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CRISPR Rice vs conventional rice dilemma of a
Chinese farmer*

Yan Jin® and DuSan Drabik’

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) technology for
rice, which makes rice resistant to its two most destructive insect pests, is an
alternative to insect-resistant genetically modified (GM) rice. We advance an
economic framework to determine ex ante the planting share of CRISPR rice in
China under uncertainty about pest severity and analyse its most significant factors.
Using our baseline data and an assumption that yields of CRISPR rice are 10 per cent
lower than conventional rice, we estimate the planting share of CRISPR rice to be 37.9
per cent. The mean of the annual benefit of growing CRISPR rice and conventional
rice together over conventional rice alone is 2.32 billion US dollars.

Key words: China, CRISPR rice, Monte Carlo simulations, optimal planting share,
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1. Introduction

Rice is a staple food for more than half the population in China, and the area
dedicated to growing it amounts to 30 million hectares, accounting for 25 per
cent of the total arable land in China (National Bureau of Statistics of China
[NBSC], 2018). This vast area of agricultural land reflects the importance of
rice in feeding not only the domestic population but also many people in the
rest of the world. However, rice suffers from insect pests with annual losses in
billions of United States (US) dollars (Lu et al., 2018). The response of many
Chinese rice farmers has been a notorious overuse of pesticides, which have
adverse effects on farmers’ health and the environment (Damalas &
Eleftherohorinos, 2011), with application rates of 57 per cent above
recommended levels (Zhang et al.,, 2015). One solution to this pesticide
overuse is insect-resistant rice.

Scientists expected much from insect-resistant genetically modified (GM)
rice. The classic example is Bacillus thuringiensis (Bt) rice, which was
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developed in the 1990s and received biosafety certificates in 2009. However,
for political reasons, its commercialisation in China has been postponed. To
date, Bt rice is not grown in any country in the world (Jin et al., 2019),
although it has been approved for imports and consumption by the US Food
and Drug Administration (FDA) (2018).

Recent advances in genome editing using the CRISPR/Cas9 for rice
technology (Lu et al., 2018) present an alternative to insect-resistant GM rice.
Genome editing enables scientists to edit or modulate deoxyribonucleic acid
(DNA) sequences at particular locations in the genome. CRISPR/Cas9 is
short for Clustered Regularly Interspaced Short Palindromic Repeats and
CRISPR-associated protein 9, which can be guided to specific locations
within complex genomes (Hsu et al.,, 2014). In 2018, Chinese scientists
developed CRISPR rice by suppressing the biosynthesis of serotonin (a
neurotransmitter in mammals) induced by insect infestation in rice (Lu et al.,
2018). This suppression confers resistance to planthoppers and stem borers,
the two most destructive insect pests of rice (Chen et al., 2011). Compared to
GM rice, CRISPR rice! has a higher chance of making it to market because it
is indistinguishable from rice developed by traditional breeding techniques,
such as hybrid and conventional breeding, because no new genes are added
(Luetal., 2018). In fact, a mutation producing a gene structure similar to that
of CRISPR rice can also occur in nature (Carlin, 2011; Lu et al., 2018). Some
countries, such as the United States, plan not to consider CRISPR rice a GM
product at all (US Department of Agriculture [USDA], 2018), and it will thus
not need to be labelled once commercialisation is permitted. In China,
however, whether CRISPR products will be regulated as GM products is
under discussion.

There is a growing literature on CRISPR rice strains with different traits.
Apart from insect-resistant CRISPR rice (Lu et al., 2018) on which our study
is based, Wang et al. (2016) developed CRISPR rice with enhanced blast
resistance. Four genes known as regulators of grain number, panicle
architecture, grain size and plant architecture have been targeted (Li et al.,
2016). Sun et al. (2016) also developed herbicide-tolerant rice with CRISPR
technology.

CRISPR technology can contribute to meeting increasing global demand
for food and facing global environmental challenges by revolutionising plant
breeding (Cao, 2018). It can arguably produce results identical to conven-
tional methods in a much faster, less costly and more predictable manner
(Cao, 2018). However, the nature-identical modifications blur the boundary
between nature and technology, which calls for a rethinking of regulatory
approaches regarding to preferences of consumers, food ethics and gover-
nance (Bartkowski et al., 2018). Therefore, China’s regulation of CRISPR

! There are different types of CRISPR rice with different traits, such as herbicide-tolerant
and blast-resistant. In this paper, however, ‘CRISPR rice’ specifically refers to the insect-
resistant CRISPR rice developed by Lu et al. (2018).
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rice is crucial to this highly contested and controversial societal issue with the
potential to significantly affect the social welfare of various rice stakeholders.

Because the commercialisation of insect-resistant GM rice is not allowed in
China, the role of CRISPR rice is important because it possesses insect
resistance (similar to GM rice) and may be regulated as a non-GM product.
Compared to conventional rice, CRISPR rice with no insect pests in lab trials
produces an approximately 36 per cent lower yield (Lu et al., 2018). When
there are insect pests, the relative yield is ambiguous, however, meaning that
partly planting CRISPR rice would be advisable only if CRISPR rice
outperformed conventional rice in resistance to insect pest damage.” This
trade-off indicates an optimal planting share for CRISPR rice, which is
precisely the area of the debate to which this paper contributes.

The objective of our ex ante study is to determine the optimal planting share of
CRISPR rice from the perspective of a representative farmer (i.e. not considering
any environmental externalities of her actions) and to analyse which exogenous
factors have the greatest effects on that share. We do so by developing a
microeconomic model of a rice farmer who decides the allocation of her land into
conventional and CRISPR rice under uncertainty of insect pest severity and
considering yield differentials. An essential contribution of our work is to
quantify the value of including the CRISPR rice into the farmer’s production
process compared to conventional rice alone. The theoretical framework we
advance enables simulating counterfactuals for evaluating the influence of future
actions of the Chinese government regarding CRISPR rice.

Our contribution to the existing and growing literature on CRISPR rice is
economically assessing its market potential considering uncertainty about
insect pest severity and providing a framework to assess the influence of its
factors. For example, Vyska et al. (2016) investigated the trade-off between
disease resistance and crop yield in a biological model but did not consider its
economic implications. Bartkowski et al. (2018) discussed the economic,
ethical and policy implications of CRISPR technology due to the fact that
CRISPR crops blur the boundary between nature and technology and result
in non-traceability of modifications. However, they did not go into the details
about market potential and determinants of the optimal share. Our results
have implications for at least three groups of market agents in China. First,
farmers (through information campaigns) could use them to decide whether
to plant CRISPR rice and, if so, how much. Second, policymakers can use the
results as a point of departure to work out the contours of future policies and
regulations regarding CRISPR technology and managing uncertainty over
market effects due to potentially severe insect pest outbreaks. Third, seed
developers and pesticide suppliers will be directly affected by the future share
of CRISPR rice in the total land area dedicated to rice production and the
determinants of the optimal share.

2 Partial adoption of CRISPR rice instead of full adoption is most likely because there will
always be some farmers who choose not to adopt the new technology.
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2. A model

Consider a representative price-taking farmer who grows both CRISPR rice
(indexed by i = C) and conventional rice (i = V) on separate fields. The
separation assumption reflects the need for different pesticide application
rates as well as possible segregation costs implied by the country’s regulatory
framework. The total area of CRISPR rice is L and conventional rice Ly.
The farmer uses all available land for rice (L), which is fixed in a given year,
implying Lc+ Ly = L. Although rice can be harvested twice a year
depending on climatic conditions and geographical location (Peng et al.,
2009), our farmer harvests only once. This assumption does not affect our
empirical results, as we use annual aggregate production data for China.

Before planting rice, the farmer faces uncertainty over pest severity. To
maintain tractability, we assume two states of nature (indexed by j): a severe
state (j = S) associated with a pest outbreak and a less severe state (j = N), in
which the pest occurrence is weak.® The probability of the severe state is g,
and the probability of the less severe state is 1 — g¢.

Farmers typically apply pesticides throughout the growing season and can
determine which state of nature has occurred only after a certain amount of
time into the season (e.g. the harvest), after which the pest cannot cause any
further damage to the yield. Therefore, we assume the farmer makes her
decision about pesticide quantity to use before the uncertainty about the pest
severity is revealed (similar to land allocation). The farmer will therefore
choose the optimal pesticide rate (X, in kilograms per hectare). Because our
model is static and the unit of time measurement is a year, X is the sum of
pesticide amounts applied per hectare per year. CRISPR rice is insect-
resistant, so the intensity of pesticide use for CRISPR rice is lower than for
conventional rice (Lu et al., 2018); that is, X¢ < Xp.

In either scenario, the farmer derives her revenues from selling CRISPR
and conventional rice, whose production critically depends on the rice yield.
Let Y; denote the yield of rice type i in the absence of pest damage (i.e. in the
extreme case when the pest intensity is zero). These yields correspond to
points @ and b in Figure 1. In a controlled laboratory environment, Y. is
significantly lower than Y (e.g. Lu et al. [2018] reported a 36 per cent
difference. The market experts we communicated with argued the farmers
would accept a maximum difference of 10 per cent; hence, this is the value we
used in the numerical part of the model). As pest intensity increases, the yields
of both rice types decline. However, because CRISPR rice is insect-resistant,
the yield decline will be slower (depicted by the flatter curve in Figure 1) than
for conventional rice.

Consider a pest intensity threshold below which the damage is considered
less severe and above it is severe. Lacking empirical data, we assume this

3 In reality, the severity of the pest damage would be a random variable with a continuous
distribution. Because pesticide use is not the focus of this paper, however, we model the
severity as a binary variable.
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Figure 1 Pest intensity and rice yield under no pest abatement.

threshold is to the right of point c—the intersection of the two yield curves.
This is not likely a strong assumption given the insect resistance of CRISPR
rice, which brakes the yield decline with respect to pest intensity. The yield of
CRISPR rice is higher than the yield of conventional rice in the severe pest
scenario, but the outcome does not necessarily reverse in the less severe
scenario. Only when pest intensity is between points ¢ and ¢ is the yield of
CRISPR rice lower than that of conventional rice.

Denote a; € (0, 1) as the proportion of the maximum yield left after the
severe pest damage given no damage abatement actions. The yield loss is then
(I —@;)Y;. CRISPR rice has a higher percentage of yield left than
conventional rice because it is insect-resistant, implying that
0O<apy<ac<]1. The farmer can take precautionary measures and apply
pesticides to reduce potential loss. Following Lichtenberg and Zilberman
(1986), we denote G;(X;) as the abatement function for rice type 7 in state j. It
measures the share of the potential loss that can be averted. More specifically,
G;(X;) = 1 denotes the complete eradication of the destructive capacity, and
G;(X;) = 0 represents zero elimination of the loss. The actual yield of rice
type i in state j can thus be written as ; Y; + G j(X;)(1 — «;) Y;. With this yield,
we can write the production of rice type i in state j as

Q; = [@Yi+ G;(Xi)(1 — ) Yi] L; (1)
The price of a pesticide is m dollars per kilogram. The cost related to pesticide

use for CRISPR and conventional rice is proportional to the planted area:
mXcLC and mXVLV.
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Because the previous literature has documented monopolistic power in the
markets for genetically modified seeds (e.g. Dillen et al., 2009), we single out
the cost of rice seed. Denoting sy as the cost of conventional seed per hectare
and & as a percentage by which the monopolist charges more for CRISPR
seed compared to the market price of conventional seed, the cost per hectare
of CRISPR seed is s¢c = (1 + 8)sy. This is the simplest representation of
monopolistic pricing of CRISPR seed that is also in line with the price-taking
behaviour of the representative farmer that we maintain throughout the
paper. It implies that the farmer knows that the monopolist charges more for
CRISPR seed than does the (competitive) market for conventional rice but is
unaware of the relation between 6 and L. We vary parameter § in the Monte
Carlo simulations below, thus investigating the effects of the degree of market
power on the optimal planting area of CRISPR rice.

Other costs related to the production of CRISPR rice are aggregated in the
non-linear term AL¢., which consists of two parts: first, the cost of fertiliser,
machinery and other costs and, second, strictly convex (in land) segregation
cost related to the production of CRISPR rice that the farmer faces as a
result of the national regulatory framework. The strict convexity of the non-
linear part of the CRISPR rice cost is represented by the parameter e > 1,
which represents the elasticity of the other cost with respect to the planted
area of CRISPR rice (e.g. the larger the area under CRISPR rice, the more
efforts the farmer must spend to ensure the two types of rice are segregated to
prevent gene flow).* The positive parameter A is determined at the
calibration stage. The farmer does not incur segregation costs for conven-
tional rice; therefore, all other costs for conventional rice are captured in the
constant cost per hectare, ¢.°> The values of parameters 4 and ¢ depend on
the state of nature (e.g. more labour and energy costs are likely necessary in
the severe pest state). The total production cost in state j (¢;) can then be
expressed as.

¢j=mXcLc+scLc+ A;Le + (mXy + sy + ') Ly ()

4 Gene flow is an inevitable natural process (Lu and Snow, 2005) and may cause spatial

externalities (Ceddia et al., 2011). CRISPR rice is a self-pollinating plant, but cross-pollination
of rice in a field can occur at relatively low rates. In addition, pollen-mediated gene flow of
CRISPR rice is expected to disperse to nearby wild, weedy relatives (Lu and Snow, 2005).
Therefore, segregation of CRISPR rice is necessary and might be expensive when the planting
area is large (Gruere et al., 2011).
3 It could be argued that other costs are also non-linear with respect to land use. For example,
if rice production were expanded to previously unused lands or hillier areas, the cost would
likely rise more than proportionally. However, we assume the total area devoted to rice is fixed
at L, making these considerations less of a concern. In the past ten years, the total rice planting
area in China has been hovering around 30 million hectares (NBSC, 2018).
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Denoting the market price of rice type i as p;, the farmer’s profit in state j is.
mj=pcQci+PvOy;— ¢ (3)

Following previous empirical studies on the behaviour of Chinese farmers
(e.g. Chen et al., 2018; Jin et al., 2017; Liu, 2013), we model the representative
farmer as a risk-averter with a strictly concave Bernoulli utility function u(x).
The farmer maximises the expected utility (EU) by choosing the optimal area
of land for CRISPR rice (L) and pesticide rates X and X

EU = 1 — 4
o max qu(zs) + (1 — q)u(zy) 4)

The optimal values for Lc, X and X satisfy the first-order conditions.

aEU_ du 0;75 du aﬂN .

_du ) G0N _ 5
aLc qdﬂSaLc+( q) d]‘L’N aLC ( )
oEU du 077.'5 du aﬂN

G2V _ OB L) BN 6
oxe ~ Yamsoxe TU D g ox, ©)
0EU du org du ony

OBV B ) N 7
oxX,  dns oy, T -9 diy 0Xy )

Finally, the optimal planting share of CRISPR rice (p) is equal to p = L¢/L.

3. Specific functional forms

Two general functions from the model outlined above need to be specified to
make the model empirically operational: the abatement function G(X) and
the Bernoulli utility function u(z). Several possible functional forms capture
the requisite properties of the abatement function (i.e. it monotonically
increases in X, and its values are between zero and one). In the empirical part
of the paper, we use the exponential function G;(X;) =1— e %%, which
requires only one parameter [4;€ (0, 1)] to be calibrated in each state of
nature (Lichtenberg & Zilberman, 1986).” The higher the parameter, the
faster the abatement function approaches its maximum. For a given pesticide
application rate (X), the effectiveness of the abatement activity is presumably
higher in the less severe scenario than the severe one; that is, we require that

% The area of conventional rice can readily be determined as L — Lc.

" Apart from requiring only one parameter to calibrate, the exponential specification is also
consistent with our baseline data in that it yields the optimal area of CRISPR rice that lies
between zero (lower bound) and the total land endowment (upper bound). We also checked the
Weibull specification for the damage abatement function, G = 1 — ¢™*", which also depends
only on one parameter. It, however, did not result in an economically feasible solution as the
calibrated area of CRISPR rice was more than the total land endowment.
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Figure 2 Output damage abatement functions for severe (S) and less severe () scenarios.
[Colour figure can be viewed at wileyonlinelibrary.com]

1 — e ¥ > 1 — ¢ %Y which implies s < Ay. Figure 2 illustrates the implica-
tion of this condition: the curve corresponding to the share of loss abated in
the less severe scenario is above the curve for the severe scenario for any
pesticide application rate.

Regarding the Bernoulli utility function, we assume it takes the exponential
form u(z) = —e™. This is a popular functional form in the empirical
literature on uncertainty (e.g. Bodnar, et al., 2018; Lu et al., 2018; Zuhair
et al., 1992). It has only one parameter (r), which represents constant absolute
risk aversion. This is convenient because, by changing this parameter in the
sensitivity analysis later, we can investigate the influence of (constant
absolute) risk aversion of the farmer on the model outcomes of interest.
Moreover, the parsimony of this function regarding the number of
parameters reduces data needs when calibrating our model.

4. Data and model calibration

Data in this study come from the literature on CRISPR and conventional
rice, in which Table 1 summarises together with the sources. Where the data
on CRISPR rice are not available (e.g. pesticide application rate and cost), we
use the data from Bt rice field trials (Huang et al., 2005) as a proxy, since both
rice types are insect-resistant.
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We set the price of CRISPR rice equal to the price of conventional rice in
the baseline. However, previous literature on the price relationships between
similar GM and conventional crops (e.g. Brookes et al., 2010; Pray et al.,
2001) has argued that farmers growing GM crops can afford to accept lower
market prices because the total costs of cultivating GM crops are less than the
costs of non-GM crops due to fewer inputs (e.g. pesticides or labour) and the
benefits of reduced inputs outweigh the higher seed costs. Therefore, in later
Monte Carlo simulations, we relax the baseline assumption and keep the
price of CRISPR rice below that of conventional rice (i.e. p- < py). Similarly,
our baseline assumption is that other costs per hectare of conventional rice
are equal under both weak and severe pest damage (i.e. py = @g). We relax
this assumption in the sensitivity analysis as well and investigate what effect
different relative costs per hectare of conventional rice have on the optimal
planting share.

The parameter r of the exponential Bernoulli utility function equals
constant absolute risk aversion, and in the baseline, we set it to » = 0.09, as
reported by Chen et al. (2018). The higher this value, the more risk-averse the
farmer is, ceteris paribus.

To reduce the number of calibrated parameters (due to a lack of necessary
data), we set the calibrating constants Ag and A4, of the function for other
cost of CRISPR rice equal—that is, they do not depend on the state of nature
—to make the (segregation) cost of CRISPR rice less sensitive to pest
severity. With this assumption, there are four unknown parameters (4s, Ay, 4
and ¢) and one variable (L) to be calibrated using the baseline data.

The first-order conditions [5]-[7] (more precisely, their specific equivalents
presented by [A1]-{A3] in Appendix 1), in principle, determine Ag, Ay and L.
To calculate the parameters 4 and ¢, we need two more equations. Based on
equation [2], the cost of cultivating CRISPR rice is

Cec=mXcLc+ scLc+ ALY, ®)

from which the corresponding marginal cost is MC¢e = mX¢ + s¢ + eALGC’l.
Let 5 be the elasticity of land use with respect to the marginal cost of CRISPR
rice:

_ 0Lc MCc  mXc+sc+eALE!
COMCc Le e(e—1)ALS!

n ©)

We can use equation [8] to calculate the production cost per hectare of
CRISPR rice (UC¢) as UCc = C¢/Le = mX¢e + s¢c+ AL, from which
ALec_1 = UC¢c — mX¢ — sc. Substituting the right-hand side of the previous
equation into [9] and rearranging, we obtain.
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1+7 mXc + sc

2

€ — € — =0, 10
n n(UCc —mX¢ — s¢) (10)

which is a quadratic equation in e. Finally, the calibrating constant 4 can be
obtained by rearranging the unit cost function as.

A= (UCc—mXc—sc)/LS. (11)

In summary, we obtain the four unknown parameters and one variable by
simultaneously solving equations [A1], [A2], [A3] (Appendix 1), [10] and [11].

The per-hectare production cost of CRISPR rice is not known at the
moment, as the rice is not yet grown commercially. To overcome this
information gap, we use the cost of Bt rice instead and set UCc = 521.3 US
dollars per hectare (R. Hu, private communication, 2018). Regarding the
elasticity of land use with respect to the marginal cost of CRISPR rice, we
assume n = 2.12, as CRISPR rice is not grown yet. We let the model guide us
in choosing the specific value of this parameter.

We pose some structure on the underlying data. We use specific functions
to operationalise the theoretical model; we constrain the space for some
parameters and require specific relationships between them (e.g.
0<4s, Avn<1 and Ag<Ay ); we require strict convexity for the other
CRISPR cost function (i.e. € > 1) so the optimisation problem has a unique
optimal solution; and we require the optimal land use for CRISPR rice to be
positive and not exceed the total allocation of land for rice. The toll we pay to
simultaneously satisfy all these restrictions is a narrow manoeuvring space for
the elasticity # in the baseline. By calibration, we find the lower bound to be
1.99 and the upper bound 2.23; therefore, our choice of # is between them. It
should be noted that # is an auxiliary parameter that we use only in the
baseline. In the Monte Carlo simulations later, we vary parameter e, which is
directly linked to #, as per [10].

Finally, we determined the baseline value of parameter § through an iterative
process. Since we know the price of conventional rice seed (sy), we kept
changing the value of § until the calculated value of CRISPR rice seed (s¢) (for
which there are no historical observations yet) was equal to the price of GM rice
seed, which we use as a proxy for the price of CRISPR rice seed. Although it
might be tempting to use the earlier formula, s¢ = (1 + 8)sy, to calculate the
value of § from the price of conventional rice seed, it turns out that this
approach does not generate the target CRISPR rice seed price in equilibrium.
This is because the model-wide effects need to be considered as well.

Numerically solving equations [Al], [A2], [A3], [10] and [11], we obtain
As = 0.005, Ay = 0.969, 4 = 0.145, ¢ = 1.500 and L = 10.8 million hectares.
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5. Baseline model results

The optimal planting share of CRISPR rice in the baseline is 37.9 per cent
(=10.8/28.5), and the expected profit from planting both types of rice is 12.45
billion US dollars at a 0.341 baseline probability of severe pest outbreak. This
result, however, does not solve the farmer’s dilemma mentioned in the title of
this paper: for a given probability of pest outbreak, would the farmer be
better off planting both types of rice or just sticking to conventional rice?
Using our baseline model, we calculate that the farmer’s expected profit in a
counterfactual scenario with conventional rice only and the same probability
of severe pest outbreak as the baseline is 9.85 billion US dollars. Thus, the
difference in the expected values of profit between cultivating both types of
rice and conventional rice alone is 2.6 billion US dollars. (We do not calculate
the benefits of cultivating CRISPR rice only, as presumably some farmers will
always choose not to adopt the new technology.)

Table 2 sheds more light on the discussion above by presenting results
decomposed by pest severity and rice type with the baseline data and an
assumption that yields of CRISPR rice are 10 per cent lower than
conventional rice. The first row presents profits in billion US dollars, and
the second row quantifies profit per hectare.

Clearly, profits in the severe case are significantly lower than in the weak
pest case. Looking at the relative difference, the gap for CRISPR rice is —33.8
per cent (4.44/6.71-1) but is much more pronounced for conventional rice
(—87.6 per cent, i.e. 1.15/9.29-1). This suggests that the profitability of
conventional rice is much more sensitive to uncertainty of pest outbreak than
CRISPR rice (which is insect-resistant). This calculation also agrees with the
observed reversal of the profitability of conventional rice relative to CRISPR
rice (i.e. 9.29 billion US dollars vs. 6.71 billion in the weak pest case
compared to 1.15 billion vs. 4.44 billion in the severe case) in the first row of
Table 2.

Based on profits per hectare, we expect the farmer to favour CRISPR rice,
as it can generate almost 18.5 per cent more profit per hectare in the weak
pest scenario (622/525-1) and more than six times more in the severe pest
scenario (411/65). The values in Table 2 also indicate that growing both rice

Table 2 Profits from rice production under various scenarios

Severe pest Weak pest
Both types planted Both types planted
CRISPR Conv. Only CRISPR Conv. Only
conv. conv.
Total profit from a rice type i 4.44 1.15 1.79 6.71 9.29 14.03
(billion $)
Profit per hectare ($/ha) 411 65 63 622 525 492
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types simultaneously benefits the farmer, as the difference between profits in
the severe and weak pest cases for conventional rice alone is —87.2 per cent
(1.79/14.03-1) but decreases to —65.1 per cent [(4.44 + 1.15)/(6.71 + 9.29)-1]
when both types are grown.

The representative farmer in our model is risk-averse. The certainty
equivalent corresponding to the baseline values and the assumed exponential
Bernoulli utility function is 11.28 billion US dollars. The resulting risk
premium is thus 1.17 billion US dollars (12.45 billion—11.28 billion), which
means that 1.17 billion US dollars is the minimum amount by which the
expected profit must exceed the certainty equivalent to induce the farmer to
bear the uncertainty of pest severity.

We conclude this section by providing break-even values for four selected
parameters that might be useful both to policymakers and technology
developers. The break-even values correspond to a situation where the
optimal decision of the representative farmer would be not to grow any
CRISPR rice, that is Lo = 0.

We start with the yield drag. Based on the values in Table 1, we calculated
the baseline value of this parameter to be —10 per cent (=6.975/7.750-1).
Holding all other parameters at their baseline levels, the yield of CRISPR rice
would have to decrease to 5.011 tons per hectare for the farmer not to grow
CRISPR rice. This implies the break-even yield drag of —35.3 per cent
(=5.011/7.750-1). A reader might recall that Lu et al. (2018) reported a yield
drag of —36 per cent for CRISPR vs conventional rice in a controlled
laboratory environment. It might appear that if Lu et al. (2018) are right, then
there would be no planting of CRISPR rice. This conclusion is not correct,
however. The reason is that the yield drag in our baseline is —10 per cent (not
—36 per cent) (see the section on model description), which means that had we
used —36 per cent as reported in Lu et al. (2018), the break-even value of the
yield drag would have been lower than —35.3 per cent.

In the baseline, CRISPR rice is sold at a discount of 10 per cent (=0.164/
0.182-1). Our break-even analysis shows that, other things kept equal, the
price of CRISPR rice would have to decrease to 0.118 US dollars per ton for
Lc=0. This implies a break-even price discount of almost 65 per cent
(=0.118/0.182-1).

The third break-even value we calculate is the technology fee for CRISPR
rice. The break-even price of CRISPR rice seed turns out to be 3,388 US
dollars per hectare. This extraordinarily high value is more than 90 times
greater than the baseline cost of CRISPR seed and more than 150 times
greater than the baseline cost per hectare of conventional seed. These relative
differences suggest that the optimal area under CRISPR rice will not change
much compared to the baseline when the degree of market power—proxied
by the relative difference between the cost of CRISPR and conventional rice
—reaches a realistically conceivable level (e.g. we assume 200 per cent in the
sensitivity analysis below).
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The final parameter whose break-even value we analyse is the segregation
cost per hectare. Following our specification of the total segregation cost in
equation 2, the segregation cost per hectare (s) equals s = ALS./Le = ALE!.
Because ds/dLc = (e — 1)ALS? >0 for € > 1 (which we require for the total
segregation cost to be convex in the area of CRISPR rice), it must be that the
smaller is the area of CRISPR rice, the lower is the per hectare segregation
cost; in particular, as Lo approaches zero, so does the segregation cost per
hectare.

Clearly, the baseline results depend on the chosen parameters. To check
how robust they are, in the following section, we run sensitivity analysis using
Monte Carlo simulations.

6. Sensitivity analysis of the baseline results

We start by generating a PERT® distribution for each parameter of interest
(Table 1) from which we then randomly draw the parameter values 100,000
times, each time running the model and recording the results. We use the
PERT distribution because of its minimum prior information requirements:
the maximum, minimum and most probable value (mode) of a parameter.
Better than other distributions, the PERT distribution constructs a smooth
curve with the expectation that the resulting value will be around the most
likely value (Davis, 2008).

Table 1 presents the baseline values of the parameters that we use as the
mode of the PERT distribution. If a parameter has natural limits (e.g.
probability of pest severity), we use those for the minimum and maximum. In
the remaining cases, we rely on the previous literature (e.g. percentage of
conventional yield left after severe pest damage), historical data (e.g. market
price of conventional rice per hectare) or in the absence of sources, we either
set the lower (upper) bound to be 30 per cent below (above) the baseline value
or assume a specific interval (for parameter §). Table 1 provides the sources
of individual confidence intervals. We perform the Monte Carlo simulations
with ‘nlegslv’ package in R x 64 4.0.5 (Fletcher, 2012; Hasselman, 2018; R
Core Team, 2021).

Before turning to the sensitivity analysis results, note that not all results of
the 100,000 model runs were considered. First, we excluded the infeasible
solutions, that is, those where the planting share was either negative or
greater than one. These solutions can occur in numerical simulations for
some assemblages of model parameters. Second, for other constellations of
exogenous parameters, the model could not find the optimal solution
(problems with convergence) most likely due to the model’s non-linearities
and starting values that might not be close enough to the solution. In the end,
we included the results of 92,852 model runs (i.e. almost 93 per cent) in the
sensitivity analysis.

® Project Evaluation and Review Technique
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Figure 3 depicts the kernel density function of the optimal planting share
based on the successful 93 per cent of model runs. The median of the planting
share is 22.7 per cent, and the mean is 26.0 per cent. These values need to be
juxtaposed with the percentage calculated in the baseline (37.9 per cent).
Clearly, the uncertainty over model parameters also translates into the value
of the planting share. For completeness, the standard deviation of the
distribution in Figure 3 is 18.0 percentage points.

Table 3 shows more detailed sensitivity results for the optimal planting
share, expected profit, certainty equivalent and risk premium. We distinguish
between the case where both rice types are planted and where the farmer
grows only conventional rice. Both scenarios are run in one iteration, and the
process is repeated 100,000 times. In each iteration, we randomly draw from
the distributions of individual parameters. With those parameters, we
calculate the variables of interest for both types of rice and for conventional
rice only. Due to the model structure change in the second scenario (from
three equations to one), the number of feasible and optimal model runs
decreases from 92,852 (as reported in Figure 3) to 53,281.

Table 3 shows that the expected profit and certainty equivalent of the risk-
averse farmer growing rice are greater when both types of rice are grown than
when conventional rice only is grown. Notice that the farmer requires a
smaller risk premium when her rice production is more diversified. This
confirms the baseline result that the farmer benefits from diversifying her
production by including CRISPR rice. More broadly, our findings can also
be linked to the discussion of agrobiodiversity as natural insurance to risk-
averse farmers and to society by reducing the uncertainty in the provision of
public-good ecosystem services (Baumgirtner & Quaas, 2010; Quaas &
Baumgirtner, 2008).

2.0

Density
1.0

I I | I I [
0.0 0.2 04 0.6 0.8 1.0

N =92852 Bandwidth = 0.01626

Figure 3 Kernel density function of the optimal planting share of CRISPR rice. Note: The
horizontal axis represents the optimal planting share of CRISPR rice. The median and the
mean are 22.7 per cent and 26.0 per cent respectively; the standard deviation is 18.0 percentage
points. The actual values on the horizontal axis are between zero and one. However, the R
software does not truncate the kernel density function at zero and one, slightly extending it
beyond the given limits instead.
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Table 3 Results of the Monte Carlo simulations (N = 53,281) (billion US dollars)

Min. % Median Mean 3™ Max. Standard
quartile quartile deviation

CRISPR rice and conventional rice

Optimal share (%) 0.00 12.60 2293  26.18 36.21 100.00 17.97
Expected profit -0.04 13.04 1649 1696 20.61 42.30 5.43
Certainty equivalent  —1.00 11.95 1525 15.69 19.10 41.00 5.21
Risk premium 0.00 0.73 1.17 1.27 1.70 5.26 0.71
Conventional rice only
Expected profit -491 10.34 1420 14.64 18.76 37.43 597
Certainty equivalent  —6.24 8.93 12.64 13.02 16.87 35.86 5.76
Risk premium 0.00 0.90 1.51 1.62 2.21 6.58 0.94
Value of co-planting -3.33 1.01 1.85 2.32 3.15 12.66 1.75

CRISPR rice

So, what is the value of co-planting CRISPR rice in addition to
conventional rice? We define this value as the difference between a farmer’s
expected profit with both types of rice and with conventional rice only. The
last row in Table 3 gives the estimates.” The median of the value of co-
planting CRISPR rice is 1.85 billion US dollars, and the mean is 2.32 billion
US dollars, suggesting a distribution of the values skewed to the right.
Overall, in 99 per cent of the cases, we find a positive value of co-planting
CRISPR rice. Figure 4 depicts the results.

7. What affects the optimal planting share of CRISPR rice the most?

The amount of land devoted to CRISPR rice and its determinants is likely to
be of interest to several market agents, especially the seed industry and
governments. Various parameters have different units, and therefore, we
cannot directly compare the influence of various parameters on the optimal
share. However, converting the dependent variable (optimal share) and
independent variables (exogenous parameters) into logs, an ordinary least
square regression on the converted variables yields coefficients that, by
construction, represent elasticities of the optimal share with respect to
individual parameters. The higher the absolute value of an elasticity, the
stronger the effect of a parameter on the optimal planting share. Table 4
presents the results.

The signs of all regression parameters are significant at the 1 per cent level
and consistent with theoretical expectations. The five most influential
parameters are €, py, Yy, pc and Y. At the risk of over-extending the
results, three main factor groups appear to affect the optimal planting share
of CRISPR rice in China: the regulatory environment (especially the

® The values in the last row of Table 3 are not equal to a difference between the expected
profit values in the lines above because the presented values in either scenario do not
necessarily correspond to the same model run.
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Figure 4 Kernel density function of the value of adopting CRISPR rice. Note: The horizontal
axis represents values in billion US dollars. The median, mean and standard deviation are 1.85,
2.32 and 1.75 billion US dollars respectively.

Table 4 Relative impacts of exogenous parameters on the optimal planting share (all
parameters in the OLS regression were converted into logs) (N = 92,852)

Parameter Symbol Estimate P
value
Price of CRISPR rice (1000 $/ton) Pc 5.28*** (.0000
Price of conventional rice (1000 $/ton) Pv —6.37**%* (0.0000
Percentage of max. CRISPR rice yield after the most severe ac¢ 2.07*%** 0.0000
insect pest damage
Percentage of max. conv. rice yield after the most severe insect ay —1.62*%** (0.0000
pest damage
Price of pesticide (100 $/kg) m 0.42%** (0.0000
Max. yield of CRISPR rice (ton/hectare) Ye 4.27*%%* 0.0000
Max. yield of conv. rice (ton/hectare) Yy —5.54*** (0.0000
Total rice area (million hectares) L —0.78*** (0.0000
Shape parameter of the abatement function under weak pests Ay 0.04**  0.0014
Shape parameter of the abatement function under severe pests Ag —0.42%** (0.0000
Parameter of other costs of CRISPR rice A =2.01*** 0.0000
Probability of severe insect pests q 0.20*** 0.0000
Segregation cost parameter € =7.21%%* (0.0000
Constant absolute risk aversion r 0.13*** 0.0000
Other costs per hectare of conventional rice under weak pest ¢y 1.05*** (0.0000
(1000 $/hectare)
Other costs per hectare of conventional rice under severe pest ¢g 2.05%** 0.0000
(1000 $/hectare)
Conventional seed cost (1000 $/hectare) a —0.04*** (0.0000
Monopoly power é —0.01*** 0.0000
Intercept 3.63*%** (0.0000

Adjusted 0.82
R2

Note: “"Statistical significance at <0.001. “*Statistical significance at <0.01.

segregation costs associated with ¢), the market situation (represented by the
market prices of CRISPR and conventional rice, pc and py), and the state of
the technology (proxied by the potential yields of CRISPR and conventional
rice, Yc and Yy). Of these three groups, seed quality (translated into potential
yield) is the one over which seed producers have direct control.
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Regarding the relationship between a farmer’s (constant absolute) risk
aversion (r) and the optimal planting share of CRISPR rice, the positive and
highly significant coefficient means that a more risk-averse farmer tends to
prefer a higher share of CRISPR rice (as it brings higher expected profit than
conventional rice alone). The negative sign of the coefficient on the total rice
acreage indicates that growing urbanisation in China could increase the
acreage share of CRISPR rice to the detriment of conventional rice (provided
that commercialisation of CRISPR rice is allowed in the future).

8. Conclusions

CRISPR technology has been booming in the past thirty years, and it has
enhanced plant breeding by making it faster, less costly and more precise
(Cao, 2018). With respect to CRISPR rice, scientists expect to try alternatives
or complementary approaches to insect resistance by combining other
engineering methods to minimise adverse effects on yield (Lu et al., 2018),
which currently hampers potential commercialisation. CRISPR rice is insect-
resistant like GM rice while simultaneously indistinguishable from rice
developed by traditional breeding techniques. It is currently under debate
how the Chinese government will regulate CRIPSR technology. Therefore,
there is a chance that CRISPR rice will not be officially considered a GM
product in China. The advantage is evident, since a slow approval process has
hindered the commercialisation of new GM crops (Jin et al., 2019), and the
largest potential constraint to commercialisation is regulatory delay
(Kalaitzandonakes et al., 2007). Meanwhile, people are concerned about
food ethics, governance and further concentrate power in the hands of
corporate actors (Bartkowski et al., 2018; Clapp & Ruder, 2020).

The future of CRISPR rice is uncertain given the controversy over genome
editing regulations in China. One thing is clear: to improve the optimal
planting share of CRISPR rice under uncertainty about insect pest severity,
which we estimate to be around 38 per cent under our baseline assumptions,
scientists must improve the technical performance of CRISPR rice to enable
market entry regardless of government regulation on the strictness of
segregation.

Planting CRISPR rice along with conventional rice bears a high likelihood
of economic benefits compared to conventional rice alone. Based on our
model, our mean estimate of this benefit is estimated to be 2.32 billion US
dollars annually under uncertainty about the pest severity. This result should,
however, be interpreted cautiously as our model is based on several
simplifying assumptions, including optimising farmers, spatially homogenous
pest risk, no effects of spatial configuration on pest outbreaks (e.g. no spatial
spillovers), or that farmers do not adjust pesticide use according to pest
infestation.'”

19 We are grateful to an anonymous reviewer for pointing out these limitations to us.
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Although our results show significant potential for CRISPR rice to enter
the Chinese market, we are aware that this optimism might be underpinned
by the assumptions we had to make. First, not all data are available,
especially those related to the production of CRISPR rice. In that case, we
adopted information for Bt rice, which, although similar, is not the same as
CRISPR rice. Second, we modelled the optimal planting share of CRISPR
rice solely from the perspective of a farmer who does not consider
environmental externalities related to pesticide and fertiliser use, to mention
but a few. These considerations might be important in the future, should the
Chinese government regulate these negative environmental externalities more
strictly. We expect that including these effects would increase the share of
CRISPR rice. Third, we considered a representative farmer from China.
However, the climatic and production conditions in China vary, as do the
production costs of rice in different regions. Further research zooming into
regional differences is certainly needed. That said, once the new data for
CRISPR (and conventional) rice become available, the framework outlined in
this article can be readily (updated and) used to generate more precise results.
Last but not least, future research will need to look into which functional
forms best describe the decision making of farmers and how precisely the pest
damage is abated, depending on the amount of the pesticide use.

The decision of China about the approval and commercialisation of
CRISPR rice will be crucial for the United States and the European Union, as
China is a large global producer of rice. Inconsistent regulatory rules in
different countries about CRISPR technology might affect international trade
by coexisting with conventional products. Regulations will also influence the
direction of research and development of plant-breeding companies, their
focus on potential target markets and the future development of CRISPR
technology in general.
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Appendix 1

First-order conditions corresponding to the specific functional forms of the
model

Using the functional forms specified earlier, first-order conditions [S]-[7] can
be written as
pelacYe+ (1 —e%) (1 —ac) Y|
—— =gre’ '™ —pylayYy+ (1 —e ™) (1 —ay)Yy]
—[mXc+sc+eALE" — (mXy + sy + ¢5)]
Pc [ac Ye+ (1 — e*’lNXC) (1 —ac) YC]
+(1 — q)re"™ —pylayYy+ (1 — e ¥7)(1 —ay)Yy] =0
—[mXc+sc+eALE — (mXy + sy + V)]

(A1)

where

ns =pcQcs +pyQyps —mXcLe — scLe — AL — (mXy + sy + ¢%) (L — Lc)
my =pcQen +PyQyy — mXcLe — scLe — AL — (mXy + sy + ") (L — Lc)

OEU
—— = gre”"™{pc(1 —ac)YcLcdse % —mLc}+
oXc q {Pc( ac)YcLcis c} (A2)
(1= qyre™{pc(1 —ac)YcLcAye ™ ¢ —mLc} =0
C
OEU — —
—— =qre”™{py(1 —ay)Yy(L — Lc)dse ™" —m(L — L¢) }+

(1 - q)}’eim’\’{py(l —ay) YV(Z — L(j)ﬂNeii’\'XV — m(z — L(‘)} =0

Notice that the term L can be cancelled out in [A2], as Ly = L — L¢ can be
in [A3], such that the first-order conditions for X and X} do not directly
depend on land areas, which makes intuitive sense because X represents the
application of pesticide per hectare. However, there is also an indirect effect
via the profits zg and zy (in the exponents of [A2] and [A3]) that depend on
the allocation of the total land area to L, and Ly.
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