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Abstract

Demographic compensation—the opposing responses of vital rates along
environmental gradients—potentially delays anticipated species’ range contraction
under climate change, but no consensus exists on its actual contribution. We
calculated population growth rate (A) and demographic compensation across
the distributional ranges of 81 North American tree species and examined their
responses to simulated warming and tree competition. We found that 43% of species
showed stable population size at both northern and southern edges. Demographic
compensation was detected in 25 species, yet 15 of them still showed a potential
retraction from southern edges, indicating that compensation alone cannot
maintain range stability. Simulated climatic warming caused larger decreases in
A for most species and weakened the effectiveness of demographic compensation
in stabilising ranges. These findings suggest that climate stress may surpass the
limited capacity of demographic compensation and pose a threat to the viability of

North American tree populations.
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INTRODUCTION

Every species has a finite geographical range, beyond
which the combined contributions of vital rates (i.e. sur-
vival, growth, reproduction and recruitment) to its popu-
lation growth rates (M) are insufficient to maintain stable
populations (Angert, 2006; Ellner et al., 2016). With on-
going climate change, a multitude of species are tracking
their shifting suitable habitats, which often yields species
range expansions at high latitudinal or elevational edges
and range contractions at low latitudinal or elevational
edges (Chen et al., 2011; Iverson et al., 2008; Morueta-
Holme et al., 2015). However, many species still persist in
their original habitats and show no sign of net range shift
(Moritz et al., 2008; Tingley et al., 2009). A fundamen-
tal question in macroecology and biogeography is how
marginal populations manage to persist under deterio-
rating conditions. Few studies have focused on the possi-
ble mechanisms of demographic compensation (Doak &
Morris, 2010), which occurs when vital rates respond in
opposite directions to each other along an environmen-
tal gradient. Perfect ‘compensation’ of some vital rates
can yield stable population size at marginal populations.
Even if imperfect, compensation may reduce overall
variation in A across the species’ range (Daco et al., 2021;
Oldfather & Ackerly, 2019) or over time (Andrello et al.,
2020; Compagnoni et al., 2016), potentially allowing pop-
ulations to persist at low latitudinal or elevational edges
of a species’ range. Nevertheless, several recent studies
have challenged the view that demographic compen-
sation rescues marginal populations (Sheth & Angert,
2018) due to negligible (Dibner et al., 2019; Reed et al.,
2021) or even negative (Oldfather et al., 2021) effects on
A. Whether or not and to what extent demographic com-
pensation stabilises marginal populations across spa-
tially and temporally varying environments still remains
unclear.

One main explanation for the varying degrees of de-
mographic compensation is that population-level re-
sponses to environmental gradients are mediated via
correlations between the ‘contributions’ of each vital
rate to among-population variation in A (Rees & Ellner,
2009), rather than by correlations between the vital rates
directly. A high ‘contribution’ requires high sensitivity of
A to that vital rate and/or high variation in the vital rate
among populations (Caswell, 2001; Villellas et al., 2015).
As a result, even if vital rates shift in opposite directions
along an environmental gradient, the positive contribu-
tion of increasing vital rates may be insufficient to offset
the negative contribution of other decreasing rates. For
example, Sheth and Angert (2018) demonstrated that the
impact of increased reproduction of a scarlet monkey-
flower along a latitudinal gradient was outweighed by
the reduced rates of survival, growth and recruitment,
resulting in declining A towards the southern edge.
Moreover, while demographic compensation may re-
sult in short-term population stability across a range of

moderate environmental conditions, the compensatory
increase of one or more vital rates are unlikely to con-
tinue indefinitely (Doak & Morris, 2010). If this is the
case, population growth will decline beyond a critical
environmental threshold, leading to range contractions.
Therefore, the complex effects and potential thresholds
of demographic compensation require further studies on
how demographic processes vary in response to environ-
mental factors across a species range.

Climate and biotic interactions usually affect plant
demographic rates differently (Dalgleish et al., 2011;
Morris et al., 2020; Rozendaal et al., 2020) and further
influence the strength of demographic compensation ef-
fect. Climatic warming generally boosts tree growth or
reproduction (Benito-Garzon et al., 2013) until warming-
induced drought becomes a limiting factor (Babst
et al., 2019), which may compensate a concomitant de-
cline in survival (Doak & Morris, 2010). Nevertheless,
the strength of these responses varies across species
(Oldfather & Ackerly 2019; Sheth & Angert, 2018; Zhang
etal., 2015). In addition, biotic interactions at local scales
may alter large-scale demographic compensation result-
ing from climatic conditions, for instance through effects
of competition on survival and fecundity (Alexander
et al., 2015; Morin et al., 2011). Despite the large body
of studies on biotic and abiotic drivers of plant demog-
raphy, there exists little insights into the compensatory
responses to these drivers across species’ geographic
ranges. Such insights are crucial for gauging species’ po-
tential persistence under future climatic conditions.

North American forests provide tremendous ecologi-
cal, economic and societal benefits (Pan et al., 2011), yet
they are becoming increasingly vulnerable to climate
change, which may outpace the capacity of many tem-
perate and boreal tree species to keep up via migration
(Corlett & Westcott, 2013; Stanke et al., 2021). Recent
studies on species occurrences or abundances have re-
vealed that many North American tree species are
shifting north (Boisvert-Marsh & de Blois, 2021; Shirk
et al., 2018; Woodall et al., 2009), south (Zhu et al., 2012)
or west (Fei et al., 2017). Still, many others seem not to
shift their ranges at southern edges (Prasad et al., 2020),
and the reasons for this remain unclear. One possible
reason is that demographic compensation may create
pathways to short-term population stability at range
edges. Nonetheless, the effort to explore the role of de-
mographic compensation in stabilising tree species dis-
tributions is limited. Moreover, whether or not vital rates
will be maintained in the same way as the climate contin-
ues to warm has been called into question (Briscoe et al.,
2019; Morin & Thuiller, 2009). In particular, climate
(Davis et al., 2019; Shriver et al., 2021; Stanke et al., 2021;
van Mantgem et al., 2009) and neighbourhood com-
petition (Le Squin et al., 2021; Zhang et al., 2015) have
increasingly impacted tree demographic rates in North
American forests over the recent decades. In addition to
the unknown role of demographic compensation in tree
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species range limit stabilisation, an unresolved topic in
North American forests is how demographic compensa-
tion responds to changing climate and competition.

To address these issues, we conducted a continental-
scale analysis of demographic performance for 81 North
American tree species using 322,338 individual observa-
tions from 13,615 long-term forest inventory plots. We
first used integral projection models (IPMs; Easterling
et al., 2000) to investigate spatial patterns of population
growth rate (A) and evaluated tree species range dynam-
ics based on A of marginal populations. Second, we used
generalised additive models to assess demographic com-
pensation over the range of each tree species and used
a randomisation approach to test whether demographic
compensation reduces spatial variations in A. Third, we
used perturbation analyses to test which environmen-
tal factors are most influential to A and examined the
response of demographic compensation to simulated
changes in these factors, as some have been predicted to
be particularly important (e.g., temperature at northern
limits and competition at southern limits; Louthan et al.,
2015). Specifically, we addressed the following three
questions: (1) How prevalent is demographic compensa-
tion across the geographic ranges of these 81 tree species?
(2) To what extent does demographic compensation re-
duce spatial variations in A? (3) How do changing climate
and plant competition affect demographic compensa-
tion? This study is expected to contribute to an increased
knowledge of species range stability from a demographic
standpoint, providing an important perspective for un-
derstanding and anticipating tree diversity and range dy-
namics in response to ongoing environmental changes.

MATERIALS AND METHODS
Demographic, climate and competition data

Our study covered the continental United States and six
Canadian provinces (Figure 1) based on long-term for-
est inventory data from the USDA Forest Inventory and
Analysis (FIA) and Canadian Permanent Sample Plots
(PSP) (Supplementary Information, Country-specific
protocols). For comparisons of demographic perfor-
mance across species ranges, we applied a set of selec-
tion criteria for sampling plots, species and individuals
(Supplementary Information, Data screening criteria).
In brief, we selected the plots from only naturally re-
generated stands with no evidence of disturbance and
restricted analyses to those species for which sampled
plots covered more than half of the latitudinal breadth
of Little's distribution maps (Little & Viereck, 1971). We
included trees larger than 12.7 cm in DBH (diameter
at breast height) as adults and defined recruits as indi-
viduals with DBHs >12.7 cm in the current census but
<12.7 cm in the previous one. We used a total of 322,338
individuals from 81 tree species and in 13,615 forest plots

(Figure S1, Table SI). The number of plots per species
ranged from 8 to 3085. The average number of individu-
als per plot per species was 14, and the average number
of censuses per species was 2.3.

We selected three climate variables, including mean
warmest month temperature (MWMT), mean coldest
month temperature (MCMT) and mean annual pre-
cipitation (MAP), all of which we obtained using the
ClimateNA v6.21 program (http:/climatena.ca, 4-km
resolution, Wang et al., 2016). We averaged climate vari-
ables for each plot over all years within each census pe-
riod, using climate data between 1974 and 2018. Within
the geographical ranges of most of the 81 tree species,
temperature and precipitation generally declined with
increasing latitudes (Figure S2). We defined local com-
petition for each individual as the total basal area (BA,
m®/ha) of living surrounding tree individuals within the
same plot. Stand-level competition was calculated as the
total basal area of living trees per plot. This is a proxy for
the combined effect of inter- and intra-specific competi-
tion for light and other resources, which is considered as
one of the best competition indices (van Mantgem et al.,
2009; Zhang et al., 2015).

Population growth rate (1)

For each species at each plot, we used IPMs (Easterling
et al., 2000) to calculate the population growth rate (A),
where vital rates (survival, growth and fecundity) are
modelled as continuous functions of individual plant
size (DBH). We used a logistic regression model with a
binomial error distribution to model survival probabil-
ity, a Gaussian linear regression to model growth and
a zero-inflated Poisson model to model the number of
recruits. For each vital rate, we pooled the data from
all populations of each species to construct global
generalised linear mixed model with fixed effects of
tree sizes and climate and competition variables and
the random effect of study plot. To decide which envi-
ronmental variables should enter vital rate models, we
carried out an all-subsets regression approach, which
fits a series of candidate models that incorporates all
combination of environmental variables to identify the
‘best” model using the corrected Akaike Information
Criterion (AICc) (Supplementary Information). We
included quadratic and interaction terms for environ-
mental variables to allow for unimodal vital rate re-
sponses. We conducted robustness analyses to verify
the effect of vital rate model structure on the output of
demographic models and found that the model struc-
ture had little influence on the estimates of A and de-
mographic compensation (Figure S3 & S4). Since no
data on each individual's reproductive state are avail-
able, we fixed the reproduction probability to I for all
size classes because the tree sizes in our study were
generally larger than the biological thresholds for most
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FIGURE 1

species’ reproduction (Clark et al., 2021; Qiu et al.,
2021). The size distribution of recruits was described
with normal distribution using the empirical mean and
standard deviation of the size distribution of recruits
in each population. Table S2 shows the final models for
each vital rate of all 81 studied species.

We used the fitted vital rate models to build IPMs and
calculate A of each population (Ellner and Rees, 2006).
The spatial patterns of A across species ranges are shown
in Figure S5. Since the census interval of plots differs
between species (Table SlI), we calculated the square
root of the A for species with a 10-year census interval
to maintain species comparability with that with 5-year
intervals. For plots that were censused more than twice,
we calculated the geometric mean of A over all census
intervals. We carried out all analyses in R v4.1.3 (R Core
Team, 2022), using R scripts adapted from Sheth and
Angert (2018) and Schultz (2022).

1 )
100 0'0"W 80 0'0"W

Locations of the permanent sampling plots in North America for the 81 tree species

Test for demographic compensation

To quantify the prevalence of demographic compensa-
tion across the geographic ranges of North American
tree species (Q1), we investigated the negative correla-
tions between the contributions of four vital rates (sur-
vival probability, growth, the number of recruits and the
size distribution of recruits) to among-population differ-
ences in A. We fitted generalised additive models (GAM:s)
with In()) as the response variable and smoothed func-
tions of vital rate parameters as explanatory variables, as
in Sheth and Angert (2018). The proportion of variance
in A was attributed to change in each vital rate param-
eter (Figure S6), and the contribution of each vital rate
was calculated by summing up all its coefficients (e.g. the
survival contribution equals the survival slope contribu-
tion plus its intercept contribution). The sum of vital
rates contributing to variability in In(A) were normalised
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to 100%. These contributions considered the spatial vari-
ation in each vital rate as well as the sensitivity of A to
each vital rate (Zuidema & Franco, 2001).

We used a randomisation approach to determine if
the observed data harboured more negative correlations
than would be predicted by chance (Villellas et al., 2015).
We first assessed the correlations between vital rate con-
tributions using the Spearman rank correlations using
one-tailed test. Second, we estimated the relationships
after randomly reassigning all vital rate contributions
among populations (repeated 10,000 times). Third, we
compared the observed numbers of negative correla-
tions to the percentiles of the null distributions obtained
via randomisation and calculated the significance level
based on the proportion of values in the null distribution
that was greater than or equal to the observed number
of negative correlations (demographic compensation if
the significance level <0.05). In addition, we examined
whether species with significant demographic compen-
sation differed in their functional and physiological
traits compared to species with no signal of demographic
compensation (Supplementary Information).

The effectiveness of demographic compensation

To determine to what extent demographic compensa-
tion reduces spatial variations in A (Q2), we performed
a randomisation procedure similar to the approach used
in Villellas et al. (2015). First, we randomly reassigned
the vital rates if the sum of the contributions of all of the
vital rates with which that rate was negatively correlated
was greater than the equivalent sum of contributions
for its positively correlated rates. We kept the correla-
tions between the pairs of vital rates that both failed to
meet the ‘sum of contributions’ criterion unchanged. We
then computed the A for each population and the among-
population variance for the randomised set of vital rate
contributions with no significant negative correlations.
We repeated this randomisation procedure 10,000 times.
In this way, we eliminated negative correlations between
contributions of vital rates and obtained a null distribu-
tion of A variance. We inferred the effectiveness of de-
mographic compensation using the ratio of observed A
variance to the median variance of the null distribution
(Villellas et al., 2015). A lower ratio means a stronger role
of demographic compensation in reducing spatial varia-
tion in A. We then calculated the significance level for the
role of demographic compensation as the proportion of
values in the null distribution greater than or less than
the observed A variance.

To further reveal the effect of demographic compen-
sation on species ranges, we also identified the trend of
species range shifts over the study period. We used non-
parametric one-sample Wilcoxon rank test to determine
whether the mean A estimation for northern and south-
ern marginal populations differed statistically from one.

We identified marginal populations at each edge as the
latitudinal highest or lowest 10% of each species’ total
number of populations, with a minimum of three mar-
ginal populations. If the mean A of marginal populations
was not significantly different from one, we considered
the range edge to be in stable; otherwise, we inferred a
potential trend of expansion (mean A > 1) or contraction
(mean A < 1). Finally, we estimated the A variance of each
species and used Spearman rank correlations to test if
A differed over latitude among all populations for each
species (Table S1).

The effects of climate and competition on
demographic compensation

To answer how climate and competition affect tree de-
mographic compensation (Q3), we first identified the
predominant environmental factor limiting range edges
of each species. We carried out a perturbation analyses
(Caswell, 2001) to examine the effect of environmental
variables on A, in which we varied each factor separately
while holding all other factors constant at their observed
value. We calculated the proportional change in A by
adding 1% of the factor's value to the observed value of
the factor (Figure S7). We averaged the elasticity of each
factor separately for populations at range edges for each
species. The environmental factor with the highest mean
relative elasticity value should have the most potential
to influence species range shift (Schultz et al., 2022). We
identified the predominant climate or competition fac-
tors for each species and summed the number of these
factors with positive and negative elasticity across 81 tree
species. Meanwhile, we conducted an additional pertur-
bation analysis in which we varied each factor separately
and determined the absolute change in A. We chose dif-
ferent perturbation ranges for different factors based on
observed and projected environmental change in North
America (Wang et al., 2011). We used a reduction and
increase of 2°C with an interval of 0.5°C for MWMT and
MCMT; 200 mm with an interval of 50 mm for MAP;
20% with an interval of 5% for BA. We calculated the
changes in the mean A of marginal populations, A vari-
ance across the species range and the effectiveness of
demographic compensation (the ratio of observed A vari-
ance to median of the null distribution) for each level of
perturbation.

RESULTS

The prevalence of demographic compensation
across tree species ranges

Only 25 of 81 species had indications of significant
demographic compensation (Table 1). When negative
correlations between contributions of vital rates were
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detected, they mostly involved the size distribution
of recruits. Using bigtooth aspen (Populus grandiden-
tata) as an example of strong compensation (Figure 2;
Table 1), we found three significant negative correla-
tions out of six possible pairwise correlations: larger
recruit size toward low-latitude range edges contrib-
uted positively to variation in A, but this was offset by
negative contributions of survival probability, growth
and the number of recruits. The observed proportion of
negative correlations for this species was significantly
higher than expected by chance (p = 0.006), indicating
significant demographic compensation between vital
rates among populations. Plant functional and physi-
ological traits did not differ significantly between the
25 species with compensation and other species with no
signal of compensation (Figure S8).
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The effectiveness of demographic compensation
at reducing spatial variation in A

In total, 35 (43%) of the studied 81 tree species showed pat-
terns of population growth consistent with population sta-
bility at both northern and southern edges (Figure 3). The
degree of among-population A variation was small, ranging
from 0.0001 for Populus deltoides to 0.0861 for Gleditsia tri-
acanthos (Table S1; Figure S5). No significant correlations
were found between A and latitude for most tree species
(Table S1). The GAMs revealed that variation in A across
81 tree species’ ranges were best explained by variation in
individual plant survival among populations (61%; Figure
S6), followed by variance in the number of recruits (19%)
and growth (12%). Variance in the size distribution of re-
cruits (8%) explained the small remaining variation in A.
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grandidentata) as an example. Solid and dashed lines represent linear and quadratic terms (based on best linear models) with p < 0.05 and
p>0.05, respectively. The yellow polygon in the distribution map (a) is the species distributional range by Little and Viereck (1971)
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Demographic compensation greatly reduced among-
population variation in A in 16 of the 25 species exhibit-
ing a sign of demographic compensation (Table 1). The A
variance estimated from the observed data was 38.5% on
average (for the 16 species) of the median variance in the
random permutations, implying that demographic com-
pensation reduced the A variance by approximately two-
thirds. Despite this, 11 of the 16 species still exhibited a
potential tendency of range contraction in the southern
edges (mean A < I, p < 0.05) (Table Sl). The same ten-
dency was observed for 15 of the 25 species exhibiting
demographic compensation (Table S1).

The responses of demographic compensation to
climate and competition

Simulated proportional increases in MWMT had the
greatest negative impact on population growth rates
of the 81 species (Figure 4 and S7). These results were
consistent when we examined all populations across the
range and the subset of marginal populations at either
range edge. The changes in A also had greater associa-
tions with MWMT than with the other factors for the
species exhibiting demographic compensation (Figure 4).

When simulating an increased MWMT by 2°C, mean
A of marginal populations declined in eight of the sixteen
species (Figure Sa, c), with Pinus albicaulis showing the
strongest response (—0.104 and —0.050 A/°C at the north-
ern and southern edges, respectively). Correspondingly,
the effectiveness of demographic compensation de-
creased with warming in these eight species (Figure Se).
In contrast to temperature patterns, increasing local
competition resulted in minimal changes in mean A
and the effectiveness of demographic compensation
(Figure 5b,d,f). When MCMT was raised, we observed
similar patterns of weakened demographic compensa-
tion in P. albicaulis (Figure S9¢), and an increase in MAP
had a greater effect on the effectiveness of demographic
compensation than in other species (Figure S9f).

DISCUSSION

Limited role of demographic compensation for
tree species in North America

Species ranges can encompass enormous variations along
environmental gradients, such that vital rates and popu-
lation growth rates (M) are apt to change geographically
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(Tredennick et al., 2018). Temperature and precipitation
dropped significantly with rising latitudes within the geo-
graphical ranges of most of the 81 North American tree
species we studied, but there was little spatial variation
in A and no significant trends along latitudinal gradients.
Another continental-scale study analysis of two North
American tundra plants revealed a similar trend of sta-
ble performance despite variable environment across the
species ranges (Doak & Morris, 2010). A plausible ex-
planation for this is demographic compensation, which
involves opposite responses of vital rates to the same en-
vironmental gradient (Villellas et al., 2015). Indeed, we
found that demographic compensation could effectively
reduce spatial variations in A. However, the compensatory
responses were not universal across the 81 studied species’
geographic ranges, and there were few commonalities in
the species that exhibiting demographic compensation
based on their functional and physiological traits. This
is surprising, because half of species with demographic
compensation are in the Pinaceae family and thus might
be adapted to respond quickly to changes in their envi-
ronment (Turner et al., 2019). This suggests that the ob-
served pattern of similar A across species ranges for most
of these species is more likely to be caused by other buff-
ering mechanisms, such as local adaptation or plasticity
(Angert et al., 2020; Laughlin et al., 2020). Consistent with
previous studies (Reed et al., 2021; Sheth & Angert, 2018),
our findings imply that demographic compensation can-
not rescue marginal populations in our study system.

Demographic compensation is a function of both
among-population variance of different vital rates as
well as the sensitivity of A to such variance (Villellas
et al., 2015). The A of long-lived organisms, such as trees,
is generally sensitive to survival rate (Schultz et al.,
2022; Yang et al., 2018). Natural selection tends to min-
imise variation in those vital rates to which population
growth is most sensitive (Hilde et al., 2020; Pfister, 1998;
Zuidema & Franco, 2001). Thus, our results revealed
that, when compared to other measured vital rates, vari-
ations in survival among populations contributed most
to the geographical variations in A, despite the fact that
spatial variance in survival rate is minor. However, re-
cruitment rates were most frequently involved in demo-
graphic compensation in this study, which was likely due
to their high among-population variance. Meanwhile,
the low frequency of significant negative relationships
between contributions of survival and growth indicated
that compensatory change between survival and growth
is unlikely to be a general phenomenon in tree species in
North America.

Potential range shifts driven largely by warmest
temperature

The distributional dynamics of temperate and boreal
forests have attracted considerable attention due to their

high levels of biodiversity and slow migration rates.
Despite different species varying in their responses to
climatic and competition factors, there was a clear sign
that climate had a greater impact on tree demographic
performance than local competition at tree range edges.
Increasing warmest temperature was the key potential
force of driving changes in A across ranges among pre-
dictor variables, although other unmeasured aspects
of microhabitats, such as light environment or edaphic
conditions may also be important (Lloret et al., 2012;
Zimmermann et al., 2009). This implies that populations
throughout the range of a given species, not just those
at the warmer edges, may be vulnerable to ongoing and
future warming.

The observed rising temperatures in North America
(Seager & Vecchi, 2010), declining tree populations
in temperate and boreal forests (Stanke et al., 2021;
Zhang et al., 2015), and the widely reported extinction
debts associated with climate warming (Loarie et al.,
2009; Talluto et al., 2017) raise the question of whether
these cold-adapted species are approaching or even
have crossed a high-temperature tipping point. Plant
responses to climate warming are highly tied to their
climatic tolerances at a local scale (Bisbing et al., 2020;
Zellweger et al., 2020). If local adaptation is strong, the
range of environmental tolerances in local populations
may be much less than the range of environmental tol-
erances in the species as a whole (Angert et al., 2011). If
this is the case, locally adapted populations may be par-
ticularly vulnerable to climate change regardless of their
location within the range (Peterson et al., 2018). Thus,
even while the 43% of the species tested exhibited a pat-
tern consistent with range stability, the fact that simu-
lated warming tends to have a strong negative influence
on A suggests that the warmest temperatures may soon
be out of species suitable thermal ranges (Nomoto &
Alexander, 2021).

Weakening effectiveness of demographic
compensation with warming

To the best of our knowledge, this is the first attempt
to assess the response of range-wide demographic com-
pensation in multiple tree species to continuous climatic
change at a continental scale. Our findings suggest that
the most prevalent scenario involves a diminishing role
of compensation and declining marginal populations.
Half of the tree species that exhibit demographic com-
pensation fall into this category: Abies balsamea, Betula
papyrifera, Pinus albicaulis, Pinus contorta, Pinus edulis,
Pinusrigida, Pinus virginiana and Quercus coccinea. They
may be at high demographic vulnerability as a result of
lack of adequate countervailing effects from a compen-
satory increase in vital rates with climate warming. The
efficiency of compensation is reinforced for the second
group of species, represented by Fagus grandifolia, Nyssa
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aquatica, Pinus palustris, Quercus rubra, Tsuga canadensis
and Ulmus alata, and growth rates of marginal popula-
tions are increased, indicating that they have the poten-
tial to benefit from climatic warming. Moreover, for a
few species, such as Juniperus virginiana and Quercus
velutina, there were no changes in their survival, growth
and recruitment rates with warming, implying that they
have low threats by climatic warming in the near future.
Demographic compensation is unlikely to last con-
tinuously as a means of buffering populations against
changing environmental conditions (Doak & Morris,
2010). Once a tipping point is crossed, after which
demographic rates no longer compensate, this would
cause a significant decline in populations and range-
wide losses in occupancy or abundance (Peterson et al.,
2018). We discovered a potential sign for such a cli-
matic tipping point with P. albicaulis (Figure 5), a tem-
perate plant that is fragmented distributed in western
North America. This species had the most significant
negative reaction to simulated warming, indicating
that its populations may have minimal ability to cope
with in situ climate change (Anderson & Wadgymar,
2020). Warming considerably weakens the potential of
demographic compensation to rescue marginal popu-
lations for P. albicaulis across the simulated range of
mean warm month temperature with an obvious turn-
ing point near to the observed value. That is, a tree
species with similar demography to P. albicaulis may
be rapidly approaching a tipping point of high tem-
perature, at which species may lose all demographic
buffering effects. Although their long life span allows
tree species to persist for a certain period after climatic
tipping points being surpassed, this accelerating pop-
ulation decline could culminate in a higher extinction
risk to cold-adapted species in temperate and boreal
forests (De Frenne et al., 2013; Gottfried et al., 2012).

Caveats and limitations

The current findings have several limitations in their
generalisability. First, our estimations are based on
large-sized trees and, thus, may have underestimated the
prevalence and the strength of demographic compensa-
tion since compensation is expected to be stronger for
small-sized trees (Benito-Garzoén et al., 2013; Canham
& Murphy 2016). Incorporating information from long-
term seedling monitoring and tree fecundity (Clark et al.,
2021) into demographic compensation could provide
deep understanding of the dynamics of species ranges
in the context of global change. Second, temporal vari-
ability in vital rates driven by expected future increasing
frequencies of extreme climatic events (Andrello et al.,
2020; Lloret et al., 2012), along with short time windows
of available tree demographic observations relative to
the lifespan of tree species, makes it challenging to es-
timate long-term stability of species geographic ranges.

Recently proposed hierarchical modelling frameworks
integrating demographic data and complementary in-
formation into the joint probability distribution of data
and parameters offer promising ways to address this
challenge (Evans et al., 2016). Finally, the balance be-
tween generalisation and appropriate specificity should
to be carefully considered when describing species-
specific demography as flexibly as possible. Our selec-
tion of environmental variables used for all species
imply that models constructed here for the purpose of
a comparative study on demographic compensation will
be different from those that might be constructed for
other purposes or in studies focusing on single species.
Although TPMs are increasingly used in demographic
studies, their predictions have only rarely been verified
(Doak et al., 2021; Ramula et al., 2009). More model vali-
dation efforts from other perspectives, for instance using
(independent) presence/absence data of simulated spe-
cies across environmental ranges (Schultz et al., 2022),
may allow evaluating whether and when demographic
models capture population performance.

CONCLUSION

Understanding the underlying mechanisms for species
distributional ranges and possible range shifts can be
improved by examining how trade-offs between vital
rates affect populations in response to environmental
changes. We investigated the generalities and effective-
ness of demographic compensation over the ranges of 81
tree species in North America. Demographic compensa-
tion among later life stages is uncommon among North
American tree species and if present, is insufficient to
rescue marginal tree populations. Population growth
rates are primarily negatively sensitive to the MWMT
throughout most tree species’ ranges, indicating that
they may have already exceeded their suitable thermal
ranges. Together, declining marginal populations and
a weakened role for demographic compensation in re-
sponse to simulated warming imply that thermal stress
may outweigh the buffering effect of compensatory
changes, making tree species more demographically
vulnerable to future climate change. Our findings thus
serve as a cautionary note on the growing demographic
vulnerability of temperate and boreal tree species across
North America.
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