHa proportion. The higher

gas production of the S relative to the L diet might supply more substrates (CO2 and Hz) for the
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methanogenesis of Methanobrevibacter, which may lead to higher CH4 production. The genus
of Candidatus Methanomethylophilus is also known as a CH4-producing methanogen, which
mainly depends on methanol as substrate via the methylotrophic methanogenesis pathway (Lino
et al, 2013). In the present study, the L diet increased the genus of
Candidatus _Methanomethylophilus significantly. Since this genus was newly defined, its

methanogenesis pathway and its relationship with dietary ingredients deserve further research.
Influence on feed digestion

High starch concentration would decrease rumen pH (Nocek et al., 2002). The present study
found that lactic acid concentration was negatively related to the pH value. The low pH value
of the C and S diet is likely mainly attributed to their increase in lactic acid production. In
addition, no difference between the S and C diets existed in the pH value, which is in line with

the previous study (Cooper et al., 2002).

The L diet had a lower DMD than the other two diets, which is consistent with previous studies
(Ruppert et al., 2003). The ruminal bacteria can be assigned to different functional groups, such
as cellulolytic, amylolytic and proteolytic, based on their preferential use of energy. Starch
digestion in the rumen is affected by dietary starch source, grain processing and adhering
capacity of ruminal microbiota to the diet particles (Huntington, 1997). The main amylolytic
bacteria included Streptococcus bovis, Bacteroides amylophilus, Prevotella spp., Succinimonas
amylolytica, Selenomonas ruminantium and Butyrivibrio spp. (Xia et al., 2015). For the present
study, the relative abundance of amylolytic bacteria genera, including Selenomonas 1,
Ruminobacter and Succinivibrionaceae UCG-002, were higher in diet C and S compared to
diet L and also were significantly positively correlated with DMD. These increased genera may

likely have contributed to the higher DMD in diets C and S.

The fibre degradation in the rumen is mainly attributed to the ruminal cellulolytic bacteria
(Jeyanathan et al., 2014). Fibrobacter succinogenes (belong to the genus Fibrobacter),
Ruminococcus flavefaciens and Ruminococcus albus (belong to the genus Ruminococcus) were
considered the dominant cellulolytic bacterial species due to their high capacity for cellulose
digesting (Krause et al., 2003). In addition, the genera of Butyrivibrio and Eubacterium were
also reported to be cellulolytic (Thoetkiattikul et al., 2013). Moreover, some unclassified taxa,
including those assigned to Ruminococcaceae, Lachnospiraceae, Christensenellaceae,
Rikenellaceae, Prevotellaceae, Clostridium and Bacteroidales were proven to have the capacity
of adhering tightly to forages in the rumen, which indicates that these new taxa might play a
significant role in forage digestion (Liu et al., 2016). In this study, the L diet had significantly
70
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higher relative abundances of the cellulolytic bacterial genera, including Ruminococcus,
Eubacterium, Butyrivibrio 2 and Lachnospira, and the potential cellulolytic taxa, including
unclassified Lachnospiraceae, unclassified Ruminococcaceae and
unclassified o_Clostridiales, but still resulting in a lower DMD, which illustrates that excess

NDF and low starch in the L diet led to a lower degradation rate of the NDF.
Influence on NH3-N

The NH3-N concentration in the in vitro rumen fluid cultures is determined by the balance of
the formation and utilization rate of NH3-N by microorganisms (Shen et al., 2017). Due to the
same level of crude protein among all treatments, the supplemented amount of nitrogen
available for the microbiota can be considered equal. The efficiency of ruminal NH3-N
utilization is determined by the capacities of microbes to metabolise NH3-N. Cellulolytic
bacteria which degrade structural carbohydrates (e.g., NDF) grow slowly and mainly use NH3-
N as an N source, whereas amylolytic bacteria which degrade non-structural carbohydrates (e.g.,
starch) grow rapidly with higher requirements and use ammonia, peptides and amino acid as N
sources (Fox et al., 1992). In our study, the NH3-N concentration in diet L was significantly
lower than in the other two diets. The L diet showed higher relative abundances of cellulolytic
bacteria, among which the genera Succinivibrionaceae_ UCG-002 and Ruminococcus 2 was
proved to positively correlate with the NH3-N concentration. These bacteria might use NH3-N

as the main N source leading to a lower NH3-N concentration.
Influence on VFA

Ruminal fermentation of carbohydrates leads to the formation of VFA. The primary ruminal
VFAs are acetate, propionate and butyrate, the molar proportions of which are mainly
determined by the diet. Propionate and acetate are the main precursors of milk glucose and fatty
acids, respectively. Cellulose ferments to acetate to a greater extent than propionate, whereas
readily degradable starch is fermented less to acetate and more to propionate. Consistent with
this, our data showed that both the C and S diets had a higher concentration of propionate and
a lower acetate to propionate ratio compared to the L diet. The ruminal propionate is formed
via two main pathways, the succinate pathway and the acrylate pathway (Jeyanathan et al.,
2014). The former is known as the major pathway for propionate-production in the rumen and
involves a large number of bacterial species, such as bacteria related to succinate production
and utilization (Fibrobacter succinogenes and Selenomonas ruminantium), and lactate
production and utilization (e.g., Streptococcus Bovis and Selenomonas ruminantium)
(Jeyanathan et al., 2014). The genus Selenomonas 1 had a positive correlation with the
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propionate concentration, and the relative abundance of Selenomonas I and
Succinivibrionaceae_UCG-002 in the L diet was lower than that in the other diets. The
Selenomonas_1 and Succinivibrionaceae_UCG-002 may contribute to the higher propionate
production in diets C and S by enhancing the succinate pathway according to current knowledge.

These roles need to be confirmed by further research.
Influence on bacterial function

To further study the differences in the functional roles of rumen bacteria among dietary
treatments, PICRUSt was used to estimate the potential functions of the bacteria. Compared
with the C and S diets, the predicted pathway of amino acid metabolism was down-regulated in
the L diet (Figures 3.2¢ and 3.2d). The increased amino acid metabolism in diets S and C may
lead to higher amino acid production with excessive amounts of amino acids contributing to the
higher NH3-N concentration via deamination (Petri et al., 2019). Also, the Ruminobacter
amylophilus is known for its proteolytic activity (Whitman et al., 2015), which could explain
that the diets C and S with a higher number of the genus Ruminobacter had enhanced function
of amino acids metabolism. Moreover, the L diet reduced the relative abundance of the
translation, replication and repair, as well as cellular processes and signalling, which is probably
attributed to the rapid turnover rate of bacteria (Zhang et al., 2017a). As predicted by PICRUSt,
the bacteria in the C diet had an enriched function for energy metabolism compared to the S
diet, suggesting that the bacterial capacity of energy intake may be improved by the ground

corn compared to the steam-flaked corn.
Influence on rumen metabolites

The metabolomics analysis provides direct evidence for changes in microbial activities among
diets. The metabolomics data showed that the dietary treatments altered most metabolites
related to lipid and protein digestion. The enriched metabolic pathways that were predicted by
PICRUSL, such as ‘amino acid metabolism and cellular processes and signalling’, were similar
to the enriched metabolic pathways through the metabolome functions analysis, such as the

‘tryptophan metabolism and sphingolipid signalling pathways.

Most metabolites in the lipids and lipid-like molecules were higher in the diet L compared to
the other two diets, indicating that the L diet could promote lipid utilisation to some degree.
Most metabolites belonging to fatty acids and conjugates were also higher in the diet L.
Previous in vitro bacterial culturing experiments have shown that fatty acids had a negative

effect on bacterial growth (Henderson, 1973). The bacterial communities were modified
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differently by the fatty acid supplements, where cellulolytic strains of bacteria showed to be
more sensitive to fatty acids than the amylolytic ones (Doreau and Ferlay, 1995). The present
contribution also observed a strong correlation between the cellulolytic bacteria and metabolites
associated with fatty acid. The initial step of lipid metabolism in the rumen is the hydrolysis of
the ester linkages, which is predominantly controlled by rumen bacteria (Bauman et al., 2003).
The strains of Butyrivibrio fibrisolvens have been reported to play an important role in the
degradation of polyunsaturated fatty acids in the rumen (Latham et al., 1972), including
hydrolysing phospholipids and glycolipids (Harfoot and Hazlewod, 1997). Besides, some
strains of Borrelia (Yokoyama and Davis, 1971), a strain in each of Ruminocccus and
Eubacterium (White and Kemp, 1971) and two strains of cellulolytic Clostridium spp. (Viviani
et al., 1968) have also been reported to participate in biohydrogenation. The higher abundance
of genera Butyrivibrio 2, Ruminococcus 1, Ruminococcaceae UCG-013,
Ruminococcaceae UCG-014, Unclassified o_Clostridiales in diet L is in line with the higher
level of the metabolites related to fatty acids and conjugates. Correlation analysis proved that
the different fatty acid metabolites had significant relations with several cellulolytic bacteria,
including the Ruminococcaceae UCG-014 and [Eubacterium] coprostanoligenes group.

These cellulolytic bacteria might contribute to the higher fatty acid production in the L diet.

Most metabolites associated with 'amino acids, peptides and analogues’ were decreased in the
L compared to the C and S diets, which was also in line with the PICRUSt result. The ruminal
amino acids mainly arise from the dietary protein degradation and protein produced by
microbiota. A large number of microbial species contribute to the ruminal proteolysis, with
starch-degrading bacteria contributing more to the protein degradation in the rumen than the
cellulolytic bacteria (Zhang et al., 2017b). This could explain the higher level of amino acids,
peptides and analogues in the C and S diets. Besides, in the de novo synthesis of ruminal amino
acids, acetate and propionate can be used as carbon sources and the compounds like ammonia
as the nitrogen sources by the microbes (Zhang et al., 2017b). The high concentrations of
propionate, butyrate and NH3-N in diet C and S also agrees with their higher levels of amino

acids.

In conclusion, the glucogenic diet had greater effects than the lipogenic diet in terms of
improving the dry matter digestibility, increasing propionate concentration and promoting
amino acid metabolism. The improvement in propionate production may be attributed to the
increased number of bacterial spp. functioning in the succinate pathway. Compared to ground

corn, steam-flaked corn didn’t show more differences in fermentation end-products except for
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increasing gas production and down-regulating the production of some fatty acids and amino
acids. Several amylolytic and cellulolytic bacteria were sensitive to the dietary changes, while
most highly abundant bacteria were stable or minorly affected. The affected bacteria showed to
have high associations with certain metabolites. This study has offered a deeper understanding
of ruminal microbial functions which could assist the improvement of rumen functions and
thereby in the ruminant production. Moreover, these findings provide essential references for

future in vivo studies.
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Supplementary material

DNA extraction and amplification

For the bacteria, the primers amplifying the V3-V4 hypervariable regions of the bacterial 16S
rRNA  gene: 338F (5’-ACTCCTACGGGAGGCAGCAG-3’) and 806R (5™
GGACTACHVGGGTWTCTAAT-3"). PCR reactions were performed in a triplicate 20 pl
mixture containing 4 pl of 5 x FastPfu Buffer, 2 ul of 2.5 mM dNTPs, 0.8 pl of each primer (5
uM), 0.4 ul of FastPfu Polymerase, 0.2 pl of BSA, and 10 ng of template DNA. The PCR
program contains 3 min of denaturation at 95 °C; 27 cycles of 30 s at 95 °C, 30 s for annealing

at 55 °C, 45 s for elongation at 72 °C; a final extension at 72 °C for 10 min.

For the archaea, in the first PCR circle, the primers amplifying the V3-V4 hypervariable
regions of the archaeal 16S rRNA gene were 340F (CCCTAYGGGGYGCASCAG) and 1000R
(GGCCATGCACYWCYTCTC). PCR reactions were performed in a triplicate 30 pl mixture
containing 15 pl of 2 x Taq master Mix (P111-03, Vazyme), 1 pl of bar-PCR primer F (10 uM),
1 ul of primer R (10 uM), 10-20 ng of template DNA. The PCR program contains 3 min of
denaturation at 94 °C; 5 cycles of 30 s at 94 °C, 20 s for annealing at 45 °C, 30 s for elongation
at 65 °C; 20 cycles of 20 s at 94 °C, 20 s for annealing at 55 °C, 30 s for elongation at 72 °C; a

final extension at 72 °C for 5 min.

In the second PCR circle, the primers were 349F (5°- CCCTACACGACGCTCTTCCGATCTN
(barcode) GYGCASCAGKCGMGAAW -3%) and 806R 5-
GACTGGAGTTCCTTGGCACCCGAGAATTCCAGGACTACVSGGGTATCTAAT-3’).

PCR reactions were performed in a triplicate 30 pl mixture containing 15 pl of 2 x Taq master
Mix (P111-03, Vazyme), 1 pl of bar-PCR primer F (10 uM), 1 pl of primer R (10 uM), 10-20
ng of PCR products from the first circle. The PCR program contains 3 min of denaturation at
94 °C; 5 cycles of 30 s at 94 °C, 20 s for annealing at 45 °C, 30 s for elongation at 65 °C; 20
cycles of 20 s at 94 °C, 20 s for annealing at 55 °C, 30 s for elongation at 72 °C; a final extension
at 72 °C for 5 min.
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Table S3.1. Effect of two glucogenic (C, S) and a lipogenic (L) diet on the relative abundance (%) of

ruminal bacterial phyla after 48 h in vitro fermentation

Experimental diet

Phylum SEM P-value
C L S
Bacteroidetes 49.4 45.0 48.1 1.704 0.424
Firmicutes 36.1 41.6 39.0 2.065 0.411
Proteobacteria 6.54 5.16 3.87 0.777 0.181
Verrucomicrobia 4.08 3.25 436 0.444 0.638
Spirochaetae 1.50 1.64 2.09 0.281 0.762
Saccharibacteria 0.81 1.16 1.01 0.085 0.092
Synergistetes 0.41 0.54 0.33 0.050 0.312
Lentisphaerae 0.40 0.47 0.36 0.042 0.688
Tenericutes 0.24° 0.49* 0.25% 0.039 0.042
SR1__Absconditabacteria 0.14 0.28 0.22 0.027 0.084
Actinobacteria 0.14 0.14 0.14 0.014 0.996

Only the bacterial phyla that account for > 0.1% in at least one of the samples are listed; Diets: C, corn and corn
silage diet; L, sugar beet pulp and alfalfa silage diet; S, steam-flaked corn and corn silage diet. SEM, standard
error of the mean.

&b means within a row with different superscripts differ significantly (P < 0.05).
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Figure S3.1. Effects of two glucogenic (C, S) and a lipogenic (L) diet on the gas production curve after 48
h in vitro fermentation with rumen fluid of dairy cows. The cumulative gas production curve was fitted to
the monophasic model: GP = A / (1 + (C / t) B), where GP = total gas produced (ml/g DM); A = asymptotic gas
production (ml/g DM); B = switching characteristic of the curve; C = time at which half of the asymptote has

been reached; t =time (h). Diets: C, corn and corn silage diet; L, sugar beet pulp and alfalfa silage diet; S, steam-

flaked corn and corn silage diet.
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Figure S3.2. LC-MS/MS total ion chromatogram (TIC) of the QC samples in (A) the positive ion mode
and (B) the negative ion mode. QC, quality control samples
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Figure S3.3. Orthogonal partial least squares discriminant analysis (OPLS-DA) (a, ¢, e) and

corresponding permutation test (b, d, f) of the affected metabolites derived from the metabolomics

analysis following positive mode ionization in the rumen fluid of dairy cows after 48 h in vitro

fermentation with two glucogenic (C, S) and a lipogenic (L) diet. Diets: C, corn and corn silage diet; L, sugar

beet pulp and alfalfa silage diet; S, steam-flaked corn and corn silage diet. R%Y (cum) indicates the cumulative

interpretation power. Q? indicates the predictive power of the model.
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Figure S3.4 Orthogonal partial least squares discriminant analysis (OPLS-DA) (a, c, ) and corresponding
permutation test (b, d, f) of the affected metabolites derived from the metabolomics analysis following
negative mode ionization in the rumen fluid of dairy cows after 48 h in vitro fermentation with two
glucogenic (C, S) and a lipogenic (L) diet. Diets: C, corn and corn silage diet; L, sugar beet pulp and alfalfa

silage diet; S, steam-flaked corn and corn silage diet.
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‘Organoesulfur compounds: 1 (0.16%)

Hydrocarbon derivatives: 1 (0.16%)

Organic nitregen compounds: 2 (0.31%)

Alkaloids and derivatives: 5 (0.78%)

M ides, ides, and 7(1.09%)

Phenylpropanoids and polyketides: 41 (6.39%)
Benzenoids: 41 (6.39%)

QOrganic oxygen compounds: 62 (9.66%)

Lipids and lipic-like molecules: 323 (50.31%)

Organic acids and derivatives: 70 (10.90%)

Organoheterocyclic compounds: 89 (13.85%)

Figure S3.5. The HMDB compound classification of 801 identified metabolites (in the superclass level)
detected by metabolomics in the rumen fluid of dairy cows after 48 h in vitro fermentation with two

glucogenic and a lipogenic diet. HMDB, the human metabolome database.
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Abstract

The objective of this study was to investigate the effect of different ratios of glucogenic to
lipogenic nutrients on rumen fermentation and the corresponding ruminal bacterial
communities on an isocaloric basis. Four dietary diets including glucogenic diet (G),
lipogenic diet (L) and two mixed diets: GL1 (G:L = 2:1) and GL2 (G:L = 1:2), served as
substrates and were incubated with rumen fluid of dairy cows in vitro. The results revealed
that the gas production, dry matter digestibility and propionate proportion were significantly
increased by the G diet than others, while the diet L significantly increased the acetate
proportion. The bacterial genera of Succinivibrionaceae UCG 002, Succinivibrio,
Selenomonas_1 and Ruminobacter were significantly increased by the G diet compared to
others. The GL1, GL2 and L diets significantly increased the relative abundance of certain
cellulolytic bacteria than the diet G, including the Eubacterium and several genera in the
family Ruminococcaceae. The GL1 and GL2 diets produced a higher number of
Ruminococcaceae NK4A214 group and Ruminococcus gauvreauii_group but a lower
number of Ruminococcaceae UCG_group and Lachnospiraceae _group than diet L. The
relative abundance of bacterial functions including the cofactors and vitamins metabolism,
replication and repair, and cellular processes and signalling, were enriched by diet G than
others. When the glucogenic nutrient was above 1/3 of the dietary energy source among the
four diets, the in vitro incubation had a higher feed digestibility and lower acetate to
propionate ratio. Bacterial genera including Selenomonas, Succinivibrio, Ruminobacter,
certain genera in Ruminococcaceae, Christensenellaceae R-7 group, Eubacterium and

some unclassified taxa were more sensitive to the glucogenic to lipogenic nutrients ratio.

Keywords: glucogenic/lipogenic nutrients, ruminal bacteria, in vitro, PICRUSt, gas

production
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Introduction

Carbohydrate is the dominating nutrition source for the ruminants, providing the major
source of energy for the host animal metabolism and rumen microbial growth (Zhao et al.,
2017). It has been reported that diets with high lipogenic nutrients, such as forages, CaLCFA,
tallow or prilled fat, are expected to increase the plasma B-hydroxybutyrate and the
partitioning of metabolic energy into milk and consequently decrease the partitioning of
metabolic energy into body reserves (Knegsel et al., 2013). In contrast, glucogenic nutrients,
such as grain, non-fibre carbohydrates, concentrates, starch, glucose infusion and propylene
glycol, are expected to decrease the plasma non-esterified fatty acid level, elevate plasma
insulin (Miyoshi et al., 2001) and reduce milk fat concentration indicating that glucogenic
nutrients stimulate body fat deposition and the partitioning of metabolic energy into body
tissue (Ruppert et al., 2003). For the ruminants, glucogenic nutrients originated either from
rumen fermentable starch that promotes the production of propionate which is an
intermediary precursor for gluconeogenesis or from starch escaping from rumen degradation
which is then absorbed as glucose in the small intestine. Lipogenic nutrients stimulate the
ruminal production of acetate and butyrate (Knegsel et al., 2005). These findings indicate
that different glucogenic and lipogenic nutrients lead to different ruminal fermentation
products. Another study demonstrated that the complete mix of glucogenic and lipogenic
contents made it impossible to ascribe changes in the fermentation products to the
concentration changes of specific carbohydrate fractions (Armentano and Pereira, 1997).
Thus, the confounding effects of different glucogenic to lipogenic nutrient ratios on the

rumen fermentation products are still not clear.

The in vitro technique which is more convenient and time-saving than the in vivo is widely
used to estimate the feed digestibility using the dry matter digestibility (DMD) (Tilley and
Terry, 1963) and gas production (Menke and Steingass, 1988), respectively. Ruminal
microbiota plays a key role in the feed digestion and the production of gas, volatile fatty acid
(VFA) and ammonia-nitrogen (NH3-N) in the rumen (Patra and Yu, 2014). Ruminants hold
a large variety of microorganisms in their rumen including bacteria, protozoa, fungi and
archaea (Kim et al., 2011). Although they are the smallest in size, bacteria account for
approximately 50% of total microbial volume and are the most investigated population
(Fernando et al., 2010). In accordance with their main metabolic activity, rumen bacteria are
classified into different groups, including amylolytic (e.g., Selenomonas ruminantium,

Streptococcus bovis), fibrolytic (e.g., Fibrobacter succinogenes, Ruminococcus flavefaciens
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and Ruminococcus albus), proteolytic (e.g., Prevotella spp.), lipolytic (e.g., Anaerovibrio
lipolytica), lactate producers (e.g., S. bovis and S. ruminantium) and lactate consumers (e.g.,
Megasphaera elsdenii) (Belanche et al., 2012). In addition, it was also reported that the
bacterial functions were influenced by the type of feed, rumen environment and interaction
with other bacteria (Sawanon and Kobayashi, 2006). Some nonfibrolytic bacteria can activate
fibrolytic bacteria through an interaction termed “cross-feeding”, such as Treponema bryantii
(Kudo et al., 1987), Prevotella ruminicola (Fondevila and Dehority, 1996) and Selenomonas
ruminantium (Koike et al., 2003), which means both fibrolytic bacteria and nonfibrolytic
bacteria are important for fibre degradation in the rumen (Wolin et al., 1997). Based on these
previous studies, the fermentation end-products under different ratios of glucogenic to
lipogenic nutrients might be attributed to the changes of bacteria as well as the interaction
between bacteria. Thus, a comprehensive characterization of the bacterial community is
essential to understand the effects of glucogenic to lipogenic nutrient ratios on the rumen

fermentation end-products.

Therefore, we hypothesized that different ratios of glucogenic to lipogenic ingredients might
impact the rumen bacteria composition, thereby resulting in different fermentation products.
To test this hypothesis, the present study, by integrating [llumina sequencing of 16S rRNA
gene amplicons, investigated the changes in the rumen bacterial community and their
fermentation profiles in response to various ratios of glucogenic to lipogenic ingredients via

an in vitro model.

Materials and methods

Animal care and procedures were operated following the Chinese guidelines for animal
welfare and approved by the Animal Care and Use Committee of the Chinese Academy of
Agricultural Sciences (approval number: IAS2019-6). Six rumen-cannulated Holstein dairy
cows served as ruminal fluid donors for all three trial runs. The cows were fed a total mixed
ration containing (DM basis) 45% concentrate, 20% grass hay and 35% corn silage, three

times daily, and had free access to water.

The experimental diets were designed as follows: the glucogenic diet (G) using corn and corn

silage as main energy sources, the lipogenic diet (L) using sugar beet pulp and alfalfa silage
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Table 4.1. Composition and nutrient levels of experimental diets including glucogenic diet (G),
glucogenic:lipogenic nutrient = 2:1 (GL1), glucogenic:lipogenic nutrient = 1:2 (GL2) and lipogenic (L)
diet

Items G GL1 GL2 L

Ingredient (% of dry matter)

corn 28.0 20.0 10.0 -
sugar beet pulp - 12.6 20.8 28.0
soybean meal 18.5 16.8 14.6 12.0
oat hay 5.0 7.1 14.2 19.0
alfalfa hay 10.0 10.0 10.0 10.0
corn silage 38.0 23.5 10.0 -
alfalfa silage - 10.0 19.0 30.0
calcium hydrogen phosphate 0.5 - 14 1.0
Composition (g/kg dry matter)

CP 174.4 177.7 175.4 174.6
EE 243 22.3 20.6 20.4
starch 280.0 207.6 121.0 41.1
NDF 326.0 402.8 482.5 562.2
ADF 197.9 2439 294.1 348.9
NEL MJ/kg of dry matter 7.3 7.7 7.6 79

Nutrient composition of the experimental diets was calculated according to NRC (2001); ADF = acid
detergent fibre; CP = crude protein; EE = ether extract; NDF = neutral detergent fibre; NEL = net energy for
lactation, calculated according to NRC (2001).
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as main energy sources, mixed diet one (GL1): 2/3 of the energy source originated from corn
and corn silage and 1/3 from sugar beet pulp and alfalfa silage, mixed diet two (GL2): 1/3 of
the energy source originated from corn and corn silage and 2/3 from sugar beet pulp and
alfalfa silage. Besides, soybean meal, oat and alfalfa hay and calcium hydrogen phosphate
were used to balance the nutritional requirement. All diets were on an isocaloric basis, and

their composition and chemical analysis of the experimental diets were shown in Table 4.1.
In vitro incubation

A ground dry matter (1.0 mm) of each diet was used as the substrate in the incubation. Fresh
ruminal fluid from two cows (two different cows for each run) was collected through rumen
fistula separately one hour after morning feeding, combined in equal portions and strained
through four layers of cheesecloth. The inoculation and incubation procedures were operated
as described by Shen et al. (2017). Briefly, 0.5 g substrate was preloaded into a 150 ml serum
vial. The buffered medium was prepared anaerobically at 39 °C according to Menke and
Steingass (1988). The anaerobic buffer medium (50 ml per vial) and rumen fluid inoculum
(25 ml per vial) were added to the vials successively. All the inoculating procedures were
conducted in a water bath of 39 °C under a stream of CO2. Each serum vial was sealed with
a butyl rubber stopper and secured with an aluminium crimp seal. Three replicate vials were
prepared for each diet treatment in each run. All the incubation vials were individually
connected to the gas inlet of an automated gas production recording system (AGRS,
Supplementary Figure S4.1) and then incubated under 39 °C for 48 h, as described by
Zhang and Yang (2011). The in vitro incubation was repeated for triple runs with different

cows as ruminal fluid donors.
Sample collection and processing

After 48 h of incubation, the total gas produced by fermentation in each vial was recorded by
the AGRS. All vials were withdrawn from the incubator and transferred into an ice-water
mixture to terminate the incubation. The pH of the whole contents was measured using a
portable pH-meter (PHB-4, INESA, Shanghai, China). Then the fermented substrates were
filtered through a nylon bag (50 um of the pore size, weighed after drying at 65 °C for 48 h
before use). The bag together with filtered residual was washed under running water until the
effluent was clear and then dried at 65 °C for 48 h. Bags and contents were weighed to
estimate the DMD. 1 ml of supernatant were preserved by adding 0.2 ml of 25%
metaphosphoric acid for VFA measurement by gas chromatography (7890B, Agilent
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Technologies, USA) according to the method described by Mao et al. (Mao et al., 2008).
Another 1 ml of supernatant was used to determine the NH3-N concentration by the phenol-
hypochlorite method (Shen et al., 2017). Finally, five supernatant samples per diet of all three

runs were randomly chosen to do DNA extractions and subsequent microbial analysis.
DNA extraction

Microbial DNA was extracted from 5 ml supernatant using the QlAamp DNA Stool Mini Kit
(Qiagen, Hilden, Germany) according to the manufacturer's instructions with the addition of
a bead-beating step as described in a previous study (Pan et al., 2017). Briefly, the supernatant
sample was homogenized with 0.5 g zirconium beads (0.5 mm diameter) and 800 ml CTAB
buffer using a Mixer Mill MM 400 (Retsch, Haan, Germany) with a vibrational frequency of
1,800 rpm and grinding time of 60 s. Then the mixture was incubated at 70 °C for 20 min to
increase DNA yield. The supernatant was further processed using QIAamp kits according to
the manufacturer’s instructions. The integrity and length of the extracted DNA were assessed
by agarose gel (1%) electrophoresis on gels containing 0.5 mg/ml ethidium bromide and
quantified using a NanoDrop spectrophotometer ND-1000 (Thermo Scientific, Waltham,
MA, USA). DNA was stored at -80 °C until analysis.

Sequencing data processing and analysis

The V3-V4 hypervariable regions of the bacterial 16S rRNA gene were amplified with
primers 338F (5’-ACTCCTACGGGAGGCAGCAG-3’) and 806R (5'-
GGACTACHVGGGTWTCTAAT-3") by thermocycler PCR system (GeneAmp 9700, ABI,
USA) (Ye et al,, 2016, Pan et al., 2017), where the barcode was an eight-base sequence
unique to each sample. PCR reactions were performed in a triplicate 20 pl mixture containing
4 ul of 5 x FastPfu Buffer, 2 pl of 2.5 mmol dNTPs, 0.8 pl of each primer (5 pmol), 0.4 pl of
FastPfu Polymerase, and 10 ng of rumen microbial DNA. PCR amplification started with a
3 min of pre-denaturation at 95 °C, followed by 27 cycles of denaturation (95 °C for 30 s),
annealing (55 °C for the 30 s), and elongation (72 °C for 45 s) steps, and a final extension at
72 °C for 10 min. The PCR amplicons were extracted from 2% agarose gels and further
purified using the AxyPrep DNA Gel Extraction Kit (Axygen Biosciences, Union City, CA,
USA) and quantified using QuantiFluor™-ST (Promega, USA) according to the
manufacturer’s protocol. Purified amplicons were pooled equimolar and paired-end

sequenced (2 x 300) on an Illumina MiSeq platform (Illumina, San Diego, USA) according
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to the standard protocols by Majorbio Bio-Pharm Technology Co. Ltd. (Shanghai, China)
(Jin et al., 2017).

Raw fastq files were quality-filtered using Trimmomatic (Bolger et al., 2014) and merged
using FLASH (Magoc and Salzberg, 2011), based on the following criteria: 1) the reads were
truncated at any site receiving an average quality score of <20 over a 50 bp sliding window,
2) sequences of each sample were separated according to barcodes (exactly matching) with
primers (allowing 2 nucleotide mismatching), and reads containing ambiguous bases
removed, and 3) only sequences whose overlaps were longer than 10 bp were merged
according to their overlap with mismatch no more than 2 bp. Operational taxonomic units
(OTUs) were clustered with a cutoff of 0.03 (97% similarity) using UPARSE (Edgar 2011)
with a novel greedy algorithm that performs chimaera filtering and OTU clustering
simultaneously. The taxonomy of each 16S rRNA gene sequence was aligned with the
ribosomal database project (RDP) classifier algorithm and compared with the Silva (SSU123)
16S rRNA database (Pruesse et al., 2007) with a confidence threshold of 70% (Amato et al.,
2013). Alpha diversity was estimated with the normalized reads using the based coverage
estimator Shannon, Simpson, ACE, Chaol and Coverage indices. The principal coordinates
analysis (PCoA) was performed based on the Bray-Curtis dissimilarity (Mitter et al., 2017),
and the significant differences between samples were tested by an analysis of similarity
(ANOSIM) in QIIME with 999 permutations (R Core Team, 2013). Tabular representation
of the relative abundance of microbial diversity at phylum and genus levels were counted

depending on the taxonomic data.

In addition to bacterial community structure analysis, the method of Phylogenetic
Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) was also
used to predict the metagenomic potential functions of ruminal bacteria based on 16S rRNA
data. Firstly, the closed OTU table was performed using the sampled reads against the
Greengenes database (13.5) with QIIME (Liu et al., 2016). Next, the table was normalized
by the 16S rRNA copy number. Then, the metagenome functions were predicted, and the
data were exported into the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways
using PICRUSt (Langille et al., 2013). The difference in the predicted functions among diets
was determined by a one-way analysis of variance with SAS 9.3 (SAS Institute Inc., Cary,

NO).
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Statistical analysis

Data were checked for normal distribution and homogeneity by Shapiro-Wilk’s and Levene’s
tests by SAS 9.3 (SAS Institute Inc., Cary, NC). Rumen fermentation parameters, alpha
diversity index and bacterial relative abundance were analysed using PROC MIXED by SAS
9.3 with Tukey host-test (SAS Institute Inc., Cary, NC) with the following model:

Yij=p + Di+ Rj + ey,

where Yij is the dependent variable, p is the overall mean, Di is the fixed effect of diet (i = 1-
4), Rj is the random effect of the run (j = 1-3), eijis the random residual error. Significance
was declared at P < 0.05 and a trend was considered at 0.05 < P < 0.10. Pearson correlation
coefficients between the relative abundances of bacterial genera and the ruminal fermentation
variables were calculated using SAS 9.3 (SAS Institute Inc., Cary, NC). Only the top 25
genera in the relative abundance were included in this analysis. A significant correlation was

considered at P < 0.05.

Results

Effect of glucogenic to lipogenic nutrient ratios on rumen fermentation parameters

The fermentation characteristics were shown in Table 4.2. As lipogenic ingredients
increased, gas production had a significantly decreasing trend and the DMD showed a similar
trend (P <0.001). The pH of the G and GL1 diet was significantly lower than that of the diet
GL2 and L (P < 0.001). The NH3-N concentration of the G diet was significantly higher than
that of the GL2 and L diet (P < 0.001). For VFA contents, the L diet significantly increased
the proportion of acetate to the other three diets (P < 0.001), while diet G significantly
increased the propionate proportion to others (P < 0.001). Consequently, the acetate to

propionate ratio in diet G was the lowest and was the highest in the diet L (P < 0.001).
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Table 4.2. Effects of glucogenic to lipogenic nutrient ratios on rumen fermentation parameters in

rumen fluid of dairy cows after 48h in vitro fermentation

Item G GL1 GL2 L SEM P-value
Gas production (ml g! DM) 135.432 116.10° 106.73¢ 92.244 2.885 <0.001
DMD (%) 87.64° 83.22° 81.39° 75.82¢ 0.823 <0.001
pH 6.60° 6.61° 6.68 6.72* 0.011 <0.001
NH;-N (mmol 1) 38.97 33.64% 31.77° 29.34% 1.218 <0.001
tVFA (mmol 1) 129.29 129.36 128.03 119.28 1.569 0.100
VFA contents (% of tVFA)

Acetate 55.64¢ 57.93° 58.93° 60.25* 0.309 <0.001
Propionate 23.62° 21.33% 21.32% 20.47° 0.261 <0.001
A/P 2.36° 2.74° 2.76° 2.942 0.044 <0.001
Isobutyrate 4.60 4.47 4.36 4.45 0.059 0.580
Butyrate 9.74 9.80 9.57 9.61 0.102 0.687
Isovalerate 5.84 5.93 5.67 5.59 0.069 0.304
Valerate 0.56 0.55 0.51 0.50 0.020 0.658

A/P = acetate/propionate. Diets: G, glucogenic diet; GLI, glucogenic:lipogenic nutrient = 2:1; GL2,
glucogenic:lipogenic nutrient = 1:2; L, lipogenic diet. DMD = dry matter digestibility. SEM = standard error
of the mean. tVFA = total volatile fatty acid.

b ¢ means within a row with different superscripts differ significantly (P < 0.05).

Effect of glucogenic to lipogenic nutrient ratios on rumen bacterial communities

Across all samples, 1,064,890 qualified sequence reads were acquired with an average read
length of 418 bases, all reads were assigned to 2089 OTUs using a cutoff of 97% sequence
similarity. The total number of reads from each sample varied from 28,702 to 49,765 with an
average of 36,951. Among the bacterial community, 21 phyla were identified across all
samples. The top predominant phyla with relative abundance above 0.01 in at least one
sample were shown in Figure 4.1. Bacteroidetes, Firmicutes and Kiritimatiellaeota were the
three dominant phyla, representing 46.94, 39.19 and 3.55% of the total sequences,
respectively. Epsilonbacteraeota, Proteobacteria, Spirochaetes and Patescibacteria
represented an average of 2.81, 2.83, 1.65 and 1.09%, separately, of the total sequences. The
other phyla, such as Synergistetes, Lentisphaerae and Actinobacteria were not consistently

present in all ruminal samples.
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Figure 4.1. Composition of the top predominant bacteria phyla (%) in the rumen fluid of dairy cows

Diets

after 48h in vitro fermentation with two glucogenic and a lipgenic diets. Only the phyla with a relative
abundance above 0.01 in at least one sample are shown in the figure. Diets: G, glucogenic diet; GL1,

glucogenic:lipogenic nutrient = 2:1; GL2, glucogenic:lipogenic nutrient = 1:2; L, lipogenic diet.

Table 4.3. Effects of glucogenic to lipogenic nutrient ratios on the alpha diversity of ruminal bacteria

in rumen fluid of dairy cows after 48h in vitro fermentation

Estimators G GL1 GL2 L SEM P-value
OTU 1467° 1527 1586* 15532 13.960 0.006
Shannon 5.75 5.79 5.85 5.78 0.032 0.694
Simpson 0.015 0.010 0.010 0.013 0.001 0.419
ACE 1760° 18032 1850? 1817 12.328 0.005
Chaol 1797° 18312 1866° 18483 11.108 0.013
Coverage 0.9895 0.9909 0.9912 0.9912 0.0003 0.172

Diets: G, glucogenic diet; GL1, glucogenic:lipogenic nutrient = 2:1; GL2, glucogenic:lipogenic nutrient =
1:2; L, lipogenic diet. SEM = standard error of the mean.

%5 means within a row with different superscripts differ significantly (P < 0.05).

As for the alpha diversity estimates (Table 4.3), the G diet significantly decreased the number
of OTUs compared with GL2 and L diets. The ACE and Chao 1 estimates of richness in the
GL2 diet were significantly higher than that of the G diet.

The PCoA result was performed in Figure 4.2. The diets GL1 and GL2 were separated from
the diets G and L along PC1, which explained 30.21% of the total variation, while G was
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separated from the other diets along PC2, which explained 24.57% of the total variation. The

separation between GL1 and GL2 was not significant.
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Figure 4.2. Principal coordinate analysis (PCoA) of bacteria community structure in rumen fluid

samples of dairy cows after 48h in vitro fermentation with two glucogenic and a lipgenic diets. Diets:
G, glucogenic diet; GL1, glucogenic:lipogenic nutrient = 2:1; GL2, glucogenic:lipogenic nutrient = 1:2; L,

lipogenic diet.

At the phylum level, the top five phyla which were influenced by the treatments are listed in
Table 4.4. The G diet significantly increased the relative abundance of Bacteroidetes and
Proteobacteria, while the L diet significantly increased the relative abundance of Firmicutes

and Patescibacteria (P = 0.039 and 0.007 separately).

At the genus level, a total of 260 bacteria genera were identified. The top 25 of the influenced
genera (P < 0.05) with a relative abundance of > 0.1% in at least one sample are listed in
Table 4.4. Specifically, the L diet significantly increased the proportions of seven genera
compared to others, including Ruminococcaceae UCG group, Lachnospiraceae_group,
Oribacterium, Anaerovorax, Saccharofermentans, SP3-e08 and
Candidatus_Saccharimonas, while significantly decreased the relative abundance of
Ruminococcus 2 and Ruminobacter. Compared to the GL1, GL2 and L diets, four genera
were increased by the G diet, including Selenomonas 1, Ruminobacter,
Succinivibrionaceae_ UCG 002 and Succinivibrio. In addition, compared to the diets G and
L, the GL1 and GL2 diets increased the relative abundance of Ruminococcus 2 and

Ruminobacter.
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Compared to the GL1, GL2 and L diets, four genera were increased by the G diet, including
Selenomonas 1, Ruminobacter, Succinivibrionaceae UCG 002 and Succinivibrio. In
addition, compared to the diets G and L, the GL1 and GL2 diets increased the relative
abundance of Ruminococcaceae NK4A214 group, [Ruminococcus] gauvreauii group,
Christensenellaceae_R-7 group, Acetitonmaculum, unclassified_o_Bacteroidales,

Pseudomonas, DNF00809, Family XIII AD3011 group and Atopobium.

Correlation analysis between the relative abundance of bacterial genera and the

fermentation parameters

As shown in Figure 4.3, the genus of Ruminobacter was positively correlated with the gas
production, DMD and propionate proportion, but negatively correlated with the pH, acetate
proportion and acetate to propionate ratio. The genera of Prevotella 1, Sphaerochaeta,
Prevotellaceae UCG 003 and Prevotellaceae. UCG 001 were negatively correlated with
the pH but positively correlated with the concentrations of NH3-N. The prevotella 1 was
negatively correlated with the acetate proportion. The Oribacterium was positively correlated
with the pH, acetate proportion and acetate to propionate ratio, but negatively correlated with
the gas production, DMD and propionate proportion. The
[Eubacterium] coprostanoligenes _group was positively correlated with the acetate
proportion and acetate to propionate ratio, but negatively correlated with the gas production,
DMD and propionate proportion. The Lachnospiraceae ND3007 group was positively
correlated with the pH, acetate proportion and acetate to propionate ratio but negatively
correlated with the NH3-N concentration, DMD and propionate proportion. The
Candidatus_Saccharimonas was negatively correlated with the DMD, while the

Ruminococcaceae UCG_010 was positively correlated with the pH.
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Figure 4.3. Correlation analyses between the relative abundance of the top 20 bacterial genera and
influenced ruminal fermentation parameters, including pH, acetate proportion, acetate/propionate
ratio (labeled as ratio in the figure), ammonia-nitrogen (labeled as ammonia in the figure), gas volume,
dry matter digestibility (labeled as DMD in the figure) and propionate proportion in the rumen fluid
of dairy cows after 48h in vitro fermentation with two glucogenic and a lipgenic diet. The red represents
a positive correlation, the blue represents a negative correlation. * means the correlation is at a significant

level (P < 0.05), ** means the correlation is at an extremely significant level (P <0.01).

Functional analysis

To characterise the functional alterations of ruminal bacteria among different diets, the
functional composition profiles were predicted from 16S rRNA sequencing data with
PICRUSt (Supplementary Table S4.1). The top 10 out of 40 KEGG pathways of level 2
were illustrated in Figure 4.4. Amino acid metabolism, carbohydrate metabolism, membrane
transport and replication and repair were the most abundant functions in all samples. Multiple
KEGG categories were disturbed by diets. Compared with other diets, diet G had a
significantly higher relative abundance of translation, metabolism of cofactors and vitamins
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and cellular processes and signalling, but had a lower relative abundance of membrane
transport (P = 0.005). Compared to the diet GL2 and L, the G diet could significantly increase
the relative abundance of replication and repair (P = 0.005) as well as nucleotide metabolism

(P=0.015).
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Amino Acid Metaoism TR, 0106
Carbohydrate Metabolism [ ———————ee 0.99%
Membrane Transport e, " 0.005

Replication and Repair ** 0.005
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Figure 4.4. Effect of different glucogenic to lipogenic nutrient ratios on the relative abundance (%) of
KEGG pathways of the bacteria in the rumen fluid of dairy cows after 48h in vitro fermentation with
two glucogenic and a lipgenic diet. Only the top 10 relative abundance of the inferred functions are
presented. * means the difference is at a significant level (P < 0.05), ** means the correlation is at an
extremely significant level (P < 0.01). Diets: G, glucogenic diet; GL1, glucogenic:lipogenic nutrient = 2:1;
GL2, glucogenic:lipogenic nutrient = 1:2; L, lipogenic diet. KEGG = Kyoto Encyclopedia of Genes and

Genomes. The proportion in the figure equals the relative abundance.
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Discussion

Effects of glucogenic to lipogenic nutrient ratios on major bacterial communities

involved in feed digestion

According to the preferential utilization of energy, rumen microorganisms can be classified
into different functional groups, such as amylolytic, cellulolytic and proteolytic, which either
digest the dietary components or further degrade products produced by microbes. The rumen
metagenome is highly dominated by the phyla Bacteroidetes and Firmicutes, the interaction
of which contributes to the catabolism of organic matter of simpler form (Thomas et al., 2011,
Gruninger et al., 2014). In the present study, from diet G to L, as the ratio of lipogenic
ingredients increased, the relative abundance of Bacteroidetes had a decreasing trend which
was in line with the DMD, while the relative abundance of Firmicutes increased gradually
(Table 4.4). Recent studies also reported that the fibre enhanced Firmicutes and reduced
Bacteroidetes (Parmar et al., 2014, Parnell and Reimer, 2014). Probably because the phyla
Firmicutes contain a large amount of cellulose-degrading bacteria (Naas et al., 2014), while

the ruminal Bacteroidetes contain a large number of amylolytic bacteria (Dodd et al., 2010).

The rate and extent of starch digestion in the rumen were determined by several factors,
including the source of dietary starch, diet composition, grain processing and degree of
adaptation of ruminal microbiota to the diet (Huntington, 1997). The rumen amylolytic
bacteria convert starch to glucose, which is then used for growth and provides energy for the
synthesis of microbial proteins. Reported amylolytic bacteria included Streptococcus bovis,
Bacteroides amylophilus, Prevotella spp., Succinimonas amylolytica, Selenomonas
ruminantium and Butyrivibrio spp. (Giraud et al., 1994, Huntington, 1997), some of whose
amylolytic activities have been demonstrated in vitro previously (Minato and Suto, 1979,
Miura et al., 1983, Cotta, 1988, Xia et al., 2015). Pure culture studies have demonstrated that
most of these starch-degrading bacteria have more energy supply sources not only from
starch but also from other nutrients (Kotarski et al., 1992, Klieve et al., 2007). Thus, their
dominant presence in ruminants fed diets with high starch may not be necessarily associated
with their starch-hydrolyzing capacity (Klieve et al., 2012). This might explain that the most
dominant amylolytic bacteria didn’t differ among all diets in the present study. However, the
relative abundance of Selenomonas 1, Ruminobacter, Succinivibrionaceae UCG 002 and

Succinivibrio, were significantly higher in the G diet than in the other three diets. These
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increased bacteria genera might be recognized as being sensitive to dietary glucogenic

nutrients.

Generally, the apparent digestibility of starch was nearly twice as high as that of neutral
detergent fibre (NDF) (Firkins et al., 2001). The cellulolytic bacteria were the dominating
contributors to fibre degradation. Fibrobacter succinogenes, Ruminococcus flavefaciens and
Ruminococcus albus are recognized as the most active cellulolytic bacteria (Wanapat et al.,
2014). Butyrivibrio, Oscillibacter, Pseudobutyrivibrio and Eubacterium were also known as
cellulolytic bacterial genera (Thoetkiattikul et al., 2013). Besides, some unclassified groups,
such as the taxa assigned to Lachnospiraceae, Christensenellaceae, Ruminococcaceae,
Rikenellaceae, Prevotellaceae and Bacteroidales, had been proved tightly attaching to fibre
in the rumen, suggesting that they might play a significant role in the ruminal digestion of
fibre (Liu et al., 2016). In the present study, the GL1, GL2 and L diets compared to the G
diet significantly increased the relative abundance of the fibrolytic bacterial genera, including
Ruminococcus 2, Ruminococcaceae UCG group, Ruminococcaceae NK4A214 group,
Ruminococcus _gauvreauii_group, Ruminococcus 1 (Krause et al., 2003), some unclassified
taxa (unclassified f Lachnospiraceae, unclassified f Ruminococcaceae,
unclassified o Bacteroidales) (Liu et al., 2016) and the genus of [Eubacterium] group
(Thoetkiattikul et al., 2013). In addition, compared to the diet L, the two mixed diets gained
a higher number of the Ruminococcaceae NK44A214 group, Ruminococcus 2,
Christensenellaceae R-7 group and Ruminococcus_gauvreauii_group, but gained a lower
number of Ruminococcaceae UCG group and Lachnospiraceae group. These changes
illustrated that when the dietary lipogenic nutrients were higher than 2/3 of the dietary energy
source, some bacteria in the genera  Ruminococcaceae NK4A214 group,
Ruminococcus _gauvreauii_group, Ruminococcus 2 and Christensenellaceae R-7 group
would rapidly decrease, while other bacteria in the genera Ruminococcaceae_ UCG_group

and Lachnospiraceae_group would increase.

Furthermore, according to the correlated analysis (Figure 4.3), the DMD and gas production
were positively correlated with the genus of Ruminobacter. A previous study also reported
that bacteria related to Ruminobacter would dominate in the ruminal ecosystem when cows
were introduced to a high grain diet (Klieve et al., 2012). The genus Ruminobacter might

play an important role in leading to the difference in fermentation end-products.

In summary, these sensitive amylolytic and cellulolytic bacteria might lead to the difference

in feed digestion. In addition, some genera whose function was not clear were also influenced
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by the diets, including SP3-e08, Pseudomonas, DNF00809 and Atopobium. Their function

and contribution to fermentation products still need further research.
Effects of glucogenic to lipogenic nutrient ratios on VFA and related bacteria

The dietary carbohydrate was finally fermented to VFA by microbes in the rumen. The major
ingredients of VFA contain acetate, propionate and butyrate, whose proportions are mainly
affected by the NDF to the starch ratio in the diet. Ruminants fed a high proportion of dietary
starch produced proportionally more propionate than those fed a high forage diet which
produced more acetate (Wu et al., 1994, Marounek and Bartos, 2010, Wang et al., 2016).
Propionate is produced in the ruminal ecosystem by two major pathways. One is the succinate
pathway in which the propionate is produced directly by decarboxylating of succinate
(Scheifinger and Wolin, 1973, Jeyanathan et al., 2014). This pathway involves a large number
of microbes, such as fumarate reducers (e.g., Wolinella succinogenes), succinate producers
(e.g., Fibrobacter succinogenes) and succinate utilizers (e.g., Selenomonas ruminantium)
(Scheifinger and Wolin, 1973, Jeyanathan et al., 2014). Succinate is produced by the
members in the genus Succinivibrio as their key fermentation end-product (Pope et al., 2011),
which is then digested to propionate by the members of Selenomonas (e.g., Selenomonas
ruminantium) via the succinate pathway (Scheifinger and Wolin, 1973). The other one is the
acrylate pathway which starts indirectly from lactate via dehydration to acrylate and turns to
propionate via reduction reaction (Puniya et al., 2015, Zhao et al., 2020). Starch is degraded
by Streptococcus bovis and Lactobacillus spp. to lactic acid (Hutton et al., 2012) which is
then utilized by Megasphaera elsdenii, the major bacteria involved in the acrylate pathway
(Hino et al., 1994). Other lactate-utilizing bacteria such as Selenomonas ruminantium and
Propionibacterium spp. (Klieve et al., 2003), and some strains of the bacterium Prevotella
ruminicola also play important roles in the acrylate pathway (Wallnofer and Baldwin, 1967).
In the present study, the greatly increased relative abundance of Succinivibrio members
(Succinivibrionaceae_ UCG 002 and Succinivibrio), Selenomonas member
(Selenomonas_1) and the Ruminobacter in the G diet probably contributed to the increased

propionate production via the succinate pathway.

The decreased acetate in the G diet can be explained by the reduction of some Gram-positive
fibrolytic bacteria, such as Ruminococcus spp., which is recognized as the main acetate-
producing bacteria (Jeyanathan et al., 2014). The Anaerosporobacter and
Saccharofermentans are also known for producing acetate as the main end-products (Ziemer,

2014). In addition, some unclassified bacteria, such as unclassified bacteria in
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Ruminococcaceae, Lachnospiraceae and Christensenellaceae were reported to be correlated
with acetate concentration (Shen et al., 2017). In the present study, the increased populations
of  Saccharofermentans, Anaerovorax, Lachnospiraceae ND3007 group and the
unclassified groups in Ruminococcaceae, Lachnospiraceae and Christensenellaceae might

have also contributed to the improvement of acetate production in the L diet.

The genus Oribacterium was positively correlated with acetate proportion and negatively
correlated with the DMD and propionate proportion. This was a newly classified genus
proposed by Carlier et al. (2004), which was latterly reported to be identified in the rumen of
cows fed forage-based diets (Kong et al., 2010, Zened et al., 2013) and capable to degrade
pectin from plant cell walls in the rumen environment (Zened et al., 2013, Kang et al., 2019).
This could explain their high population in the diet L. To our knowledge, its function related

to acetate production was not reported yet, thus it needs further research.
Effects of glucogenic to lipogenic nutrient ratios on NH3-N and related microbes

The NH3-N concentration was consistent with the DMD trend, which was towards a lower
NH3-N concentration as the lipogenic nutrient ratio increased. This result was in line with the
study of Beckman and Weiss (Beckman and Weiss, 2005). Dietary protein is degraded in the
rumen to peptides and amino acids, and eventually deaminated into NH3-N or incorporated
into microbial protein (Bach et al., 2005). When the rumen-digested protein exceeds the
requirement of ruminal microorganisms, the protein is degraded to NH3-N which is then
metabolized to urea in the liver and finally excreted in urine (Tamminga, 1996). The NH3-N
accounts for about 34% of the protein requirement for ruminal microorganisms. The NH3-N
concentration in the rumen depends on the balance between the rate of formation and
utilization of NH3-N by microbes. Amylolytic bacteria tended to be more proteolytic than
fibrolytic bacteria (Siddons and Paradine, 1981, Wallace et al., 1997, Ferme et al., 2004). It
was also reported that amylases had positive effects on protein degradation in the rumen
(Toméankova and Kopecny, 1995). In addition, the cellulolytic microbes grow slowly with
low maintenance requirements and solely take NH3-N as their nitrogen source; while the
amylolytic microbial communities grow fast, require more nitrogen for maintenance and
have multiple nitrogen sources including NH3-N, peptides and AA (Bach et al., 2005). This
preferential use of nitrogen sources by ruminal bacteria was in agreement with the difference
in NH3-N concentrations in the present study. To summarize, the G diet tended to increase
protein degradation and decrease the nitrogen utilization by ruminal bacteria, which might

partially explain the increased ruminal NH3-N concentration.
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In addition, some species in the genus Prevotella were considered ammonia-producing
bacteria, such as Prevotella ruminantium and Prevotella bryantii (Ferme et al., 2004). This
could explain the positive correlations between the NH3-N concentration and the genus

Prevotella.

Effects of glucogenic to lipogenic nutrient ratios on metagenomic functions

Diets can reshape the bacterial communities in the rumen, consequently, the functions of
ruminal bacteria may be altered along with the changes. A tool of PICRUS is developed for
inferring the functional potential of microbial communities based on 16S data, which needs
little extra skill or cost compared to the metagenomics and metatranscriptomics technologies
(Wilkinson et al., 2018). In the present study, the PICRUSt was carried out to predict the
functional alterations of rumen bacteria associated with different ratios of glucogenic to
lipogenic ingredients. In the results, the most abundant functional categories contained amino
acid metabolism, carbohydrate metabolism, replication and repair, membrane transport and
translation, which were proved to be fundamental for the growth and reproduction of bacteria
(Seddik et al., 2019). The G diet was predicted to lower the pathway of membrane transport
than other diets. The membrane transport function is significant for microbes in the
communication with the rumen environment, such as capturing nutrients and secreting
functional proteins or substrates (Konishi et al., 2015, Zhang et al., 2017). The relation
between bacterial membrane transport function and their digesting capacity in the rumen
deserves further research. In addition, several functions, such as translation, cofactors and
vitamins metabolism, replication and repair, and cellular processes and signalling, were
enriched by diet G compared to other diets. These results were partly in line with the previous
report (Zhang et al., 2017). These improved functions in diet G might relate to the high feed
digestion. However, further studies are required to enhance our understanding of bacterial

functions and their relation to dietary nutrients.
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Conclusion

The present study confirmed the hypothesis that the bacteria community and fermentation
products in vitro could be altered by feeding isocaloric diets that differed in glucogenic and
lipogenic nutrient content. When the glucogenic nutrient was above 1/3 of the energy source,
the best feed digestion traits, as well as a lower acetate to propionate ratio, were obtained.
The amylolytic bacteria including Selenomonas, Succinivibrio and Ruminobacter, as well as
some cellulolytic bacteria including genera within the family Ruminococcaceae, the
Christensenellaceae R-7 group, the Eubacterium and some unclassified taxa were more

sensitive to the ratio of glucogenic to lipogenic nutrients.
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Figure S4.1. The in vitro gas production machine with Automated Gas Production Recording System.
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Table S4.1. Effect of glucogenic to lipogenic nutrient ratios on the relative abundance (%) of bacterial

phyla in rumen fluid of dairy cows after 48h in vitro fermentation

Phyla G GL1 GL2 L SEM P-value
Bacteroidetes 50.88 47.37 45.05 44.48 0.948 0.089
Firmicutes 33.19° 39.19% 42.122 42.27* 1.272 0.039
Kiritimatiellaeota 3.99 3.68 3.59 3.27 0.302 0.904
Proteobacteria 4.72¢ 2.95° 2.31% 1.32¢ 0.333 0.001
Epsilonbacteraeota 2.34 2.75 2.27 3.88 0.620 0910
Spirochaetes 242 1.15 1.57 1.64 0.233 0.392
Patescibacteria 1.06° 0.92° 0.93% 1.46° 0.066 0.010
Synergistetes 0.32 0.43 0.50 0.54 0.048 0.314
Lentisphaerae 0.42 0.33 0.46 0.48 0.035 0.299
Actinobacteria 0.13° 0.61* 0.69° 0.14° 0.073 0.002
Tenericutes 0.29 0.27 0.32 0.5 0.028 0.094
unclassified k d__Bacteria 0.05 0.14 0.17 0.05 0.020 0.088
Elusimicrobia 0.06 0.04 0.09 0.09 0.009 0.101
Cyanobacteria 0.05 0.09 0.06 0.05 0.007 0.440
Chloroflexi 0.02 0.08 0.10 0.02 0.012 0.052
Fibrobacteres 0.06 0.02 0.02 0.04 0.006 0.082
WPS-2 0.013% 0.031° 0.019° 0.007¢ 0.002 <0.001
Armatimonadetes 0.008 0.010 0.013 0.013 0.0017 0.757
Planctomycetes 0.002 0.002 0.001 0.003 0.0006 0.763
Verrucomicrobia 0.004 0.001 0.001 0.002 0.0007 0.465

Diets: G, glucogenic diet; GL1, glucogenic:lipogenic nutrient = 2:1; GL2, glucogenic:lipogenic nutrient =
1:2; L, lipogenic diet. SEM = standard error of the mean.

b ¢ means within a row with different superscripts differ significantly (P < 0.05).
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Abstract

In order to optimize rumen functioning, more research on the functioning of ruminal
microorganisms and metabolites under different feeding conditions is needed. This study was
conducted to investigate the influence of different dietary energy sources on the changes and
interactions of ruminal bacteria and metabolites. Six rumen-cannulated Holstein Friesian dairy
cows were randomly distributed and allocated to their dietary treatments into two replicated 3
x 3 Latin squares. During each of the three 21-d periods, cows were offered one of the three
chemically similar diets but varied in energy source (two glucogenic type diets, C: corn and
corn silage, S: steam-flaked corn and corn silage and a lipogenic type diet, L: sugar beet pulp
and alfalfa silage). Compared to the C and S diets, the L diet resulted in significantly lower
ruminal concentrations of lactic acid and ammonia-nitrogen, higher proportions of propionate,
isobutyrate, isovalerate and higher proportions of acetate and butyrate (P < 0.05). As for the
bacterial community at the genus level, diet L had significantly higher relative abundances of
Prevotella 1, Prevotellaceae_Ga6Al group, Ruminococcus_1,
Eubacterium_coprostanoligenes_group, Ruminiclostridium 6, Ruminococcaceae UCG-013
and Tyzzerella 3 but lower relative abundances of Ruminococcus 2, CAG-352,
Ruminococcaceae UCG-005, Papillibacter, Lachnobacterium and Selenomonas (P < 0.05),
and tended to lower relative abundances of Prevotella_7 and Prevotellaceae YAB2003 _group
(0.05 <P <0.1), compared to those in the diet C and S. A total of 188 significantly differential
metabolites were obtained, most of these differential metabolites belong to the triterpenoids
(16), the amino acids, peptides and analogues (11) and the fatty acid and conjugates (10). Ten
out of 11 metabolites in amino acids, peptides and analogues were significantly more abundant
in diets C and S than that in diet L. The results indicated that protein digestion was improved
when starch was the main energy source in the diet, which might be attributed to the bacterial
genera Prevotella 7 and Selenomonas. The genera of Ruminococcus 2, Prevotella 7,
CAG 352 and Ruminococcaceae UCG-005 might contribute to the amylolytic activities in
glucogenic diets, while Ruminococcus_1, Prevotella 1 and
Eubacterium_coprostanoligenes group might contribute to the fibrolytic activities in the
lipogenic diet. This suggests the presence of new starch-fermenting and cellulose-fermenting

ruminal bacteria that need to be confirmed and classified.

Keywords: rumen, diet, bacteria, metabolomics, amylolytic, fibrolytic
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Introduction

During early lactation, the increasing energy demand for milk production together with a
reduced appetite and reduction in dry matter intake can lead to a negative energy balance (NEB)
status of dairy cows. Previous studies have demonstrated dietary energy sources to be a
significant factor affecting NEB and associated metabolic alterations. Sequential studies by van
Knegsel and co-workers have shown that starch-rich glucogenic diets compared to fibre-rich
lipogenic diets, were effective in increasing the ruminal production of propionate, improving
the energy balance and decreasing plasma B-hydroxybutyrate and liver triacylglycerides
concentrations (van Knegsel et al., 2005, van Knegsel et al., 2007a, van Knegsel et al., 2007b).
However, the details of the rumen metabolic mechanisms underlying those differences remain

to be clarified.

The ruminal ecosystem harbours a wide diversity of microorganisms including bacteria, archaea,
fungi and protozoa, which are coexisting in a symbiotic relationship. The most abundant among
these ruminal microorganisms are the bacteria with an estimated population density of 10'%-!!
/ml of rumen fluid. According to their preference for certain substrates, the bacteria can be
defined as fibrolytic, amylolytic and proteolytic with the composition of the ruminal bacteria
and the formation of fermentation end-products being affected by diet composition (Castillo-
Gonzalez et al., 2014). Approximately 55%-60% of metabolites in the rumen have been linked
to the rumen microorganism (Saleem et al., 2013). Glucogenic diets can be formulated using
high starch content ingredients such as corn grain which then form the main and functional
energy source for ruminants yielding increased amounts of propionate in the rumen or glucose
for small intestinal absorption (van Knegsel et al., 2007a). Compared with finely ground corn,
steam-flaked corn is more readily digestible due to changes in the structure of the starch
granules. The starch digestibility for the steam-flaked corn in both the rumen and post-rumen
was reported to be greater than that for ground corn (Cooper et al., 2002). Lipogenic diets are
predominantly formulated using high levels of fat and fibre resulting in the main fermentation

products being acetate and butyrate in the rumen and absorption of fat.

The current study aimed to fully understand the metabolic mechanisms underlying the observed
effects of three dietary energy sources on the ruminal bacteria and their metabolites in dairy

cows through a combination of 16S rRNA sequencing and metabolomic analysis. Moreover,
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the relationships between ruminal microbiota abundance and metabolites were also analysed in

the present study.

Materials and methods

Animals and experimental design

Animal care and experimental handlings were done according to the Chinese Guidelines for
Animal Welfare and the study was approved by the Animal Care and Use Committee of the
Chinese Academy of Agricultural Sciences (IAS2019-6).

Six rumen-cannulated, first-parity, Chinese Holstein Friesian dairy cows, 108 + 10 DIM (days
in milk, mean £+ SD) with an average milk yield of 28 + 1.7 kg/d and weighing 578 + 33.5 kg
at the start were used in a replicated 3 x 3 Latin square design. They were paired by initial
weight, DIM and milk production with an animal within pairs being randomly assigned to one
of the two squares. The trial consisted of three 21-d experimental periods, where each period
contained a 14-d feed adaptation period, followed by a 7-d period of data and sample collection.
Diet treatments included a diet with alfalfa silage and sugar beet pulp as the main energy source
(L), two glucogenic diets separately containing ground corn and corn silage (C) and steam-
flaked corn and corn silage (S) as main energy sources. The diets were formulated to be
isoenergetic and to meet the energy requirements of Holstein dairy cows yielding 25 kg/d of
milk with 3.5% of milk fat and 3.0% of milk protein according to the NRC (2001). Dietary
composition and chemical analyses are shown in Table 5.1. Experimental animals were fed

three times daily (07:00, 14:00 and 20:00) with free access to water.
Rumen fluid sampling and parameters measurement

On d 21 of each period, rumen contents of cranial, caudal, dorsal and ventral sites were collected
by hand using a sterile glove through the rumen fistula 1 h after morning feeding from each
cow. Collected contents were immediately squeezed tightly through four layers of cheesecloth
(250 pum for mesh size) into a sterilized container (around 100 ml fluid from each site, 400 ml
fluid per cow) before the squeezed material was returned to the rumen. Two aliquots of 5 ml
rumen fluid were quickly collected into two cryogenic vials and immediately frozen in liquid
nitrogen until being stored at -80 °C. One sample was used for later DNA extraction and the

other for metabolomics analysis.
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Table 5.1. Ingredient and chemical composition of the two glucogenic (C, S) and a lipogenic (L) diet

Experimental diet

Item
C L S

Ingredient composition, % of dry matter
Corn, ground 283 - -
Steam-flaked corn - - 28.3
Sugar beet pulp - 30.1 -
Soybean meal 11.5 10.4 11.5
Rapeseed meal 7.2 39 72
Cottonseed meal 7.2 39 72
Alfalfa hay 7.4 6.7 7.4
Oat hay 4.5 4.1 4.5
Alfalfa silage - 39.5 -
Corn silage 322 - 322
Dicalcium phosphate 1.7 1.5 1.7

Composition, % of dry matter
Crude protein 20.6 20.8 20.4
Ether extract 23 2.1 3.0
Starch 18.6 44 15.6
Neutral detergent fibre 333 54.7 32.7
Acid detergent fibre 18.7 34.6 18.8
Calcium 0.8 1.3 1.0
Phosphorus 0.9 0.4 1.1
NEL, MJ/kg of dry matter 7.1 8.7 7.2

Diets: C, corn and corn silage diet; L, sugar beet pulp and alfalfa silage diet; S, steam-flaked corn and corn

silage diet.

NEL, net energy for lactation, calculated based on NRC (2001).
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Three aliquots of 5 ml fluid samples were collected into freezing vials and stored at -20 °C until
further index measurements including volatile fatty acids (VFA), ammonia-nitrogen (NH3-N)

and lactic acid.

The pH value of the rumen fluid was determined using a portable pH meter (PHB-4, INESA,
Shanghai, China) immediately when the rumen fluid was squeezed. Before all measurements,
the rumen fluid samples were firstly thawed in a 39 °C water bath and then centrifuged for 15
min at 10,000 x g at 4 °C. The total and individual VFA concentrations were measured by gas
chromatography (GC, 7890B, Agilent, USA) according to the method described by Hua et al.
(2020). The NH3-N concentration was determined based on the Berthelot reaction (Broderick
and Kang, 1980). The lactic acid concentration was determined using an enzymatic method
with the commercial kit (A019-2, Nanjing Jiancheng Bioengineering Institute, Nanjing, China)

at 530 nm according to the manufacturer’s instructions (Pan et al., 2016).

DNA extraction, sequencing processing and analysis

DNA was extracted using the QlAamp DNA stool mini kit (Qiagen, Hilden, Germany). The
DNA concentration was checked on a NanoDrop ND-2000 spectrophotometer (NanoDrop
Technologies, Wilmington, DE, USA). The integrity of extracted DNA was assessed on 1%

agarose gel electrophoresis.

The V3-V4 hypervariable regions of the bacterial 16S rRNA gene were amplified with primers
338F (5’-ACTCCTACGGGAGGCAGCAG-37) and 806R (5'-
GGACTACHVGGGTWTCTAAT-3") by thermocycler PCR system (GeneAmp 9700, ABI,
USA) (Pan et al., 2017). The PCR reactions were performed in triplicate with a total reaction

volume of 20 pl. The amplified products were detected using 2% agarose gel electrophoresis,
further purified using the Ax yPrep DNA Gel Extraction Kit (Axygen Biosciences, Union City,
CA, USA) and then quantified using QuantiFluorTM-ST (Promega, USA) according to the

manufacturer's protocols.

Following amplification, paired-end sequencing libraries were constructed by Majorbio Bio-
Pharm Technology Co. Ltd. (Shanghai, China). Subsequently, purified amplicons were pooled
in equimolar amounts and sequenced on an Illumina MiSeq platform (Illumina, San Diego, CA,
USA) for paired-end reads of 300 bp at Majorbio Bio-Pharm Technology Co. Ltd. (Shanghai,
China). Raw FASTQ files were quality-filtered by Trimmomatic (version 0.36) and merged by
FLASH software (version 1.2.11) (Supplementary material).
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Operational taxonomic units (OTUs) were clustered with a 97% similarity cut-off using
UPARSE (version 7.1) with a novel "greedy" algorithm that performs chimaera-filtering and
OTU-clustering simultaneously. The taxonomy of each 16S rRNA gene sequence was analysed
using the RDP classifier algorithm against the Silva (SSU123) 16S rRNA database with a
confidence threshold of 70% (Amato et al., 2013).

Analysis was performed using the online platform, Majorbio I-Sanger Cloud Platform
(http://www.i-sanger.com). Alpha diversity indexes were calculated using Mothur (version
1.30.1). The rarefaction curve was generated using the vegan package in R (version 1.6.2, Wang
et al., 2021a). Beta-diversity was estimated by computing the unweighted UniFrac distance and
visualized using principal coordinate analysis (PCoA), and the results were plotted using

GUniFrac and ape packages in R (version 1.6.2).
Metabolomics processing

The rumen fluid samples were prepared based on the procedures described by Liu et al. (2019).
Briefly, 0.1 ml of each sample was mixed with 0.4 ml of methanol:water (4:1, v/v) solution to
extract the metabolites. The mixture was allowed to settle at -20 °C and treated by high
throughput tissue crusher Wonbio-96¢ (Shanghai wanbo biotechnology co., LTD) at 50 Hz for
6 min, then followed by vortex for 30 s and ultrasound at 40 kHz for 30 min at 5 °C. The
samples were placed at -20 °C for 30 min to precipitate proteins. After centrifugation at 13,000
x g at 4 °C for 15 min, the supernatant was carefully transferred to sample vials for the liquid
chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Meanwhile, the quality
control (QC) sample was prepared by pooling equal volumes of extracted metabolites from each
sample. The QC samples were inserted into the queue after every 10 samples in the entire

sample run to monitor the analyses.
Metabolomics data analysis

Raw mass spectrometry data were transferred into Progenesis QI 2.3 (Waters Corporation,
Milford, USA) for preprocessing including peak picking, detection, deconvolution, alignment
and missing values filling. After these initial preprocessing steps, a data matrix with retention
time, M/Z and peak intensity was acquired. The variables were then normalized with the sum
normalization method in order to eliminate errors caused by sample treatments and equipment
instability. Only variables with a relative standard deviation < 30% in the QC samples were

retained in the final data matrix. The values were log-transformed before further analysis. The
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mass spectrometry information was matched in the human metabolome database (HMDB)
(http://www.hmdb.ca/) and Metlin database (https://metlin.scripps.edu/) to acquire metabolite
information (Wang et al., 2021b).

The pre-processed data were further analysed on the Majorbio Cloud Platform
(https://cloud.majorbio.com). The principal component analysis (PCA) and the orthogonal
partial least squares discriminate analysis (OPLS-DA) were calculated through the R package
of Ropls (version 1.6.2) to observe the global difference of the metabolites between every two
diets. To avoid overfitting, the default 7-fold cross-validation was used with one-seventh of the
samples being eliminated from the model in each running round. The PROC MIXED model
(see below) was used to evaluate the significant differences in individual metabolites among
the three diets. The significantly influenced metabolites were further screened based on the
variable important in projection (VIP) from the OPLS-DA model and the P-value from the
PROC MIXED model. The metabolites meeting the criteria of VIP > 1 and P < 0.05 were
recognized as the significantly affected metabolites. The metabolic pathways where the
significantly affected metabolites clustered were annotated in the Kyoto Encyclopedia of Genes
and Genomes (KEGG) database. The enrichment analysis of the annotated pathways was
achieved by Fisher's exact test and the P-values were further adjusted by the Benjamini and

Hochberg method through Scipy.stats package in Python (version 1.0.0).
Statistical analyses

The data of rumen fermentation parameters, the relative abundances of bacteria and abundances
of metabolites were analysed as a replicated 3 x 3 Latin square design using PROC MIXED
combined with post-hoc Tukey by SAS version 9.3 (SAS Institute Inc., Cary, NC). The

statistical model for the trial was as follows:
Yijki=u + Di+ Pj+ Sk+ Ci(Sk) + eijki

where Yijk is the dependent variable, u is the overall mean, Di is the fixed effect of diet (i=1-3),
Pj is the random effect of the period (j=1-3), Skis the random effect of Latin square (k=1-2), Ci
(Sk) is the random effect of cow nested within a square (1=1-6), and ejj is the random residual

error. Significance was declared at P < 0.05 and a trend was considered at 0.05 <P <0.1.
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Results

Rumen fermentation parameters

Data about the influence of three dietary energy sources on rumen fermentation is shown in
Table 5.2. Compared to the C and S diet, the L diet led to a lower lactic acid concentration (P
=0.023), higher pH value (P =0.017) and lower NH3-N concentration (P = 0.006) in the rumen
fluid of dairy cows. The total VFA concentration was not influenced by the three diets (P =
0.407), but the molecular proportions of individual VFAs were affected by diet. Compared to
diets C and S, the rumen fluid from cows fed diet L. had higher proportions of acetate (P = 0.008)
and butyrate (P = 0.042), a higher acetate to propionate ratio (# < 0.001) but lower proportions
of propionate (P < 0.001), isobutyrate (P = 0.019), isovalerate (P = 0.006) and valerate (P =
0.095).

Table 5.2. Ruminal fermentation parameters of dairy cows fed two glucogenic (C, S) and a lipogenic (L)

diet

Experimental diet

Item SEM P-value
C L S

pH 6.48° 6.63° 6.40° 0.057 0.017

Lactic acid (mmol/1) 0.80* 0.70° 0.882 0.045 0.023

Ammonia-N (mg/dl) 19.32 12.2° 19.1° 1.290 0.006

Volatile fatty acids (% of total)
Acetate 60.8° 64.9° 58.6° 1.176 0.008
Butyrate 13.4° 16.6° 14.7° 0.519 0.042
Acetate/propionate 2.92° 4.29° 2.75° 0.223 <0.001
Propionate 21.7% 15.2° 22.4° 1.116 <0.001
Isobutyrate 1.02¢ 0.90° 0.97 0.032 0.019
Isovalerate 1.62° 1.22° 1.72° 0.076 0.006
Valerate 1.37% 1.16° 1.63° 0.098 0.095
Total (mmol/1) 129.2 147.1 134.4 5.415 0.407

Diets: C, corn and corn silage diet; L, sugar beet pulp and alfalfa silage diet; S, steam-flaked corn and corn
silage diet. SEM, standard error of the mean.

45 means within a row with different superscripts differ significantly (P < 0.05).
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Ruminal microbial composition

Based on the bacteria 16S rRNA sequencing, a total of 872,181 reads were acquired after
quality-filtering from the 18 rumen samples. After each sample was sub-sampled to an average
depth (21,373 reads on average) and clustered, 2,107 OTUs were obtained at an identity of 97%.
According to the microbial diversity index of all samples at different sequencing depths, the
Shannon rarefaction curves were calculated to reflect the microbial diversity at different
sequencing numbers. As is shown in the Supplementary Figure S5.1, the curves
asymptotically became flat, indicating that sequencing depth was sufficient to reflect the
ruminal bacterial community. According to the alpha indexes including the Shannon, Simpson,
abundance-based coverage estimator (ACE), Chao 1 and Coverage values (Table 5.3), no
significant differences were observed in the microbiota diversity and richness among the three

diets.

Table 5.3. Bacterial alpha diversity parameters in rumen fluid of dairy cows fed two glucogenic (C, S)

and a lipogenic (L) diet

Experimental diet

Parameter SEM P-value
C L S
Sobs 1242 1097 1112 38.03 0.269
Shannon 5.03 4.86 4.86 0.168 0.902
Simpson 0.04 0.06 0.05 0.015 0.870
ACE 1463 1326 1339 36.10 0.199
Chao 1 1479 1347 1361 37.57 0.256
Coverage 0.99 0.99 0.99 0.001 0.884

ACE, abundance-based coverage estimator. Sobs, species observed. Diets: C, corn and corn silage diet; L, sugar

beet pulp and alfalfa silage diet; S, steam-flaked corn and corn silage diet. SEM, standard error of the mean.

The taxonomic analysis showed that the rumen bacterial community contained 20 identified
phyla, dominated by the following three bacterial phyla (the values indicated the average
relative abundance across the diets): Firmicutes (43.8%), Bacteroidetes (40.2%) and
Proteobacteria (9.2%) (Supplementary S5.2a). In terms of bacterial genera, the analysis
showed that the classified genera across all samples were dominated by Prevotella 1 (16.2%),
Ruminococcus 1 (14.7%), Succinivibrionaceae UCG-001 (8.0%), Ruminococcus 2 (6.7%)
and Prevotella_7 (5.1%) (Supplementary Figure S5.2b).
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Figure 5.1. Principal coordinate analysis of bacteria community in rumen fluid of dairy cows fed two
glucogenic (C, S) and a lipogenic (L) diet. Diets: C, corn and corn silage diet; L, sugar beet pulp and alfalfa

silage diet; S, steam-flaked corn and corn silage diet.

The PCoA figure indicated the samples in diet L were distinguished from those in diets C and
S (Figure 5.1). The bacteria with significantly different relative abundances are shown in
Tables 5.4 and 5.5. At a phylum level (Table 5.4), there was a trend for the relative abundance
of Proteobacteria for diet S to be higher than that for diet L (P = 0.088) as well as for
Tenericutes for diet C to be higher than that for other two diets (P = 0.067). Diet L resulted in
a higher relative abundance of Cyanobacteria (P = 0.018) and Verrucomicrobia (P = 0.016)
compared to diets C and S. In addition, there was a trend for diet L to have a higher relative
abundance of Kiritimatiellaeota compared to diet C (P = 0.085) and a lower relative abundance
of WPS-2 compared to diet S (P = 0.079). The top 20 significantly differential bacterial genera
affected by diets are listed in Table 5.5. Diet L had significantly higher relative abundances of
Ruminococcus 1 (P = 0.004), Prevotella_1 (P = 0.044),
Eubacterium_coprostanoligenes_group (P = 0.023), Ruminiclostridium_6 (P = 0.003),
Ruminococcaceae UCG-013 (P = 0.018), Tyzzerella 3 (P = 0.006) and potentially higher
relative abundance of Prevotellaceae Ga6Al group (P = 0.067), but significantly lower
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relative abundances of Ruminococcus 2 (P = 0.011), CAG-352 (P = 0.023),
Ruminococcaceae UCG-005 (P = 0.043), Papillibacter (P = 0.008), Lachnobacterium (P =
0.004) and Selenomonas (P = 0.046), and had a trend towards a lower relative abundances of
Prevotella 7 (P = 0.1) and Prevotellaceae_ YAB2003 group (P = 0.099), compared to diet C
and S.

Table 5.4. Comparison of the relative abundance (%) of bacteria phyla with P < 0.1 in rumen fluid of

dairy cows fed two glucogenic (C, S) and a lipogenic (L) diet

Experimental diet

Phyla SEM P-value
C L S
Proteobacteria 7.42 0.62 18.8 3.730 0.088
Tenericutes 1.63 1.02 1.04 0.123 0.067
Cyanobacteria 0.54° 1.26° 0.56° 0.131 0.018
Kiritimatiellaeota 0.17 0.35 0.28 0.052 0.085
WPS-2 0.08 0.03 0.18 0.027 0.079
Verrucomicrobia 0.03* 0.06° 0.01° 0.008 0.016

Diets: C, corn and corn silage diet; L, sugar beet pulp and alfalfa silage diet; S, steam-flaked corn and corn
silage diet. SEM, standard error of the mean.

® means within a row with different superscripts differ significantly (P < 0.05).
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Table 5.5. Comparison of the relative abundance (%) of bacterial genera with P < 0.1 in rumen fluid of

dairy cows fed two glucogenic (C, S) and a lipogenic (L) diet

Experimental diet

Genus SEM P-value
C L S
Ruminococcus_1 6.92° 30.8° 4.39° 3.755 0.004
Prevotella_1 12.8° 24.42 12.3% 2.255 0.044
Ruminococcus 2 12.8* 0.78° 8.51% 2.112 0.011
Prevotella_7 6.93 0.21 6.34 1.930 0.100
CAG-352 5.132 0.01° 3.742 1.004 0.023
Ruminococcaceae_UCG-005 1.452 0.77° 1.72¢ 0.170 0.043
Eubacterium_coprostanoligenes group 1.46° 3.59¢ 1.11° 0.402 0.023
Prevotellaceae YAB2003 _group 0.59 0.09 0.55 0.129 0.099
Papillibacter 0.15° 0.05° 0.12° 0.020 0.008
Selenomonas 0.12% 0.01° 0.16* 0.036 0.046
Lachnobacterium 0.18 0.01° 0.15° 0.026 0.004
Ruminiclostridium_6 0.15° 0.66° 0.06° 0.081 0.003
Ruminococcaceae_UCG-013 0.11° 0.62¢ 0.07° 0.091 0.018
Tyzzerella_3 0.16° 0.64* 0.10° 0.088 0.006
Prevotellaceae_Ga6Al group 0.15 0.33 0.14 0.040 0.067
unclassified_o_Bacteroidales 0.14%® 0.19° 0.07° 0.025 0.040
Eubacterium_ventriosum_group 0.25° 0.04° 0.10° 0.040 0.033
Erysipelotrichaceae_UCG-004 0.31 0.07 0.21 0.043 0.053
Anaeroplasma 0.432 0.08° 0.21° 0.064 0.039
Alloprevotella 0.18 0.09 0.31 0.045 0.056

Diets: C, corn and corn silage diet; L, sugar beet pulp and alfalfa silage diet; S, steam-flaked corn and corn
silage diet. SEM, standard error of the mean.

b means within a row with different superscripts differ significantly (P < 0.05).

Correlation between rumen fermentation indexes and ruminal bacteria

Correlations between the top significantly affected ruminal bacterial genera (with a relative
abundance > 0.1% in at least one of the samples) and the rumen fermentation end-products are
shown in Figure 5.2. The NH3-N concentration was positively correlated to Prevotella 7,
Ruminococcaceae UCG-005 and Selenomonas. The lactic acid concentration was positively
correlated to Ruminococcaceae UCG-005. The acetate proportion was positively correlated to
Prevotella 1 and negatively correlated to Selenomonas. The propionate proportion was
positively correlated to Prevotella 7 and Selenomonas but negatively correlated to
Ruminiclostridium_6 and Tyzzerella 3. The butyrate proportion was negatively correlated to
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CAG-352 and Ruminococcus 2 whereas the valerate proportion was positively correlated to

Prevotella 7.

Selenomonas .1
105

Ruminiclostridium_6 0
Tyzzerella_3 . 03
Ruminococcaceae_UCG-005
CAG-352

Prevotella_7

Ruminococcus_2

Ruminococcus_1

Prevotella_1

Figure 5.2. Correlation analysis between affected fermentation end-products and affected bacterial
genera (relative abundance > 0.1% in at least one sample) in rumen fluid of dairy cows fed two glucogenic
and a lipogenic diet. Colours indicate correlation direction and strength as represented in the legend; blue, a
negative correlation; red, a positive correlation; darker colours indicate a stronger correlation. *, P < 0.05, **,
P <0.01, *** P <0.001.

Rumen metabolomics profiling

The total ion chromatograms of QC samples under both positive and negative ion modes are
shown in the Supplementary Figure S5.3, in which the overlap of QC samples showed the
high repeatability and accuracy of the detected data. All samples were first examined by PCA
to determine the differences in metabolites among diets and the degree of variation within diets
following positive and negative mode ionization (Figure 5.3). The PCA results showed samples
from diet L could be significantly separated from those in the other two diets in both positive
and negative ionization modes. The OPLS-DA score plots and response permutation test
between two groups under both positive and negative ion modes are shown in Figures S4 and
S5. All samples presented in the score plots were within the 95% Hotelling T? ellipse and clear

separations were observed between every two groups (Figure S5.4 a, ¢, e and Figure S5.5 a,
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¢, ). The permutation tests showed the corresponding R?Y values were 0.634, 0.610 and 0.737
for the positive (Figure S5.4 b, d and f) and negative ion modes 0.676, 0.741 and 0.720 for C
vs. L, S vs. L and C vs. S, respectively (Figure S5.5 b, d and f), which were all above 0.5

indicating the effectivenees of this model in distinguishing the differences between diets.

After searching against the HMDB, a total of 504 metabolites were quantified in all rumen fluid
samples from cows fed the three diets, with 52.3% originating from lipids and lipid-like
molecules, 12.6% from organic acids and derivatives and 11.7% from organoheterocyclic
compounds at the superclass level (Supplementary Figure S5.6). At the subclass level, the top
three metabolite categories were amino acids, peptides and analogues (10.6% of all metabolites),

fatty acids and conjugates (9.3%) and triterpenoids (6.4%) (Supplementary Figure S5.7).

Based on VIP > 1 and P < 0.05, a total of 188 significantly differential metabolites (109 in
positive and 79 in negative ion mode) were identified based on the feeding of the three diets, of
which 81 metabolites belong to the lipids and lipid-like molecules, 18 to organoheterocyclic
compounds, 14 to organic acids and derivatives and 11 to phenylpropanoids and polyketides at
a superclass level (Supplementary Table S5.1). At a subclass level, the top three categories
with the most differential metabolites were triterpenoids (16, metabolite amount), amino acids,
peptides and analogues (11) and fatty acids and conjugates (10) (Supplementary Table S5.1).

The top 20 most abundant metabolites are shown in Table 5.6.

In addition, the top 10 enriched KEGG pathways of the differential metabolites set are shown
in Figure 5.4. The pathways of protein digestion and absorption, biosynthesis of plant
secondary metabolites, aminoacyl-tRNA biosynthesis and tryptophan metabolism were the top

pathways that influenced by the dietary treatments.
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Figure 5.3. Principal component analysis (PCA) of metabolites based on metabolomics analysis in rumen
fluid of dairy cows fed two glucogenic (C, S) and a lipogenic (L) diet following (a) positive and (b) negative
mode ionization. Diets: C, corn and corn silage diet; L, sugar beet pulp and alfalfa silage diet; S, steam-flaked

corn and corn silage diet. QC: quality control sample.
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Figure 5.4. The top 10 enriched KEGG pathways of all significantly affected metabolites based on
metabolomics analysis in rumen fluid of dairy cows fed two glucogenic and a lipogenic diet. The colour

shows enrichment significance; bubble size represents the number of metabolites enriched in the pathway in the

legend. KEGG = Kyoto Encyclopedia of Genes and Genomes.
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Discussion

The study aimed to fully understand the effects of glucogenic and lipogenic diets on the ruminal
bacterial community of dairy cows and the resulting fermentation products through 16S rRNA
sequencing and metabolomic analysis. The ruminal fermentation end-products, as well as other
metabolites, were significantly different between the diet with starch as an energy source and
the diet with fibre as an energy source. Previous studies have shown that when feeding rations
high in starch, amylolytic microorganisms are present in larger percentages of the total
microbial population in the rumen, including Streptococcus bovis, Ruminobacter amylophilus,
Ruminococcus bromii, Selenomonas ruminantium, Prevotella ruminocola, Eubacterium
ruminantium, Succinimonas amylolytica, Lactobacillus sp. and Bacteriodes ruminicola
(Cerrilla and Martinez, 2003, Castillo-Gonzalez et al., 2014). In the present study, the rumen
fluid of cows fed diets C and S (high starch content) had greater abundances of the genera
Prevotella 7, Ruminococcus_2, CAG 352, Ruminococcaceae_ UCG-005, Lachnobacterium
and Selenomonas. The members in these bacterial genera might be more sensitive to dietary
starch content compared to the abovementioned amylolytic bacteria. This result indicates that
when fed high starch rations, the classical amylolytic bacteria may not always be present as the
dominant species with amylolytic activities. Similarly, Stevenson and Weimer (2007) showed
that the ruminal degradation of starch from high-grain dairy rations was only partly attributed
to the typical starch-fermenting bacteria (viz., Streptococcus bovis, Selenomonas ruminantium
and Ruminococcus bromii), indicating the presence of alternative starch-fermenting species
(especially Prevotella species) that await isolation by pure culture and/or the involvement of
eukaryotic species. In addition, Liu et al. (2019) observed that a high starch concentrate diet
stimulated the growth of Ruminococcus 2 suggesting its characteristic amylolytic activity,
which agreed with the present study. Since Prevotella 7 and Ruminococcus 2 was also
observed to be highly related to amylolytic activities in the present study, alternative starch-
fermenting species likely exist in the genus Prevotella 7 and Ruminococcus_2 that would need

to be isolated in pure culture for further identification.

Besides, the literature shows that the fibrolytic bacteria in the rumen include Fibrobacter
succinogenes (cellulose, hemicellulose and pectin digesters), Ruminococcus albus (cellulose
and hemicellulose digesters), Ruminococcus flavefaciens (cellulose and hemicellulose
digesters), Butyrivibrio fibrisolvens (cellulose, hemicellulose and pectin digesters), Prevotella

ruminicola (hemicellulose and pectin digesters), Lachnospira multiparus (pectin digester),
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Succinivibrio dextrinosolvens (pectin digester) and Eubacterium ruminantium (cellobiose
digester) (Stewart et al., 1997, Krause et al., 2003, Castillo-Gonzalez et al., 2014, Zhou et al.,
2015). Among the most abundant genera in the rumen fluid of cows fed diet L, Ruminococcus_1,
Prevotella_I and Eubacterium_coprostanoligenes_group were significantly higher in relative
abundance than diets C and S. These bacterial genera are likely to have contributed mainly to
ruminal fibre digestion when diet L was fed to the cows. This result agrees with Stevenson and
Weimer’s research which indicated that the ruminal fibrolytic activities are attributed to the
combination of fibrolytic eucaryotes (protozoa or fungi) and novel uncultured fibrolytic

bacterial species (Stevenson and Weimer, 2007).

Compared to diet C which contained ground corn, diet S with steam-flaked corn did not lead to
a higher production of VFAs, nor did it reveal changes in the bacterial community typical for
these diets. Ren et al. (2019) reported that feeding 7-month-old Heifers a steam-flaking diet
resulted in a higher relative abundance of amylolytic bacteria genera including Succinivibrio,
Roseburia and Blautia, but lower fibrolytic bacteria including Ruminococcaceae UCG-014
and Ruminococcaceae UCG-013 compared to Heifers fed ground corn diet. The differences
compared to our study might be caused by the ages of the cows, which then indicates that the
ruminal bacteria community of Heifers was more sensitive to the dietary corn differing in

processing methods compared to adult dairy cows.

As the techniques of molecular microbial ecology have been developing over the past decades,
the taxonomy of bacteria has become more comprehensive. For instance, we detected multiple
genera within the family of Prevotellaceae, including Prevotella 1, Prevotella 7,
Prevotellaceae YAB2003 group and Prevotellaceae_Ga6A1 group. The genus of Prevotella,
the most abundant genus of the phyla Bacteroidetes (Thoetkiattikul et al., 2013), has been
known as a highly active hemicellulolytic bacteria (Matsui et al., 2000) and is also known to be
involved in the digestion of starch, xylan and pectin (Jami and Mizrahi, 2012). Sugar beet pulp
contains approximately 40% neutral detergent fibre and has a high proportion of neutral-
detergent soluble fibre, especially pectic substances (250 g/kg of dry matter) (Voelker and Allen,
2003). Among the multiple Prevotella genera, Prevotella 1 was the most abundant and its
abundance was significantly greater in diet L, while Prevotella 7 was abundant in diets C and
S. This indicates that the genus Prevotella I likely contains more hemicellulolytic and

pectinolytic species, while Prevotella 7 possesses more amylolytic species.
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Nagaraja and Titgemeyer (2007) observed that a diet higher in starch increases lactic acid
production resulting in a lower rumen pH. The higher concentration of lactic acid in the rumen
fluid when diets C and S were fed might have contributed to the observed decrease in pH as
total VFAs were not different among the three diets. When lactic acid production exceeds the
uptake capacity of the lactate utilizing microbes, accumulation of rumen lactic acids occurs
(Mills et al., 2014). The Streptococcus bovis, Selenomonas ruminantium, Butyrivibrio
fibrisolvens and Lactobacillus spp. are reported as lactate producers, while the Megasphaera
elsdenii was the major lactate utilizer of the ruminal bacterium (Hutton et al., 2012). Among
the ruminal bacteria detected in the current study, the abovementioned bacteria were all present
at a relatively low abundance < 0.01%. The difference in lactic acid production was more likely
caused by the different dominant bacteria genera, including the amylolytic and fibrolytic
bacteria mentioned above. Correlation analysis showed that Ruminococcaceae UCG-005
might play an important role in lactic acid production. In addition, sugar beet pulp contains a
high level of pectin which is degraded in the rumen more rapidly than cellulose and
hemicellulose (Mojtahedi and Danesh Mesgaran, 2011). Pectin fermentation in the rumen,
which does not inhibit cellulose and hemicellulose digestion, can produce less lactate and
propionate than starch fermentation, primarily because pectinolytic bacteria are also inhibited

at low pH in treatments C and S.

The substrate for rumen fermentation determines not only the abundance of microbes in the
ecosystem but also the metabolites profile (Abecia et al., 2018). Amino acid metabolism in
rumen is significant for its nutritional implications. In ruminants, the amino acids available in
the rumen originate from dietary and ruminal microbial protein degradation and then they are
either incorporated into microbial protein or deaminated to ammonia. The metabolomic data
revealed that the abundances of most metabolites in the subclass of amino acids, peptides and
analogues were higher when diets C and S were fed than diet L. Prevotella spp. are considered
to be among the prominent ruminal proteolytic bacteria (Wallace and Cotta, 1988) and there is
substantial evidence to support the role of Prevotella spp. in protein (Wallace and Brammall,
1985) and peptide (Wallace and McKain, 1991) metabolism in the rumen. The relative
abundance of Prevotella_7 was in line with the results of the metabolites related to amino acid
metabolism. In addition, early bacterial culture studies have shown that most rumen bacteria
need amino acids for growth (Bryant and Robinson, 1962) with methionine being important for
Prevotella spp. (Pittman and Bryant, 1964). In the present study, the higher relative abundance
of the genera of Prevotella I and Prevotellaceae_Ga6Al group in the treatment L might lead
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to higher consumption of L-methionine, which result in its lower abundance compared with the

treatments C and S.

The extent of ammonia production in the rumen is an important factor to be considered in the
nitrogen utilization of the ruminant. The rate of amino acid degradation is usually greater than
that of amino acid utilization by the ruminal microorganisms, and hence, excess amino acids
are being broken down, and amino acids are therefore the most important source of ammonia
in the rumen (Al-Rabbat et al., 1971, Chalupa, 1976). According to the metabolomics data, the
metabolites belonging to the amino acid, peptides and analogues had higher abundances when
cows received diets C and S, which could offer more metabolites for the production of NH3-N.
Previous studies also proved that ammonia metabolism was closely linked to starch metabolism
as the energy supplied from starch degradation is required for the incorporation of ammonia
into microbial cells, while conversely, insufficient ammonia may limit microbial growth and
microbial enzyme production. According to Russell et al. (1992), the bacterial community can
be divided into two categories, 1) fibrolytic bacteria which mainly use ammonia as a nitrogen
source for microbial protein synthesis, and 2) amylolytic bacteria which use amino acids to
grow next to ammonia for an important part. The fibrolytic bacteria that ferment cellulose grow
slowly because of the resistant structure of cellulose, which suggested that the presence of
amino acids did not provide a selective advantage over the presence of ammonia for the growth
of fibrolytic bacteria. The amylolytic bacteria have been estimated to derive 66% of their N
from preformed amino acids and the remaining 34% from ammonia when both are available
(Russell et al., 1992). A previous study showed that the Prevotella were capable of reducing
nitrogen losses in the rumen (Liu et al., 2019). Other species of probable significance include
Selenomonas ruminantium, Peptostreptococcus elsdenii and some strains of the genus
Butyrivibrio  (Bladen et al., 1961). In addition, the genera Prevotella 7,
Ruminococcaceae UCG-005 and Selenomonas were positively correlated with the NH3-N
concentration in the present study. Thus, the Prevotella 7 and Selenomonas might play an

important role in ammonia utilization.
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Conclusion

Combining microbiome and metabolomics analysis provided detailed information on the
associations between bacterial genera and fermentation metabolites in the rumen of dairy cows
fed two glucogenic and a lipogenic diet. Glucogenic diets with either ground corn or steam-
flaked corn in combination with corn silage as the main energy sources resulted in higher
ruminal lactic acid, NH3-N and propionate productions, but lower acetate production compared
to the lipogenic diet with sugar beet pulp and alfalfa silage as main energy sources. The
glucogenic diets with starch as an energy source would improve protein digestion thereby
resulting in increased availability of amino acids and NH3-N in the rumen, which might be
attributed to species in genera Prevotella 7 and Selenomonas. The typical amylolytic or
cellulolytic bacteria were not observed to be highly abundant in the rumen fluid of cows fed
diets high in starch or fibre, respectively. Bacteria belonging to the genera of Ruminococcus 2
and Prevotella_7 might contribute to the ruminal amylolytic activities when glucogenic diets
are fed while Ruminococcus 1 and Prevotella 1 might contribute to the fibrolytic activities of
the lipogenic diet. This may lead to new perspectives for the exploration of alternative species

of amylolytic and fibrolytic bacteria.
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Supplementary material

DNA extraction and amplification

The primers amplifying the V3-V4 hypervariable regions of the bacterial 16S rRNA gene: 338F
(5’-ACTCCTACGGGAGGCAGCAG-3’) and 806R (5'-GGACTACHVGGGTWTCTAAT-3").

PCR reactions were performed in a triplicate 20 pl mixture containing 4 pl of 5 x FastPfu Buffer,
2 ul of 2.5 mM dNTPs, 0.8 pl of each primer (5 pM), 0.4 pl of FastPfu Polymerase, 0.2 pl of
BSA and 10 ng of template DNA. The PCR program contains 3 min of denaturation at 95 °C,
27 cycles of 30 s at 95 °C, 30 s for annealing at 55 °C, 45 s for elongation at 72 °C and a final

extension at 72 °C for 10 min.
Sequence processing and analysis

Raw FASTQ files were quality-filtered by Trimmomatic and merged by FLASH according to
the following criteria: (i) The reads were truncated at any site receiving an average quality score
<20 over a 50-bp sliding window, (ii) Sequences with overlaps longer than 10-bp were merged
according to their overlap with mismatches < 2 bp and (iii) Sequences of each sample were
separated according to barcodes (exactly matching) and primers (allowing 2 nucleotide

mismatches), and reads containing ambiguous bases were removed.
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Figure S5.1. Rarefaction curves of Shannon index based on 16S rRNA sequencing technique in rumen
fluid samples of dairy cows fed two glucogenic (C, S) and a lipogenic (L) diet. Diets: C, corn and corn silage

diet; L, sugar beet pulp and alfalfa silage diet; S, steam-flaked corn and corn silage diet.
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Figure S5.2. Pieplot analysis of ruminal bacterial community at (a) phylum and (b) genus levels across
all rumen fluid samples of dairy cows fed two glucogenic and a lipogenic diet. The values indicate the

average relative abundance across all samples.
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Figure S5.3. Total ion chromatogram (TIC) of the quality control samples under both positive (a) and
negative (b) ion modes in LC-MS/MS analysis for the rumen fluid samples of dairy cows fed two

glucogenic and a lipogenic diet. LC-MS/MS, liquid chromatography coupled with tandem mass spectrometry.
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Figure S5.4. Orthogonal partial least squares discriminant analysis (OPLS-DA) score plots and

corresponding permutation test following positive mode ionization based on the metabolomics analysis

in rumen fluid of dairy cows fed two glucogenic (C, S) and a lipogenic (L) diet. a, c and e, separately

represent the score plots of C vs L, S vs L and C vs S; b, d and f, separately represent the permutation test of C

vs L, S vs L and C vs S. Diets: C, corn and corn silage diet; L, sugar beet pulp and alfalfa silage diet; S, steam-

flaked corn and corn silage diet.
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Figure S5.5. Orthogonal partial least squares discriminant analysis (OPLS-DA) score plots and

corresponding permutation test following negsitive mode ionization based on the metabolomics analysis

in rumen fluid of dairy cows fed two glucogenic (C, S) and a lipogenic (L) diet. a, c and e, separately

represent the score plots of C vs L, S vs L and C vs S; b, d and f, separately represent the permutation test of C

vs L, Svs L and C vs S. Diets: C, corn and corn silage diet; L, sugar beet pulp and alfalfa silage diet; S, steam-

flaked corn and corn silage diet.
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Figure S5.6. The metabolites classification at the superclass level based on metabolomics analysis in rumen
fluid of dairy cows fed two glucogenic and a lipogenic diet.
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Abstract

This study aimed to explore 1) the alterations of the amylolytic and fibrolytic microbial
communities and 2) the associated enzymes involved in the carbohydrate metabolism in the
rumen of dairy cows receiving three different dietary energy sources through a combination of
metagenomics and metaproteomics approaches. Two glucogenic (ground corn and corn silage
(diet C) and steam-flaked corn and corn silage (diet S)) and a lipogenic diet composed of sugar
beet pulp and alfalfa silage (diet L) were fed to six rumen-cannulated Holstein Friesian dairy
cows, paired by initial parameters of body weight, day in milk and milk production with an
animal within pairs randomly assigned to one of two replicated 3 % 3 Latin squares. The trial
consisted of three 21-d periods with rumen fluid samples collected on the last day of each period
for metagenomics and metaproteomics analysis. The metagenomics data show that the
amylolytic bacteria Succinimonas amylolytica and Ruminococcus bromii had higher relative
abundances when the cows were fed diets C and S compared to L. The fibrolytic bacteria of
Ruminococcus flavefaciens and Lachnospira multipara had higher relative abundance when
cows were fed diet L compared to diets C and S. The starch and sucrose metabolism pathway
were significantly down-regulated while the galactose metabolism and the pentose and
glucuronate interconversions were significantly up-regulated when cows were fed diet L
relative to diets C and S. For the enzymes involved in the starch and sucrose metabolism, the
relative abundances of o-amylase, pullulanase and maltose o-D-glucosyltransferase were
higher but the cellulose, glucokinase and isoamylase were lower in samples of diets C and S
compared to L. For the metaproteomics data, the taxonomic analysis showed that the relative
abundances of the amylolytic bacteria Succinimonas amylolytica and Ruminococcus bromii
were higher but the relative abundance of the fibrolytic bacteria Prevotella ruminicola was
lower in the samples of diets C and S compared to L. Among the differential affected enzymes,
cellulase (derived from Ruminococcus sp.), o-amylase (Prevotella buccae) and glucose-1-
phosphate adenylyltransferase (7reponema sp.) were up-regulated in the rumen fluid of cows
fed diet L. While the a-amylase (4deromonas enteropelogenes and Trichomonas vaginalis G3),
pullulanase (Succinimonas amylolytica, Photorhabdus australis, Photobacterium marinum and
Photorhabdus asymbiotica) and amylopullulanase (Selenomonas bovis) were up-regulated in
the rumen fluid samples from diets C and S compared to L. Most amylolytic and fibrolytic
bacterial communities were unaffected by the starch and fibre alterations in diets, but the

amylolytic bacteria of Succinimonas amylolytica and Ruminococcus bromii were observed to
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be sensitive to starch as an energy source relative to fibre. The starch and sucrose metabolism
were up-regulated when cows were fed diets C and S compared to L, which was attributed to
the enzyme pullulanase originated from Succinimonas amylolytica. The integration of
metagenomics and metaproteomics showed to be efficient to detect the shifts of the rumen

microbes in response to diets.

Keywords: rumen, diet, metagenomics, metaproteomics, bacteria, CAZyme, KEGG
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Introduction

As an ecosystem, the rumen harbours a huge number of microorganisms which contribute to
the fermentative degradation of coarse vegetation, grass and other dietary ingredients. The
ruminal microorganism produces an array of enzymes to degrade and utilize different plant
constituents. Carbohydrates form the main energy source in the dariy cows’ diet of which starch
and fibre are the most widely used. Adjusting the source and ratio of dietary starch and fibre is

a popular practical method for nutritionists to improve the energy status of dairy cows.

Previous studies have reported the amylolytic and fibrolytic activities in the rumen including
the communities and their related enzymes (Stewart et al., 1997, Kevin, 2000, Miron et al.,
2001). Although updated insight into the structure of the rumen microbiota has been reported,
there exists an incomplete understanding of the microbial mechanisms of starch and fibre
digestion when jointly offered in composite diets, for instance, the sensitivity and interactions

of amylolytic and fibrolytic microbes, the diversity of enzymes and the metabolism pathways.

Nowadays, the widely used ‘omics’ technologies have enhanced the exploration of the structure,
diversity and function of the microbial community in the rumen, such as metagenomics,
metatranscriptomics, metaproteomics and metabolomics. Metagenomics is frequently used to
assess the community structure and gene function potential of the rumen microbiome (Stewart
et al., 2019, Shen et al., 2020). However, the gene expression patterns are not always directly
translatable to their biological functions, thus the functionality needs to be confirmed at the
protein level. The metaproteomics analysis aims at characterising the entire complement of
proteins that are expressed by the microbiome in a given environment pool at a certain time
point. The application of metaproteomics on ruminal microorganisms is still limited due to the
difficulties for rumen samples in separating the prokaryotic cells from the residual matter before
protein extraction and the low availability of accurate reference databases (Deusch et al., 2015,
Deusch et al., 2017). Technical progress in mass spectrum and the establishment of more
databases with high-quality reference sequences promote the application of metaproteomics
analysis. Although challenging, the application of meta-proteomics has the potential for a more
complete understanding of the rumen (Hart et al., 2018). The combination of metagenomics
and metaproteomics has been applied in studying rumen functioning (Zhu et al., 2016), but to

the authors’ knowledge, such studies are still very limited.
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The aim of the present study was to explore 1) the alterations of the amylolytic and fibrolytic
microbial communities and 2) the associated enzymes involved in the carbohydrate metabolism
in the rumen of dairy cows receiving three different dietary energy sources through the
combination of metagenomics and metaproteomics approaches, then to enlarge our

understandings of the omics application on rumen function studies.

Materials and methods

Animals and experimental design

All animals involved in this experiment were cared according to the Chinese Guidelines for
Animal Welfare and the study was approved by the Animal Care and Use Committee of the
Chinese Academy of Agricultural Sciences (IAS2019-6).

Six rumen-cannulated, first parity Chinese Holstein Friesian dairy cows were allocated to a
replicated 3 x 3 Latin square design. At the start of the experiment, cows were (mean = SD)
108 £ 10 days in milk (DIM) with an average milk yield of 28 + 1.7 kg/d and a bodyweight of
578 £33.5 kg. Cows were paired by initial weight, DIM and milk production and subsequently
randomly assigned to one of the two Latin squares. The trial consisted of three 21-d
experimental periods, where each period contained a 20-d feed adaptation period, followed by
a 1-d period of data and sample collection. Diet treatments included a lipogenic diet (L, sugar
beet pulp and alfalfa silage as energy sources), glucogenic diet one (C, ground corn and corn
silage as energy sources) and glucogenic diet two (S, steam-flaked corn and corn silage as
energy sources). The diets were formulated to be isoenergetic according to NRC (2001) to meet
or exceed the energy requirements of Holstein dairy cows yielding 25 kg of milk/d with 3.5%
milk fat and 3.0% milk protein. Diet composition and its chemical analysis are shown in Table
6.1. Experimental animals were fed their respective diet three times (07:00, 14:00 and 20:00)

and had free access to water.

Sample collection

On d 21 of each period, rumen content was collected from cranial, caudal, dorsal and ventral
locations through the rumen fistula of each animal approximately 1 h after morning feeding.

Rumen contents were pooled per animal and immediately strained through 4 layers of

cheesecloth (400 ml rumen fluid per cow). Two cryogenic vials of rumen fluid (5 ml/vial) per
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cow were separately collected and directly snap frozen and kept in liquid nitrogen until stored

at -80 °C, for further metagenomics and metaproteomics analysis.

Table 6.1. Ingredient and chemical composition of the two glucogenic (C, S) and a lipogenic (L) diet

Experimental diet

Item
C L S

Ingredient composition, % of dry matter
Corn, ground 28.3 - -
Steam-flaked corn - - 28.3
Sugar beet pulp - 30.1 -
Soybean meal 11.5 10.4 11.5
Rapeseed meal 7.2 39 7.2
Cottonseed meal 72 39 7.2
Alfalfa hay 7.4 6.7 7.4
Oat hay 45 4.1 4.5
Alfalfa silage - 39.5 -
Corn silage 322 - 322
Dicalcium phosphate 1.7 1.5 1.7

Composition, % of dry matter
Crude protein 20.6 20.8 20.4
Ether extract 23 2.1 3.0
Starch 18.6 44 15.6
Neutral detergent fibre 333 54.7 32.7
Acid detergent fibre 18.7 34.6 18.8
Calcium 0.8 1.3 1.0
Phosphorus 0.9 0.4 1.1
NEL, MJ/kg of dry matter 7.1 8.7 7.2

Diets: C, corn and corn silage diet; L, sugar beet pulp and alfalfa silage diet; S, steam-flaked corn and corn

silage diet. NEr, net energy for lactation, calculated based on NRC (2001).
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Metagenomic analysis
DNA extraction and metagenomic sequencing

A total of 18 rumen fluid samples (6 samples for each diet) were used for metagenomics
analysis. DNA was extracted using the QIAamp DNA stool mini kit (Qiagen, Hilden, Germany).
The DNA concentration was checked on a NanoDrop ND-2000 spectrophotometer (NanoDrop
Technologies, Wilmington, DE, USA), and the purity was monitored on 1% agarose gel
electrophoresis. Extracted DNA was stored at -80 °C until further processing.

DNA extract was fragmented to an average size of about 300 bp using Covaris M220 (Gene
Company Limited, China) for paired-end library construction using the TruSeq™ DNA Sample
Prep Kit (Illumina, San Diego, CA, USA). Adapters containing the full complement of
sequencing primer hybridization sites were ligated to the blunt end of fragments. Paired-end
sequencing was performed on the Illumina HiSeq4000 platform (Illumina Inc., San Diego, CA,
United States) at Majorbio Bio-Pharm Technology Co., Ltd., (Shanghai, China) using the HiSeq
3,000/4,000 PE Cluster Kit and the HiSeq 3,000/4,000 SBS Kit according to the manufacturer’s

instructions (www.illumina.com).
Sequencing data analysis and genome assembly

Raw sequences were firstly filtered for reads with the adapter contamination at the end of the
reads by SeqPrep (Version 1.1). Subsequently, reads with low quality (quality score < 20, or
reads length < 50 bp, or having ambiguous N bases) were removed by the program Sickle
(Version 1.33). Then, the quality-passed reads were aligned to the bovine genome by the
Burrows Wheeler Aligner (Version 0.7.9a), and all hits associated with the reads or their mated
reads were finally removed. Only high-quality pair-end reads and single-end reads were further
analysed. The data was analysed on the free online platform of Majorbio I-Sanger Cloud
Platform (www.i-sanger.com). The resulting cleaned sequences were de novo assembled into
contigs using Megahit (Version 1.1.2). Only contigs longer than 300 bp were used for further

analysis.
Gene prediction and functional annotation

Open reading frames (ORFs) within contigs were used for gene prediction by MetaGene
(http://metagene.cb.k.u-tokyo.ac.jp/). The predicted ORFs with a length being or over 100 bp

were retrieved and translated into amino acid sequences using the NCBI translation table.
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Subsequently, the predicted genes were clustered using CD-HIT (Version 4.6.1) with a standard
of 95% nucleotide identity and 90% of length coverage. The longest sequences of each cluster
were chosen as representative sequences to construct the non-redundant gene catalogues.
Quality-controlled reads from each sample were mapped to the non-redundant gene catalogues
with 95% identity using SOAPaligner (version 2.2.1), and the gene abundance in each sample
was calculated by the reads per kilobase per million mapped (RPKM). Representative
sequences of the non-redundant gene catalogue were aligned to a Non-redundant (NR) database
in the National Center for Biotechnology Information (NCBI) with an e-value cutoff of 1e?
using Blastp (Version 2.3.0) for taxonomic annotations. The metabolism pathway annotation
was conducted using Blastp (Version 2.2.28+) against the Kyoto Encyclopedia of Genes and
Genomes (KEGG) database (http://www.genome.jp/keeg/) with an e-value cutoff of le™.
Carbohydrate-active enzymes (CAZymes) annotation was performed by hmmscan (Version
3.1b2) against the CAZy database (http://www.cazy.org) version 6.0 with an e-value cutoff of
le (Wang et al., 2019).

Metaproteomic analysis
Protein extraction and quality control

Among the 18 rumen fluid samples, the samples from the cows fed the same diet within each
period were pooled yielding a total of nine (pooled) rumen fluid samples which were used for
protein extracting. These samples were freeze-dried and ground using liquid nitrogen, mixed
and vortexed with lysis buffer (8§ M urea, 1% SDS, protease inhibitor), and then lysed on ice

for 30 min with the mixed solutions being vortexed every 5 min. Pure acetone (purity = 99.5%,
Guoyao, Shanghai, China) was added to the solution with a ratio of 1:4 (v/v), vortexed at 4 °C,
and then stored overnight at -20 °C to obtain protein precipitation. The solution was centrifuged
at 12,000 x g for 20 min at 4 °C, the pellet was collected and washed three times by being
resuspensed in 90% pre-cooled acetone and centrifugated at 12,000 x g for 20 min under 4 °C.

After washing, the precipitate was re-suspended in lysis buffer (8 M urea + proteinase inhibitor

cocktail), sonicated for 2 min on ice, whereafter the lysate was centrifuged at 12,000 x g for 20
min under 4 °C, with the supernatant subsequently collected. Protein concentration in the

supernatant was determined by the Bicinchoninic acid (BCA) method using a BCA Protein

Assay Kit (Beyotime Biotechnology). The protein quality was evaluated by SDS-PAGE.
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Protein digestion and peptide quantification

Protein was firstly digested with trypsin. Briefly, 100 pg protein was mixed in a sample tube
with the triethylammonium bicarbonate buffer (TEAB) to a final concentration of 100 mM,
whereafter the tris-2-carboxyethyl phosphine (TCEP) was added to a final concentration of 10
mM before incubating the tube at 37 °C for 60 min. lodoacetamide (IAM) was added to a final
concentration of 40 mM and the solution was allowed to react in the dark. After 40 min, pre-
cooled acetone was added (v/v = 6:1) to the sample and the solution incubated at -20 °C for 4
h to precipitate protein which was collected after centrifugation at 10,000 x g for 20 min. The
pellet was resuspended in 100 ul TEAB (100 mM). Then, the trypsin was added into the protein
solution in a ratio of 1:50 (trypsin:protein, m/m). The protein was digested at 37 °C overnight.

Upon completion of digestion, the hydrolysed peptide was dried using a vacuum pump.

Then, the dried peptide was resuspended in 0.1% trifluoroacetic acid and desalted with the
Oasis® HLB 96-well plate (Waters, US) and Oasis® MCX pElution plate (Waters, US) and
dried using a vacuum pump. The concentration of peptide was determined using a quantitative
colorimetric peptide assay (NO. 23275, ThermoFisher Scientific, USA). Loading buffer (2%
acetonitrile and 0.1% formic acid) was added to each tube to a peptide concentration of 0.25
ng/ul before each sample was analysed by liquid chromatography coupled with tandem mass

spectrometry (LC-MS/MS) analysis.

LC-MS/MS analysis

The mass spectrometry analysis was performed on a Q Exactive HF-X mass spectrometer
(Thermo, USA) coupled with Easy-nLC 1200 (Thermo, USA). Each peptide sample was
injected onto a C18-reversed column (75 pm x 25 cm, Thermo, USA) and separated for 120
min at a flow rate of 300 nL/min, then eluted in buffer A (2% acetonitrile and 0.1% formic acid)
and a 90 min gradient of 5-100% buffer B (80% acetonitrile and 0.1% formic acid). Q Exactive
HF-X mass spectrometer was operated in the data-dependent mode to switch automatically
between MS and MS/MS acquisition. Survey full-scan MS spectra (m/z, 300-1,500) were
acquired for selecting precursor ions with a mass resolution of 60 K, followed by high energy
collisional dissociation (HCD)-MS/MS scan with a resolution of 15 K. The dynamic exclusion

parameter was set as 18 s.
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Data processing and analysis

For protein identification, the raw MS/MS spectra were searched against the customized
database constructed by the metagenomic-derived nonredundant protein sequence using
Proteome Discoverer™ Software 2.4 (Thermo Fisher Scientific, San Jose, CA). The highest
score for a given peptide mass (best match to that predicted in the database) was used to identify
parent proteins. The parameters for protein searching were set as follows: tryptic digestion with
up to two missed cleavages, carbamidomethylation of cysteines as fixed modification and
oxidation of methionines and protein N-terminal acetylation as variable modifications. Peptide

spectral matches were validated based on a false discovery rate (FDR) < 1%.

Annotation of all identified proteins was performed using the Kyoto Encyclopedia of Genes
and Genomes (KEGG, http://www.genome.jp/kegg/) pathway analysis. The protein-derived
taxonomic analysis was determined by comparing the sequence against the NR database in

NCBL

The differentially expressed proteins (DEPs) in each group set (A vs B) were determined with
the thresholds of fold change (FC) < 0.5 (this protein is down-regulated in group A than in
group B) or > 2 (up-regulated) and P < 0.05. Volcano plots were created in R (version 3.3.1)
with the FC (log2 value) as the abscissa and the P-value as the ordinate to summerize the DEPs
information. DEPs were further performed for KEGG pathway enrichment analysis using
Fisher’s exact test adjusted by FDR with Scipy.stats package in Python (versionl.0.0),

significantly enriched pathways were considered with a value of P < 0.05.
Data analysis

The comparison of the microbes and enzymes annotated from both metagenomics and
metaproteomics data were analysed by the one-way analysis of variance (ANOVA) adjusted
with FDR using stats package in R software (version 3.3.1) and scipy package in Python
(version1.0.0). The P < 0.05 was considered as a significant level and 0.05 < P < 0.1 as a
potentially significant level (trend). The DEPs in each group set of A vs B (control group vs

experimental group) were analysed with Student’s #-test in R (version 3.3.1).
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Results

Rumen metagenome data statistics

Approximately 1.65 billion raw reads comprising 249 gigabases of raw data were generated
from the 18 rumen fluid samples, with 91,640,810 + 8,260,725 (mean + SD) reads per sample
(Supplementary Table S6.1). About 1.21 billion optimized reads, out of raw reads were
generated after eliminating low-quality reads and removing the represented bovine genome.
Then, de novo assembly was performed as described above, resulting in a total of 18,627,023
contigs, with an N50 of 673 bp (range 578-808 bp). For gene prediction, 24,620,061 ORFs were
predicted using the program MetaGene. 8,114,000 genes were detected for constructing the

non-redundant gene catalogue.
Microbial composition

The taxonomic analysis of all protein-coding genes in the metagenome at the domain level
revealed that the bacteria were the predominant microorganisms (96.5% of total sequences)
present among all samples, followed by viruses (1.2%), archaea (1.1%), eukaryotes (0.9%) and
unclassified (0.3%) (Supplementary Figure S6.1a). For bacteria, 16 phyla with a relative
abundance of all bacteria above 0.1% were identified among all samples (Supplementary
Figure S6.1b). The rumen fluid from cows fed diets C and S were dominated by Bacteroidetes
(49.2 and 49.8%, respectively), Firmicutes (31.5 and 31.8%) and Proteobacteria (4.1 and 5.9%),
while the rumen fluid from cows fed diet L was dominated by Firmicutes (45.5%),
Bacteroidetes (36.2%) and Proteobacteria (3.2%). At the genus level, a total of 109 bacterial
genera were identified with a relative abundance of bacteria above 0.1% in all samples
(Supplementary Figure S6.1c). For samples from the treatment of diet L, the five dominant
genera included Prevotella (19.7%), Bacteriodes (8.9%), Clostridium (8.3%), unclassified tax
(4.3%) and Ruminococcus (4.1%). For samples from the treatments of diets C and S, Prevotella
(29.7 and 32.3%, respectively), Bacteriodes (9.2 and 8.8%), Clostridium (5.9 and 5.5%) and
two unclassified taxa (7.9 and 5.7%). A total of 294 bacterial spp. was detected with a relative
abundance within the bacterial community above 0.1%. The most abundant species for diet C,
L and S were Prevotella sp. CCMP3155 (2.8, 2.1 and 3.0%, respectively), Prevotella
ruminicola (2.7, 1.9 and 2.7%) and Prevotella brevis (2.7, 1.9 and 2.6%) (Supplementary
Figure S6.1d).
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The bacteria genera were compared between treatments and the top 20 genera in relative
abundance that were significantly affected are shown in the Supplementary Figure S6.2a. The
rumen fluid had higher relative abundances of Alloprevotella (P =0.017) and Lachnobacterium
(P = 0.009), but lower unclassified f Lachnospiraceae (P = 0.024) when the cows were fed
diets C and S compared to diet L. The bacteria species were also compared between treatments
and the top 20 relative abundant bacterial species significantly affected by the diets are shown
in the Supplementary Figure S6.2b. Diets C and S resulted in a significantly higher relative
abundances of Prevotella albensis (P = 0.049), Succinimonas amylolytica (P = 0.003),
Ruminococcus bromii (P = 0.002), Eubacterium sp. CAG:202 (P = 0.002), Ruminococcus sp.
CAG:108 (P = 0.003), Succinivibrionaceae bacterium WG-1 (P = 0.003), Ruminobacter sp.
RMS87 (P = 0.031), Lachnobacterium bovis (P = 0.009), Alloprevotella rava (P = 0.013),
Sutterella wadsworthensis (P = 0.013), Eubacterium sp CAG:603 (P = 0.042), Bacteroides sp.
CAG:530 (P = 0.046), Prevotella sp. P4-65 (P = 0.019) and Bacteroides graminisolvens (P =
0.021) in the rumen fluid of the cows compared to when diet L was fed. Feeding diet L resulted
in higher relative abundances of Ruminococcus flavefaciens (P = 0.041), Parabacteroides
distasonis (P = 0.019), Clostridium sp. CAG:433 (P = 0.017), Clostridium sp. CAG:678 (P =
0.010), Eubacterium plexicaudatum, (P = 0.026), Lachnospira multipara (P = 0.019) and
Clostridium sp. CAG:492 (P =0.019) in the rumen fluid compared to the two glucogenic diets.
Feeding the cows diet S resulted in a higher relative abundance of Selenomonas ruminantium

compared to the other diets (P = 0.041).

The comparisons for the typical amylolytic and fibrolytic bacteria are shown in Figure 6.1. The
amylolytic bacteria of Succinimonas amylolytica (P = 0.003) and Ruminococcus bromii (P =
0.002) had higher relative abundances in the cows receiving diets C and S than diet L. The
relative abundance of Selenomonas ruminantium was higher when feeding diet S than diet L (P
<0.05). As for the fibrolytic bacteria, the relative abundances of Ruminococcus flavefaciens (P
= 0.041) and Lachnospira multipara (P = 0.019) were significantly higher in the cows when
diet L was fed compared to when diet C and S was fed. Although not significant, the relative
abundance of Ruminococcus albus and Lachnospira multipara was numerically higher and
[Eubacterium] cellulosolvens numerically lower when the cows were fed diet L compared to
diet C and S. In addition, Butyrivibrio fibrisolvens had a higher relative abundance when the

cows were fed diet S.
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Figure 6.1. Comparison of amylolytic bacteria (a) and fibrolytic bacteria (b) in rumen fluid of dairy cows
fed two glucogenic (C, S) and a lipogenic (L) diet. Diets, C, corn and corn silage diet; L, sugar beet pulp and

alfalfa silage diet; S, steam-flaked corn and corn silage diet. * P <0.05.

CAZymes of the rumen microbiome

Enzymes associated with the degradation of dietary carbohydrates, also referred as the
Carbohydrate active enzymes (CAZymes), mainly include starch degrading enzymes like
glucosidases and amylases and fibrolytic enzymes like cellulases and hemicellulases. CAZymes
comprise six classes including glycoside hydrolases (GHs), glycosyl transferases (GTs),
carbohydrate esterases (CEs), carbohydrate-binding modules (CBMs), polysaccharide lyases
(PLs) and auxiliary activities (AAs).
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The non-redundant contigs with 8,114,000 genes were blasted against the CAZymes database
(V6.0) using the hmmscan tool with an e-value cutoff of 1e. A total of 264,952 genes were
annotated to the CAZymes. Among the six classes of CAZymes, the GHs had the highest
relative abundance (52.6%), followed by GTs (26.4%), CEs (11.4%) CBMs (5.2%) and PLs
and AAs (4.4%) (Figure 6.2a). No significant differences between the top six classes were
observed among the three dietary groups (Supplementary Figure S6.3).

According to the phylogenetic origin of core microbial populations which primarily contribute
to the CAZymes, the genera of Prevotella, Bacteroides and an unclassified genus contributed
the most of the CAZyme encoding gene fragments of the GH, GT, CE, CBM, PL and AA
families (Figure 6.2b).

In order to evaluate the alterations in carbohydrate biodegradation, the GH families functioning
in the cellulose, hemicellulose and starch degradation were further compared (Supplementary
Table S6.2). After comparison, the GH families with P < 0.1 are listed in Table 6.2. For the
GH families related to fibre degradation, the relative abundances of GH16 (P =0.034), GH5 13
(P =10.032), GH5 26 (P = 0.042) and GH5 25 (P = 0.012) were higher when the cows were
fed diet C compared to L. The relative abundances of GH5 28 and GH48 were higher when the
cows were fed diet L than the other two diets. Feeding diet S resulted in a higher relative
abundance of GH13 14 (P = 0.017) in rumen fluid than diet L. In addition, 15 GH families
related to amylolytic functions were obtained. The relative abundances of GH13 36 (P =0.015),
GH13_13 (P = 0.022), GH13_28 (P = 0.003), GH13_15 (P = 0.022), GH13_2 (P = 0.003),
GH13_37 (P=0.004), GH13_42 (P=0.006), GH13_16 (P=0.015) and GH13_27 (P=0.079)
were higher when the cows were fed diets C and S compared to L. Diet S resulted in a higher
relative abundance of GH13 20 (P = 0.090) and GH13 14 (P =0.017) and the diet Cled to a
higher relative abundance of GH13_6 (P = 0.059) when separately compared to diet L.
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Figure 6.2. Circos map of CAZyme classes (a) and percent contributions of CAZymes from the major
microbial genera (b) based on metagenomics analysis in rumen fluid of dairy cows fed two glucogenic (C,
S) and a lipogenic (L) diet. Diets: C, corn and corn silage diet; L, sugar beet pulp and alfalfa silage diet; S,
steam-flaked corn and corn silage diet. GH, glycoside hydrolase. GT, glycosyltransferase. PL, polysaccharide
lyase. CE, carbohydrate esterases. CBM, carbohydrate-binding module. AA, auxiliary activity.
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Table 6.2. Glycoside hydrolase (GH) families involved in fibre and starch degradation identified in rumen

fluid samples of dairy cows fed two glucogenic (C, S) and a lipogenic (L) diet

Experimental diet
GH family category = Representative enzyme SEM P-value
C L S

Fibre degrading enzymes

GH16 Xyloglucanases 0.88° 0.70° 0.80®  0.030 0.034
GH5_13 B-D-galactofuranosidase 0.14° 0.08° 0.12%® 0.011 0.032
GHS5_26 Endo-B-1,4-glucanase 0.03? 0.01° 0.02% 0.003 0.042
GHS5_25 Endo-B-1,4-glucanase 0.02? 0.01° 0.02° 0.002 0.012
GH5_28 Endoglycosylceramidase <0.01 0.02 0.01 0.003 0.080
GH48 Cellobiohydrolases <0.01*  0.02° 0.00° 0.002 0.045
Starch degrading enzymes
GH13_36 a-Amylase 0.65° 0.37° 0.63* 0.048 0.015
GH13_20 Cyclic 0-1,6-maltosyl- 0.53 0.43 0.68 0.041 0.090
maltose hydrolase
GH13_13 Pullulanase 0.50? 0.34° 0.55* 0.033 0.022
GHI13_6 a-Amylase 0.41 0.30 0.37 0.020 0.059
GH13_14 a-Glycosidase 0.16% 0.09* 0.212 0.023 0.017
GH13_28 a-Amylase 0.16* 0.04° 0.132 0.016 0.003
GHI13_15 a-Amylase 0.112 0.05* 0.122 0.012 0.022
GHI13_2 a-Amylase 0.08° 0.03° 0.072 0.007 0.003
GH13_37 a-Amylase 0.072 0.00° 0.072 0.014 0.004
GH13_42 a-Amylase 0.04* 0.01° 0.032 0.004 0.006
GHI13_16 Maltose glucosylmutase 0.032 0.01° 0.022 0.003 0.015
GH13_27 a-Amylase 0.03 0.01 0.02 0.004 0.079

Diets: C, corn and corn silage diet; GH, glycoside hydrolase; L, sugar beet pulp and alfalfa silage diet; S, steam-
flaked corn and corn silage diet. SEM, standard error of the mean.

b means within a row with different superscripts differ significantly (P < 0.05).

Carbohydrate metabolism pathways

To better understand the alterations of the carbohydrate metabolism relative to the three diets,
the carbohydrate metabolism KEGG pathways were compared (Supplementary Table S6.3),
in which the starch and sucrose metabolism was significantly down-regulated while the
galactose metabolism and the pentose and glucuronate interconversions were significantly up-
regulated when diet L was fed compared to diets C and S. The enzymes involved in these
affected pathways were further analysed (Supplementary Figure S6.4). The affected enzymes

in starch and sucrose metabolism are shown in Figure 6.3a. The relative abundances of a-
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amylase (Enzyme commission number, EC3.2.1.1, P = 0.005), pullulanase (EC3.2.1.41, P =
0.020) and maltose o-D-glucosyltransferase (EC5.4.99.16, P = 0.026) were higher, while the
cellulose (EC3.2.1.4, P = 0.030), glucokinase (EC2.7.1.2, P = 0.008) and isoamylase
(EC3.2.1.68, P = 0.033) were lower in the rumen fluid of dair cows when diets C and S were
fed compared to diet L. The differentially expressed enzymes involved in pentose and
glucuronate interconversions including pectinesterase (EC3.1.1.11, P = 0.033), L-arabinose
isomerase (EC5.3.1.4, P = 0.013), tagaturonate reductase (ECI.1.1.58, P = 0.002),
oligogalacturonide lyase (EC4.2.2.6, P =0.014) and polygalacturonase (EC3.2.1.15, P=0.043)
were all up-regulated when cows were fed diet L compared to diets C and S (Figure 6.3b).
Only two enzymes in the galactose metabolism (Figure 6.3¢c) were affected by dietary
treatments, 6-phospho-beta-galactosidase (EC3.2.1.85) and lactose-specific IIA component
(EC2.7.1.207), both of which were up-regulated (P = 0.030 and 0.021, respectively) when cows

were fed diet S relative to the other two diets.
Metaproteomic data statistics
Protein identification and taxonomic analysis

A total of 11,676 peptides and 5,328 protein from 9 pooled rumen fluid samples were identified
(Figure 6.4). As for each dietary treatment, a total of 4,199 proteins were detected from all
rumen fluid samples of the cows fed diet C, 3,800 for diet L and 4,284 proteins for diet S
(Supplementary Figure S6.5).
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Figure 6.3. Affected enzymes involved in a) starch and sucrose metabolism, b) pentose and glucuronate

interconversions and c) galactose metabolism pathways based on metagenomics analysis in rumen fluid

samples of dairy cows fed two glucogenic (C, S) and a lipogenic (L) diet. a) 3.2.1.1, a-Amylase; 3.2.1.4,
Cellulase; 2.7.1.2, Glucokinase; 3.2.1.41, Pullulanase; 3.2.1.68, Isoamylase; 5.4.99.16, Maltose o-D-

glucosyltransferase. b) 3.1.1.11, Pectinesterase; 5.3.1.4, L-arabinose isomerase; 1.1.1.58, Tagaturonate

reductase; 4.2.2.6, Oligogalacturonide lyase; 3.2.1.15, Polygalacturonase. c¢) 3.2.1.85, 6-Phospho-beta-

galactosidase; 2.7.1.207, Lactose-specific IIA component. Diets: C, corn and corn silage diet; L, sugar beet pulp

and alfalfa silage diet; S, steam-flaked corn and corn silage diet.
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Figure 6.4. Information for protein identification based on metaproteomics analysis in rumen fluid

samples of dairy cows fed two glucogenic and a lipogenic diet.

The protein-based taxonomic classification of the ruminal microbes is shown in Figure 6.5.
The detected proteins among all rumen fluid samples were mainly assigned to Bacteriodetes
(on average 28.9, 39.3 and 33.3% for diet C, L and S, respectively), Firmicutes (24.8,31.1 and
29.3%), Proteobacteria (22.9, 4.6 and 24.0%), Ciliophora (9.0, 7.1 and 4.5%) and Spirochaetes
(2.2, 5.4 and 1.3%) in the phyla level (Figure 6.5a). The dominant genera contained Prevotella
(22.7, 32.1 and 27.3% for diet C, L and S, respectively), Clostridium (1.9, 5.5 and 1.8%),
Treponema (2.1, 5.3 and 1.2%), Bacteroides (2.3, 2.8 and 2.4%) and Aeromona (3.6, 0.8 and
3.2%) (Figure 6.5b). At a species level, the top five abundant species when the cows were fed
diet L contained Prevotella ruminicola (3.5%), Prevotella sp. bacterium (3.2%), Prevotella sp.
tc2-28 (2.6%), Clostridiales bacterium (2.3%) and Stylonychia lemnae (2.1%). When cows
were fed diet C, the top five abundant species were Stylonychia lemnae (3.0%), Succinimonas
amylolytica (2.9%), Succinivibrionaceae bacterium WG-1 (2.4%), Prevotella ruminicola (2.4%)
and Clostridiales bacterium (2.2%). For diet S, the top five abundant species were
Succinimonas amylolytica (3.0%), Succinivibrionaceae bacterium WG-1 (2.4%), Prevotella
ruminicola (2.0%), Clostridiales bacterium (1.7%) and Prevotella sp. bacterium (1.6%)

(Supplementary Figure S6.6).
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Figure 6.5. Protein-based taxonomic profiles at the phyla (a) and genus (b) level based on metaproteomics
analysis in rumen fluid of dairy cows fed two glucogenic (C, S) and a lipogenic (L) diet. C, corn and corn

silage diet; L, sugar beet pulp and alfalfa silage diet; S, steam-flaked corn and corn silage diet.

The top 50 annotated bacterial species were compared among the three dietary treatments
(Supplementary Table S6.4). The comparisons of amylolytic and fibrolytic bacteria are shown
in Figure 6.6. For annotated amylolytic bacteria, the relative abundances of Succinimonas
amylolytica and Ruminococcus bromii were higher when the cows were fed diets C and S than
diet L (P <0.001 and P = 0.016, respectively). When the cows were fed diet S, a higher relative
abundance of Selenomonas ruminantium was observed compared to the other diets (P = 0.028)
(Figure 6.6a). As for the annotated fibrolytic bacteria, diet L resulted in a higher relative
abundance of Prevotella ruminicola (P = 0.016) but a lower Succinivibrio dextrinosolvens (P
=0.002) and a trend towards a lower relative abundance of [Eubacterium] cellulosolvens (P =
0.057) compared to the other diets (Figure 6.6b). When the cows were fed diet S, a higher
relative abundance of Butyrivibrio fibrisolvens (P = 0.009) was observed compared to diets L
and C. Although not significantly different, Ruminococcus flavefaciens and Lachnospira

multipara were all highly abundant in when diet L was fed compared to diets C and S.
Analysis of DEPs

Using a threshold of P <0.05 and FC > 2 (up-regulated) or < 0.5 (down-regulated), 865 proteins
were identified as DEPs, with 539 proteins up-regulated and 326 proteins down-regulated when
cows were fed diet L than diet S. For the L vs C comparison, 706 DEPs were identified with
446 proteins up-regulated and 260 proteins down-regulated for the L diet. The S vs C
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comparison showed 139 DEPs with 89 proteins up-regulated and 50 protein down-regulated for

the S diet (Figure 6.7 and Supplementary Table S6.5).
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Figure 6.6. Comparison of the amylolytic (a) and fibrolytic (b) bacteria based on metaproteomics analysis
in rumen fluid samples of dairy cows fed two glucogenic (C, S) and a lipogenic (L) diet. Diets: C, corn and
corn silage diet; L, sugar beet pulp and alfalfa silage diet; S, steam-flaked corn and corn silage diet. *, P <0.05;

**, P<0.01.
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Chapter 6

KEGG pathways analysis

To understand the functions of the DEPs, the KEGG pathway enrichment analysis was
performed. The top 10 KEGG pathways that enriched the most DEPs in the three pairwise
comparisons included the biosynthesis of antibiotics, the carbon metabolism, the ribosome, the
biosynthesis of amino acids, the glycolysis/gluconeogenesis, the carbon fixation pathways in
prokaryotes, the carbon fixation in photosynthetic organisms, the two-component system, the
starch and sucrose metabolism and the 2-oxocarboxylic acid metabolism (Table 6.3). As for
the starch and sucrose metabolism pathway, 35 proteins were down-regulated and 7 were up-
regulated when the cows were fed diet L compared to diet C, 42 proteins were down-regulated
and 12 were up-regulated when the cows were fed diet L compared to diet S, while this pathway

was not significantly enriched in DEPs between dietary treatments S and C.

Table 6.3. Significance values of the top 10 down- and up-regulated KEGG pathways according to the
differential expressed proteins based on metaproteomics analysis in rumen fluid samples of dairy cows

fed two glucogenic (C, S) and a lipogenic (L) diet

Down-regulated Up-regulated

Enriched KEGG pathways

LvsC LvsS SvsC LvsC LvsS SvsC
Biosynthesis of antibiotics 0.018 0.001 0.001 0.014  0.003  0.054
Carbon metabolism 0.032 0.036  0.055 0.043  0.034 0.056
Ribosome 0.001 0.001 0.050  0.001  0.001 0.005
Biosynthesis of amino acids 0.040 0.005 0.000 0.028  0.007  0.061
Glycolysis/Gluconeogenesis 0.003 0.022 0.008 0.060  0.056 0.034
Carbon fixation pathways in prokaryotes 0.038 0.041 0.107 0.049  0.015  0.048
Carbon fixation in photosynthetic organisms 0.002 0.003 0.053 0.059  0.054 0.048
Two-component system 0.007 0.003 0.070 0.081 0.071 0.101
Starch and sucrose metabolism 0.001 0.001 0.081 0.001 0.009 0.128
2-Oxocarboxylic acid metabolism 0.007 0.003 0.104 0.026  0.011 0.112

Diet: C, corn and corn silage; L, sugar beet pulp and alfalfa silage; S, steam-flaked corn and corn silage as the
main energy source. KEGG, Kyoto Encyclopedia of Genes and Genomes. P < 0.05 indicates a pathway

significantly enriched among differential affected proteins.

To compare the results with metagenomics analysis, the KEGG pathways of starch and sucrose
metabolism, pentose and glucuronate interconversions, and galactose metabolism were further
analysed. 92 proteins were detected to be involved in the starch and sucrose metabolism

pathway (Supplementary Table S6.6), which were annotated into 29 enzymes with EC
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numbers (Table 6.4 and Supplementary Figure S6.7a). Among the differential affected
enzymes, the cellulase (derived from Ruminococcus sp.), a-amylase (Prevotella buccae) and
glucose-1-phosphate adenylyltransferase (Treponema sp.) were up-regulated when the cows
were fed diet L. While the a-amylase (4eromonas enteropelogenes and Trichomonas vaginalis
G3), Pullulanase (Succinimonas amylolytica, Photorhabdus australis, Photobacterium
marinum and Photorhabdus asymbiotica) and Amylopullulanase (Selenomonas bovis) were up-
regulated when the cows were fed diets C and S compared to diet L. The amylopullulanase
(Selenomonas ruminantium) was up-regulated when cows were fed diet S compared to C. There
were 39 proteins annotated into the pentose and glucuronate interconversions pathway, of
which 20 proteins were differentially expressed among three dietary groups (Table 6.4 and
Supplementary Figure S6.7b). Consistent with the results of the metagenomic analysis, the
L-arabinose isomerase derived from Lachnobacterium bovis and Prevotella sp. tc2-28, the
tagaturonate reductase originating from Bacteroides pectinophilus and Prevotella sp.
(Prevotella sp. BP1-145, Prevotella sp. tc2-28, etc.) were up-regulated when cows were fed
diet L compared to C and S. As for the galactose metabolism pathway, 24 out of 44 detected
proteins were significantly regulated by dietary treatments (Table 6.4 and Supplementary
Figure S6.7¢), but these proteins were not significantly affected by diets based on the

metagenomics analysis.
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Discussion

“Omics” techniques have opened new avenues in nutrition research, offering advanced
approaches for exploring the complex metabolic pathways in response to diet. Rumen
metagenomics addresses the collective genetic structure and functional composition of the
ruminal microbes without the bias or necessity for culturing individual inhabitants. Rumen
metaproteomic reflects the entire complement of proteins that is actually expressed by the
rumen microbiome. The combination of these two omics technologies provides a more
complete picture of how the microbiome reacts to dietary changes at both the gene and protein
level. The present study aimed to show determining alterations in the ruminal microbial
community and functions of dairy cows receiving three different dietary energy sources through

a combination of the metagenomics and metaproteomics analysis.
Metagenomic analysis
Microbial community composition

The rumen microbial community plays a vital role in rumen digestion of feed and has been
shown to vary significantly according to the animal's breed, gender, age, diet and other
ecological factors (Jami et al., 2012, Morgavi et al., 2013, Jose et al., 2017). Nonetheless, most
of the studies have confirmed the predominant role of bacterial phyla Bacteroidetes and
Firmicutes in the rumen microbial community despite the diversity in diet, breed, or gender
(Stevenson and Weimer, 2007, Henderson et al., 2015, Jose et al., 2017). In this study, the
whole metagenome of 18 rumen fluid samples from dairy cows receiving two glucogenic diets
and a lipogenic diet was sequenced, resulting in a total of 249 Gbps of sequencing data.
According to the taxonomic analysis, the average composition of the rumen microbial
community among all samples was dominated by 45.1% of Bacteriodetes and 36.3% of
Firmicutes. However, the relative abundances of these predominant microbiomes were diverse
among diets, which agrees with the statement that the ruminal microbial community structure
is affected by changes of dietary composition (Morgavi et al., 2013). More specifically, when
diet L was fed, bacterial Firmicutes at the phyla level predominated, while with diets C and S,
the Bacteroidetes was the most abundant. Prevotella was the dominant genus among all samples,
indicating its important role in rumen digestion. This numerical dominance of Prevotella
observed here is in accordance with the study of Stevenson and Weimer (2007) who used

relative quantification real-time PCR and Jose et al. (2017) who used a metagenomics approach.

215



Chapter 6

The analysis of the taxonomic distribution also indicated that the genera Prevotella contributed

the most to all CAZymes.
Alterations of amylolytic and fibrolytic microbes

In order to detect the sensitivity and preference of the typical amylolytic and fibrolytic bacteria
to dietary starch and fibre alteration, these bacteria were specifically compared. The amylolytic
bacteria Succinimonas amylolytica and Ruminococcus bromii were higher when the cows were
fed diets C and S, indicating their high sensitivity to dietary starch alteration. Similarly, the
fibrolytic bacteria of Ruminococcus flavefaciens and Lachnospira multipara might be more
sensitive to dietary fibre content. Besides the abovementioned bacteria, the Prevotella albensis,
Eubacterium sp. CAG:202, Ruminococcus sp. CAG:108, Succinivibrionaceae bacterium WG-
1, Ruminobacter sp. RMS87, Lachnobacterium bovis, Alloprevotella rava, Sutterella
wadsworthensis, Eubacterium sp CAG:603, Bacteroides sp. CAG:530, Prevotella sp. P4-65
and Bacteroides graminisolvens might contribute to the amylolytic activities of diets C and S.
The bacteria of Parabacteroides distasonis, Clostridium sp. CAG:433, Clostridium sp.
CAG:678 and Prevotella albensis might play important roles in the fibre digestion in diet L. In
total, the typical reported amylolytic and fibrolytic microbes showed different sensitivities to
dietary starch and fibre changes. Some of them are very stable to the dietary starch and fibre
alteration, which indicates other yet identified species or microbial interactions might be
involved in amylolytic and fibrolytic activities in the rumen. The abovementioned species
detected in the present study may provide candidate species for future identification of new

amylolytic and fibrolytic microbes.
CAZymes and function analysis

The CAZy database (http://www.cazy.org/) includes the diverse enzyme groups that degrade,
modify, or create glycosidic bonds, which has been widely applied in ruminal enzymatic
research (Cantarel et al., 2009). This database possesses manually curated information for all
CAZyme families so that it can be used to evaluate the known enzymes or families involved in
certain activities, such as amylolysis, cellulolysis and hemicellulolysis. It is widely reported
that the GH family enzymes are the most abundant catalytic enzymes accounting for more than
50% of all enzymes classified into the CAZy database. The GH level (52.6%) of all CAZymes
classes in the present study is in line with a previous study (Gharechahi et al., 2021), which

explains the capacity of GHs in breaking down plant polysaccharides.
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Starch is degraded in the rumen by a series of enzymes mainly including a-amylase, B-amylase,
a-glucosidase, glucoamylase, isoamylase and pullulanase, etc., produced by rumen
microorganisms (Kotarski et al., 1992). The GH13, GH57 and their subfamilies are known as
the main o-amylase families (Shen et al., 2020). The GH14 comprises mostly f-amylase and
the GH15 and GH31 contain mainly a-glucosidase (Vorgias and Antranikian, 2002). In the
present study, they showed different sensitivities to dietary starch in the present study. Among
these amylolytic enzymes, only enzymes in GH13 subfamilies were significantly influenced by
diets (Table 6.2). As a review of the classification of glycosidase in families showed (Henrissat,
1991), the majority of the enzymes acting on starch, glycogen and related oligo- and
polysaccharides belong to the family GH13. The current GH13 family contains 44 subfamilies
(April 2022), 32 of which were detected in the present study. When diets C and S compared to
L were fed, more amylolytic enzymes including a-amylase (GH13 36, GH13 28, GH13 15,
GH13 2, GH13 37, GH13 42 and GH13_27), pullulanase (GH13 13 and GH13 14) and
maltose glucosylmutase (GH13 16) were observed. Among the affected enzymes, GHI3 15,
GH13 16, GH13 27, GH13 28 and GHI3 37 are monospecific subfamilies, while the
remaining subfamilies contain more than one reported activity (Stam et al., 2006). Nonetheless,
the other reported amylolytic GH families were not observed as being sensitive to the three

diets containing different energy sources.

Similarly, fibrolytic activity has been reported (Wang et al., 2019, Shen et al., 2020) to be
mainly associated with five GH families (GHS5, GH9, GH45, GH88 and GH97). The
endoglycosylceramidase (GHS_28) and cellobiohydrolases (GH48) were observed to be higher
when diet L was fed compared to diets C and S (Table 6.2). When cows received diet C, the
rumen fluid contained more cellulase (GHS 25 and GHS5 26), a-L-arabinofuranosidase
(GH5_13) and xyloglucanases (GH16) compared to when cows received diet L (Table 6.2).
GH16 is a polyspecific family of B-glycanases involved in the degradation or remodelling of
cell wall polysaccharides in biomass (Viborg et al., 2019). The GH5 family was the first
cellulase family described (Aspeborg et al., 2012) within which a diversity of enzyme activities
was observed (e.g., cellulases, mannanases, xylanases, galactanases and xyloglucanases).
Subfamily GH5 25 (derived mainly from thermophiles) and GH5 26 (derived mainly from
uncultured microorganisms) possess multiple enzymatic activities besides endo-B-1,4-
glucanase, such as exhibition of f-mannan-based and B-glucan-based polymers and activity
against lichenan (Voget et al., 2006). GH48 was reported as a critical component of numerous

natural lignocellulose-degrading systems. Even though GH48 was not highly abundant in the

217



Chapter 6

genomes of cellulose-degrading bacteria compared to GHS and GH9 in the present study, GH48
cellulases often act in synergy with GH9 cellulases which could increase their catalytic activity
significantly (Sukharnikov et al., 2012). The present study indicates that the fibrolytic GH
families show diverse preferences to fibre sources, such as corn silage (in diets C and S), alfalfa

silage and sugar beet pulp (diet L).

In addition, according to the KEGG pathway analysis, the pathway of starch and sucrose
metabolism was up-regulated by diets C and S. By comparing the enzymes involved in this
pathway, we found diets C and S had higher abundances of a-amylase, pullulanase and maltose
a-D-glucosyltransferase. All these enzymes belong to the amylolytic enzyme family GH13. In
addition, diet L had higher abundances of cellulase (GH5) and isoamylase (GH13). Thus, this
KEGG pathway analysis was largely in line with the CAZy results.

Metaproteomics analysis

Predictions based on gene sequences from culture-independent metagenomic techniques have
shown that there was considerable diversity in the rumen ecosystem of the dairy cows when
receiving the three dietary energy sources. However, it is difficult to determine the microbial
functionality only through analysing the predicted expression of key enzymes. In this regard, a
metaproteomics approach was performed to assess the relationship between the expressed
proteins and the predicted proteins by gene expression patterns in the derived organisms from

metagenomics data.
Taxonomic analysis

Taxonomic analysis from metaproteomics data was conducted by searching the identified
proteins against the NCBI NR database. By comparing the taxonomic structures detected from
both metagenomics and metaproteomics analysis, the results from metaproteomics were in line
with the taxonomic profiles from metagenomics which showed that Bacteriodetes, Firmicutes
and Proteobacteria were the most highly abundant phyla, which is also consistent with a
previous study (Hart et al., 2018). However, the relative abundances of phyla Proteobacteria
and Ciliophora became higher in metaproteomic analysis relative to metagenomic analysis.
Similarly, Prevotella was the predominant genera in both metagenomics and metaproteomics

analysis, the rest genera varied in their relative abundances.
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The comparison of amylolytic and fibrolytic microbes showed that when the cows were fed the
two starchy diets (C and S), rumen fluid contained a higher abundance of the amylolytic bacteria
Succinimonas amylolytica and Ruminococcus bromii which was inconsistent with the
metagenomics data. In addition, the relative abundance of Selenomonas ruminantium was
higher in diet S than diets C and L, in both the metagenomics and metaproteomics analysis. For
the fibrolytic bacteria, the results were also in line with the gene prediction results by the
metagenomics analysis. Ruminococcus flavefaciens and Lachnospira multipara has a
significantly higher abundance with the fibrous diet L while they also had a higher abundance
in diet L though not to a significant level with the protein-based taxonomic analysis. In addition,
comparing the two starchy diets C and S, Selenomonas ruminantium was observed to have a

higher relative abundance in diet S compared to C both at the gene and protein level.
Functions and enzymes

One of the major advantages of metaproteomics is the ability to assess the pathway alterations
by directly profiling the expressed proteins. To better understand the biological functions of the
DEPs, they were blasted against the KEGG database. We further analysed the enzymes
involved in starch and sucrose metabolism, pentose and glucuronate interconversions, and
galactose metabolism which were detected as being significantly regulated in the metagenomics
analysis. Similar to the gene function prediction results of the metagenomics analysis, the starch
and sucrose metabolism pathway was also observed to be up-regulated at the protein level by
diets C and S. For the affected enzymes, the cellulase, a-amylase, isoamylase and pullulanase
were observed to have the same results with metagenomics analysis. Therefore, based on these
observations it can be concluded that the starchy diets of C and S promoted the number of
amylolytic bacteria of Succinimonas amylolytica, leading to a higher production of the
amylolytic enzyme pullulanase, which contributes to the up-regulated pathway of the starch
and sucrose metabolism. Similarly, the L-arabinose isomerase and tagaturonate reductase in the
pentose and glucuronate interconversions pathway were up-regulated in the rumen fluid
samples of diet L compared to C and S both at a gene and protein level, which might be
attributed to the higher abundances of Prevotella sp. tc2-28 and Bacteroides pectinophilus.
Amylopullulanase produced by Selenomonas ruminantium was up-regulated in diet S than diet
C, which agrees with a higher relative abundance of this organism in diet S. Amylopullulanse
has the enzymatic activities of both alpha-amylase and pullulanase and is classified into the
GH13 and GH57 families, which is mostly produced by Lactobacillus spp. (Vishnu et al., 2006).
This result offers new insight for studying the enzymatic activities of Selenomonas ruminantium.
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Conclusion

According to the gene predictions by metagenomics analysis and taxonomic analysis of the
secreted proteins by metaproteomics, we found that most amylolytic and fibrolytic bacterial
communities were unaffected by the starch or fibre alterations in the concentrate diets. The
amylolytic bacteria of Succinimonas amylolytica and Ruminococcus bromii were observed to
be sensitive to starch as an energy source relative to fibre in the diet, of which the higher amount
of Succinimonas amylolytica led to increased production of pullulanase, thereby, contributing
to the upregulation of the starch and sucrose metabolism. The processing of corn by steam-
flaking, resulted in a higher proportion of the Selenomonas ruminantium compared to ground
corn both at the metagenomic and metaproteomic level, which would suggest a higher
production of amylopullulanase. The combination of metagenomics and metaproteomics
analysis showed to be a powerful approach for future research with an aim of investigating the
activities of certain microbial communities in response to diet changes in the rumen of dairy

COWS.
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Glycoside Hydrolases

Glycosyl Transferases

Carbohydrate Esterases

Carbohydrate-Binding Modules

Polysaccharide Lyases
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Figure S6.3. Comparison of the CAZyme classes based on metagenomics analysis in rumen fluid of dairy

cows fed two glucogenic (C, S) and a lipogenic (L) diet. Diets: C, corn and corn silage diet; L, sugar beet pulp

and alfalfa silage diet; S, steam-flaked corn and corn silage diet.
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Figure S6.5. Protein numbers identified by metaproteomics analysis in rumen fluid of dairy cows fed two
glucogenic (C, S) and a lipogenic (L) diet. a) three rumen fluid samples from dairy cows fed diet C; b) three
rumen fluid samples from dairy cows fed diet L; c) three rumen fluid samples from dairy cows fed diet S. Diets:

C, corn and corn silage diet; L, sugar beet pulp and alfalfa silage diet; S, steam-flaked corn and corn silage diet.
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35.00 M Prevotella ruminicola
u Prevotella sp. ne3005
m Stylonychia lemnae
30.00 tylony

Succinimonas amylolytica
M Clostridiales bacterium

= —
25.00 - ® bacterium P3
B Prevotella sp. tc2-28
B Succinivibrionaceae bacterium WG-1
20.00 B Prevotella sp. tf2-5
B Selenomonas bovis
M Entodinium caudatum
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Relative abundance %

W Stentor coeruleus
Succiniclasticum ruminis
M Tolumonas lignilytica

5.00
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0.00 B Prevotella sp. AGR2160

Figure S6.6. Top 20 bacterial species derived from metaproteomics analysis in rumen fluid of dairy cows
fed two glucogenic (C, S) and a lipogenic (L) diet. Diets: C, corn and corn silage diet; L, sugar beet pulp and

alfalfa silage diet; S, steam-flaked corn and corn silage diet.
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Table S6.1 The sequence information for metagenomics analysis from all rumen fluid samples of dairy

cows fed two glucogenic and a lipogenic diet

Raw reads Optimized reads Contig number N50(bp) ORFs Catalog genes

1,649,534,584 1,207,764,624 18,627,023 673.4 24,620,061 8,114,000

N50, the sum of the lengths of all contigs of size N50 or longer contain at least 50% of the total genome

sequence; ORFs, open reading frames.
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Metagenomics and metaproteomics analysis

Table S6.3. Comparison of the carbohydrate metabolism KEGG pathways based on the metagenomics

analysis in rumen fluid of dairy cows fed two glucogenic (C, S) and a lipogenic (L) diet

Pathways in carbohydrate metabolism C L S SEM P-value
Starch and sucrose metabolism 13.51*  12.64° 13.65° 0.175 0.036
Amino sugar and nucleotide sugar metabolism 13.01 13.78 13.09 0.228 0.475
Glycolysis/Gluconeogenesis 11.68 11.54 11.74 0.048 0.274
Pyruvate metabolism 9.29 9.17 9.18 0.087 0.834
Galactose metabolism 922>  9.57°  9.04° 0.079 0.039
Fructose and mannose metabolism 6.91 6.83 6.98 0.085 0.796
Glyoxylate and dicarboxylate metabolism 6.70 6.72 6.68 0.043 0.959
Pentose phosphate pathway 6.50 6.70 6.54 0.069 0.604
Citrate cycle (TCA cycle) 6.36 5.81 6.28 0.148 0.488
Butanoate metabolism 5.55 5.34 5.51 0.098 0.738
Pentose and glucuronate interconversions 420° 4600 4.21° 0.077 0.044
Propanoate metabolism 3.59 3.65 3.59 0.040 0.819
C5-Branched dibasic acid metabolism 1.69 1.61 1.75 0.058 0.595
Inositol phosphate metabolism 0.93 1.02 0.93 0.033 0.597
Ascorbate and aldarate metabolism 0.86 0.96 0.84 0.027 0.324

Diets: C, corn and corn silage diet; L, sugar beet pulp and alfalfa silage diet; S, steam-flaked corn and corn silage

diet. SEM, standard error of the mean.

a,b

means within a row with different superscripts differ significantly (P < 0.05).
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Chapter 6

Table S6.4. Comparison of top 50 bacteria species based on metaproteomics analysis in rumen fluid of
dairy cows fed two glucogenic (C, S) and a lipogenic (L) diet

Species C L S SEM P-value
Prevotella ruminicola 2.35b 3.49? 2.02° 0.256 0.016
Prevotella sp. ne3005 1.79% 3.17° 1.56° 0.27 0.002
Stylonychia lemnae 2.92 2.12 1.46 0.373 0.315
Succinimonas amylolytica 2.892 0.41° 2.97* 0.429 <0.001
Clostridiales bacterium 2.20 2.30 1.71 0.213 0.542
Bacterium P3 1.90 2.08 1.53 0.106 0.066
Prevotella sp. tc2-28 1.57° 2.567 1.29° 0.198 <0.001
Succinivibrionaceae bacterium WG-1 2.42° 0.46° 2.38° 0.332 <0.001
Prevotella sp. tf2-5 1.34% 2.057 1.15° 0.144 0.001
Selenomonas bovis 1.29% 0.61° 2.332 0.303 0.034
Entodinium caudatum 1.56 1.56 0.85 0.237 0.414
Prevotella bryantii 0.88 1.61 1.00 0.194 0.290
Ruminococcaceae bacterium P7 1.24 0.66 1.15 0.207 0.541
Treponema saccharophilum 0.68° 1.97* 035> 0262 0.001
Stentor coeruleus 1.38 1.01 0.55 0.184 0.190
Succiniclasticum ruminis 1.052 0.43% 1.38° 0.145 0.001
Tolumonas lignilytica 1.38 0.24 1.21 0.26 0.148
Prevotella multisaccharivorax 0.75 0.37 1.47 0.221 0.104
Prevotella brevis 0.64° 1.16 0.50° 0.111 0.007
Prevotella sp. AGR2160 0.44% 0.29% 1.142 0.152 0.017
Prevotella copri 0.35 0.44 1.03 0.148 0.105
Ruminobacter amylophilus 0.78* 0.18° 0.872 0.118 0.004
Ruminobacter sp. RM87 0.842 0.09% 0.852 0.135 0.002
Prevotellaceae bacterium HUN156 0.51 0.84 0.40 0.092 0.111
Succinivibrio dextrinosolvens 0.75* 0.08° 0.87° 0.132 0.002
Pseudocohnilembus persalinus 0.70 0.68 0.30 0.094 0.138
Treponema bryantii 0.47° 0.90° 029  0.094 0.001
Aeromonas simiae 0.96 0.10 0.54 0.287 0.534
Prevotellaceae bacterium MN60 0.49 0.62 0.45 0.04 0.182
Schwartzia succinivorans 0.40 0.59 0.51 0.043 0.220
Sarcina sp. DSM 11001 0.44 0.58 0.41 0.04 0.164
Tolumonas auensis 0.64* 0.10° 0.63* 0.094 0.001
Clostridia bacterium 0.50 0.38 0.47 0.046 0.629
Vitrella brassicaformis 0.54 0.53 0.24 0.085 0.281
Succinatimonas hippei 0.51% 0.12° 0.67 0.092 0.009
Aeromonas sp. RU39B 0.46 0.29 0.52 0.056 0.236
Halteria grandinella 0.53 0.36 0.33 0.055 0.316
Paramecium tetraurelia 0.61 0.32 0.27 0.081 0.184
Tetrahymena thermophila 0.51 0.41 0.27 0.079 0.532
Prevotella sp. BP1-145 0.32 0.41 0.46 0.031 0.157
Prevotella sp. P2-180 0.28 0.60 0.26 0.072 0.073
Prevotella sp. 1c2012 0.40 0.42 0.31 0.031 0.361
Bacterium F083 0.42 0.37 0.33 0.031 0.559
Succinatimonas sp. CAG:777 0.47* 0.03° 0.55° 0.088 0.006
Prevotella sp. MA2016 0.33% 0.42° 0.27° 0.024 0.011
Lchthyophthirius multifiliis 0.44 0.34 0.21 0.055 0.261
Bacteroidales bacterium 0.31 0.37 0.27 0.029 0.449
Ruminococcus bromii 0.35% 0.07° 0.46* 0.067 0.016
Prevotella aff. ruminicola Tc2-24 0.29 0.31 0.24 0.016 0.155
[Bacteroides] pectinophilus 0.03° 0.18  0.01® 0.034 0.007

Diets: C, corn and corn silage diet; L, sugar beet pulp and alfalfa silage diet; S, steam-flaked corn and corn
silage diet. SEM, standard error of the mean.
b means within a row with different superscripts differ significantly (P < 0.05).
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Table S6.5. Pairwise comparison of protein numbers based on metaproteomics analysis in rumen fluid of

dairy cows fed two glucogenic (C, S) and a lipogenic (L) diet

Group set Protein identified in DEPs Up-regulated Down-regulated

(A vs B) both group protein protein
LvsC 2777 706 446 260
LvsS 2751 865 539 326
SvsC 3277 139 89 50

Diets: C, corn and corn silage diet; L, sugar beet pulp and alfalfa silage diet; S, steam-flaked corn and corn

silage diet. DEPs, differentially expressed proteins. Up/down-regulated means group A relative to B.
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Chapter 7

Carbohydrates are the major energy supplier in the ration for ruminants. Starch and
fibre form the main ingredients for ruminant nutritionists to modulate the energy supply
of dairy cows. Research to date mainly focused on the types, ratios, processing, or

interactions of starchy and fibrous ingredients (Mendoza et al., 1999, Zhou et al., 2015).

The rumen microbiome plays a critical role in the degradation of feedstuffs in ruminants
including amylolytic, fibrolytic, proteolytic, etc., activities. Numerous studies have
worked on the ruminal microbes and enzymes involved in starch- and fibre-degradation
(Huntington, 1997, Krause et al., 2003, Chapter 2). There is still a lack of knowledge
on the metabolic mechanisms of the functional species in the rumen due to limitations
of traditional approaches. 16S rRNA gene-based approaches have been widely used to
characterize microbial communities and establish the ribosomal database project (RDP)
database (Kim et al., 2011). The development of next-generation sequencing
technologies and rapid evolution of computational tools and reference databases have
promoted the application of ‘omics’ techniques in the study of the rumen microbiome
by exploring their gene (metagenomics), protein (metaproteomics) and metabolite
(metabolomics) expressions (Deusch et al., 2015). With the assistance of these
advanced omics approaches, extensive and accurate information can be obtained which
can bring new insights of our understanding of the mechanisms and enables improving
rumen functioning. Furthermore, the establishments of genomic, proteomic and
metabolic data make it easier to manipulate certain functions of rumen performance
through diets. In addition, the integration of the main omics technologies aids our
understanding of molecular changes in response to internal and external environmental

factors (Wallace et al., 2017).

In this thesis, three practical rations were formulated including two glucogenic diets
with starch as the main energy source but differing in corn processing (C, ground corn
and corn silage diet; S, steam-flaked corn and corn silage diet) and one lipogenic diet
where fibre was the main energy source (L, sugar beet pulp and alfalfa silage diet), with
the aim to 1) characterize the sensitivities and interactions of the amylolytic and
fibrolytic bacterial species, 2) reveal the activities of the associated enzymes including
amylase, cellulase and hemicellulase in the rumen of dairy cows, and 3) further evaluate

the application of omics techniques by studying the ruminal microbial metabolism. The
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technological approaches employed in this thesis included 16S rRNA gene-based

sequencing, metagenomics, metaproteomics and metabolomics analysis.

In this chapter, the applications of omics on understanding the ruminal microbiome will
be studied through a combination of metagenomics, metaproteomics and metabolomics
analysis, in terms of 1) the microbial communities and 2) the synthesis pathways of

VFA including propionate, acetate and butyrate.
Application of ‘omics’ on rumen microorganisms

The rumen microbes hydrolyse dietary plant components like cellulose, hemicellulose,
pectin, fructosan, starch and other polysaccharides to monomeric or dimeric sugars,
which subsequently are fermented by enzymes, along with any simple sugars in the
vegetation, to yield various products, some of which might be subject to further

microbial action.
Ruminal microbial communities

The dietary composition of ruminants is one of the major drivers of the taxonomic
composition of the rumen microbiome. Understanding how changes in microbial
diversity affect rumen functioning or enable sustained feed utilisation facilitated by the
above-mentioned analytical technologies is current of great interest in ruminant
nutritional science. Systematic cataloguing of microbial diversity and functionality in
rumen fluid samples using both 16S rRNA gene-based and metagenomics approaches
has been attempted in the present study to evaluate the characterization of certain
ruminal communities, including amylolytic, fibrolytic and lactate-producing bacteria,

etc.
Bacteria community

Nowadays, 16S rRNA gene sequencing has been widely used to identify bacterial and
archaeal species. The 16S rRNA gene is evolutionarily specific and conserved, which
makes it possible to quantify the target organisms (Zoetendal et al., 2004, Deng et al.,
2008). The 16S rRNA gene clone library of rumen microorganisms has been
constructed with molecular tools, which have revealed a several-fold enlargement in

the diversity of ruminal microbes compared to when the more traditional cultural
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techniques were used. This microbial diversity was based on ruminants receiving
different diets and also across different animal species (Tajima et al., 2001, Larue et al.,

2005).

In this thesis, the results of 16S rRNA sequencing in Chapter 5 show that 20 bacterial
phyla were collectively detected from the 18 rumen fluid samples of dairy cows, which
were dominated by Firmicutes, Bacteroidetes and Proteobacteria (Figure S5.2a,
Chapter 5). The most abundant bacterial genera were Prevotella 1, Ruminococcus 1
and Succinivibrionaceae_ UCG-001 (Figure S5.2b, Chapter 5). As knowledge of the
bacterial population increased, it became apparent that cultivated cellulolytic bacterial
genera such as Ruminococcus and Fibrobacter were not among the most abundant
members in the community and the presence of various other fibre-degrading genera
(Pitta et al., 2010) were identified. The same insights occurred for the amylolytic
bacterial genera including Streptococcus, Ruminobacter and Succinimonas, which were

not among the dominant bacterial members.

In addition, the microbial composition data from the metagenomics at the species level
shows that the fibrolytic (cellulolytic, hemicellulolytic and pectinolytic) bacteria
mentioned in Table 7.1 account for approximately 4.6% (including Prevotella
ruminocola, which degrades both starch and fibre, as well as protein) of all ruminal
bacteria and the amylolytic bacteria (Prevotella ruminocola, Ruminobacter
amylophilus, Ruminoccus bromii and Succinimonas amylolytica) account for
approximately 3.3% (Figure 7.1). Similar results were observed in the study of
Stevenson and Weimer (2007) where the main cellulolytic bacteria, including
Fibrobacter succinogenes, Ruminococcus flavefaciens and Ruminococcus albus
accounted for less than 10% of the total bacteria in the rumen. Overall, from both 16S
rRNA sequencing and metagenomics data, the cultivated fibrolytic and amylolytic
communities were not among the dominant bacteria in the rumen population which
suggested that various other fibre- and starch-degrading microbes exist which still are

to be discovered and characterized.
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Table 7.1. Rumen microbial classification based on functions

Microbial category  Representative genera/species
Bacteria
Acetogens Acetitomaculum ruminis, Eubacterium limosum

Acid utilizers

Amylolytic

Cellulolytic

Hemicellulolytic
Lipolytic
Pectinolytic

Proteolytic
Saccharolytic

Tanninolytic

Ureolytic
Archaea

Methanogens

Eukaryotes
Fungi

Protozoa

Bacteriophages

Megasphaera elsdeni, Wolinella succinogenes, Veillonella gazogene,
Micrococcus  lactolytica, ~ Oxalobacter  formigenes,  Desulfovibrio
desulfuricans, Desulfotomaculum ruminis, Succiniclasticum ruminis
Streptococcus  bovis, Ruminobacter amylophilus, Ruminobacter bromii,
Prevotella  ruminicola, Clostridium polysaccharolyticum, Succnivibrio
amylolytica

Fibrobacter  succinogenes, Butyrivibrio  fibrisolvens, Ruminococcus
flavefaciens, Ruminococcus albus, Clostridium cellobioparum, Clostridium
longisporum, Clostridium lochheadii, Clostridium polysaccharolyticum,
Eubacterium cellulosolvens

Ruminococcus  flavefaciens, Ruminococcus albus, Clostridium
polysaccharolyticum, Prevotella ruminicola, Eubacterium xylanophilum,
Eubacterium uniformis, Butyrivibrio fibrisolvens

Anaerovibrio lipolytica

Treponema bryantii, Treponema saccharophilum, Lachnospira multiparus,
Succinivibrio dextrinosolvens
Prevotella ruminicola, Ruminobacter amylophilus, Clostridium bifermentans

Succinivibrio  dextrinosolvens, Succnivibrio amylolytica, Selenomonas
ruminantium, Lactobacillus acidophilus, Lactobacillus casei, Lactobacillus
fermentum, Lactobacillus plantarum, Lactobacillus brevis, Lactobacillus
helveticus,  Bifidobacterium  globosum,  Bifidobacterium  longum,
Bifidobacterium thermophilum, Bifidobacterium ruminale, Bifidobacterium
ruminantium

Streptococcus caprinus, Eubacterium oxidoreducens

Megasphaera elsdenii

Methanobacterium formicicum, Methanobacterium bryantii,
Methanobrevibacter ruminantium, Methanobrevibacter smithii,
Methanomicrobium mobile, Methanosarcina barkeri, Methanoculleus
olentangyi

Piromyces communis, Piromyces mae, Piromyces minutus, Piromyces
dumbonicus, Piromyces rhizinfl atus, Piromyces spiralis, Piromyces citronii,
Piromyces polycephalus, Anaeromyces mucronatus, Anaeromyces elegans,
Caecomyces communis, Caecomyces equi, Caecomyces sympodialis,
Cyllamyces  aberensis, Cyllamyces icaris, Neocallimastix frontalis,
Neocallimastix patriciarum, Neocallimastix hurleyensis, Neocallimastix
variabilis, Orpinomyces joynii, Orpinomyces intercalaris

Entodinium bovis, Entodinium bubalum, FEntodinium bursa, Entodinium
caudatum, Entodinium chatterjeei, FEntodinium parvum, Entodinium
longinucleatum, Entodinium dubardi, Entodinium exiguum, Epidinium
caudatum, Isotricha prostoma, Isotricha intestinalis, Dasytricha ruminantium,
Diplodinium dendatum, Diplodinium indicum, Oligoisotricha bubali,
Polyplastron multivesiculatum, Eremoplastron asiaticus, Eremoplastron
bubalus

Methanobacterium phage ¥ M1, Methanobacterium phage ¥ MI10,
Methanobacterium phage ¥ M100, Methanothermobacter phage ¥ M100,
Methanobacterium phage ¥YM2

Adapted from previous studies (Pfister et al., 1998, Luo et al., 2001, Kamra, 2005, Janssen and Kirs,
2008, Wright and Klieve, 2011, Choudhury et al., 2012, Sirohi et al., 2012, Kumar et al., 2014).
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Figure 7.1. The average relative abundance of amylolytic and fibrolytic bacteria relative to total
bacteria based on metagenomics analysis in rumen fluid of dairy cows fed two glucogenic and a

lipogenic diet investigated in the present thesis.

Archaea community

It has been reported that the domain archaeca members accounted for 0.3 to 3.3% of the
microbial small subunit (16S and 18S) rRNA in the rumen (Lin et al., 1997, Sharp et
al., 1998, Ziemer et al., 2000). In the present study, the taxonomical analysis from the
ruminal metagenome showed that the archaea contributed 1.1% of the ruminal
microbial community detected from rumen fluid samples (Figure S6.1a, Chapter 6).
Within the archaeal community, a total of 12 phyla were annotated with the
Euryarchaeota being the most dominant constituting 98.4% of the archaeal community.
A total of 139 genera including 20 unclassified taxa were annotated which were
dominated by Methanobrevibacter (73.7%) (Figure 7.2). The dominant archaeal genus
in the in vitro trial was also Methanobrevibacter (69.1% on average, Table 3.5,
Chapter 3). These results are in line with the previous studies (Janssen and Kirs, 2008,
Zhu et al., 2021). The dominant genus was very stable among published studies, but the

proportion was diverse.
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Figure 7.2. The average relative abundance of the top 10 archaea genera based on metagenomics
analysis in rumen fluid of dairy cows fed two glucogenic and a lipogenic diet investigated in the

present thesis.

Fungi community

The presence of fungi in the rumen was identified relatively late compared to other
microbiota as they were confused with flagellate protozoa and were categorized with
them (Agarwal et al., 2015). The fungi account for a very small part of the microbial
population in the rumen (5-8% of total rumen biomass) and colonize the rumen
compartment within 8-10 days after birth (Agarwal et al., 2015). Although the
abundance of rumen fungi is far less than that of bacteria, their degradation ability is
higher than that of bacteria and they have been reported to account for as high as 20%
of the total microbial biomass when the roughage was added in the rumen (Rezaeian et

al., 2004).

For the fungal taxonomic analysis through the metagenomics approach in previous
studies, the community structure and the dominant taxa had a large diversity. Liang et
al. (2021) showed that the dominant phyla were Chytridiomycota, Ascomycota and
Mucoromycota and the dominant genera consisted of Piromyces, Neocallimastix and
Anaeromyces. Fouts et al. (2012) detected 46 fungal genera through Sanger and 454

sequencing in the rumen of cows consuming a forage diet, with the Nectria,
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Penicilliopsis, Cystofilobasidium and Delphinelaa being the most abundant comprising

over 25% of the community.

In this study, a total of 10 fungal phyla were annotated with the Ascomycota being the
most dominant (43.7%) in the rumen fluid samples (Figure 7.3). A total of 276 genera
were annotated with the Rhizophagus constituting 18.8% of the fungal community
being the most prevalent (Figure 7.4). The present fungal community was not in
agreement with previous studies (Fouts et al., 2012, Liang et al., 2021). These results
showed that the current landscape of the fungal diversity in the rumen is largely
incomplete. Specifically, there is a greater diversity of Pleosporales, Neocallimastix,

Sordariomyceteideae, Udeniomyces and others, than previously appreciated.

Besides the identification of bacteria, archaea and fungi, metagenomics has also
allowed the identification of the rumen microbiome of viruses and unclassified taxes.
Although the present work did not focus on viruses and other unclassified taxes, their
interactions with bacteria could also be a factor affecting rumen fermentation, which

may warrant further studies in the future.

11 .10

R

Figure 7.3. The average relative abundance of the top 10 fungi phyla based on metagenomics
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analysis in rumen fluid of dairy cows fed two glucogenic and a lipogenic diet investigated in the

present thesis.
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Figure 7.4. The average relative abundance of the top 10 fungi genera based on metagenomics
analysis in rumen fluid of dairy cows fed two glucogenic and a lipogenic diet investigated in the

present thesis.

Application of omics on rumen metabolism

To evaluate the application of omics technologies in studying the rumen microbial
functioning, the volatile fatty acid (VFA) profiles in the rumen were chosen as the
phenotypic parameters, their synthetic pathways were analysed through metagenomics
and metaproteomics approaches. The total VFA concentration and molar proportions
of individual VFA were tested both in the in vitro and in vivo trials. The total VFA
concentration was not influenced by dietary treatments (C, L and S), irrespective
whether diets were incubated under in vitro conditions (Chapter 3) or degraded in the
rumen (Chapter 5). Similar results were also observed in Chapter 4 when the diets
with different ratios of starch to fibre were incubated under in vitro conditions.
However, the individual VFA proportions both in Chapter 3 and 5 showed a slight
difference (Figure 7.5). In an attempt to determine the mechanism underneath the
alterations of individual VFA proportions, their metabolic pathways and enzymes
involved were further studied. The productions of propionate, acetate and butyrate

belonged to the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways of
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propanoate, pyruvate and butanoate metabolism, separately, as shown in Figures S7.1,

S7.2 and S7.3.
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Figure 7.5. Comparison of the ruminal volatile fatty acid profile in in vitro (a) and in vivo (b)
conditions in rumen fluid of dairy cows fed two glucogenic (C, S) and a lipogenic (L) diet.
Diets: C, corn and corn silage diet; L, sugar beet pulp and alfalfa silage diet; S, steam-flaked corn
and corn silage diet. Proposition, the percentage of individuals in the total volatile fatty acids. * P <

0.05

Data analysis

The enzymes involved in the abovementioned KEGG pathways were analysed from
both the metagenomics and metaproteomics data. For the latter, the enzyme comparison
was performed with the Kruskal-Wallis H test with a Welch's post-hoc test using the
stats package in R software (version 3.3.1) and SciPy package in Python (version1.0.0).
The P < 0.05 was considered a significant level and 0.05 < P <0.1 as a trend. As for
the metaproteomics data, the differentially expressed proteins in each group set (L vs
C, L vs S and S vs C) within these pathways were analysed by Student's t-test in R

(version 3.3.1).
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Enzymes involved in the synthesis of propionate, acetate and butyrate

Propionate is produced in the rumen through two main pathways: the succinate pathway
and the acrylate pathway (Figure 7.6a) (Fouts et al., 2012, Liang et al., 2021), which
mostly fall within the KEGG pathway of propanoate metabolism (Supplementary
Figure S7.1). The acetate synthesis includes two main pathways (Figure 7.7a),
originating from acetyl-CoA and are mainly associated with the KEGG pathway of
pyruvate metabolism (Supplementary Figure S7.2). The butyrate synthesis consists of
four main pathways as shown in Figure 7.8a (Vital et al., 2014), which mostly belonged
to the butanoate metabolism KEGG pathway (Supplementary Figure S7.3).

KEGG pathways associated with the synthesis of propionate, acetate, butyrate

For the propanoate metabolism, after comparative metagenomics data analyses, eight
enzymes were detected with a P-value < 0.1 (Figure 7.6b). Thereinto, the enzymes of
lactaldehyde reductase (Enzyme commission number: EC, EC1.1.1.77, P =0.012) and
propionaldehyde dehydrogenase (EC1.2.1.87, P = 0.019) were significantly higher,
while the 4-aminobutyrate aminotransferase (EC2.6.1.19, P = 0.008) and 1,3-
propanediol dehydrogenase (EC1.1.1.202, P = 0.041) were significantly lower in the
samples of diet L compared to diets C and S. As for the metaproteomics analysis (Table
7.2), the two detected enzymes (both classified into EC6.2.1.5) of ADP-forming
succinate-CoA ligase subunit beta (originated from Thalassolituus sp. C2-1) and
succinate-CoA (originated from Glaciecola pallidula) and the enzyme of fumarate
reductase (quinol) flavoprotein subunit (EC1.3.5.4) originated from Ruminobacter sp.
kh1p2 (P = 0.015 and 0.002) and Aeromonas australiensis (P = 0.002 and 0.001,
respectively) were up-regulated by diets C and S relative to diet L. In addition, the
EC2.8.3.18 (succinyl-CoA:acetate CoA-transferase, originating from Succiniclasticum
ruminis) was observed to be down-regulated by diet L compared to diets C and S both
in the metagenomics (P = 0.036, Figure 7.7b) and metaproteomics analysis (P = 0.004
and 0.011) (Table 7.2). This enzyme specifically catalyses the conversion of succinyl-
CoA together with acetate to succinate and acetyl-CoA (Mullins et al., 2008, Mullins
and Kappock, 2012), which is involved in the KEGG pathways of the pyruvate
metabolism (Figure S7.2) and butanoate metabolism (Figure S7.3). The higher-
yielding succinate from acetate in diets C and S might lead to a higher propionate
production through the succinate pathway and meanwhile resulted in their lower acetate

proportion. Succiniclasticum ruminis was reported to be a propionate-producing
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bacteria through the succinate pathway (van Gylswyk, 1995). In summary, based on
metagenomic and metaproteomic data analysis, it is safe to conclude that the succinyl-
CoA:acetate CoA-transferase (EC2.8.3.18) produced by Succiniclasticum ruminis
might lead to the higher propionate productions by promoting the succinate pathway in

diets C and S.

For the pyruvate metabolism (Figure 7.7b), from the metagenomics data, lactaldehyde
dehydrogenase (EC1.2.1.22, P = 0.030), glycolaldehyde dehydrogenase (EC1.2.1.21,
P =0.030), acetyl-CoA synthetase (EC6.2.1.1, P = 0.100) and malate dehydrogenase
(EC1.1.1.37, P=0.100) were observed to have higher proportions in diet L than in diets
C and S, while propionyl-CoA carboxylase (EC6.4.1.3, P = 0.040),
phosphoenolpyruvate carboxykinase (EC4.1.1.49, P =0.100) and homocitrate synthase
(EC2.3.3.14, P = 0.100) were potentially higher in diet L. As for the metaproteomics
analysis, only the malate dehydrogenases (EC1.1.1.37) were detected that were up-
regulated by diet L compared to diets C and S, which were derived separately from
Prevotella sp. bacterium (P = 0.007 and 0.002), Prevotella sp. (P = 0.008 and 0.002)
and Prevotella sp. tc2-28 (P =0.005 and 0.002). From metagenomic and metaproteomic
data, even though it was not observed that more enzymes which were equally
influenced by diets in the acetate synthesis pathways except for the succinyl-
CoA:acetate CoA-transferase (EC2.8.3.18), the malate dehydrogenases which might
play an important role in the higher acetate proportion in diet L through the pyruvate

metabolism.

As for the butanoate metabolism, according to the metagenomics analysis (Figure
7.8b), the samples in diet L had significantly lower levels of EC1.1.1.157 (3-
hydroxybutyryl-CoA dehydrogenase, P = 0.039) and EC2.6.1.19 (4-aminobutyrate
aminotransferase/(S)-3-amino-2-methylpropionate transaminase, P = 0.010), but
higher level of EC1.1.1.35 (3-hydroxyacyl-CoA dehydrogenase, P = 0.005) compared
to diets C and S. As for the metaproteomics analysis, the enzymes of EC1.2.7.1
(pyruvate:ferredoxin (flavodoxin) oxidoreductase), which originated from Prevotella
sp. bacterium (P = 0.001 and 0.006, separately), Prevotella bryantii (P = 0.027 and
0.013), Prevotella sp. tc2-28 (P =0.012 and 0.008), Prevotella sp. tf2-5 (P = 0.022 and
0.024) and bacterium F083 (P = 0.075 and 0.020), and the enzymes of EC1.2.7.11 (3-
methyl-2-oxobutanoate dehydrogenase subunit VorB), which originated from

Prevotella sp. bacterium (P = 0.039 and 0.034) and Prevotella sp. khlp2 (P = 0.010
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and 0.014) were up-regulated when diet L was fed than diets C and S, which both
promote the reaction from pyruvate to acetyl-CoA (Figure S7.3). Even though the same
enzymes that were influenced by diets both in metagenomic and metaproteomic data
were not observed, the abovementioned enzymes provided us with the candidate
enzymes which might determine the differences in butyrate production. Besides, the
succinyl-CoA:acetate CoA-transferase (EC2.8.3.18) catalysed the production of
succinate and acetyl-CoA, which are substrates for butyrate production. The succinyl-
CoA:acetate CoA-transferase might be the reason resulting in the higher butyrate

proportion in diets C and S.

In total, through the combination of metagenomics and metaproteomics analysis, the
succinyl-CoA:acetate CoA-transferase originated from Succiniclasticum ruminis was
observed to be up-regulated in diets C and S relative to diet L, which catalysed the
conversion reaction from acetate to succinate, and resulted in the higher proportions of

propionate and butyrate but a lower acetate proportion in diets C and S.
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Figure 7.6. (a) Propionate synthesis pathways and (b) the proportion of enzymes in the

propanoate metabolism pathway with P < 0.1 based on metagenomics analysis in rumen fluid of

dairy cows fed two glucogenic (C, S) and a lipogenic (L) diet. Diets: C, corn and corn silage diet;

L, sugar beet pulp and alfalfa silage diet; S, steam-flaked corn and corn silage diet. 5.4.99.2,

methylmalonyl-CoA mutase; 6.2.1.5, succinyl-CoA synthetase alpha subunit; 1.1.1.77, lactaldehyde

reductase; 4.2.3.3, methylglyoxal synthase; 2.6.1.19, 4-aminobutyrate aminotransferase; 1.2.1.87,

propionaldehyde dehydrogenase; 2.1.3.1, methylmalonyl-CoA carboxyltransferase 5S subunit;

1.1.1.202, 1,3-propanediol dehydrogenase. * P < 0.05. Figure (a) was created in BioRender.com.
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Integration of omics techniques

The rumen microbiome combined with metabolomics has been used to link changes in
the rumen microbiome to changes in the ruminal fermentation and metabolite formation,
which allows evaluation of the rumen functioning in response to dietary strategies
including new rations, feed ingredients, or additives (Zhang et al., 2017, Abecia et al.,
2018, Xue et al., 2020, Wang et al., 2021). Correlations between the abundance of
microbial phyla or genera and specific rumen metabolites have been commonly
conducted (Belanche et al., 2019), in an attempt to provide a functional context to
changes in the rumen microbial population. In the present thesis, the 16S rRNA
sequencing and metabolomics approaches were used in Chapters 3 and 5 in order to
detect the alterations in the bacterial communities, metabolites and metabolic pathways,
and then to further correlate the affected bacteria to affected metabolites. Here the
correlations between the relative abundance of microbial genera and specific rumen
metabolites are provided (Chapters 3, 4 and 5). However, it should be noted that the
analyses were limited to contain a small range of well-defined rumen metabolites. The
Bovine Metabolome Database (BMDB) which only lists the bovine-derived
metabolites is still under development (Foroutan et al., 2020). The Human Metabolome
Database (HMDB) is the most widely used database for annotating rumen metabolome
(Wishart et al., 2009). In the future, the addition of more samples and the inclusion of
more studies are required to improve the quality and reliability of the data in the BMDB
(Foroutan et al., 2020).

Another study revealed that even though the rumen microbiomes showed differences
in the taxonomic compositions, their metabolic functions remain the same (Taxis et al.,
2015). This indicates that the microbial diversity at the composition and taxonomic
level may not be directly associated with metabolic functions that affect the host. It
suggests that differences might occur at the transcription or protein level. Recent studies
in which amplicon sequencing has been combined with metaproteomics analysis have
established that integrated omics approach allows for a greater insight into the complex
network of microbial adaptation in the rumen (Deusch et al., 2017). The combination
of metagenomics and metaproteomics was already applied in ruminant animal studies
(Zhu et al., 2016, Zhang et al., 2020), but was barely related to rumen functions. In
Chapter 6, the metabolic pathways influenced by diets both at the gene and protein
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level through a combination of metagenomics and metaproteomics approaches, in
which alterations of the starch and sucrose metabolism, the differential influenced
enzymes and their originated microbes were revealed. In Chapter 7, the pathways and
enzymes involved in VFA production through a combination of metagenomics and
metaproteomics approaches were detected. The result showed that the succinyl-
CoA:acetate CoA-transferase produced by the Succiniclasticum ruminis might be the
main reason resulting in the higher propionate and butyrate proportions but a lower
acetate proportion in the starch-containing diets. The current findings provide insight

into the exploration and exploitation of the metabolic pathways of certain phenotypes.

Future directions

Characterization of the rumen microbiome

The omics technologies have provided a picture of which species are present and their
potential function in the rumen. As more uncultured ruminal microbes are detected, it
will require an increased focus and revival of culture-based techniques through new
high throughput culturing methods and media to isolate and characterize novel
microbes (Kenters et al., 2011, Lagier et al., 2016). For example, this thesis observed

multiple unclassified species from the rumen which need to be characterized.

In addition, as many of the current studies focus only on the bacterial and archaeal
communities in the rumen, the other microbial communities with small proportions for
instance, the fungi, protozoa and virus populations are easily ignored. The rumen
microbial functions will be better understood and utilized only when all aspects of the

microbiome are considered (Newbold and Ramos-Morales, 2020).
Monitoring of rumen microbial functions

Due to our limited ability to rationally design and drive rumen microbial composition
and function in this highly complex and dynamically changing environment, Ark et al.
(2017) came up with the construction of genome-scale metabolic models (GEM) for
specific isolates which contain accurate annotation of their functional gene products.
Most microbes have the capacity to utilise a wide array of nutrients using varied
metabolic pathways. Then, the minimal nutrient requirements of the un-cultivated
microbes can be predicted based on their GEM (Henry et al., 2010). For instance, 1) a

desired rumen phenotype of interest can be predicted by modelling the co-cultures and
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interactions of multispecies, and 2) modelling the competitive and cooperative
metabolism draw the conclusion that competition is generally dominated by versatile

fast-growing species (Freilich et al., 2011).

Since a large number of microbial metabolites and microbial-host co-metabolites are
also present in plasma and other body fluids, the discovery of biomarkers which can be
linked to microbiota function can be applied in research or farms to monitor changes in
rumen functioning. For example, 1) saliva and buccal swab samples have already been
proved to reflect the rumen microbiome, 2) changes in plasma fatty acid profiles were
suggested as biomarkers for weight gain, and 3) levels of trimethylamine N-oxide as a
marker for methylamine utilising methanogens (Kittelmann et al., 2015, Morgavi et al.,

2015, Tapio et al., 2016, Artegoitia et al., 2017).
Host-microbiome interactions

Future research should not only focus on interactions among microbes but also on how
microbial metabolites alter host gene expression in various tissues. Fouhse et al. (2017)
examined the connection between the immune system in ruminants and rumen
microbes which found the host-specific interaction between salivary immunoglobulin
IgA and some Toll-like receptors in the rumen epithelia. Similarly, Liu et al. (2015)
reported that several ruminal epithelial Toll-like receptors which were involved in the
recruitment of immune cells and the production of inflammatory cytokines were up-
regulated by high-grain diets. The alterations in the rumen environment may cause

systemic changes in the host and vice versa.

The omics techniques lead to targeted gene or enzyme interventions that direct rumen
composition and activity towards desired performance. For example, Kumar et al.
(2014) detected the key enzymes and proteins that can be targeted for methane
inhibition by comparing two strains of methanogenic archaea, Methanobrevibacter

boviskoreani strain JH1 and strain AbM4.
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Conclusion

The ruminal microbial community structure, amylolytic and fibrolytic communities
from all rumen fluid samples were detected through the 16S r RNA sequencing and
metagenomics approaches. The results show that the metagenomics analysis detected
the microbial community with high relative abundance like bacteria but was less able
to detect lower abundant microbiota such as archaea, fungi and protozoa, for which
targeted metagenomics would be a better approach. The amylolytic and fibrolytic
bacteria were not among the dominant population in the rumen. The succinyl-
CoA:acetate CoA-transferase which originated from Succiniclasticum ruminis was
observed to be up-regulated in diets C and S relative to diet L from the metagenomics
and metaproteomics analysis. This enzyme catalyses the conversion reaction from
acetate to succinate and resulted in the higher proportions of propionate and butyrate
but a lower acetate proportion in diets C and S. The interaction of various omics
technologies was used in exploring the rumen functions, but interpretation is limited by

the lack of an accurate database.

In the future, the applications of omics technologies will promote the development of
characterizing rumen microbiome including the relatively small communities.
Monitoring the rumen functions will become easier through the use of a modelling
approach where the metabolic activities of certain microbes or detecting certain
biomarkers from other tissues is employed. Finally, rumen functioning can be
manipulated towards desired performance through targeted gene or protein intervention

of rumen microbiota.
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Summary

Adjusting the glucogenic-to-lipogenic nutrient ratios in diets has been an important
strategy to improve the energy status of dairy cows. The compositional and functional
alterations of the ruminal microbiome in response to diets with different glucogenic and
lipogenic nutrients have been investigated. However, as advanced omics techniques
including metagenomics, metatranscriptomics, metaproteomics and metabolomics
have developed at a rapid pace in recent years, detailed studies on rumen functions in
response to different diets can now be more informative and comprehensive regarding

rumen functioning.

In this thesis, three iso-nutritious diets were chosen as experimental treatments to yield
a moderate (ground corn vs steam-flaked corn, C vs S) and a maximum (glucogenic vs
lipogenic, C and S vs L) effects on rumen microbiota functioning. For diets C and S,
starch was the main energy sources, while diet L contained mainly fibre as energy
source. Multiple omic techniques, including metagenomics, metaproteomics and
metabolomics were used to study the changes in the ruminal microbial compositions

and functions in response to these dietary treatments.

Chapter 2 reviewed 1) the well-characterized amylolytic and fibrolytic microbes and
their associated enzymes reported in the literature and 2) the application of
metagenomics approach on the ruminal carbohydrate-active enzymes to date.
Amylolytic and fibrolytic microbes mainly consist of bacteria and partly of protozoa,
fungi and archaea. Enzymes reported in the rumen were mostly carbohydrate-active
enzymes detected through a metagenomics approach. This chapter presents the

candidate microbes and enzymes which were focussed on in the following chapters.

In order to explore the microbial composition in rumen fluid and their responses to the
above-mentioned dietary treatments, two in vitro trials were firstly conducted which

are reported in Chapters 3 and 4.

In Chapter 3, the effects of the three diets on the ruminal bacterial and archaeal
structures, the metabolomic products, rumen fermentation and gas production through
a combination of 16S rRNA sequencing and metabolomics are evaluated. The two
glucogenic diets had greater effects than the lipogenic diet in terms of improving the
dry matter digestibility, increasing propionate concentration and promoting amino acid

metabolism based on the metabolomics data. The improvement in propionate
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production may be attributed to the increased number of bacterial spp. functioning in
the succinate pathway. Compared to ground corn, steam-flaked corn did not show more
differences in fermentation end-products except for an increase in gas production and
down-regulation of the production of some fatty acids and amino acids. Several
amylolytic and cellulolytic bacteria were sensitive to the dietary changes, while most
highly abundant bacteria were stable or minorly affected. For instance, the cellulolytic
bacteria, including the genera of Ruminococcus, Butyrivibrio, FEubacterium,
Lachnospira, unclassified Lachnospiraceae and unclassified Ruminococcaceae had
higher relative abundances in diet L, while amylolytic bacteria genera including
Selenomonas_1, Ruminobacter and Succinivibrionaceae_UCG-002 had higher relative
abundances in diet G and S. Correlative analysis between microbes and fermentation
metabolites proved to be an effective method to explore the functions of certain

microbes.

In Chapter 4, the effect of different ratios of glucogenic (G) to lipogenic (L) nutrients
(G:L= 3:0, 2:1, 1:2, 0:3) on rumen fermentation end-products and the corresponding
bacterial communities was further explored. In experimental diets, where the
glucogenic to lipogenic nutrient ratio was above one-third of the dietary energy, the in
vitro incubation had a higher feed digestibility and lower acetate to propionate ratio.
Bacterial genera including Selenomonas, Succinivibrio, Ruminobacter, certain genera
in  Ruminococcaceae, Christensenellaceae R-7 group, Eubacterium and some

unclassified taxa were more sensitive to the glucogenic to lipogenic nutrient ratios.

According to the results from the in vitro fermentation, it was shown that the microbial
compositions and activities were influenced by the dietary treatments, and the
difference between the maximum constrasting diets (C and S vs L) were more
pronounced than between the two moderately contrasting diets (C vs S). Next, an
animal trial was conducted to confirm these influences and to obtain information

regarding the alterations in metabolic mechanisms iz vivo (Chapters 5 and 6).

In Chapter 5, the changes and interactions of ruminal bacteria and metabolites in
response to the dietary treatments were studied through 16S rRNA sequencing and
metabolomics analysis. The glucogenic diets resulted in higher ruminal lactic acid,
ammonia-nitrogen (NH3-N) and propionate production, whereas acetate production

was lower compared to the lipogenic diet. The two glucogenic diets improved protein
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digestion, resulting in an increased availability of amino acids and NH3-N in the rumen,
which might be attributed to species within the genera Prevotella_7 and Selenomonas.
The typical amylolytic or cellulolytic bacteria were not observed to be highly abundant
in the rumen fluid of cows fed diets high in starch or fibre, respectively. Bacteria
belonging to the genera of Ruminococcus 2 and Prevotella_7 might contribute to the
ruminal amylolytic activities when glucogenic diets are fed, while Ruminococcus_1 and
Prevotella_1 might contribute to the fibrolytic activities enhanced by the lipogenic diet.
The results reported in this chapter provide new insights for the exploration of

alternative species of amylolytic and fibrolytic bacteria.

In Chapter 6, metagenomics and metaproteomics approaches were performed to
explore the changes in the metabolic functioning of ruminal microbes. According to the
gene predictions by metagenomics analysis and taxonomic analysis of the secreted
proteins by metaproteomics, it was confirmed again that most amylolytic and fibrolytic
bacterial communities were unaffected by changes in the glucogenic to lipogenic ratio
in the concentrate diets. The amylolytic bacteria Succinimonas amylolytica and
Ruminococcus bromii were more sensitive to starch-type energy source compared to
fibrous energy sources in the diet. The higher number of Succinimonas amylolytica in
diets C and S led to increased production of pullulanase, thereby, contributing to the
upregulation of the pathway of starch and sucrose metabolism. Diet S resulted in a
higher proportion of the Selenomonas ruminantium than diet C both at the
metagenomics and metaproteomics levels, which indicates a higher production of
amylopullulanase. The combination of metagenomics and metaproteomics analysis
showed to be a powerful approach for future research with an aim of investigating the
activities of certain microbial communities in response to diet changes in the rumen of
ruminants. These techniques perform well to detect changes in microbial metabolism
in response to both the more contrasting treatments (C and S vs L), as well as in the

case of more similar treatments (C vs S).

In Chapter 7, the integration of multi-omics technologies in this thesis were discussed.
Within the ruminal microbial community structure, amylolytic and fibrolytic
communities from all rumen fluid samples were detected through the 16S rRNA
sequencing and metagenomics approaches. The results show that the metagenomics

analysis was capable of detecteing the microbial community with high relative

284



Summary

abundance like bacteria but was less able to detect lower abundant microbiota such as
archaea, fungi and protozoa, for which targeted metagenomics would be a better
alternative approach. Besides, the results also indicate that the amylolytic and fibrolytic
bacteria were not among the dominant population in the rumen. In addition, the
enzymes involved in the propionate, acetate and butyrate synthesis were determined
through a combination of metagenomics and metaproteomics analysis. The succinyl-
CoA:acetate CoA-transferase, which originated from Succiniclasticum ruminis was
observed to be up-regulated in diets C and S relative to diet L. This enzyme catalyzes
the conversion reaction from acetate to succinate and resulted in the higher proportions
of propionate and butyrate, but a lower acetate proportion in diets C and S. The
interaction of various omics technologies was used in exploring the rumen functions,
but interpretation is limited by the lack of an accurate database. In the end, the future
directions on the applications of omics technologies were predicted, such as the
exploring of high throughput culturing methods to characterize the currently
uncultivated microbes, development of techniques to monitor rumen functions and

manipulation of the host-microbe interactions.

In total, the reported experiments further enlarge our knowledge on the applications of
omics techniques to understand compositional and functional alterations of the ruminal
microbes in response to diets. Most of the amylolytic and fibrolytic microbes reported
in the literature were shown to be stable to dietary starch and fibre changes, although
some exceptions, for example, the amylolytic bacteria Succinimonas amylolytica and
Ruminococcus bromii were detected. The studies also showed that the microbial
activities in the rumen are far more complicated than hitherto known. The microbes
sensitive to the dietary treatments detected in the experiments will promote the isolation
and characterization of new amylolytic and fibrolytic microbes from the rumen. The
metabolic pathways analysis through metagenomics and metaproteomics confirmed
that the starch and sucrose metabolism was promoted in the two glucogenic diets, which
is associated with a higher level of pullulanase secreted by the Succinimonas

amylolytica.
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