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A B S T R A C T   

Information on water table depth (WTD) in polder areas and wetlands is important in, for example, estimating 
emissions of greenhouse gases, assessing the agricultural and ecological potential, and flood risk management. 
The seasonal variation of WTDs is summarized with averages of the yearly highest (shallowest) and lowest 
(deepest) water tables (MHW and MLW). These characteristics show short-distance variations within the fields in 
polder areas, which cannot be mapped using geostatistical interpolation techniques or physical modelling against 
reasonable costs or with acceptable accuracy. The within-field variations depend on soil type and water man
agement. MHW and MLW were determined from auger hole measurements of WTDs at locations being selected 
following stratified simple random sampling in subareas classified by soil type and water management. Within 
these subareas, a further classification was made on the basis of distance to ditches. For each subarea spatial 
distribution functions of MHW and MLW were made, taking censored observations into account. Uncertainty was 
quantified by 10,000 bootstrap realisations of the spatial distribution functions. From these realisations maps 
depicting summary statistics for the spatial distribution of WTD-characteristics within the subareas were derived, 
as well as a map with probabilities of exceedance of a critical level that can serve as input for risk analysis.   

1. Introduction 

Fan et al. (2013) estimated that the water table or its capillary fringe 
is within plant rooting depth in 7–17% of the global land area. In this 
area, the water table is important to the agricultural and ecological 
potential, leaching of nutrients and pesticides. Furthermore, in areas 
with organic soils the water table depth is an important factor in emis
sions of CO2 as a result of oxidation caused by drainage. For these rea
sons, accurate and actual information on water table depth (WTD) is 
needed to support policy on climate, agriculture, environment, and 
nature restoration. 

This study focuses on mapping characteristics that describe the 
seasonal fluctuations of WTDs in flat coastal plains built-up by Holocene 
sediments such as clay and peat, in a temperate climate. We refer to 
these characteristics as WTD-characteristics. These WTD-characteristics 
are for instance the average upper and lower bounds of the yearly sea
sonal fluctuation, summarized with averages of the yearly highest 
(shallowest) and lowest (deepest) water tables (MHW and MLW), see 
Ritzema et al., 2018 for definitions. In wetlands and ditch-dissected 
polder areas most of the spatial variation of WTD-characteristics 

occurs within the fields between the ditches. These variations can be 
described in several ways. 

Spatial patterns of WTD-characteristics can be described with a 
physical-mechanistic model of groundwater flow, e.g., Kelbe et al. 
(2016) or Xiao et al. (2016). These models require inputs on the loca
tions of the ditches, the drainage resistance, transmissivity, hydrological 
conditions and soil physical properties which are generally not available 
at a field scale for large areas. 

Alternatively, spatial patterns of WTD-characteristics can be 
modelled by geostatistical techniques. A geostatistical approach on the 
basis of observations only would require considerable and unrealistic 
efforts in fieldwork, which can be reduced by incorporating exhaustively 
available ancillary information that is strongly related to WTD- 
characteristics in the geostatistical algorithms (Finke et al., 2004; 
Hoogland et al., 2010; Calzolari and Ungaro, 2012). Schumann and 
Zaman (2003) applied geostatistical interpolation with electromagnetic 
measurements as ancillary variable. Kaiser et al. (2012) used a regres
sion model to predict WTDs and ecological moisture levels from thermal 
remote sensing data in a grassland area. Manzione and Castrignanò 
(2019) and Manzione et al. (2021) used multiple sources of remote 
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sensing data as ancillary information in geostatistical interpolation of 
mean WTDs and risk assessment of shallow WTDs, respectively. Geo
statistical techniques can be combined with time series models for the 
relation between precipitation surplus and water table depth, to 
describe the spatiotemporal variation of WTD (Changnon et al., 1988; 
Knotters and Bierkens, 2001; Yuan et al., 2008; Manzione et al., 2010). 
The applied time series models can be linear or nonlinear, less or more 
physically based, purely deterministic or with an additional noise 
component. Bierkens and te Stroet (2007) regionalized a physically 
based, nonlinear time series model to describe the dynamics of WTD. 
Instead of a geostatistical model, they used detailed grid information on 
landsurface elevation, drainage networks, soil conditions, hydrogeolo
gy, and land use for regionalizing the parameters of the time series 
model. Bierkens and te Stroet (2007) indicate that the resulting model is 
particularly suited for systems with deep permeable soils, shallow water 
tables and intensive drainage, whereas our focus is on areas with Ho
locene sediments of low permeability, such as clay and peat. 

For the eastern parts of the Netherlands, generally built up from 
sandy sediments, with a slightly undulating topography and free 
drainage, Finke et al. (2004) mapped WTD-characteristics at a resolu
tion of 25 × 25 m. For the remaining western part of the Netherlands, 
with polders and wetlands built up from clayey and peaty sediments, 
WTD-information is only available from the Soil Map of the Netherlands 
1: 50,000 (van Heesen, 1970). This information is outdated. Besides this, 
the classification of MHW and MLW into so called water-table classes 
(WTCs) is too coarse for actual applications in water management, 
environmental policy and nature restoration. Furthermore, the accuracy 
of the WTD-information is not quantified which makes the maps less 
suitable for application in uncertainty and risk analysis. 

The aim of this paper is to introduce a new method based on prob
ability sampling and robust regression for mapping WTDs in polders and 
wetland areas where existing methods were not proficient enough. The 
presented method has been tailor-made for ditch-dissected polder areas 
built up of clayey and peaty sediments, and where most of the spatial 
variation of WTD-characteristics occurs at short distances within the 
fields between the ditches. The resulting maps contribute to the Dutch 
National Key Registry of the Subsurface, an initiative to bring together 
all available subsurface information in a single data portal, in addition to 
the maps for the eastern parts of the Netherlands made by Finke et al. 
(2004). 

2. Why probability sampling to map WTD-characteristics? 

Making maps by probability sampling might not seem obvious, since 
with probability sampling global information on the spatial distribution 
of WTD-characteristics for specific areas of interest is obtained, rather 
than local information on spatial patterns within these areas (Brus and 
de Gruijter, 1997; de Gruijter et al., 2006). In this Section we motivate 
our choice for mapping by probability sampling. 

In designing a mapping strategy we followed the recommendation by 
de Gruijter et al. (2006, p.28) to pay attention to the agreement between 
data acquisition and data processing. In developing the mapping strat
egy we followed the scheme proposed by de Gruijter et al. (2006, p. 
29–30). This scheme provides a detailed specification of the objectives, 
takes budgetary, practical and quality constraints into account, facili
tates a motivated choice between design-based or model based inference 
from sample data, and ends in a well-defined protocol on data collection 
and field work and a description of the methods to be used for statistical 
inference. We designed a mapping strategy that answers to the following 
constraints: 

1. the map must be applicable for policy and decision making at a na
tional and regional scale, i.e., provinces and district water boards, 
but is not required to support decision making on farm or field level;  

2. the map must be suitable as a benchmark in the validation of 
physically-based models such as the National Hydrological 

Instrument (de Lange et al., 2014; Verkaik et al., 2021). Therefore 
the quality of the map must not depend on the validity of model 
assumptions, which implies that the mapping method must be 
model-free or at least that the validity of model assumptions can 
easily be verified;  

3. the map must be suitable for uncertainty and risk analysis, which 
implies that uncertainty must be quantified;  

4. fieldwork must answer to budgetary constraints, which in this study 
implies that fieldwork must be restricted to one year, and the number 
of locations for borehole measurements of WTD should not exceed 
300. 

Ad 1: In areas with free discharge, the WTD is strongly correlated 
with ground surface elevation, and therefore the use of a digital 
elevation model (DEM) as ancillary information in spatial interpo
lation of WTD characteristics is obvious. For instance, Finke et al. 
(2004) mapped WTD-characteristics in the eastern parts of the 
Netherlands, with generally sandy soils, slightly undulating topog
raphy and free discharge. The availability of a DEM enabled mapping 
at a resolution of 25 × 25 m. This high resolution might suggest 
applicability of the map at farm or field scale. High resolution should 
not be confused with high accuracy, however. If information on ac
curacy is presented separately from a map showing spatial pre
dictions with high resolution, users of this map might neglect the 
information on accuracy and might use the map in taking decisions 
at farm or field level. Yet, the accuracy of such a high resolution map 
might allow decision support at regional or national scale only. In 
summary, it is important to find balance between resolution and 
accuracy, and information on accuracy should be integrated with the 
map of “best estimates”, to prevent for neglect of uncertainty in 
decision making. 
Ad 2: All methods summarized in Section 1 are based on models, 
either geostatistical models, time-series models or physical models. 
The quality of the resulting maps depend on the validity of model 
assumptions. The outcome of a validation study should preferably 
not depend on the validity of model assumptions that were used to 
construct the reference. 
Ad 3: With geostatistical methods it is possible to quantify uncer
tainty. However, the uncertainty is quantified given the model as
sumptions. In quantitative uncertainty and risk analysis the 
information about uncertainty should preferably cover all sources of 
uncertainty, and not depend on the validity of model assumptions. 
Ad 4: In ditch-dissected polder areas the spatial variation of WTD- 
characteristics such as the MHW and MLW occurs mainly at short 
distances within the fields. Geostatistical mapping of these within- 
field patterns at high resolution raster maps on the basis of WTD- 
characteristics that have been derived from observed WTDs only, 
would require an unrealistically dense monitoring network. Ancil
lary variables can be used in some form of co-kriging or regression- 
kriging (e.g., Finke et al. (2004)) to construct high resolution raster 
maps, provided that a relationship with WTD-characteristics is suf
ficiently strong to obtain accurate spatial predictions. Alternatively 
to high resolution raster maps with spatial predictions of MHW 
(MLW), maps with mean MHW (MLW) for larger spatial units can be 
constructed by block-kriging, and information about the distribution 
within blocks can be obtained by spatial aggregation of point kriging 
estimates. A model of spatial variation is needed, however. 

Probability sampling enables model-free estimation of the spatial 
distribution of WTD-characteristics (constraints 2 and 4) for subareas 
(domains of interest) that fit to the regional or national scale of decision 
making (constraint 3), with quantification of uncertainty (constraint 3). 
A key factor in the sampling strategy is to separate subareas on the basis 
of knowledge of the drainage conditions which explain the within-field 
variations of WTD-characteristics. This knowledge is provided by the 
Soil Map of the Netherlands, scale 1:50,000, because this map reflects 
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the spatial distribution of soil types with different hydraulic properties. 
Information on water level management is provided by district water 
boards. Stratified simple random sampling enables to utilise this 
knowledge in mapping WTD-characteristics. 

3. Materials and methods 

3.1. Design of the mapping strategy 

Fig. 1 gives a flow chart of the mapping strategy. In the remaining 
Subsections the stages of the procedure will be described. 

3.2. Study area, priory information 

The study area (1,945.09 km2 non built-up area, excluding surface 
water, roads, farmyards) is located in the eastern part of Friesland, a 
province located in the northern part of The Netherlands, see Fig. 2. The 
study area consists of polders and wetlands with artificial water man
agement and is built up from Holocene, mainly clayey and peaty sedi
ments. Most dominant soil types in the study area are gleysols, vertisols 
and histosols (FAO, 2015). Most common land use is agricultural land 
which can be divided in arable land to grow crops and semi-permanent 
pastures to feed livestock with. Arable land is mainly found in the 
northwestern part of the study area where more sandy clayey soils can 
be found, which are easier to cultivate and generally have better 
drainage conditions than peaty soils and heavy clay soils which are 
located in the central and eastern part of the study area. Semi-permanent 
pastures are found on these type of soils and make up for the major part 
of land use. 

The soil map of the Netherlands, 1: 50,000, shows 226 map units in 

the study area. These were clustered on the basis of drainage properties 
into eleven units. The study area consists of polders in which fixed 
surface water levels are maintained. The water level management units 
were combined with the eleven units derived from the soil map to obtain 
a map with 26 subareas, see Fig. 3. We assume that these subareas have 
relatively homogeneous drainage conditions. These 26 subareas are the 
domains of interest for which the distribution functions of WTD- 
characteristics are estimated. In the sampling design these 26 domains 
of interest are the primary strata. 

3.3. Calculating WTD-characteristics from time series of water table 
depths 

From the national database on groundwater data (Zaadnoordijk 
et al., 2019) we selected time series of 41 observation wells to calculate 
WTD-characteristics MHW and MLW, see Fig. 4, on the basis of the 
following criteria:  

1. The well screen must be situated in or slightly below the fluctuation 
zone of the water table;  

2. The observation well must be situated in the target area, i.e., non 
built-up area, not in farmyards, gardens, pavements, roadsides, or 
slopes to ditches or channels;  

3. The time series must have been observed without interruptions for at 
least four recent years. In addition, the water table fluctuations must 
not have been affected by changes in water management;  

4. The observation frequency must be at least semi-monthly;  
5. Automated measurements must be available for the fieldwork days 

(Subsection 3.5). 

From the selected time series the WTD-characteristics the Mean 
Highest (MHW) and Mean Lowest (MLW) Watertable are estimated ac
cording to Ritzema et al. (2018). First, for each hydrological year, 
measures for the upper and lower bounds of the seasonal fluctuation are 
calculated, i.e. the HW3 and LW3 respectively. These are the averages of 
the depths to the three highest (lowest) water tables in a hydrological 
year (1 April/31 March) at a semi-monthly measuring frequency (the 
14th and 28th). Next, the MHW and MLW are estimated. The MHW 
(MLW) is defined as: average of the HW3 (LW3) over a period of 30 years 
under the given climatic and hydrological conditions (Ritzema et al., 
2018). It is assumed that MHW and MLW can be estimated from 
observed series with lengths of at least four years in polder areas, since 
in these areas the seasonal fluctuation depends more on water level 
management than on seasonal fluctuation of precipitation and evapo
transpiration. Fig. B.11 in B gives details of the 41 time series and the 
calculated MHW’s and MLW’s. 

3.4. Selection of locations for well-timed WTD-observations 

Borehole locations were collected by probability sampling. The pri
mary strata are given in Fig. 3. We only have estimates of WTD- 
characteristics for the 41 locations of observation wells. This number 
is too limited to model the spatial variation in the 26 domains of interest. 
To obtain more information on the spatial distributions of WTD- 
characteristics within the 26 domains of interest, the WTD was 
observed in a large number of boreholes. WTD-characteristics were 
estimated for these borehole locations following the method described 
in Subsection 3.5. Because of budgetary and practical constraints the 
number of borehole locations was limited to a maximum of 300. The 
borehole locations were selected by probability sampling, as motivated 
in Section 2. The sampling strategy was focused on estimating the spatial 
distribution functions of WTD-characteristics, including the within-field 
variations, in subareas with homogeneous drainage conditions. A 
stratified simple random sampling design with three levels of stratifi
cation was developed. The primary strata are the 26 domains of interest, 
i.e., the 26 subareas of homogeneous drainage conditions, see Fig. 3. To 

Fig. 1. Flowchart of the mapping strategy, references to Subsections in 
parentheses. 
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improve the spatial coverage of the borehole locations, each primary 
stratum was divided into secondary, compact geographic strata using 
the R-package spcosa (Walvoort et al., 2010). To improve spatial 
coverage within fields, the compact geographic strata were further 
divided into areas relatively close to ditches (< 25 m) and more farther 
away from ditches (⩾25 m). These areas are the tertiary strata. 

Within each secondary stratum four borehole locations are selected: 
two in each of the tertiary strata. Note that two is the minimum number 
of sampling units needed in a simple random sample for variance esti
mation. Because the maximum number of borehole locations allowed 
due to budgetary constraints is limited to 300, the total number of 
borehole locations is 296 (= 2× 2× 74), distributed over 74 secondary 
strata. Fig. 5 shows the selected 296 borehole locations. 

3.5. Regression with well-timed WTD-observations 

WTD-characteristics were estimated for the 296 borehole locations 
following a method described by te Riele et al. (1991). In this method 
the WTD is observed simultaneously in the n = 41 observation wells and 
in a large number of boreholes (m = 296), at “well-timed moments”. At 
these moments, it is assumed that the WTDs in the observation wells 
approximate the MHWs and MLWs that were estimated from the time 
series observed in these wells. Next, a linear regression model is fitted to 
the n = 41 observations made in the observation wells, explaining the 
MHW (MLW) from the WTDs observed at the well-timed moments: 

yi = β0 + β1xi + ∊i (1)  

with yi the MHW (MLW) for the ith observation well, i = 1…n, xi the 
observed WTD in the ith observation well, β0 the intercept coefficient, β1 
the slope coefficient, and ∊i the regression residual. This linear regres
sion model is used to estimate the MHW (MLW) for the 296 borehole 
locations. It is implicitly assumed that the seasonal fluctuation of WTD 
reaches its upper and lower bounds at the same moment in the study 
area. This assumption is reasonable for fast-reacting groundwater sys
tems like polder areas and wetlands. 

Observations of WTD can be right-censored, which means that it is 
only known that the water table is below the well screen or range of the 
borehole. 15 (5%) of the 296 well-timed observations for MHW- 
estimation were right-censored, and 12 (4%) of the 296 well-timed ob
servations for MLW-estimation were right-censored. Leaving these 
censored observations out or replacing them by the censor depth would 
introduce bias. Censored observations can be taken into account in 
regression analysis by maximum-likelihood regression or by nonpara
metric regression. We followed the advice of Helsel (2004) to apply 
nonparametric regression if the number of observations is less than 50. 
The linear relationship between MHW (MLW) was modelled with the 
Akritas-Theil-Sen method for nonparametric linear regression (Akritas 
et al., 1995). In this method the slopes between all possible pairs of 
points in the scatterplot (Fig. 6) are calculated. If a pair of points con
tains a censored observation, then it is only known that the slope is 
below or above a certain value. Next, the slope coefficient β1 of the 
linear regression model is estimated by the median of the slopes between 
all pairs of points. The intercept coefficient β0 is estimated by the median 

Fig. 2. Study area.  
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Fig. 3. Subareas (a.k.a. domains of interest or primary strata) with homogeneous drainage conditions. Range of surface water levels in interval notation.  
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of yi − β̂1xi. 
The accuracy of the estimated coefficients β̂0 and β̂1 is quantified by 

a nonparametric bootstrap of the residuals ∊i (Efron and Tibshirani, 
1993). In this procedure a large number NR of samples are taken with 
replacement from the Kaplan–Meier estimate of the empirical distribu
tion of the residuals ∊i (Kaplan and Meier, 1958), to account for censored 
values of yi and thus ∊i. In this study the number of samples NR was set at 
100. Each sample has size n = 41. Next, each of the NR samples is added 
to the fitted values ŷi = β̂0 + β̂1xi, resulting in NR replications of yi. 
Finally, NR nonparametric regression models are fitted to each replica
tion by the Akritas-Theil-Sen method, resulting in a distribution of NR 

estimates of β0 and β1 reflecting the precision of the estimated regression 
coefficients. 

3.6. Estimation of spatial distributions of WTD-characteristics for primary 
strata 

For each primary stratum, spatial cumulative distribution functions 
of the WTD-characteristics MHW and MLW are estimated as follows:  

1. Using the NR estimates of the regression coefficients β0 and β1 and 
the well-timed WTD-observations in the 296 boreholes, NR sets of 
estimates of MHW and MLW are made for the 296 borehole 
locations.  

2. For each of the NR sets of MHW (MLW) estimates NS bootstrap 
samples are selected by random sampling with replacement, and 
using the relative areas of the tertiary strata as selection probabili
ties. In this study NS = 100. 

3. From each bootstrap sample a spatial cumulative distribution func
tion of MHW (MLW) is calculated by Kaplan–Meier estimation 
(Kaplan and Meier, 1958), because MHW (MLW) can be censored. 
We don’t have to take relative areas into account, as this has already 
been taken care of during the bootstrap (step 2). 

This procedure results in NR × NS = 10,000 spatial cumulative dis
tribution functions (SCDF) of MHW and MLW per primary stratum, 
reflecting two sources of uncertainty. The first source of uncertainty 
arises from estimation errors in MHW (MLW) estimated by the regres
sion procedure described in Subsection 3.5. The second source of un
certainty arises from the sampling error in the selection of the borehole 
locations, see Subsection 3.4. 

Summary statistics are calculated from the 10,000 realisations of 
SCDF of MHW and MLW, and visualised in maps with the primary strata 
as map units. Summarizing statistics are for example the medians and 
interquartile ranges of MHWs (MLWs), and probabilities of exceedance 
of critical depths. 

MHWs and MLWs can be classified as water table classes (WTCs), see 
A. The estimation of SCDF of WTCs is analogous to the procedure fol
lowed by MHW and MLW. For each of the NS bootstrap realisations the 
probability is calculated that a WTC occurs in a primary stratum. It is 
assumed that MHW and MLW are not correlated within primary strata, 
which is justified by an exploratory analysis of the well-timed obser
vations made in the boreholes. 

4. Results 

Fig. 6 shows the nonparametric linear regression models for the 
relationship between MHW (MLW) and WTDs observed at well-timed 
moments in the 41 observation wells. These models were applied in 
the estimation of SCDFs of MHWs (MLWs) in the primary strata, see 
Subsection 3.6. 

Fig. 7 shows maps of the estimated median MHW and MLW. This 
map depicts the estimated depth that is exceeded in 50% of the primary 
stratum. 

The spatial variation in MHW (MLW) within primary strata is shown 
by the estimated interquartile ranges in Fig. 8. 

It should be noted that Fig. 7 and 8 reflect estimates only and do not 
inform about the associated uncertainty. The uncertainty is quantified 
by the NR × NS = 10,000 bootstrap realisations, from which statistics 
can be derived that express uncertainty. For example, maps depicting 
probabilities of exceedance of some critical value of MHW or MLW can 
be constructed from the 10,000 bootstrap realisations. As an example, 
Fig. 9 shows a map with the probability of MHWs shallower than 30 cm. 
A probability equal to 1 means that the MHW is certainly shallower than 
30 cm at any location within a map unit, whereas a probability equal to 
0 means that the MHW is certainly deeper than 30 cm at any location 
within a map unit. A probability of 0.5 reflects the maximum uncer
tainty, which means that it is equally likely that the MHW is deeper than 
or within 30 cm for any point in the primary stratum. Probabilities such 
as in Fig. 9 can be translated into risks by multiplying them by effects. 

Fig. 4. Locations of the selected 41 observation wells.  

Fig. 5. Selected 296 borehole locations.  
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Fig. 6. Nonparametric linear regression models for the relationship between MHW (MLW) and WTD at well-timed moments in 41 observation wells (Fig. 4). Dark 
green: 50% confidence interval. Light green: 90% confidence interval. 
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Fig. 7. Estimated median of MHW (left) and MLW.  

Fig. 8. Estimated interquartile ranges of MHW (left) and MLW.  
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For instance, high probabilities of MHW < 30 cm in cropland areas can 
be translated into high risks of crop yield reductions because of wet soil 
conditions, whereas high probabilities of MHW > 30 cm in peat soils can 
be translated into high risk of soil subsidence due to oxidation of soil 
organic matter. 

Fig. 10 shows the prevalent WTC and the variation in WTCs. The left 
map shows the mode, i.e., the WTC that covers the largest part of a 
primary stratum. The right map shows the normalized Shannon’s en
tropy, which represents the degree of heterogeneity. Zero entropy means 
the presence of only one WTC, whereas an entropy value of one means 
that all WTCs are equally present. 

5. Discussion 

The presented method not only has potential in mapping WTDs in 
7–17% of the global land area (Fan et al., 2013), but could also be 
applied in mapping other soil properties. We discuss the results in light 
of spatial detail and objectivity. We compare mapping by probability 
sampling as presented in this paper with mapping based on geostatistical 
and physical modelling. 

5.1. Spatial detail 

The maps in Figs. 7–10 are basically choropleth maps, showing sta
tistical data aggregated over predefined regions, viz. the primary strata 
based on homogeneous drainage conditions (Fig. 3). This is an important 
difference with high resolution raster maps depicting continuous fields 
of quantitative variables, resulting from geostatistical modelling 
(Knotters and Bierkens, 2001; Schumann and Zaman, 2003; Finke et al., 
2004; Hoogland et al., 2010; Calzolari and Ungaro, 2012; Kaiser et al., 
2012; Manzione et al., 2010; Manzione and Castrignanò, 2019), and 
physical modelling (Xiao et al., 2016). We refer to these maps briefly as 
‘raster maps’ in the following. The difference between choropleth maps 
and raster maps is associated with the difference between global and 
local information, that follows from the questions “How much?” and 
“Where?”, respectively, as discussed in Brus and de Gruijter (1997). 
High resolution raster maps answer the “Where?” question to a high 
extent since they answer the “How much?” question for small spatial 
units, i.e. raster cells. Choropleth maps answer the “How much?” ques
tion with global statistical data for predefined regions or strata. The 
extent to which a choropleth map provides an answer to the “Where?” 
question, depends on the spatial detail in the stratification. However, in 
answering the “Where?” question not only the level of spatial detail is 
important, but also the rationale behind the definition of spatial units. In 
this study balance was pursued between the level of spatial detail with 
which the “Where?” question can be answered, the accuracy of the map 
and fieldwork restrictions, resulting in a division into 26 primary strata. 
These were defined as regions with homogeneous drainage conditions, 
on the basis of the soil map and a map of water level management units. 
This stratification makes the map obviously more useful in water man
agement than an arbitrary division into 26 contiguous geometric areas 
such as grid squares. 

Since maps are viewed on digital screens rather than on paper, map 
users should be aware that the accuracy of the map does not change 
when zooming in or out. Furthermore, high spatial resolution does not 

Fig. 9. Probabilities of MHW shallower than 30 cm in subareas of homoge
neous drainage conditions (primary strata). 

Fig. 10. Modus (left) and entropy of the water-table classes in subareas of homogeneous drainage conditions(primary strata).  

M. Knotters et al.                                                                                                                                                                                                                               



Geoderma 422 (2022) 115928

10

necessarily mean a high accuracy of spatial predictions. The resolution 
of the choropleth maps in Figs. 7–10 is determined by the primary strata, 
which were chosen with the utilisation of the map in mind. If spatial 
distributions of continuous variables are visualised with raster maps in 
geographic information systems, then map users can make their own 
choice of resolution in property space, which may result in a bad balance 
between resolution and accuracy. High resolution might suggest high 
accuracy, particularly if best estimates are presented separately from the 
associated uncertainty measures like standard errors and prediction 
intervals, or if uncertainty is neglected at all. Bad balance between 
resolution and uncertainty can be prevented by integrating best esti
mates and uncertainty measures into a single map, e.g., a map with 
probabilities of exceedance (Fig. 9). These probabilities of exceedance 
can be used as input in statistical models for decision making. Preferably 
the information on uncertainty used in decision making, e.g. calculated 
probabilities of exceedance, does not depend on subjective assumptions 
or judgements, see Subsection 5.2. 

5.2. Objectivity 

With objectivity we mean that the results do not depend on as
sumptions or judgements the validity of which cannot easily be verified. 
The first source of subjectivity is in the selection of the locations where 
observations are collected (the sampling locations). In stratified random 
sampling objectivity is realized by random selection of the sample lo
cations within the strata and by accounting for the stratum weights in 
the estimation of WTD-characteristics. Note that regions in a stratum 
that are not part of the study area (like built-up area) are excluded from 
the random selection. In geostatistical modelling and physical modelling 
no restrictions need to be made on the selection of sampling locations. 
As Brus and de Gruijter (1997) mentioned subjective judgement on 
‘representativity’ of sampling locations are allowed, and locations can 
be selected preferentially or by convenience in low or high grade zones. 

The second source of subjectivity is in the models used in estimating 
WTD-characteristics. So-called design-based estimates that are based on 
probability sampling can be perfectly model-free. However, in this study 
the introduction of a model was unavoidable, because time series of 
WTDs were only available for a restricted set of observation wells, the 
locations of which were selected purposively. We assumed a linear 
relationship between MHW (MLW) and water table depth at well-timed 
moments (Eq. 1) when the WTD approximates the MHW (MLW). The 
validity of the linearity assumption can be verified from Fig. 6. As 
explained in Subsection 3.5 we implicitly assume that the seasonal 
fluctuation of WTD reaches its upper or lower bound at the same 
moment in the study area, which is reasonable in fast-reacting systems 
with shallow water tables. 

As compared to geostatistical and physical mechanistic modelling, 
the role of model assumptions is limited in the presented method of 
mapping WTD-characteristics by probability sampling. Furthermore, the 
model assumptions could be verified easily. It should be noted that 
subjective assumptions and judgements not only affect best estimates, 
but also the quantitative information on uncertainty and hence out
comes of uncertainty analyses and risk assessments. 

6. Some concluding remarks 

Maps of WTD-characteristics that result from geostatistical or phys
ical mechanistic modelling can be considered as models of the spatial 
variation of WTD-characteristics, the quality of which can be assessed by 
validation. Contrary to this, the maps based on probability sampling 
presented in this study can be considered as summaries of descriptive 
statistics that inform about spatial variation, and the quality of this in
formation is implicitly quantified. This makes the maps based on prob
ability sampling useful as benchmarks in quality assessments of 
geostatistical and physical mechanistic models. 

In this study stratified simple random sampling was applied, with 

three levels of stratification. In future projects this sampling strategy can 
easily be adjusted to new conditions. For example, for areas with fields 
that are poorly accessible, a two-stage sampling strategy can be 
considered. The strategy can roughly be designed as follows: i) defini
tion of primary strata as in this study, ii) random selection of fields 
within these primary strata, and iii) random selection of borehole lo
cations within the selected fields. 

An important reason for developing the presented method was that a 
large part of the spatial variation of WTD-characteristics in polder areas 
and wetlands occurs within ditch-dissected fields, and that this short- 
distance variation could not be mapped with geostatistical and phys
ical mechanistic models against reasonable costs or with acceptable 
accuracy. The choropleth maps presented in this study might reflect less 
spatial detail than high resolution raster maps obtained by geostatistical 
and physical mechanistic modelling might reveal. However, map reso
lution should always balance map accuracy. This is not only true for 
WTD-maps, but for maps in general. A high resolution map with un
known but low accuracy may hamper decision making. In the presented 
method, the resolution is determined by the primary strata, which are 
defined with respect to use of the map in water management, and the 
accuracy is quantified for each map unit. 
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Appendix A. Water-table classes 

Table 1. 

Table 1 
Water-table classes. MHW: mean highest water-table. MLW: mean lowest water- 
table. Depths in cm below ground surface.  

Water-table class MHW MLW 

Ia < 25 < 50 
Ib > 25 < 50 
IIa < 25 50 − 80 
IIb 25 − 40 50 − 80 
IIc > 40 50 − 80 
IIIa < 25 80 − 120 
IIIb 25 − 40 80 − 120 
IVu 40 − 80 80 − 120 
IVc > 80 80 − 120 
Vao < 25 120 − 180 
Vad < 25 > 180 
Vbo 25 − 40 120 − 180 
Vbd 25 − 40 > 180 
VIo 40 − 80 120 − 180 
VId 40 − 80 > 180 
VIIo 80 − 140 120 − 180 
VIId 80 − 140 > 180 
VIIIo > 140 120 − 180 
VIIId > 140 > 180  
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Appendix B. Observed time series and estimated MHW’s and 
MLW’s 

Fig. B.11. 
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