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A B S T R A C T   

The sustainable management of aquatic resources requires spatially explicit information on the water and 
vegetation presence of aquatic ecosystems. Previous Global Aquatic Land Cover (GALC) mapping has been 
focused on water bodies while lacking information on vegetation, and aquatic types have always been charac
terized by low accuracies in global land cover products, calling for specific attention to improve GALC mapping. 
The availability of a wealth of open Earth Observation (EO) data on cloud-computing platforms provides op
portunities to map aquatic land cover globally. This study aims to evaluate the potential of multi-source freely 
available EO data, including optical, Synthetic Aperture Radar (SAR), and various ancillary datasets, for 
improving the characterization of aquatic land cover comprising both water and vegetation types on a global 
scale. Using different combinations of features derived from these data, the classification performance of five 
land cover classes (i.e., trees, shrubs, herbaceous cover, bare/sparsely vegetated lands, and water bodies) in 
aquatic areas was cross-validated. Results showed that Sentinel-2 data alone achieved similarly good overall 
accuracy as those combining multi-source data. However, the single-sensor Sentinel-2 data cannot discriminate 
highly mixed and spectrally similar types, such as shrubs, trees, and herbaceous vegetation. Integrating SAR 
features from the ALOS/PALSAR mosaic and Sentinel-1 data with optical features provided by Sentinel-2 data 
could help address this limitation to some extent. Although with a lower spatial and temporal resolution, the 
ALOS/PALSAR mosaic had a stronger impact on GALC classification than Sentinel-1 data when they were syn
ergistically used. Features provided by ancillary datasets did not lead to significant improvement in the overall 
GALC classification. At class-level, topographic and soil features helped to reduce the commission error of shrubs, 
and climate variables were useful to improve the characterization of bare aquatic lands. The Global Ecosystem 
Dynamics Investigation (GEDI) forest canopy height dataset helped to characterize trees but also resulted in a 
decrease in accuracies of shrubs. By assessing multi-source earth observation data, this research represents an 
important step forward in the global mapping of comprehensive aquatic land cover types at high spatial reso
lution (i.e., 10 m).   

1. Introduction 

The aquatic ecosystem is one of the most productive ecosystems on 
the earth and provides essential ecosystem services for human beings, 
such as water retention and food security. Aquatic land cover is 
described as the land cover types that are significantly influenced by the 
presence of water over an extensive period of time around a year (Xu 
et al., 2020). Due to excessive human activities like cropland reclama
tion and urban development, global aquatic land cover (GALC) has 
undergone 35% losses since the 1970s (Ramsar Convention on 

Wetlands, 2018). The Sustainable Development Goal 6 puts emphasis on 
protecting and restoring water-related ecosystems, such as forests, 
wetlands, rivers, and lakes (United Nations, 2015). The monitoring of 
these aquatic ecosystems requires spatially explicit information on the 
water and also on the vegetation that affects the functioning of these 
systems (Mitsch and Gosselink, 2007). 

Remote sensing provides an efficient way to monitor the spatial 
distribution of aquatic land cover, especially when applied to large 
scales. To date, a number of GALC datasets have been created, with a 
focus on providing information for water bodies (Pekel et al., 2016; 
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Verpoorter et al., 2014) or the possible existence of aquatic areas (Hu 
et al., 2017; Prigent et al., 2007). Although these datasets are useful to 
monitor the water in aquatic ecosystems, they fail to account for the 
vegetation that is required by a variety of applications, such as hydro
logical and climate modeling (Xu et al., 2020). The widely used Global 
Lakes and Wetlands Database (GLWD) (Lehner and Döll, 2004) provides 
a comprehensive description of different aquatic types. Sourcing from 
data in the 1980s, GLWD is outdated for monitoring the present status of 
GALC. Serving as the most fundamental geospatial data product, Global 
Land Cover (GLC) datasets also offer several classes to describe the 
vegetation for aquatic land cover. However, aquatic types have always 
been mapped with low accuracies in previous GLC products (Amler 
et al., 2015; Xu et al., 2021). With the increased availability of satellite 
data and improved computing capabilities, GLC mapping has progressed 
towards higher resolution, such as the FROM-GLC10 (Gong et al., 2019), 
WorldCover 2020 (Zanaga et al., 2021), and ESRI 2020 Land Cover 
(Karra et al., 2021) products with a 10 m-resolution. Despite the 
advantage of presenting more spatial details, aquatic land cover remains 
the most difficult to map (Gong et al., 2019) and is classified with 
relatively low accuracies in these high-resolution products (Gong et al., 
2019; Tsendbazar et al., 2021b; Zanaga et al., 2021). Therefore, there is 
a critical need to update and improve the GALC mapping. 

Unlike generic land cover, the characterization of aquatic land cover 
types is more challenging due to the interplay among vegetation and the 
underlying water and wet soils (Gallant, 2015). Optical imagery, 
providing the basic spectral information for land objects, has been 
widely used in characterizing water bodies (Pekel et al., 2016) and 
aquatic vegetation (Adam et al., 2010). Despite the advantage of mul
tispectral images, cloud cover is a limiting factor for optical remote 
sensing systems. Synthetic Aperture Radar (SAR) data have the ability to 
penetrate through clouds and thus are less vulnerable to cloud con
taminations. SAR can also penetrate into vegetation canopies, allowing 
them to collect information about the physical structure of vegetation 
(Mahdavi et al., 2018). 

Synergistically using multi-source data is an effective way to over
come the limitations of a single sensor and improve the classification 
accuracy of aquatic land cover (Corcoran et al., 2013). Specifically, the 
combination of the high spatial and temporal resolution Sentinel-1 (S1) 
SAR and Sentinel-2 (S2) multispectral data has been employed to map 
the complex characteristics of aquatic land cover (Slagter et al., 2020). 
Although the integrated use of S1 and S2 data is often applied at local or 
regional scales (Mahdianpari et al., 2020; Slagter et al., 2020), it has not 
been explored for GALC mapping. 

In general, SAR data with short wavelengths (e.g., C-band) are often 
used to map herbaceous vegetation (Mahdavi et al., 2018). Time-series 
of S1 data have been reported helpful for capturing flooded grasslands 
(Tsyganskaya et al., 2018). However, to penetrate further into the high 
vegetation canopy and sense the understory of water and vegetation, the 
longer-wavelength SAR (e.g., L-band) is required. The Advanced Land 
Observing Satellite Phased Arrayed L-band Synthetic Aperture Radar 
(ALOS/PALSAR) archives provide one of the most frequently used L- 
band SAR data (Rosenqvist et al., 2014). Due to the difficulty in 
acquiring and processing PALSAR-1 data globally and because PALSAR- 
2 data are not for free, the L-band SAR has not been applied for opera
tional aquatic land cover mapping. However, the yearly updated ALOS/ 
PALSAR mosaic (JAXA, 2016) provides a global SAR image, which offers 
an alternative for using individual L-band SAR images on a global scale. 
To date, it has not been assessed for GALC mapping. 

Besides the spaceborne satellite data, various ancillary datasets such 
as topographic, climate, and soil data can provide complementary in
formation for discriminating between different aquatic types, due to the 
fact that the occurrence of aquatic land is strongly influenced by the 
topography, climate conditions, and soil attributes (Mitsch and Gosse
link, 2007). The confusion of the spectrally similar trees and shrubs has 
been an issue in GLC mapping (Xu et al., 2021). A recently published 
global forest canopy height product (Potapov et al., 2021), which 

provides continuous estimation of forest canopy height, could poten
tially be used for the classification of trees and shrubs that are charac
terized by different heights. Despite the wealth of ancillary datasets, it 
remains uncertain whether these data are effective for improving GALC 
mapping. 

The development of cloud-computing platforms such as Google Earth 
Engine (GEE, Gorelick et al., 2017) allows users to access and analyse 
tremendous volumes of earth observation (EO) data efficiently. The S1 
and S2 imagery as well as various ancillary datasets are readily available 
on the GEE platform, bringing new opportunities for the global-scale 
mapping of aquatic land cover types. In this study, our goal is to eval
uate the potential of multi-source EO data including optical, SAR, and 
various ancillary datasets for improving the GALC characterization of 
both water and vegetation types. By exploring different combinations of 
data sources, we intend to find the important input variables that could 
improve the characterization of the water and vegetation for global 
aquatic ecosystems. 

2. Materials and methods 

2.1. Analysis overview 

As this study focused on improving the land cover classification in 
aquatic areas, we used an existing map to predefine the baseline of 
global aquatic areas. For this purpose, the integrated GALC map from Xu 
et al. (2021) was taken. Furthermore, we conducted a point-level anal
ysis in this study using the reference dataset (Section 2.2) provided by 
the Copernicus Global Land service GLC (CGLS-LC100) mapping project 
(Buchhorn et al., 2020; Tsendbazar et al., 2021a). This means we did not 
create a wall-to-wall map, but rather used the globally distributed 
reference aquatic sample sites to assess the value of multi-source EO data 
in global aquatic land cover mapping. 

Following the United Nations Land Cover Classification System 
(LCCS)-based GALC characterization framework (Xu et al., 2020), land 
cover types mapped in this study include trees, shrubs, herbaceous 
cover, bare/sparsely vegetated lands (hereafter referred to as bare 
lands), and water bodies. Such a design allows users to adapt these basic 
land cover types to their own legends or combine them with other 
thematic maps (e.g., water seasonality) to derive their required infor
mation (Xu et al., 2020). Specific definitions of the five types can be 
found in Table S1 of the supplementary material. 

The output map was intended for 2019–2020 with a 10 m spatial 
resolution. An overview of our analytical workflow can be seen in Fig. 1 
and steps taken are detailed in the following sections. GEE was used for 
most of the data collection and preprocessing, and R (R Core Team, 
2021) for modeling and analysis. 

2.2. Reference dataset 

In this study, we utilized the CGLS-LC100 global validation dataset 
(Tsendbazar et al., 2021a) as our reference data for both training and 
validation. It was developed for validating the annual (2015–2019) GLC 
maps of the CGLS-LC100 product (Buchhorn et al., 2020). For our pur
pose, we used the data from the year 2019. The reference dataset in
cludes 21,752 sample locations across the globe (Tsendbazar et al., 
2021a), which were created using a stratified random sampling design. 
Each sample location corresponded to a 100 m × 100 m area, and it was 
then divided into 10 × 10 subpixels (10 m × 10 m). The reference cover 
type was collected at the subpixel level by interpreting high-resolution 
satellite images on the GeoWiki platform (https://www.geo-wiki. 
org/). For more details about this reference dataset, please refer to 
Tsendbazar et al. (2018, 2021a). 

Eleven classes were originally included in the reference dataset 
following the LCCS classification scheme (Tsendbazar et al., 2021a), and 
we selected eight of them related to this study and merged these classes 
to obtain the five targeted aquatic types, namely trees (i.e., 
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corresponding to trees in the reference dataset), shrubs (i.e., corre
sponding to shrubs), herbaceous cover (i.e., corresponding to grassland, 
herbaceous wetland, moss/lichen, and cropland), bare lands (i.e., cor
responding to bare/sparse vegetation), and water bodies (i.e., corre
sponding to water bodies). 

As the initial reference dataset covered both aquatic and non-aquatic 
areas globally, we restrained the sample sites within aquatic areas using 
the integrated GALC Level-1 map from Xu et al. (2021). As a result, the 
data included 3801 sample locations comprising 370,172 subpixel 
sample sites (10 m) across the globe (80◦N-56◦S). The fact that not 
exactly 380,100 subpixel sample sites were included in these 3801 lo
cations was because the integrated GALC Level-1 map could be partially 
covered by the sample locations. The spatial distribution of the reference 
dataset used in this study is shown in Fig. 2. The number of reference 

sample sites used for each class is shown in the legend. 

2.3. Data collection and preprocessing 

An overview of the data used in this study is given in Table 1. After 
preprocessing, a variety of features (Table 2) were obtained from the 
data sources. 

2.3.1. Optical data 
A total of 31,062,747 Level-2A S2 multispectral images at the 

reference sample sites during the observation period 2019-01-01 to 
2020-12-31 with a cloud-cover of less than 20% were sourced from the 
GEE platform. The spatial distribution of valid S2 observations is shown 
in Fig. 3b. The images have already been atmospherically corrected, and 

Fig. 1. Methodological workflow of this study.  

Fig. 2. Spatial distribution of the reference dataset used in this study. Numbers in brackets indicate the amount of reference sample sites used for each class. The 
global aquatic land cover map was sourced from Xu et al. (2021). 
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we further preprocessed them to mask clouds and cloud shadows, using 
the cloud masking algorithm developed by Braaten (2021). Spectral 
bands at a 20 m-resolution (i.e., B8A, B11, B12) were resampled to 10 m 
using the nearest neighbor resampling. 

With the preprocessed time-series images in 2019–2020, two groups 
of features were extracted, namely the spectral bands and water/vege
tation indices. The 17 optical features as shown in Table 2 have been 
used in various aquatic land cover classification research (DeLancey 
et al., 2019; Ludwig et al., 2019). From the time-series images, we 
further calculated seven temporal metrics over the entire 2019–2020 
period, including the minimum, maximum, mean, median, 10th 
percentile, 90th percentile, and standard deviation. With the seven 
temporal metrics for each of the 17 optical features, a total of 119 var
iables (Table 2) were acquired from S2 data. 

2.3.2. SAR data 
A total of 38,554,729 S1 images at the reference sample sites from 

2019-01-01 to 2020-12-31 were sourced from GEE, and the spatial 
distribution of S1 observations can be seen in Fig. 3a. The C-band S1 SAR 
data available on GEE are Ground Range Detected (GRD), acquired in 

Interferometric Wide swath mode with dual-polarization (VV and VH) 
images. They have been preprocessed as a Level-1 product after thermal 
noise removal, radiometric calibration, and terrain correction. Here, we 
further processed the data following a framework proposed by Mullissa 
et al. (2021) to obtain the analysis-ready SAR backscattering data. A 
border noise correction to remove border artifacts and a refined-Lee- 
filter for speckle filtering were implemented on the SAR time-series 
images within GEE. 

The 25 m ALOS/PALSAR yearly mosaic is provided by the Japan 
Aerospace Exploration Agency (JAXA), created by mosaicking SAR im
ages measured by PALSAR-1 or PALSAR-2 available each year (JAXA, 
2016). In this study, mosaics were acquired for 2019 and 2020 (i.e., one 
mosaic per year). The data have been ortho-rectified and slope- 
corrected. We further applied a focal median filter (GEE, 2021) with a 
window size of 5 × 5 pixels to the image to reduce speckle effects. The 
data were in digital number (DN) and were converted to gamma-naught 
(γ0) values in GEE using Eq. (1) (JAXA, 2016). The resulting data were 
resampled to 10 m before calculating features. 

γ0 = 10× log10
(
DN2) − 83 (1) 

Table 1 
Overview of the data used in this study.  

Source Product Period of data Spatial resolution Temporal resolution Coverage 

Optical Sentinel-2 MSI, Level-2A 2019–2020 10 m, 20 m 5-day 83◦N-56◦S 

SAR Sentinel-1 SAR GRD 2019–2020 10 m 6-day 85◦N-60◦S 
ALOS/PALSAR mosaic 2019–2020 25 m Yearly 85◦N-58◦S 

Topographic 
SRTM DEM 2000 30 m – 60◦N-56◦S 
Global Topographic Index by Marthews et al. (2015) Circa 2000 15-arcsecond (~450 m at the Equator) – 86◦N-56◦S 

Forest canopy height GEDI global forest canopy height 2019 30 m – 52◦N-52◦S 
Soil OpenLandMap 1950–2017 250 m – 84◦N-56◦S 
Climate WorldClim Version2 Bioclimatic variables 1970–2000 30-arcsecond (~1 km at the Equator) – 84◦N-56◦S  

Table 2 
Overview of the features derived from the data sources. Detailed descriptions and calculation formulas of the features are presented in Tables S2-S4 (supplementary 
material).  

Source Product Feature 
description 

Features Temporal metrics Number of 
features 

Optical Sentinel-2 

Spectral bands B2; B3; B4; B8; B8A; B11; B12 

Mean; Minimum; Maximum; 
Median; Standard deviation; 10th 
percentile; 90th percentile 

119 Water/vegetation 
indices 

NDVI (Normalized Difference Vegetation Index); reNDVI (red- 
edge Normalized Difference Vegetation Index); mNDWI 
(modified Normalized Difference Water Index); SWI (Sentinel-2 
Water Index); ND_NirSwir (Normalized Difference of NIR and 
SWIR2 bands); ARI (Anthocyanin Reflectance Index); NMDI 
(Normalized Multi-band Drought Index); AWEI (Automated 
Water Extraction Index); SAVI (Soil Adjusted Vegetation Index); 
REIP (Red Edge Inflection Point) 

SAR 

Sentinel-1 

SAR 
backscattering 

VV; VH Mean; Minimum; Maximum; 
Median; Standard deviation; 10th 
percentile; 90th percentile 36 Polarization- 

derived features 
Ratio; Normalized Difference 

Texture features 
Variance; Correlation; Contrast; Difference entropy (calculated 
for VV and VH, respectively) Mean 

ALOS/PAL-SAR 
mosaic 

SAR 
backscattering HH; HV 

Mean 12 Polarization- 
derived features 

Ratio; Normalized Difference 

Texture features Variance; Correlation; Contrast; Difference entropy (calculated 
for HH and HV, respectively) 

Topogr- 
aphic 

SRTM DEM – Elevation; Slope; Aspect; TPI (Topographic Position Index) – 
5 Global Topographic 

Index – TWI (Topographic Wetness Index) – 

Forest 
canopy 
height 

GEDI global forest 
canopy height – Forest canopy height – 1 

Soil OpenLandM-ap – Soil water content; Soil organic carbon content – 2 

Climate WorldClim Version2 
Bioclimatic variables 

– 
Temperature seasonality; Max temperature of warmest month; 
Min temperature of coldest month; Precipitation seasonality; 
Precipitation of wettest month; Precipitation of driest month 

– 6  
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Three groups of SAR features were extracted, including the SAR 
backscattering, polarization-derived features, and texture features 
(Table 2). The SAR backscattering was referred to VV, VH for S1, and 
HH, HV for PALSAR. Polarization-derived features comprised the ratio 
(e.g., VV

VH ) and normalized difference (e.g., HH− HV
HH+HV) of the SAR bands. For 

S1 data, seven temporal metrics (Table 2) of the SAR backscattering and 
polarization-derived features were calculated over the entire time 
period. For PALSAR data, the mean-composite of the two images in 
2019–2020 was used to derive the aforementioned two groups of 
features. 

Texture measures from the Gray Level Co-occurrence Matrix (GLCM) 
provide valuable information on the pixel spatial relationships in a SAR 
image (Haralick et al., 1973). Based on GLCM, four texture features were 
used in this study, namely the variance, correlation, contrast, and dif
ference entropy (Conners et al., 1984; Haralick et al., 1973). These 
texture features were calculated based on the mean-composite of the 
time-series SAR images for the VV, VH, HH, and HV bands. The GLCM 
neighborhood size was set to 5 for the calculation. 

Finally, a total of 36 and 12 features were obtained from S1 and 
PALSAR data (Table 2), respectively. 

2.3.3. Ancillary data 
The topographic data used in this study originated from two sources. 

The first was taken from NASA’s Shuttle Radar Topography Mission 
(SRTM) Digital Elevation Model (DEM), which describes global eleva
tion in meters above sea level in the year 2000 with a 30 m-resolution 
(Farr et al., 2007). From the SRTM DEM, the elevation, slope, and aspect 

were extracted within GEE at 10 m-resolution. As GEE does not provide 
algorithms to calculate the Topographic Position Index (TPI, Wilson and 
Gallant, 2000) and the Topographic Wetness Index (TWI, Beven and 
Kirkby, 1979), two measures were taken to obtain the two features: 1) 
We exported the SRTM DEM out of GEE to calculate the TPI in GDAL 
(GDAL/OGR contributors, 2021); and 2) An analysis-ready TWI dataset 
generated by Marthews et al. (2015), serving as our second source of 
topographic data, was adopted to provide the global TWI estimate. This 
TWI dataset is calculated from the HydroSHEDS data (Lehner et al., 
2008) and processed at a 15-arcsecond resolution under the WGS84 
reference system. We resampled the TPI and TWI datasets to 10 m in 
GDAL, and then extracted the TWI and TPI values at the reference 
sample sites using the point sampling tool in QGIS. 

The 30 m global forest canopy height dataset (Potapov et al., 2021) is 
developed by integrating Landsat time-series with the Global Ecosystem 
Dynamics Investigation (GEDI) lidar forest structure measurements. The 
data describe forest canopy height in meters within the latitude range 
52◦N ~ 52◦S for the year 2019. On GEE, the data are split into seven 
continental mosaics, and we combined these mosaics to form a global 
image. The forest canopy height values at the reference sample sites 
were extracted at 10 m-resolution within GEE. 

The climate data were adopted from the bioclimatic variables of the 
WorldClim Version2 product (Fick and Hijmans, 2017), which is avail
able at Hijmans et al. (2020). These variables represent annual trends, 
seasonality, and extreme or limiting environmental factors. The dataset 
is at 30-arcsecond resolution and we resampled it to 10 m in GDAL. Six 
bioclimatic variables about the temperature and precipitation were used 

Fig. 3. Spatial distribution of the number of valid (a) Sentinel-1 and (b) Sentinel-2 observations during 2019–2020 at the reference sample sites.  
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in this study (Table 2). Values of these variables at the reference sample 
sites were extracted using QGIS. 

Soil features were sourced from the soil water content (at 33 kPa, 
Field Capacity) and the soil organic carbon content product of the 
OpenLandMap (OpenGeoHub Foundation, 2018). These maps are 
developed based on machine learning predictions from a global 
compilation of soil profiles and samples (Hengl and MacMillan, 2019). 
The soil water content and the soil organic carbon content are both 
predicted at 6 standard depths (0, 10, 30, 60, 100, and 200 cm) at 250 m- 
resolution. In this study, we chose the 30 cm depth to represent the near- 
surface soil properties. Values of the two soil features at the reference 
sample sites were extracted in GEE at 10 m-resolution. 

2.4. Feature selection and feature set combination 

Among the optical features acquired from the S2 data, some are 
highly correlated and may contain redundant information that would 
increase the computation time and diminish the classification perfor
mance (Stromann et al., 2020). To minimize the multicollinearity, var
iables that have a high correlation (Pearson’s correlation coefficient ≥
0.9) with any of the high-importance variables, which were determined 
based on the impurity metrics provided by the random forest algorithm 
(Breiman, 2001), were iteratively removed. After this process, 64 out of 
the original 119 optical features remained. We then implemented the 
Recursive Feature Elimination (RFE, Guyon et al., 2002), a widely used 
feature selection algorithm, to exclude redundant variables from the 
remaining features. By ranking-ordering the features iteratively, RFE 
removes the ones with the least importance until finding the optimal 
combination of features. Finally, 57 out of the 64 variables were selected 
by RFE and they were used as S2 features in the classification model 
(Section 2.5). 

For the S1 SAR features, only the multicollinearity was assessed 
using the same method as applied to S2 features. After removing the 
highly correlated ones, 24 out of the original 36 S1 features were 
retained. As the number of features from PALSAR and ancillary datasets 
were limited (Table 2), we did not implement the feature selection for 
these datasets. A detailed list of the features selected from each data 
source is shown in Table S5 (supplementary material). 

We constructed 11 feature sets (Table 3) to assess their performance 
for GALC characterization, starting from the single-sensor optical or SAR 
features. To evaluate the added value of ancillary data, the GEDI forest 
canopy height, topographic, climate, and soil datasets were iteratively 
added onto the satellite-data-based S1-S2-PALSAR (i.e., S1S2P) 
combination. 

2.5. Classification and accuracy assessment 

Three classifiers including the Random Forest, Support Vector Ma
chine, and the Multinomial Logistic Regression classifier were used for 
training and prediction in this study to obtain a reliable evaluation on 
the contribution of multi-source EO data. Random Forest (RF; Breiman, 
2001) is an ensemble machine learning model that combines a set of 
decision trees constructed using a random subset in the training data. 
When working in a classification environment, the final prediction is 
determined by taking the majority of the predictions made by each in
dividual decision tree in the forest. Support Vector Machine (SVM; 
Vapnik, 1999) is a machine learning algorithm which tries to find an 
optimal hyperplane to categorize data into different classes. As SVM 
does not support multiclass classification in its most basic type, the 
multiclass classification is broken down into multiple binary classifica
tions. Multinomial Logistic Regression (MLR; Theil, 1969) is a classifi
cation method that allows for more than two categories of the dependent 
variable. The final class is assigned by calculating the probability of 
category membership on a dependent variable based on multiple inde
pendent variables. 

The h2o package (Landry, 2016) in R was used to run RF and MLR 
models, and the liquidSVM package (Steinwart and Thomann, 2017) 
was used for implementing SVM. Both packages allow parallel pro
cessing. The setting of some key parameters of the RF, SVM, and MLR 
models are listed in Table S6 of the supplementary material, and we kept 
them as a constant while training the classification models for the 11 
feature sets. Some reference sample sites may have missing values of 
some features caused by the cloud removal or the missing coverage of 
the source data (see Fig. S1 for the percentage of NA in each data 
source). For instance, the GEDI forest canopy height dataset only covers 
52◦N ~ 52◦S. Thus, samples located outside this range have a null value. 
The RF model in h2o internally deals with missing values without 
imputation by minimizing the loss function when making a split decision 
for every node (H2O.ai, 2021a). As the MLR and SVM model cannot deal 
with missing values, we used the mean of valid observations to impute 
missing values. 

A 10-fold cross-validation was applied to train the classification 
models as well as evaluating the classification accuracy. The reference 
dataset was partitioned into 10 random subsets based on the 100 m ×
100 m sample locations (i.e., location IDs). Nine of them were used for 
training and the remaining one was used to validate the prediction ac
curacy. This was repeated 10 times, each time reserving a different 
subset for validation. Partitioning based on sample location level instead 
of subpixel level was chosen mainly to limit the influence of possible 
autocorrelation, thus preventing a subpixel from being selected for 
validation while the neighboring subpixels were selected for training. 
The number of reference samples used per class was shown in Fig. 2. 

The overall accuracy (OA), user’s accuracy (UA), and producer’s 
accuracy (PA) were calculated as the median values based on confusion 
matrices produced from the 10-fold cross-validation to evaluate the 
performance of the predictions. Additionally, a Welch’s t-test (Welch, 
1947) in R was implemented to determine whether a statistically sig
nificant difference exists between different classification scenarios. 

To gain insight into how well predictions of this study compare with 
currently available global products, we selected four existing datasets 
and assessed their accuracies using the same reference dataset applied to 
our study. We used the CGLS-LC100 discrete map (Buchhorn et al., 
2020) for 2019, WorldCover 2020 (Zanaga et al., 2021), the Hansen 
Global Forest Change (GFC) dataset version 1.7 (Hansen et al., 2013) 
describing forest changes for 2000–2019, and the Global Surface Water 
(GSW) yearly history for 2019 (Pekel et al., 2016) that identifies sea
sonal water and permanent water. All these datasets are available on 
GEE and we clipped them to the same aquatic areas using the integrated 
GALC Level-1 map (Xu et al., 2021) applied to our study. From the CGLS- 
LC100 discrete map and the WorldCover 2020 dataset, 19 out of 23 and 
9 out of 11 land cover classes (Table S7 in the supplementary material), 

Table 3 
Different feature sets used for GALC characterization. Specific features selected 
from each data source are listed in Table S5 (supplementary material).  

Abbreviation of the 
feature set 

Data source Number of 
features 

P PALSAR 12 
S1 Sentinel-1 24 
S1P Sentinel-1, PALSAR 36 
S2 Sentinel-2 57 
S2P Sentinel-2, PALSAR 69 
S1S2 Sentinel-1, Sentinel-2 81 
S1S2P Sentinel-1, Sentinel-2, PALSAR 93 

S1S2PF 
Sentinel-1, Sentinel-2, PALSAR, Forest 
canopy height 94 

S1S2PFT 
Sentinel-1, Sentinel-2, PALSAR, Forest 
canopy height, Topographic 

99 

S1S2PFTC Sentinel-1, Sentinel-2, PALSAR, Forest 
canopy height, Topographic, Climate 

105 

S1S2PFTCS Sentinel-1, Sentinel-2, PALSAR, Forest 
canopy height, Topographic, Climate, Soil 

107  
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respectively, were selected and reclassified into the five basic land cover 
types mapped in this study. To obtain trees in the year 2019 from the 
Hansen GFC data, we used the map in 2000 with a threshold of >50% 
tree cover as the basic tree cover extent, and excluded all forest losses 
from 2000 to 2019 from the basic map. As the seasonal water of the GSW 
dataset could be a mixture of water and temporarily flooded bare or 
vegetated types, we used only the permanent water to represent pure 
water bodies. 

The variable importance produced by the RF and MLR model were 
used to assess the importance of features. In h2o, RF evaluates feature 
importance using the Gini impurity measure and MLR uses the regres
sion coefficient to represent the feature importance (H2O.ai, 2021b). In 
this study, importance scores were calculated based on the trained 
classification model for the feature set combining all data sources. 
Standard deviations of the importance scores were also calculated based 
on the 10-fold outputs to assess the variability of these scores. 

3. Results 

3.1. Classification accuracy analysis 

The cross-validated overall accuracies of the three classifiers are 
presented in Fig. 4. According to the classification results of the three 
classifiers, the highest OA was obtained with the feature set combining 
all available data sources based on RF (83.2%) and MLR (82.3%), 
whereas SVM achieved the highest OA (78.3%) when combining S1, S2, 
PALSAR, and GEDI forest canopy height. The classification based on the 
PALSAR-only data resulted in the lowest OA, which was 67.3%, 67.7%, 
and 65.5% based on MLR, RF, and SVM, respectively. In terms of sta
tistical significance (i.e., Welch’s t-test based on the 10-fold OA), the 
single-sensor S2 data and all multi-source feature sets significantly 
improved the OA compared to using the single-sensor S1 or PALSAR 

data. However, there is no significant difference among using multi- 
source feature sets compared to the single-sensor S2 data tested at the 
95% confidence level. 

The cross-validated class-specific accuracies derived from the three 
classifiers are shown in Fig. 5. We chose the best-performing RF pre
diction derived from the feature set combining all data sources to 
visualize the GALC prediction map (Fig. 6). Both the aquatic land cover 
types and correctness of the prediction (i.e., the commission, omission, 
and correct prediction) are visualized. The confusion matrix of this best 
prediction is presented in Table 4. The confusion matrices of RF pre
dictions for the other feature sets can be found in Tables S8-S17 (sup
plementary material). As an illustration of the high-resolution map, we 
applied the 11 RF models that have been trained using the global 
reference dataset to a local area, i.e., the St. Lucia wetland in South 
Africa (32◦ 26′ 34.8”E, 28◦ 15’ 32.4”S), to predict images of the 11 
feature sets. From Fig. 7, it could be observed that at the local scale, the 
classification map derived from the S2-only feature set (Fig. 7e) was 
quite similar with those (Fig. 7f-l) integrating multi-source data. 

Herbaceous cover had more errors of commission (100% - UA) than 
omission (100% - PA) and it tended to be overestimated at the cost of 
shrubs, trees, and bare aquatic lands (Table 4). Spatially, the commis
sion error was higher in river floodplains (e.g., Paraguay River in South 
America, Indo-Gangetic Plain of India) and high northern latitudes 
(50

◦

N ~ 70
◦

N, Fig. 6a). Among all the feature sets, S2 data alone ach
ieved a good performance in identifying herbaceous cover (Fig. 5a). The 
S1S2, S2P, and S1S2P feature set increased the UA of herbaceous cover 
by 0.6% ~ 1.4%, 1.1% ~ 1.9%, and 1.4% ~ 3.2% (based on the three 
classifiers) compared to the S2-only feature set, respectively. Incorpo
rating the four ancillary datasets did not bring much improvement 
(Fig. 5a). Note that the accuracy used for comparison in this section was 
the median accuracy acquired from the 10-fold cross-validation. 

Shrubs were predicted with the least accuracies and suffered 

Fig. 4. The median overall accuracies derived from the 10-fold cross-validation based on three classifiers for the 11 feature sets. The error bar denotes the stan
dard deviation. 
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Fig. 5. Class-specific accuracies derived from the 10-fold cross-validation based on three classifiers for the 11 feature sets.  
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Fig. 6. Global aquatic land cover predictions derived from the best-performing RF prediction based on the feature set combining all data sources. In the correctness map, the “correct” class includes both the correctly 
predicted presence and the correctly predicted non-existence of the class; “commission” refers to the misclassification from other classes, and “omission” represents reference sample sites that are wrongly attributed to 
other types. 
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Fig. 6. (continued). 
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considerable omissions (Table 4). Besides herbaceous cover, the ma
jority of reference shrub sample sites were misclassified as trees. This 
was apparent in the boreal peatland regions (Fig. 6b), where dwarf 
shrubs in non-forested bogs can be misclassified as herbaceous vegeta
tion (Fig. 6a), while shrubs in forested bogs are confused with short- 
stemmed trees (Fig. 6c) (Matthews and Fung, 1987). S2 data alone did 
not perform that well in characterizing shrubs (Fig. 5b). Instead, the 
S2P, S1S2, and S1S2P feature set improved the UA of shrubs by 11.1%, 
5.3%, and 8.3% (based on RF) compared to using the single-sensor S2 
data, respectively. Among the ancillary datasets, topographic features (i. 
e., S1S2PFT) increased the UA of shrubs by 1.3% and 4.6% based on RF 
and MLR compared to the S1S2PF feature set, respectively. The 

inclusion of soil features also brought 1.4% (RF) and 2.6% (SVM) in
crease in the UA. Integrating multi-source datasets did not improve the 
PA of shrubs, thus underestimation of shrubs remains critical. 

Trees had considerable commissions in the abovementioned boreal 
peatland regions (Fig. 6c), resulting from its confusion with herbaceous 
vegetation and shrubs. The classification based on S1-only data had the 
lowest PA, i.e., the most omissions, of trees among the 11 feature sets, 
while the single-sensor PALSAR data performed better than S1 data in 
characterizing trees in aquatic areas (Fig. 5c). Although the single- 
sensor S2 data achieved relatively high accuracies for trees, there is 
still room for improvement. The S2P, S1S2, and S1S2P feature set 
increased the PA of trees by 1.5%, 0.9%, and 2.5% (based on RF 

Fig. 7. Illustration of the prediction maps at local scale using a small area of St. Lucia wetland as an example. In this figure, (a) is a Sentinel-2 RGB image composited 
by the median B8, B4, and B3 bands; (b) ~ (l) are the RF prediction maps based on the 11 feature sets; (m) ~ (p) represent the CGLS-LC100, WorldCover 2020, 
Hansen GFC, and GSW dataset, respectively. Red boxes in (b) and (c) show a water area with submerged macrophytes. Red boxes in (l) and (n) show an area that is 
prone to cause misclassifications between herbaceous cover and trees. Red box areas in (o) and (p) show trees and water that were not detected by Hansen GFC and 
GSW dataset, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 4 
The overall confusion matrix for the best-performing RF prediction derived from the feature set combining all available data (S1S2PFTCS).   

Reference 

Herbaceous cover Shrubs Trees Bare lands Water bodies Sum User’s accuracy (%) 

Prediction 

Herbaceous cover 129,959 9340 8325 7637 7468 162,729 79.9 
Shrubs 365 660 259 0 3 1287 51.3 
Trees 6048 4765 51,136 176 354 62,479 81.9 
Bare lands 3067 99 71 18,025 2049 23,311 77.3 
Water bodies 6905 110 495 4521 108,335 120,366 90.0 
Sum 146,344 14,974 60,286 30,359 118,209 370,172  
Producer’s accuracy (%) 88.8 4.4 84.8 59.4 91.7  83.2  
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predictions) compared to the S2-only feature set, respectively, but did 
not improve the UA. Adding the GEDI forest canopy height dataset onto 
the S1S2P feature set brought about 0.3% ~ 2.9% increase (based on the 
three classifiers) in the UA of trees, while resulted in a decrease of the 
accuracies of shrubs at the same time (S1S2PF in Fig. 5b). The other 
three ancillary datasets did not bring much improvement for trees. 

For bare aquatic lands, the omission is more of an issue than com
mission. Bare lands were primarily misclassified as herbaceous cover 
and water bodies (Table 4). Besides the aforementioned Indo-Gangetic 
Plain of India, another hotspot area of their misclassifications was in 
Australia (Fig. 6d), where many sparsely vegetated dry lakes are 
seasonally flooded by water. The single-sensor S2 data obtained lower 
accuracies for bare aquatic lands (Fig. 5d) compared to its performance 
in characterizing water bodies, herbaceous cover, and trees. Integrating 
S1 and S2 data improved the PA by 0.5% and 8.3%, respectively, 
compared to the S2-only feature set in the RF and SVM prediction. 

Adding PALSAR, forest canopy height, and topographic features onto 
the S1S2 feature set did not result in much improvement in the accu
racies. However, climate variables brought 3.2% and 6.5% increase in 
the UA based on MLR and SVM model, respectively. Soil features slightly 
improved the PA (0.4% ~ 1.0%) of bare aquatic lands. 

Water bodies were the most correctly predicted class (Table 4). The 
main error in water classification was sourced from its confusion with 
herbaceous vegetation. Notably in African savannahs (10

◦

N 0◦E), water 
bodies had many misclassifications (Fig. 6e) from the seasonally flooded 
grasslands where herbaceous cover was omitted quite a lot (Fig. 6a). S2 
features alone achieved high accuracies (Fig. 5e) in the water extraction. 
PALSAR-only data produced a lot of confusion among water, herbaceous 
cover, and bare aquatic lands (Table S8 in the supplementary material). 
The single-sensor S1 data outperformed PALSAR in characterizing water 
bodies globally (Fig. 5e), while it was less effective than PALSAR in 
identifying water bodies where vegetation was present, as shown in the 

Fig. 8. Importance scores generated by the RF and MLR models for the top 20 features included in the feature set with all data sources. Scores shown in this figure are 
the median of the variable importance output from the 10-fold cross-validation. The error bar denotes the standard deviation. 

Table 5 
Comparison of class-specific accuracies between existing products and predictions (based on RF model) of this study.  

Class Best prediction of this study S1S2 prediction of this study CGLS-LC100 WorldCover 2020 Hansen GFC GSW 

UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) 

Herbaceous cover 79.9 88.8 78.9 88.7 72.4 80.0 81.1 79.0 – – – – 
Shrubs 51.3 4.4 51.6 4.5 22.0 17.7 24.8 16.8 – – – – 
Trees 81.9 84.8 81.6 81.9 68.4 83.6 74.5 86.3 75.8 68.2 – – 
Bare lands 77.3 59.4 76.2 60.2 76.7 42.6 66.4 42.2 – – – – 
Water bodies 90.0 91.7 90.1 91.4 89.4 79.7 83.1 90.2 – – 92.7 82.5  
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red box area of Fig. 7c. Integrating S2 data with the two sources of SAR 
or adding ancillary datasets did not bring much improvement compared 
with the S2-only feature set for water characterization. 

3.2. Feature importance 

Importance scores generated by the RF and MLR models for the top 
20 features included in the feature set, which combined all data sources, 
are presented in Fig. 8. These scores represent the relative importance of 
features. The RF model and the MLR model generated different scores 
for specific features as they used different methods (Section 2.5) to 
evaluate the variable importance. Moreover, the way of dealing with 
correlated features by RF and MLR can explain the different importance 
they assign to different features. RF is good at dealing with correlated 
variables, while MLR tends to favor those uncorrelated because the 
correlated ones offer no information gain when building the model. 
Therefore, some features (e.g., the AWEI_p10 which was 72% correlated 
with mNDWI_p10) ranked higher by RF were not selected by MLR. 

However, both models confirmed that optical features were driving 
the classification results (Fig. 8). Indices like the NDVI, mNDWI, SAVI, 
and spectral bands like B11 (i.e., SWIR1 band), B8A (i.e., narrow NIR 
band), B8 (broad NIR band), and B4 (red band) were important inputs 
for identifying aquatic land cover types. Concerning the temporal met
rics, the 10th and 90th percentiles derived from the time-series data 
seemed to be more effective than other metrics (Fig. 8). 

PALSAR features achieved higher importance scores than S1 features 
(e.g., HV and HH compared to VH and VV), indicating that PALSAR data 
had a stronger impact on GALC classification than S1 data when they 
were used synergistically. For both S1 and PALSAR data, the 
polarization-derived ratio and texture features had less influence 
compared to the backscattering data (e.g., HH, VH). The HV backscat
tering was of higher importance than HH, and the VH backscattering 
scored higher than VV (Fig. 8). 

The GEDI forest canopy height scored the highest among features 
provided by ancillary datasets (Fig. 8). Topographic features were 
ranked lowest by both models. Climate variables, specifically the pre
cipitation, were only favored by the MLR model. 

3.3. Comparison with existing products 

The class-specific accuracies of the CGLS-LC100, WorldCover 2020, 
Hansen GFC, and GSW datasets are shown in Table 5. For the GLC 
classification in aquatic areas, CGLS-LC100 and WorldCover 2020 ob
tained an OA of 74.9% and 78.3%, respectively (Table S18 in the sup
plementary material), which is lower than the OA of our best prediction 
(83.2%, Table 4). Except shrubs, all the class-specific accuracies of 
CGLS-LC100 were lower than those of our best prediction (Table 5). In 
addition, as can be seen from Fig. 7m, CGLS-LC100 presented less details 
of the aquatic land cover types than our maps. With similar input data, 
the OA of WorldCover 2020 was also lower than that of our S1S2-based 
prediction (82.7%, Table S13). WorldCover 2020 obtained a lower UA 
for shrubs and trees and a lower PA for herbaceous cover than our 
predictions (Table 5), because it had more confusion between herba
ceous cover and trees or shrubs (Table S18), which is also visible from 
Fig. 7n (e.g., red box area). Accuracies of water bodies and bare aquatic 
lands were also lower in WorldCover 2020 (Table 5), caused by the 
confusion between the two classes and their misclassifications with 
herbaceous vegetation (Table S18). Despite that, CGLS-LC100 and 
WorldCover 2020 had a lower omission error for shrubs than that of our 
maps, possibly because they used more training samples of shrubs in the 
classification (Buchhorn et al., 2020; Zanaga et al., 2021). The Hansen 
GFC dataset obtained much lower accuracies for trees than our best 
prediction (Table 5). It could be observed that this dataset missed a lot of 
small patches of trees (e.g., red box area in Fig. 7o). The permanent 
water mapped by the GSW dataset omitted considerable water bodies 
compared with our best prediction, and this was especially apparent in 

small or narrow water areas (e.g., red box area in Fig. 7p). 

4. Discussion 

Previous GALC products are limited by mainly delineating open 
surface water, while few datasets provide information on the presence of 
water and vegetation types together. This study represents an important 
step forward in characterizing these key components of aquatic eco
systems collectively, which is helpful for users that require multiple 
aquatic types in their applications. Compared with generic GLC map
ping, the interaction among water, vegetation, and wet soils makes it 
more complex to discriminate between different aquatic land cover 
types. For instance, herbaceous vegetation in river floodplains is prone 
to cause confusion among water, bare lands, and herbaceous cover. As 
seen in the results of previous GLC products (e.g., CGLS-LC100) and 
even in the most contemporary products (e.g., WorldCover 2020), 
aquatic areas suffer low accuracies. This highlights the need for specific 
attention in improving the mapping of aquatic land cover. In this study, 
we focused on aquatic areas only and explored ways to improve the 
GALC classification using multi-source EO data. Findings of our research 
may provide some useful information for future GALC mapping 
initiatives. 

Result of this study showed that with Sentinel-2 data alone, 
comparably good results could be achieved as those combining multi- 
source data in the overall GALC classification. Optical features also 
obtained higher importance scores compared to most SAR features and 
ancillary datasets (Fig. 8). With a similar high spatial and temporal 
resolution, the single-sensor Sentinel-1 data have been reported to 
outperform Sentinel-2 data in characterizing detailed aquatic types in a 
local-scale study (Slagter et al., 2020). However, in our case, Sentinel-2 
was better than Sentinel-1 in GALC characterization. This could partially 
be attributed to the better class separability based on optical features 
compared to SAR features derived from Sentinel-1 data. From Fig. S2 in 
the supplementary material, we found that different aquatic land cover 
types were more distinguishable by indices like NDVI and mNDWI than 
by the VV and VH backscattering. 

However, the sole use of optical data does not provide sufficient 
information to accurately discriminate highly mixed and spectrally 
similar types, such as shrubs, trees, and herbaceous vegetation. Adding 
SAR features which are able to penetrate into the canopy and sense the 
vegetation structure could address the inefficiency of optical data to 
some extent. For example, the S2P, S1S2, and S1S2P (Table S12, S13, 
and S14 in the supplementary material) feature sets have helped to 
reduce the misclassifications among the three types. However, adding 
PALSAR or Sentinel-1 data did not reduce the omission error of shrubs 
and the commission error of trees, indicating that integrating Sentinel-2 
data with the ALOS/PALSAR mosaic and Sentinel-1 data was still limited 
at addressing the most prominent issues in characterizing shrubs and 
trees in aquatic areas. 

The single-sensor S1 data outperformed PALSAR data in identifying 
herbaceous cover (Fig. 5a), bare aquatic lands (Fig. 5d), and water 
bodies (Fig. 5e). However, Sentinel-1 data are sometimes ineffective to 
characterize water bodies with the existence of vegetation. This is 
because the backscatter signal will be increased by vegetation, which 
would lower the contrast between water and the surrounding non-water 
classes (Tsyganskaya et al., 2018). Compared with the longer- 
wavelength L-band radar, C-band data are more vulnerable to such 
conditions (Fig. S3 in supplementary material). Sentinel-1 data also have 
a lower capability in identifying trees (Fig. 5c) in aquatic areas, espe
cially when dealing with dense tree canopies (Fig. S3 in supplementary 
material). Longer wavelengths can penetrate deeper into tree canopies, 
whereas the shorter-wavelength C-band radar will be reflected by leaves 
and branches, resulting in the decreased polarization signals for trees 
(Udali et al., 2021), which may further cause confusion among trees, 
shrubs, and herbaceous vegetation. When integrated with Sentinel-2 
data, the S2P feature set achieved similar performances as with the 
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S1S2 feature set in identifying the five aquatic land cover types (Fig. 5). 
The PALSAR HV and HH backscattering obtained higher importance 
scores than the Sentinel-1 VH and VV backscattering (Fig. 8) when they 
were used synergistically. It should be noted that the PALSAR data used 
in this study had a yearly temporal resolution; it would hold more po
tential in characterizing complex aquatic ecosystems if higher temporal 
information is made available. 

Adding ancillary datasets did not significantly improve the overall 
performance of the GALC classification (Fig. 4). Among all variables 
derived from ancillary datasets, the GEDI forest canopy height, which 
was of the highest importance, was expected to help separating shrubs 
from trees. Although adding this dataset onto the satellite-data-based 
S1S2P feature set reduced the commission error of trees by 0.3% ~ 
2.9%, it resulted in an decrease in the accuracies of shrubs as well (i.e., 
S1S2PF in Fig. 5b). According to Potapov et al. (2021), the GEDI forest 
canopy height dataset is less accurate in estimating <3 m forest can
opies, indicating the need of improving the height estimation for shrubs. 
Moreover, supplementing the height information for herbaceous vege
tation or using longer-wavelength SAR data (e.g., P-band) that have 
better penetrating capability holds considerable potential in reducing 
the confusion between shrubs, herbaceous cover, and trees. 

Previous studies have demonstrated the advantage of using topo
graphic variables to detect the aquatic land existence (Hird et al., 2017), 
while our study shows that topographic features were less effective in 
the detailed-level GALC characterization. Among these five aquatic land 
cover types, topographic features were only relevant to reduce the 
commission error of shrubs (i.e., S1S2PFT in Fig. 5b). Climate infor
mation was reported beneficial for the classification of shrubs (Masi
liūnas et al., 2021), while in our case it only contributed to the 
identification of bare aquatic lands. According to Fig. S4 in the supple
mentary material, different aquatic types are hardly separable by 
climate variables. One possible explanation could be that the coarse 
spatial resolution (i.e., 1 km) of the WorldClim dataset makes it difficult 
to capture the detailed information in complex aquatic environments. 
Furthermore, this dataset represents a multi-year mosaic for 1970–2000, 
which cannot provide the temporal variations in the phenology. Incor
porating soil data only slightly reduced the commission error of shrubs 
and the omission error of bare aquatic lands. This might be attributed to 
the built-in uncertainties in the source dataset, i.e., soil data from the 
OpenLandMap, which was derived from model simulations (Hengl and 
MacMillan, 2019) rather than direct observations. 

In this study, shrubs were predicted with the least accuracies and the 
largest error range in GALC classification, which is also a known issue in 
general GLC mapping (Herold et al., 2008; Tsendbazar et al., 2021a). 
Besides that shrubs are difficult to be separated from trees and herba
ceous vegetation, the availability of reliable reference data is another 
crucial issue affecting the classification accuracy of shrubs because 
fewer training data, which further cause imbalances among classes, may 
lead to unstable performances of the classification model. Increasing the 
shrub training data in aquatic areas is therefore necessary to improve the 
shrub characterization. 

Results of this study were based on machine learning algorithms and 
pixel-based classification. It is possible that the contribution of various 
data sources might be different if deep learning and/or other object- 
based methods are used. The classification based on RF, SVM, and 
MLR suggests that synergistically using optical, SAR (i.e., L-band and C- 
band), and ancillary datasets could produce a better overall performance 
for GALC characterization. However, considering that high-quality (e.g., 
high accuracy and spatial resolution) ancillary datasets might not al
ways be available, and land cover mapping on a global-scale is resource- 
intensive and time-consuming because all features have to be loaded, 
preprocessed, and trained over the whole globe, the decision to use 
either multi-source or single-sensor data should be considered depend
ing on the cover type being investigated. In water- or herbaceous- 
dominated aquatic areas, the single-sensor Sentinel-2 data could ach
ieve good results. When mapping more complex aquatic ecosystems, 

SAR data should be considered to be integrated with optical data. 
An accurate GALC characterization will be influenced by multiple 

factors. This study explored possible solutions from a data/sensor 
perspective, and unavoidably have some limitations. Firstly, to reduce 
data volume and computing intensity, the two-year time-series Sentinel- 
1 and -2 data were compressed to seven temporal composites (i.e., mean, 
median, percentiles, etc.), which may not be able to detect different 
phases of the growth cycle of various vegetation types. To make use of 
the vegetation phenology, future studies could consider harmonic 
analysis (e.g., Fourier methods) to derive phenological features (e.g., 
start of season, end of season) from the time-series data. Furthermore, 
data availability across different regions of the globe as well as in 
different seasons over a year will also affect the classification perfor
mance (LaRocque et al., 2020) and may cause spatial differences in the 
correctness of predictions. This was not thoroughly investigated in our 
study and could be evaluated for an improved GALC mapping in the 
future. Leveraging on the high spatial and temporal resolutions, Sentinel 
data are increasingly being used to classify more detailed land cover 
types even at species level (Sun et al., 2021), although such detailed 
reference data are not available on a global scale yet. 

5. Conclusions 

The under-presentation of vegetative information in existing GALC 
products and the poor performance of GLC products in delineating 
aquatic land cover require specific attention to improve GALC mapping. 
This study evaluated the potential of freely available multi-source EO 
data in improving the GALC characterization. Multiple classification 
scenarios were implemented based on different combinations of features 
derived from optical, SAR, and various ancillary datasets. The cross- 
validated results showed that accuracies obtained from the single- 
sensor Sentinel-2 data were comparable to results derived from 
combining multi-source data in the overall GALC classification. Inte
grating Sentinel-2 data with SAR features from Sentinel-1 data and the 
ALOS/PALSAR mosaic reduced misclassifications among shrubs, trees, 
and herbaceous vegetation but was still limited at addressing the most 
prominent issues in characterizing shrubs (i.e., omission) and trees (i.e., 
commission) in aquatic areas. Although with a lower spatial and tem
poral resolution, the ALOS/PALSAR mosaic was better than Sentinel-1 
data at identifying trees in aquatic areas as well as water bodies with 
vegetation presence. Among ancillary datasets, topographic and soil 
features were relevant for the identification of shrubs, whereas climate 
variables contributed to the characterization of bare aquatic lands, but 
they did not bring significant improvement in overall accuracies. The 
GEDI forest canopy height dataset improved the characterization of 
trees, while it also decreased the accuracy of shrubs. To improve the 
GALC mapping, more efforts are needed to supplement a sufficient 
amount of reliable reference data for the less accurate classes such as 
shrubs. 
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