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A B S T R A C T   

The manual prediction of plant species and plant diseases is expensive, time-consuming, and requires expertise 
that is not always available. Automated approaches, including machine learning and deep learning, are 
increasingly being applied to surmount these challenges. For this, accurate models are needed to provide reliable 
predictions and guide the decision-making process. So far, these two problems have been addressed separately, 
and likewise, separate models have been developed for each of these two problems, but considering that plant 
species and plant disease prediction are often related tasks, they can be considered together. We therefore 
propose and validate a novel approach based on the multi-task learning strategy, using shared representations 
between these related tasks, because they perform better than individual models. We apply a multi-input 
network that uses raw images and transferred deep features extracted from a pre-trained deep model to pre
dict each plant's type and disease. We develop an end-to-end multi-task model that carries out more than one 
learning task at a time and combines the Convolutional Neural Network (CNN) features and transferred features. 
We then evaluate this model using public datasets. The results of our experiments demonstrated that this Multi- 
Input Multi-Task Neural Network model increases efficiency and yields faster learning for similar detection tasks.   

1. Introduction 

Plant disease detection is crucial for preventing plant plagues and 
minimizing crop risk (Argüeso et al., 2020). Plant diseases adversely 
impact the quantity and quality of agricultural products and affect food 
production safety (Chen et al., 2020a), which can in turn harm the 
financial aspects of the production in the entire area. This is a critical 
issue particularly for developing countries that depend on only a few or 
even a single crop (Arsenovic et al., 2019). Visual inspection of plants by 
experts in the rural areas of developing countries is still the dominant 
approach, however, this practice is very expensive for large farms (Bai 
et al., 2018). Due to a large number of plants and phytopathological 
problems, diagnosing specific diseases is very difficult for agronomists 
and plant pathologists, often resulting in incorrect conclusions and 
treatments (Ferentinos, 2018). Therefore, several automated smart ap
proaches using machine learning and deep learning approaches have 
been developed for the plant disease detection problem (Albayrak et al., 
2021; Argüeso et al., 2020; Chen et al., 2020a; Ferentinos, 2018; Golhani 

et al., 2018; Hernández and López, 2020; Kar et al., 2021; Tiwari et al., 
2021; Yang et al., 2022; Yu et al., 2022). 

Another important task for plants is the automated classification of 
plant species (a.k.a., plant classification). It is estimated that there are 
over 200,000 flowering plant species on Earth, many of which have yet 
to be discovered, while some of them have already gone various reasons, 
such as pollution (Govaerts, 2001; Mora et al., 2011; Scotland and 
Wortley, 2003). The accurate classification of plants is crucial for 
ecological monitoring and biodiversity conservation, insofar as it can 
contribute to weed control, the monitoring of endangered species, and 
species distribution analysis with respect to climate change (Wäldchen 
et al., 2018). Furthermore, some plant species are important for chem
ical and medicine industries because of their uses as raw material in the 
production of medication (Kaya et al., 2019). Subject matter experts can 
help with this task using plant species catalogs; however, it is a labor- 
intensive, expensive, and time-consuming process, which requires 
expertise that is scarce. As such, many different approaches including 
machine learning and more recently, deep learning, have been proposed 

* Corresponding author. 
E-mail addresses: aliseydi@cs.hacettepe.edu.tr (A.S. Keceli), aydinkaya@cs.hacettepe.edu.tr (A. Kaya), ccatal@qu.edu.qa (C. Catal), bedir.tekinerdogan@wur.nl 

(B. Tekinerdogan).  

Contents lists available at ScienceDirect 

Ecological Informatics 

journal homepage: www.elsevier.com/locate/ecolinf 

https://doi.org/10.1016/j.ecoinf.2022.101679 
Received 10 January 2022; Received in revised form 12 May 2022; Accepted 13 May 2022   

mailto:aliseydi@cs.hacettepe.edu.tr
mailto:aydinkaya@cs.hacettepe.edu.tr
mailto:ccatal@qu.edu.qa
mailto:bedir.tekinerdogan@wur.nl
www.sciencedirect.com/science/journal/15749541
https://www.elsevier.com/locate/ecolinf
https://doi.org/10.1016/j.ecoinf.2022.101679
https://doi.org/10.1016/j.ecoinf.2022.101679
https://doi.org/10.1016/j.ecoinf.2022.101679
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ecoinf.2022.101679&domain=pdf


Ecological Informatics 69 (2022) 101679

2

and evaluated effectively. In some studies, transfer learning from deep 
models is applied to recognize plants (Yang et al., 2022). In others, state- 
of-the-art deep learning methodologies are applied in plant disease 
detection (Yu et al., 2022). 

Although several models have been developed to solve both plant 
disease detection and species classification problems, machine learning/ 
deep learning models learned these tasks in isolation, which means that 
a separate model has been developed for each task. However, these two 
tasks are related and share a common representation that can be used to 
develop more accurate joint models. In machine learning, this learning 
approach is called Multi-Task Learning (MTL) which leads to better 
performance according to the empirical and theoretical analysis and 
investigations (Lai et al., 2021; Zhang and Yang, 2018). MTL attracted 
the sustained attention of several machine learning researchers in the 
last ten years, which led to the development of various applications in 
health informatics, bioinformatics, computer vision, and natural lan
guage processing (NLP) (Zhang and Yang, 2017). To the best of our 
knowledge, MTL has not yet been extensively evaluated in agriculture, 
and particularly not for plant disease detection and species classification 
problems. We reused knowledge obtained earlier from similar research 
in a recent study to investigate the impact of transfer learning ap
proaches on the plant classification models (Kaya et al., 2019) and 
demonstrated that transfer learning provides better results compared to 
end-to-end prediction models for plant classification. However, the use 
of transfer learning together with MTL has not been studied yet in 
agriculture, particularly regarding the above-mentioned problems. 
Therefore, in this paper we identified the following two research ques
tions (RQ):  

• RQ-1: To what extent can plant classification and plant disease 
detection problems benefit from the Multi-Task Learning strategy?  

• RQ-2: How can transfer learning approaches be integrated into the 
Multi-Task Learning models? 

To answer these research questions, we developed several MTL 
models and performed several experiments using Multi-Task CNN and 
pre-trained networks on public datasets. We propose and validate a 
novel Multi-Task Learning model using Transfer Learning for solving 
plant disease detection and plant classification problems. 

Before proposing a multi-task network, we experimented with 
mainstream single task CNN and a multi-layer perception network that 
operates with features from a pre-trained network. We included the 
results of these tests and performed additional experiments to form an 
ablation study. The proposed multi-task networks have three main 
modules: a CNN module that takes raw images as input, a pre-trained 
module that extracts deep features from images, and a multi-output 
classification module. We performed experiments by removing the 
modules one by one to find out which part of the network contributes to 
our final model. The detailed results are presented in Section 3.3 Abla
tion Study, which showed that multi-task learning has a positive effect 
on disease classification. 

The contribution of this study is the application of a novel multi- 
input multi-task network that uses raw images and transferred deep 
features extracted from a pre-trained deep model to predict both the 
type and the disease of each plant. Several experiments were conducted 
on two datasets to demonstrate the effectiveness of the proposed 
method. In our model, we have two branches, and one of the branches is 
a typical CNN. This branch has already learned from the input images. 
We combine features learned from the CNN branch with the extracted 
features from a pre-trained model in the next layers, from which we 
learned that the combination of pre-trained features with the features 
learned from a traditional CNN yields more successful results than the 
separate ones with a two-branch model. Especially in the case of a small 
amount of data, feature extraction from a pre-trained model contributes 
to classification results. 

We performed experiments for multi and single-task learning and 

observed that the multi-task learning strategy provides superior results 
compared to the single-task experiments. The proposed method ach
ieved state-of-the-art performance compared to the competitors. During 
the ablation studies, we confirmed that multi-task learning is superior to 
single-task learning. This fills a lacuna in existing research, since to the 
best of our knowledge, there is no multi-input multi-task model on plant 
disease prediction in the literature. 

Section 2 presents the methods and materials; Section 3 shows the 
experimental results; Section 4 discusses our findings and potential 
threats to the validity; and Section 5 concludes the study. 

2. Methods and materials 

In this study, we combine two deep learning strategies, namely deep 
feature extraction and CNN in a single network architecture in a MTL 
manner. Although deep learning algorithms have been known for a long 
time, they could not achieve the desired successful results due to lack of 
sufficient training data and required computing power. Recently, we 
have seen the emergence of deep learning models trained with large- 
scale datasets such as ImageNet, which have made deep learning algo
rithms more and more popular. The most well-known type of deep 
neural network is the CNN architecture. A CNN can be used either as an 
end-to-end classifier or as a feature extractor. We integrate these two 
approaches for plant disease and plant type prediction tasks. 

Various variations of CNN models are widely used, and are consid
ered to be state-of-the-art methods. Studies similar to ours generally 
work with images and the Plant Village dataset used in this study. 
Related studies on this topic also use images of leaves (Brahimi et al., 
2017; Chen et al., 2020a; Kawasaki et al., 2015; Li et al., 2020) to predict 
plant diseases, as generally, the leaves of plants are the first source of 
plant disease identification: the symptoms of most diseases appear first 
on the leaves (Ebrahimi et al., 2017). 

2.1. Multi task learning 

Multi-task learning (MTL) is a sub-field of machine learning in which 
commonalities and differences are exploited across tasks, and multiple 
learning tasks are solved at the same time. Most of the MTL models are 
based on multi-task neural network architectures (Baltrušaitis et al., 
2018). In multi-task architectures used in computer vision, the network 
is split into different components (Zhang et al., 2014). In these types of 
networks, a series of convolutional layers are used as base feature ex
tractors. Extracted features are then distributed among all tasks and 
allocated to different heads specialized for each task. 

We can employ the following well-known MTL architectures: shared 
trunk, cross-talk, prediction distillation, and task routing. In the shared 
trunk architecture, commonly used in MTL, there is a single input and 
multiple output branches for each task (Baltrušaitis et al., 2018; Yang 
et al., 2020; Zhao et al., 2018). In the cross-talk architecture, there are 
individual feature extraction networks for each specific task (Misra 
et al., 2016; Ruder et al., 2019). Information is shared between these 
networks. By combining the predictions or learned features obtained 
from the different tasks, we arrive at prediction distillation (Vanden
hende et al., 2020). In the task routing architectures, the parameter 
sharing is done at layer level rather than at the feature layer (Strezoski 
et al., 2019).Task-specific binary masks are applied to given layers, and 
parameters assign these masks to task-specific network branches. Our 
proposed model also employs the shared trunk architecture. As can be 
seen in Fig. 1, a shared feature extraction branch is formed as a classical 
CNN, the output of which is concatenated with the pre-trained features 
and given to multiple output branches for different tasks. 

In the proposed model, we first constructed the CNN branch using 
input, convolution, relu, pooling, dropout, and fully connected layers. 
The CNN structure and relevant parameters are shown in Table 1. We 
were inspired by the AlexNet architecture (Krizhevsky et al., 2012) 
while designing the CNN branch of the network, and ended up choosing 
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it because of its reduced number of parameters compared with the other 
pre-trained models. It is still one of the best models for feature extraction 
compared with the other models (Ahmed and Asif, 2020). AlexNet has 
fewer parameters and reduces the training time and computational 
complexity, yet yielded very high accuracy during our experiments. 

The entry point of the CNN models is the input layer, which receives 
raw images or feature vectors as inputs and redirects them to the 
following convolution layers. The convolution layer is the main layer of 
the CNN network that performs heavy computations in the network. A 
large number of 2D filters is convoluted on the images in these layers. 
The elements in these filters can be considered weights in a traditional 
artificial neural network model. During the training phase, these filters 
are updated to extract low and high-level meaningful features from a 

given image. The pooling layer that follows a convolution layer is 
applied to reduce the input size and number of parameters. In our ar
chitecture, the max pooling operation is applied. 

In the max pooling approach, a pooling window is slid over the 
output of the convolution filters and maximum values inside the sliding 
window are selected. This process reduces the number of parameters in 
the network and selects the strong responses from the activation values 
of convolution layers. In the relu layer, a relu activation function is 
applied to the output values. The main purpose of applying a relu or 
other type of activation function is to make the network capable of 
solving non-linear problems. Although a number of different types of 
activation functions exist, relu and the hyperbolic tangent functions are 
the most commonly used ones. Although the sigmoid function was used 
as the default function in early studies, the current use of this function is 
very limited due to the vanishing gradient problem, which refers to 
obtaining very small gradient values (i.e., near to zero) after computing 
subsequent partial derivatives with the chain rule. Using the relu or 
weak relu activation functions partly solves this problem. 

2.2. CNN model 

Another commonly used layer in deep learning is the dropout layer. 
This layer can drop the network connections randomly using a given 
probability ratio to prevent the overfitting. An overfit model corre
sponds too closely to its training data and the learned parameters are 
highly representative of the training data. As such, this type of model is 
said to memorize the data instead of the training data and is therefore 
unable to predict accurately the labels of the unseen data. 

Apart from the input, convolutional, pooling, and dropout layers, 
there are fully connected layers (FC) that consist of different numbers of 
units. This part of the network is not different than a traditional Artificial 
Neural Network model. These FC layers represent different layers of 
abstractions. In many transfer learning studies, the activation values 
computed by the FC layers are used as features for different machine 

Fig. 1. Architecture of the proposed network.  

Table 1 
Related parameters of CNN layers.  

Layer name Type Kernel-Filters Stride 

Input input 300x300x3  
Conv-1 convolution 11 × 11–48 1 
Relu-1 activation   
Norm-1 batch normalization   
Pool-1 max pooling 3 × 3 2 
Conv-2 convolution 5 × 5–64 1 
Relu-2 activation   
Norm-2 batch normalization   
Pool-2 max pooling 3 × 3 2 
Conv-3 convolution 3 × 3–192 1 
Relu-3 activation   
Conv-4 convolution 3 × 3–64 1 
Relu-4 activation   
Conv-5 convolution 3 × 3–64 1 
Relu-5 activation   
Pool-5 max pooling 3 × 3 2 
Fc-6 fully connected   
Fc-7 fully connected   
Fc-8 fully connected    
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learning methods. The final layers of CNN models are generally softmax 
layers that convert the output of the last FC layer into a sum of class 
probabilities. For this reason, the number of outputs in the last classi
fication layer should be equal to the number of classes for a classification 
task. 

2.3. Proposed model 

We developed a multi-input multi-output CNN model from scratch. 
As seen in Fig. 1, there are two input branches and two output branches. 
The deep network architecture that can receive more than one type of 
input at a time is known as a multi-input or multi-stream network. In our 
two-inputs architecture, a single plant image (i.e., the first input type) 
and pre-trained features (i.e., the second input type) are combined 
during the training phase. In the proposed model, we apply transfer 
learning and extract features from a pre-trained CNN. In machine 
learning, transfer learning is considered the transfer of knowledge from 
one learned task to a new task. In the context of neural networks, it 
entails transferring learned features of a pre-trained network to a new 
problem. In most of the cases, training a convolutional neural network 
from scratch in each case is usually not effective when there is an 
insufficient amount of training data. The common practice in deep 
learning for such cases is to use a network that is trained for new 
problems on a large dataset. While we used AlexNet for feature extrac
tion, other well-known pre-trained networks such as VGG16 and VGG19 
can also be used for this purpose. The deep features learned from the 
CNN branch are merged with the features transferred from a pre-trained 
network and two different loss values are computed for two classifica
tion tasks. 

The CNN branch extracts high-level features by processing the raw 
images. The pre-trained features extracted from AlexNet are also intro
duced to the network as a secondary input to improve the classification 
results. The Fc-8-layer activation values are extracted and used as input 
features. During the training phase, pre-trained features for all samples 
in the dataset are extracted using AlexNet. Both raw images and pre- 
trained features are used during the training of the final network. 
After feed forwarding the raw image and the deep features across the 
network, we merge the deep features and activation values from the last 
fully connected layer before concatenation. A concatenation layer takes 
inputs and concatenates them along a specified dimension (the inputs 
must have the same size in all dimensions except the concatenation 
dimension). After the concatenation, merged features are forwarded to a 
fully connected layer including 1000 units. The output of this layer is 
replicated and moved to two different output branches, having now a 
fully connected layer, a softmax layer, and a classification layer. 

2.4. Training of the model 

In a multi-task model, different loss functions are computed and 
combined. The effect of the individual loss functions to the combined 
loss can be determined using different weights. Cross entropy loss 
functions are applied for both species and disease classification. The 
batch size is determined as 256. For each batch, all instances are feed 
forwarded across the network and results obtained from each output are 
stored. These results or labels are used in cross entropy loss computa
tion. These two different loss values are then combined into a single loss 
value. The cross-entropy losses are shown in Eq. 1 and Eq. 2. Both of 
these equations are categorical cross-entropy losses, and the combined 
loss value is the addition of these two values with equal weights. This is 
shown in Eq. 3. To increase the importance of a prediction task, the 
weight of this task can be increased. In these equations, log is the natural 
log, S values are the predicted probabilities, yi is the class indicator, and 
θ is the activation function. 

Lspecie = − Σn
i=1yilog(S(fθ(Xi) ) ) (1)  

Ldisease = − Σm
j=1yjlog

(
S
(
fθ
(
Xj
) ) )

(2)  

Losscombined = 0.5*Lspecie + 0.5*Ldisease (3) 

After computing the loss value, parameters of the network are 
updated with gradients using the Adam optimization. Adam is an 
alternative optimization method that can be applied instead of a clas
sical stochastic gradient decent. It updates the network weights in the 
training data iteratively. Adam utilizes exponentially smoothed aver
ages (ESA), and the first and second order of the gradient moments. The 
ESA uses the sample mean. The formulation of Adam is shown in Eq. 4. 
In the following equation, θt+1 is the new parameter value. mt and vt are 
the first and second moments of the gradient, respectively. The first and 
the second order moments are not used directly. Smoothing is applied on 
these values before the update. θ is the learning rate, which defines the 
update amount of the parameter in each iteration. Finally, ε is a small 
constant. The formulation of the smoothing is given in Eq. 5 for mt and vt. 

θt+1 = θt − η mt
̅̅̅̅vt

√
+ ε (4)  

mtsmooth =
mt

1 − βt
1

vtsmooth =
vt

1 − βt
2

(5) 

The number of the epochs is 1000 and the learning rate is 1e-4. The 
training parameters of the proposed model (shown in Table 2) are the 
ones that give the best classification results. After 200 epochs, we did not 
receive any significant positive update on loss values. On the other hand, 
we did not want a high epoch number to cause overfitting. We use Adam 
optimizer because of its adaptive learning rate. Other benefits of the 
Adam optimizer can be listed as follows: computationally efficient, good 
for non-stationary objects, works well on problems with noisy or sparse 
gradients and works well with large datasets. Although we are using the 
Adam optimizer, we prioritize the model performance and select a 
relatively small learning rate. A smaller learning rate may allow the 
model to learn a more optimal or even globally optimal set of weights 
but it takes time to train. Mini Batch Size is selected as 128. Using a large 
batch size degrades the quality of the model (Keskar et al., 2016), so we 
limited the batch size to 128. 

2.5. Datasets 

We used two publicly available plant datasets for our experiments. 
The first dataset is the Plant Village dataset (www.plantvillage.org), a 
publicly available dataset that is widely used in similar studies (Hughes 
and Salathé, 2015). To predict the performance of our proposed method, 
our experiments were first conducted on this dataset. The tomato, 
pepper, potato, and maize datasets of the Plant Village dataset were 
selected for the training and testing phases. The data were collected 
under controlled conditions by researchers from the Life Sciences 
research field. The annotation and disease classification was done by 
field experts. There were four different species, comprising both healthy 
samples and those with various diseases – in total, 15 different types of 
diseases among these species. The diseases together with sample images 
are listed in Figs. 2, 3, 4, and 5. This first dataset includes 24,488 color 
images. 

The most photographic materials in this Plant Village dataset include 
images captured in laboratory setups, not in real field settings. To 

Table 2 
Training parameters.  

Parameter Value 

Number of epochs 200 
Min batch size 128 
Initial learn rate 1.00E-04 
Optimizer Adam  
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increase the generalizability of the proposed method, we use another 
dataset (FISB) that contains images captured under non-uniform illu
mination intensities and clutter field background conditions. 

The second dataset consists of rice and maize samples collected by 
Chen et al. (2020a). Some sample images from this dataset are shown in 
Fig. 6. There are maize and rice samples in this dataset. The samples of 
the unhealthy plant images are also listed in Fig. 6, and the healthy 
samples are not included in this dataset. During the experiments, 
healthy samples are labeled with another class. In this study we propose 
a CNN-based model; various variations of CNN models are widely used 
in state-of-the-art research. They generally work with images and the 
datasets used in this study and other related studies involving images of 
various plant diseases. 

It is important to emphasize here that our proposed models are not 
dependent on these datasets and can easily be applied to different plant 
datasets. 

3. Experimental results 

We conducted three different experiments using two publicly avail
able datasets. The first dataset is the Plant Village dataset (Hughes and 
Salathé, 2015), and the second one is the data provided by Fujian 
Institute of Subtropical Botany (FISB dataset), which was used in the 
paper of Chen et al. (2020a). We implemented multiple input/dual 
output multi-task CNN for the experiments. All the datasets were split 

into 70% training, 10% validation, and 20% test sets. The first and the 
second models are designed for the Plant Village dataset, whereas the 
third model is designed for the FISB dataset. Classification accuracy, 
precision, recall, sensitivity, and F1 score metrics were calculated for all 
the experiments. Table 3 explains these classification metrics and pre
sents the required formula per metric. TP (True Positive) is the count of 
correctly classified positive class samples; TN (True Negative) is the 
count of correctly classified negative class samples; FP (False Positive) is 
the count of negative class samples classified as positive; and FN (False 
Negative) is the count of positive class samples classified as negative. 
Confusion matrices are also provided for the experiments. Confusion 
matrices are visual representations of performances of machine learning 
models. They are also known as error matrices. Each row of these 
matrices represents the instances in a predicted class, while each column 
represents the instances in an actual class (or vice versa). It is the 
simplest way to see whether the system is mislabeling classes. 

3.1. Experiments with Plantvillage dataset 

Two experiments were conducted on a subset of the Plant Village 
dataset, consisting of 24,490 samples in total. We used 4898 test samples 
from this dataset in our experiments. Our first model classifies the type 
and the health status of the plant (PlantV-TH). There are four types of 
plants, namely pepper, potato, tomato, and corn, and only two health 
statuses (i.e., healthy, unhealthy). Test dataset information of the 

Fig. 2. Healthy and diseased corn images.  
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experiment is shown in Table 4. Results of the experiments for the 
PlantV-TH model are presented in Table 5. The confusion matrices of the 
test results are shown in Figs. 7 and 8. The first model provided 0.98 
classification accuracy for both classification branches. Performance on 
positive classes are almost similar (0.98 and 0.99 precision), but Type 
Classifier performs better, with 0.99 specificity on samples with negative 
classes. 

The second model classifies the type and the disease status of the 
plant (PlantV-TD). There are four types of plants, namely pepper, potato, 
tomato, and corn, and fifteen disease statuses (i.e., healthy; potato: early 
blight, late blight; tomato: target spot, mosaic virus, yellow leaf curl 
virus, bacterial spot, early blight, late blight, leaf mold, septoria leaf 
spot, spider mites; pepper: bacterial spot; gray leaf spot, common rust, 
northern leaf blight). Test dataset information of the experiment is 
shown in Table 6. Experimental results for the PlantV-TD model are 
presented in Table 7. The confusion matrices of the test results are 
shown in Figs. 9 and 10. The PlantV-TD classifier has a slightly better 
performance on Type Classification than the PlantV-TH, with 0.99 
classification accuracy. However, disease status classifier provides 0.89 
classification accuracy. Negative samples classified with high perfor
mance (0.99 specificity), and positive samples classified with relatively 
low performance (0.86 recall). This situation can be explained by the 
visual similarity among some of the plant diseases (e.g., Tomato target 
spot and tomato Septoria leaf spot). Disease status classification is a 
more challenging problem than healthy/unhealthy classification. 

3.2. Experiments with FISB dataset 

A different experiment is conducted on the FISB dataset, which 
consists of 1160 samples in total. We used 232 test samples from this 
dataset for our experiments. The model classifies the type and the dis
ease of the plant (FISB-TD). There are two types of plants (i.e., corn and 
rice), and ten disease types (i.e., Phaeosphaeria spot, corn eyespot, grap 
leaf spot, southern rusts, Goss' bacterial wilt, rice stackburn, rice leaf 
smut, rice leaf scald, rice white tip, and bacterial leaf streak). Test 
dataset information of the experiment is shown in Table 8. Experimental 
results for the FISB-TD model are presented in Table 9. The confusion 
matrices of the test results are shown in Figs. 11 and 12. The third model 
provided 0.97 classification accuracy for plant type classification, and 
0.94 classification accuracy for disease type classification. Performance 
on positive classes and negative classes is the same for plant type clas
sifier (0.97 Recall, and 0.97 specificity). Negative samples classified 
better for disease type classification (0.99 specificity), and positive 
samples classified slightly worse than negative ones (0.94 recall). 

Comparisons with the other studies in the literature are given for the 
FISB dataset in Table 10 (Rice) and Table 11 (maize-corn) for disease 
classification. The comparisons are made for disease prediction, which is 
less studied compared to species prediction. To the best of our knowl
edge, there is only one other study that examines this dataset. As can be 
seen from the results, the multi-task method is overperformed in the 
other study. Unlike in the Plant Village dataset, the samples of this 
dataset were collected under complex background conditions. 

Fig. 3. Healthy and diseased potato images.  
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The performance comparisons with the other studies in the literature 
are shown for the Plant Village dataset in Table 12. Although the Plant 
Village dataset is publicly available, directly comparing studies' out
comes in the literature is difficult due to varying assumptions and 
different versions of the dataset. Some of the presented studies are 
overperformed in our model; these models are trained with data with a 

limited number of classes and most of them are trained for the diseases 
of the same species. The superiority of our method can be seen by 
inspecting the results obtained from one specie. As can be seen from 
Table 12, our proposed method is superior to (Chen et al., 2020a; Li 
et al., 2020) which used maize diseases in their experiments. Our models 
trained with 17 different classes during the experiments. Furthermore, 

Fig. 4. Healthy and diseased tomato images.  

Fig. 5. Healthy and diseased pepper images.  
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some studies employ a binary disease classification (Hernández and 
López, 2020). Among healthy/unhealthy cases, our model has a high 
and comparable accuracy. 

Although there are many studies on species and disease prediction, to 

the best of our knowledge, there is as yet no other end-to-end model that 
predicts both at the same time. Chen et al. (2020a)) uses only maize 
(corn) images and the classification accuracy of our proposed model for 
only maize diseases are much higher than the results of that study. 
Training a model with images of various plant species can reduce the 
average disease classification accuracy. 

3.3. Ablation study 

The multi-input multi-output networks we propose here have three 
main modules: (a) a CNN module that receives raw images as input, (b) a 
pre-trained module that extracts deep features from images, (c) and a 
multi-output classification module that concatenates activations from 
(a) and (b), and uses a combined loss function to predict about two 
different classes of the same dataset. For the ablation study, we aim to 
validate the effectiveness of the proposed models by removing/modi
fying each module mentioned above. 

Single Input – CNN – Single Output Networks (SI-CNN-SO): In this 
model, we removed the pre-trained network branch from the main 
model, and only classify one label from the datasets. We present the 
structure of the SI-CNN-SO model in Fig. 13 (a). 

Single Input – Pretrained – Single Output Networks (SI-PT-SO): In 
this model, we removed the CNN branch from the main model, and only 
classify one label from the datasets. We present the structure of the SI- 

Fig. 6. Healthy and diseased images from 2nd dataset.  

Table 3 
Classification metrics and the description about these metrics.  

Metric name Description Formula 

Classification 
Accuracy (CA) 

Correct classification ratio of the 
positive and negative classes. 

(TP + TN) / (TP +
TN + FN + FP) 

Specificity (Spec) The ratio of True Negatives to all the 
positives predicted correctly or 
incorrectly. 

TN / (TN + FP) 

Recall (Rec) The ratio of True Positives to all the 
positives predicted correctly or 
incorrectly. 

TP / (TP + FN) 

Precision (Prec) The ratio of True Positives to all the 
positives predicted correctly or 
negatives classified as positive. 

TP / (TP + FP) 

F1 Score Harmonic mean of recall and precision. (2 * Prec * Rec) / 
(Prec+Rec)  

Table 4 
Test dataset information for the PlantV-TH model.  

Stream Code Label name Count Percentage 

Type 1 Pepper 515 10.42 
2 Potato 399 8.07 
3 Tomato 3240 65.53 
4 Corn 790 15.98 

Health status 0 Non-healthy 4030 82.19 
1 Healthy 873 17.81  

Table 5 
Experimental results for the PlantV-TH model.   

CA Spec Recall Precision F1 Score 

Type 0.98 0.99 0.96 0.98 0.97 
Health status 0.98 0.95 0.99 0.99 0.99  
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PT-SO model in Fig. 13 (b). 
Multi-Input – Single Output Networks (MI-SO): In this model, we 

keep the CNN and pre-trained branch but only classify one label from the 
datasets. We present the structure of the MI-SO model in Fig. 13 (c). 

Single Input – CNN – Multiple Output Networks (SI-CNN-MO): In this 
model, we removed the pre-trained network branch from the main 
model, and classify both of the labels from the datasets. We present the 

structure of the SI-CNN-MO model in Fig. 13 (d). 
Single Input – Pretrained – Multiple Output Networks (SI-PT-MO): In 

this model, we removed the CNN branch from the main model, and 
classify both of the labels from the datasets. We present the structure of 
the SI-PT-MO model in Fig. 13 (e). 

The results obtained from the ablation study are presented in Ta
bles 13 and 14. 

When we look at the results from the FISB dataset, the proposed 

Fig. 7. Confusion matrix of the type output of the PlantV-TH model (Plant
village dataset). 

Fig. 8. Confusion matrix of the health status output of the PlantV-TH model 
(Plantvillage dataset). 

Table 6 
Test dataset information for the PlantV-TD model.  

Stream Code Label name Count Percentage 

Type 1 Pepper 494 10.09 
2 Potato 423 8.64 
3 Tomato 3230 65.95 
4 Corn 751 15.33 

Disease status 1 Healthy 886 18.09 
3 PotatoEarly blight 206 4.21 
4 Potato Late blight 189 3.86 
5 Tomato Target Spot 291 5.94 
6 Tomato Mosaic virus 81 1.65 
7 Tomato Yellow Leaf Curl Virus 629 12.84 
8 Tomato Bacterial spot 434 8.86 
9 Tomato Early blight 196 4.00 
10 Tomato Leaf Mold 186 3.80 
11 Tomato Septoria leaf spot 367 7.49 
12 Tomato Two spotted spider mite 347 7.08 
13 Pepper bell Bacterial spot 199 4.06 
14 Corn Gray leaf spot 107 2.18 
15 Corn Common rust 210 4.29 
16 Corn Northern Leaf Blight 205 4.19 
17 Tomato Late Blight 365 7.45  

Table 7 
Experimental results for the PlantV-TD model.   

CA Spec Recall Precision F1 Score 

Plant type 0.99 0.99 0.97 0.98 0.98 
Disease status 0.89 0.99 0.86 0.91 0.87  

Fig. 9. Confusion matrix of the type output of the PlantV-TD model.  
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model performed significantly better than the closest performing model 
by 3% classification accuracy, 5% specificity, 5% precision, and 3% F1- 
Score for type label. The difference is smaller in disease label by 2% 
classification accuracy, recall, precision, and F1-Score. MI-SO models 
provided the best scores between ablation models. In the results from the 
Plant Village dataset, MI-SO models also provided a better score through 
the ablation models. The difference is smaller than the results from the 
FISB dataset, yet the proposed models performed slightly better for the 
Plant Village dataset as well. The remarkable finding is the models that 
have a pre-trained branch provide better results on both of the datasets 

Fig. 10. Confusion matrix of the disease status output of the PlantV-TD model.  

Table 8 
Test dataset information for the FISB-TD model.  

Stream Code Label name Count Percentage 

Type 1 Corn 119 51.29 
2 Rice 113 48.71 

Disease type 3 Phaeosphaeria spot 24 10.34 
4 Corn Eyespot 20 8.62 
5 Gray Leaf Spot 24 10.34 
6 Southern Rusts 28 12.07 
7 Goss's Bacterial wilt 23 9.91 
8 Rice Stackburn 24 10.34 
9 Rice Leaf Smut 22 9.48 
10 Rice Leaf Scald 23 9.91 
11 Rice White Tip 22 9.48 
12 Bacterial Leaf Streak 22 9.48  

Table 9 
Experimental results for the FISB-TD model.   

CA Spec Recall Precision F1 Score 

Plant type 0.97 0.97 0.97 0.97 0.97 
Disease type 0.94 0.99 0.94 0.94 0.94  
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than the single CNN branch models. Plain CNN models performed better 
on the low-number class samples (type) than on the high-number class 
samples (disease). We observed that multi-task learning yields superior 
results compared to a single-task learning. For our case, disease types are 
also related to the species, such that updating a model with a cost 
function that combines both species and disease classification will 
invariably improve performance. Our proposed multi-task models will 
provide better performance in particular for disease classification. 

4. Discussion 

In this study, we proposed and evaluated the performance of several 
Multi-Input Multi-Task Neural Network models for plant disease detec
tion and species prediction problems. In this section, we discuss our 
research findings based on the following RQs defined in the Introduction 
section:  

• RQ-1: To what extent can plant classification and plant disease 
detection problems benefit from the Multi-Task Learning strategy?  

• RQ-2: How can transfer learning approaches be integrated into the 
Multi-Task Learning models? 

To respond to these questions, we implemented various models for 
each dataset. For the first RQ, we demonstrated that our proposed model 
using Multi-Task Learning can predict both the plant types and disease 
classes precisely. For the second RQ, we showed that transfer learning 
can be used together with a separate CNN model to include additional 
deep features into the Multi-Task Learning-based prediction model. The 
way we used the transfer learning is focused on the features; however, 
other researchers might find alternative strategies to benefit from 
transfer learning for Multi-Task Learning models. 

Since this is an experimental study, we should also discuss the po
tential threats to validity. The validity threats are addressed as follows:  

• Internal Validity: We focused on deep learning models instead of 
traditional machine learning algorithms, because recent studies have 
proven the superior performance of deep learning models over 
shallow, learning-based models. We did not apply our model to only 
one type of problem (e.g., plant type classification and binary health 
status prediction) but also investigated its performance on the other 
problem combinations (e.g., plant type classification and disease 

Fig. 11. Confusion matrix of the type output of the third classification model 
(FISB dataset). 

Fig. 12. Confusion matrix of the disease type output of the FISB-TD model.  

Table 10 
Comparison of the methods from the literature with FISB Dataset (Rice).  

Method CA Spec Recall 

Chen et al. (2020a) 0.92 0.95 0.80 
Chen et al. (2020b) 0.93 – – 
Proposed 0.97 0.99 0.95  

Table 11 
Comparison of the methods from the literature with FISB Dataset (Maize).  

Method CA Spec Recall 

Chen et al. (2020a) 0.80 0.87 0.60 
Proposed 0.91 0.88 0.96  

Table 12 
Comparison of the methods from the literature with Plant Village Dataset.  

Method CA- 
Disease 

Number of 
classes 

Chen et al. (Maize) (Chen et al., 2020a) 0.84 5 
Li et al. (Maize) (Li et al., 2020) 0.94 5 
Brahimi et al. (Brahimi et al., 2017) 0.96 9 
Kawasaki et al. (Kawasaki et al., 2015) 0.94 3 
(Lu et al., 2017) 0.95 10 
Herdandez et al. (Healty /Non-Healty). (Hernández 

and López, 2020) 
0.96 2 

Sharma et al. (Tomato) (Sharma et al., 2020) 0.92 9 
Proposed (Healthy/Non-Healthy) 0.98 2 
Proposed (Maize Only) 0.96 4 
Proposed (Tomato Only) 0.94 9 
Proposed 0.89 16  
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Fig. 13. Ablation model structures.  
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class prediction). The Alexnet pre-trained model that we used can 
easily be switched with other pre-trained models.  

• External Validity: We preferred two widely used datasets for our 
experiments and considered their sizes before building our models 
and performing experiments. Our models are not dependent on these 
datasets; however, the performance on other datasets might be 
different than the performance values reported here. We consider 
that acceptable performance can be achieved after adapting the 
current models to the new datasets.  

• Construct Validity: We split the datasets into three categories, 
namely training, validation, and test, as do most other machine 
learning researchers. Moreover, we used 1000 epochs for our ex
periments. This validation strategy was selected in order to avoid 
randomness in the data. Several well-known evaluation metrics were 
selected to report the experimental results. Additional experiments 
can be performed when new datasets are created. 

Most of the studies in the literature are based on single input, single 
output networks (Brahimi et al., 2017; Chen et al., 2020a; Hernández 
and López, 2020; Kawasaki et al., 2015; Li et al., 2020; Lu et al., 2017; 
Sharma et al., 2020). In this study, we implement a multi-task network 
with three main modules: (a) a CNN module that receives raw images as 
input, (b) a pre-trained module that extracts deep features from images, 
(c) and a multi-output classification module that concatenates activa
tions from (a) and (b), and uses a combined loss function to make pre
dictions for two different classes of the same dataset (multi-task). To 
prove the efficiency of our model, we experimented with different 
single-input single task and multi-task network structures. Results of the 
ablation studies show that multi-task learning has a positive effect on 
disease classification. The ablation study results also show that a com
bination of learned features with transferred features improves the ac
curacy. Most of the studies in this domain utilize learned features or 
transferred features only (Brahimi et al., 2017; Chen et al., 2020a; Chen 
et al., 2020b; Hernández and López, 2020; Kawasaki et al., 2015; Li 
et al., 2020; Lu et al., 2017; Sharma et al., 2020). The proposed multi- 

input multi-task method has two branches: one of the branches is a 
typical CNN, while the other is a regular neural network that receives 
transferred features as input. In our end-to-end model, features learned 
from the CNN branch are combined with the extracted features from a 
pre-trained model with a concatenation layer. Loss values are then 
computed as the weighted sum of losses acquired from the branches. A 
combination of pre-trained features with the features learned from a 
traditional CNN yield more successful results than the classical single 
input models. Especially in the case of a small amount of data, feature 
extraction from a pre-trained model contributes to classification results. 
AlexNet was chosen as a feature extractor because of its reduced number 
of parameters compared with the performance of other pre-trained 
models. As a network with fewer parameters that reduces the training 
time and computational complexity, AlexNet is still one of the best 
models for feature extraction compared with the other models (Ahmed 
and Asif, 2020; Zhang et al., 2018). 

The proposed model yields better results than the related studies. 
When the classification performance is compared with the related 
studies and are then analyzed vis-Ã -vis the results for the Plant Village 
dataset shown in Table 12, some of the presented studies seem to be 
more accurate compared to our model. The main reason for this is that 
the models in these studies were trained with data from a limited 
number of classes, and most of them were diseases within the same 
species. As shown in Table 12, our proposed method is superior to (Chen 
et al., 2020a; Li et al., 2020) which used exclusively maize diseases in 
their experiments. We trained our models with 17 different classes 
during the experiments. Moreover, some studies use a binary disease 
classification (Hernández and López, 2020) as healthy/non-healthy. For 
such cases, our model shows a higher and or comparable accuracy. For 
the FISB dataset, the proposed model is better than the compared studies 
(Chen et al., 2020a; Chen et al., 2020b). The images in the FISB dataset 
were captured in actual field settings, and therefore include a wide di
versity of backgrounds and an extensive variety of symptom character
istics. The images were captured under non-uniform illumination 
intensities and clutter field background conditions. Most photographic 
materials in the commonly used datasets employed by similar studies 
include images captured solely in experimental (laboratory) setups such 
as Plant Village, rather than in real-life environments. The FISB dataset 
was used in our experiments to increase the generalizability of the 
proposed method, and it yielded strong results. 

In future research, we plan to design new network models in cross- 
talk architecture for the same purpose. We are planning to design an 
end-to-end network model by embedding the pre-trained model into our 
new end-to-end model. The layers transferred from the pre-trained 
model will be frozen to keep their weight the same during the training 
process. We are also planning to extend our model with new plant types. 
We will propose a multi-modal CNN model that takes visual data of a 
plant leaf image and other non-visual parameters like climatic stress and 
environmental conditions. 

Finally, to the best of our knowledge, there is as yet no multi-input 
multi-task model on plant disease prediction in the literature. Through 
this landmark study, we have confirmed through the ablation studies 
and experiments that multi-task learning is superior to single-task 
learning. 

5. Conclusion 

Plant disease detection and plant type classification problems are 
crucial and challenging problems in agriculture. We focused on the use 
of Multi-Task Learning and Transfer Learning approaches to solve these 
two related tasks at the same time. From the machine learning 
perspective, these two tasks are classification tasks, and we are therefore 
able to encode their representations in our proposed model. In this 
study, we proposed a novel multi-task supervised learning model for 
plant classification and disease detection tasks. We developed four 
models using two different datasets. While the first model classified data 

Table 13 
Ablation model results for FISB dataset.  

Model Label CA Spec Recall Prec F1 

SI-CNN-SO Type 0.90 0.90 0.90 0.91 0.90 
SI-CNN-SO Disease 0.57 0.95 0.57 0.61 0.57 
SI-PT-SO Type 0.92 0.90 0.93 0.91 0.92 
SI-PT-SO Disease 0.89 0.99 0.90 0.90 0.90 
MI-SO Type 0.94 0.92 0.96 0.92 0.94 
MI-SO Disease 0.92 0.99 0.92 0.92 0.92 
SI-CNN-MO Type 0.90 0.90 0.89 0.91 0.90 
SI-CNN-MO Disease 0.70 0.97 0.69 0.72 0.70 
SI-PT-MO Type 0.91 0.89 0.93 0.90 0.92 
SI-PT-MO Disease 0.92 0.97 0.92 0.93 0.92 
Proposed M. Type 0.97 0.97 0.97 0.97 0.97 
Proposed M. Disease 0.94 0.99 0.94 0.94 0.94  

Table 14 
Ablation model results for Plantvillage dataset.  

Model Label CA Spec Recall Prec F1 

SI-CNN-SO Type 0.94 0.97 0.88 0.92 0.89 
SI-CNN-SO Disease 0.75 0.98 0.71 0.73 0.72 
SI-PT-SO Type 0.98 0.99 0.98 0.96 0.97 
SI-PT-SO Disease 0.85 0.99 0.83 0.82 0.82 
MI-SO Type 0.98 0.99 0.98 0.96 0.97 
MI-SO Disease 0.86 0.99 0.85 0.84 0.83 
SI-CNN-MO Type 0.95 0.98 0.92 0.92 0.92 
SI-CNN-MO Disease 0.77 0.98 0.72 0.74 0.72 
SI-PT-MO Type 0.97 0.98 0.98 0.96 0.97 
SI-PT-MO Disease 0.87 0.98 0.82 0.86 0.83 
Proposed M. Type 0.99 0.99 0.97 0.98 0.98 
Proposed M. Disease 0.89 0.99 0.80 0.91 0.87  
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points into healthy and unhealthy classes, the second model specified 
the categories of the disease. The results of our experiments were 
remarkable, demonstrating the validity of our model. Additionally, our 
models used not only one type of image data; the pre-trained features 
were also incorporated into the multi-task neural network models. 
Although we used the Alexnet pre-trained model to obtain these addi
tional features, our model is also conducive to other pre-trained models. 
We designed a CNN model from scratch using different types of layers, 
however, the presented CNN branch can be easily exchanged and 
adapted to different problems. Researchers in various fields can apply 
our proposed model to handle tasks in different application domains. 
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