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ABSTRACT
In recent years, knowledge graphs have become widely adopted
for storing and managing vast amounts of data, powering various
applications. However, SPARQL as the query language for access-
ing those knowledge graphs has a steep learning curve and is too
complex for many use cases. This paper presents GraphSPARQL,
a middleware that allows accessing arbitrary SPARQL endpoints
by using GraphQL, supporting the GraphQL operations query and
mutation. GraphSPARQL abstracts the complexity of SPARQL with-
out losing the ability to address classes and properties of distinct
ontologies. Additionally, GraphSPARQL’s extension to GraphQL
allows using SPARQL filter operations to filter the data in queries.
The evaluation showed that GraphSPARQL can compete with ex-
isting GraphQL to SPARQL solutions and outperforms them for
deeply nested queries.

CCS CONCEPTS
• Software and its engineering→ Software libraries and repos-
itories; • Information systems→Datamanagement systems;

KEYWORDS
GraphSPARQL, GraphQL, Knowledge Graphs, SPARQL, Linked
Data

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SAC ’22, April 25–29, 2022, Virtual Event,
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-8713-2/22/04. . . $15.00
https://doi.org/10.1145/3477314.3507655

ACM Reference Format:
Kevin Angele, Manuel Meitinger, Marc Bußjäger, Stephan Föhl, and Anna
Fensel. 2022. GraphSPARQL: A GraphQL Interface for Linked Data. In
The 37th ACM/SIGAPP Symposium on Applied Computing (SAC ’22), April
25–29, 2022, Virtual Event, . ACM, New York, NY, USA, Article 4, 8 pages.
https://doi.org/10.1145/3477314.3507655

1 INTRODUCTION
In 2012 Google announced their Knowledge Graph [13] for im-
proving their search services. This announcement can be seen as
the starting point for the hype around knowledge graphs, which
are, in principle, “large semantic nets” [5]. Since then, the num-
ber of companies using knowledge graphs to store, maintain and
link their data has grown steadily. Nowadays, many large compa-
nies, like Google, Facebook, Amazon, or Airbnb, rely on knowledge
graphs. Besides, this trend is also represented by the evolution of
The Linked Open Data Cloud1 (LOD Cloud) and especially the large
open knowledge graphs DBPedia [1] and Wikidata [17] as the core
of the LOD Cloud.

For accessing and managing the data within knowledge graphs
SPARQL2, a W3C recommendation is provided. SPARQL is a very
flexible query language that allows writing complex queries for re-
trieving or modifying the data. However, this flexibility of SPARQL
has its downsides. Due to the lack of proper ontology descriptions
or example queries of SPARQL endpoints, retrieving data from a
knowledge graph is very time-consuming. Additionally, this lack
of documentation results in a steep learning curve for beginners.
Hence, efficiently working with SPARQL endpoints requires inti-
mate knowledge about the data structure. Another downside is
that developers are not familiar with SPARQL as query language
and its triple-based output. Therefore, developers can not use the
full potential of knowledge graphs. An idea that might appear is

1https://lod-cloud.net/
2https://www.w3.org/TR/rdf-sparql-query/
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domain experts defining templates for SPARQL queries that the de-
velopers then use in their applications to retrieve the relevant data.
This idea brings two significant issues. First, curating and reusing
predefined SPARQL queries is sub-optimal and will probably result
in hardwired queries in the application code. Second, the problem
of handling SPARQL’s triple-based output remains. Handling those
results requires more efforts from the developers as they typically
work with nested objects (document-based data structures) rather
than triples (graph-oriented data structure) [11]. Another major
drawback of SPARQL is its awareness. SPARQL is very well known
in the research domain, but the majority of developers that are used
to JSON and REST APIs still do not know SPARQL. The drawbacks
mentioned above result in the challenge of providing a layer of ab-
straction that hides the complexity SPARQL brings while keeping
the flexibility it allows (as much as possible).

In this paper, we introduce a layer of abstraction based on the
well-known nested objects structure (i.e., JSON) familiar to devel-
opers to simplify the access to knowledge graphs. This abstrac-
tion layer allows users unfamiliar with SPARQL to browse the
schema of the underlying data and access the knowledge stored
within a knowledge graph. As the basis for the abstraction layer,
a query language well adopted by developers called GraphQL3 is
used. GraphQL was developed by Facebook and open-sourced in
2015. The main benefits of GraphQL as a query language are its
simplicity in usage and a large number of available tools for it [14].
Initially, GraphQL was invented as an alternative for REST APIs,
allowing developers to specify exactly the data they need. The main
aim was to reduce the amount of data sent between client and
server to save bandwidth and mobile applications’ data consump-
tion. In recent years, GraphQL gained attraction in the Semantic
Web community as a less complex query language4. GraphQL is
already supported by some of the major graph database providers,
like Ontotext GraphDB5 or Stardog6. With GraphQL being a new
technology for accessing knowledge graphs, not all graph databases
that one might want to access (fully) support its functionality. In
conclusion, a query language adopted from GraphQL is less expres-
sive than SPARQL. Still, it allows realizing typical data retrieval
tasks.

The previously mentioned layer of abstraction is implemented in
a toolkit called GraphSPARQL. GraphSPARQL provides a GraphQL
interface for arbitrary SPARQL endpoints. However, this abstrac-
tion of SPARQL comes with a reduced expressivity, e.g., GraphQL’s
nature of nested documents does not allow SPARQL SELECT queries.
The structure of GraphQL queries is more familiar to the structure
of SPARQL CONSTRUCT queries. To minimize this gap between the
abstraction layer and SPARQL, GraphSPARQL allows custom exten-
sions to GraphQL (see Section 4.2). The contribution of GraphSPARQL
includes:

• Automatic generation7 of a GraphQL schema based on given
ontologies in RDF/OWL format. This schema is then ex-
tendible by custom extensions (e.g., additional types or fields

3https://graphql.org/
4In the future GraphQL will become even more important, see https://www.bbntimes.
com/technology/why-graphql-will-rewrite-the-semantic-web
5https://www.ontotext.com/products/graphdb/
6https://www.stardog.com/
7The manual definition of a GraphQL schema is possible as well.

that should be queryable). The generation process allows
integrating various ontologies into a single GraphQL schema
by prepending a prefix to type and field names. Such a prefix-
ing mechanism allows querying data from different ontolo-
gies without violating the GraphQL specification (GraphQL
does not foresee the usage of namespaces).

• GraphQL comeswithmany open source editors like GraphiQL,
allowing one to browse the underlying data schema eas-
ily. Browsing the schema simplifies the process of defining
queries to retrieve the relevant data. GraphSPARQL supports
GraphiQL to define GraphQL queries for the underlying
schema.

• GraphQL queries sent to GraphSPARQL are transformed into
SPARQL queries and sent to the specified SPARQL endpoints.
GraphSPARQL allows defining different SPARQL endpoints
for different ontologies. Based on the used types and fields,
the corresponding SPARQL endpoint is called to retrieve the
results.

• Before returning the answer to the user, GraphSPARQL
parses the SPARQL results and transforms them back into
a GraphQL result. GraphQL has a nested objects structure
that is familiar to developers.

GraphSPARQL is implemented in C#8 and utilizes existingGraphQL
and SPARQL libraries to transform GraphQL queries to SPARQL
queries and SPARQL results to GraphQL results.

The paper is structured as follows. In Section 2, we present pro-
prietary and open source solutions providing a GraphQL interface
for SPARQL and alternative approaches for abstracting the com-
plexity of SPARQL for accessing a knowledge graph. Afterward,
Section 3 provides an analysis of the requirements and an open-
source tool called HyperGraphQL. Implementation details such
as the architecture of GraphSPARQL can be found in Section 4.
Section 5 presents the benchmark results. Finally, we conclude our
paper in Section 6.

2 RELATEDWORK
Different approaches for simplifying the access to and the modi-
fication of knowledge graphs have been developed. One type of
approach are so-called domain-specific languages like LDFlex [16].
LDFlex is specially designed for front-end web developers to fit
their workflow. As holds for all the approaches we present in this
section, the main goal is to abstract the complexity of SPARQL.
Usual problems solved by front-end web developers are not very
complex, so a simpler language is sufficient. LDFlex is comparable
with jQuery9 but for RDF.

Another type of approach is REST APIs built on top of knowl-
edge graphs that allow accessing and modifying the underlying
data, like RAMOSE [4] or OBA [6]. Based on a given ontology OBA,
for example, automatically creates a REST API that allows to get
and manipulate data. OBA relies on the OpenAPI-Specification10
and provides a server implementation based on the created speci-
fication. This approach requires direct access to the ontology and
especially the data. Therefore, it is limited to the RDF data provider.

8https://docs.microsoft.com/en-us/dotnet/csharp/
9https://jquery.com
10http://spec.openapis.org/oas/v3.0.3
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Another approach in this direction is [11] EasyWeb API development
with SPARQL transformer defining the queries and the expected
output in a JSON format. Those files are processed by the SPARQL
Transformer11, stored in a GitHub repository, and with the help
of grlc12 a RESTful API is created. Besides, a cloud platform for
sharing and reusing SPARQL queries is BASIL [3]. BASIL automati-
cally generates Web APIs from SPARQL queries easily embeddable
into applications. Work in pharmacology databases is the Open
PHACTS Discovery Platform leveraging Linked Data to provide
integrated access to those databases. [7] extend the Open PHACTS
platform with APIs to facilitate data integration.

A general approach that aims to simplify the usage of RDF data is
EasierRDF13. However, the development in that direction appears to
be relatively static (the last commit was two years ago). EasierRDF
aims to simplify tools, standards, and documentation to make RDF
usable by a broader audience.

In recent years GraphQL as an abstraction of SPARQL has evolved.
Since then, a couple of commercial and open-source solutions have
appeared. Those solutions use GraphQL to access RDF data directly
or transform GraphQL queries to SPARQL queries to access arbi-
trary SPARQL endpoints. A commercial solution in that regard
is Stardog14. Stardog offers a graph database called the “Enter-
prise Knowledge Graph platform”. The main interface to the stored
data is given via SPARQL, and their extension of SPARQL is called
Pathfinder15. Pathfinder is optimized for finding and retrieving
arbitrarily complex paths from within the stored knowledge graph.
Their platform supports GraphQL as of version Stardog 5.116. Star-
dog also allows users to provide a GraphQL schema to translate
RDF and GraphQL values and validate the queries. Besides, Stardog
allows schemaless GraphQL queries to access the underlying data.
However, this requires intimate knowledge of the underlying data
structure. Another relevant solution is “TopBraid Enterprise Data
Governance (EDG)”17 by TopQuadrant. TopBraid EDG uses RDF
to store data and allows users to define data models using RDF
Schema [2], SHACL [10] and OWL [18]. Furthermore, a GraphQL
schema can be defined, and GraphQL can be used to query the data-
base18. TopBraid EDG also allows users to nest SPARQL queries
within GraphQL queries, making the queries overall more explicit.
A further commercial solution is “Ontotext Platform”19 by Ontotext.
Ontotext Platform offers users a GraphQL interface to query an
underlying graph database called GraphDB20. As with the solutions
above, the underlying GraphDB can also be queried using SPARQL.
Those examples show that major graph database solutions already
adopt GraphQL.

An open-source solution is GraphQL-LD by Taelman et al. [14].
GraphQL-LD is the first academic open-source solution that trans-
lates GraphQL queries to SPARQL queries and SPARQL results
to GraphQL results. In contrast to the commercial approaches

11https://d2klab.github.io/sparql-transformer/
12http://grlc.io
13https://github.com/w3c/EasierRDF
14https://www.stardog.com/
15https://www.stardog.com/blog/a-path-of-our-own/
16https://www.stardog.com/blog/graphql-and-paths/
17https://www.topquadrant.com/products/topbraid-enterprise-data-governance/
18https://www.topquadrant.com/technology/graphql/
19https://www.ontotext.com/products/ontotext-platform/
20http://platform.ontotext.com/index.html

mentioned above, GraphQL-LD can be used for arbitrary graph
databases that offer a SPARQL endpoint. Instead of using GraphQL
schema, GraphQL-LD uses a JSON-LD [9] context to create a map-
ping between the RDF terms of the database and GraphQL. Ad-
ditional features that GraphQL-LD supports are filtering and or-
dering through directives [15]. Another open-source solution is
HyperGraphQL21. Similar to GraphQL-LD, HyperGraphQL offers
a GraphQL interface for arbitrary SPARQL endpoints. In contrast
to GraphQL-LD, HyperGraphQL uses GraphQL schema (instead of
JSON-LD) to add semantic meaning to GraphQL. Initially, Graph-
SPARQL was meant to be an add-on to HyperGraphQL, as Hyper-
GraphQL overlapped most with our project’s goals. However, after
a more in-depth analysis, we decided against writing an add-on
and for creating our own implementation. This analysis of Hy-
perGraphQL and the reasons behind our decision can be found in
Section 3.

We aim to provide an interface for arbitrary SPARQL endpoints
that allow connecting to multiple endpoints simultaneously. There-
fore, the proprietary solutions are not usable for us, as they are tied
to a specific database. The REST API approach needs direct access
to the data and is also not an option for us. Besides, EasierRDF is
still in the design phase and not yet very concrete. As a result, we
will focus on the existing open-source solutions.

3 REQUIREMENT ANALYSIS
This paper presents a GraphQL to SPARQL solution to query data
from knowledge graphs and modify data within them. For benefit-
ing from existing tools for GraphQL, it is essential to stay as close
to the GraphQL specification as possible. For mapping GraphQL to
SPARQL, the platform or user has to provide an additional schema
that semantically annotates the queries’ fields. Providing such a
schema is typically feasible. However, when trying to integrate
federated queries into a GraphQL interface, the different sources’
schema must be compatible, e.g., not introduce ambiguities. This
implies that fields with the same name used for various sources
must be distinguishable within the GraphQL queries. A concep-
tual limit of GraphQL’s capabilities is given by the fact that nested
objects represent trees. Thus, the results of GraphQL queries can
only be trees (in principle restricted SPARQL CONSTRUCT queries).
In contrast, SPARQL can return single values (ASK or SELECT ) or
arbitrary graphs as a result, which includes trees and is therefore
strictly more powerful.

Data within a knowledge graph is typically structured in hi-
erarchies, and values of properties can be a disjunction of types.
Therefore, GraphQL enum, interface and union need to be sup-
ported.

Based on the idea of simplifying accessing and managing knowl-
edge graphs while staying as close to the GraphQL specification as
possible, the following requirements can be derived:

• connection to arbitrary SPARQL endpoints
• federated queries using distinct ontologies
• query and modify data
• support for GraphQL enum, interface, and union
• advanced filtering options (using SPARQL filters)

21https://www.hypergraphql.org/
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• mark fields as required (theymust be provided by an instance
to be returned)

• extended set of scalar types (e.g., DateTime and
LanguageString)

Based on those requirements we analyzed existing open-source
solutions. One of the available open-source solutions that aligns
mostly with our project requirements is HyperGraphQL. However,
the following functionality is not given by HyperGraphQL:

(1) support for enum, interface and union
(2) mutation and advanced filtering operations
(3) support for required fields in queries

Therefore, our initial intention was to implement an add-on to Hy-
perGraphQL. After analyzing HyperGraphQL in more detail, we
encountered a few more issues that led to the realization that an
add-on is more work than a complete re-write. The first issue we
encountered is that the latest release (version 2.0.0 on June 2021)
upgrades libraries and the java version without providing addi-
tional functionality or improving the existing functionality. The
prior release was version 1.0.1, published in October 2018. Thus, the
development of HyperGraphQL seems relatively static. Combined
with the fact that close to no documentation and no comments are
available for the code, getting familiar with the project becomes sig-
nificantly harder. This issue is, of course, not a roadblock. However,
it drastically slows down the implementation process.

As for technical issues, HyperGraphQL has to tackle the in-
herent limitations of using a GraphQL interface for a SPARQL
interface. These limitations lead to inherent schema limitations in
HyperGraphQL, namely that all fields have to be global. Global
means that when looking at a HyperGraphQL schema, all types
and fields need to be declared in a global section before fields can
be specified with their corresponding properties22. Furthermore,
HyperGraphQL does not support GraphQL abstraction semantics,
meaning that only concrete types can be used. The final noteworthy
issue we encountered when analyzing HyperGraphQL is that no
typed scalar handling is given. This means that if we, e.g., query
for a time or duration, the return value is always a string instead of
a date-time object or a numeric data type.

Note that GraphQL-LD has similar issues as HyperGraphQL.
Furthermore, we did not consider extending GraphQL-LD since it
requires a JSON-LD schema that could limit the achievable func-
tionality and introduce another inhibition threshold for developers
that are not familiar with working with linked data.

4 GRAPHSPARQL
As stated above, HyperGraphQL has been an inspiration for Graph-
SPARQL, in the sense that both can be used as middleware between
GraphQL queries and SPARQL endpoints. Furthermore, both so-
lutions are accompanied by a GraphiQL23 interface (see Figure 1),
which simplifies the submission of GraphQL queries and visualizes
the returned results.

In the following, we first elaborate more on the architecture of
GraphSPARQL (Section 4.1), starting with an overview and then
delving deeper into how queries and results are translated. Sec-
tion 4.2 concludes the theoretical discussion of GraphSPARQL by
22see the Schema section on https://www.hypergraphql.org/documentation/
23https://www.electronjs.org/apps/graphiql

Figure 1: Screenshot of the GraphiQL user interface. The left
side presents a query and the result is presented on the right.

elaborating on the generation of the enriched GraphQL schema that
is used to overcome the functionality limitations of GraphQL (see
Section 3). Afterward, we will introduce extensions to the GraphQL
query syntax for the advanced filtering options (Section 4.3). Finally,
the process of generating SPARQL queries from GraphQL queries
is described (Section 4.4).

4.1 GraphSPARQL Architecture
GraphSPARQL’s general architecture consists of four basic building
blocks:

(1) an Enriched GraphQL Schema that is used to provide semantic
meaning for the GraphQL queries

(2) an RDF Harvester that generates said schema
(3) a Query Processor that utilizes the dotNetRDF24 library to

send SPARQL queries to and receive SPARQL results from
connected RDF databases

(4) a Parser & Formatter that utilizes the GraphQL .Net25 library
to translate the GraphQL queries for and the SPARQL results
from the Query Processor

Figure 2: GraphSPARQL architecture overview.

An overview of this architecture can be found in Figure 2. Start-
ing from a user’s perspective, GraphSPARQL is set up by connecting
it to one or more SPARQL endpoints via a JSON config file. Besides,
at least one GraphQL schema source has to be defined in the said
file as well. Currently, the following sources are supported:

24https://www.dotnetrdf.org/api/html/N_VDS_RDF.htm
25https://graphql-dotnet.github.io/docs/getting-started/introduction
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(1) RDFS/OWL schema: This option uses the RDF Harvester to
generate the GraphQL schema. Various flags can be set to
govern what exactly is being harvested (e.g., what names-
paces, datatypes, unused types).

(2) Enriched GraphQL Schema (see Section 4.2): Here a GraphQL
schema is used as input. However, since GraphQL does not
support any SPARQL hints out-of-the-box (like what end-
point to use or how tomap aGraphQL field to a SPARQL/RDF
property), additional directives have to be supplied.

(3) JSON: The last option allows to provide GraphQL schema(s)
in the internal JSON format. The library also supports ex-
porting compiled schemas into that format. This option is
the fastest and supports embedding a schema into the config
file rather than loading it from an external resource.

If multiple schemas are defined, they can also reference each other,
so it is possible to harvest some GraphQL types from an OWL
schema and then define additional properties on those types through
another (enriched) GraphQL or JSON schema.

(a)

(b)

Figure 3: GraphSPARQL architecture close-up. (a) Issuing a
GraphQL query. (b) Receiving results.

With the endpoint and schema configuration available, the user
can send their GraphQL queries (see Figure 3a for a close-up) to
the Parser, optionally using the GraphiQL interface in the process.
Utilizing the GraphQL .Net library as well as C#-objects generated
from the specified schema, the Parser translates and collects queries
which are then given in batches to the Query Processor, which in
turn uses the dotNetRDF library to send SPARQL queries to the
connected RDF databases.

Considering the returned results (see Figure 3b), the Query Pro-
cessor receives SPARQL results from the queried RDF databases.
The dotNetRDF library is used to lift all the different return formats.
These results are then fed back to the generated C# schema objects
that either use the formatting capabilities provided by the GraphQL

Listing 1: Example of the extended GraphQL schema. An
Adult is a Person that drives a Car, a Child is a Person that
is not an Adult, and a Car is a union of different car brands.
The name field is inherited by Adult and Child. Each car has
to define the type field itself, since Car is a union and not an
interface.
1 interface Person { name: String! }
2
3 enum FuelType @datatype("http ://www.w3.org

/1999/02/22 -rdf -syntax -ns#langString") {
4 GASOLINE @value(literal:"'Benzin '@de"),
5 ELECTRIC @value(literal:"'Strom '@de"),
6 }
7
8 @context(datasource:"CarDB")
9 type Ford implements Car { type: FuelType }
10
11 @context(datasource:"CarDB")
12 type Tesla implements Car { type: FuelType }
13
14 union Car = Ford | Tesla
15
16 type Adult implements Person {
17 drives: Car @predicate(datasource:"CarDB", graph:

"http :// example.com/cars/peoplegraph")
18 }
19
20 type Child implements Person { parents: [Adult!] }
21
22 type Query {
23 persons(ids:[String!], filter:String , offset:Int ,
24 limit:Int , require:[String!]): [Person!]
25 }

.Net library or our custom scalar formatters to produce the JSON
results. Finally, the JSON data is then again optionally displayed by
the GraphiQL interface.

4.2 Enriched GraphQL Schema
As alluded to in Section 3, a standard GraphQL schema is not enough
to provide sufficient information on how to map GraphQL types
and fields to RDF classes and properties. Furthermore, as we want
to support advanced filtering, mandatory fields, and other query
flags that match SPARQL behavior, we have to store additional
meta-data within the schema (see Listing 1).

The syntax of GraphSPARQL’s enriched schema is identical to
GraphQL. The main differences are that the enriched schema allows
for inheriting fields from interfaces, so one does not have to define
the field in every implementing type, and additional directives, like
@class for setting the rdf:type IRI of a GraphQL type or @value
for providing the SPARQL value of an enum.

To reduce the verbosity of the schema, these directives are also
inherited, so setting the namespace on a GraphQL type by using
the @context directive ensures that this namespace is also used
to generate the IRIs of the fields of this type. One can even spec-
ify a default SPARQL data source and a default namespace in the
configuration file.

4.3 GraphQL Extended Query Syntax
Finally, the query expressiveness gap has to be addressed. In List-
ing 1 the persons field of the Query type defines special parameters.
These parameters are automatically added to all query fields. While
some are self-explanatory like offset and limit, which behave
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Listing 2: Generic GraphQL query of depth 3.
1 query {
2 {
3 graduateStudent {
4 advisor (filter: "bound(?name) &&
5 ?name='AssistantProfessor3 '") {
6 name
7 }
8 }
9 }
10 }

similarly to their SPARQL counterparts, others are used to filter
results in the following way:

(1) id/ids: Depending on whether the field is an array or not,
this parameter restricts the result to either one or more IRIs.
For top-level queries, the filter is applied to the subject. For
others on the object of triples.

(2) filter: This parameter allows an arbitrary string to be
passed to the SPARQL endpoint as FILTER expression. GraphQL
fields can be used as well by prepending a ? to their names.
See Figure 1 for an example. It is even possible to go down
the object hierarchy, e.g., specifying filter:"?child_name
= ’Smith’" on a parent object would query all parents that
have a child with the name Smith.

(3) require: Syntactic sugar for specifying BOUND filters on each
of the given field names.

Since GraphSPARQL also supports creating and updating objects
and fields, there are even more parameters available on Mutation
fields. A sample can be found in the project’s README26.

4.4 GraphSPARQL SPARQL Query Generation
In this section, the transformation from an incoming GraphQL
query towards the outgoing SPARQL queries is described. As men-
tioned before, independent of the top-level elements used in a
GraphQL query, one SPARQL query per level is constructed and
sent to the SPARQL endpoint(s). For example, a query consisting of
three levels results in three SPARQL queries. Currently, this split is
required by the underlying GraphQL library used in GraphSPARQL.
The underlying GraphQL library needs the type information to
support unions.

In the following, a GraphQL query including a SPARQL filter (see
Listing 2) is transformed into the corresponding SPARQL queries.

Based on the given GraphQL query, first, a SPARQL query for the
top-level elements is created. There is only one top-level element in
this example. Therefore the SPARQL query retrieves only instances
of type GraduateStudent, as specified in the GraphQL query. To
retrieve the relevant information, GraphSPARQL produces SPARQL
CONSTRUCT queries. The resulting SPARQL query for retrieving the
instances of the given type is shown in Listing 3.

Listing 3: SPARQL query concerning top-level elements.
1 CONSTRUCT { ?__s0 :p0 ?__o0 . } WHERE
2 {
3 ?__o0 rdf:type ?__s0 .
4 FILTER (?__s0 = :GraduateStudent)
5 }

26https://github.com/Meitinger/GraphSPARQL/blob/main/README.md

The result of this initial SPARQL query is a list of URIs identify-
ing instances of type GraduateStudent. Those URIs are used for
the second query to retrieve the values that are linked via the given
property :advisor in the GraphQL query. Besides, the SPARQL fil-
ter specified on this property is propagated to the SPARQL query by
replacing the variable name with a constructed variable name. This
replacement is necessary to simplify the internal processing of this
variable. Other than that, the given filter expression is forwarded
without any change.

Listing 4: SPARQL query concerning the second level.
1 CONSTRUCT { ?__s0 :p0 ?__o0 . } WHERE
2 {{ { VALUES ( ?__s0 )
3 {( <http:// example.org/GraduateStudent0> )}
4 }
5 UNION
6 {
7 ?__s0 :advisor ?__o0 .
8 OPTIONAL { ?__o0 :name ?__v0_0 . }
9 FILTER(BOUND (?__v0_0) && (?__v0_0 = "

AssistantProfessor3"))
10 }
11 }}

The result of this query is again used to retrieve the values linked
via the next embedded property name (see Listing 5).

Listing 5: SPARQL query concerning the third level.
1 CONSTRUCT { ?__s0 :p0 ?__o0 . } WHERE
2 {{ VALUES ( ?__s0 )
3 {( <http:// example.org/AssistantProfessor3> )}
4 }
5 UNION
6 { ?__s0 :name ?__o0 . }
7 }

Listing 5 shows the last query issued for the given GraphQL
query in Listing 2. Afterward, the result is composed into a GraphQL
result and sent back to the user.

5 EVALUATION
GraphSPARQL is evaluated against the existing open-source solu-
tion HyperGraphQL and Stardog. This setup allows a comparison
between commercial, native support for GraphQL and an open-
source solution. In this section, we first present our benchmark
setup and then the realization of the benchmark.

5.1 Setup
As graph database for this benchmark, we used Stardog. It is used
to store the data, and the SPARQL endpoint is used for benchmark-
ing GraphSPARQL and HyperGraphQL. Additionally, the GraphQL
queries were executed directly on the GraphQL endpoint of Stardog.
Overall, this results in a comparison of the GraphQL performance
for GraphSPARQL, HyperGraphQL, and Stardog. We installed Star-
dog on a test server27 directly, without using docker containers.

The dataset used for the benchmark is from Salzburgerland28.
It consists of approximately 31 k triples representing linked data

27https://www.hetzner.com/dedicated-rootserver/ex62-nvme - Processor: Intel®
Core™ i9-9900K Octa-Core, 8 Cores / 16 Threads, 3.60 GHz Base Frequency, 5.00
GHz Max Turbo Frequency - RAM : 64 GB DDR4 - Hard Drive: 2 x 1 TB NVMe SSD -
Operating system: Debian GNU / Linux 10
28It is available together with the GraphSPARQL code on GitHub - https://github.com/
Meitinger/GraphSPARQL
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on tourism in Salzburg, Austria. Choosing such a small dataset has
the advantage of facilitating manual testing and debugging during
development. Furthermore, as HyperGraphQL forces the user to
specify a schema file, using a smaller dataset simplifies the creation
of such a file.

5.2 Benchmarks
After setting up Stardog with the Salzburgerland dataset, we bench-
marked GraphSPARQL by comparing it to the GraphQL interface
of Stardog and HyperGraphQL. GraphSPARQL and HyperGraphQL
are thereby connected to the SPARQL endpoint of the Stardog graph
database.

As all three interfaces use a slightly different syntax, wemanually
formulate sets of GraphQL queries and write parsing scripts to
translate them for the different interfaces. This ensures that all
tools are benchmarked with equivalent queries. Those queries are
designed to work with all three tools equally and are kept simple
to produce representative results. As we want to showcase that
GraphSPARQL optimizes queries that include nesting, we group
queries of different nesting depths. An example for a nested query
using the schema:knows field can be found in Listings 6.

Listing 6: Exemplary query of nesting depth 2.
1 query {
2 person{
3 dctTitle
4 knows {
5 dctTitle
6 knows {
7 dctTitle
8 }
9 }
10 }
11 }

To avoid variable network latency, we perform all measurements
locally on the test server mentioned above, submitting the queries
via a bash script using the curl function in the process. The bash
scripts submit each of the specified queries one after another, mea-
suring the time between submitting the queries and receiving the
corresponding results. As the generation of statistically relevant
data is desired, the execution times of all queries within one set are
summed up, and the experiment is repeated 25 times.

As the GraphQL interfaces have to perform setup operations
utilizing the provided schema files, the initial query should have
a longer execution time than consecutive queries. Furthermore,
resulting from repeating the experiments, repeated access to the
same values might lead to caching. To reduce these effects, we
restart the GraphQL interfaces every five rounds. Thus, we can
statistically group the corresponding round’s execution times using
the arithmetic mean and standard deviation, leading to the results
displayed in Figure 4. In other words, the data point of the 𝑖-th round
corresponds to the mean of the 𝑗-th experiment with 𝑖 ≡ 𝑗 mod 5.
The displayed error bars correspond to the respective standard
deviation. Note that the Stardog GraphQL interface’s initialization
time is not easily separable from the graph database’s initialization
time. Thus, as we did not observe significant deviations between
the initial and successive GraphQL queries to the Stardog interface,
we only restart the GraphSPARQL and HyperGraphQL interfaces
after every five rounds.

(a) (b)

(c) (d)

Figure 4: Benchmarking results grouped by nesting depth-
s/levels and rounds as detailed in section 5.2.

The data displayed in Figure 4a-d shows the experimental results
from queries with the corresponding nesting depth. As can be
seen, in Figures 4a-c, HyperGraphQL, and GraphSPARQL have
a comparative initialization time of about half a second. For the
nesting depth 1 queries (see Figure 4a), we observe a declining trend
of the execution time for HyperGraphQL and GraphSPARQL. We
assume that this results from some caching by Stardog’s SPARQL
endpoint and/or the GraphQL interfaces.

As visible in Figures 4a-b, Stardog consistently provides the
fastest GraphQL interface for queries of nesting depth 1 and 2.
This might be a result of some internal optimization between Star-
dog’s GraphQL interface and graph database. For queries of nesting
depth 1 (see Figure 4a), the HyperGraphQL interface is about 0.1 s
faster than GraphSPARQL. However, as shown in Figures 4b-d,
GraphSPARQL significantly outperforms HyperGraphQL when in-
creasing the nesting depth. With nesting depth 3 (see Figure 4c),
GraphSPARQL outperforms Stardog’s GraphQL interface (omitting
the initial/round 0 value of GraphSPARQL). This trend continues
for a nesting depth 4 (see Figure 4d) where all GraphSPARQL data
points show the lowest execution time.

To better visualize the trend, we compare the execution times
for their nesting depth in Figure 5. As the effect of caching has been
smaller than anticipated, the execution times of rounds 1 to 4 are
grouped using the mean and standard deviation. By plotting the
execution time on a logarithmic scale, it is apparent that Stardog
and HyperGraphQL show an exponential trend when increasing the
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Figure 5: Execution time of GraphQL interfaces for increas-
ing nesting depth/level.

nesting depth. GraphSPARQL, on the other hand, has an execution
time that is constant within one standard deviation of the respective
measurements. Less apparent due to the vertical axis’s logarithmic
scaling, the initial round 0 of GraphSPARQL and HyperGraphQL
is constantly offset from their successive rounds for all nesting
depths.

6 CONCLUSION
The wide adoption of knowledge graphs with SPARQL as flexible
but complex query language comes with barriers for developers
unfamiliar with SPARQL and its triple-based output. A layer of
abstraction based on a nested object structure was presented for de-
velopers not familiar with the semantic web stack to realize typical
data retrieval tasks. We introduced GraphSPARQL to implement
this abstraction layer that simplifies access to knowledge graphs
by using GraphQL, a query language well adopted by develop-
ers. GraphSPARQL supports accessing (corresponds to GraphQL
queries) and manipulating (corresponds to GraphQL mutations)
knowledge graphs. Bridging the gap between GraphQL as a less
expressive query language and SPARQL, GraphQL provides an
enriched GraphQL schema and advanced filtering options. Those
advanced filtering options allow using more complex SPARQL fil-
ters if needed. As shown by the benchmarks, GraphSPARQL is
comparable to existing solutions (e.g., HyperGraphQL) and outper-
forms those and native GraphQL implementations (like Stardog)
when using deeply nested queries.

GraphSPARQL already provides a vast toolkit for accessing and
managing knowledge graphs. In the future, we will extend the au-
tomatic GraphQL schema generation with the support for SHACL
shapes. In addition to generating a GraphQL schema from ontolo-
gies, existing SHACL shapes are then usable. An existing benchmark
consisting of 58 SHACL shapes [12] can be applied for evaluating
the use of SHACL shapes for building the GraphQL schema. Ad-
ditionally, we identified some limitations in the SPARQL query
generation process. Therefore, we plan to replace the underlying
GraphQL library to gain more flexibility in generating SPARQL

queries. Besides, the performance of the GraphQL schema intro-
spection will be improved to be used for large schemas. Currently,
introspection is disabled, and an alternative way for inspecting the
schema is provided (_fields query property). Finally, we plan to
perform a much more extensive benchmark using the LUBM [8]
benchmark datasets and queries.
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