
The relation between drought impacts, drought indicators, water
scarcity and aridity: the case of Kenya
Marleen Lam
Wageningen University & Research (WUR) - Hydrology and Quantitative Water Management (HWM)

Correspondence: Marleen Lam (marleen.lam@wur.nl)

Abstract. Drought is a complex natural phenomena affecting environment, economy and society at multiple levels. To better

prepare and mitigate the impacts of drought, various drought indicators are developed to monitor and forecast drought events.

Though widely used, their relation with actual drought impacts is complex. In particular in water-limited regions where water

scarcity is prevalent, the attribution of drought impacts is difficult. This study assesses their relation by linking drought impacts

to various drought indicators (SPI, SPEI, SDI and SSMI with different accumulation periods) and water scarcity across counties5

with different arid characteristics in Kenya. The monthly written bulletins of the National Drought Management Authority

(NDMA) of the Kenyan government have been used to gather drought impact data. A Random Forest (RF) model discovers

which drought indicators are best linked with drought impacts on the following categories: Pasture, Livestock deaths, Milk

production, Crop losses, Food insecurity, Trekking distance for water and Malnutrition. The findings of this study suggest

a relation between drought severity and the frequency of drought impacts whereby the latter also showed a relation with10

aridity, whilst water scarcity did not. The results of the RF model reveal that the linkage between drought impacts and drought

indicators are region specific, indicated by the range of drought indicators and accumulation periods found to match best

with drought impacts. While the findings strongly depend on the availability of drought impact data and the socio-economic

circumstances within the research area, the study clearly demonstrates the feasibility of linking drought indicators with text-

based impact reports and it reveals the link between drought impacts, drought indicators, water scarcity and aridity.15

1 Introduction

Drought can be characterized as a slow-onset event with im-

pacts building up over time whereby the extent of its im-

pacts depend on a range of contextual factors (Heinrich et

al., 2020). Differences in societal characteristics across re-20

gions determine the range of impacts when concerning a

drought event with similar intensity and duration. Due to

the projected increase in drought frequencies (IPCC, 2014),

each successive drought event can result in increased desta-

bilization, triggering insecurity and resource-based con-25

flicts (Thomas et al., 2020). Monitoring and early warn-

ing (M&EW) is one important measure to enhance drought

resilience. The goal of M&EW is to provide reliable and

forehanded information on drought conditions (using a wide

range of drought indicators) to enable local society to bet-30

ter prepare and act accordingly (Wilhite & Svoboda, 2007).

However, there is a gap between forecasting a hydrome-

teorological event and the understanding of potential im-

pacts, as recognized by the World Meteorological Organi-

zation (WMO, 2015). Linking drought impacts to drought35

indicators can contribute to the ongoing development and
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improvements of the M&EW, aiming to reduce human and

financial losses arising from a drought event.

Drought is in general classified as meteorological, hydro-

logical, and/or soil moisture drought, which are related to40

and influenced by both natural processes and human activ-

ities (Van Loon, 2015; Van Loon et al., 2016). Meteoro-

logical drought is often driven by precipitation deficit. The

precipitation anomaly can then propagate through the hy-

drological cycle, resulting in soil moisture, stream flow and45

groundwater deficit and hence, soil moisture and hydrolog-

ical drought, respectively. Hydrological drought refers to

anomalies in the surface and/or subsurface water. In order

to detect drought, standardized drought indices with diverse

accumulation periods are used. The most simple ones use50

only meteorological data while others include soil mois-

ture or streamflow data (Yihdego et al., 2019). Models us-

ing drought indicators to forecast drought can detect cli-

mate signals into soils and hydrology. Yet, the link between

drought indicators and environmental/socio-economic im-55

pacts have rarely been analyzed, although it is crucial for de-

veloping future measures to reduce vulnerability to drought

risks.

The assessment and monitoring of drought impacts is

complex given: (1) the great variety of drought impact cate-60

gories; (2) their possible propagation throughout the hydro-

logical and social system and (3) the difficulty in drought

impact attribution. Specifically for Europe and the USA,

drought impact databases have been developed, namely the

European Drought Impact report Inventory (EDII) and the65

Drought Impact Reporter (DIR) respectively. Stahl et al.

(2016) studied the diversity of drought impacts across Eu-

rope exploring the database of EDII. It was found that im-

pacts on agriculture and public water supply dominated the

collection of drought impact reports since 1970. In general,70

impacts can be classified into direct and indirect impacts

whereby reduced crop yield and increased livestock mor-

tality rates are examples of direct impacts while reduced

income for farmers can be regarded as an indirect impact

(Wilhite & Svoboda, 2007). Linking drought impacts with75

drought indicators is regarded difficult as there is often no

strong intuitive cut-off within impact categories (such as

agricultural yield) between non drought and drought con-

ditions (Hall & Leng, 2019). Some studies assessed the link

between drought impacts and drought indicators, mainly80

with a focus on Europe. For instance, the qualitative dataset

of EDII has been used to assess the link between drought

impacts and indicators at continental (Blauhut et al., 2015),

national (Stagge et al., 2015) and regional scale (Bachmair

et al., 2015, 2016, 2018). The results of multiple studies85

suggest that linking drought indicators with impacts is time,

region and sector specific (Bachmair et al., 2015, 2016,

2017; Blauhut et al., 2015; Ma et al, 2020; Stagge et al.,

2015; Wang et al., 2020) which shows the need to study

their relation in other settings.90

Water scarcity is an important process within (semi-)arid

regions, which is different to drought. It occurs when wa-

ter demand (both societal as ecological water demand) sur-

passes water supply (Kimwatu et al., 2021) and often leads

to long-term unsustainable use of water resources (Van95

Loon & Van Lanen, 2013). Whereas aridity, based on the

ratio of annual precipitation and potential evapotranspira-

tion rates (UNESCO, 1979), is regarded a constant value,

water scarcity is dynamic in time and related to both de-

creases in water availability (drought) and increases in wa-100

ter demand. Water scarcity can be regarded as an impact of

drought including societal, economic and political factors

that drive demand for and access to water. Therefore, the

simultaneous presence of both water scarcity (partly driven

by anthropogenic causes) and meteorological drought can105

lead to a difficult attribution of the impacts experienced.
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However, separation of these impacts is needed to gener-

ate reliable information to stimulate early action in the af-

fected sectors when concerning a drought event. Nearly

40% of the Eastern and Southern Africa habitats are Arid110

and Semi-Arid Lands (ASALs) and are therefore prone to

inadequate and extreme fluctuations in water availability

(CGIAR-CSI, 2019). In addition, the main economic ac-

tivity in East Africa is subsistence rain-fed agriculture and

livestock farming which makes the society extremely vul-115

nerable to drought events (Ayugi et al., 2020; Lekapana,

2013).

This study has chosen Kenya as research area because of

its different arid characteristics and the presence of water

scarce regions (Mulwa et al., 2021). In addition, the coun-120

try has experienced frequent drought events: for instance,

2008-2011 was classified as a prolonged severe drought

(Mutsotso et al., 2018) and the drought in 2016-2017 was

considered a national disaster (Kew et al, 2021; Ondiko &

Karanja, 2021). The country has also known a diverse range125

of drought impacts such as cattle mortality, wildlife death,

famine, human losses and severe food shortages (Ondiko &

Karanja, 2021). The drought of 2016-2017 in Kenya caused

food insecurity for more than 3 million people (Thomas et

al., 2020). The presence of drought, drought impacts, water130

scarcity and aridity makes this country a suitable study area

to study their internal relations. In this context, the follow-

ing main research question is formulated: What is the re-

lation of drought impacts with drought indicators and with

water scarcity under different arid circumstances?135

It is expected that drought indicators will not have

a spatial correlation with the different climatic zones in

Kenya because of the standardized nature of drought indices

and that drought severity will determine the frequency of

drought impact occurrences. Drought impacts (and there-140

fore the relationship between drought indicators and im-

pacts) will differ across regions with different arid char-

acteristics in Kenya because of the distinct socio-economic

settings, often making arid areas more vulnerable. It is also

expected that water scarcity will show a relation with aridity145

due to the presence of unreliable water conditions.

2 Data and methods

2.1 Study area

Kenya is a country situated in East-Africa, bound by a lon-

gitude of 34° E–42° E and latitude 5° S–5° N. The highest150

altitudes can be found in the central highlands (over 5000

m above sea level) while there are low-lying regions in the

East, Northwest, and Northeaster sides. The country is dom-

inated by an arid and semi-arid climate which comprises

about 80% of the territory and gives home to about one quar-155

ter of the population (FEWSNET, 2010) of approximately

53 million people (The World Bank, 2020). Mean annual

rainfall is less than 250 mm in the semi-arid and arid areas

and more than 2.000 mm in the higher areas. Long rains

are occurring from March to May (MAM) while the short160

rains occur during October to December (OND) (Ayugi et

al., 2020). The medium to high potential agricultural areas

are in the center and west of the country where the popula-

tion density is six times the country’s average. Farming is

the primary livelihood (both subsistence as commercial) for165

more than 75% of the population. Less than 4% are pastoral-

ists who mainly live in the semi-arid and arid regions which

is characterized by poorly distributed and unreliable rain-

fall (FEWSNET, 2010). Figure 1 presents the counties con-

sidered in this study (a), the arid characteristics (b) and the170

livelihood zones (c). The selection is based on aridity, liveli-

hood zones and available information. Aridity is regarded as

a constant climatic feature whereby the selection of coun-

ties have diverse aridity characteristics. Marsabit is an arid
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county (arid index 0.03-0.20) in the Northern pastoral zone175

while Baringo, Kitui and Kwale are considered semi-arid

(arid index 0.20-0.50). Nyeri is situated in the central high-

lands and encompasses a high potential agricultural zone.

Both Nyeri and Narok are regarded as sub-humid zone re-

gions (arid index 0.50-0.75).180
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Figure 1. Maps of Kenya: the counties considered in this study (a), the aridity (b) and the livelihood zones (c).

2.2 Data

2.2.1 Drought impact data

To study the linkage between drought impacts, drought indi-

cators, water scarcity and aridity, several datasets were used.

This research used data from the National Drought Manage-185

ment Authority (NDMA) to gather drought impact data for

the above specified counties in Kenya, concerning a time

span of 2014 to 2020. The NDMA was established by the

Kenyan government in 2016 with the aim to set up and op-

erate early warning drought systems and to develop drought190

preparedness strategies and contingency plans (Barrett et

al., 2020). Their website provides monthly bulletins assess-

ing food security in 23 regions using socio-economic and
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biophysical factors. These text-based impact reports pro-

vide the input for the impact categories considered in this195

study. The impact categories are based on the available in-

formation from the NDMA and can therefore be regarded

as categories with socio-economic relevance for Kenya. The

written impact data was turned into quantitative binary val-

ues by using a specified coding sheet. The following impact200

categories are considered:

– Drought impacts on Pasture (i.e. livestock migration

pattern, quality and quantity pasture, livestock body

condition);

– Drought impacts on Livestock deaths;205

– Drought impacts on Milk production;

– Drought impacts on Food insecurity;

– Drought impacts on Crop losses;

– Drought impacts on the Trekking distance to gather

water for households;210

– Drought impacts on the occurrence of Malnutrition.

2.2.2 Drought indicators

Several widely-used standardized drought indicators are

considered to characterize meteorological, hydrological and

soil moisture drought. The Standard Precipitation Index215

(SPI), devised by McKee et al. (1993) is based on the proba-

bility of precipitation for a known accumulation period. The

Standardized Precipitation Evapotranspiration Index (SPEI)

is similar to SPI but also considers the factor temperature

and the influence of surface evaporation anomalies. The220

Streamflow Drought Index (SDI) is also a standardized in-

dex and considers monthly streamflow values (Nalbantis,

2008). Last but not least, the Standardized Soil Moisture

Index (SSMI) is based on soil moisture content. SDI and

SSMI are often used to present the drought propagating225

through the hydrological cycle, therefore showing a kind of

‘memory’ in comparison to SPI and SPEI. The drought in-

dices are calculated on a monthly timescale with an accu-

mulation period of 1, 3, 6, 12 and 24 months.

The precipitation data is retrieved from the Multi-Source230

Weighted-Ensemble Precipitation (MSWEP), a global prod-

uct that merges with a 3-hourly temporal and 0.1 degree res-

olution. Potential Evapotranspiration (PET) is taken from

the Global Land Evaporation Amsterdam Model (GLEAM)

whereby the datasets are available at a 0.25 degrees spa-235

tial resolution and a daily temporal resolution. The SDI

index is based on data from the Global Flood Awareness

System (GloFAS) whereby a spatially distributed rainfall-

runoff routing model LISFLOOD is used. LISFLOOD cal-

culates a water balance at a 6 hourly or daily temporal reso-240

lution with 0.05 degree spatial resolution. Besides the PET,

the SSMI index is also based on data from GLEAM. The

drought indices were calculated using percentiles which

were ranked and fitted through a standard normal distribu-

tion to standardize the values between -3 and 3. It was calcu-245

lated on a monthly basis and then aggregated to county level

for every drought indicator and corresponding accumulation

period. The drought indices are calculated for the period

1980-2020, while this study takes data about the timespan

2010-2020. However, the focus of this study is on the cor-250

responding years and months of the drought impact data.

2.2.3 Water scarcity

This study uses the water scarcity (WS) data from McNally

et al. (2019), which encompasses a monthly updated water

scarcity dataset for Africa between March 2018 and present.255

The water scarcity dataset is based on outputs from the

FEWS NET Land Data Assimilation System (FLDAS) to

represent streamflow and uses different population datasets
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as a proxy for water demand. The FLDAS’s Noah 3.6 land

surface model, used for calculation of the streamflow data,260

has a monthly temporal resolution and a spatial resolution

of 0.1 degree. In order to represent the relatively local nature

of water supplies, Pfafstetter level 6 are used to calculate the

water scarcity index. The different classes of water scarcity

are defined by the Falkenmark index. This index categorises265

the amount of renewable freshwater available for each per-

son per year, shown in Table 1. The water scarcity dataset

provides monthly data despite the yearly values of the

Falkenmark index. However, McNally et al. (2019) used a

12-month running total of the streamflow data which ex-270

plains the yearly values of the Falkenmark index being used

in a monthly updated water scarcity dataset. More infor-

mation about the water scarcity dataset can be found in

Appendix A. The water scarcity dataset is aggregated for

Kenya whereafter monthly average values per county have275

been calculated (using weighted average) and classified by

the Falkenmark index accordingly. Different hydrological

datasets were used for the water scarcity dataset and the cal-

culation of the SDI. However, despite some inconsistencies

between the datasets, both are following quite the same pat-280

tern which justifies drawing conclusions based on the water

scarcity dataset. The comparison between streamflow data

of the water scarcity dataset and SDI-01 is included in Ap-

pendix B.

Table 1. Falkenmark index.

Category m3/year /capita

No stress >1700

Stress 1000-1700

Scarcity 500-1000

Absolute scarcity <500

285

2.3 Analysis

A machine learning algorithm, namely Random Forest

(RF), is used to assess the internal relation between the

drought impact categories and drought indicators (Rpack-

age randomForest, version 4.6-14). It is a fairly new tech-290

nique for linking drought indicators with impacts but

showed high potential in the studies of Bachmair et al.

(2016, 2017). The RF algorithm, proposed by Breiman in

2001, combines several randomized decision trees and ag-

gregates their predictions by averaging. It is designed to295

minimize the overall classification error which is irrespec-

tive of the class distribution (Elreedy & Atiya, 2019). There-

fore, each dataset was balanced by using a synthetic mi-

nority oversampling technique (SMOTE) and randomized

under-sampling (RUS). The min-max method is used as a300

normalization technique to scale the datasets. The drought

impact datasets were aggregated by arid characteristics:

Marsabit (arid), Baringo, Kwale and Kitui (semi-arid) and

Narok/Nyeri (sub-humid). For each region with the same

degree of aridity, the drought impact categories were as-305

sessed separately by using the RF model. Model perfor-

mance was evaluated using a subset (25%) of the original

dataset as test data. The area under the ROC (Receiver Op-

erating Characteristic) curve (AUC) describes the model’s

ability to predict the occurrence and non-occurrence of310

events correctly. A more detailed explanation about the RF

model and the tuning of parameters can be found in Ap-

pendix C.
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3 Results

3.1 Drought indicators and drought impacts315

To visualize drought impacts and drought indicators, a time-

frame from 2016 to 2020 has been chosen to entail the

drought of 2016/2017. Most drought impacts were reported

in Marsabit and Kitui while Baringo and Nyeri has the low-

est amount of impacts. Table 2 presents the share of each320

impact category (in %) in respect to the total number of im-

pacts per county. Pasture and Milk production are the most

reported drought impacts across the counties, with values

between 17.78 and 31.82%. Noticeable is that Nyeri has

the highest share in pasture related activities: Pasture im-325

pacts are 29.55% and Milk production impacts are 31.82%

of the total impacts for Nyeri. The least reported drought

impacts are on Crop losses, Livestock deaths and Food in-

security with average values of 3.07%, 7.75% and 10.06%

respectively. Impacts related to Malnutrition are the high-330

est in Baringo (17.78%) and Marsabit (16.94%) while Ny-

eri has by far the lowest amount of Malnutrition impacts

(6.82%). Baringo has the highest share of impacts concern-

ing Trekking distance for water (20.00%) while Nyeri has

the lowest percentage (9.09%).335

A timeline of the drought indicator SPEI for different

accumulation periods (1, 3, 6, 12 and 24 months) and a

timeline with drought impacts are presented for Marsabit

and Nyeri in Figures 2.a and 2.b for the time period 2016-

2020. Noticeable is that Marsabit experienced more extreme340

drought (in frequency and intensity) than Nyeri: SPEI-03

with a value of -2.22 in November 2018 was the most ex-

treme drought for Marsabit while SPEI-12 with a value of

-1.90 in April 2017 was the most extreme drought for Ny-

eri. SPEI-24 indicates that Marsabit experienced a multi-345

year drought from January 2016 to May 2019. The drought

of 2016-2017 is well visible for both counties. In addition,

there was a drought at the end of 2018 and 2019 which is

more pronounced for Marsabit than for Nyeri. Regarding

the drought impacts, Marsabit reported drought impacts (N350

= 124) from March 2016 until December 2020 with inter-

ruptions between March and December 2018 and between

November 2019 and August 2020. Nyeri reported drought

impacts (N = 44) from February 2017 until September 2019

with only one impact reported between November 2017 and355

January 2019.

Table 2. Total amount of reported drought impacts between 2016 and 2020 and the share of drought impact categories (%) for each county.

County Baringo Kitui Kwale Marsabit Narok Nyeri

Count 45 93 50 124 51 44

Pasture (%) 17.78 30.11 28.00 20.16 25.49 29.55

Livestock deaths (%) 11.11 5.38 6.00 9.68 9.80 4.55

Milk production (%) 22.22 22.58 26.00 18.55 27.45 31.82

Food insecurity (%) 4.44 10.75 10.00 15.32 3.92 15.91

Crop losses (%) 6.67 1.08 4.00 2.42 1.96 2.27

Trekking distance water (%) 20.00 15.05 12.00 16.94 17.65 9.09

Malnutrition (%) 17.78 15.05 14.00 16.94 13.73 6.82
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Figure 2. A timeline of the drought indicator SPEI for different accumulation periods (1, 3, 6, 12 and 24 months) and a timeline with drought

impacts for Marsabit and Nyeri.

Taking the 2016/2017 drought as an example, the drought

impacts reported in Marsabit are between March 2016

and February 2018 which corresponds most with SPEI-12

which is prevalent between April 2016 and March 2018.360

Reported drought impacts for Nyeri are between February

2017 and March 2017 which also corresponds most with

SPEI-12 occurring from October 2016 until April 2018.

However, specifically visible for Nyeri, drought impacts are

starting later than the drought outset. A direct relation with365

the other accumulation periods are not prevalent, except for

SPEI-24. Drought impacts in relation to SPEI-03 and SPEI-

06 show a kind of lag: most impacts are occurring after the

onset of the drought whereafter drought impacts are lagging

while the drought has ended. Drought related to SPEI-01370

is most irregular and indicates less relation with drought

impact occurrence. The relation between reported drought

impacts are visualized in Table 3 by using the Jaccard sim-

ilarity for binary values. Pasture and Milk production are

a bit related (0.63) while Crop losses are not much related375

to any other impact category (<0.20). Trekking distance to

water points indicates a bit of relation with Pasture (0.50)

and Milk production (0.47). Other relations between impact

categories are not very prevalent (<0.400).
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Table 3. Correlation between the impact categories (Jaccard similarity).

Impact category Pasture Livestock deaths Food insecurity Milk production Trekking distance water Malnutrition

Livestock deaths 0.23

Food insecurity 0.39 0.27

Milk production 0.63 0.23 0.42

Trekking distance water 0.50 0.26 0.29 0,47

Malnutrition 0.41 0.20 0.27 0.34 0.34

Crop losses 0.15 0.04 0.00 0.11 0.11 0.11

3.2 Drought impacts and water scarcity380

Figure 3.a visualizes the degree of water scarcity per

year (in amount of months) across the counties. Kitui

and Marsabit experienced no water stress since March

2018 while Nyeri experienced stress, scarcity and absolute

scarcity during most of 2018 and 2019. Baringo, Kwale and385

Narok did also experience some stress and scarcity situa-

tions but with a lower frequency than in Nyeri. While Nyeri

experienced all the degrees of water scarcity during 2019,

most counties experienced no stress. Figure 3.b shows the

amount of months with drought impacts during 2018 and390

2020 in relation to the degree of water scarcity. Nyeri expe-

rienced 9 months with drought impacts whereof 6 months
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Figure 3. The degree of water scarcity per year (2018-2020) across the counties (a) and months with drought impacts in relation to water

scarcity (b).
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with absolute water scarcity and 3 months in a stress situ-

ation. Kitui and Marsabit had 14 months with drought im-

pacts but did not experience any degree of water scarcity.395

Baringo had 6 months with drought impacts whereby half

of the months were having stress situations.

3.3 The Random Forest model

The performance of the Random forest (RF) model are vi-

sualized in Table 4. The AUC ranges from 0.50 to 1.00:400

the models which performed significantly good (>0.80) are

visualized in green while the model performing relatively

bad (<0.60) are presented in red. The performance of the

model considering Pasture and Livestock deaths have the

best fit, with AUC values ranging from 0.87 to 1.00. Malnu-405

trition has the worst fit with all the AUC values below 0.600.

The models concerning the arid region of Marsabit (MA)

and the sub-humid regions of Narok and Nyeri (NA, NY)

had the best overall fit with diverse ranges of performance

among the impact categories. For instance, the model on410

Marsabit concerning Food insecurity has very high perfor-

mance (1.00) while the one in Narok/Nyeri has not (0.53).

For Marsabit and Narok/Nyeri applies that the models re-

lated to activities of pasture (Pasture, Livestock deaths and

Milk production) have very high performance rates. The oc-415

currence of drought impacts in the field of Trekking dis-

tance for water can be best predicted for the counties Narok

and Nyeri. The models concerning the semi-arid counties

of Baringo, Kitui and Kwale (BA, KI, KW) performed rel-

atively bad with the exception of Crop losses (0.84).420

Figures 4 and 5 show the drought indicators which are

best linked with the drought impact categories: this study

takes only the relations into account of the best performing

models. The MeanDecreaseAccuracy (MDA: in %) repre-

sents the importance of the predictor for the model: it ex-425

presses how much accuracy the model looses when each

variable would be excluded. The mean decrease in Gini co-

efficient is a measure of how each variable contributes to the

homogeneity of the nodes and leaves in the Random Forest.

In this regard, homogeneity means that most of the sam-430

ples at each node are from one class. A higher MeanDe-

creaseGini (in %) indicates higher importance.

Table 4. Performance of the RF model per impact category and arid characteristics: good performing models are presented in green (>0.800)

while bad performing models are presented in red (<0.600).

Arid Semi-arid Sub-humid zone

MA BA, KI, KW NA, NY

Pasture 0.87 0.62 0.96

Livestock deaths 1.00 0.71 0.97

Milk production 0.80 0.56 0.89

Food insecurity 1.00 0.67 0.53

Crop losses 0.55 0.84 0.64

Trekking distance household 0.55 0.57 0.88

Malnutrition 0.56 0.59 0.50
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Figure 4. Drought indicators best linked with Pasture and Livestock deaths for Marsabit and Narok/Nyeri.

As shown in Figure 4.a, Pasture impacts for Marsabit tend

to be triggered by shorter drought anomalies (6 months)

than Narok and Nyeri (24 months). Furthermore, SDI is435

the best predictor for Pasture impacts in Marasbit while

the meteorological drought indicators SPI and SPEI are the

best predictors for Narok and Nyeri. SPEI-24 is by far the

best performing drought indicator for Pasture concerning

Narok/Nyeri with a MDA higher than 18%. When concern-440

ing Livestock Deaths (Figure 4.b), the situation is reversed:

meteorological indices such as SPEI and SPI with longer

accumulation periods (12-24 months) are the best link for

Marsabit while the predictors SDI and SSMI with shorter

accumulation periods (3-12 months) are the best link for445

Narok and Nyeri. SPEI-12 is by far the best performing

drought indicator for Marsabit concerning Livestock deaths.

The results show that Food insecurity for the arid region

of Marsabit can be well predicted with a range of drought in-

dicators (Figure 5.a) with SSMI as the main drought predic-450

tor. However, the accumulation period is more or less stable

on 12 months. For Baringo, Kwale and Kitui, high accumu-

lation periods (6-24 months) are associated with Crop losses

whereby SSMI, SDI and SPEI are the most prominent indi-

cators (Figure 5.b). Noticeable is that SSMI-24 is by far the455

most prominent drought indicator for Crop Losses with a

MeanDecreaseAccuracy of 24% and a MeanDecreaseGini

of 10%. Trekking distance to water points for Narok/Nyeri

can mainly be predicted by SDI, SPEI and SPI with an ac-

cumulation period between 6-24 months (Figure 5.c).460

4 Discussion

4.1 Data sources and methods

This study utilizes the water scarcity dataset of McNally et

al. (2019) which uses regional streamflow data and two dif-

ferent population datasets, classified by a general accepted465

Falkenmark index. This dataset has never been validated in

the Horn of Africa which could be a limitation of this re-

search. Besides the water scarcity dataset, drought impact

data have been generated by looking at the monthly and

county specific reports of the NDMA. These reports had470

some monthly gaps and were sometimes written in differ-

ent formats which made it hard to objectively appraise the
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Figure 5. Drought indicators best linked with Trekking distance water points (NA/NY), Crop losses (BA, KW, KI) and Food insecurity

(MA).

drought impacts. However, a predefined coding sheet partly

tackled this inconvenience. Still, this study stresses the need

for a general database for Africa such as the already exist-475

ing databases EDII and DIR for Europa and the USA re-

spectively. Besides this, it is recommended to consult other

data sources such as the Emergency Events Database EM-

DAT (www.emdat.be) to include a wider range of impact

categories and to validate the results of this study.480

This study used a Random Forest technique to link

drought impacts with drought indictors. However, other lit-

erature used other techniques such as the Pearson corre-

lation (Wang et al., 2020), Spearman correlation (Ma et

al., 2020) and logistic regression (Bachmair et al., 2017;485

Blauhut et al., 2015; Stagge et al., 2015). Using RF as a tool

to link drought indicators with drought impacts is a fairly

new technique and has been done before by Bachmair et al.

(2016, 2017) with a focus on Germany and the UK. These

studies indicated a huge potential of using RF for drought490

M&EW. This study confirms this as well as the performance

indicators (AUC) were good for several drought impact cat-

egories. However, using RF to link drought impacts with

drought indicators also urges the need to expand the drought

impact data collection because of its sensitivity to data avail-495

ability (Bachmair et al., 2016).

4.2 Relations with aridity

The majority of the drought impact data is livestock and pas-

ture related. It is expected that the reported drought impacts

are linked with the main livelihood activity of the county.500

However, this study does not confirm this link. The main
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livelihood activity of Marsabit is pasture whereby around

50% of the drought impacts are related to this activity. How-

ever, Nyeri is a high potential farming county whereby more

than 60% is related to pastoral activities. A possible expla-505

nation for the deviation between drought impacts and liveli-

hood activities could be the skewed impact categories to-

wards pastoral activities, limited by the NDMA database.

Marsabit and Kitui had the highest reported drought im-

pacts while Baringo and Nyeri the least amount of re-510

ported drought impacts. This suggests that drought impacts

are linked with aridity because Marsabit and Kitui habitats

are larger areas classified as (semi-)arid than Baringo and

Nyeri. In addition, the results suggest that there is inter-

ference with the socio-economic circumstances within the515

counties. For instance, acute and chronic food insecurity,

poverty, lack of economic development, limited access to

basic social services and low education levels is highest

among households in the ASALs (FEWSNET, 2010) which

could explain the high amount of drought impacts found for520

Marsabit. These results confirm the hypothesis as formu-

lated in the introduction that drought impact occurrences are

linked to aridity.

The drought analysed for the period 2016-2020 indicated

higher drought frequencies and intensities for Marsabit525

(arid) than Nyeri (sub-humid). Drought impacts followed

accordingly suggesting a link between drought severity and

drought impacts which was also expected. Maliva & Mis-

simer (2012) stated that arid areas will have more extreme

drought due to global warming which will increase the po-530

tential evapotranspiration. This could indeed influence the

SPEI values which captures the factor evapotranspiration in

contrary of SPI which only includes precipitation anomalies

deviating from the long-term mean. Drought based on SPI

still indicates higher frequencies and intensities of drought535

for Marsabit between 2016 and 2020. However, this study

can not link drought occurrence to aridity because of the

short timeframe (10 years) analyzed. The analyzation of

longer timeseries could indicate if there is an interannual

trend and variability of drought indices, therefore determin-540

ing whether there is a drying climate or a drought event (Xu,

2021). This is interesting follow-up research whereby the

term aridity will be scrutinized in relation to drought occur-

rences.

Most drought impacts occurred at moments without wa-545

ter stress, except for Nyeri. Therefore, the results suggest

that WS data could not be used to predict drought impacts

but also that WS should not be automatically linked with

aridity as still assumed by many studies (Mulwa et al., 2021;

Phillip, 2013) and what was also expected for this study. The550

ASALs covers about 80% of Kenyan territory but gives only

home to 25 percent of the population (FEWSNET, 2010).

This can explain the spatial occurrence of water scarcity

since population is used as a proxy for water demand in

the water scarcity dataset. Whereas aridity is regarded a555

constant climatic feature, water scarcity can fluctuate over

time as well as space: it is a function of supply and demand

at both sides of the equation which is shaped by political

choices, public policies and social set up. Therefore, water

scarcity can be reversed through wise usage and improved560

water management whereas aridity cannot (Phillip, 2013).

Not all possible water scarcity related features are included

in the WS dataset used in this study. It is a generalized num-

ber based on streamflow data and population data as a proxy

for water demand, making it a useful tool to classify water565

scarcity at a national and regional scale but not on smaller

scales (Rijsberman, 2006).

4.3 Drought indicators and the Random Forest model
The results show that linking drought indicators with

drought impacts is very region specific, as confirmed by570

many other studies (Bachmair et al., 2015, 2016, 2018;
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Blauhut et al., 2015; Ma et al., 2020; Parsons et al., 2019;

Stagge et al., 2015; Wang et al., 2020). For instance, shorter

accumulation periods were found for Pasture at Marsabit

(SDI-06) while longer accumulation periods were found575

for Narok/Nyeri (SPEI-24). This suggests the presence

of water buffers, damming the sub-annual fluctuations in

water availability and therefore generating less influence

on the impact category Pasture. On the contrary, Live-

stock deaths are linked with high accumulation periods in580

Marsabit (SPEI-12) and short accumulation periods in Ny-

eri (SDI-03). The differences between the best match be-

tween drought impacts and drought indicators suggest in-

terference with human activities. In addition, the differences

between Marsabit (arid) and Narok/Nyeri (sub-humid) sug-585

gest a link with aridity. Human activities can interfere with

natural circulation processes and therefore influence the

drought propagation time between meteorological and hy-

drological drought (Xu et al., 2019). This calls for more re-

search towards water management practices in relation to590

drought indicators and drought impacts.

Regarding the drought indicators, varies drought indi-

cators are marked as the most optimal indicator: SDI is

mentioned in relation to Livestock deaths (Marsabit), Pas-

ture (Narok/Nyeri) and Trekking distance to water points595

(Narok/Nyeri) while SSMI is mentioned in relation to

Crop losses (Baringo, Kwale, Kitui) and Food insecurity

(Marsabit). Noticeable is that SDI gives a possible link with

water dependent activities while SSMI gives a possible link

with agricultural practices. It is expected that SDI and SSMI600

would show a memory in relation to SPI and SPEI because

of the propagation through the hydrological cycle, intro-

ducing a lag between meteorological, soil moisture and hy-

drological drought (Wang et al., 2016). Therefore, the time

length and duration of SPI and SPEI can be used to ex-605

press soil moisture and hydrological drought. In general a

1-month timescale is considered meteorological drought, 3-

6 months as soil moisture drought and 12 months can be

considered as hydrological drought (Dai et al., 2020). This

link is partly visible by looking at the drought indicators in610

relation to the accumulation periods. For instance, SDI-06

is the best match for Trekking distance household which in-

dicates hydrological drought. The best link after SDI-06 is

SPEI and SPI with a 24 months timescale, also indicating

the presence of a hydrological drought.615

Studies which linked drought impact with drought in-

dicators are mainly focused on Europe (Bachmair et al.,

2015, 2016, 2018; Blauhut et al., 2015; Parsons et al., 2019;

Stagge et al., 2015) and recent papers had their focus on

China (Ma et al., 2020; Wang et al., 2020). Therefore, it620

should be noted that comparisons are quite difficult due to

the different socio-economic and climatic circumstances.

As studied by Bachmair et al. (2018), SPI and SPEI with

an accumulation period of three and four months showed

the highest correlation for the impacts on crops in Germany.625

This is not consistent with the results found in this study

in relation to Crop losses for Baringo, Kitui and Kwale:

those accumulation periods are quite high ( 6-24 months).

As stated in the study of Bachmair et al. (2018), an ac-

cumulation period of one month was found to have a no-630

tably lower correlation with drought impacts and was of-

ten non-significant which is also confirmed by the results

of this study. A reasonable explanation for this is that the

occurrence of impacts have a lag behind the occurrence of

drought. Another study of Bachmair et al. (2016), showed635

that SPI and SPEI with longer accumulation periods (12-

24 months) are best linked to impact occurrence in the UK

when using the RF model. In general, this does match with

the results of this study: SPI-12, SPEI-12, SPI-24 and SPEI-

24 are the most occurring accumulation periods, linking the640

occurrence of drought impacts with the presence of hydro-
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logical drought. The results indicate that impacts associ-

ated with different types of drought have different response

times, as confirmed by the distinct differences in drought

indicators and impact linkage pattern.645

It should be noted that adaptation measures can influence

the optimal drought indicator found by using the RF model.

The use of adaptation measures is linked with increasing

livelihood resilience whereby smallholders are better pre-

pared for future challenges (Nyberg et al., 2020). The past650

years Kenya has experienced an increase in drought fre-

quencies. This can influence the extent of adaptation mea-

sures taken and therefore the resilience against droughts

which affects the final impacts. It is therefore recommended

to link adaptation measures to drought impacts and indica-655

tors in order to analyze spatial differences and to map fluc-

tuations over time.

This study contributes to the ongoing debate about the

operational needs for drought monitoring by linking mul-

tiple drought indices to reported drought impacts. Results660

show the best drought index for a given impact which can

be combined with other socio-economic and environmen-

tal data to provide enough inputs for the construction of a

drought impact-based forecast, useful for stakeholders and

decision makers (Heinrich et al., 2020 ; Stagge et al., 2015 ).665

In addition, this research unveils the link with water scarcity

and aridity, which is valuable information for the existing

literature database on drought and impacts and supports the

entrance of a whole new field of research. However, it is

recommended to validate the results in other research areas670

and on finer spatial scales whereby the influence of human

activities on drought propagation and water scarcity can be

analyzed. Besides this, research would benefit from a refine-

ment of the water scarcity dataset in order to better represent

human influences on the presence of water scarcity.675

5 Conclusions

Drought is expected to happen more frequently in the fu-

ture, generating a range of impacts in diverse sectors. This

urges the need to develop early warning systems to mitigate

the adverse consequences of drought and thereby reducing680

the human and financial costs. However, there is still no

full understanding of the relation between drought impacts

and drought indicators in Africa. In addition, this continent

struggles with water scarcity and the presence of arid re-

gions whereby this link has never been unveiled in relation685

with drought. This paper aims to fill this knowledge gap by

exploring the link between drought impacts, drought indi-

cators, water scarcity and aridity with a focus on Kenya.

The arid region of Marsabit had the most severe drought

and the highest amount of drought impacts over a time-690

frame from 2016 to 2020. Nyeri, classified as a sub-humid

region, had lower frequencies and intensities of drought and

reported the least amount of drought impacts. This indi-

cates that drought impacts are linked with drought sever-

ity and that the occurrence of drought impacts are sensitive695

to aridity. The skewed spatial distribution of drought im-

pacts could be related to the fragile socio-economic condi-

tions in the ASALs of Kenya which makes this region more

vulnerable to drought than the sub-humid region of central-

northern Kenya. A relation between water scarcity and arid-700

ity was not found, while this is often assumed in literature.

On the contrary, Marsabit (arid) did not experience any wa-

ter scarcity during March 2018 and 2020 whilst Nyeri (sub-

humid) did. The spatial distribution of population, used as a

determinant for water demand in the water scarcity dataset,705

could be a reasonable explanation for this result.

With a Random Forest model, a link between drought im-

pacts and drought indicators was made. The results indi-

cated that every region, aggregated on aridity, had their own
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set of predictors for every impact category which suggests a710

relation with aridity. Region dependency was found by other

studies as well. The models related to the livelihood activ-

ity pasture had the highest performance for the arid (arid

index 0.03-0.20) and sub-humid (arid index 0.50-0.75) re-

gions. Drought impacts related to Pasture tend to be trig-715

gered by drought anomalies of varying durations for differ-

ent arid characteristics. Anomalies were shorter (6 months)

for the arid region of Marsabit than for the sub-humid re-

gions of Narok/Nyeri (24 months). For the impacts on Live-

stock deaths reversed results were found: lower accumu-720

lation periods were found for Narok/Nyeri ( 3-12 months)

while longer accumulation periods were present in Marsabit

( 12-24 months). Drought indicators with longer timescales

(>12 months), indicating a hydrological drought, were often

found to best match with drought impact occurrence. The725

differences in linkages could be related to water manage-

ment practices, hydrological regimes and climatic circum-

stances. However, more ground based research is needed to

substantiate the diversity in results.

Improving the predictive ability of indicators requires the730

development of systematic recording of drought impacts. In

addition, a finer spatial aggregation is needed to capture the

regional differences in human influences on water scarcity

and drought impacts. Studying other research areas and vali-

dating the results of this study on smaller scales will expand735

the knowledge database on drought and impacts and will

substantiate the conclusions of this study. The integration

of regional predictions on drought impacts will contribute

to the development of early warning systems on drought

and will reduce vulnerability and increase resilience of the740

targeted society. The unveiled link between drought indica-

tors, drought impacts, water scarcity and aridity will open

the discussion about the meaning of drought indicators in

relation to drought (impacts) and opens a new arena of re-

search.745
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Appendix A: Detailed explanation of the water scarcity

dataset

The water scarcity indicator from McNally et al. (2019) is

based on outputs from the FEWS NET Land Data Assimi-

lation System (FLDAS), which is a custom instance of the750

National Aeronautics and Space Administration (NASA)

Land Information System (LIS). The FLDAS’s Noah 3.6

land surface model is driven by the Climate Hazards Group

InfraRed Precipitation with Station (CHIRPS) rainfall and

NASA’s Modern-Era Retrospective analysis for Research755

and Applications (MERRA-2) meteorological forcing. This

model partitions rainfall inputs into surface and subsurface

runoff (i.e., baseflow), soil moisture storage and evapotran-

spiration. Surface runoff is the precipitation in excess of in-

filtration and saturation capacity of the soil while subsur-760

face runoff is the drainage from the bottom soil moisture

layer caused by gravity. The total runoff is routed though the

river network with the Hydrological Modelling and Anal-

ysis Platform version 2 (HyMAP-2) river routing scheme.

The definition of catchments are based on boundaries de-765

fined by the U.S. Geological Survey (USGS) Hydrological

Derivatives for Modelling Applications (HDMA) database.

A Pfafstetter code, based on an hierarchical numbering sys-

tem, are attributed to the catchments. For the water scarcity

index, Pfafstetter level 6 basins are used in order to repre-770

sent the relatively local nature of water supplies. Two popu-

lation datasets are used as a proxy for water demand, namely

the WorldPop 2015 dataset and the European Commission’s

Joint Research Center’s (JRC) Global Human Settlement

(GHS) data. To classify the amount of water scarcity, the775

Falkenmark index is used. The Falkenmark Index thresholds

are specified annually while monthly data is required for the

routinely updated maps about water scarcity. Therefore, a

12-month running total of the streamflow from the current

and 11 previous months are used whereby the Falkenmark780

index (based on yearly values) can still be used on a monthly

resolution. The population estimates are aggregated to Pfaf-

stetter basin level 6 whereafter the 12-month total spatially

aggregated streamflow (m3) is divided by the population to

produce an estimate of m3/person (McNally et al., 2019).785

Appendix B: The hydrological datasets: the streamflow

datasources

Different hydrological datasets were used for the water

scarcity dataset and the calculation of the SDI. The SDI in-

dex is based on data from GloFAS while streamflow data790
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Figure A1. Streamflow anomalies (WS) and SDI-01 between March 2018 and 2020.
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for the water scarcity dataset is based on outputs from the

FLDAS. If there are any discrepancies between the datasets,

wrong conclusions could be made. To compare the two dif-

ferent datasets, SDI-01 is plot together with the streamflow

anomalies of the water scarcity dataset for Marsabit and Ny-795

eri (Figure A1). The streamflow anomalies are based on the

1982-2016 FLDAS historical record while SDI is based on

the period between 1980 and 2010. Despite some irregular-

ities between the datasets, both are following quite the same

pattern. This suggest that it is reasonable to compare the re-800

sults from the two different hydrological datasets.

Appendix C: A detailed explanation about the Random

Forest model

Random forest (RF) is a machine learning algorithm

whereby a large number of regression or classification805

trees on bootstrapped sub-samples of the data are con-

structed. Bootstrapping is a way to resample the dataset

which includes replacement from the original dataset. In

other words, RF’s combines several randomized decision

trees and aggregates their predictions by averaging. The810

goal of a decision tree is to create a model that predicts the

value of a target by learning simple decision rules induced

from the data features. A decision tree consists of nodes,

edges/branches and leaf nodes. The nodes are the test for the

value of a certain attribute (predictor), the edges/branches815

are the outcome of a test and connect to the next node or

leaf and the leaf nodes are the terminal nodes predicting the

outcome. In order to validate the model, a training data set

and a test dataset is constructed with a proportion of 75%

and 25% of the original dataset. Each tree is built on a sub-820

set of the training data set: approximately two-third of the

training dataset is used for building a tree while one third is

not used, called the out-of-bag error data. This generates an

additional estimate of performance, namely the out-of-bag

error which is a method to measure the prediction error of825

the random forest. For the model, two parameters needed

to be tuned, namely the amount of randomized trees (ntree)

and the amount of variables available for splitting at each

tree node (mtry). The value of ntree has been proven to have

not much effect on the overall accuracy of the model and is830

set to the default value of ntree = 500. For the best value

of mtry, the function tuneRF function of the RandomForest

package has been used which aims to lower the OOB error.

The tuned parameters for mtry are visible in Table A1.

The performance of the various models for the impact835

categories were tested by applying the model on the test set

Table A1. Tuning of parameters for the RF model: mtry values.

Arid Semi-arid Sub-humid zone

MA BA, KI, KW NA, NY

Pasture 3 4 4

Livestock deaths 6 4 4

Milk production 4 6 4

Food insecurity 6 2 6

Crop losses 3 4 2

Trekking distance household 6 3 4

Malnutrition 2 6 4
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data (25% of the original data set). The AUC (Area Un-

der the Curve) ROC (Receiver Operating Characteristics)

curve was used to check and visualize the performance. It

describes how much the model is capable of distinguish-840

ing between the classes: how higher the AUC, the better the

model is at predicting 0 classes as 0 and 1 classes as 1. The

ROC curve is plotted with the Sensitivity on the y-axis and

Specificity on the x-axis. These variables represent the true

positives and true negatives respectively.845
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