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Abstract
Miscanthus	is	a	leading	perennial	biomass	crop	that	can	produce	high	yields	on	
marginal	lands.	Moisture	content	is	a	highly	relevant	biomass	quality	trait	with	
multiple	impacts	on	efficiencies	of	harvest,	transport,	and	storage.	The	dynamics	
of	moisture	content	during	senescence	and	overwinter	ripening	are	determined	
by	genotype × environment	interactions.	In	this	paper,	unmanned	aerial	vehicle	
(UAV)-	based	 remote	 sensing	 was	 used	 for	 high-	throughput	 plant	 phenotyping	
(HTPP)	of	the	moisture	content	dynamics	during	autumn	and	winter	senescence	
of	14	contrasting	hybrid	types	(progeny	of	M.	sinensis x M.	sinensis	[M.	sin x M.	
sin,	eight	types]	and	M.	sinensis x M.	sacchariflorus	[M.	sin x M.	sac,	six	types]).	
The	time	series	of	moisture	content	was	estimated	using	machine	learning	(ML)	
models	and	a	range	of	vegetation	indices	(VIs)	derived	from	UAV-	based	remote	
sensing.	The	most	important	VIs	for	moisture	content	estimation	were	selected	
by	the	recursive	 feature	elimination	(RFE)	algorithm	and	were	BNDVI,	GDVI,	
and	PSRI.	The	ML	model	transferability	was	high	only	when	the	moisture	con-
tent	was	above	30%.	The	best	ML	model	accuracy	was	achieved	by	combining	
VIs	and	categorical	variables	(5.6%	of	RMSE).	This	model	was	used	for	phenotyp-
ing	senescence	dynamics	and	identifying	the	stay-	green	(SG)	trait	of	Miscanthus	
hybrids	using	the	generalized	additive	model	(GAM).	Combining	ML	and	GAM	
modeling,	applied	to	time	series	of	moisture	content	values	estimated	from	VIs	
derived	from	multiple	UAV	flights,	proved	to	be	a	powerful	tool	for	HTPP.

K E Y W O R D S

GAM,	high-	throughput	plant	phenotyping,	machine	learning,	Miscanthus,	moisture	content,	
multispectral,	remote	sensing,	senescence,	transferability,	UAV

www.wileyonlinelibrary.com/journal/gcbb
mailto:
https://orcid.org/0000-0002-9878-6595
https://orcid.org/0000-0001-7356-2774
https://orcid.org/0000-0003-0236-0328
https://orcid.org/0000-0001-9390-7004
https://orcid.org/0000-0003-1541-2094
https://orcid.org/0000-0001-6477-5452
https://orcid.org/0000-0002-6184-9257
mailto:giorgio.impollonia@unicatt.it


640 |   IMPOLLONIA et al.

1 	 | 	 INTRODUCTION

Miscanthus	is	a	promising	perennial	crop	that	can	achieve	
high	 biomass	 production	 on	 marginal	 lands	 (Amaducci	
et	 al.,	 2016;	 van	 der	 Cruijsen	 et	 al.,	 2021;	 Pancaldi	 &	
Trindade,	2020;	Shepherd	et	al.,	2020).	Due	to	its	perennial	
nature,	Miscanthus	has	a	limited	input	requirement	and	is	
cultivated	under	no	tillage	regime	leading	to	multiple	eco-
system	services	provision	(Agostini	et	al.,	2021;	Ferrarini	
et	al.,	2016,	2021;	Martani	et	al.,	2021).	Most	of	the	research	
on	Miscanthus	has	been	conducted	on	Miscanthus	x	gigan-
teus	(Heaton	et	al.,	2010),	which	is	a	naturally	occurring	
sterile	triploid	hybrid	of	Miscanthus sacchariflorus	(M.	sac)	
and	Miscanthus sinensis	(M.	sin)	(Hodkinson	et	al.,	2002).	
New	Miscanthus	hybrids	(Clifton-	Brown	et	al.,	2018,	2019;	
Hastings	 et	 al.,	 2017)	 have	 been	 recently	 obtained	 from	
several	breeding	programs	(Clifton-	Brown	et	al.,	2019).	In	
Europe,	rhizome-		and	seed-	based	Miscanthus	hybrids	are	
available	at	a	 technology	readiness	 level	 that	can	enable	
the	plantation	of	thousands	of	hectares	per	year	(Clifton-	
Brown	et	al.,	 2018).	These	novel	Miscanthus	hybrids	are	
being	tested	in	multiple	environments	within	the	EU-	BBI	
project	GRACE.

Plant	senescence	 is	a	key	trait	 for	perennial	plants	as	
it	limits	biomass	yield,	modifies	moisture	content,	and	af-
fects	nutrient	translocation	(Boersma	et	al.,	2015;	Jensen	
et	al.,	 2016;	Malinowska	et	al.,	 2016;	Sarath	et	 al.,	 2014;	
Yang	 &	 Udvardi,	 2017).	 Moisture	 content	 at	 harvest	 is	
the	 most	 important	 biomass	 quality	 trait	 (Robson	 et	 al.,	
2011;	Styks	et	al.,	2020).	Monitoring	the	dynamics	of	crop	
senescence	and	moisture	content	can	support	the	choice	
of	 the	 optimal	 harvest	 time	 that	 can	 improve	 biomass	
quality	and	logistics	biomass	supply	chain.	Lewandowski	
et	 al.	 (2016)	 found	 that	 moisture	 content	 of	 different	
genotypes	 can	 vary	 due	 to	 morphological	 differences	
and	 senescence	 patterns,	 but	 it	 is	 primarily	 determined	
by	harvest	date.	Several	studies	have	shown	that	 late	se-
nescence	 (stay	 green—	SG)	 maximizes	 biomass	 yield	
(Clifton-	Brown	 et	 al.,	 2001),	 while	 early	 senescence	 in-
creases	biomass	quality	(Clifton-	Brown	&	Lewandowski,	
2002).	SG	is	determined	by	a	complex	physiological	con-
trol	 (e.g.,	 chlorophyll	 efficiency,	 nitrogen	 contents,	 nu-
trient	remobilization,	and	source–	sink	balance)	(Munaiz	
et	 al.,	 2020;	 Thomas	 &	 Howarth,	 2000)	 and	 traditional	
phenotyping	methods	 for	evaluating	SG	and	delayed	se-
nescence	 are	 time-	consuming	 (Furbank	 &	Tester,	 2011).	
Nondestructive	 methods	 are	 based	 on	 greenness	 visual	
score	 (Bogard	 et	 al.,	 2011)	 and	 SPAD	 measurements	
(Lopes	&	Reynolds,	2012;	Xie	et	al.,	2016),	for	the	estima-
tion	 of	 the	 green	 leaf	 area	 and	 relative	 chlorophyll	 con-
tent,	respectively.	These	methods	can	be	used	to	monitor	
field	trials	but	are	not	effective	in	monitoring	senescence	
dynamics	at	commercial	scale.	New	sensing	technologies	

have	 contributed	 to	 a	 substantial	 improvement	 in	 the	
monitoring	of	SG	in	different	crops	(Cerrudo	et	al.,	2017;	
Kipp	et	al.,	2014;	Liedtke	et	al.,	2020;	Lopes	&	Reynolds,	
2012).	 High-	throughput	 plant	 phenotyping	 (HTPP)	 with	
remote	sensing	is	a	rapid	and	nondestructive	technology	
that	can	be	used	to	monitor	the	senescence	of	numerous	
genotypes,	thus	supporting	breeding	programs	(Anderegg	
et	al.,	2020;	Hassan	et	al.,	2018).	Remote	sensing	technol-
ogies	use	different	types	of	sensors,	such	as	Red–	Green–	
Blue	 (RGB),	 multispectral,	 hyperspectral,	 and	 thermal	
cameras,	 installed	 on	 satellites	 and	 on	 unmanned	 aerial	
vehicles	(UAVs)	(Xie	&	Yang,	2020).	Spectral	data	can	be	
used	 to	 calculate	 vegetation	 indices	 (VIs),	 which	 can	 be	
used	to	estimate	crop	parameters	related	to	SG	trait:	nor-
malized	difference	vegetation	index	(NDVI)	for	green	bio-
mass	(Cabrera-	Bosquet	et	al.,	2011),	enhanced	vegetation	
index	(EVI)	for	leaf	area	index	(LAI)	(Alexandridis	et	al.,	
2019),	and	modified	chlorophyll	absorption	in	reflectance	
index	(MCARI)	for	chlorophyll	content	(Haboudane	et	al.,	
2002).	Other	VIs,	such	as	the	plant	senescence	reflectance	
index	(PSRI)	(Merzlyak	et	al.,	1999)	or	the	structure	insen-
sitive	pigment	index	(SIPI)	(Peñuelas	et	al.,	1995),	which	
are	 based	 on	 the	 chlorophyll/carotenoid	 ratio	 as	 the	 de-
composition	 rates	 of	 these	 pigments	 are	 affected	 during	
senescence,	were	specifically	developed	to	study	crop	se-
nescence.	The	normalized	difference	water	index	(NDWI)	
(Gao,	 1996),	 calculated	 using	 near-	infrared	 (NIR)	 and	
shortwave-	infrared	(SWIR)	spectral	bands,	has	been	pro-
posed	as	a	powerful	direct	water-	sensitive	VI,	which	can	
be	used	 for	 the	 remote	 sensing	of	 canopy	water	content	
(CWC)	 (Jackson	 et	 al.,	 2004).	 However,	 NDWI	 is	 rarely	
calculated	by	UAV	because	it	requires	costly	sensors	that	
are	equipped	with	the	SWIR	band.	Zhang	and	Zhou	(2019)	
compared	direct	against	indirect	(which	does	not	include	
the	SWIR	band)	water-	sensitive	VIs,	such	as	NDVI,	NDRE,	
CIgreen,	 and	 CIred-	edge	 and	 found	 that	 these	VIs	 were	
strongly	correlated	with	the	CWC	as	the	direct	VIs.

Field	trials	carried	out	with	small	plots	cannot	be	mon-
itored	using	satellite	data,	for	this	HTPP	using	UAV-	based	
multispectral	 images	 is	 best	 used	 in	 breeding	 programs	
where	numerous	genotypes	are	compared	(Gracia-	Romero	
et	al.,	2019;	Ostos-	Garrido	et	al.,	2019;	Su	et	al.,	2019;	Varela	
et	al.,	2021;	Yang	et	al.,	2017;	Zhou	et	al.,	2019).	UAV-	based	
multispectral	images	were	used	in	many	studies	to	com-
pare	genotypes	on	the	basis	of	VIs	linked	to	LAI	(Potgieter	
et	al.,	2017),	green	LAI	(Blancon	et	al.,	2019),	canopy	cover	
(Makanza	et	al.,	2018),	crop	biomass	and	yield	(Johansen	
et	al.,	2020;	Wang	et	al.,	2019),	and	senescence	dynamics	
(Hassan	 et	 al.,	 2018).	 However,	 many	 VIs	 show	 nonlin-
ear	 relationships	 with	 their	 associated	 crop	 parameters	
(Verrelst	et	al.,	2015).	Machine	learning	(ML)	regression	
algorithms	have	 increasingly	been	used	 in	HTPP	 to	 rec-
ognize	nonlinear	and	nonparametric	relationships.	ML	is	
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used	to	combine	multiple	VIs	for	estimating	crop	parame-
ters	from	a	sequence	of	UAV	remote	sensing	acquisitions.	
ML	models	use	two	main	datasets:	a	training	set	on	which	
the	best	model	is	trained	to	fit	 the	measured	parameters	
and	 a	 test	 set	 used	 to	 assess	 the	 performance	 of	 model	
(Kuhn	&	Johnson,	2013).	In	addition	to	the	VIs	data,	with	
ML	methods,	numerous	types	of	data,	such	as	categorical	
variables	(e.g.,	genotype,	crop	type,	locations,	agronomic	
treatments)	(Im	et	al.,	2009;	Meroni	et	al.,	2021;	Wolanin	
et	 al.,	 2020),	 can	 be	 used	 in	 the	 analysis	 (Verrelst	 et	 al.,	
2018).	 An	 ML	 method	 commonly	 used	 in	 many	 remote	
sensing	analyses	is	random	forest	(RF)	(Belgiu	&	Drăguţ,	
2016;	Holloway	&	Mengersen,	2018),	which	can	estimate	
crop	biomass	(Han	et	al.,	2019)	and	yield	(Johansen	et	al.,	
2020)	from	UAV	multispectral	images.	A	main	limit	of	the	
RF	model	is	its	transferability	to	environments,	cropping	
systems,	or	growing	seasons	different	from	those	used	for	
training	the	model	(Vuolo	et	al.,	2013).	Another	limitation	
is	in	the	training	set	size	(Millard	&	Richardson,	2015)	and	
the	unreliability	of	predictions	made	beyond	the	range	of	
values	of	the	parameters	present	in	the	training	set	(Shah	
et	al.,	2019).	In	addition,	Schauberger	et	al.	(2020)	reported	
that	52%	of	the	studies	on	ML	do	not	validate	the	models’	
performance	with	independent	test	sets.	Overall,	the	qual-
ity	of	training	data	for	developing	robust	ML	models	is	the	
key	for	successfully	transferring	the	trained	model	and	its	
knowledge	 to	other	 target	domains/tasks.	For	 these	 rea-
sons,	new	studies	are	needed	to	assess	the	transferability	
of	 ML	 models	 for	 UAV	 applications	 in	 agricultural	 sci-
ences	(Johansen	et	al.,	2020).

However,	to	date,	only	time	series	VIs	data	from	UAV,	
and	not	estimated	crop	parameter	of	ML	models,	are	used	
for	HTPP.	A	set	of	known	models	are	normally	 fitted	 to	
VIs	 time	series	 to	characterize	plant	growth/status	asso-
ciated	 with	 different	 phenological	 phases.	 Specifically	
for	 the	senescence,	 logistic	 functions	(Christopher	et	al.,	
2014)	and	the	Gompertz	model	(Anderegg	et	al.,	2020)	are	
the	two	most	used	models.	Another	potential	approach	to	
fit	VIs	data	is	the	generalized	additive	model	(GAM)	(Nolè	
et	al.,	2018).	Antonucci	et	al.	(2021),	for	example,	success-
fully	used	GAM	approach	for	HTPP	of	whole-	canopy	pho-
tosynthesis	and	transpiration.

Although	 remote	 sensing	 applications	 that	 support	
these	approaches	exist	and	have	been	already	tested	suc-
cessfully	 for	 field	crops	 (Alam	et	al.,	 2012;	Kavats	et	al.,	
2019;	Yang,	2011;	Zhang	et	al.,	2021),	no	remote	sensing	
application	for	estimating	moisture	content	of	Miscanthus	
is	reported	in	scientific	literature.

As	a	first-	time	testbed	for	phenotyping	Miscanthus	with	
UAV	remote	sensing,	two	locations,	where	14	contrasting	
Miscanthus	hybrids	were	compared	 in	a	completely	ran-
domized	 block	 design,	 were	 monitored	 regularly	 with	
moisture	 content	 measurements	 and	 UAV	 flights	 and	

senescence	dynamics	were	assessed	during	 two	growing	
seasons.	The	objectives	of	this	study	were	(1)	to	evaluate	
the	performances	and	transferability	of	RF	models	in	es-
timating	the	moisture	content	of	Miscanthus	biomass	and	
(2)	to	phenotype	the	dynamics	of	senescence	and	identify	
SG	trait	of	contrasting	Miscanthus	hybrids	using	GAM	ap-
plied	to	moisture	content	time	series.

2 	 | 	 MATERIALS AND METHODS

2.1	 |	 Experimental design

This	study	is	part	of	the	EU-	BBI	funded	project	“GRowing	
Advanced	industrial	Crops	on	marginal	lands	for	biorEfin-
eries”	(GRACE)	that	aims	to	prove	the	feasibility	of	large-	
scale	Miscanthus	cultivation	on	marginal	land.	Two	of	the	
eight	plot	scale	(PS)	trials	conducted	within	GRACE	pro-
ject	have	been	selected	for	this	study.	The	two	sites	were	
located	in	the	province	of	Piacenza	(NW	Italy):	PAC	1 lo-
cated	 in	 San	 Bonico	 (45°00′11.70″N,	 9°42′35.39″E)	 and	
PAC	2 located	in	Chiulano	(44°50′40.32″N,	9°35′04.93″E)	
(Figure	1).	Former	 land	use	was	arable	 land	with	cereal	
crops	 rotation	 and	 permanent	 meadow,	 respectively,	
in	 PAC	 1	 and	 PAC	 2.	 The	 climate	 in	 both	 locations	 is	
temperate.	 The	 sites	 differ	 for	 soil	 type	 and	 elevation	
(Figure  1).	 Meteorological	 data	 were	 collected	 from	 au-
tomatic	 weather	 stations	 located	 at	 each	 experimental	
site	(Table 1).	Experimental	layout	was	a	complete	rand-
omized	block	design	with	14 Miscanthus	hybrids	(Table 2)	
with	n = 4	replicates	for	a	total	of	n = 56	plots.	Plot	size	
was	6 m × 7 m.	The	14 hybrids,	coded	from	GRC	1	to	GRC	
15	(except	GRC	12),	were	grouped	into	three	main	geno-
types:	M.	x giganteus	as	control	genotype,	and	interspecific	
(M.	sin x M.	sac)	and	intraspecific	(M.	sin x M.	sin)	hybrids	
genotypes.	Both	PS	 trials	were	established	 in	April	2018	
after	 winter	 ploughing	 and	 spring	 seed	 bed	 preparation	
(power	 harrowing).	 Plugs	 and	 rhizomes	 were	 manually	
transplanted	 while	 mechanical	 weeding	 during	 the	 first	
years	 was	 performed	 three	 times.	 Neither	 irrigation	 nor	
fertilization	was	applied.	Measurements	of	this	study	were	
carried	 in	 the	 second	 and	 third	 growing	 season	 during	
senescence.

2.2	 |	 Crop measurements

Senescence	 was	 tracked	 visually	 following	 the	 scoring	
method	proposed	by	Robson	et	al.	(2011),	which	is	based	
on	a	scale	from	1	to	9,	where	1	indicates	the	lowest	level	
of	 “greenness”	 of	 the	 whole	 visible	 aerial	 parts	 of	 the	
plant	 and	 9	 is	 the	 score	 attributed	 when	 no	 visible	 leaf	
senescence	occurs.	Scores	were	acquired	from	August	to	
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February	(until	harvest)	for	a	total	of	10	events	in	PAC	1	
and	9	in	PAC	2.	Besides	scoring	senescence,	at	each	meas-
urement	event,	whole	stem	samples	randomly	selected	for	
each	 plot	 (20	 for	 M.	 sin x M.	 sin	 and	 10	 for	 M.	 sin x M.	
sac	hybrids,	respectively)	were	sampled	to	calculate	plant	
moisture	 content.	 Samples	 were	 weighed	 immediately	
after	 harvest	 and	 again	 after	 having	 been	 oven-	dried	 at	
105°C,	and	then,	the	percentage	of	moisture	content	was	
calculated	(Samuelsson	et	al.,	2006).

2.3	 |	 UAV multispectral data and 
vegetation indices

The	unmanned	aerial	vehicle	(UAV)	used	in	the	experi-
ment	was	a	 four-	rotator	DJI	Matrice	210	RTK	(SZ	DJI	
Technology	 Co.)	 combined	 with	 an	 RTK	 (Real-	Time	
Kinematic)	 GPS	 positioning	 system.	 At	 each	 visual	
scoring	 event,	 a	 UAV	 multispectral	 data	 acquisition	
was	 performed;	 in	 addition,	 10	 supplementary	 flight	
missions	were	carried	out	on	PAC	1	and	five	on	PAC	2	
to	 increase	 the	 frequency	 of	 senescence	 tracking.	 Ten	
flights	 were	 performed	 over	 PAC	 1	 in	 both	 seasons,	
while	in	PAC	2,	6	and	8	flights	were	realized	in	the	first	
and	second	seasons,	respectively	(Table	S1).	The	UAV	
was	 equipped	 with	 a	 MicaSense	 RedEdge-	Mx	 multi-
spectral	 camera	 (MicaSense).	 RedEdge-	Mx	 camera	
can	acquire	the	images	in	five	different	spectral	bands:	
blue	(475 nm	center,	32 nm	bandwidth),	green	(560 nm	
center,	27 nm	bandwidth),	red	(668 nm	center,	14 nm	

bandwidth),	 red	 edge	 (717  nm	 center,	 12  nm	 band-
width)	and	near-	infrared	(840 nm	center,	57 nm	band-
width).	 All	 the	 flights	 were	 performed	 between	 11.00	
and	15.00.	The	flight	altitude	above	ground	level	(AGL)	
was	40–	50 m	in	PAC	1	and	80–	100 m	in	PAC	2.	The	for-
ward	overlap	was	set	at	80%	and	lateral	overlap	was	set	
at	75%	of	the	images.	The	flight	speed	was	set	at	3 m/s.	
The	ground	sampling	distance	(GSD)	was	2.78–	3.47 cm	
and	 5.56–	6.94  cm	 in	 PAC	 1	 and	 PAC	 2,	 respectively.	
The	flight	was	performed	in	automatic	mode	with	way-
point	routes	as	the	presence	of	a	GPS	navigation	system	
enables	 a	 more	 accurate	 image	 acquisition.	 The	 DJI	
Pilot	 software	 (SZ	 DJI	 Technology	 Co.)	 was	 used	 for	
flight	planning	and	automatic	mission	control.	For	the	
radiometric	 calibration	 of	 the	 images,	 the	 reflectance	
of	a	spectral	panel	(MicaSense)	with	reflectance	values	
provided	by	MicaSense	was	captured	before	each	flight.	
In	 addition,	 a	 light	 sensor	 that	 automatically	 adjusts	
the	readings	to	ambient	light	was	mounted	at	the	top	of	
the	UAV	to	minimize	error	during	image	capture.	The	
radiometric	calibration,	 image	mosaicking,	and	ortho-
mosaic	generation	were	done	using	the	Pix4D	mapper	
(Pix4D,	 S.A.).	 The	 orthomosaic	 in	 reflectance	 values	
generated	 from	the	software	was	used	 for	 the	calcula-
tion	of	54	vegetation	indices	(VIs)	as	shown	in	Table	S2.	
To	extract	the	spectral	information	of	each	experimen-
tal	plot,	 the	polygons	of	 the	experimental	design	were	
drafted	 in	 AutoCAD	 (Autodesk)	 and	 georeferenced	
based	on	the	UAV	multispectral	images	by	using	QGIS	
software	(QGIS	Development	Team,	2021).

F I G U R E  1  Locations,	experimental	field	design,	main	soil	properties	and	drone	picture	of	Miscanthus	trials
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2.4	 |	 Machine learning model for 
moisture content estimation

A	 recursive	 feature	 elimination	 (RFE)	 algorithm	 (Feng	
et	al.,	2020;	Yue	et	al.,	2018)	was	initially	applied	to	solve	
the	 multicollinearity	 problem	 among	 VIs	 by	 selecting	
the	most	important	VIs	for	moisture	content	estimation.	
Inputs	for	the	RFE	algorithm	were	the	predictor	variables	
(the	 54  VIs	 calculated	 from	 UAV	 multispectral	 images)	
and	the	corresponding	target	values	(the	measured	plant	
moisture	 content).	 In	 the	 RFE	 algorithm,	 the	 random	
forest	 (RF)	 model	 was	 used	 to	 minimize	 the	 root	 mean	
square	 error	 (RMSE).	 The	 RFE	 results	 were	 combined	
with	 the	 “pickSizeTolerance”	 function	 to	 select	 a	 model	
containing	 fewer	 predictor	 variables	 within	 the	 bounds	
of	a	user-	defined	threshold	metric	(Parmley	et	al.,	2019).	
RMSE	metric	and	the	0%,	1%,	and	5%	tolerance	thresholds	
were	 utilized	 to	 identify	 models	 with	 acceptable	 perfor-
mance	but	with	fewer	predictor	variables.

On	the	selected	VIs,	RF	was	then	used	to	estimate	the	
moisture	content	of	Miscanthus	hybrids.	RF	model	 is	an	
ensemble	 learning	model	where	the	output	averages	 the	
result	of	multiple	regression	trees	(Kamir	et	al.,	2020).	The	
RF	models	were	created	using	the	caret	R	package	(Kuhn,	
2008).	 Two	 steps	 in	 RF	 modeling	 were	 adopted:	 Firstly,	
RF	was	trained	and	tested	on	the	VIs	selected	from	RFE	
algorithm	at	the	tolerance	threshold	of	1%;	secondly,	the	
three	 categorical	 crop	 variables	 (material,	 hybrid	 code,	
and	 genotype,	 Table	 2)	 and	 their	 combinations	 were	
added	in	RF	modeling	to	check	for	improvement	in	mod-
el's	performance.

For	the	RF	modeling,	the	optimal	size	of	the	variable	
subset	 (“mtry”)	 was	 obtained	 by	 grid-	searching	 method	
using	repeated	k-	fold	cross-	validation.	The	repeated		k-	fold	
cross-	validation	consists	of	dividing	the	data	into	k	inde-
pendent	folds	of	the	same	size,	training	the	algorithm	on	
(k−1)	folds,	and	testing	its	accuracy	on	the	remaining	fold	
based	 on	 the	 error	 between	 predicted	 and	 target	 values	
several	 times	(Kamir	et	al.,	2020).	 In	our	study,	we	used	
a	tenfold	cross-	validation,	which	was	repeated	five	times.	
This	procedure	was	used	to	estimate	the	moisture	content	
and	to	evaluate	the	transferability	of	the	models	tested	on	
five	subset	test	datasets:	four	specific	season	and	location	

datasets	 (two	 locations	 x	 two	 growing	 seasons)	 and	 one	
reference	 dataset,	 as	 a	 comparison.	 The	 reference	 data-
set	 was	 created	 by	 using	 a	 stratified	 random	 sampling	
method	(Han	et	al.,	2019):	data	 from	both	 locations	and	
seasons	 were	 split	 into	 70/30	 between	 training	 and	 test-
ing	 based	 on	 moisture	 content	 distribution.	 To	 include	
the	categorical	variables	into	the	models	(second	step),	a	
one-	hot-	encoded	 approach	 was	 used	 to	 encode	 categori-
cal	variables	into	numbers,	assigning	the	value	1	when	the	
condition	is	satisfied	and	0	when	it	is	not	satisfied.

RF	 models’	 performances	 were	 evaluated	 calculating	
the	 root	mean	square	error	 (RMSE)	and	 the	normalized	
root	mean	square	error	(NRMSE)	as	follows:

where	n	is	the	sample	number,	xi	and	yi	are	the	estimated	
and	 measured	 moisture	 content,	 and	 ȳ	 is	 the	 mean	 of	
the	measured	value.	The	performance	metrics	were	also	
calculated	for	different	intervals	of	moisture	content	and	
each	 Miscanthus	 hybrid.	The	 moisture	 content	 intervals	
investigated	were	lower	than	30%,	between	30%	and	60%,	
higher	than	60%,	and	finally	between	10%	and	80%.	The	
set	 size	 used	 for	 each	 training	 dataset	 was	 reported	 to	
compare	the	metrics	of	the	models.	For	each	model,	the	
RMSE	 and	 NRMSE	 were	 calculated	 for	 each	 genotype	
and	for	the	different	moisture	content	intervals	to	evalu-
ate	the	models.

2.5	 |	 GAM for phenotyping Miscanthus 
senescence dynamics

The	 moisture	 content	 during	 senescence	 was	 esti-
mated	 from	 spectral	 data	 acquired	 by	 UAV	 using	 the	
validated	 RF	 model:	 This	 approach	 was	 selected	 to	
add	 supplementary	 flights	 to	 the	 dataset	 without	 field	

RMSE =

�

∑n
i=1

�

xi−yi
�2

n

NRMSE (%) =

�

∑n
i=1 (xi−yi)

2

n

y
100

T A B L E  2 	 Characteristics	of	the	14	Miscanthus	hybrids	considered	in	this	study

Material Hybrid code Genotype
Planting 
density

Seed-	based	plugs GRC	1–	8 M. sinensis x M. sinensis 3	plants/m2

Rhizomesa GRC	9 M. x giganteus 1.5	plants/m2

Seed-	based	plugs GRC	10–	14	(except	GRC	12) M. sinensis x M. sacchariflorus 1.5	plants/m2

Rhizomesa GRC	15 M. sinensis x M. sacchariflorus 1.5	plants/m2

aHybrids	commercially	available.
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measurements.	 The	 validated	 RF	 model	 included	 as	
predictor	 variables	 the	 VIs	 and	 the	 three	 categorical	
variables.	 The	 time	 series	 moisture	 content	 dataset	 es-
timated	from	RF	was	fitted	against	the	modified	day	of	
the	year	(DOY).	Early	and	late	senescence	in	Miscanthus	
occur	normally	in	two	different	years.	To	overcome	the	
problem	 of	 having	 nonsequential	 DOY	 data	 along	 the	
senescence	 season,	 moisture	 content	 data	 of	 January	
and	February	were	calculated	by	adding	365	to	the	DOY	
of	the	corresponding	year.	To	phenotype	the	dynamics	
of	 senescence	 and	 identify	 stay-	green	 (SG)	 trait	 of	 the	
different	 Miscanthus	 hybrids,	 statistical	 analysis	 of	 the	
estimated	moisture	content	time	series	was	carried	out	
via	a	generalized	additive	model	(GAM).	The	regression	
model	GAM	is	a	nonparametric	extension	of	the	gener-
alized	linear	model	(GLM),	which	allows	the	integration	
of	 nonparametric	 smoothing	 functions	 and	 nonlinear	
fitting	 of	 the	 variables.	 GAM	 models	 were	 fitted	 in	 R	
package	 “mgcv”	 (Wood,	 2017).	 The	 fitted	 model	 used	
fixed	factors	and	a	smooth	for	DOY,	based	on	location,	
season,	and	hybrid.	GRC	9	(M.	x giganteus)	was	used	a	
reference	to	detect	difference	between	interspecies	and	
intraspecies	Miscanthus	hybrids.

3 	 | 	 RESULTS

3.1	 |	 Dynamics of moisture content in 
Miscanthus biomass

The	 frequency	distribution	of	measured	moisture	con-
tent	and	its	variation	during	the	two	senescence	seasons	
at	 two	 locations	are	 shown	 in	Figure	2	and	Figure	S1.	
Overall,	the	peak	of	frequency	distribution	of	moisture	
content	 values	 was	 recorded	 for	 all	 genotypes	 within	
the	 interval	between	30%	and	60%	(Figure	2).	M.	sin x 
M.	sin	showed	a	left-	skewed	distribution	with	relatively	
high-	frequency	values	for	moisture	content	below	30%	
(Figure	 2).	 Moisture	 content	 loss	 started	 at	 the	 begin-
ning	 of	 December	 at	 both	 locations	 and	 for	 all	 geno-
types	 (Figure	 S1).	 M.	 sin x M.	 sac	 hybrids	 showed	 a	
higher	moisture	content	(+18%	and	+6%)	than	M.	sin x 
M.	sin	hybrids	and	M.	x giganteus	in	both	locations	from	
December	 until	 harvest	 in	 late	 winter	 (Figure	 2	 and	
Figure	S1).	On	average,	M.	sin x M.	sac	hybrids	and	the	
M.	x	giganteus	were	harvested	at	45%	and	37%	moisture	
content,	respectively	(Figure	2	and	Figure	S1).	M.	sin	x	
M.	sin	hybrids	had	an	average	moisture	content	at	win-
ter	 harvest	 of	 22%.	 The	 dynamics	 of	 moisture	 content	
during	senescence	are	confirmed	by	visual	recording	of	
senescence	score	based	on	plant	greenness	(Figure	S2).	
For	 all	 genotypes,	 the	 correlation	 between	 senescence	

score	 and	 moisture	 content	 indicated	 that	 moisture	
content	 loss	 starts	 when	 senescence	 score	 values	 of	 4	
are	recorded.

3.2	 |	 Recursive feature elimination of 
vegetation indices

The	optimal	number	of	vegetation	indices	(VIs)	included	
in	 the	 models	 to	 minimize	 RMSE	 in	 the	 estimation	 of	
moisture	 content	 was	 obtained	 by	 the	 recursive	 fea-
ture	 elimination	 (RFE)	 algorithm	 with	 repeated	 cross-	
validation	 (Figure	 3).	 RFE	 analysis	 showed	 that	 using	
four	 or	 less	 VIs	 led	 to	 a	 moisture	 content	 estimation	
with	RMSE	values	higher	than	8%	(Figure	3a).	With	the	
0%	tolerance	threshold,	the	minimum	RMSE	(7.4%)	was	
achieved	with	30 VIs.	However,	the	use	of	20	or	more	VIs	
led	to	a	moisture	content	estimation	with	a	mean	RMSE	
value	 of	 7.4%.	 On	 the	 contrary,	 with	 the	 thresholds	 of	
tolerance	of	1%	and	5%,	 the	optimal	number	of	VIs	was	
14	 (RMSE  =  7.5%)	 and	 6	 (RMSE  =  7.8%),	 respectively	
(Figure	 3a).	 The	 threshold	 of	 tolerance	 of	 1%	 was	 cho-
sen	as	 the	 threshold	 that	maximizes	 the	model's	perfor-
mances	with	the	minimum	number	of	VIs.	According	to	
the	 importance	 of	 the	 ranking	 (Figure	 3b),	 14  VIs	 have	
been	 selected	 for	 RF	 models	 training	among	 the	 54  VIs	
calculated	 (Figure	 3b).	 The	 14  VIs	 were	 BNDVI,	 GDVI,	
PSRI,	MCARI/MTVI2,	GOSAVI,	NGBDI,	NLI,	GBNDVI,	
GLI,	MCARI/OSAVI2,	SIPI,	MCARI2,	OSAVI2,	and	GI.	
The	six	most	important	VIs	to	reach	5%	tolerance	(RMSE	
<7.8%)	 were	 (Figure	 3b)	 BNDVI,	 GDVI,	 PSRI,	 MCARI/
MTVI2,	GOSAVI,	and	NGBDI.

3.3	 |	 RF model performance and 
transferability

The	 performances	 (RMSE	 and	 NRMSE)	 of	 the	 ran-
dom	 forest	 (RF)	 models	 were	 compared	 among	 the	
season-	specific	 datasets	 of	 the	 two	 location	 and	
against	one	reference	dataset	 (split	 into	70/30	 train-
ing/test)	 (Table	 3).	 When	 all	 the	 genotypes	 and	 all	
moisture	 content	 intervals	 were	 considered,	 the	 RF	
model	of	the	reference	dataset	was	the	most	accurate	
one	 among	 the	 five	 models	 considered	 in	 estimat-
ing	Miscanthus	moisture	content	(RMSE = 6.9%	and	
NRMSE  =  14%).	 The	 other	 models	 achieved	 lower	
accuracy	 values	 with	 RMSE	 ranging	 from	 9.2%	 to	
10.6%	and	NRMSE	from	20.1%	to	22.1%.	The	accuracy	
of	 the	 RF	 models	 trained	 with	 the	 season–	location-	
specific	 datasets	 and	 for	 the	 intervals	 of	 moisture	
content	of	30%–	60%	and	>60%	was	on	average	similar	
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(RMSE  =  8.5%)	 to	 the	 accuracy	 of	 the	 RF	 model	
trained	with	the	reference	dataset	for	the	same	inter-
vals	(RMSE = 6.3%).	On	the	contrary,	the	accuracy	of	
the	RF	models	for	the	season–	location-	specific	data-
sets	 was	 lower	 for	 the	 interval	 of	 moisture	 content	
<30%	 (RMSE  =  16.4%)	 than	 the	 reference	 dataset	
(RMSE = 10.7%	and	6.3%,	respectively).

The	addition	of	categorical	variables	(material,	hybrid	
code,	 and	 genotype	 of	 Table	 2)	 to	 the	 reference	 dataset	
model	of	VIs	 improved	the	accuracy	of	moisture	content	
estimation	 (Figure	 4).	 The	 single	 addition	 of	 material,	
hybrid	code,	or	genotype	 in	 the	model	 (Figure	4b–	d)	de-
creased	the	RMSE	from	6.9%	(model	with	only	Vis)	to	6.8%,	
6.4%,	and	5.7%,	respectively.	The	simultaneous	addition	of	
three	categorical	variables	to	the	model	achieved	the	best	
performance	with	an	RMSE = 5.6%	and	NRMSE = 11.4%	
(Figure	4e).	Finally,	the	RMSE	of	all	models	was	evaluated	
for	each	genotype	(Figure	4f).	The	addition	of	categorical	
variables	 decreased	 the	 RMSE	 value	 with	 respect	 to	 the	
model	with	only	VIs	for	the	M.	x giganteus	genotype	from	
7.6%	to	5.6%,	for	the	interspecific	M.	sin x M.	sac	genotype	
hybrids	from	6.9%	to	4.7%,	while	for	intraspecific	M.	sin x 
M.	sin	genotype	hybrids	from	6.8%	to	6.1%.

3.4	 |	 Phenotyping of Miscanthus 
senescence dynamics with multiple 
UAV flights

The	 RF	 model	 trained	 with	 the	 VIs	 and	 the	 three	 cat-
egorical	variables	was	used	to	estimate	moisture	content	
of	 Miscanthus	 hybrids	 from	 spectral	 data	 of	 multiple	
UAV	flights	at	two	locations.	Generalized	additive	model	
(GAM)	was	applied	to	time	series	moisture	content	data	
estimated	from	RF	model,	with	the	M.	x giganteus	(GRC	9)	
as	reference	for	estimating	significant	differences	among	
the	 hybrids	 during	 senescence.	 M.	 sin x M.	 sin	 hybrids	
(GRC	1–	8)	from	DOY	280	(mid-	early	October)	showed	a	
constant	and	significant	lower	moisture	content	than	the	
M.	x giganteus	hybrid	(Figure	5).	The	first	genotype	show-
ing	a	significant	difference	in	moisture	content	compared	
to	GRC	9	was	GRC	5,	at	DOY	260	(mid-	September),	while	
the	 last	 was	 GRC	 1,	 at	 DOY	 312	 (mid-	early	 November).	
Intraspecies	 M.	 sin x M.	 sin	 hybrids	 showed	 the	 highest	
variability	 on	 moisture	 content	 loss	 during	 senescence	
compared	to	interspecies	M.	sin x M.	sac	hybrids.	The	es-
timated	 difference	 of	 moisture	 content	 at	 harvest	 varied	
from	10.2%	for	GRC	1	to	14.5%	for	GRC	6.	On	the	contrary,	

F I G U R E  2  Frequency	distribution	of	the	moisture	content	of	different	Miscanthus	genotypes	during	the	two	seasons	and	on	two	
locations
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constant	 negative	 differences	 compared	 to	 GRC9	 oc-
curred	later	in	the	season	(early	November)	for	interspe-
cific	M. sin x M.	sac	hybrids	(GRC	10–	15).	The	difference	
is	 statistically	 significant	 approximately	 from	 DOY	 295	
(mid-	late	October)	for	GRC	10 hybrid	and	from	DOY	314	
(mid-	early	November)	for	GRC	13 hybrid.	At	harvest,	the	
estimated	moisture	content	difference	varied	from	−9.2%	
for	GRC	11	to	−10%	for	GRC	14.	The	rhizome-	based	GRC	
15 hybrid,	a	M.	 sin x M.	 sac	 genotype,	 showed	a	 similar	
moisture	 content	 dynamics	 to	 the	 other	 rhizome-	based	
hybrid	(GRC	9).

4 	 | 	 DISCUSSION

The	 characterization	 of	 moisture	 content	 dynamics	 of	
Miscanthus	biomass	is	important	to	determine	the	harvest	
time	and	selecting	the	most	suitable	genotypes	in	each	en-
vironment.	This	study	estimated	the	moisture	content	of	
14	contrasting	Miscanthus	hybrids	combining	unmanned	
aerial	vehicle	(UAV)	remote	sensing	and	machine	learn-
ing.	 The	 random	 forest	 (RF)	 model	 was	 trained	 with	
moisture	content	values	measured	directly	from	each	plot	

trial,	UAV	multispectral	data	(the	vegetation	indices),	and	
categorical	variables	of	Miscanthus	hybrids	(material,	hy-
brid	code,	and	genotype).	The	time	series	of	the	moisture	
content	values	estimated	by	RF	model	 from	VIs	derived	
from	multiple	UAV	flights	was	used	for	phenotyping	se-
nescence	 dynamics	 and	 identifying	 the	 stay-	green	 (SG)	
trait	of	Miscanthus	hybrids	using	the	generalized	additive	
model	(GAM).

4.1	 |	 Selection of multispectral 
vegetation indices for Miscanthus moisture 
content estimation

Increasing	the	number	of	VIs	from	1	to	14	improved	the	
RF	model's	accuracy	and	allowed	to	decrease	RMSE	from	
10%	to	7.5%	(Figure	3a).	Generally,	the	estimation	of	the	
crop	 parameters	 via	 multiple	 VIs	 is	 affected	 by	 data	 re-
dundancy	 and	 multicollinearity	 among	 some	 vegetation	
indices	(VIs)	(Yue	et	al.,	2018).	The	use	of	recursive	fea-
ture	elimination	(RFE)	algorithm	proved	to	be	a	suitable	
approach	to	minimize	RMSE	while	reducing	the	noise	ef-
fect	caused	by	data	redundancy	and	multicollinearity,	as	

F I G U R E  3  (a)	Results	of	the	RFE	algorithm	with	different	tolerance	thresholds	and	(b)	importance	of	the	VIs	used	in	the	different	
tolerance	thresholds	(blue = 5%,	yellow = 1%	and	grey = 0%)
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suggested	by	Han	et	al.	(2019)	and	Anderegg	et	al.	(2020).	
This	 study	 showed	 that	 the	 three	 most	 important	 VIs	
for	 estimating	 moisture	 content	 were	 VIs	 based	 on	 blue	
(BNDVI),	 green	 (GDVI),	 and	 red-	edge	 (PSRI)	 spectral	
bands	 (Figure	3b).	Zhu	et	al.	 (2019)	 found	 that	 the	blue	
band	is	sensitive	to	the	change	of	carotenoid	content	and	
the	green	and	red-	edge	bands	are	sensitive	to	the	change	
of	chlorophyll	content.	VIs	based	on	these	spectral	bands	
indeed	have	been	used	to	study	crop	senescence	dynam-
ics	(Anderegg	et	al.,	2020;	Peñuelas	&	Inoue,	1999).	The	
blue	 band	 proved	 to	 be	 the	 most	 important	 variable	 for	
predicting	 harvest	 date	 (pod's	 maturity)	 in	 soybean	 (Yu	
et	al.,	2016).	Anderegg	et	al.	(2020)	reported	that	the	time	
series	of	PSRI	could	accurately	track	senescence	dynam-
ics	of	the	canopy	of	wheat	and	replace	the	visual	scorings.	
Furthermore,	the	SIPI	was	strongly	correlated	with	rela-
tive	water	content	(RWC)	and	can	indirectly	evaluate	leaf	
water	 stress	 (Peñuelas	 &	 Inoue,	 1999).	 Also,	 this	 study	
confirmed	 that	 the	 VIs	 selected	 by	 the	 RFE	 algorithm	
and	 used	 in	 the	 RF	 model	 were	 sensitive	 to	 changes	 of	
chlorophyll/carotenoid	 ratio	 during	 senescence.	 Finally,	
although	 no	 VIs	 based	 on	 the	 SWIR	 band	 were	 used	 in	

this	 study,	 it	 was	 demonstrated	 that	 the	 combination	 of	
multiple	VIs	based	on	VIS-	NIR	 images	compensated	 for	
the	lack	of	the	SWIR	band,	which	is	known	to	predict	well	
crop	moisture	content	when	integrated	with	VIs	such	as	
NDWI	(Zhang	&	Zhou,	2019).

4.2	 |	 Moisture content estimation with a 
machine learning algorithm

This	 study	 estimated	 the	 moisture	 content	 with	 the	 RF	
model,	 trained	 with	 a	 wide	 range	 of	 genotypes,	 across	
two	 senescence	 seasons	 and	 at	 two	 different	 locations,	
differing	 strongly	 in	 soils	 and	 slightly	 in	 climate.	 These	
differences,	 as	 suggested	 by	 Maxwell	 et	 al.	 (2018),	 help	
to	 assess	 the	 RF	 model	 transferability.	 The	 transferabil-
ity	 of	 the	 moisture	 content	 estimation	 models	 was	 eval-
uated	 by	 splitting	 the	 moisture	 content	 dataset	 into	 five	
test	datasets.	The	performance	metrics	of	the	RF	models	
showed	 that	 a	 good	 accuracy	 (6.9%	 of	 RMSE	 and	 14.0%	
of	NRMSE)	was	achieved	when	all	the	genotypes	and	all	
moisture	content	intervals	were	considered	in	the	models	

F I G U R E  4  Estimated	versus	measured	moisture	content	(%)	of	Miscanthus	with	RF	model	with	only	VIs	and	no	categorical	variables	
(a),	with	the	addition	of	transplanting	material	(b),	of	hybrid	(c),	of	genotype	(d)	and	their	combination	(e).	RMSE	for	each	model	is	reported	
as	barplot	(f)	according	to	the	different	genotypes
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(Table	3).	Similar	results	were	reported	by	Li	et	al.	(2021)	
to	estimate	the	moisture	content	of	three	species	of	trees,	
who	 achieved	 an	 NRMSE	 between	 8.6%	 and	 13.9%.	 The	
models	evaluated	to	estimate	the	moisture	content	might	
be	affected	by	errors	in	the	estimation	in	some	moisture	
content	 intervals	due	 to	 limits	 in	 the	range	of	data	used	
to	 train	 the	 model	 (Shah	 et	 al.,	 2019).	 Indeed,	 small	 in-
creases	in	RF	models	performance	were	found	when	the	
models	were	trained	with	the	specific	season	and	location	
datasets.	This	difference	is	due	to	different	models’	accu-
racy	when	the	moisture	content	is	<30%.	During	the	two	
seasons,	many	hybrids	did	not	 reach	 such	 low	moisture	
content,	and	thus,	the	training	set	size	for	this	interval	was	
lower.

To	assess	the	performance	of	the	models	in	identify-
ing	the	optimal	harvest	dates	based	on	moisture	content	
at	 different	 endpoints	 of	 drying,	 the	 moisture	 content	
dataset	 was	 indeed	 divided	 into	 different	 intervals	
(<30%,	30–	60,	>60%,	and	10–	80%).	It	is	considered	that	
the	optimal	moisture	content	for	the	Miscanthus	winter	
harvest	is	at	or	below	20%	(Lewandowski	et	al.,	2016)	in	
order	to	avoid	self-	ignition	of	biomass,	minimize	trans-
port	costs,	and	increase	combustion	efficiency	(Robson	
et	al.,	2011).	In	this	study,	especially	novel	interspecies	
seed-	based	 M.	 sin x M.	 sac	 hybrids	 rarely	 reached	 at	
harvest	 a	 moisture	 content	 lower	 than	 30%	 (Figure	 2),	
while	M.	sin x M.	sin	 in	some	cases	dried	until	10%.	In	
the	 low	 moisture	 content	 interval	 (<30%),	 a	 large	 dif-
ference	in	RMSE	was	found	between	the	model	trained	
with	the	reference	dataset	and	on	the	season–	location-	
specific	 datasets	 (Table	 3).	 These	 results	 indicate	 that	
the	tested	models	cannot	be	transferred	with	good	accu-
racy	to	locations	and	or/growing	seasons	where	biomass	
of	 these	genotypes	dried	until	moisture	content	<30%.	
The	low	transferability	of	RF	beyond	the	extreme	values	
of	the	training	data	range	confirmed	that	this	is	one	of	
the	main	limits	of	the	RF	model	(Johansen	et	al.,	2020;	
Vuolo	et	al.,	2013).	On	the	contrary,	the	RF	models	were	
transferable	 in	different	 locations	and	growing	seasons	
for	 moisture	 content	 values	 ranging	 between	 30%	 and	
60%	 (Table	 3).	 The	 training	 set	 size	 and	 the	 moisture	
content	distribution	during	senescence	confirmed	to	be	
the	 most	 important	 dataset's	 characteristics	 to	 achieve	
good	 model's	 performances	 (Millard	 &	 Richardson,	
2015)	and	transferability	(Johansen	et	al.,	2020).

The	addition	of	categorical	variables	in	RF	model	im-
proved	 the	 estimation	 of	 moisture	 content.	 Introducing	
three	 categorical	 variables	 such	 as	 material,	 hybrid,	 and	
genotype	 decreased	 more	 the	 RMSE	 than	 adding	 only	
material	 type	 (Figure	 4b,e).	The	 M.	 sin x M.	 sac	 and	 M.	
x giganteus	 genotypes	 showed	 the	 highest	 improvement	
of	 RMSE	 due	 to	 the	 addition	 of	 these	 categorical	 vari-
ables	 (Figure	 4f).	 The	 data	 imbalance	 in	 the	 “hybrid”	

categorical	variables	among	control	M.	x giganteus	(n = 1),	
interspecies	 (n  =  4),	 and	 intraspecies	 (n  =  8)	 genotype	
hybrids	 could	 have	 caused	 these	 differences	 in	 model's	
performance.

Another	limitation	of	the	RF	model	developed	in	this	
study	relies	on	the	fact	that	it	is	composed	of	multiple	VIs	
calculated	 with	 precise	 multispectral	 bands.	This	 means	
that	our	RF	model	might	not	reach	the	same	accuracy	if	
the	same	VIs	are	calculated	on	spectral	data	acquired	with	
different	multispectral	cameras	operating	within	different	
band	 intervals.	 This	 calls	 for	 the	 development	 of	 algo-
rithms	able	to	overcome	these	differences	in	the	spectral	
data	 through	 advanced	 normalization	 and	 calculation	
procedures	of	VIs	 from	different	 sensors	 (Emilien	et	al.,	
2021;	Hoque	&	Phinn,	2018).

4.3	 |	 Phenotyping stay- green trait via 
UAV remote sensing to capture genotypic 
variation during senescence

This	 study	 demonstrated	 that	 high-	throughput	 plant	
phenotyping	 (HTPP)	 of	 contrasting	 Miscanthus	 hybrids	
is	possible	by	combining	multiple	UAV	flights	and	GAM	
modeling.	 Stay-	green	 (SG)	 is	 an	 important	 phenotypic	
trait	when	evaluating	the	senescence	of	novel	Miscanthus	
hybrids.	The	goal	of	plant	breeders	is	to	obtain	high	yield-
ing	plants	with	high	biomass	quality.	In	Miscanthus,	a	de-
layed	senescence	is	expected	to	increase	yields,	while	an	
early	 senescence	 is	expected	 to	 increase	biomass	quality	
(Robson	et	al.,	2011).	In	our	environments,	senescence	of	
M.	 sin x M.	 sin	 hybrids	 led	 to	 drier	 biomass	 (22%	 mean	
moisture	 content	 in	 late	 February)	 than	 commercially	
available	 rhizome-	based	 hybrids	 (GRC	 9–	15	 with	 37%),	
while	 M.	 sin x M.	 sac	 hybrids	 showed	 an	 SG	 trait	 with	
an	average	moisture	content	of	45%	until	harvest.	These	
findings	confirmed	that	biomass	with	low	moisture	con-
tent	at	 the	harvest	 is	usually	 related	 to	early	 senescence	
in	 Miscanthus,	 as	 was	 found	 by	 Robson	 et	 al.	 (2011).	
However,	opposite	results	to	our	study	were	reported	by	
Nunn	et	al.	(2017)	that	observed	a	lack	of	relationship	be-
tween	 an	 early	 senescence	 and	 low	 moisture	 content	 at	
harvest	in	different	locations	across	Europe.

Mild	cold	conditions	during	autumn–	winter	periods	af-
fected	the	start	of	senescence	and	moisture	content	losses	
dynamics	until	 late	winter	harvest	 in	all	Miscanthus	hy-
brids.	The	overwintering	conditions	(e.g.,	number	and	fre-
quency	of	chilling	frosts)	between	the	start	of	senescence	
and	harvest	time	have	a	higher	effect	on	the	moisture	con-
tent	than	the	senescence	itself	(Sarath	et	al.,	2014).	That	
was	 the	 case	 in	 our	 two	 southern	 European	 locations,	
where	 a	 reduced	 frequency	 of	 killing	 frost	 days	 and	 ab-
sence	of	prolonged	freezing	periods	in	late	autumn–	early	
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winter	in	2019–	2020 seasons	(Table	1)	might	not	have	in-
duced	complete	senescence	in	the	M.	sin x M.	sac	hybrids	
leading	 to	 a	 higher	 moisture	 content	 at	 harvest.	 During	
the	first	years	after	establishment,	Miscanthus	might	have	
a	 reduced	 senescence	 (Clifton-	Brown	 &	 Lewandowski,	
2000)	 due	 to	 changes	 in	 the	 source–	sink	 dynamics	 of	
young	Miscanthus	plants	(Boersma	et	al.,	2015).	However,	
standing	 age	 did	 not	 affect	 in	 our	 case	 the	 observed	 de-
layed	senescence	since	measurements	were	done	on	ma-
ture	plantation	at	second	and	third	year.

Genotypic	variations	in	flowering	and	senescence	times	
are	 instead	 two	 key	 explanatory	 factors	 of	 SG	 trait	 ob-
served	in	perennial	crops.	The	relationship	between	flow-
ering	 and	 senescence	 in	 Miscanthus	 has	 been	 proposed	
to	 promote	 nutrient	 remobilization,	 and	 hence	 biomass	
quality	 improvement	 (Jensen	et	al.,	2016).	GAM	applied	
to	estimated	moisture	content	values	from	the	RF	model	
from	 multiple	 UAV	 flights	 helped	 us	 to	 capture	 differ-
ences	in	senescence	dynamics	in	contrasting	Miscanthus	
hybrids	(Figure	5).	A	constant	increase	in	the	differences	
between	 the	 estimated	 moisture	 content	 of	 interspecies	
M. sin x M.	sac	and	intraspecies	M.	sin x M.	sin	hybrids	was	
observed	between	DOY	300	(late	October)	and	DOY	350	
(mid-	December).	During	this	period,	the	mean	tempera-
ture	decreased	under	10°C.	Therefore,	under	these	mean	

temperature	conditions,	M.	sin x M.	sin	hybrids	might	be	
more	sensitive	to	temperatures	below	10°C	and	thus	start	
active	senescence	sooner	than	M.	x giganteus	and	M.	sin x 
M.	sac	hybrids	that	instead	showed	a	delayed	senescence.	
Fonteyne	 et	 al.	 (2016)	 reviewed	 the	 effect	 of	 frost	 and	
chilling	 stress	 in	 Miscanthus	 genotypes	 and	 found	 that	
M.  sacchariflorus	 was	 more	 resistant	 to	 cold	 stress	 than	
M. sinensis.	All	M.	sin x M.	sac	genotype	hybrids	showed	a	
more	persistent	SG	compared	to	M.	x giganteus	and	M.	sin x 
M.	sin	hybrids.	In	agreement	with	our	results,	Rusinowski	
et	 al.	 (2019)	 found	 that	 GNT 34  hybrid	 (GRC	 13	 in	 this	
study)	had	a	longer	SG	period	than	M.	x giganteus.	Only	
GRC	15	among	M.	sin x M.	sac	genotype	had	similar	se-
nescence	dynamics	to	the	M.	x giganteus.	The	similar	se-
nescence	dynamics	observed	for	these	two	commercially	
available	rhizome-	based	hybrids	confirm	that	transplant-
ing	material	(rhizome	vs.	seed-	based	plugs)	has	an	impact	
on	moisture	content	loss	during	senescence.	The	observed	
differences	in	senescence	time	and	moisture	content	loss	
rate	during	senescence	among	Miscanthus	genotypes	are,	
respectively,	linked	to	flowering	time	and	nutrient	remo-
bilization.	Other	 studies	confirming	 that	M.	 sin x M.	 sin	
hybrids	 flowered	 earlier	 (mid-	summer)	 than	 rhizome-	
based	M.	x giganteus	hybrid	while	M.	sin x M.	sac	never	
reached	flowering	(Clifton-	Brown	&	Lewandowski,	2002;	

F I G U R E  5  Senescence	dynamics	of	the	different	Miscanthus	hybrids	according	to	the	difference	in	estimated	moisture	content	with	
reference	hybrid	M.	x giganteus—	GRC	9	(dashed	black	line).	The	estimation	of	moisture	content	time	series	was	carried	out	by	using	a	
GAM.	Solid	and	dashed	coloured	lines	denote	respectively	significant	(p < 0.05)	and	not	significant	differences	of	the	corresponding	hybrid	
compared	to	reference	hybrid
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Nunn	et	al.,	2017).	Jensen	et	al.	(2016)	found,	for	similar	
contrasting	 hybrids,	 that	 nitrogen	 and	 phosphorous	 re-
mobilization	rate	to	underground	rhizomes	followed	the	
same	trend	of	moisture	content	loss	observed	also	in	our	
study.	 The	 absence	 or	 delay	 of	 flowering,	 respectively,	
in	M.	 sin x M.	 sac	 and	rhizome-	based	hybrids	may	have	
caused	delayed	senescence	that	was	also	observed	in	the	
SG	trait	in	this	study.	As	a	consequence,	these	genotypes	
were	 harvested	 at	 higher	 moisture	 content	 (Figure	 S1)	
and	 likely	higher	nutrient	content	compared	 to	M.	 sin x 
M.	 sin	 hybrids.	 The	 high	 variability	 among	 Miscanthus	
hybrids	in	moisture	content	loss	dynamics	during	senes-
cence	(Figure	5)	might	be	further	explained	by	the	wider	
geographical	 distribution	 of	 M.	 sinensis	 than	 of	 M.	 sac-
chariflorus	 (Clifton-	Brown	 &	 Hastings,	 2015).	 This	 may	
have	 produced	 a	 higher	 genetic	 variation	 of	 the	 pheno-
typic	 traits	 due	 to	 the	 hybridization	 among	 M.	 sinensis	
species	 (Robson	 et	 al.,	 2011).	 Additionally,	 also	 the	 cold	
resistance	trait	likely	depends	on	the	origin	and	in	situ	en-
vironmental	characteristics	of	the	genetic	accession	of	the	
Miscanthus	species.	In	fact,	opposite	results	to	our	study	
were	 reported	 by	 Clifton-	Brown	 et	 al.	 (2002)	 showing	
that	different	M. sin x M.	sin	hybrids	had	delayed	senes-
cence	with	respect	to	M.	x giganteus	and	M.	sacchariflorus	
hybrids.

In	conclusion,	 this	 study	demonstrated	 that	moisture	
content	 of	 Miscanthus	 can	 be	 accurately	 estimated	 via	
machine	 learning	algorithm	applied	 to	multiple	VIs	cal-
culated	from	UAV-	based	VIS-	NIR	images.	The	RF	model	
developed	on	different	genotypes	showed	a	good	transfer-
ability	 to	 multiple	 location	 and	 seasons	 when	 moisture	
content	ranges	from	30%	to	60%.	Further	training	datasets	
are	required	to	extend	the	transferability	and	confirm	the	
same	performance	of	the	RF	model	at	lower	moisture	con-
tent	values	(10%–	30%).	For	the	first	time,	we	showed	that	
the	combination	of	machine	learning	(ML)	and	GAM	ap-
plied	to	time	series	of	moisture	content	values	estimated	
from	VIs	derived	from	multiple	UAV	flights	is	a	powerful	
tool	for	high-	throughput	plant	phenotyping.	Remote	sens-
ing	can	be	used	for	phenotyping	future	advanced	breeding	
programs	of	Miscanthus.	The	possibility	to	distinguish	via	
remote	sensing	the	SG	trait	of	novel	Miscanthus	hybrids	
can	 deepen	 our	 understanding	 of	 key	 factors	 mediating	
the	 induction	of	 early	or	delayed	 senescence.	Our	 study	
focused	on	the	use	of	ML	algorithms	to	estimate	moisture	
content	 during	 Miscanthus	 senescence,	 but	 we	 believe	
that	 the	 same	 methodological	 approach	 can	 be	 used	 for	
estimating	other	phenological	traits	or	yield	components	
in	similar	and/or	different	crops.	This	is	particularly	rele-
vant	for	upscaling	models	from	experimental	plot	to	field	
scale	by	using	satellites.	Satellites	can	collect	data	of	many	
fields	 simultaneously,	 with	 a	 larger	 number	 of	 spectral	
bands,	like	the	SWIR	band,	that	could	ultimately	support	

with	high	precision	and	resolution	moisture	content	and	
yield	 estimation.	 ML	 algorithms	 could	 be	 applied	 in	 re-
mote	 sensing	 to	 develop	 satellite	 and	 UAV	 applications	
beneficial	to	sustainable	crop	management,	for	example,	
in	the	case	of	Miscanthus	to	identify	optimal	harvest	date	
or	to	predict	commercial	yield	(quantity	and	quality).
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