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uncertainty.

KEYWORDS

INTRODUCTION

Managers and policymakers increasingly face trade-offs in
sustainably managing extractive use of living marine
resources while effectively conserving biodiversity under
the precautionary principle (FAO, 1996; Harwood &
Stokes, 2003; Hilborn et al., 2001). But imperfect knowledge
of social-ecological systems impedes the decision-making.
Scientific uncertainty (imprecision in measurements) of
current population status can obscure the assessment of
decline or extinction threats (Ovaskainen & Meerson, 2010;
Ripa & Lundberg, 1996). Lack of certainty in socioeconomic
dynamics that can promote noncompliance and inertia also
may reduce the efficacy of management measures applied
(Beddington et al., 2007, Fulton et al, 2011; Hilborn
et al., 2001). If we are to achieve internationally agreed con-
servation targets, such as sustainable use of marine
resources portrayed under Sustainable Development Goal
14 (UN, 2015) and Aichi Biodiversity Target 6 (CBD, 2010),
we must account for various sources of uncertainty
(imprecision and inaccuracy) to assess overexploitation
risk (Memarzadeh & Boettiger, 2018) and recovery poten-
tial (Memarzadeh et al., 2019) and set conservation
priorities.

In commercial capture fisheries, assessments of cur-
rent population status provide a scientific basis for setting
a threshold for safe harvest to prevent the decline of fish
stocks. This approach may include using biological
thresholds such as the population abundance that pro-
duces maximum sustainable yield (MSY; Beddington
et al., 2007). The harvest of wild populations is commonly
managed by applying decision rules (harvest control
rules) based on such predefined thresholds to set a catch
limit for the year (Beddington et al., 2007). Accurate pop-
ulation assessments contribute to successful implementa-
tion of management measures to sustain long-term
commercial exploitation of fish populations (Hilborn
et al., 2020). However, systematic errors in assessments
have posed a multitude of challenges (Patterson
et al., 2001; Sethi, 2010). If population abundance is persis-
tently overestimated, for example, the resulting overly
optimistic catch advice or rebuilding plans will deplete the

uncertainty, our proposed approach ensures effective conservation and sus-
tainable exploitation of living marine resources even under profound

decision-making, environmental stochasticity, fisheries management, management
procedure, management strategy evaluation, measurement error, precautionary principle,
retrospective pattern, risk analysis, state-space model, stock assessment, trade-offs

population, thereby threatening the sustainability of fish-
eries that depend on it (Memarzadeh et al., 2019; Walters
& Maguire, 1996). Overestimated abundance and under-
estimated exploitation rates, which often heighten extinc-
tion risk, have led to some historical collapses of oceanic
predators (Charles, 1998; Walters & Maguire, 1996).

Biased estimates in perceived population status have
plagued assessments of exploited marine species (Punt
et al.,, 2020) and likely contributed to overharvest and
depletion including stocks that are considered well-
monitored (Brooks & Legault, 2016). Inconsistency across
assessments such as persistent overestimation of abun-
dance has led to the rejection of assessments (Punt
et al., 2020). Although past research has proposed solu-
tions to estimation bias, applying these solutions remains
a challenge because the bias could originate from multi-
ple sources (Brooks & Legault, 2016; Hurtado-Ferro
et al., 2015; Szuwalski et al., 2017). Incomplete knowl-
edge of the causes behind biased estimates may lead to
incorrect application of the tools, inadvertently exacer-
bating the problems by amplifying overharvest and deple-
tion risks (Brooks & Legault, 2016; Kraak et al., 2008;
Szuwalski et al., 2017). Given serious ecological and socio-
economic implications for getting it wrong, we urgently
need a procedure that provides practical guidance for
explicitly evaluating robustness of management strategies
and designing alternatives to inform decision-making to
safely harvest under uncertainty (Punt et al., 2020).

We illustrate how closed-loop simulation of resource-
management systems (management strategy evaluation)
can help prevent estimation bias from derailing effective
management of exploited populations. Management
strategy evaluation is a flexible decision-support tool used
in fisheries management (Butterworth & Punt, 1999;
Smith et al., 1999) and has increasingly been applied to
conservation planning in marine and terrestrial systems
(Bunnefeld et al., 2011; Milner-Gulland et al., 2001). This
tool is designed to evaluate the performance of candidate
policy instruments through forward simulations of feed-
back between natural resources and management sys-
tems (policy implementation and new observation) by
accounting for trade-offs among management goals of



ECOSPHERE

| 30f14

stakeholders (Punt et al., 2016). Management strategy
evaluation also can assess consequences of suspected
sources of bias in assessments (Hordyk et al., 2019;
Szuwalski et al., 2017). Here, we take this approach fur-
ther: we first diagnose estimation bias (robustness testing;
Cooke, 1999). Then, through computational optimization
of harvest control rules (Chadeés et al., 2017; Walters &
Hilborn, 1978), our proposed method searches for robust
rules by explicitly accounting for bias in perceived stock
status along with process (life history parameter) and
observation (survey and reported catch) uncertainties.
Specifically, we evaluate how robust current manage-
ment procedures (MPs) are to persistent estimation bias,
and then demonstrate how MPs can remain precaution-
ary through the optimization of harvest control rules to
avert mismanagement: setting overly optimistic catch
limits that promote stock depletion and a future fishery
closure.

METHODS

Management strategy evaluation
framework

We simulated population and harvest dynamics, surveys,
assessments, and implementation of management strategies
to explore trade-offs in achieving conservation-oriented
(minimizing overexploitation risk) and harvest-oriented
(maximizing yield) goals through management strategy
evaluation. We made use of the framework developed
and adopted for commercially harvested species in the
Northeast Atlantic including four North Sea demersal
fish stocks (International Council for the Exploration of
the Sea [ICES], 2019c) and Atlantic mackerel (Scomber
scombrus; ICES, 2020c). The framework consists of sub-
models that simulate (1) true population and harvest
dynamics at sea (operating model [OM]), from which
observations through monitoring surveys and catch
reporting (data generation) are made; and (2) manage-
ment processes: assessments based on observations from
the surveys and reported catch and subsequent decision-
making (management procedure, MP) (Figure 1a; Punt
et al., 2016). We used the North Sea population of saithe
(Pollachius virens) (ICES statistical areas: Subareas 4 and
6 and Division 3a; ICES, 2019c), a demersal (bottom
water) predatory fish harvested commercially by more
than a dozen European nations, as a real-world case
study. And we used the State-space Assessment Model
(SAM; Nielsen & Berg, 2014) as estimation model
(EM) and harvest control rule set for saithe
(ICES, 2019c); model settings and forecast assumptions
are fully described in ICES (2019c). We performed all

simulations in R (version 3.60; R Development Core
Team, 2019) using the mse R package (https://github.
com/flr/mse) (ICES, 2019c), part of the Fisheries Library
in R (FLR; Kell et al., 2007).

Population dynamics

To simulate future population dynamics of target species,
the framework uses an age-structured population model
that accounts for environmental stochasticity. For saithe,
we modeled the population dynamics of 4-year-olds and
older as follows:

logNay = 1Og]\fafl,yfl *Fafl,yfl 7Ma71,y71 +ﬂay, (13)

10g N4y =10g(Ny 1y e Faoi-Ma
(1b)
"‘NAXy_le*FA,y—L*MA,y—L) 4 nAy’

logFoy=10gF.y 1+¢&,, (1c)
where Ngy, Noy-1, Fay, Fay-1, Mgy, and M,, , are
a-year-old numbers, fishing mortality rates, and natural
mortality (nonfishing such as starvation and diseases)
rates in year y and y — 1, and #,,, and £, ,, are multivariate
normally distributed variables, reflecting process errors
correlated between ages within years (Appendix S2:
Figure S1; Nielsen & Berg, 2014). Fqy_1 is time-varying
and simulated through the implementation of harvest con-
trol rules (see Management procedure section). Historical
surveys indicate that 10-year-olds and older are relatively
uncommon, and we simulated them as a dynamic aggre-
gate pool (known as a plus group in fishery stock assess-
ment, Ny, F4, and My).

We simulated density-dependent regulation of recruit-
ment in the population dynamics with a segmented regres-
sion (ICES, 2019c¢) relating adult biomass to the number of
recruits (3-year-olds for saithe) as follows:

log N3y =log f+SSB, +7, (if0<SSB,<b),  (1d)

logN3y=loga+y, (ifSSB,>b), (1e)

where SSB, is adult biomass (known as spawning stock
biomass, in megagrams) in year y, which is the sum of
the product of age-specific numbers, masses, and matu-
rity rates; f, b, and a are parameters; and y, is process
error in year y.

We developed the OM using data and life history
parameter estimates taken from the 2018 assessment
(ICES, 2018), which represents the best available
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information on the past (1967-2017) population and har-
vest dynamics (Figure 1b; Appendix S1). The data
sources, survey methods, and model structure have been
extensively documented in ICES (2016) and ICES (2019a).
Briefly, we parameterized the model with 51-year esti-
mates of age-specific masses (g, Appendix S1: Tables
S3-S4) and maturity rates (proportion of adults,
Appendix S1: Table S5), and natural mortality rates
assumed at 0.2 year ' for all ages and years. Then, we
fitted the population model to time series data of com-
mercial catch (age-aggregated biomass of German,
French, and Norwegian trawlers in 2000-2017, in
megagrams, Appendix S1: Table S6 and Appendix S2:
Figure S1) and age-specific (ages 3-8) abundance indices
(International Bottom Trawl Surveys in the third quarter,
IBTS-Q3, in 1992-2017, Appendix S1: Table S7 and
Appendix S2: Figure S2) (ICES, 2018) using SAM (see
Monitoring and catch surveys section for details of com-
puting catch and age-specific abundance indices).

We projected true population and catch dynamics annu-
ally for 21 years (2018-2038). To account for process uncer-
tainty (year-to-year variability in survival rate), we
generated 1000 realizations of stochastic populations using
the variance-covariance (inverse Hessian) matrix of age-
specific numbers and fishing mortality rates taken from the
2018 assessment (Appendix S2: Figure S3a; ICES, 2019c).
We derived a set of mean age-specific masses, maturity
rates, and fishing gear selectivity by randomly selecting a
year with replacement from the 2008-2017 data; this pro-
cess was repeated independently for each replicate every
year to account for environmental stochasticity.

To account for environmental stochasticity in density
dependency of recruitment, we first parameterized the
spawner-recruit model by fitting it to the 1998-2017 data
on SSB and recruit numbers by resampling residuals with
replacement. Because preliminary analyses had revealed
gaps in the resampling process (ICES, 2019c), we used a
kernel density function to smooth the resulting distribu-
tion of residuals from the fitted regression. Then, we res-
ampled residuals from the distribution and applied these
to model outputs to generate recruits every year
(Appendix S2: Figure S4a,b); this process was repeated
independently for each replicate. Preliminary analyses
showed little evidence of temporal autocorrelation in the
recruitment (Appendix S2: Figure S4c).

Monitoring and catch surveys

We simulated future annual monitoring of the popula-
tion and harvest, which are subject to error, by adding
observation error to age-specific survey indices and aggre-
gated catch computed from the OM. To simulate devi-
ances to the observed survey index (IBTS-Q3), we used
the variance-covariance matrix for the survey index to
account for observation error correlated between ages
(Appendix S2: Figures S5a and S6a). Survey observations
(D) are generated as follows:

Ioy=quNaye Zoveer, (2a)

Ea,y,i NN(O,Z@), (Zb)

where Z,, is a-year-old total (F,, + M,,) mortality rate
in year y from the OM; q, are a-year-old survey
catchabilities for the survey i; and ¢ is the timing of the
annual survey (0.575 for IBTS-Q3). ¢,, represents multi-
variate normally distributed errors with mean zero and
standard deviation X defined by the variance-covariance
matrix between ages within years (ICES, 2019b). Observa-
tion error is applied to age-specific abundance indices as
multiplicative lognormal error (Appendix S2: Figure S5a).

To avoid using the age information twice (once in
computing age-specific catches and again in selectivities),
we computed a fishable biomass index, a combined
(German, French, and Norwegian trawlers) index from
the OM (Appendix S2: Figures S5b and S6b) standardized
by average fishing mortality rates as follows:

Iy=q ZSa,nyz,yN aye el e, (3a)
a
Fq
Syy=—— 3b
a.y ZaFa,y/nage ( )
&, ~N(0,6%), (3¢)

where ¢ is the catchability; wg, are a-year-old catch
masses in year y; 0.5 indicates projection to mid-year; S,
is the selectivity of a-year-olds in year y; n,g is the num-

ber of age classes in the population; and &, is a normally

FIGURE 1

Management strategy evaluation framework and historical population and harvest dynamics of North Sea saithe.

(a) Schematic of the management strategy evaluation framework (Fisheries Library in R/Assessment for All or FLR/a4a, redrawn from

https://github.com/ejardim) adopted for evaluation of saithe management strategies. (b) Reconstructed saithe population and harvest

dynamics taken from the 2018 assessment (ICES, 2019a). Ribbons indicate 95% confidence intervals. (c) Harvest control rule evaluated in

this study. Blue dashed (horizontal and vertical) lines show the harvest control rule parameters set for saithe: Byjgger = 250,000 Mg and
Fiarget = 0.35, and the biological limit reference point: By, = 107,297 t (ICES, 2019c)
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distributed error with mean zero and standard deviation
o in year y (Appendix S2: Figure S3c). We used a version
of SAM (Nielsen & Berg, 2014) accounting for this change
(https://github.com/fishfollower/SAM/tree/
biomassindex).

Management procedure

The MP simulates decision-making by managers based on
perceived current stock status and model-based harvest
control rules (Figure 1a). The current status is assessed
annually by fitting the EM to the time series (past plus
most recent year, y) data simulated from the observation
model (survey and catch data, I, and I,,) before the provi-
sion of catch advice (May of the following year, y + 1, for
saithe). Under the control rule set for saithe (ICES, 2019c),
when the estimated SSB at the start of the advice year fol-
lowing the assessment year (terminal year) remains above
a fixed threshold (Byigger) (Figure 1b), the catch limit is
computed based on target exploitation rate (Fiarger). These
two control parameters (Byigger and Fiqrger) are designed to
prevent overharvesting by accounting for uncertainty in
population and harvest dynamics (Rindorf et al., 2016).
For consistency, we used the parameter values of the con-
trol rule that had been estimated in ICES (2019c)
(Brigger = 250,000 Mg and Fiarger = 0.35, see Population
and management measure performance section for detail)
as baselines. When the SSB falls below Bygger, the exploi-
tation rate is adjusted to Fi,ge¢ Scaled to the proportion of
SSB relative to Bigger (Figure 1c), thereby allowing the
population to rebuild (adaptive harvesting). In simulations,
the advice year’s SSB (SSB,,,) is first forecasted with the
EM (SAM) using the average of estimated fishing mortality
rates in the most recent 3 years (known as F status quo).
Then, the target exploitation rate for the advice year (Fy)
is determined to compute the catch limit (Cy,) as follows:

. SSB
Fy+1 = Ftargetmln (1, —yﬂ) s (43)
trigger

Say+1Fy1

Cya= Zway+1Na,y+l (1 - e_Zu'yH)s (4b)
a

Za,y+1
where wa 1, Noyt1, Say+1, and Z, ., are as above and
forecasted for the advice year.

Population and management measure

performance

We computed conservation-oriented (risk of stock deple-
tion) and harvest-oriented (median catch and interannual

catch variability [ICV]) metrics averaged across 1000
replicates of short-term (2019-2023) and long-term
(2029-2038) projections from the OM to evaluate the per-
formance of the harvest control rules applied. We chose
the number of replicates based on the stability of risk
(ICES, 2019c¢). Risk of stock depletion is defined as the
maximum annual probability of SSB falling below a limit
threshold, By, (Figure 1c), a spawner abundance below
which reproductive capacity of the population is expected
to decline (Rindorf et al., 2016), consistent with previous
analyses (ICES, 2019b). We computed the risk based on
the proportion of 1000 replicates with annual estimates
of SSB < Byj,,. The ICES defines reference points follow-
ing its guidelines (ICES, 2021). By, is set to 107,297 t for
saithe (ICES, 2019a) and based on the lowest observed
historical SSB. Following ICES (2021), By, is used as the
basis for computing MSY Byigger (ICES, 2020a, 2021) as
follows:

MSY Biigger = 1.4Bjim, (5)

which is a default value of Biigger. Fmsy (used as default
Fiarger) is estimated with the egsim R package (https://
github.com/ices-tools-prod/msy). egsim produces a long-
term stochastic projection (ICES, 2015, 2017, 2020a). The
resulting control parameters follow the MSY approach
but are constrained under the precautionary criteria
(ICES, 2021). As part of the latest management strategy
evaluation, both Byjgeer and Fiargec Were optimized
through a grid search by maximizing median catch limits
while maintaining long-term risk <0.05 (Appendix S2:
Figures S7 and S8; ICES, 2019b). We computed ICV
(a proportional change in catch limit) as follows:

_1Gn -G

ICV, ,
Cy

(6)

where C,;; and C, are projected catches (Equation (4b))
inyeary + 1 and y.

Estimation bias scenarios

To evaluate how managing with persistently biased
assessments degrades the performance of harvest control
rules and the potential to achieve management goals, we
simulated hypothetical scenarios of bias in perceived
spawner abundance and fishing mortality rate in annual
assessments. Although bias can emerge in both directions
(over- and under-estimation), they have asymmetric
implications for conservation and harvest decision-
making by managers (Hordyk et al., 2019). We analyzed
scenarios that may cause severe conservation issues for
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exploited species: SSB overestimation and mean
F (averaged across 4-7-year-olds for saithe) underestima-
tion simultaneously. We simulated six scenarios by intro-
ducing a bias (0%/baseline, 10%, 20%, 30%, 40%, and 50%
per year) in estimating age-specific numbers and fishing
mortality rates in the terminal year of annual assessment
before forecasting SSB and mean F and projecting a catch
limit. The magnitudes of realized biases in these parame-
ters, however, varied among simulations because of pro-
cess uncertainty. We introduced a bias as follows:

logﬁayzlogﬁay+log(1+5)—&—na,y, (7a)

logﬁa,y :logﬁa,y+log(1 =) +&ays (7b)

where I?Ia’y and ?a » are estimated a-year-old numbers
and fishing mortality rates in year y from the EM, and &
is a bias (in proportion). The biased estimates are then
used to compute SSBy,,; prior to projecting a catch limit
using the harvest control rule as above (Equations (4a)
and (4b)). Note that for simplicity and generality, these
bias scenarios are designed to illustrate our proposed
approach to generic estimation bias in assessments,
rather than specific scenarios of persistent, time-varying
bias that may cumulatively emerge between assessments
as input data are updated owing to model mis-
specification and biased input data (known as retrospec-
tive pattern; ICES, 2020b, Punt et al., 2020). We analyzed
all scenarios based on the performance metrics (risk,
median catch, and ICV) of short-term and long-term
projections.

Developing robust management measures

To evaluate how precautionary the harvest control rule
needs to be to minimize adverse effects of biased esti-
mates in the assessment on catch advice provisioning, we
explored alternative values of the two control parameters
of the harvest control rule (Bigger and Fiarger) and projec-
ted catch limits under the same bias scenarios (over-
estimated SSB and underestimated mean F) through
management strategy evaluation. Building on the grid
search from the latest evaluation (ICES, 2019c) and using
Birigger = 250,000 Mg and Fiage; = 0.35 as baselines, we
explored a finite number of select candidate combina-
tions of the parameters (12 Byigger X 16 Fiarger = 192 com-
binations or 1,920,000 unique runs in total per scenario)
for reoptimization to illustrate our proposed approach.
We conducted a restricted grid search in parameter
spaces of Biigger (210,000-320,000 Mg with 10,000 Mg
increments) and Fiarge; (0.24-0.39 with 0.01 increments)

for each bias scenario. We computed median catch limits
and risk from the simulations and optimized the parame-
ter sets by maximizing median catch limits while
maintaining long-term risk <0.05.

RESULTS

Performance of harvest measures with
estimation bias

An increasing amount of estimation bias in annual
assessments was found to increase median catch and
overharvest risk in the short term. Although median SSBs
declined by as much as 30% in the OM (Figure 2a), with
SSB overestimation, median catches rose by 15%-44% rel-
ative to the baseline (Figure 3a), increasing mean Fs in
the OM by 19%-80%, which were underestimated in the
EM by on average 42% (Figure 2a). As a result, biased
assessments elevated risks as much as 17-fold (Figure 3a).
Mean ICV responded nonlinearly to biased estimates,
and the distribution was highly skewed (Figure 3a).

In the long term, the estimation bias was found to
increase the ICV and risk but had negligible effect on the
median catch. Biased estimates reduced the median SSB in
the OM by as much as 35% (resulting in a 37% increase in
mean F) relative to the baseline; this reduction was under-
estimated in the EM by on average 53% (Figure 2b). With
overestimated SSBs and largely unadjusted Fireer, the
median catches remained unchanged (~113,000 Mg;
Figure 3b). Also, biased assessments amplified temporal
variations (CVs in medians of replicates) in both SSB and
mean F in the OM as much as ~71%, thereby increasing
ICVs by up to 72%, which, combined with reduced SSBs,
elevated risks from 2- to 13-fold (Figure 3b).

Harvest control rule optimization

The proportion of the select grid search area evaluated
through the management strategy evaluation that
remained precautionary (which we define as safe harvest
margin) progressively shrank as more bias was intro-
duced (Figure 4; Table 1). Within the safe harvest mar-
gin, the fishery yielded the highest catches at lower
(by 0.02-0.10) Fiyreec and higher (by 10,000-60,000 Mg)
Birigger (Table 1; Figure 4). With reoptimization of these
control parameters, the control rule was projected to
produce higher (by 6.7%-25%) short-term catches and
maintain similar (<3.0% deviation from the baseline)
long-term catches under all bias scenarios (Table 1). Both
short- and long-term SSBs declined by 3.1%-6.9% and the
long-term ICVs rose by less than 1.5% (Table 1).
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FIGURE 2 Stock abundance (SSB) and fishing pressure (fishing mortality rate) of North Sea saithe from the population operating and

estimation models (OM and EM) under scenarios of varying levels of estimation bias: (a) short-term (2018-2023) and (b) long-term (years

2029-2038). Violin plots indicate frequency distributions of performance metrics. Horizontal lines (from bottom to top) within the box plots
indicate the 25th, 50th, and 75th percentiles; whiskers (of the box plots) extend to the largest and smallest values within 1.5x the
interquartile range from the box edges; and black circles indicate the outliers. Fishing mortality rates are computed by averaging across age-

specific fishing mortality rates of 4-7-year-olds. Red horizontal lines indicate median values from the baseline scenario

DISCUSSION

An optimization approach applied through management
strategy evaluation offers a powerful decision-support
tool to develop robust harvest control rules for sustain-
able fisheries even when severe estimation bias persists
in assessments. For North Sea saithe, increasingly severe
biases (abundance overestimation and fishing pressure
underestimation) initially set overly optimistic catch
limits that deplete the stock. But unacceptably high long-
term risks of missing management targets result from
progressively amplified fluctuations in annual catch
limits. With computational optimization, our proposed
approach can help develop harvest control rules to
achieve robust, cost-effective performance: low risks and
stable catch limits—less disruption to fishing communi-
ties. By explicitly accounting for persistent estimation
bias in assessments, this approach can guide resource
managers in balancing the trade-off in managing

commercial exploitation: achieving stability in harvest
while also maintaining sustainable resource populations.

Costs of managing with estimation bias

How robust management measures are to biased estimates
in assessments would depend on life history, fishing opera-
tion, and current status of a given species or population
(Hordyk et al., 2019; Hurtado-Ferro et al, 2015;
Wiedenmann & Jensen, 2018). Our North Sea saithe case
study is based on the 2018 assessment in which the stock
is in good condition (~37% above MSY Byigger;
ICES, 2019c). Analyses show the current harvest control
rule is robust to a moderate amount of bias (up to ~16%,
based on our further analyses with 1% increments between
10% and 20%) in assessments and the stock can be sustain-
ably managed at an acceptable level of risk (<5% probabil-
ity of stock depletion). Simulations revealed, however, that
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Performance of the harvest control rule for North Sea saithe under six scenarios of varying levels of estimation bias

(overestimation of stock abundance and underestimation of fishing mortality rate): (a) short term (2018-2023) and (b) long term (years
2029-2038). The performance was evaluated with median catch (in megagrams), interannual catch variability (ICV), and risk. Risk is the
maximum probability of stock abundance (SSB) falling below By;, (107,297 Mg). Violin plots indicate frequency distributions of performance
metrics. Horizontal lines (from bottom to top) within the box plots indicate the 25th, 50th, and 75th percentiles; whiskers (of the box plots)
extend to the largest and smallest values within 1.5x the interquartile range from the box edges; and black circles indicate the outliers. Red
horizontal lines indicate median values from the baseline scenario (catch and ICV) or the precautionary threshold (risk = 0.05)

managing harvest with more severely biased assessments
can progressively amplify the risk of overharvesting, but
the causes of heightened risk vary over time. The risk ini-
tially increases as the population becomes depleted owing
primarily to overly optimistic projections of annual catch
limits. Past research suggests that this pattern can emerge
from misspecification of an EM such as unaccounted tem-
poral variability in demographic parameters (Szuwalski

et al., 2017) and overestimated natural mortality rate
(Hordyk et al., 2019), and biased input data such as under-
reported catch (Hordyk et al., 2019). Our exploratory ana-
lyses with misspecified natural mortality rates also show
that assessments with an overestimated (by 50%) natural
mortality rate can underestimate fishing pressure and
overestimate stock size, increasing the risk of depletion
(by 67%, Appendix S2: Figure S9). Over time, managing
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FIGURE 4 Grid search for combinations of the harvest control rule parameters (Fiyrget and Byrigger) for North Sea saithe under five
scenarios of varying levels of estimation bias (overestimation of stock abundance and underestimation of fishing mortality rate). Heat maps
indicate median catch for only combinations (in 210,000-320,000 t Byjgger and 0.24-0.39 Fiarge) that meet the precautionary criterion (risk
<5%) in the long term (years 2029-2038). Black rectangles indicate combinations of the harvest control rule parameters with the highest
median catch. Blue circles indicate the parameter sets optimized without estimation bias (Birigger = 250,000 Mg and Fiarge; = 0.35;

ICES, 2019¢)

TABLE 1
metrics® from management strategy evaluation under scenarios of varying levels of estimation bias in assessments

Optimized control parameters (Fiarget aNd Byrigger)” Of the harvest control rule set for North Sea saithe and performance

Short term (2019-2023) Long term (2029-2038)

Scenario®  Fraget  Buigger  Catch ICV  SSB Risk?  Catch ICV  SSB Risk?  SHM?!
Base 0.35 250,000 92,464 20 251,973 2.0 116,700 177 292,067 1.5 -

10% 0.33 250,000 101,786 13 238,194 32 116,288 178 279,135 2.5 84.4
20% 0.31 270,000 103,545 13 235356 3.3 116,154 187 274958 3.0 65.6
30% 0.27 310,000 93,047 20 252123 22 115984 180 293711 22 53.1
40% 0.26 310,000 101,131 14 240,643 2.9 115863 184 282929 25 37.5
50% 0.25 310,000 104,943 12 234,525 33 115730  19.1 274,228 2.8 29.2

“The model parameters were optimized for the highest median catch while meeting the precautionary criterion: long-term risk <5% (ICES, 2019c).
The performance was evaluated with short-term and long-term median catch (in megagrams), interannual catch variability (%, ICV), median spawning stock

biomass (SSB, in megagrams), and risk (%).

“Scenarios simulate SSB overestimation and mean (averaged across 4-7-year-olds) fishing mortality rate (F) underestimation.
9Risk is the maximum probability of SSB falling below By, (107,297 Mg) over a given period. Safe harvest margin (SHM) indicates the proportion (%) of the
grid-search area with the harvest control rules that remain precautionary (Figure 4).

with biased assessments would destabilize the stock,
which is displayed as amplified variations in both stock
abundance and fishing pressure in our case study. Yields
also would become increasingly more variable (by as
much as 74% for saithe), elevating the probability of over-
harvesting. Even when the long-term risk of managing
with estimation bias remains within acceptable levels
(<20% bias scenarios in our case study), harvesting des-
tabilized stocks may have more uncertain consequences
for population persistence and yield.

Large year-to-year fluctuations in catch limit are
disfavored by fishing communities (Anderies, 2015), and a
management measure to suppress the fluctuations (known
as stability or catch constraint) is commonly applied in

industrial exploitation (ICES, 2019b). But evidence for the
efficacy of this policy tool remains limited (but see Kell
et al., 2005; Kell et al., 2006; Goto, Filin, et al., 2021), espe-
cially when assessments suggest persistent biases in stock
status. Applying the fluctuation-suppressing measure
may, to some extent, limit the catch variability inflated by
managing with biased assessments. But the risk of stock
depletion likely remains unacceptably high because this
tool may not be sufficiently sensitive to rapid population
declines and unlikely prompts large enough reductions in
annual catch limit effectively (Goto, Filin, et al., 2021; Kell
et al., 2005, 2006).

The time-varying consequences of biased estimates in
assessments also may present a dilemma for managers in
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decision-making, as illustrated for several exploited
marine species (Deroba, 2014; Hordyk et al., 2019). Man-
aging with biased assessments would produce higher
yields (and revenues) in the short term but would amplify
catch fluctuations and thus the probabilities of depletion
in the long term. Trade-offs between short-term gains
and long-term losses (or vice versa) are common
dilemmas in managing natural resources (Carpenter
et al., 2015; Mangel et al., 1996). Past research focuses on
developing solutions to biased assessments in fisheries
management (Brooks & Legault, 2016; Wiedenmann &
Jensen, 2018). Capturing how managers and fishing com-
munities respond to these changes also would contribute
to developing effective strategies for sustainable use of
resource populations (Fulton et al., 2011). For example,
historical records tell us that realized catch limits and
landings in the Northeast Atlantic on average varied less
than as recommended by scientific advice (Patterson &
Résimont, 2007), which may attenuate or amplify the
effects of biased assessments on the sustainability of
harvesting. In situations where the science that manage-
ment advice is based on becomes increasingly unreliable,
evaluating both short- and long-term consequences of
taking certain management actions would aid managers
make decisions effectively. Our findings reemphasize that
alternative harvest measures need to be explicitly
assessed before implementation when giving a scientific
basis to inform defensible decision-making.

Managing risks under rising uncertainty

Our analyses suggest persistent overestimation of abun-
dance and underestimation of fishing pressure can mask
the extent of overharvesting and depletion, thereby
delaying management responses (asynchronized resource-
fishery dynamics; Fryxell et al., 2010). Although a certain
time lag in the management cycle (from monitoring sur-
veys to provisioning of catch advice) is unavoidable, severe
estimation bias can promote management inertia. Once
population abundance reaches a biological limit threshold
(Byim for example), the population may even become unre-
sponsive to any measure for recovery (Allee effect;
Kuparinen et al., 2014). One proposal to minimize adverse
effects of estimation bias is by identifying the sources of
and correcting for model misspecification such as account-
ing for time-varying demographic parameters in an EM
(Szuwalski et al., 2017). But without prior knowledge of
true demographic processes of the population, the current
form of this method may not sufficiently reduce bias or
may even exacerbate the problem if incorrectly applied
(Szuwalski et al., 2017). Also, if biases originate from two
or more demographic parameters, uncertainties in these

misspecified parameters may covary and interact
unpredictably, making the application of the method chal-
lenging for many harvested populations.

To circumvent this challenge, others suggest annual
catch limits be proportionally adjusted using an index
that quantifies relative deviation in population metrics
(such as stock abundance) between assessments (known
as Mohn’s p) (Brooks & Legault, 2016; Deroba, 2014).
Although this index can be useful as a diagnostic, past
analyses suggest the index may not necessarily reflect the
magnitude and direction of bias (Brooks & Legault, 2016;
Hurtado-Ferro et al., 2015; Wiedenmann & Jensen,
2018). When applied, the outcomes and net benefits can
be equivocal in both the short and long terms (Brooks &
Legault, 2016; Deroba, 2014).

Shifting the focus from assessment to decision-
making in management strategy evaluation (Figure 1a),
our analysis shows that the undesirable outcomes of
managing with biased assessments can be avoided by
developing more precautionary measures to set annual
catch limits through dynamic optimization of the control
parameters of harvest control rules. For our saithe case,
when estimation bias becomes too severe, lowering target
exploitation rate and raising threshold abundance that
trigger management action—early intervention—would
maintain not only low probabilities of stock depletion
(<3.5% when SSB < Bj;,) (and thus a fishery closure) but
also short-term catch stability (<20% year-to-year varia-
tion) without foregoing yields, thereby minimizing dis-
ruption to fishing communities. Although this approach
needs to be tested with more case studies, our work dem-
onstrates the optimization approach can guide managers
in making decisions to cost-effectively safeguard against
ecologically and socioeconomically undesirable outcomes
of managing risks with biased assessments.

Like all model-based methods, our proposed approach
also has limitations. The main aim of this work was to
develop an alternative approach to guide resource man-
agers in decision-making to support sustainable use of
resource populations despite estimation bias. For this rea-
son, we did not explore underlying mechanisms of the bias
propagating through a resource-management system. Ana-
lyses show that even with optimization, our ability to safely
harvest the populations would become progressively lim-
ited (less margin of error in setting the precautionary har-
vest control rules or “safe operating space”; Carpenter
et al., 2015) as the magnitude of bias increases. We encour-
age continued efforts to develop methods to identify root
causes of bias and to minimize their adverse effects on sci-
entific advice (Hordyk et al, 2019; Hurtado-Ferro
etal., 2015; Szuwalski et al., 2017).

Another caveat of our approach is computational
intensity (requiring extensive parallel computing on a
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high-performance computer cluster), which may pose
challenges in its application especially for more complex
management objectives (more control parameters)
(Chadés et al., 2017; Walters & Hilborn, 1978). Methods
have been recently adopted to improve the efficiency of
computational optimization including genetic algorithms
(Fischer et al., 2021), partially observable Markov deci-
sion process (Memarzadeh & Boettiger, 2018), stochastic
process (Wiedenmann et al., 2015), bootstrapping (ICES,
2020a), and Bayesian statistics (ICES, 2020a). Future
research would benefit from applying these techniques to
expand this feedback-based approach to tackling estima-
tion bias in assessment.

More broadly, our proposed approach using manage-
ment strategy evaluation, which is designed to account for
multiple sources of uncertainty (Punt et al., 2016), offers a
robust alternative to managing resource populations when
biases in assessments persist. This approach can not only
act as a diagnostic to evaluate the robustness of manage-
ment measures by explicitly accounting for long-term
(a decade or more) consequences but also present an adap-
tive, transparent way to improve protective measures
when the perception deviates too far from reality. Given
ubiquity of estimation bias and challenges in identifying
the sources (Brooks & Legault, 2016; Hurtado-Ferro
et al., 2015; Szuwalski et al., 2017), we suggest the bias be
routinely evaluated through management strategy evalua-
tion as an additional source of uncertainty, and harvest
control rules be (re)optimized when the bias becomes too
severe.

Demand for wild-capture fisheries, which provide
food, nutrition, and job security, will continue to rise
with growing human populations in the coming decades
(Costello et al. 2020). Changing ocean conditions are
also projected to increase environmental stochasticity,
potentially amplifying resource population and harvest
fluctuations (Brooks & Legault, 2016). Higher environ-
mental stochasticity may promote autocorrelation in
population fluctuation (Gamelon et al., 2019; Ripa &
Lundberg, 1996) and amplify the magnitude of assess-
ment error, thereby further shrinking safe harvest mar-
gins. These anticipated issues underscore greater needs
for taking precautionary measures in shaping resilient
management policies (adopting “resilience-thinking”;
Fischer et al., 2009) to safeguard shared resources in the
face of rising uncertainty.
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