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1   |   INTRODUCTION

The demand for biomass for nonfood uses is expected to 
increase because ambitions to develop the bioeconomy 

further as an instrument to decarbonize the fossil-
intensive sectors. The potential of sustainable biomass is 
limited (Allen et al., 2014; Thrän et al., 2010) and indirect 
land use effects need to be avoided (Daioglou et al., 2020; 
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Abstract
In the context of increased pressures on land for food and non-food production, it 
is relevant to understand better, which land resources have become unused and 
abandoned and where these lands are. Data on where these lands are and what 
their extend is are not collected in regular statistics. In this paper, we present an 
approach to detect signs of abandonment in cropping land using radar coherence 
data. The methodology was tested in the Spanish regions of Albacete and Soria 
where agricultural land abandonment is a common process. The results show 
that land abandonment detection using radar coherence data works well for the 
region of Albacete in arable lands. The radar-based analysis is a relatively simple 
method to detect land abandonment in an early to longer term state and can there-
fore be applied once developed and tested further in other regions to larger areas 
of the EU where land abandonment is serious and needs monitoring and policy 
response. The applicability of the method to Soria and Emilia Romagna (Italy) 
regions shows that there are still challenges to overcome to make the method 
more widely applicable for detecting land abandonment in other environmental 
zones of Europe. Lack of reliable training and validation data, like Land Parcel 
Identification Systems data, in regions is one of the challenges in this respect.
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EC Directorate-General for Research and Innovation, 
2018). Residual biomass, for example, primary residues 
from agriculture and forests, organic wastes are seen as 
the more sustainable biomass feedstocks, particularly be-
cause there are no or limited direct (dLUC) and indirect 
land use change (iLUC) effects (Daioglou et al., 2020; EC 
Directorate-General for Research and Innovation, 2018; 
Overmars et al., 2015; Valin et al., 2015). However, resi-
dues and waste sources alone will not be enough to sat-
isfy the expected future biomass demands (e.g., OECD, 
2018; Pelkmans et al., 2016; Plevin et al., 2015; Valin et al., 
2015). Additional sourcing from dedicated cropping of 
biomass is needed to satisfy rising demands. These new 
demands may have effects on land use, biodiversity, and 
other ecosystem services and compete with food produc-
tion (Daioglou et al., 2020; Edwards et al., 2010; ETC/SIA, 
2013; Fargione et al., 2010; Searchinger et al., 2008). One 
of the options to avoid iLUC effects is through the use of 
unused and abandoned lands which have both already 
been envisaged as land resources for the delivery of low 
iLUC biomass for biofuel production in the EU Recast 
Renewable Energy Directive RED II (EC Directorate-
General for Research and Innovation, 2018). This study 
will focus on the detection of abandoned lands which are 
defined as in the RED II as: unused land which was used in 
the past for the cultivation of food and feed crops, but where 
this cultivation ended, for at least five consecutive years, due 
to biophysical or socio-economic constraints.

The key assumption in all studies on abandoned lands 
for bioenergy (Elbersen, Fritsche, Overmars, et al., 2013; 
Elbersen, Fritsche, Petersen, et al., 2013; Frank et al., 2013; 
Nsanganwimana et al., 2014; Overmars et al., 2015; Plevin 
et al., 2014; Valin et al., 2015; Van der Laan et al., 2015) 
is that these are used for the production of biomass for 
biofuels instead of remaining unused. Expectations on the 
unused land availability, although difficult to make, indi-
cate toward a large potential. Eitelberg et al. (2015) show a 
range in cropland availability at global level ranging from 
1552 to 5131 Mha, including the 1550 Mha that is already 
cropland, so the additional part will need to come partly 
from lands regarded as abandoned.

A long-term analysis by Elbersen et al. (2020) for the EU 
only for the period between 1975 and 2016 of the utilized 
agricultural area (UAA) with Eurostat Farm Structural 
Survey (FSS) data showed a total decline for all EU-27 and 
United Kingdom of almost 36 million ha (18% of the UAA 
in 1975). Declines were seen over the whole period in all 
EU Member States, but the largest occurred in Bulgaria, 
Czechia, Estonia, Greece, Spain, Croatia, Italy, Cyprus, 
Latvia, Hungary, Poland, Slovenia, and Slovakia. In this 
same study by Elbersen et al. (2020), a land cover flow 
analysis was made showing that in 18 years (2000–2018), 
8% of the agricultural land went out of agriculture.

Also, for the short-term future, agricultural land aban-
donment is expected to continue as was shown in Perpiña 
Castillo et al. (2021) for EU and United Kingdom. In total, 
the net agricultural land projected to flow into aban-
doned lands by 2030 amounts to 4.8 million ha. Another 
600,000  ha is projected to flow into forest and natural 
areas and only 18,000 ha are projected to go to urban use 
by 2030. Spain is expected to lose even more than 1 million 
ha of agricultural land between 2015 and 2030. The study 
by Perpiña Castillo et al. (2021) also expects largest losses 
in the arable land taking up 70% of all abandonment in 
2030 (around 4 million ha), while permanent grasslands 
and permanent crops make up 20% and 7%, respectively. 
In a separate study for Spain also by Perpiña Castillo et al. 
(2020), it is projected that until 2030, 5% of the total agri-
cultural land will go out of use which is well above the 3% 
EU average.

The complex factors driving the process of aban-
donment have been discussed in several studies (e.g., 
Cvitanović et al., 2017; Elbersen et al., 2020; Filho et al., 
2017; Keenleyside & Tucker, 2010; Lasanta et al., 2017; 
Pazúr et al., 2020; Perpiña Castillo et al., 2020; Pointereau 
et al., 2008; Terres et al., 2013, 2014) and show that the 
factors driving agricultural land abandonment can be cat-
egorized into four groups: natural constraints limiting the 
suitability for agricultural uses, socio-economic drivers 
at farm level, broader socio-economic drivers at regional 
level and drivers from policy (EU and national level). 
These factors can work out very differently depending on 
the local context (Perpiña Castillo et al., 2020). Alcantara 
et al. (2013) quantified the extent of abandoned farmland 
(cropland and pastures) in Central and Eastern Europe 
using satellite images. They found that abandoned farm-
land was widespread, totaling 52.5 million ha. The varia-
tion in rates of agricultural land abandonment across the 
area was driven to a large extent by differences in institu-
tional and socio-economic factors among countries, rather 
than by biophysical settings. In Elbersen et al. (2020), in 
which drivers of agricultural land becoming abandoned 
were assessed through a literature review and through 
interviews in eight case studies spread over the EU, con-
cluded that main drivers for agricultural land becoming 
abandoned are of socio-economic character, operating ei-
ther at the level of the farm holding or of the region while 
natural constraints for agricultural land use and land deg-
radation were not the most important drivers for agricul-
tural land abandonment. Socio-economic drivers at farm 
level are the profitability of holdings, the productivity of 
the land for crops and livestock, production costs, frag-
mentation of farmland, and issues with land tenure and 
ownership. Depopulation of rural areas was the most fre-
quently mentioned socio-economic driver at the regional 
level in Elbersen et al. (2020) together with factors as an 
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aging population, lack of transport infrastructure, and 
public services in rural areas.

Detecting when the land is really abandoned is chal-
lenging because it involves a gradual process of transition 
from agricultural land to shrubs and eventually forest. 
Goga et al. (2019) therefore proposes that when detect-
ing with remote sensing (RS), the abandoned agricul-
tural lands a uniform classification should be used for 
identifying the inner structure of progressive overgrowth 
change over time: Abandoned Agricultural Land (AAL1) 
overgrown by low vegetation (herbaceous formations); 
AAL2 overgrown by medium-sized vegetation (shrub 
formations) and AAL3 overgrown by tall vegetation (tree 
formations). How fast the different succession stages of 
vegetation are reached depends on local climate and soil 
conditions.

In Allen et al. (2014), the different stages of abandon-
ment are discussed with a focus on underlying drivers. 
They reflect a complex process of reduced farming activ-
ity over a continuum, ranging from land that is tempo-
rarily unused (overlapping with short (1–2 year) or long 
(≥3 years) fallow) to semi-abandoned land (managed only 
to comply with CAP (Common Agricultural Policy) cross-
compliance requirements but not currently used for pro-
duction). At the end of the range is land that is entirely 
abandoned and where management is withdrawn com-
pletely. This is actual abandoned land where vegetation 
may change through natural succession into tall herb, 
bush, and forest ecosystems after a period, depending on 
climatic and soil conditions. On rich and wet soils, the out-
come is likely to be forest ecosystems but, in contrast, on 
poor dry soils in Southeastern Europe, it can be “steppe-
like” grassland vegetation that is able to survive for many 
years without any active management such as mowing or 
grazing. There is also a subcategory of abandoned land 
which Allen et al. (2014) called transitional abandonment. 
This category has been observed particularly in Central 
and Eastern Europe as a result of restructuring and land 
reforms but also other EU countries as a result of expected 
LUC or compulsory or voluntary set-aside (until abolished 
in 2008). Transitional abandonment can be seen also in 
areas that are economically marginal and they can move 
in and out of agricultural use depending on market prices 
applicable to the crops produced on them. It may also in-
volve land that is held for optional conversion to urban 
or infrastructural use, but until that becomes official; 
the land may be kept into agricultural use to obtain CAP 
payments.

Land abandonment may have positive and negative 
impacts, which very much depend on local and wider 
regional context. Among the negative impacts, it can be 
mentioned that it may lead to a loss of valuable traditional 
landscapes and landscape management practices that help 

to support biodiversity, traditional cultural landscapes ser-
vices, productive services (e.g., food and non-food prod-
ucts), provision of jobs and income, and prevent forest 
fires (e.g., Allen et al., 2014; Elbersen et al., 2020; Lasanta 
et al., 2017; Morell-Monzó et al., 2020; Perpina Castillo 
et al., 2018). Abandonment can also have positive effects 
if the successional vegetation that results leads to an ad-
ditional build-up of above- and below-ground carbon and 
may lead to improved habitat quality, more landscape 
structural diversity, and habitats (rewilding) for certain 
wild species groups (Allen et al., 2014; Ceaușu et al., 2015; 
Morell-Monzó et al., 2020; Sačkov et al., 2020). Either way, 
the detection of where land abandonment takes place is 
relevant to be able to understand in an early stage the dy-
namics in land use and take measures to respond to the 
process in a timely way.

Several studies confirm that agricultural land aban-
donment in the EU is a large-scale phenomenon both in 
the past and in the near future which needs to be moni-
tored and detected (Allen et al., 2014; Lasanta et al., 2017; 
Perpiña Castillo et al., 2020, 2021). Yet both in EU and na-
tional statistical sources, data on unused and abandoned 
land are not collected. The only unused land categories for 
which statistical data are collected refer to lands that are 
temporarily out of use, such as fallow land or temporarily 
unused lands. Also, if lands are unused for several years in 
a row, the lands lose their agricultural status and disappear 
from agricultural statistics (Elbersen et al., 2020). Wider 
land use statistics may still cover these lands, and register 
them according to the land use or land cover they have be-
come. This can be forest, urban, nature conservation area, 
industrialized land, land used for recreation or transport, 
or a more undefined mixed class possibly more likely to 
be completely abandoned. However, the class “unused” 
or “abandoned” is nonexistent in both agricultural and 
wider land use statistics. The only source of information 
on abandoned lands in the EU is LUCAS (Land cover/use 
statistics, Eurostat). It identifies “fallow and abandoned 
land” as a separate land cover class, but since LUCAS only 
records this information in systematically selected points 
from a stratified area frame, the precise location and ex-
tend of these areas are not mapped.

1.1  |  Identifying abandoned lands 
using RS

Several studies have mapped abandonment in agricul-
tural lands through the use of RS data or a combination 
of different data and approaches, which have system-
atically been reviewed in Goga et al. (2019). Very dif-
ferent approaches are used. Most of the studies identify 
abandonment through changes in vegetation via indices 
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like Normalized Difference Vegetation Index (NDVI) 
EVI and TTVI calculations from time series (e.g., 
Alcantara et al., 2013; Estel et al., 2015; Han & Song, 
2020; Kolecka, 2021; Terekhin, 2017). A study by Estel 
et al. (2015) used RS data (12  years-MODIS, 230  m) 
to detect farmland abandonment by calculating the 
Normalized Differenced Vegetation Index (NDVI) and 
determine the fallow frequency per grid in a 12-year pe-
riod. The study found, for the area of Europe including 
also the whole of Turkey and the western half of Russia, 
that between 2001 and 2012, additional 7.6  million ha 
of land were abandoned. It was also found that there 
was widespread recultivation in this same period of up 
to 11.2  million ha and this occurred predominantly in 
Eastern Europe (e.g., European Russia, Poland, Belarus, 
Ukraine, and Lithuania) and in the Balkans. Estel et al. 
(2015) also described that detecting farmland abandon-
ment through phenological changes using the NDVI 
index has limitations, which are cause by the coarse 
pixel size of MODIS images. They prevent the detection 
of land abandonment in smaller fields and highly het-
erogeneous landscapes.

There are also several studies that identify abandon-
ment of agricultural land through the detection of land 
use or land cover changes in time (Campbell et al., 2008; 
Griffiths et al., 2013; Kuemmerle et al., 2011; Löw et al., 
2015). Campbell et al. (2008), for example, analyses 
historic land use data detecting dynamics in land use 
and indirectly detects agricultural land abandonment. 
There are also several studies that use a more complex 
combination of satellite, in situ, and/or statistical data 
(e.g., Ceaușu et al., 2015; Milenov et al., 2014; Sackov, 
et al., 2020). An example is from Ceaușu et al. (2015) 
uses European specific data sources such as the poten-
tial net primary productivity and net harvested primary 
productivity, an index for travel time, potential natural 
vegetation, and night light impact. The last two indices 
were calculated from satellite data. More recent studies, 
for example, as implemented by Morell-Monzó et al. 
(2020, 2021) have used higher resolution satellite data 
from Sentinel-2 (10 and 20  m) and airborne imagery 
(1  m) for detecting land abandonment in a citrus pro-
duction area in Valencia. The methodology involved a 
pixel-based classification applying the Random-Forest 
algorithm. The results showed that the use of the high-
resolution information with the airborne images trans-
lated into Enhanced Vegetation Index (EVI) and Thiam's 
Transformed Vegetation Index (TTVI) delivered an ac-
curacy of 88.5% correctly classified field plots. This was 
77% in the case of using the 20 m Sentinel-2 images.

So far detection of abandonment is mostly performed 
by using optical RS-based indices such as NDVI, EVI, 
and TTVI. In more recent studies, the use of Synthetic 

Aperture Radar (SAR) information for the detection of 
land abandonment is seen. Yusoff et al. (2017) used it in 
combination with optical RS-data to distinct abandon-
ment according to crop phenology in rubber, rice, and oil 
palm plantation areas in Malesia. The use of SAR data to 
detect grassland mowing/cutting events (and also the ab-
sence of these) was also applied in some studies (e.g., De 
Vroey et al., 2021; Taravat et al., 2019).

Given the observations from the former studies and 
the experiences of identification of abandoned lands, we 
have three main conclusions. Firstly, abandonment often 
involves a gradual process of transition from agricultural 
land to shrubs and eventually forest, it is difficult to de-
tect with a uniform methodology taking vegetation indi-
ces only because the development of biomass varies very 
strongly in time with climate and soil. Furthermore, given 
differences in management systems, climate and soil clas-
sifications, it is difficult to determine exactly when land 
has become completely abandoned or whether it is still 
managed. Detecting abandonment based on land cover in-
formation or biomass development alone is therefore not 
sufficient. The management of the land, or actually the 
lack of it for several years in a row, needs to be detected 
by systematic data collection. Secondly, the detection of 
abandonment in smaller plots is a challenge. Therefore, 
for the detection higher resolution satellite data are rec-
ommended, particularly when areas are understudy with 
small-scale landscapes. Thirdly, most of the studies detect-
ing abandonment use optical RS satellite-based indices 
and mostly focus on detecting changes in biomass devel-
opment. A few studies have used SAR data.

Given the limitations and challenges in former stud-
ies, this study presents an alternative approach for iden-
tifying land abandonment using radar coherence data (in 
combination with a Random-Forest [RF] model). Radar 
data have several advantages compared to optical RS-data. 
Firstly, an inherent characteristic of land abandonment 
is the lack of land management (e.g., mowing, plowing, 
and harvesting), which implies that this needs to be de-
tected. Radar coherence data are more informative in this 
respect because it enables to detect the stability (or lack of 
stability) in an object (explained further in Section 1.2). 
When fields are managed, they are “instable” because of 
plowing, sowing, harvesting, cutting/mowing activities. 
Capturing this instability, as a proxy for management, is 
not entirely captured through NDVI or other vegetation 
indices. Secondly, radar-based images are not influenced 
by cloud coverage, which is an advantage compared to op-
tical RS-data which require time-intensive cloud masking 
first. Thirdly, the high spatial and temporal resolution of 
radar data provides the opportunity to identify abandoned 
lands for relatively large areas with a relatively small time 
investment once a methodology is working.
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1.2  |  Radar coherence—Detecting 
management activities

Interferometric coherence (further denoted as coherence) 
can be defined as the amplitude of the complex correla-
tion coefficient between two complex SAR images (such 
as the Sentinel-1 SLC products) taken from different orbit 
positions and/or at different times. Coherence describes 
the similarity of the reflected radar signal between two 
images and varies between 0 (incoherent) and 1 (coher-
ent). When the two images are taken of the same scene, 
with the same incident angle (same orbit) but at differ-
ent times, the coherence provides information about the 
stability of the scattering surface (or target). Under such 
conditions, low coherence indicates that the surface has 
changed between the two observation dates, while high 
coherence indicates no changes, making coherence anal-
ysis particularly useful for detecting changes.

Many applications have been developed that use coher-
ence techniques for change detection. These range from 
disaster monitoring in urban areas, land cover detection 
(Jacob et al., 2020), and crop monitoring. In the latter 
case, studies have shown that management activities such 
as mowing of grasslands (Abdel-Hamid et al., 2021; De 
Vroey et al., 2021; Taravat et al., 2019) and tilling, plow-
ing, and harvesting activities (e.g., Shang et al., 2020) can 
be detected from coherence time series (whether or not in 
combination with other RS-data such as NDVI and back-
scatter information; Kavats et al., 2019; Khabbazan et al., 
2019). The Sentinels for CAP—Sen4CAP project (http://
esa-sen4c​ap.org/) has developed algorithms, products, 
and workflows and best practices, based among others on 
coherence data, for agriculture monitoring relevant for 
the management of the CAP.

In this study, it will be demonstrated that coherence 
data can be used to detect unused parcels in arable land 
in two provinces in Spain (Albacete and Soria). Section 2 
presents the materials used and methods followed. It first 
gives an overview of data sources that have been used, 
and how these are prepared. This includes the processing 
of Sentinel-1 data and the preparation of parcel informa-
tion. It then describes how coherence data (statistics) in 

combination with a RF model can be used to identify an-
nual unused/used land maps and how these are combined 
to finally derive 4-year abandonment maps. In Section 4, 
the results of the proposed method are presented and vali-
dated followed by a discussion in the final section.

2   |   MATERIALS AND METHODS

2.1  |  Definition of abandoned land

For the development of a methodology to identify aban-
doned lands in this study, we follow the REDII definition 
of abandoned lands as discussed in the introduction. The 
focus is entirely on identifying abandonment in cropping 
land and not in permanent grassland. According to the def-
inition in RED II, land is abandoned when it is not used for 
five consecutive years or more. In this study, we will first 
detect the absence of management on an annual basis, cat-
egorizing lands first as unused or used in case of detected 
management activities. When land is classified as unused 
for several consecutive years, it is considered abandoned.

2.2  |  Study area

Our two study areas are the provinces of Albacete 
(14,926  km2 and 11.7 inhabitants.km2) and Soria 
(10,306  km2 with 8.6 inhabitants.km2), both situated in 
central Spain (Figure 1). Albacete has an average annual 
rainfall of 379 mm, is mostly located on the La Mancha 
plain (altitude of 686  m), and has a relatively cold and 
semiarid climate (Köppen: Bsk). Due to the continental 
climate regime, there is a large temperature variation 
throughout the year, the average temperature is 14.6°C. 
The soils in Albacete are dominantly calcareous (Calcisols 
and Calcic Luvisols, WRB 2015), weakly developed soils 
(Cambisols), and shallow and rocky soils (Leptosols). 
Land use is diverse with cereal production dominating in 
arable lands and large areas with perennial (permanent) 
crops such as vineyards, olives, and almonds. Olives and 
almonds grow more often in the steeper areas. In steeper 

F I G U R E  1   Map showing the 
study areas, provinces of Albacete (left 
panel—a) and Soria (right panel—b) in 
Central Spain, and the footprint of the 
used Sentinel-1B single-look complex data 
(sub-swath IW1 and IW2). Background: 
Google maps

http://esa-sen4cap.org/
http://esa-sen4cap.org/


740  |      MEIJNINGER et al.

areas with shallow soils, pine trees and permanent pas-
ture are dominant.

Soria, at an altitude of 1000 m, has a temperate Atlantic 
climate (Köppen: Cfb). The average temperature in Soria 
is 10.7°C and annual rainfall is 511 mm. The soils are gen-
erally low in fertility with a dark topsoil (Umbrisols) in the 
western part, rich and weakly developed soils and shallow 
soils in the northern and eastern part, and calcaric soils 
in the southern part and alluvial soils in the river plains 
(Fluvisols). The main crops grown are wheat and barley 
and other grains cultivated are rye and triticale. A com-
mon rotation is sunflower–wheat–barley–sunflower.

In Soria, 2700–2800  kg grain per ha of wheat is pro-
duced on average. This average is lower for Albacete where 
it amounts to 1500 kg per ha in a normal year. The amount 
of marginal land share in both regions is high (Elbersen 
et al., 2018). Climate (cold and dry) is the dominant lim-
iting factor followed by, locally, shallow and stony soils. 
Due to the relatively remote location of both provinces, in-
come alternatives for small farmers, such as agro-tourism, 
is limited (Eupen et al., 2012).

During field visits in both areas and interviews per-
formed with stakeholders in the regions (Elbersen et al., 
2020), the five main factors mentioned and identified that 
drive land abandonment are: (1) depopulation and aging; 
(2) small parcels; (3) terrain quality—steep slopes, soil 
quality, and drought that makes it difficult to reach profit 
margins; (4) accessibility of the parcel (with machines); 
and (5) unresolved hereditary issues. Like in most regions 
in Spain, also Soria and Albacete have become confronted 
since 2010 with increasing cost levels for inputs (fertiliz-
ers, herbicides, seeds) in combination with low agricul-
tural product prices and increasing impacts of climate 
change, notably lower rainfall and longer drought periods 
in several years (Ciria et al., 2019). This aspect will become 
a factor increasing land abandonment in the future (Ciria 
et al., 2019).

The application of rotational fallow in rainfed 
cereal-based production system is very common in the 
Mediterranean, including in the regions of Soria and 
Albacete where agricultural statistics (MAPA data) con-
firm that around 20% of the arable land is covered by fal-
low land. With the introduction of Greening through the 
CAP, the choice for rotational fallow as Ecological Focus 
Area (EFA) in this system was therefore by far the most 
frequently chosen (Díaz-Poblete et al., 2021). This aspect 
is important to keep in mind in our analysis because it 
implies that identifying unused lands that are unused 
for 1 year are very likely to be part of common rotational 
practices and/or allocated as EFA. For detection of aban-
donment, it is very important to get an understanding of 
longer term unused land status of at least three or more 
consecutive years.

2.3  |  Sentinel-1 data

For the two study areas, all available single-look complex 
(SLC) images for the period 2017 up to 2020 of Sentinel-1B 
C-band SAR were collected (~30 SLC images per year, path 
103 and ascending only); these images were processed 
into coherence images (resulting in ~29 coherence images 
per year). Images were taken from the Alaska Satellite 
Facility (https://asf.alaska.edu/). The interferometric-VV 
(Vertical-transmitting & Vertical-receiving) coherence 
(for subswatch IW1 and IW2, see Figure 2) was calculated 
from the 12-day Sentinel-1B image pairs using the ESA 
open-source software. In case of Albacete, the radar data 
cover roughly 90% of the province, and for Soria up to 95%.

Sentinel Applications Platform (SNAP, version 7.0) 
and Python 3.4 (and Python module snappy) were used 
for batch processing the RS-data. The VH-coherence was 
not used as it is less sensitive to changes occurring in the 
fields. This is also observed by Kavats et al. (2018, 2019) 
and Nasirzadehdizaji et al. (2021). One of the reasons for 
this is that VV is more sensitive to vegetation than VH due 
to vertical orientation of most vegetation. The processing 
steps for the derivation of coherence images were taken 
from Khabbazan et al. (2019). The spatial resolution of the 
final VV-coherence images was set at 20 × 20 m.

2.4  |  SIGPAC data

For the selection of abandoned parcels in both Albacete and 
Soria, the data from the Geographical Information System 
of agricultural parcels (SIGPAC) of the Government of 
Spain (Ministry of Agriculture, Food and Environment) 

F I G U R E  2   Annual time series of coherence and Normalized 
Difference Vegetation Index (NDVI) of a used arable land parcel 
(parcel A) and unused forested parcel (parcel B)
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from 2018, 2019, and 2020 were used. SIGPAC provides 
information on land use (Table 1) and additional infor-
mation on management with corresponding codes. Two 
of these codes are 117 “abandoned crop” (cultivo aban-
donado) and 158 “5-year-fallow” (barbecho de 5 años). 
Parcels that have these codes are considered abandoned.

In addition, the land use description of the parcels in 
SIGPAC was used to distinguish between arable land and 
permanent crops (other land use classes, e.g., grassland, 
were ignored). Parcels with mixed crops (e.g., olives + cit-
rus, vineyards + olives) were excluded from the analysis. 
For the Albacete region, on average 6300 5-year-fallow 
parcels were found per year, equally divided between ar-
able land (~3145) and permanent crops (~3177, of which 

half olive groves). The average parcel size of these 5-year 
fallow parcels was 0.7 ha.

The size of the selected fallow land SIGPAC parcels 
was reduced with a buffer of 20 m and finally rasterized 
into 20 × 20 m pixels. Shrinking of the parcels was done to 
have “pure” pixels and to avoid (field) border effects.

Table 2 gives an overview of the collected SIGPAC data 
for Albacete. The dataset covered in total 133,142 samples 
(i.e., 20  ×  20  m pixels) within the land use class arable 
land, and consisted of 65,142  samples representing un-
used arable land and 68,000 randomly selected samples 
representing used arable land. The sample size of both 
groups (used vs. unused) was equally distributed and cov-
ers in total 5300  ha. The numbers between the brackets 
show the total number of fallow land samples when also 
permanent crops are added (which is ~15,000  samples 
extra).

2.5  |  Proposed method

Management activities in arable land such as field prepa-
rations (plowing or tilling) but also harvesting are abrupt 
changes that take place in a field and have impact on 
radar coherence observations. Such events are mostly 
visible as spikes or sudden jumps in the coherence time 
series (Kavats et al., 2019; Voormansik et al., 2020). In 
case of harvesting, when the crop is completely removed 
from the field, the coherence tends to increase after such 
an event as scattering from the soil becomes dominant 
(Kavats et al., 2019). Crops typically show a low coher-
ence (close to the noise floor, ~0.2) as crops are growing 
and move by the wind, which cause temporal decorrela-
tion, and thus low coherence. Bare soils in general show a 
high coherence (similar to built-up areas) as these objects 
do not change (much) over time. Once a crop is removed 
completely from the field, bare soil becomes visible result-
ing in a jump in the coherence time series. Also plowing 
has an impact on the coherence. Voormansik et al. (2020) 

T A B L E  1   SIGPAC land use description and corresponding 
SIGPAC codes

SIGPAC land use 
description SIGPAC codes

Arable land TA

Permanent crops:

Vineyards (wine 
or table grapes)

VI (vineyards), VF (table grapes)

Olive groves OV (olives—oil), OF (table olives)

Fruit orchards FY (mixed fruit)

Nut orchards FS (nuts)

Citrus orchards CI (citrus—mono-cult.), CS 
(citrus-mixed)

Permanent grassland PS (grass), PR (grass with shrubs and 
trees), PA (grass with trees)

Forest FO

Nonagricultural 
surfaces

AG (water), ED (urban built-up), EP, 
IM (unproductive), CA (roads), ZU 
(urban)

Other ZV (censured)

T A B L E  2   Number of samples (20 × 20 m pixels) representing unused and used arable land, that have been used for the training and 
validation of the Random-Forest-model for Albacete. The numbers between the brackets show the number samples when the permanent 
crop pixels are addeda

Year
Unused cropping land pixels 
(SIGPAC)

Used cropping land 
pixels Subtotal

2018 38,242 (40,207) 40,000 (40,000) 78,242 (80,207)

2019 13,320 (16,920) 14,000 (17,000) 27,320 (33,920)

2020 13,580 (16,916) 14,000 (17,000) 27,580 (33,916)

Total no. of 20 m pixels 2018–2020 133,142 (148,043)

For training (80%) 106,513 (118,434)

For validation (20%) 26,629 (29,609)
aThe numbers between the brackets show the total number of samples when permanent crops are included (which is ~15,000 extra).
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reported that plowing in general causes even larger jumps 
in the coherence signal.

Arable land that is being used and where management 
activities occur (i.e., plowing, tilling, and harvesting) will 
reveal a coherence time series that contains several (sig-
nificant) spikes or jumps. Fields that are not used will 
not show such spikes or jumps. In case of unused bare 
fields, the mean coherence signal will be relatively high 
and stable with only small fluctuations. In case of unused 
(partly) vegetated fields, the coherence signal will likely 
show a lower mean coherence, but still quite stable and 
also with small fluctuations. Most of these fluctuations 
in the signal are caused by seasonal effects (e.g., rainfall, 
snow). This is demonstrated in Figure 2, which shows 
the annual coherence time series of two land parcels lo-
cated in Albacete: an arable land parcel (parcel A) that is 
being used and a forested parcel that is not managed at all 
(parcel B). In addition, the NDVI time series are shown, 
which are based on Landsat 8  level-1T products (NDVI 
is calculated as the ratio between the red [R] and near-
infrared [NIR] bands). The NDVI shows the development 
of the vegetation during the season. Clearly visible are 
the abrupt changes in coherence signal of parcel A and 
in spring and autumn. The sudden drop in coherence 
is caused by field preparations (plouwing and sowing) 
of the bare soil (NDVI <0.2). After this event, coher-
ence slowly recovers to high values until the crop slowly 
emerges. In autumn, the crop is harvested (drop NDVI to 
0.2), which results in sudden increase of the coherence. 
The forested parcel (parcel B) shows a more stable coher-
ence (and NDVI) signal. The signal does show fluctua-
tions, but these are smaller and are caused by weather 
(e.g., rainfall) and seasonal effects, which are also visible 
in the time series of the used parcel.

Instead of using an algorithm to determine the exact 
timing of management activities (as is done in most CAP-
monitoring studies), it will be shown that the annual 
statistics of coherence time series can also be used to dis-
tinguish between unused and used parcels. This is shown 
in Figure 3 for a small area in Albacete. The upper left 
panel (Figure 3a) and right panel (Figure 3b) show the 
mean annual coherence and standard deviation of co-
herence based on 2018 coherence data. The lower panel 
(Figure 3c) shows the parcel boundaries and correspond-
ing land use according to SIGPAC. The white parcels with 
black boundaries are arable land parcels that are being 
used. The white parcels with orange-colored boundaries 
are “5-year fallow” according to SIGPAC. The remaining 
(colored) parcels are permanent crops, forest and grass-
land parcels, urban areas, and other land cover classes. 
What strikes immediately is that the coherence statistics 
(mean and standard deviation) precisely follow the parcel 
boundaries. Forest, (extensive) grassland, and also urban 

areas show a low standard deviation (Figure 3b), as these 
areas are not managed intensively. This is also the case for 
the “5-year fallow” SIGPAC parcels. Many arable land par-
cels show a high(er) standard deviation, which suggests 
some level of management. However, the range in stan-
dard deviation between the fields is large. The spatial vari-
ation can also be seen in the annual mean coherence map 
(Figure 3a). In this figure, the mean coherence is colored 
between green (low coherence) and brown (high coher-
ence). Since crops tend to have low coherence values and 
bare soil high values, the annual mean coherence can be 
seen as a (very simple) proxy for biomass. This can also 
be seen in Figure 2, where the coherence time series of 
parcel A behaves opposite to the NDVI time series (low 
coherence—high NDVI; high coherence—low NDVI).

The observed spatial variations in the standard devia-
tion and mean coherence are caused by:

•	 Variations in crop type (arable vs. permanent crops, 
short and sparse vegetation vs. tall and dense vegeta-
tion) and the length of the growing season.

•	 Variations in the frequency and type of management ac-
tivities, including irrigation practices, and their impact 
on coherence.

For example, rainfed-based cereal production systems 
(in Albacete) can be characterized as follows: field prepa-
rations of the bare soil in spring, followed by a short grow-
ing period (with no irrigation) and harvesting in autumn, 
where the crop is completely removed from the field (high 
impact on coherence; see parcel A in Figure 2). This will 
result in relatively high annual mean coherence (field is 
bare for a relative long period with a short crop season and 
no irrigation) and high standard deviation of coherence 
(both plowing and harvesting cause large fluctuations in 
the coherence signal). As the growing season expands, or 
irrigation is applied (more biomass in these arid condi-
tions), the annual mean coherence will decrease and also 
affect the standard deviation.

Voormansik et al. (2020) reported that mowing activ-
ities in grassland in general cause (much) smaller jumps 
in the coherence signal than plowing. After plowing, the 
vegetation completely disappears, while in case of mowing, 
only part of the vegetation is removed. In case of perma-
nent crops such as orchards (olives, fruit, and nuts) and also 
vineyards, it is expected that the impact of harvesting (and 
also other field management activities) on the coherence 
signal is also small, making it more difficult to distinguish 
between used and abandoned permanent crops (orchards, 
vineyards, and grasslands). The approach in this study will 
therefore only focus on detecting land abandonment in ar-
able land where coherence in relation to arable land man-
agement or absence thereof is better understood.
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F I G U R E  3   Subset Albacete. Upper 
left panel (a)—Annual mean coherence 
2018, upper right panel (b)—Standard 
deviation of coherence 2018, lower panel 
(c)—Land use according to SIGPAC 2018
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In order to distinguish between used and unused ara-
ble land based on the coherence statistics, the following 
dataset was prepared. For each year, a (pixel-based) statis-
tical analysis based on the time series of VV-coherence im-
ages was conducted by deriving per quarter (representing 
the periods January–March; April–June; July–September; 
and October–December) the following six statistics:

•	 coherence (defined as coh):
1: mean coh; 2: standard deviation of coh; 3: range coh

•	 change in coherence (defined as Dcoh = coherencet1 
− coherencet2):
4: mean of Dcoh; 5: standard deviation of Dcoh; 6: max-

imum of Dcoh
This resulted in a set of six statistics per quarter, that is, 

24 input variables (so-called predictors) in total per year. 
The reason it was decided to use quarterly statistics rather 
than annual is that we found slightly better results (train-
ing of a RF model). The standard deviation and range of 
coherence (coh) and the statistics of change in coherence 
(Dcoh) can be considered as indicators for the management 
intensity (used land: high values of standard deviation 
and range; unused land: low values of standard deviation 
and range). The mean coherence (mean coh) can be con-
sidered as an indicator of vegetation status (bare soil: high 
mean coherence vs. vegetated soils: low mean coherence) 
and can help to improve the distinction between used and 
unused land, due to variations in the coherence statistics 
caused by variations in crop type, length of growing sea-
son, and management activities (mentioned before).

The quarterly statistics, for the years 2017–2020 (maps 
of quarterly statistics at 20 × 20 m spatial resolution), will 
be combined with the collected SIGPAC data (Section 2.4) 
of used and unused cropping land pixels, to train a RF 
model.

A RF (or random decision forest) is a powerful but 
simple, data mining, and supervised machine learning 
technique. It allows quick and automatic identification of 
relevant information from extremely large datasets. One 
of the biggest advantages of RF is that it relies on the col-
lection of many predictions (trees) rather than trusting 
one (Borcan, 2020). We have used the Scikit-learn free 
software machine learning library for Python (https://
sciki​t-learn.org/stabl​e/).

Figure 4 provides an overview (flowchart) of the entire 
approach adopted in this study. The first step involves the 
preparation of the time series of coherence maps (cover-
ing 4  years: 2017–2020, Section 2.3) and calculate from 
these the quarterly statistics of coherence (Section 2.4). 
Next, coherence statistics were combined with 3 years of 
SIGPAC land use data (containing fallow land parcels, cov-
ering the years 2018–2020, Section 2.4). From this combi-
nation, a training dataset was generated, which was used 

to train the RF-model (Section 3.1). The trained RF-model 
was then used to derive four annual maps of unused/used 
land for the period 2017–2020 (Section 3.1). Finally, these 
four annual maps were combined in a 4-year abandon-
ment map, where land was classified as abandoned if not 
used for three consecutive years or more (Section 3.2).

3   |   RESULTS

3.1  |  Annual unused/used land maps 
arable land

3.1.1  |  Albacete

For the training of the RF-model for Albacete, the num-
ber of trees of the model was set at 500 trees, and 80% of 
the collected SIGPAC parcel data was used (Table 2). The 
remaining 20% of the data was used for validation. Rather 
than training the RF-model for a single year, it was de-
cided to train it for all 3 years combined (i.e., 2018, 2019, 
and 2020 together). This was done for two reasons. First, 
to create a larger dataset, as the number of training sam-
ples is limited per year (Table 2), and second, to avoid any 
seasonal effects between the years.

Table 3  shows the performance of the RF-model for 
Albacete, when the model is specifically trained for arable 
land. The validation is based on 20% of the dataset. The 
overall accuracy of the model is 88%, with a true-positive 
rate (TPR) of 0.87 and true-negative rate (TNR) of 0.89, 
meaning that the model can predict both classes of used 
(TPR) and unused (TNR) arable land well (87% of the used 
land and 89% of the unused land (according to SIGPAC) 
are correctly classified by the model).

The variable importance of the 11 most important pre-
dictors (i.e., the quarterly coherence statistics) is shown in 
Table 4. The table reveals which of the coherence statistics 
have the most predictive power. It was found that the mean 
coherence of the second quarter (period April–June) is 
by far the most important, followed by the standard devi-
ation of coherence of the fourth quarter (period October–
December). Then, there is a group of five predictors that 
roughly have the same importance. This group mainly con-
sists of coherence statistics of the fourth quarter, except for 
the maximum change of coherence (Dcoh). The remaining 
(not shown) predictors have an importance of less than four.

Next, the trained RF-model was applied for each year 
(2017–2020) separately, in order to derive annual maps of 
unused/used land within the land use class arable land. A 
sample of the four annual unused/used land maps for 2017–
2020 in Albacete is presented in Figure 5. The parcel bound-
aries (black polygons) and land cover classes are taken from 
SIGPAC, including SIGPAC parcels that are fallow for more 

https://scikit-learn.org/stable/
https://scikit-learn.org/stable/
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than 5 years (orange polygons). The white parcels/areas in 
all four panels are used arable land parcels/areas according 
to both SIGPAC and the RF-based unused/used land maps. 
The colored areas (2017: light green, 2018: light yellow, 2019: 
light blue and 2020: light pink) are identified as unused ara-
ble land by the RF-model. Clearly visible is the annual rota-
tion of unused arable land in the annual used/unused land 
maps. Furthermore, it can be seen that, in many cases, the 
unused land patterns of the RF-model follow the SIGPAC 
parcel boundaries very well, which demonstrates that the 
RF-model (based on the coherence statistics) is able to dis-
tinguish between parcels based on their management.

How good the results are for the whole province of 
Albacete is shown in Table 5. The model can predict un-
used land very well (TNR ranges between 0.96 and 0.98, i.e., 
96%–98% is correctly classified as unused land). However, 
it underestimates the prediction of used land (TPR varies 
between 0.63 and 0.66, i.e., 63%–66% is correctly classified 
as used land). Overall it results in an accuracy that varies 
between 63% and 66%. Here, the model suggests that there 
is more unused land within the land use class arable land 
than SIGPAC reports. In fact, the model says that ~35% of 
the arable land in Albacete is not used in 2020. SIGPAC 
registers parcels that are fallow for 5 years or more. The 
main reason for this difference is the fact that on an annual 
basis, the model cannot distinct between parcels that are 
fallow for 1 year and parcels that are not used for multiple 
years (≥5 years). This is supported by the annual rotation 

of unused land in Figure 4, which demonstrates that par-
cels are sometimes not used. As mentioned in Section 2.2, 
the application of rotational fallow in rainfed cereal-based 
production system (used as EFA) is very common in the 
region of Albacete (and Soria), which is in the order of 
20% of the arable land (according to the agricultural sta-
tistics (MAPA data)).

3.1.2  |  Soria

To test the applicability of the RF-model to other areas, 
the RF-model trained for Albacete was applied to the 
province of Soria and compared with a locally trained 
RF-model (based on SIGPAC data of Soria). The collec-
tion of training data for Soria was identical to Albacete. 
The total number of training samples for Soria is 34,655 
20  m pixels, consisting of 17,255 unused land pixels 
(taken from SIGPAC 2018 to 2020) and 17,400 randomly 
selected used land pixels (within land use class arable 
land). Similar to Albacete, samples for all 3 years were 
combined for training of the model (first, to have a 
larger training set, and second to avoid seasonal effects 
between the 3  years). Note that the dataset of Soria is 
a factor of four smaller than that of Albacete. The rea-
son is that many SIGPAC fields in Soria are (on average) 
smaller, and in the end not usable for training once con-
verted into 20 m pixels.

F I G U R E  4   Flowchart of the 
methodology adopted in this study

RF—Predicted

Used arable 
land

Unused 
arable land Total

Truth (SIGPAC 2018–2020)

Used arable land 11,819 1753 13,572 0.87 (TPR)

Unused arable land 1384 11,673 13,057 0.89 (TNR)

Total 13,203 13,426 26,629

T A B L E  3   Confusion matrix for 
Albacete, Random-Forest (RF)-model 
trained for arable land only. Results 
are based on 20% subset of dataset 
(=26,629 samples)
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Table 6  shows the performance of the locally 
trained model for Soria. Also here the model is specif-
ically trained for arable land using 80% of the collected 
SIGPAC data for Soria (period 2018–2020) and the re-
maining 20% was used for validation. The overall accu-
racy of the model was found to be 88%. The model is 
able to predict both classes of used (TPR) and unused 
(TNR) arable land well: 89% of the used land and 87% 
of the unused land (according to SIGPAC) are correctly 
classified by the model.

Next, both RF-models were applied to the years 2017–
2020  separately for deriving the annual unused/used 
land maps for the whole province and validated with the 
SIGPAC data. These annual results are also presented in 
Table 6 (2018, 2019, and 2020). Note that the validation of 
these annual maps is based on the whole province. It was 
found that the locally trained RF-model predicts unused 
arable land better than the RF-model of Albacete: TNR of 

T A B L E  4   Variable importance of the first 11 most important 
predictors. The numbers represent the first, second, third and 
fourth quarter of the year

Variable Importance

1 Mean coherence 2nd quarter 13.18

2 Std. deviation coherence 4th quarter 6.54

3 Mean coherence 3rd quarter 5.73

4 Std. deviation coherence 1st quarter 5.62

5 Maximum delta_coherence 4th quarter 5.28

6 Mean coherence 4th quarter 5.15

7 Range coherence 4th quarter 5.04

8 Mean delta_coherencecoherence 4th 
quarter

4.75

9 Std. deviation delta coherence 4th 
quarter

4.74

10 Range coherence 2nd quarter 4.07

11 Mean delta_coherence 3rd quarter 4.03

F I G U R E  5   Samples of unused/used land maps in Albacete for 2017 (upper left (a)), 2018 (upper right (b)), 2019 (lower left (c)), and 
2020 (lower right (d)). The parcel boundaries (black polygons) and land cover classes are taken from SIGPAC, including the SIGPAC parcels 
that are fallow for more than 5 years (orange polygons)
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0.90–0.98 versus TNR of 0.66–0.76. However, for the clas-
sification of used arable land, the locally trained model is 
too sensitive (TPR varies between 0.44 and 0.6), that is, it 
classifies too many used land pixels as unused, resulting 
in a very low overall accuracy of 44% in 2018 and 2019 
(and 60% in 2020). The RF-model trained for Albacete is 
worse in predicting unused land (TPR of ~0.67), but it is 
better in predicting used arable land (TNR of 0.66–0.76) 
in Soria. Overall, this leads to a slightly better accuracy of 
on average 67%.

The underestimation of used land (TPR between 0.66 
and 0.76) by the RF-model trained for Albacete was also 
found for Albacete (Table 5). In both provinces, on an an-
nual basis, roughly 66% of the used arable land (according 
to SIGPAC) is classified as used, while 34% is classified as 
unused. As explained before, this is the result of rotational 

fallow in rainfed-based cereal production system that are 
used as EFAs.

Figure 6  shows a sample of the annual unused/used 
land maps for Soria (for 2017–2020), based on the RF-model 
for Albacete (which performed slightly better than the lo-
cally trained model). The parcel boundaries, the land cover 
classes, and parcels that are fallow for more than 5 years 
(orange parcels) are taken from SIGPAC. The white par-
cels/areas in all four panels are used arable land/parcels 
according to both SIGPAC and the RF-based unused/used 
land maps. The colored areas (2017: light green, 2018: light 
yellow, 2019: light blue, and 2020: light pink) are identified 
as unused arable land by the RF-model. Similar to Albacete, 
the annual rotation of unused parcels is clearly visible, and 
in many cases, the unused patterns of the model follow the 
SIGPAC parcel boundaries very well.

T A B L E  5   Confusion matrix: unused/used land map for 2018, 2019, and 2020, based on the whole province of Albacete

Truth (SIGPAC)

Random-Forest—Predicted

Used arable land Unused arable land Total

2018

Used arable land 7,655,365 4,449,017 12,104,382 0.63 (TPR)

Unused arable land 883 37,359 38,242 0.98 (TNR)

Total 7,656,248 4,486,376 12,142,624 Accuracy: 63%

2019

Used arable land 7,864,867 4,264,382 12,129,249 0.65 (TPR)

Unused arable land 254 13,121 13,375 0.98 (TNR)

Total 7,865,121 4,277,503 12,142,624 Accuracy: 65%

2020

Used arable land 7,952,332 4,176,917 12,129,249 0.66 (TPR)

Unused arable land 474 12,901 13,375 0.96 (TNR)

Total 7,952,806 4,189,818 12,142,624 Accuracy: 66%

Bold used for calculating the TPR and the TNR.

T A B L E  6   Overall accuracy of the locally trained Random-Forest (RF)-model for Soria, based on SIGPAC data from 2018 to 2020 
combined. And the accuracy of the annual unused/used land maps for 2018, 2019, and 2020 for the whole province of Soria, based on the 
locally trained RF-model and based on the trained RF-model for Albacete

Truth (SIGPAC year)

RF-model (locally trained) RF-model Albacete (applied to Soria)

Accuracy TPR (used land)

TNR 
(unused 
land) Accuracy TPR (used land)

TNR 
(unused 
land)

2018–2020 88%a 0.89 0.87 × × ×

2018 44%b 0.44 0.98 66%b 0.66 0.66

2019 44%b 0.44 0.90 68%b 0.68 0.68

2020 60%b 0.60 0.94 67%b 0.67 0.76
aBased on 20% of the SIGPAC dataset.
bBased on the whole province of Soria.
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3.2  |  Four-year abandonment maps 
arable land

3.2.1  |  Albacete

Based on the four annual unused/used land maps of 
2017–2020, a 4-year abandonment map for Albacete was 
generated. When a 20-m pixel is not used for 3  years 
or more in a row, it is considered as abandoned; other-
wise, it is classified as used arable land. Table 7 shows 

a detailed confusion matrix based on SIGPAC ≥5 year 
fallow data and for the whole province of Albacete. The 
overall accuracy is 83%. Of the 13,580 SIGPAC pixels 
within the class arable land that have been unused for 
5 years (or more) over the period 2017–2020, 11,576 pix-
els are also unused according to the RF-based 4-year 
abandonment map (a TNR of 0.85). Of the 11,789,363 
pixels that are used arable land according to SIGPAC, 
83% is also used land according to the 4-year abandon-
ment map (a TPR of 0.83).

F I G U R E  6   Samples of unused/used land maps in Soria for 2017 (upper left (a)), 2018 (upper right (b)), 2019 (lower left (c)), and 2020 
(lower right (d)). The parcel boundaries (black polygons) and land cover classes are taken from SIGPAC, including the parcels that are 
fallow for more than 5 years (orange polygons)

T A B L E  7   Confusion matrix: 4-year abandonment map (2017–2020) based on SIGPAC, for the whole province of Albacete

Truth

Random-Forest—4-year abandonment map

Used arable land
≥3-year fallow arable 
land Total

SIGPAC

Used arable land 9,753,753 2,035,610 11,789,363 0.83 (TPR)

≥5 year fallow arable land 2004 11,576 13,580 0.85 (TNR)

Total 9,755,757 2,047,186 11,802,943
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A sample of the 4-year abandonment map for 
Albacete is presented in Figure 7. Parcel boundaries, 
land cover classes, and parcels that are fallow ≥5 years 
are taken from SIGPAC. All permanent crops and land 
cover classes other than arable land are colored. The 
remaining white parcels/areas are used arable land ac-
cording to SIGPAC. Pixels that are classified as used ara-
ble land in the 4-year abandonment map are also white, 
and pixels that are unused for ≥3 years are light pink or 
dark pink. It can been seen that most of the SIGPAC ≥5-
year fallow parcels (orange colored) are also identified 
as unused in the 4-year abandonment map. The 4-year 
abandonment map shows some scattered pixels; how-
ever, most of unused land pixels are concentrated in a 
small set of parcels.

3.2.2  |  Soria

Similar to Albacete, the 4-year abandonment map for 
the province of Soria was derived. It is based on the four 
annual unused/used land maps determined with the 
RF-model that was trained for Albacete. The confusion 
matrix, showing the accuracy of the 4-year abandonment 
map, is shown in Table 8. It is also based on SIGPAC data 
and shows the situation for the whole province of Soria. 
Although the overall accuracy is 88.5%, the model is less 
able to classify unused arable land correctly: a TNR of 
0.48, that is, roughly 50% of the unused land (according 
to SIGPAC) is classified as unused in the 4-year abandon-
ment map.

A sample of the 4-year abandonment map for Soria is 
shown in Figure 8. Parcel boundaries and land use infor-
mation are taken from SIGPAC (including parcels that are 
registered as ≥5 year fallow, labeled as orange). White par-
cels/areas are used arable land according to both SIGPAC 
and the 4-year abandonment map. The pink-colored pix-
els/areas are classified as abandoned in the 4-year aban-
donment map. The underestimation of unused land in the 
RF-based 4-year abandonment map (a low TNR of 0.48 in 
Table 8) is also visible in the figure as most of the ≥5-year 
fallow SIGPAC parcels (orange) are not classified properly 
as unused in the 4-year abandonment map. In many cases, 
a small fraction of the parcels are pink colored.

4   |   DISCUSSION

In this study, it is demonstrated that (quarterly) statistics 
of radar coherence data can be used for detecting aban-
donment in arable land when these statistics are used to 
train a RF model. Firstly, the annual maps of unused/used 
arable land for the years 2017–2020 clearly show annual 
“rotational fallow” land and the unused/used patterns 
follow the SIGPAC parcel boundaries. This demonstrates 
that the coherence statistics (and RF-model) in general 
can distinguish between parcels based on their manage-
ment. Secondly, the trained RF-model using the statistical 
indices derived from radar coherence data was successful 
in predicting unused/used arable land.

For the annual unused/used land maps for the whole 
province of Albacete, the model prediction has an accuracy 

F I G U R E  7   Sample of the 4-year abandonment map in Albacete 
(period 2017–2020). The parcel boundaries (black polygons) and 
land cover classes are taken from SIGPAC. The orange-colored 
parcels are registered in SIGPAC as ≥5-year fallow. The white 
parcels/areas are used arable land according to both SIGPAC and 
the 4-year abandonment map. The pink-colored areas (light and 
dark) are identified as unused in the 4-year abandonment map

F I G U R E  8   Sample of the 4-year abandonment map in Soria 
(period 2017–2020). The parcel boundaries (black polygons) and 
land cover classes are taken from SIGPAC. The orange-colored 
parcels are registered in SIGPAC as ≥5-year fallow. The white 
parcels/areas are used arable land according to both SIGPAC and 
the 4-year abandonment map. The pink-colored areas (light and 
dark) are identified as unused in the 4-year abandonment map
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of roughly 66%. Although the model is able to predict un-
used arable land very well (97% of the SIGPAC fallow land 
is classified as unused), the prediction of used arable land is 
underestimated (only 65% of the used arable SIGPAC land is 
classified as used, see Table 6). This implies that the model 
suggests that there is more unused land within the land use 
class arable land than SIGPAC reports. The reason that the 
RF-model detects more unused arable land on an annual 
basis is likely caused by rotational fallow of rainfed cereal 
production land, which is used as EFA, a common prac-
tice in Mediterranean areas such as Albacete (and Soria). 
SIGPAC includes only parcels that are fallow for 5 years or 
longer (and does not include EFA-practices). The RF-model 
cannot distinguish between land that is fallow for 1 year and 
land that is fallow for a number of years.

Applying the trained RF-model on the whole territory 
of Albacete for all 4 years (2017–2020) resulted in a 4-year 
abandonment map with an overall accurate prediction of 
83%. As the effect of EFA practices is now filtered out, the 
model is able to predict both classes of used and aban-
doned arable land well (a TPR of 0.83 and TNR of 0.85, 
see Table 7).

To determine whether the trained model was also ef-
fective in predicting unused/used arable land in other re-
gions, the model was also applied to Soria. It was found 
that the RF-model trained in Albacete performed slightly 
better than the locally trained RF-model of Soria. The 
most logical reason for this is the limited number of train-
ing samples available for Soria, as compared to Albacete 
(34,655 samples for Soria vs. 133,142 samples for Albacete). 
The limited number of 20 m samples in Soria is the result 
of two factors: (1) less fallow land parcels in Soria and (2) 
on average smaller land parcels in Soria (average parcel 
size of 0.4 ha vs. 0.6 ha in Albacete). As the polygons of 
these parcels are reduced in size before being converted to 
20 m pixels, less pixels remain. Although the RF-model of 
Albacete works better than the locally trained model, the 
results for Soria are not as good as was found for Albacete. 
Other factors that may explain lower predictive power in 
Soria are likely to be related to differences in climate that 
lead to differences in timing of crop development and ap-
plication of management practices. Soria region is located 

more centrally and at overall higher altitude then the re-
gion of Albacete and therefore has a colder climate and a 
shorter growing season and slightly higher precipitation 
levels.

To further investigate the applicability in other regions, 
the RF-model trained for Albacete was also applied in the 
Italian region of Emilia-Romagna (Northern Italy). Even 
though both regions are characterized by a Mediterranean 
climate, the precipitation levels are very different. In 
Emilia-Romagna, the average annual precipitation more 
than doubles that of Albacete (and that of Soria). For 
Emilia-Romagna region, LPIS (Land Parcel Identification 
Systems) data were available for the years 2018, 2019, and 
2020. Similarly, to SIGPAC (Spain), LPIS data contain in-
formation at parcel level, including a code (COD_COLT) 
and description (DESC_COLT) of land use and manage-
ment. Using the RF-model in Emilia-Romagna showed 
initially that the model strongly underestimated the clas-
sification of unused parcels in Emilia-Romagna. Only 
25% of the fallow-LPIS-parcels were classified as unused. 
When the RF-model was locally trained based on LPIS data 
(3 years), the model was able to classify unused land much 
better; however, the model became too sensitive (such as 
was experienced in Soria), resulting in an overestimation 
of the fraction of unused land (almost 50% of the land was 
classified as unused). Possible reasons why the predictive 
power of both the externally trained and locally trained 
RF-models is not so satisfactory for Emilia-Romagna are:

1.	 The large difference in average annual precipitation. 
In Emilia-Romagna, the evolution of vegetation in 
unused lands is much faster and rapidly tends toward 
shrub development.

2.	 Because of climatic differences, the tuning of land and 
crop management operations are likely to be differently 
timed between both regions.

3.	 Unused parcels in Emilia-Romagna are small, and as 
a result, the number of training samples (20 m pixels) 
was relatively small in the locally trained RF-model (as 
was the case in Soria). The smaller the training sam-
ples the lower the predictive quality of the RF-model 
becomes.

T A B L E  8   Confusion matrix: 4-year abandonment map (2017–2020) based on SIGPAC, for the whole province of Soria

Truth

Random-Forest—4-year abandonment map

Used arable land
≥3-year fallow arable 
land Total

SIGPAC

Used arable land 7,740,577 1,005,700 8,746,277 0.89 (TPR)

≥5-year fallow arable land 1232 1118 2350 0.48 (TNR)

Total 7,741,809 1,006,818 8,748,627
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4.	 In the LPIS for Emilia-Romagna, long-term abandon-
ment for more than 5 years is not registered, as is the 
case in SIGPAC (for Spanish regions), but only fallow at 
an annual basis. But also the LPIS-codes for fallow land 
are difficult to interpret correctly for Emilia-Romagna 
as these may as well cover rotational fallow practices, 
which in practice only involve the absence of manage-
ment for a couple of months per year and not for an 
entire year. Furthermore, among the several types of 
fallow land codes, there are also categories for fallow 
with a nature conservation objective. For these fallow 
parcels, farmers are still expected to cut vegetation, 
even though this has not a productive purpose and it 
is done to either avoid obtaining a fine or to avoid los-
ing the long-term agricultural status (and therefore the 
CAP payment right). The radar coherence signals in 
these cases are not the same as for complete cessation 
of management. Overall, it can therefore be concluded 
that it is difficult to determine to what extend inaccu-
rate predictions of unused/used arable land is caused 
by the low RF-model quality or by the unclear and in-
complete registration of fallow practices in LPIS. After 
all, an RF-model can only be trained effectively on ac-
curate data.

Finally, the RF-model was also trained in a combi-
nation of arable and permanent cropping land (which 
included vineyards, olive groves, and fruit, nut, and cit-
rus orchards). From this assessment done for Albacete 
(for detailed results, see Supporting Information I), it 
became clear that the detection of abandonment in per-
manent crops was not as accurate as it was for arable 
land. We therefore conclude that the trained RF-model 
for Albacete is only acceptably accurate for predicting 
unused/used lands in arable cropping land and not in 
permanent cropping land. The first reason for this low 
accuracy in permanent cropping land was related again 
to the relatively small training dataset available in per-
manent cropping land (the total dataset contains only 
10% permanent crops). Secondly, crop management ac-
tivities/or absence of those in arable land are much more 
distinctive and uniform then in permanent cropping 
land, which consisted of a diverse suit of crops and re-
lated practices. Thirdly, the (type of) management activ-
ities in arable lands are much more destructive for soil 
and vegetation and generally translate in high standard 
deviation in coherence signals than management prac-
tices in, for example, orchards, which are generally less 
frequent and drastic. Because of this, the training of the 
RF-model for a combination of arable and permanent 
croplands in Albacete resulted in a predictive model that 
is too sensitive. It overestimated unused land in perma-
nent crops (in particularly orchards).

There are still several limitations connected to our 
combined method using radar coherence data and a RF 
model to detect unused cropping lands. The first limita-
tion is that a good model can only be developed if there are 
sufficient training samples. The second limitation is that 
the detection of land abandonment in regions with very 
steep slopes is likely to be more difficult because radar sig-
nals are less reliable in such areas. This is explained by the 
fact that when using coherence techniques for detecting 
changes at the ground, it is important that the signals re-
corded at a given location in the two SAR images are cor-
related while in steed slopes, this may not be the case. The 
coherence consists of a spatial component and a temporal 
component. Here, we are interested in the temporal com-
ponent, which reflects changes in the physical properties 
of the target (or object), caused by land management ac-
tivities (or the lack of). Changes in the target will affect the 
temporal component of coherence. Therefore, it is import-
ant that the spatial component does affect the coherence 
too. The spatial component is dependent on the geometric 
properties of the satellite acquiring the images and the 
ground surface. Decorrelation of the spatial component 
can be caused by small changes in the satellite viewing 
geometry between the acquisitions and can be stronger in 
areas of steep topography as it is dependent on incidence 
angle (Borrows at al., 2020; Jacob et al., 2020). It is there-
fore likely that the coherence data in mountainous areas 
are less accurate (reliable) for detecting unused cropping 
land than in flat areas.

The third limitation is that our method is limited to a 
minimum field size. Although the coherence data have 
a high spatial resolution (20 m) and can cover relatively 
small fields, edge effects are to be avoided, which im-
plies that very small and also narrow fields/areas cannot 
be monitored accurately. This is a limitation particularly 
because we know from literature (Alcantara et al., 2013; 
Lasanta et al., 2017; Terres et al., 2014) that small fields are 
abandoned sooner than large fields. In case of Soria, many 
fields were excluded from the training set because of their 
small field size and avoidance of edge effects.

The fourth limitation is that the presented method 
shows promising results for detection of abandonment 
in arable lands, but not for permanent crops. Beside the 
fact that this was caused in this study by the small number 
of training samples, the more important challenge is that 
management activities in most permanent crops (except 
for vineyards) are not easily detectable via coherence data. 
The method implemented by Morell-Monzó et al. (2020, 
2021) to detect abandonment of permanent crops (mostly 
citrus) in the region of Valencia is considered relevant and 
likely to be an alternative but only where it involves local 
studies. Morell-Monzó et al. (2020, 2021) used higher res-
olution satellite data and also airborne imagery (1 m) for 
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detecting land abandonment also in combination with a 
RF model. The results showed that the use of the high-
resolution information with the airborne images trans-
lated into EVI and TTVI delivered an accuracy of 88.5% 
correctly classified field plots. However, the limitation of 
Morell-Menzo et al.’s approach is that it will be very diffi-
cult and time consuming to obtain and process (e.g., the 
cloud screening) all high-resolution data and therefore 
very difficult to apply and roll-out the approach to larger 
regions in Europe. The application will only need to serve 
a local need rather than a national or EU wide need for 
information on the location and scale of abandonment.

The fifth limitation is the Sentinel-1 archive. In this 
study, Sentinel-1B data of 2017–2020 were used. This 
could be expanded to 6 years by adding Sentinel-1A, which 
is available for 2015–2016. Six-year data are still limited 
given the need for training datasets that cover a longer 
period for the detection of longer term abandonment. It 
does suffice currently for identifying the low ILUC lands 
defined in the EU Recast RED II, which need to be un-
used for at least 5 years. Over the next years, more SAR 
data will become available, making the application of the 
methodology easier and more accurate.

Finally, there is also a need for obtaining good train-
ing data from national and regional LPIS data in different 
regions of the EU, which contain reliable data on unused 
land status of agricultural parcels. So far, the information 
from the Spanish LPIS (SIGPAC) proved useful, but this 
was not the case for the LPIS data from Emilia-Romagna. 
In general, it is not easy to access LPIS data, even more 
for the additional attribute information layers on man-
agement of land or absence of it. Every paying agency in 
the EU countries and regions handles data access differ-
ently. A more central coordination on how to access the 
LPIS data will help getting a better understanding of the 
abandonment situation in Europe and will facilitate the 
improvement of our method to detect land abandonment 
in a much larger area and in a wider number of climatic 
zones in Europe.

Overall, we conclude that the results in this paper 
showed the potential of the presented method using radar 
coherence data and a RF model to detect abandonment 
in arable lands. The results demonstrated clearly that the 
coherence statistics (and RF-model) in general can dis-
tinguish between parcels based on their management. 
The trained RF-model was successful in predicting 4-year 
abandonment in arable land in Albacete with an overall 
accuracy of 83%.

The developed RF-model did not prove effective so 
far in predicting land abandonment in permanent crops 
(such as vineyards and fruit/nut/citrus orchards and olive 
groves). Further efforts need to be invested, also building 

on relevant work done by Morell-Monzó et al. (2020, 
2021), to make the abandonment detection in these types 
of crops widely possible.

To improve the applicability of the radar coherence 
data and RF model approach to a wider number of EU 
regions, there are still several limitations that need to be 
addressed. Firstly, there is an urgent need for making 
available high-spatial and temporal resolution radar data 
over the next years. Secondly, improving quality of and ac-
cess to LPIS data would be very helpful to create training 
datasets for developing and improving our methodology 
further to detect land abandonment in a much larger and 
climatically diverse areas of Europe.

The need to develop the early detection of abandon-
ment is important. It can help to take the necessary mea-
sures to reverse this process of abandonment, to detect 
no-go areas and areas with opportunities to create win–
win situations between production of low-ILUC biomass 
for the bioeconomy and environmentally and socio-
economically sustainable land use practices. It will also 
indicate where action needs to be taken to ensure that 
land abandonment does not lead to unwanted adverse 
effects on environment, biodiversity, ecosystem services, 
and rural livelihoods. Whether these adverse effects occur 
is determined by the local context.

The approach presented here, which is based on radar 
coherence data, is more promising than when it is based 
on NDVI or NVI indices from optical satellite imagery. 
In our opinion, radar information has many advantages 
in detecting land abandonment. Land abandonment is 
the lack of land management activities, which implies 
that radar coherence data, unlike NDVI or NVI, are cur-
rently the only more informative source of data that en-
ables to detect the stability (or lack of stability) caused 
by land management in a field. Furthermore, radar-
based images provide a more complete multispatial and 
time-series information because they are not influenced 
by cloud coverage and therefore provides a database, 
which is more complete and less time consuming to 
prepare then with optical satellite data (e.g., Sentinel-2 
and Landsat), or other high-resolution airborne imag-
ery. Finally, the high spatial and temporal resolution of 
radar images provides the opportunity to identify aban-
doned lands for relatively large areas with a relatively 
small time investment once a methodology is working 
with a high detection accuracy.
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