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A B S T R A C T   

Sun-induced chlorophyll fluorescence (SIF) is a direct indicator of plant photosynthetic activities and can 
potentially indicate plant physiological changes caused by water stress. However, the direct effect of water stress 
on the physiological SIF responses in crops at the field level still needs further research to clearly understand the 
involved mechanisms. To study this relationship, we made use of Unmanned Aerial Vehicles (UAVs), which are 
flexible and cost-effective to acquire SIF data at a high temporal resolution. We acquired near-infrared SIF (760 
nm) and red SIF (687 nm) measurements using a UAV platform over irrigated and non-irrigated sugar beet plots. 
To represent physiological changes in crops, we calculated the apparent SIF yield (SIF normalized by the 
absorbed photosynthetically active radiation) at 760 and 687 nm (SIF760yield and SIF687yield), the fluorescence 
emission yield at 760 nm (ΦF760), and the SIFratio (the ratio between SIF687 and SIF760). ΦF760 was estimated 
using the recently developed NIRvH approach. For an improved interpretation of the response of these SIF in
dicators, we also acquired additional UAV-based hyperspectral and thermal data. We found that on June 28, 
when sugar beets were experiencing water stress, SIF687yield, ΦF760, and SIFratio all showed a significant response 
to the recovery of the irrigated sugar beets (p-value < 0.05). On the other hand, on July 24 when both water 
stress and heat stress affected the crop, only ΦF760 and SIFratio weakly tracked the changes induced by the 
irrigation (p-value < 0.1). ΦF760 had similar changes to SIF760yield in both June and July, but ΦF760 was more 
sensitive to irrigation. This indicates the importance of correcting for the structural effect when interpreting the 
SIF response. The findings suggest that SIF indicators can indicate water stress at the field level, but its value to 
detect the changes of photosynthetic activities under severe stress needs more investigation.   

1. Introduction 

Due to changing climate, water shortage for plants (water stress) has 
been exacerbated by reduced rainfall and changed precipitation patterns 
(Lobell et al., 2011). Water shortage causes physiological, biochemical, 
and morphological changes that induce a reduction in photosynthesis. 
Therefore, water shortage is a critical abiotic stressor limiting crop 
growth and yield (Lesk et al., 2016). For better management and mini
mizing harmful effects on crop production, it is critical to detect water 
stress timely and accurately. 

Remote sensing provides spatiotemporal monitoring of crop struc
tural, biochemical, and physiological changes induced by water stress at 
different scales (Atzberger, 2013). Vegetation indices (VIs) are sensitive 
to changes in crop canopy structure, leaf pigments, or leaf water content 

under water stress conditions and may serve as indicators of water stress 
(Govender et al., 2009; Zarco-Tejada et al., 2013). However, most VIs 
cannot reveal physiological responses to environmental stressors. This is 
because they lack a direct connection with photosynthetic functioning. 
As a result, greenness-based VIs cannot capture short timescale changes 
(Xu et al., 2021). Therefore, Calderón et al. (2013) suggested that 
structural and pigment indices were good only to assess damage. Plants 
can be irreversibly affected before visible symptoms of water stress 
appear (Jones and Schofield, 2008; Mahajan and Tuteja, 2005). To avoid 
severe crop damages, a pre-symptomatic or pre-visual detection of plant 
physiological changes can essentially contribute (Chaerle and Van Der 
Straeten, 2000). The photochemical reflectance index (PRI) can indicate 
the short-term changes in xanthophyll pigments under stress conditions 
(Gamon et al., 1997, 1992), thus it can be a potential pre-visual indicator 
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of water stress. However, PRI has been shown to be strongly affected by 
canopy structure and leaf pigmentation (Gitelson et al., 2017). The 
initial plant response to water stress is stomatal closure to prevent water 
loss via transpiration (Chaves et al., 2002; Jones and Schofield, 2008), 
resulting in an overall increase in plant leaf and canopy temperature 
compared to a well-watered plant. Thermal remote sensing of leaf and 
canopy temperature has therefore become an established method to 
detect pre-visual water stress (Jackson et al., 1981; Maes and Steppe, 
2012). However, the major limitation of the temperature-based 
approach is that the use of leaf or canopy temperature values alone 
cannot directly estimate the physiological status of plants (Gerhards 
et al., 2019). 

Plant photosynthesis is one of the key physiological phenomena 
which is strongly affected by water stress (Chaves et al., 2002; Farooq 
et al., 2009). Annual broadleaf crop photosynthesis is, in particular, 
sensitive to moisture stress due to leaf stomatal closure, improper 
photosynthetic machinery, reduced leaf expansion, and decreased leaf 
pigment concentration, resulting in strong downregulation of photo
synthesis (Fu and Huang, 2001; Wahid et al., 2007). However, photo
synthesis is a complex physiological process depending on various 
biophysical parameters and chemical reactions, and it is highly regu
lated by changing environmental conditions (Farquhar et al., 2001; 
Schurr et al., 2006; Turner et al., 2001). 

Chlorophyll fluorescence (CF) is considered a direct and powerful 
measurement of the functional status of photosynthesis (Lichtenthaler 
and Rinderle, 1988). Light energy absorbed by plant chlorophyll has 
three main dissipating pathways, which consist of photosynthesis 
(photochemical quenching, PQ), heat dissipation (non-photochemical 
quenching, NPQ), and fluorescence emission in wavelengths between 
650 and 800 nm characterized by two peaks at approximately 685 and 
740 nm. Any alteration in the efficiency of one of the pathways can 
affect the other two (Porcar-Castell et al., 2014). Sun-induced CF (SIF), a 
continuous emission signal from photosystems II and I, has been inten
sively studied to further understand vegetation photosynthetic activities 
on a large scale (Frankenberg and Berry, 2018; Goulas et al., 2017; 
Guanter et al., 2021; Pérez‑Priego et al., 2015; Rascher et al., 2009; 
Yang et al., 2015). Physiological responses of SIF during stress have been 
explored at the ground level (e.g. Helm et al., 2020; Marrs et al., 2020; 
Paul-Limoges et al., 2018; Xu et al., 2018), at the airborne level (e.g. 
Camino et al., 2018; Gerhards et al., 2018; Panigada et al., 2014; Pinto 
et al., 2020; Wieneke et al., 2016; Zarco-Tejada et al., 2012), and at the 
ecosystem scale (e.g. Chen et al., 2021; Lee et al., 2013; Sun et al., 2015; 
Wang et al., 2019; Yoshida et al., 2015). 

Ground-based SIF measurements (e.g. tower-based) cannot assess 
spatial variation in SIF within the crop field (Wang et al., 2021). 
Although medium- or high-altitude airborne-based measurements (e.g. 
HyPlant) can provide valuable spatial information on stress levels over a 
particular study area, these platforms are costly, and they lack the 
flexibility of measuring SIF at a high temporal resolution (Bando
padhyay et al., 2020). As an alternative, unmanned aerial vehicles 
(UAVs) offer cost-efficient ways to monitor crop fields with high spatial 
and temporal resolution at a low flying altitude (Chang et al., 2020; 
Bendig et al., 2018, 2021). This low-cost approach also provides an 
option to bridge the gap between in situ and airborne observations, 
enhancing stress detection at different spatial scales (Mohammed et al., 
2019). Therefore, low-altitude UAV-based SIF can be of great potential 
for monitoring water stress within crop fields. 

However, the response of SIF to water stress is complex and is still 
not completely understood. The SIF signal is relatively small compared 
to reflected sunlight (about 1- 5% in the near-infrared region, NIR) and 
is affected by various factors such as physiological status (Porcar-Castell 
et al., 2014), canopy structure (Dechant et al., 2020), biochemical 
constituents (Verrelst et al., 2015), illumination condition (Van der Tol 
et al., 2016), and sun-target-viewing geometry (Lu et al., 2020; Pinto 
et al., 2017). In addition, plant response to water stress is expressed by a 
variety of physiological changes (e.g., stomatal behavior, and leaf water 

content), biophysical changes (energy balance, leaf, and canopy struc
ture), and photochemical processes (Gerhards et al., 2019). These fac
tors complicate the response of SIF and reduce the predictability of 
actual crop photosynthetic status under water shortage. As a result, 
there is no universal relationship between photochemistry and fluores
cence emission under stress conditions, meaning that fluorescence can 
either increase or decrease, depending on the nature of the stressor and 
the physiological status of the plants (Porcar-Castell et al., 2014; Zeng 
et al., 2022). In addition, some studies found that SIF at leaf level or 
proximal level may not indicate the photosynthetic changes caused by 
water stress (Helm et al., 2020; Marrs et al., 2020), which are discrepant 
from some satellite SIF observations (Sun et al., 2015). This emphasizes 
the necessity of further understanding the potential of SIF in water stress 
detection at the field level. 

This study aims to explore the potential of UAV-based SIF indicators 
to detect water stress within a sugar beet field. An approach using op
tical reflectance, thermal imagery, and SIF enables us to obtain useful 
information about the current plant status, and it can also provide a 
better understanding of how different factors may affect the dynamics of 
SIF under stress (Calderón et al., 2013; Camino et al., 2018; Gerhards 
et al., 2018; Panigada et al., 2014; Pinto et al., 2020; Xu et al., 2021, 
2018; Zarco-Tejada et al., 2012). We utilized additional remotely sensed 
signals of the canopy temperature, canopy structure, and leaf pigments 
to improve the interpretation of the top-of-canopy (TOC) SIF at the 
wavelength of 687 nm (SIF687) and 760 nm (SIF760) under drought 
conditions. During the two measurement campaigns, sugar beet plants 
were affected by drought (June 2019) and by a combination of drought 
and heat stress (July 2019). A combination of temperature indices, VIs, 
and soil moisture measurements was used to determine the stress con
ditions and plant status. We hypothesize that i) SIF indicators can track 
the plant responses to drought in June and the combined heat and 
drought stress in July, and ii) SIF indictors react differently under the 
two different stress conditions. 

2. Materials and methodology 

2.1. Study area 

The dataset used in this study was acquired within a sugar beet field 
(Beta vulgaris L., Urselina) during the 2019 growing season (Fig. 1). The 
study site is located at Unifarm, the agricultural experimental research 
farm of Wageningen University & Research, the Netherlands. The 
experiment was located at latitude 51◦ 59′ 17.64′′ N and longitude 5◦ 39′

21.17′′ E. Soil texture is sandy loam. Sugar beet was sown with 0.5 m 
between rows and 0.18 m within a row on April 1, 2019 (day of year 
(DOY): 91) and harvested on November 15, 2019 (DOY 319). Canopy 
closure was reached on June 15 (DOY 166) at BBCH stage 39 (Meier 
et al., 1993). 

Since water deficits in the middle of the growing period tend to 
strongly affect sugar beet yield (Steduto et al., 2012), we decided to 
induce water stress and conduct the field experiment in June and July. 
Fig. 2a shows precipitation, minimum and maximum air temperature 
(Ta) in June and July 2019. In June, precipitation occurred only before 
June 22 and the total precipitation amount in June was 77.8 mm. The 
peak of the maximum air temperature (Tmax) occurred on June 25 
(34 ◦C). In July, total precipitation was 31.5 mm. A heat wave occurred 
from July 23 to 26 with the maximum Tmax on July 25 (38 ◦C). 

To explore crop response to water stress, two treatments with three 
repetitions were applied in three blocks. Each block randomly consisted 
of 2 plots (12 m × 30 m), one treatment with three sprinklers for irri
gation treatment and the other treatment without irrigation as the 
control plot (Fig. 1). To determine the required irrigation timepoint, soil 
moisture (volumetric water content, vol%) at a depth of 65 mm was 
measured using an ML3 ThetaProbe Soil Moisture Sensor (Delta-T De
vices, UK) and plant status was assessed visually once a week. The 
averaged soil moisture values were 3.5 vol% and 3.81 vol%, 
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respectively, on June 25 and sugar beet leaves visually showed wilting 
effects. According to two reports on the soil properties in the study field 
in 2018 from Wageningen Research Unifarm, crops should be irrigated 
when the soil moisture was below 7.5 vol%. 90 min of irrigation was 
applied to the irrigation plots on the evening of June 27. Average soil 
moisture was 2.7 vol% in the irrigation plots and 2.9 vol% in non- 
irrigation plots on June 27 before irrigation and 16.3 vol% in the irri
gation plots on June 28 after irrigation. Leaves showed visual symptoms 
of water stress (leaf wilting) on July 22. Therefore, we decided to irri
gate the sugar beet on the evening of July 23. After the watering, the 
average soil moisture was 9.5 vol% in the irrigation plots and 2.8 vol% 
in the non-irrigation plots on July 24. Same management operations 
were applied to the six plots during the whole growing season except for 
the two irrigations. 

2.2. UAV data acquisition and processing 

UAV campaigns were conducted in 2019 on June 27, June 28, July 
23, and on July 24 close to solar noon under clear sky conditions. Each 
flight campaign consisted of 3 flights and lasted about 1 hour on each 
date. During the flights, the temperature was approximately 21.8 ◦C and 
wind speed was 3.6 ~ 4.7 m s − 1 on June 27, 23.3 ◦C and 2.4 ~ 3.4 m s −
1 on June 28, 31.5 ◦C and 1.7 ~ 2.7 m s − 1 on July 23, and 36.8 ◦C and 
3.7 ~ 4.7 m s − 1 on July 24. The solar zenith angle at the beginning of 
the flight campaign was 30.5◦ on June 27, 29.3◦ on June 28, 32.4◦ on 
July 23, and 32.5◦ on July 24. 

2.2.1. FluorSpec fluorescence observations 
Fluorescence measurements were acquired by the FluorSpec SIF 

sensor system mounted below a DJI S1000+ UAV platform (DJI, China). 
The FluorSpec consists of a QE-Pro-spectroradiometer (Ocean Optics 
Inc., Dunedin, FL, USA), a Global Navigation Satellite System (GNSS) 
receiver (VarioTek GmbH, Düsseldorf, Germany), a laser rangefinder 
sensor (LightWare LiDAR LLC, Austin, TX, USA), and a Sony A6000 RGB 
camera (Sony, Tokyo, Japan). The QE-Pro-is a sub-nanometer spectral 
resolution point spectrometer, configured with two optical channels to 
measure the downwelling irradiance and the upwelling radiance in the 
wavelength range 630–800 nm, with a full-width-at-half-maximum 
(FWHM) spectral resolution of 0.3 nm and a spectral sampling interval 
of 0.15 nm. This allows SIF retrieval in the O2-A absorption band at 760 
nm (SIF760) and in the O2-B absorption band at 687 nm (SIF687). The 
field-of-view (FOV) of the downward-looking radiance optics is 25◦ The 
irradiance channel is equipped with a cosine corrector to collect solar 
irradiance from a hemispherical FOV (180◦). The Sony RGB camera is a 
standard RGB camera that is automatically triggered together with the 
spectroradiometer and records high-resolution images of 6000 × 4000 
pixels (24 Megapixels). At a flying height of 20 m above ground level 
(AGL), the camera captures an area of 30 × 20 m with a pixel size of 5 
mm. For more details on the FluorSpec system, see (Wang et al., 2021). 

FluorSpec flight mission was planned with the universal ground 
control software (UgCS). The flight mission consisted of three flight lines 
over the center line of each block and each flight line had five waypoints. 
Two waypoints were located at the central positions of the short sides of 
each block and the other three were located at three sprinkler positions. 
The UAV was programmed to fly 20 m AGL, with a horizontal speed of 1 
m s − 1 from waypoint to waypoint. In this configuration, the spectror
adiometer sampled a circular area with a diameter of 8.8 m on the 
ground for every measurement and the sampling distance was 3.5 m. 
Each flight lasted around 5 min while the FluorSpec passed over the six 
sugar beet plots (Fig. 1). 

The FluorSpec data processing chain from raw digital numbers (DN) 
to TOC radiance (Wm− 2 sr− 1 nm− 1) includes four steps as described in 

Fig. 1. Location of the plots in the experimental area at Unifarm of Wagenin
gen University, Wageningen, the Netherlands. B1, B2, and B3 refer to block1, 
block2, and block3 (dotted frames in white) in the sugar beet field. + indicates 
an irrigation treatment in the plot and – indicates no irrigation treatment 
(control). The black crosses indicate the ground control points. The base map is 
a satellite image from Google Earth on July 24, 2019. 

Fig. 2. a) Daily minimum (Tmin, ◦C), maximum air temperature (Tmax, ◦C), and precipitation (mm) in June and July measured by Weather Station De Veenkampen 
(2.6 km from the study site), and b) soil moisture (SM, vol%) measured in both irrigation and non-irrigation plots in June and July 2019. 
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detail in Wang et al. (2021). First, measured raw spectra were converted 
to at-sensor irradiance and radiance by removing the dark current, 
dividing by integration time, and multiplying the DN values with the 
radiometric calibration coefficient per wavelength. Secondly, laser 
rangefinder and the FluorSpec GNSS data were processed to obtain 
target-sensor distance and sensor position information, respectively. 
Next, the at-sensor irradiance and radiance were converted to their TOC 
equivalents by applying an atmospheric correction using the atmo
spheric transmittance of the bottom 1 km of atmosphere derived from 
the MODerate resolution atmospheric TRANsmission (MODTRAN6) al
gorithm (MODTRAN®, Spectral Sciences, Inc). To get a useful trans
mittance for a specific UAV altitude, the simulated transmittance can be 
converted to different thicknesses of the atmosphere using the 
Beer-Lambert law. Afterward, preceding and following TOC irradiances 
are linearly interpolated using the GPS timestamp of the corresponding 
TOC radiance measurement to get TOC irradiance at precisely the same 
time of the TOC radiance measurement. More details are described in 
Wang et al. (2021). To improve the geolocation of FluorSpec footprints, 
the FluorSpec RGB images were manually georectified by matching 
them with a pseudo-RGB composite using three bands (670 nm, 550 nm, 
and 514 nm, respectively) of the processed Rikola (preprocessing of 
Rikoa data refers to Section 2.2.2). Afterwards, the center coordinates of 
the FluorSpec RGB image determined in the previous step were assigned 
to the footprint locations of corresponding SIF measurements (Wang 
et al., under review). 

2.2.2. Rikola hyperspectral measurements 
Hyperspectral images were acquired on the four measuring dates 

using a lightweight hyperspectral frame camera (Rikola Ltd., Oulu, 
Finland) onboard the same DJI S1000+ UAV platform. The camera used 
is based on a Fabry-Perot interferometer (FPI) (Honkavaara et al., 2013) 
and was programmatically configured to register 16 narrow spectral 
bands in a range of 515–870 nm with full width at half maximum 
(FWHM) varying between 13 and 17 nm (Table S1). These bands were 
chosen due to their importance to describe changes in biochemical (leaf 
chlorophyll content) and biophysical (e.g., leaf area index, ground 
cover, etc.) traits of vegetation at leaf and canopy levels (Clevers and 
Kooistra, 2011). 

The UgCS ground station software was used to plan the flight 
mission. The study area was captured in 10 flight lines, parallel to the 
longest side of the area. The flying speed was 2 m s − 1 and the flight 
height was 50 m, resulting in a spatial resolution of 25 mm per pixel. The 
overlap between flight lines was approximately 60%, and within the 
flight line the overlap between images was approximately 80%. To 
calibrate the data to reflectance factors, dark current measurements and 
images of a reflectance reference panel (gray 50% Spectralon panel 
(LabSphere Inc., North Sutton, NH, USA)) were taken before and after 
the flight. The flight duration was around 8 min. The Hyper
spectralImager 2.0 software converted the raw images in digital 
numbers (registered with 12-bit radiometric resolution) to radiances 
(Wm− 2 sr− 1 nm− 1). The radiance images were then transformed into 
reflectance factor images using the empirical line method (Smith and 
Milton, 1999; Suomalainen et al., 2014) and the measurement of the 
Spectralon panel. The images were aligned and ortho- and georectified 
in Agisoft Metashape Professional (Version 1.5.5) using seven ground 
control points (GCPs) surveyed with a real-time-kinematic (RTK)-en
abled rover, following the data processing protocol described by Roos
jen et al. (2017). The georectified Rikola orthomosaic image had a high 
absolute positional accuracy, with minor deviations of less than ± 2 
pixels (25 − 50 mm) from the GCP positions. 

2.2.3. WIRIS thermal data 
Thermal images were acquired by the Workswell WIRIS 640 

(Workswell, Prague, Czech Republic) mounted to a gimbal on board an 
Altura AT8 octocopter (Aerialtronics DV B.V., Katwijk, The 
Netherlands). The thermal camera has a temperature sensitivity of 

0.05 ◦C and a resolution of 640  × 512 pixels in a spectral range of 
7.5–13.5 μm. It captures images recording actual temperature in a TIFF 
radiometric image format with an emissivity setting of 0.95. The system 
also is equipped with an RGB camera with a resolution of 1600 × 1200 
pixels. 

The WIRIS flight pattern consisted of 10 flight lines parallel to the 
longest side of the blocks. The flight height was 40 m above ground level 
and the flight speed was 2 m s − 1. Images were acquired with a pixel size 
of 55 × 35 mm. The thermal camera was radiometrically calibrated 
every 30 min and each flight lasted 7 min. 

The calibrated TIFF images were processed and an orthomosaic for 
the whole trial was constructed with Agisoft Metashape. The geo- 
referencing of the mosaic image was done manually in ArcMap 10.2 
using the GCPs measured by RTK. On July 24, the thermal camera did a 
calibration in the middle of the flight due to a late take-off, resulting in a 
temperature difference of 6–7 ◦C in the same area captured before and 
after the recalibration. It was assumed that the histogram was the same 
within overlapping areas. Histogram matching (HM) is commonly 
applied to find a monotonic mapping between a pair of histograms 
(Gonzalez and Woods, 2006). To solve this mismatch, we applied HM to 
the overlapping areas of two radiometric images taken exactly before 
and after the recalibration and used the last image before the calibration 
as a reference. The returned function was applied to all images taken 
after the recalibration. The temperature difference in the same area was 
reduced to less than 0.5 ◦C. This mismatch was corrected using the 
histMatch function in R. 

2.2.4. Ground measurements 
Leaf area index (LAI), chlorophyll concentration (Cab), and soil 

moisture (SM) observations were collected after the flights on the four 
measuring dates. On June 27 and July 24, these three types of mea
surements were measured from six plots, and on June 28 and July 23 
ground measurements were acquired only in the three irrigation plots: 
8–10 areas of 1 m × 1 m were evenly sampled along the long side of the 
block. Within each sample site, one LAI measurement was conducted 
using the LAI-2200C Plant Canopy Analyzer (LI-COR, Lincoln, NE, USA) 
and five Cab measurements were acquired with a SPAD 502 Plus Chlo
rophyll Meter (Konica-Minolta, Tokyo, Japan). Each Cab measurement 
was an average of five random measurements collected from the top 
leaves of individual plants. SPAD-502 readings were converted to Cab 
concentrations using the calibration equations in Malnou et al. (2008). 
SM was conducted at a soil depth of 65 mm with the ML3 ThetaProbe 
Soil Moisture Sensor. 

2.3. Indices applied in water stress detection 

2.3.1. Optical vegetation and temperature indices 
For optical vegetation indices on canopy structure, we selected the 

normalized difference vegetation index (NDVI) due to its relationship 
with the leaf area index (Rouse et al., 1973). The photochemical 
reflectance index (PRI) has shown promise to remotely estimate dy
namics in xanthophyll pigment interconversion at short timesteps and 
can be used to detect dynamic variations of NPQ (Gamon et al., 1992). 
Canopy temperature (Tc) has been considered a reliable proxy for plant 
water status monitoring due to leaf stomatal closure (Jackson et al., 
1981). These indices were calculated at pixel level and then averaged at 
plot level. 

2.3.2. SIF indicators 
TOC SIF at 760 and 687 nm (SIF760 and SIF687) were estimated using 

the Spectral Shape Assumption Fraunhofer Line Discrimination (SSA- 
FLD) method (Wang et al., 2021). SSA-FLD is a slightly adapted 
FLD-based approach to retrieve SIF and can use the ultra-fine spectral 
information within the oxygen absorption regions. SSA-FLD employs a 
linear function to describe reflectance and the known shape of a fluo
rescence spectrum to describe the chlorophyll fluorescence over the 
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spectral region around the oxygen absorption features (682–689 nm for 
the O2-B and 750–780 nm for the O2-A feature, respectively). For more 
information, the reader is referred to Wang et al. (2021). 

TOC SIF observed above the canopy can be expressed as 

SIF = PAR × fAPAR × ΦF × fesc (1)  

where PAR (W m − 2) is the photosynthetically active radiation, fAPAR is 
the fraction of PAR absorbed by vegetation, ΦF is the physiological 
fluorescence emission yield of the whole canopy, and fesc is the fraction 
of all fluorescence photons emitted from all leaves and escaped from the 
canopy (Guanter et al., 2014). 

In this study, TOC SIF at 760 nm and 687 nm normalized by the 
photosynthetically active radiation absorbed by chlorophyll in green 
leaves (SIF760yield and SIF687yield), the physiological fluorescence emis
sion yield of the whole canopy at 760 nm (ΦF760), and the ratio between 
SIF687 and SIF760 (SIFratio) were applied to indicate the physiological 
plant response to water stress. 

According to Eq. (1), SIFyield can provide insights into canopy scat
tering and leaf re-absorption and into physiological effects from varia
tions of SIF by accounting for the illumination conditions and the canopy 
structural and pigment effects on fAPAR (Sun et al., 2015). To calculate 
SIFyield, PAR was calculated using FluorSpec irradiance measurements 
acquired before the UAV took off. FluorSpec PAR was firstly calculated 
within the 630–700 nm interval using 20 consecutive irradiance mea
surements and then converted to incoming PAR within 400–700 nm 
using the equation in Wang et al. (2021). The flight duration was 5 min 
under stable blue-sky illumination conditions. Therefore, PAR mea
surements before take-off can be applied to normalize SIF and calculate 
APAR during the flight. We applied a wide dynamic range vegetation 
index (WDRVI, defined in Eq. (2)) proposed by Gitelson et al. (2005) to 
calculate fAPAR within FluorSpec footprints (Eq. (3)), which has proved 
to be linearly correlated with fAPAR (Liu et al., 2019; Viña and Gitelson, 
2005). 

WDRVI = (α×Rnir − Rred)/(α×Rnir +Rred) (2)  

fAPAR = 0.516 × WDRVI + 0.726 (3) 

In Eq. (2) Rnir and Rred are the reflectance at the near-infrared and red 
band and they were represented by Rikola reflectance at 800 nm and 
670 nm, respectively. α is a weighting coefficient with a value of 0.1–0.2 
(Gitelson et al., 2014). fAPAR was estimated using the linear regression 
(Eq. (3)) established by Liu et al. (2019) with α at 0.1. The averaged 
fAPAR per plot correlated well with LAI ground measurements (Fig. S2), 
confirming the reliability of the fAPAR estimate. 

ΦF is directly linked to the plant physiological changes caused by 
environmental stress (Porcar-Castell et al., 2014). Far-red ΦF can be 
calculated as SIF/ (PAR × NIRv) (Dechant et al., 2020; Wang et al., 
2020). NIRv is the NIR reflectance of vegetation (Badgley et al., 2017). 
NIRvH was proposed to calculate the true NIR reflectance of vegetation 
with minimal soil background impact (Zeng et al., 2021). Therefore, we 
combined NIRvH and PAR to calculate ΦF at 760 nm for each SIF 
measurement: 

ΦF= SIF/(PAR×NIRvH) (4) 

NIRvH can be calculated as 

NIRvH = Rnir − Rred − k(λnir − λred) (5)  

k = (Rnir − Rnir1)/(λnir − λnir1) (6) 

Where Rnir, Rnir1, and Rred are Rikola reflectances at 800 nm, 780 nm, 
and 680 nm respectively. λnir, λnir1, and λred are the wavelengths of 800 
nm, 780 nm, and 680 nm, respectively. As fAPAR was calculated with 
Rikola reflectances, to be consistent, Rikola reflectances were used to 
calculate NIRvH. In addition, the time interval between Rikola and 
FluorSpec flights was approximately 20 min. The solar zenith angle 

during this interval around solar noon under clear weather conditions 
would not change significantly. Therefore, the irradiance and sun-sensor 
geometry were assumed to be comparable for both sensors. 

Since SIF687 and SIF760 have different sensitivity to photosynthetic 
activities, their ratio (SIFratio) may be related to physiological changes 
introduced by a changing contribution of fluorescence emission from 
Photosystem I (PSI) and Photosystem II (PSII) in response to plant stress 
(Porcar-Castell et al., 2014; Wieneke et al., 2016;). 

2.4. Statistical analysis 

To investigate the irrigation effect on the selected indices (Table 1), 
first, we calculated per plot the difference between the average value of 
an index on date 1 (before irrigation) and on date 2 (after irrigation) 
(hereafter called the delta index, Δindex). The null hypothesis (H0) was 
that irrigation treatment had no significant effect on the Δindex value as 
compared to the non-irrigation plots per block, which was tested with a 
paired t-test (Hsu and Lachenbruch, 2014). Spatial heterogeneities 
might exist between blocks, e.g., due to planting and management his
tory, but by using blocks in an experimental design these are corrected. 
With a paired t-test, the irrigation and non-irrigation plots per block 
were compared and therefore the block effect was taken into 
consideration. 

3. Results 

3.1. Field measurements 

Table 2 shows an overview of ground measurements on four exper
imental dates. On June 27, LAI, Cab, and SM had similar values in 
irrigation and non-irrigation plots. On June 28, SM in the irrigation plots 
had increased to 16.24 vol% and LAI had increased from 2.84 to 3.95 
cm2 cm− 2 (not statistically significant, p-value = 0.22). From July 23 to 
July 24, for irrigation plots, SM also had a considerable increase from 
4.03 to 9.48 vol%, but less than the increase on June 28. The irrigation 
effect was not noticeable due to a small decrease in LAI (p-value = 0.40). 
A decrease in Cab was observed both on June 28 and July 24, which was 
not statistically significant. 

3.2. Index maps 

To visually evaluate the spatial variation of water stress conditions in 
the study field, we selected two commonly used indices for water deficit 
detection, canopy structural parameter NDVI and canopy temperature 
(Tc) (Fig. 3). Maps of SIF760 and SIF687 (Fig. 4) show the spatial vari
ability of the signals under drought and drought/heat stress conditions. 

Table 1 
Parameters of traits evaluated and compared in this study. R represents Rikola 
reflectance at a specific wavelength. NDVI, PRI, and Tc were averaged per plot 
using pixel-level values.  

Category VIs Formula References 

Canopy structure NDVI (R800 − R670)/(R800 +

R670)
Rouse et al. (1973) 

Xanthophyll 
pigments 

PRI (R570 − R531)/(R570 +

R531)
Gamon et al. 
(1992) 

Canopy 
temperature 

Tc Tc Jackson et al. 
(1981) 

Photosynthesis SIF760yield SIF760/(PAR × fAPAR)
Papageorgiou. 
(2004) 

SIF687yield SIF687/(PAR × fAPAR)
Papageorgiou. 
(2004) 

ΦF760 SIF760/(PAR × NIRvH)
Zeng et al. (2021) 

SIFratio (SIF687)/(SIF760) Agati et al. (1995)  
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The average values within each plot are shown in Tables S2 and S3. 
Maps for the other indices are not shown, but in the statistical analysis 
all indices were included. 

3.2.1. NDVI and Tc mapping 
Fig. 3 shows spatial patterns of NDVI and Tc measurements within 

the six plots on the four measuring dates. On June 27 we found higher 
NDVI values within B1- and B3- and lower values in B2- (Fig. 3a). Tc 
values in block 1 were lower than in the other two blocks. After irriga
tion, NDVI showed an increase in the irrigation plots whereas NDVI in 
non-irrigation plots decreased slightly on the second day (Fig. 3c). 
Canopy temperature for irrigated areas had a decrease on June 28 and a 
rise within non-irrigation plots (Fig. 3d). 

On July 24 the irrigation did not largely affect NDVI values within 
irrigation plots, whereas NDVI within non-irrigation plots had a 
noticeable decrease, particularly within B2– (Fig. 3g). Tc increased 
within non-irrigated plots and its spatial pattern showed a clear differ
ence in irrigated and non-irrigated plots (Fig. 3h) 

3.2.2. Spatial patterns of SIF760 and SIF687 
The spatial patterns of SIF760 and SIF687 on the four dates are shown 

in Fig. 4. In general, SIF760 values were higher than SIF687 values per 
plot, particularly on June 27 and June 28. Both metrics showed field 
heterogeneity which was not easy to be noticed in NDVI and Tc maps. 
Higher spatial variations can be found in SIF760 observations. Clear 
differences can be noticed within each plot. For example, on June 27 
within B2– SIF760 varied from 1.68 to 2.42 mW m− 2 sr− 1 nm− 1, and 
SIF687 ranged within 1.12~1.81 mW m− 2 sr− 1 nm− 1 (Fig. 4a, b). On 
June 27, SIF760 (Fig. 4a) shows a spatial pattern similar to NDVI but 
opposite to Tc. On June 28, both SIF687 and SIF760 decreased within all 
blocks despite the irrigation given to half of the plots (Fig. 4c,d). 

On July 23, both values of SIF760 and SIF687 were lower than those on 
June 27 (Fig. 4e, f). Averaged SIF760 ranged from 0.95 (B2–) to 1.55 mW 
m− 2 sr− 1 nm− 1 (B1+) and averaged SIF687 varied from 0.98 (B2–) to 
1.21 mW m− 2 sr− 1 nm− 1 (B3+). After irrigation on July 24, SIF760 had 
obvious decreases in the non-irrigated plots (Fig. 4g). In block1 and 2, 
SIF687 increased more in irrigated plots, while in block3 SIF687 
decreased for the irrigated B3+ (Fig. 4h). 

3.3. Change analysis 

Figs. 3 and 4 show the spatial patterns of NDVI, Tc, and SIF and 
provide a visual evaluation of changes in these indices mainly induced 
by the imposed irrigation treatment. However, it takes effort to quantify 
these changes and to better assess the effect of irrigation on these met
rics. To compare the response difference between irrigated and non- 
irrigated plots, we investigated the changes in values of each index ac
quired on two consecutive experimental days (Δindex). 

3.3.1. ΔNDVI, ΔPRI, and ΔTc 
Figs. 5 and 6 present ΔNDVI, ΔPRI, and ΔTc on two consecutive 

measuring days in June and July, respectively. As shown in Fig. 5a, after 
irrigation on June 28, NDVI values increased strongly while they slightly 

Table 2 
Descriptive statistics (mean values ± standard deviations) of leaf area index 
(LAI, cm2 cm− 2), chlorophyll concentrations (Cab, µg cm− 2), and soil moisture 
(SM, vol%), in irrigation and non-irrigation plots. NA indicates no ground 
measurements were acquired. + indicates an irrigation treatment applied to the 
plot and – indicates no irrigation treatment in the plot.  

Date LAI Cab SM 
B+ B– B+ B– B+ B– 

June 
27 

2.84 
±0.87 

3.19 
±1.12 

52.50 
±6.73 

51.71 
±7.23 

2.67 
±0.12 

2.91 
±1.05 

June 
28 

3.95 
±1.08 

NA 46.24 
±6.40 

NA 16.24 
±2.01 

NA 

July 
23 

2.08 
±0.91 

NA 62.83 
±7.42 

NA 4.03 
±0.22 

NA 

July 
24 

1.86 
±0.45 

0.67 
±0.38 

48.50 
±13.66 

46.58 
±17.58 

9.48 
±0.29 

2.78 
±0.78  

Fig. 3. Maps of NDVI on June 27 (a) and 28 (c), on July 23 (e) and 24 (g). Maps of canopy temperature (Tc) on June 27 (b) and 28 (d), on July 23 (f) and 24 (h). B1, 
B2, and B3 refer to block1, block2, and block3 in the sugar beet field. + indicates an irrigation treatment applied to the plot and – indicates no irrigation treatment in 
the plot. Irrigation was given to B1+, B2+, and B3+ on the evenings of June 27 and July 23. 
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decreased in the non-irrigation plots. PRI increased in all plots, but the 
increase was larger within non-irrigation plots (Fig. 5b). Tc observed 
from the irrigated canopy decreased and from the non-irrigated canopy 
increased (Fig. 5c). 

On July 24, NDVI declined in all plots (Fig. 6a). Fig. 6b shows that, 
except for an increase in B1–, PRI showed a small decrease in other plots 
(Fig. 6b). Tc decreased in B2+ and B3+ and had a substantial increase in 
B1– and B2–, while in B1+ and B3– it remained almost unchanged 
before and after the water treatment (Fig. 6c). 

3.3.2. ΔSIF indicators 
To test whether the irrigation effect can also be observed in SIF 

measurements, the changes for SIF760yield, SIF687yield, ΦF760, and SIFratio 
on the consecutive days are presented in Figs. 7 and 8. On June 28, 
except for a small increase in SIF687yield within B1–, both SIF760yield and 
SIF687yield had a reduction in all blocks (Fig. 7a, b). There was no obvious 
difference in ΔSIF760yield between the irrigated and non-irrigated plots 
per block, while this difference in ΔSIF687yield was much larger. ΦF760 
reduced in all blocks but less within irrigated plots (Fig. 7c). SIFratio 
decreased substantially within irrigation plots and slightly increased 

within non-irrigation plots except for a small decrease in B3-. 
Figs. 8a, b both show an increase in SIF760yield and SIF687yield on July 

24. SIF760yield showed a larger increase in irrigated plots in comparison 
to non-irrigated plots per block. SIF687yield increased slightly less in 
irrigation plots, making it difficult to differentiate the changes in 
ΔSIF687yield in the irrigated plot from the non-irrigated one per block. 
ΦF760 increased more in the irrigated plots than the non-irrigated ones 
(Fig. 8c). Although SIFratio increased in all plots, the change was larger in 
non-irrigated plots (Fig. 8d). 

3.4. Statistical analysis 

Table 3 shows an overview of the effect of irrigation on delta values 
of NDVI, PRI, and Tc and SIF-based metrics. Both in June and July, NDVI 
was significantly affected by irrigation treatment, which is in line with 
the significant changes of NDVI shown in Figs. 3c, g. This finding indi
cated that the irrigation treatment had a clear effect on the canopy 
structure of sugar beet plants in our experimental set-up. Irrigation had a 
significant impact on canopy temperature Tc (Fig. 3d, h) and this impact 
was greater in June as shown by the higher significance in Table 3. In 

Fig. 4. Maps of SIF760 on June 27 (a) and 28 (c), on July 23 (e) and 24 (g). Maps of SIF687 on June 27 (b) and 28 (d), on July 23 (f) and 24 (h). B1, B2, and B3 refer to 
block1, block2, and block3 in the sugar beet field. + indicates an irrigation treatment applied to the plot and – indicates no irrigation treatment in the plot. Irrigation 
was given to B1+, B2+, and B3+ on the evenings of June 27 and July 23. 

Fig. 5. Delta values (June 28 minus June 27) in NDVI (ΔNDVI) (a), PRI (ΔPRI) (b), and Tc (ΔTc) (c) in three sugar beet blocks. Irrigated refers to irrigation plots B1+, 
B2+, and B3+, and non-irrigated refers to non-irrigation plots B1–, B2–, and B3–. Irrigation was given to irrigation plots on the evening of June 27. 
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June, irrigation significantly affected SIF-based metrics. The responses 
of SIF687yield, ΦF760, and SIFratio were more pronounced in comparison to 
SIF760yield. However, in July the irrigation effect was weak on ΦF760 and 
SIFratio. SIFyield both at 760 nm and 687 nm were hardly influenced by 
the irrigation treatment. 

4. Discussion 

The objective of this research was to explore the response of UAV- 

based SIF indicators to water stress in a sugar beet field. VNIR hyper
spectral and thermal data were used to assist the interpretation of the SIF 
metrics. Our results showed that SIF indicators had a pronounced 
drought response to the irrigation treatment when plants were under 
water stress (in June), whereas they had a less significant response to the 
irrigation under combined water limitation and heat stress (in July). 

4.1. Field conditions 

Plant responses to water stress are complex (Chaves et al., 2002; 
Hsiao, 1973; Yardanov et al., 2003) and, under field conditions, these 
responses appear synergistically or antagonistically and are modified by 
simultaneous plant stresses. For example, heat stress commonly co
incides with water scarcity under field conditions. Generally, water loss 
under heat stress is larger during daytime, mainly due to an increased 
rate of transpiration, ultimately impairing certain important physio
logical processes in plants (Fahad et al., 2017). At optimal temperatures 
(25 ◦C) photosynthetic capacity only decreased at leaf relative water 
contents (RWC) around 60%. However, when the temperature rose 
above the optimum (e.g. 35 ◦C), photosynthetic capacity was affected at 
a higher leaf water status (RWC = 80%) (Chaves et al., 2002). In our 
study, low soil moisture values before irrigation (Table 2) indicated a 
water deficit occurring in the sugar beet plants on both June 27 and July 

Fig. 6. Delta values (July 24 minus July 23) in NDVI (ΔNDVI) (a), PRI (ΔPRI) (b), and Tc (ΔTc) (c) in three sugar beet blocks. Irrigated refers to irrigation plots B1+, 
B2+, and B3+, and non-irrigated refers to non-irrigation plots B1–, B2–, and B3–. Irrigation was given to irrigation plots on the evening of July 23. 

Fig. 7. Delta values (June 28 minus June 27) in SIF760yield (ΔSIF760yield) (a), SIF687yield (ΔSIF687yield) (b), ΦF760 (ΔΦF760) (c), and SIFratio (ΔSIFratio) (d) in three sugar 
beet blocks. Irrigated refers to irrigation plots B1+, B2+, and B3+, and non-irrigated refers to non-irrigation plots B1–, B2–, and B3–. Irrigation was given to 
irrigation plots on the evening of June 27. 

Fig. 8. Delta values (July 24 minus July 23) in SIF760yield (ΔSIF760yield) (a), SIF687yield (ΔSIF687yield) (b), ΦF760 (ΔΦF760) (c), and SIFratio (ΔSIFratio) (d) in three sugar 
beet blocks. Irrigated refers to irrigation plots B1+, B2+, and B3+, and non-irrigated refers to non-irrigation plots B1–, B2–, and B3–. Irrigation was given to 
irrigation plots on the evening of July 23. 

Table 3 
Irrigation effects on different metrics for water stress detection (numbers are 
statistical significance, ***p < 0.001, **p < 0.01, *p < 0.05, .<0.1, and ns >0.1). 
These metrics are explained in detail in Section 2.3.  

Indices June 28-June 27 July 24 -July 23 

SIF indicators ΔSIF760yield 0.0585 . 0.204 ns 
ΔSIF687yield 0.0063** 0.1033 ns 
ΦF760 0.0122 * 0.0557 . 
ΔSIFratio 0.0121 * 0.0680 . 

Vegetation indices ΔNDVI 0.0019 ** 8.12e-05 *** 
ΔPRI 0.1560 ns 0.1860 ns 

Temperature ΔTc 0.0035 ** 0.0215 *  
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23. Sugar beet performs best in a range of temperatures from 17 to 25 ◦C 
(Ober and Rajabi, 2010). The maximum air temperature during the 
observation period did not exceed 24 ◦C on June 27 and June 28. 
Therefore, we may assume that temperature was not a limiting factor. In 
contrast, the extremely high air temperature on July 23 (31.5 ◦C) and 
July 24 (36.8 ◦C) imposed extra heat stress on top of the existing water 
stress. Irrigation eased the stress in irrigated plots both on June 28 and 
July 24, indicated by the increase in SM and LAI (Table 2). The irrigation 
did not reduce the stress on July 24 as much as that on June 28, indi
cated by lower SM and NDVI and higher Tc on July 24 (Figs. 3 and S3; 
Table S2). 

4.2. Response of SIF indicators to water stress on June 27 and 28 

We found that SIF760yield, SIF687yield, ΦF760, and SIFratio showed a 
significant difference between irrigated and non-irrigated sugar beet 
plants (Table 3). The decrease in SIFyield and ΦF760 in non-irrigated plots 
agrees with the findings from previous studies (Ač et al., 2015; Gerhards 
et al., 2018; Xu et al., 2021, 2018; Zarco-Tejada et al., 2012). The 
meta-analysis study carried out by Ač et al. (2015) suggests that water 
stress, in general, induces a decline in red and far-red fluorescence signal 
intensity measured at both leaf and canopy levels. The decline could be 
explained by the activation of non-photochemical mechanisms and the 
reduction in APAR. As the first and foremost response of almost all C3 
plants to water stress, stressed plant stomata closure occurs to prevent 
water vapor loss via transpiration under water deficit and this results in 
a decrease in evaporating cooling and therefore an increase in leaf 
temperature (Chaves et al., 2002; Jones and Schofield, 2008), evidenced 
by the higher Tc measured over non-irrigated plants on June 28 (Figs. 3d 
and 5c). Reduced stomatal conductance limits CO2 intake and conse
quently increases the generation of reactive oxygen species (ROS) and 
also affects the electron transport chain in light-dependent reactions 
(Flexas et al., 2002). Photorespiration increases to prevent oxidative 
damage in chloroplasts caused by ROS (Voss et al., 2013). NPQ is also 
upregulated as the dominant way to thermally dissipate the photon 
energy absorbed, which cannot be processed in photochemical ways. 
Both energy dissipation mechanisms result in a decrease in photosyn
thesis rate and fluorescence emission (Porcar-Castell et al., 2014). PRI is 
sensitive to changes in the xanthophyll cycle which is the driver of the 
pH-dependent NPQ which acts as the main protection of photosystem II 
(Goss and Lepetit, 2015). The increased PRI in non-irrigation plots on 
June 28 (Fig. 5b) could therefore indicate an increase in NPQ. PRI can be 
affected by canopy structure under stress, confounding its links to NPQ 
behavior (Gitelson et al., 2017; Schickling et al., 2016). Therefore, PRI 
should be carefully interpreted to avoid an ill-conditioned situation 
while exploring the vegetation’s physiological response to water stress. 
In our case, the weak linear regression between PRI and NDVI (R2 =

0.14) indicated a weak structural effect on PRI, whereas the strong linear 
correlation in July (R2 = 0.71) suggested a non-negligible structural 
effect on PRI. Therefore, PRI could be considered an indicator of NPQ in 
June, but it might be less informative on in July. In addition, sugar beet 
leaves rolled and wilted to reduce water loss, resulting in a decrease in 
effective LAI, which was indicated by the decreased NDVI and fAPAR 
(Figs. 5a and S2b). As the shortwave radiation on June 27 and 28 were 
similar (around 798.85 W m− 2), APAR in non-irrigation plots decreased 
and thus could contribute to the decline in SIF emission. 

SIFyield and ΦF760 also decreased in irrigation plots on June 28. One 
possible reason could be the regulation of NPQ. Stronger NPQ was 
triggered to cope with the higher temperature on June 28, indicated by 
the increase in PRI within irrigated plots, and this resulted in lower 
fluorescence emission. Irrigated sugar beet plants might physiologically 
partly or even fully recover from the water stress, as suggested by the 
decreased Tc (Fig. 5c). Therefore, the quantum yield of PSII increased 
and fluorescence emission efficiency decreased. Compared to the non- 
irrigated plants, SIF760yield observed from irrigated plants decreased 
more, whereas ΦF760 decreased less, suggesting a structural effect on 

SIFyield via the fluorescence escape ratio (fesc) at 760 nm. Some vege
tation indices have been proposed to estimate fesc at 760 nm, e.g. the 
fluorescence correction vegetation index (FCVI) (Yang et al., 2019), the 
near-infrared reflectance of vegetation (NIRv) (Zeng et al., 2019), and an 
improved NIRv index (NIRvH) (Zeng et al., 2021). Since FluorSpec and 
Rikola data do not fully cover the range from 400 to 700 nm needed to 
calculate FCVI, we calculated NIRvH to estimate fesc. The NIRvH was 
developed to reduce the sensitivity to the soil background, which was of 
an additional importance for this study. We found that fesc decreased 
within the irrigated plots and increased in the non-irrigated ones 
(Fig. S4a), which could explain why SIF760yield had a larger decrease 
than ΦF760 in irrigated plots. SIFratio can significantly distinguish the 
irrigated from the non-irrigated sugar beet plants. The results do not 
allow us to exclude the possibility that the significant change in the 
SIFratio was due to the structural effect of water stress on the 
re-absorption of SIF687 and the scattering of SIF760. Nevertheless, this 
signal might be a potential indicator of sugar beet actual physiological 
status, as this ratio varies in response to the changes in the photosyn
thetic activity of the two photosystems (Agati et al., 1995; Wieneke 
et al., 2018; Yang et al., 2019). 

4.3. Response of SIF indicators to combined water and heat stress on July 
23 and 24 

Different from findings on June 28, on July 24 we observed an in
crease in SIFyield at both 687 nm and 760 nm and ΦF760 over both irri
gated and non-irrigated sugar beet canopies. The response of SIF and ΦF 
to water scarcity is complex and remains not fully understood. ΦF can 
either increase or decrease with increasing stress, depending on the 
severity of stress, the light intensity, the temperature, and NPQ regula
tion (Zeng et al., 2022). Some previous studies also observed the in
crease of ΦF under water stress (Chen et al., 2019; Jonard et al., 2020; 
Martini et al., 2022; Zeng et al., 2022). Electron and light energy are 
excessive under severe drought. As a result, both NPQ and fluorescence 
quenching are utilized to consume the absorbed sunlight (Chen et al., 
2019). Additionally, PSII is very responsive to temperature and its ac
tivity is greatly influenced and even partially terminated under 
high-temperature stress (Camejo et al., 2006). In this case, NPQ reaches 
its peak, resulting in a change in the allocation of energy dissipation 
pathways towards SIF and an increase in the fluorescence emission 
(Martini et al., 2022; Zeng et al., 2022). The response of SIFyield is 
co-affected by ΦF760 and fesc. fesc decreased within both irrigated and 
non-irrigated plots (Fig. S4b), implying that the increase of SIFyield was 
most likely caused by ΦF760. 

Only ΦF760 and SIFratio were linked to the changes induced by the 
irrigation treatment when sugar beet plants were stressed by the water 
scarcity and the extremely high temperature. The stressed sugar beets 
had sparse canopies due to leaf wilting or leaf drooping (Table 2, 
Fig. S3e-h). The strong soil signals within the footprints could affect TOC 
SIF retrieval (Camino et al., 2018; Wang et al., 2021; Zarco-Tejada et al., 
2013) and ΦF estimate (Zeng et al., 2022), increasing the difficulty of 
detecting the subtle alterations of SIF and SIF indicators. In this case, the 
value of SIF as an estimator of photosynthesis may decrease. The irri
gated sugar beet plants might not fully recover from the combined stress, 
indicated by the reduced NDVI (Fig. 6a). Consequently, we were not able 
to observe significant differences in the changes in SIF metrics between 
the irrigated and non-irrigated plants. ΦF760 was more sensitive to the 
irrigation than SIF760yield (Table 3), likely because ΦF provides insights 
into physiological stress effects that are decoupled from structural ef
fects. The July case highlights the value of ΦF on stress detection in 
practice and the necessity to remove the effect of canopy structure 
changes from TOC SIF observations. Under severe stress, the down
regulation or the photodamage of the photosystem may decouple fluo
rescence emission from the light reactions of photosynthesis (Helm 
et al., 2020; Martini et al., 2022), contributing to the non-significant 
changes in SIF indicators. 
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4.4. Implications 

There is no universal relationship between photochemistry and 
fluorescence emission under stress conditions. The physiological SIF 
information might depend on the imposed environmental stresses and 
severity levels. To support timely irrigation management, the value of 
UAV-based SIF in water limitation detection should be fully explored. A 
controlled field experiment where water availability is limited at 
different levels can provide insights into to what extent SIF can track the 
crop physiological response and the photosynthetic adjustments. For a 
better understanding of the response of top-of-canopy SIF to water 
limitation, it is suggested to take full advantage of the information 
provided by remotely measured chlorophyll fluorescence. A full picture 
of energy partitioning on the ground is needed (Marrs et al., 2020). This 
includes a need to better characterize energy dissipation dynamics. Leaf 
measurements of photosynthetic parameters, e.g. gas exchange, the 
quantum yield of PSII, and NPQ, can provide insights into the mecha
nism linking fluorescence and photosynthesis under different severity 
levels of water stress. The measurement uncertainty in UAV observa
tions and spatial variation of SIF due to the heterogeneity in soil prop
erties may influence the observed SIF response to water stress. 
Therefore, SIF measurements from ground-based systems are also rec
ommended as ground-based SIF can reveal the SIF-photosynthesis 
relation at the proximal canopy level and further facilitate the inter
pretation and validation of UAV-based SIF observations. In addition, the 
characterization of canopy structural effects on SIF observations facili
tates the interpretation of SIF signals (Verrelst et al., 2015; Yang and Van 
der Tol, 2018), particularly in understanding and diagnosing plant re
sponses to stress. Canopy structural parameters (e.g. LAI, clumping 
index, and leaf inclination) affect the absorption of PAR and the SIF 
escape fraction (fesc) from the canopy (Van der Tol et al., 2019). LAI 
affects the production of fluorescence and the leaf inclination has a 
strong effect on the observed fluorescence via fesc (Dechant et al., 2020). 
For example, planophile leaf orientations of the non-irrigated sugar beet 
have higher fluorescence than erectophile ones of the well-watered 
plants (Dechant et al., 2020; Van der Tol et al., 2019; Zeng et al., 
2019). In our work, the FCVI- or NIRvH-based approach allowed a rapid 
decoupling of the canopy structural and functional regulation of far-red 
TOC SIF. However, these approaches are derived by radiative transfer 
modeling with a number of assumptions and simplifications or by 
semi-empirical approaches (Liu et al., 2019; Yang et al., 2020; Zeng 
et al., 2019). Therefore, they cannot easily disaggregate red SIF into the 
physiological (ΦF) and structural information due to the within-leaf 
scattering and re-absorption of red SIF within the leaf or inside a plant 
canopy (Van der Tol et al., 2019; Yang and van der Tol, 2018). Modeling 
approaches can describe SIF-relevant processes including absorption, 
emission, scattering, and re-absorption, e.g. the Soil-Canopy Observa
tion Photosynthesis and Energy fluxes (SCOPE) model (Van der Tol 
et al., 2009) and the Discrete Anisotropic Radiative Transfer (DART) 
model (Gastellu-Etchegorry et al., 2017). We suggest using modeling 
approaches to provide insights into the effects of plant canopy struc
tural, biochemical, and physiological factors on the responses of both 
red and far-red SIF to water stress (Yang et al., 2019). Furthermore, the 
analysis of plant properties can benefit greatly from three-dimensional 
(3D) measurements because plant responses are strongly related to 
their 3D structure (Omasa et al., 2007). 3D photon and flux tracing 
RTMs can describe SIF photon interactions with complex 3D canopy 
structures and support a physical characterization of SIF variability in 
the field. DART is one of the most comprehensive physically based 3D 
radiative transfer models and considers the 3D structure (Gas
tellu-Etchegorry et al., 2017), offering more complex strategies for 
spatially detailed simulations in structurally complex canopies. 

5. Conclusion 

The main purpose of this work was to understand the response of 

UAV-based SIF indicators (SIF760yield, SIF687yield, ΦF760, and SIFratio) and 
to evaluate their potential for water stress detection. Additional remote 
sensing information such as canopy temperature and vegetation indices 
including NDVI and PRI were used to characterize the stress status and 
assist the interpretation of the response of SIF metrics to the irrigation 
treatment. On June 28, irrigated plants and non-irrigated plants showed 
significant differences in all indicators. On July 24, the situation was 
quite different. In addition to water stress, a heatwave also caused severe 
heat stress. Only ΦF760 and SIFratio could weakly track the changes 
induced by irrigation in July. ΦF760 was more sensitive to irrigation than 
SIF760yield, which underlines the advantage of ΦF760 to indicate the 
physiological changes and the necessity to correct the canopy structural 
effect on TOC SIF. This study confirms the capacity of SIF acquired by a 
UAV system to detect stress at the field level. Further investigations are 
necessary to give a comprehensive understanding of the potential of 
UAV-based SIF to detect environmental stress at different severity levels 
and to support crop management in the context of precision agriculture. 
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