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ABSTRACT

Background Infants are frequently exposed to
antibiotics (AB) in the first week of life for suspected
bacterial infections. Little is known about the effect of
AB on the developing intestinal microbiota. Therefore,
we studied intestinal microbiota development with and
without AB exposure in the first week of life in term born
infants.

Methods We analysed the faecal microbiota from
birth until 2.5 years of age by 165 rRNA gene amplicon
sequencing in a cohort with 56 term born infants,
exposed to AB in the first week of life (AB+) (AB for 2—-3
days (AB2, n=20), AB for 7 days (AB7, n=36)), compared
with 126 healthy controls (AB-). The effects of AB and
duration were examined in relation to delivery and
feeding mode.

Results AB-+ was associated with significantly
increased relative abundance of Enterobacteriaceae at 3
weeks and 1 year and a decrease of Bifidobacteriaceae,
from 1 week until 3 months of age only in vaginally
delivered, but not in C-section born infants. Similar
deviations were noted in AB7, but not in AB2. After

AB, breastfed infants had lower relative abundance of
potentially pathogenic Enterobacteriaceae compared
with formula fed infants and recovered 2 weeks faster
towards controls.

Conclusions AB exposure in the first week of life
alters faecal microbiota development with deviations

in the relative abundance of individual taxa until 1 year
of age. These alterations can have long-term health
consequences, which emphasises the need for future
studies aiming at restoring intestinal microbiota after AB
administration.
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INTRODUCTION

During the first 1000 days of life, the intestinal
microbiota impacts health in later life through
the interdependent development of microbiota,
immune system, growth and cognitive func-
tion.! 2 After birth, the intestinal microbiota
develops rapidly, driven by exposure to microbes
from maternal, environmental and dietary sources.’
During this early development, the intestinal micro-
biota is unstable and susceptible to perturbations
such as those caused by antibiotic (AB) exposure.
These perturbations may have long-term conse-
quences on the developing microbiota and also
on the developing immune system,* growth® ¢ and
have already been associated with increased preva-
lence of asthma, allergies, coeliac disease, eczema,
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WHAT IS ALREADY KNOWN ON THIS TOPIC

= Up to 20% of neonates receive antibiotics
because of (suspected) early-onset neonatal
sepsis. In older infants, antibiotics have been
shown to disturb the intestinal microbiota,
but studies in newborns with a developing
microbiota are limited.

= Feeding type and delivery mode also affect
the microbiota, but their effect in relation to
antibiotic exposure in the first week of life has
not yet been studied.

WHAT THIS STUDY ADDS

= Antibiotic exposure in the first week of life
affects microbiota development throughout the
first year of life, with more profound deviations
in infants born at term exposed for 7 days
compared with only 2-3 days.

= Antibiotic exposure in the first week of life
resulted in deviations in the faecal microbiota
development of vaginally delivered infants but
not of C-section delivered infants compared
with their respective controls. This could be
attributed to the difference caused by delivery
mode itself, with C-section delivered infants
deviating from vaginal controls up to 1 month
of age regardless of antibiotic exposure.

HOW THIS STUDY MIGHT AFFECT RESEARCH,
PRACTICE AND/OR POLICY

= This study underlines the importance of early
cessation of antibiotics started at birth because
of the prolonged effect on the intestinal
microbiota and possible impact on health.

eosinophilic esophagitis, infantile colic, inflamma-
tory bowel disease and obesity.” !

In mice-based studies, AB exposure in the first
week of life altered microbiota composition and
immune function, but gavage with mature untreated
microbiota, restored the perturbation and reduced
the negative health effects.* To understand the full
impact in humans and develop restoration strate-
gies, more knowledge is needed.

Worldwide, up to 20% of all neonates are
prescribed ABs because of (suspected) early-onset
neonatal sepsis, although in most cases, sepsis is
unconfirmed and ABs could be discontinued after
48-72 hours."™"* More prolonged AB exposure can
gradually reduce overall diversity'® and richness'’
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Questionnaires

al Sample
Age ranges

N
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BIRTH

day 123 5 10 21 46

Q)

Figure 1

109

218 556

Overview of the collected questionnaires, faecal sampling points and the age categories based on the age (days) at sampling. N, number

of infants for which samples were available for a given time point. d(ays), m(onths) and y(ears) indicate the age category ranging from birth until

around 2 years of age.

of the neonate’s intestinal ecosystem. Additionally, AB type also
determines the microbial perturbation through specific mech-
anisms of action and host interactions. Studies in infants have
been inconclusive,'” ™ but indicated types with faster recovery
towards the microbiota composition of controls.”” Therefore,
more comparative studies are needed between durations and
types in AB regimes to optimise AB administration.*!

In this study, we investigated the microbiota development
in a subset of the Intestinal Microbiota Composition after AB
treatment in early life (INCA) cohort.”? The primary aim was
to investigate the impact of AB exposure in the first days of life
on microbiota development during the first 2.5 years of life.
Secondary aims were to examine (1) short (2-3 days) versus long
(7 days) AB administration, (2) different AB types and (3) the
impact of feeding and delivery mode on AB perturbation.

MATERIALS AND METHODS

Study design

This prospective, observational study has been described previ-
ously.'”#* To study the impact of feeding mode on AB-induced
deviations, we selected a subset of 182 infants with 1128 samples
who were exclusively breast-fed (BF) or formula-fed (FF) in the
first 3 months of life. An overview of collected samples and their
selection for analyses reported here is provided in online supple-
mental figure 1). All AB+ infants received gentamicin, which
was combined with penicillin (AB™"), amoxicillin (AB*MX) or

amoxicillin with clavulanic acid (ABAM).

Data and faeces collection
Baseline characteristics such as birth mode were assessed through
hospital records. Feeding mode was reported monthly during

the first year of life. Nine faecal samples were collected from
infants (figure 1). Until discharge from the hospital, faeces were
sampled from diapers by hospital staff and immediately frozen
at —20°C. Sampling continued at home by the parents, using
sampling instructions and freezer storage. After 1 year, parents
delivered the samples to the clinic after transport on ice. A final
sample was taken around 2 years, stored in the home freezer and
collected by the study nurse. At the hospital, all samples were
stored at —20°C.

16S rRNA gene amplicon sequencing

DNA was extracted from a maximum of 200 mg of the homo-
genised faecal sample at GenProbio srl (Parma, Italy) with the
QIAamp DNA Stool Mini kit according to manufacturer’s
instructions (Qiagen Ltd, Strasse, Germany). Sequencing libraries
were prepared according to the 16S Metagenomic Sequencing
Library Preparation Protocol (Part No. 15 044 223 Rev. B—Illu-
mina) at GenProbio srl (Parma, Italy). Minor adaptations to the
published protocol® are noted in online supplemental file 1).
Sequencing resulted in ~44 934 (SD 17205) reads per sample.
Data were processed using NG-Tax 2.0 on demultiplexed fastq
files, using default settings.”* Taxonomy was assigned using
SILVA reference database V.128.> Amplicon sequence variants
(ASVs) were defined as unique sequence variants. Two synthetic
mock communities were sequenced as positive controls.*

Statistical analysis of the baseline characteristics

Baseline characteristics were calculated using R 3.6.1°" and
tableone®® (table 1). Differences between groups were examined
by using the Fisher exact test for the categorical variables and
analysis of variance (ANOVA) for continuous variables. Not

127

Table 1 Baseline characteristics of the INCA cohort subset included in this study

AB- AB+

- - —-- —
N 126 56 20 36
GA, weeks (IQR)* 394 40.4 40.05 40.55

(38.5, 40.4) (39.4,41.1) (39.3,41.0) (40.1,41.2)
Birth weight, mean grams (SD) * 3478 (515) 3711 (484) 3734 (428) 3699 (518)
Birth weight for GA z-score (SD) 0.15 (1.2%) 0.39 (1%) 0.30 (1%) 0.57 (0.9%)
Sex (Female %) 58 (46%) 28 (50%) 13 (65%) 15 (42%)
Delivery mode (Vaginal %) 83 (66%) 41 (73%) 15 (75%) 26 (72%)
Exclusive breast feeding at 3 m (Yes %) 47 (37%) 23 (41%) 17 (47%) 6 (30%)
Additional AB 1-6 m (Yes %)*,** 10 (8.2%) 13 (24%) 1 (5%) 12 (34%)
Additional AB 7-12 m (Yes %) 30 (27%) 9 (19%) 2 (10%) 7 (24%)

Statistically significant differences are indicated with *p<0.05 compared with AB-, **p<0.05 compared with AB2.
AB-+, infants who received AB during their first week of life. Birth weight for GA z-score is calculated according to the z-score formula.”” AB2: AB exposure for 2 to 3 days in the first week of life, AB7: AB exposure for 7

days.
AB, antibiotics; AB-, control infants; GA, gestational age; m, months.
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normally distributed variables were tested with the Kruskal-
Wallis test and indicated by their median and IQR. Bonferroni
correction was performed to correct for multiple testing.

Bioinformatic and statistical analysis of the sequence data

All analyses were performed in R 3.6.1.%” Samples were stratified
into 11 age-based and right-closed intervals for statistical anal-
ysis (figure 1). The Jenks Natural Breaks Classification (classInt
package) was used to calculate the optimal ranges.”” Because of
increasing increments between sampling, the x-axis (age) was
log2 transformed for visualisation.

Alpha diversity (within sample diversity) was calculated at ASV
level using Picante®® and Microbiome®' packages and following
metrics: Faith’s phylogenetic diversity,>* ASV richness, Shannon
and Inverse Simpson. All except Shannon diversity needed loga-
rithmic transformation to obtain normal distribution for one-
way analysis of covariance. Consecutive analyses were corrected
for the baseline characteristic that differed significantly between
AB+ and AB- and between AB2 and AB7.

Temporal trends in relative abundance were visualised using
local regression with locally estimated scatterplot smoothing
using ggplot2. These relative abundances did not meet normality
requirements and were therefore compared using beta regres-
sion with BetaReg® per age interval. The effects of AB on
the relative abundance of phyla were modelled including and
excluding delivery mode, feeding mode and additional AB expo-
sure between one and 6 months. The optimal beta regression
models, based on Akaike and Bayesian information criteria, only
included AB exposure in the first week of life without additional
terms.

Beta diversity (between sample diversity) was calculated
using pairwise Weighted (WU)** and Unweighted UniFrac (UU)
distances.”® WU takes the relative abundance of each ASV into
account, whereas UU uses presence or absence of ASVs. Pair-
wise UU and UW distance matrices were used to plot principle
response curves (PRCs).>® PRC analysis is a redundancy anal-
ysis for interpreting longitudinal data. It visualises multivariate
responses in a repeated observation design.>®*” The method was
designed to analyse the treatment effect over time compared
with controls, as it can disentangle the time-dependent effects
from other possible determinants.’® ** In this study, time was
displayed on the x-axis and the intestinal microbiota develop-
ment was shown compared with AB- infants as the baseline

reference group. Differences between AB groups were assessed
per age interval using ANOVA in the vegan package.*

RESULTS

Baseline characteristics of INCA cohort subset

The baseline characteristics differed between AB- and AB+
for gestational age, birth weight and additional AB exposure
between one to 6 months (table 1). Birth weight z-score (birth
weight corrected for gestational age), however, was comparable.
AB2 differed from AB7 with regard to additional AB exposure
between 1 and 6 months (5% vs 34%, respectively, p=0.019).
Baseline characteristics were comparable between the AB type
groups (online supplemental table S1).

Antibiotic-induced alterations to intestinal microbiota
development

AB exposure during the first week of life did not alter microbial
alpha diversity between birth and 2.5 years (online supplemental
figure 1). The temporal patterns of the four major phyla (95% of
the average relative abundance) were compared with univariate
analyses (figure 2). Relative abundance of Proteobacteria was
high overall, during the first months of life. AB exposure further
increased this relative abundance at 1 month (mean 43.6% AB+,
31.5% AB-) and 1 year (mean 17.6% AB+, 6.5% AB-). Actino-
bacteria peaked around 3 months, but AB exposure decreased
their relative abundance at 1 week (mean 6.3% AB+, 18.2%
AB-), 2 weeks (mean 8.4% AB+, 24.4% AB-), 1 month (mean
17.5% AB+, 27.2% AB-) and 3 months (mean 26.5% AB+,
34.4% AB-). The average relative abundance of Bacteroidetes
was stable at approximately 10% during the first year of life.
Firmicutes drastically increased in relative abundance towards
2.5 years. Both were unaffected by AB.

Effect of antibiotic duration on long-term microbiota
development

Based on univariate statistics, the temporal trajectories of Acti-
nobacteria and Proteobacteria were most affected by AB. Based
on UU, ABs increased several members of the Enterobacteria-
ceae and decreased Bifidobacteriaceae at one and 2 weeks (online
supplemental figure 2A). For WU, ABs impacted similar taxa at
1 year (p<0.05) (figure 3A). These AB deviations were similar
in AB2 and AB7, but only the microbiota composition of AB7

Proteobacteria Actinobacteria

Relative abundance

* Kk k%

T 23 5 10 21 46 109 218 556 110
Age (days) - log2 transformed

Age (days) - log2 transformed

Bacteroidetes Firmicutes

AB use in first week of life

—AB-

== AB+

1 23 5 10 21 46 109 218 556 110

1 23 5 10 21 46 109 218 556 1101 1 23 5 10 21 46 109 218 556 1101
Age (days) - log2 transformed Age (days) - log2 transformed

Figure 2 Temporal trajectories of the relative abundance of the four main phyla in the developing intestinal microbiota from birth to 2.5 years of
age. Thick lines represent the average with shading showing the 95% Cl. Differences between AB+ and AB- were calculated using beta regression for
each age category. * and vertical grey shading: difference in relative abundance (p<0.05), AB+, infants who received AB during their first week of life,
AB-, infants who did not receive AB during their first week of life, LOESS, locally estimated scatterplot smoothing.
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Figure 3 WU-based PRC analysis is a special case of RDA for multivariate responses in a repeated observation design, which is applied here on the
longitudinal infant intestinal microbiota dataset from birth till 2.5 years of age. (A) The infants who did not receive antibiotics during the first week
of life (AB-), were compared as a baseline to the antibiotic exposed infants (AB+). Bacterial genera shown are the main drivers of the differences
between AB+ and AB-: taxa on the same side of baseline as the curve are linked to an increased relative abundance at that time point, opposite sides
indicate a decrease. (B) AB- was also compared as a baseline with the different antibiotic durations of 2-3 (AB2) or 7 days (AB7). Significance was
tested at the different time points using an ANOVA like permutation test (*p<0.05 compared with baseline AB-). Covariates that were controlled for
included additional AB exposure between the age of one and 6 months. AB+, infants who received AB during their first week of life; AB-, infants who
did not receive AB during their first week of life; AB2, AB exposure for 2-3 days in the first week of life indicated with light grey shading; AB7, AB
exposure for 7 days indicated with grey shading; ANOVA, analysis of variance; ASV, amplicon sequence variants; PRC, principal response curve; RDA,

redundancy analysis; WU, weighted UniFrac.

differed from AB- baseline (figure 3B and online supplemental
figure 2B).

AB types had a different impact on the microbiota (online
supplemental figure 3A,B) with AB*MX not deviating from AB-
baseline and ABPEN deviating at 1 week and 1 year with increased
relative abundance of Enterobacteriaceae members in WU and
UU. UU-based deviations between AB*M and AB- baseline were
limited to week one and involved different ASVs compared with
ABPEN. ABMMC affected WU in the long-term with increased
Enterobacteriaceae and Enterococcaceae at 2 weeks and 1 month
and also Bifidobacterium at 1 week and 2.5 years.

Impact of delivery and feeding mode on AB-associated
deviations in the faecal microbiota development

Due to the relatively low number of faecal samples in the first
week per feeding and delivery type (figure 1), effects were only
reported in samples collected between 1 week and 2.5 years.
Within AB-, microbiota deviated based on delivery mode from
1 week until 1 month (figure 4D). In vaginally delivered infants,
the AB effect on the microbiota was still significant at 1 year
with an increase of several Enterobacteriaceae, Enterococca-
ceae and Streptococcaceae and decrease in Bifidobacterium and
Escherichia-Shigella. In contrast, no AB-mediated deviations
were noted between C-section born infants.

Compared with AB- BF baseline, AB+BF infants only deviated
at 2 weeks, whereas AB+FF infants showed longer deviations
from the first week up to 1 month (figure 4A). Because there
was also a feeding effect during the first 6 months, the AB effect
was also analysed within the separate feeding groups. AB+ was

associated with decreased Bifidobacterium relative abundance
in FF (1 month) (figure 4C), which occurred later than in BF
infants (2 weeks) (figure 4B). In turn, AB+ was associated with
increased relative abundance of Parabacteroides in BF, and with
increased relative abundance of Enterobacteriaceae and Entero-
coccus in FF infants.

DISCUSSION

In this prospective, observational INCA study, we examined the
microbiota development after AB exposure during the first week
of life and found perturbations in the faecal microbiota devel-
opment from 1 week until 1 year of age. These perturbations
included decreased relative abundance of Bifidobacteriaceae
while potentially pathogenic Enterobacteriaceae increased. This
study adds new insights into long-term compositional shifts after
neonatal AB exposure.'® *' Our results corroborate findings in
older infants with increased Enterobacteriaceae and decreased
Bifidobacteriaceae after AB administration.'® 2 *~** Importantly,
the severity and duration of AB-mediated microbiota perturba-
tions increased with longer AB administration (5-7 vs 2-3 days).
The results also align with a small study in preterm infants,
where >5 days AB exposure intensified perturbations compared
with 2-3 days.*

Bifidobacteriaceae form a cornerstone in the early devel-
opment of the immune system. They were shown to promote
B-cell maturation and associations with decreased inflammatory
responses and T-regulatory cell acquisition.*® Enterobacteriaceae,
on the other hand, produce toxins and have lipopolysaccharides
on their outer membranes, which causes inflammation.*’*
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Figure 4 WU-based PRC analyses in the different delivery and feeding mode groups. Bacterial genera shown are the main drivers for differences
between the groups and the baseline: positive effect on the curve is linked to increased ASVs in the positive spectrum and decrease of those in

the negative spectrum. (A) Breastfed controls (AB-BF) were compared as a baseline to antibiotic exposed (AB+) and FF infants. (B) Specifically
featuring the AB effect in breastfed children, with breastfed control children as a baseline (AB-BF) and (C) formula-fed children, with formula-fed
control children as a baseline (AB-). (D) Vaginally delivered control infants (AB-Vag) were compared as a baseline to antibiotic exposed (AB+) and
C-section delivered (Sectio) infants. Significance was tested at the different time points using an ANOVA like permutation test (*p<0.05). Delivery
mode analyses were controlled for feeding mode and vice versa. AB-, infants who did not receive AB during their first week of life; AB+, infants who
received AB during their first week of life also indicated within grey shading; ASV, amplicon sequence variants; BF, infants exclusively breast-fed in the
first 3 months of life; FF, infants exclusively formula-fed in the first 3 months of life; PRC, principal response curve; Sectio, infants delivered through
C-section, Vag, vaginally delivered infants; WU, weighted UniFrac.

Therefore, it is not surprising that reduced Bifidobacteriaceae, The long-term microbiota effect of ABs and its associated
often combined with an increase in potentially pathogenic negative health outcomes reinforce the need for implementing
Enterobacteriaceae, like Shigella, Klebsiella and Enterobacter, AB stewardship programs®>™° to avoid AB overuse.”! *® %" The
have been associated with immune-mediated disorders like microbiota perturbations were only significant after 5-7 days
asthma.’® Similar deviations were also found in functional disor- compared with 2-3 days AB which could explain previous find-
ders like infantile colic>! and irritable bowel syndrome.’> ings from the INCA cohort: namely higher incidence of infantile
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colic, wheezing and food allergies in infants exposed for 5-7 days,
but not for 2-3 days.'**® If this observed difference between 2-3
days and 5-7 days exposure is the result of longer AB exposure or
the result of a concomitant infection or inflammatory response is
yet unclear. The AB7 infants were treated because of suspected
early onset sepsis (EOS). EOS is rare in term infants,>*! but it
is difficult to distinguish from normal neonatal physiology after
birth, and laboratory tests cannot always reliably detect or rule
out EOS.%* Because the consequences of delaying treatment are
significant, on average 82 newborns without EOS are treated for
each case.' ©% In our study population, only two of the 36 AB7
infants had a positive blood culture. The others were also treated
for 5-7 days because of elevated inflammatory markers or clin-
ical symptoms. Uzan-Yulzari et al showed that the association
between neonatal AB exposure and growth was independent of
the neonatal infection state.® This suggests that the differences
in microbiota development after AB treatment in our study are
more likely the result of the AB treatment duration itself than
caused by a possible EOS. Our new findings emphasise the need
for microbiota restoration to minimise aberrant immune devel-
opment. Suggested strategies include prebiotics, probiotics and
synbiotics® but also faecal transfers, which partially restored the
microbiota of mice exposed to AB for 7 days."?

In vaginally delivered infants, the AB effect was most
pronounced with microbiota deviations in the second week of
life. C-section born infants, however, showed similar pertur-
bations regardless of AB exposure. After C-section, microbiota
perturbations occurred due to reduced vertical mother-infant
transmission of important intestinal microbes such as Bacteroides
and Bifidobacterium, while transmission of other microbes like
skin and mouth bacteria increased,®” as well as due to maternal
AB administration prior to cord clamping.® C-section delivery
already showed decreases in Bifidobacterium spp and increases
in opportunistic pathogens from hospital environments like
Enterobacter, Enterococcus and Klebsiella.®® This resembled
the AB effect, which might explain the lack of an additional
AB effect in C-section infants as these infants already lack the
affected microbial groups from birth.

Feeding also has a major impact on early life microbiota devel-
opment.®” In our study, ABs in the first week of life perturbed the
microbiota of both BF and FF infants, but potentially pathogenic
Enterobacteriaceae only increased in FF infants. Moreover, AB
perturbations were still notable at 1 month in FF infants but
only until 2 weeks in BF infants. Breastmilk probably aids resto-
ration through components like human milk oligosaccharides
and live bacteria, which stimulate the growth of bifidobacteria
and reduce (potential) pathogens.”

The strengths of this study are the quantity of samples and
long-term follow-up. This enabled the investigation of the inter-
play of AB with delivery and feeding modes. Moreover, the
quantity of sampling points allowed for detailed and long-term
detection of AB-induced perturbations within individuals. This
was relevant as AB impact was not uniform over time, suggesting
that limited sampling points could lead to misinterpretation.
Finally, the number of infants receiving additional courses of
AB in the first year was low in this cohort, thereby reducing an
important confounding factor.

The methodology for profiling the intestinal microbiota,
which targeted the V3 hypervariable regions of the bacterial
16S rRNA gene, provides a cost-effective overview of bacterial
community composition, however, resolution at species level is
limited, and amplification bias cannot be unequivocally ruled
out.”! 7> The applied Probio_Uni and Probio_Rev primers were
validated and, compared with other primers, they seemed to

represent relevant members of the intestinal microbiota such as
bifidobacteria more accurately, which makes them especially fit
for analysing the intestinal microbiota of infants.” For future
research, whole genome shotgun sequencing could be used to
increase the accuracy of species and strain detection.” ”* Another
limitation may be that environmental factors and maternal-infant
interactions could have been confounders, because AB+infants
were admitted to neonatal wards, whereas AB- infants stayed
with their mothers on the maternity ward and were discharged
earlier. Last, we did not have sufficient data on perinatal AB
exposure and were therefore unable to correct for it, although
it is questionable to what extent this confounder is important to
take into account.”” 7® Additionally, the study was not primarily
designed (and thus underpowered) to conclude on AB types.
Nevertheless, our results suggest that AB*™X induced less pertur-
bations as it did not result in any differences from AB- (online
supplemental figure 3B). The addition of the B-lactamase inhib-
itor clavulanic acid (AB*M®) was associated with higher levels of
bifidobacteria compared with other AB types, which supports
an earlier finding in a single subject.”’ Dedicated studies are,
however, needed to further elucidate the optimal regime with
the least microbial perturbations.

In conclusion, AB exposure in the first week of life in term
born infants disturbed the microbiota up to 1 year, with more
significant deviations after longer AB exposure (5-7 days). Both
C-section delivery and AB administration in the first week of
life are associated with deviant intestinal microbiota, but the
two combined are not associated with further deviation. Breast-
feeding was associated with reduced severity and duration of
perturbations compared with formula feeding. Our observations
may help to elucidate why AB-exposed infants have more health
problems. It may also support the development of preventive and
curative strategies after AB exposure to stimulate the growth of
beneficial microbiota in order to prevent future health problems.
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