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Abstract

Metagenomics has become a prominent technology to study the functional potential of all organisms in a microbial community. 
Most studies focus on the bacterial content of these communities, while ignoring eukaryotic microbes. Indeed, many metagen-
omics analysis pipelines silently assume that all contigs in a metagenome are prokaryotic, likely resulting in less accurate 
annotation of eukaryotes in metagenomes. Early detection of eukaryotic contigs allows for eukaryote-specific gene predic-
tion and functional annotation. Here, we developed a classifier that distinguishes eukaryotic from prokaryotic contigs based 
on foundational differences between these taxa in terms of gene structure. We first developed Whokaryote, a random forest 
classifier that uses intergenic distance, gene density and gene length as the most important features. We show that, with an 
estimated recall, precision and accuracy of 94, 96 and 95 %, respectively, this classifier with features grounded in biology can 
perform almost as well as the classifiers EukRep and Tiara, which use k-mer frequencies as features. By retraining our classi-
fier with Tiara predictions as an additional feature, the weaknesses of both types of classifiers are compensated; the result is 
Whokaryote+Tiara, an enhanced classifier that outperforms all individual classifiers, with an F1 score of 0.99 for both eukary-
otes and prokaryotes, while still being fast. In a reanalysis of metagenome data from a disease-suppressive plant endospheric 
microbial community, we show how using Whokaryote+Tiara to select contigs for eukaryotic gene prediction facilitates the 
discovery of several biosynthetic gene clusters that were missed in the original study. Whokaryote (+Tiara) is wrapped in an 
easily installable package and is freely available from https://github.com/LottePronk/whokaryote.

Data Summary
The authors confirm that all supporting data, code and protocols have been provided within the article or through supplementary 
data files.

Whokaryote was developed in Python 3 as a command-line application for Linux, macOS and Windows.

The source code and documentation are available on GitHub under a GPLv3 licence (https://github.com/LottePronk/whokaryote).

The datasets that were used to train and test Whokaryote were constructed from National Center for Biotechnology Information 
(NCBI) reference genomes. GenBank accession numbers are listed in Supplementary Material S1–S3 (available in the online 
version of this article). The FASTA and GFF files used are available from https://git.wageningenur.nl/lotte.pronk/whokaryote/-/​
tree/master/train_test_files.

Introduction
Microbiomes are increasingly recognized for playing a large role in the health and development of their hosts [1, 2]. Studies aiming 
to characterize these microbial communities are increasingly shifting from largely marker gene-based community abundance 
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profiling (e.g. 16S, ITS) to analyses of the complete metagenome using shotgun sequencing. Analysing the complete metagenome 
has provided valuable insights into microbial ecology and microbiome–host interactions [3–5].

Many metagenomic analysis pipelines assume that all contigs will be prokaryotic, while eukaryotic micro-organisms are also 
present in microbiomes [6–9]. Including eukaryotes in metagenome analyses could provide a more complete picture of their 
ecological role and functional capabilities. To study eukaryotic sequences in metagenomes, a reliable taxonomic classification 
method at the contig level is required.

Most current metagenome taxonomic classification tools were largely designed with prokaryotes in mind. Tools such as CAT/
BAT [10], DIAMOND+MEGAN [11], or Kraken2 [12] are good at assigning taxonomy to metagenomic contigs up to the species 
level, but they require relatively time-consuming sequence homology searches (CAT, DIAMOND+MEGAN) or use k-mers 
(Kraken2) and thus require the use of large pre-existing databases. Uncultivated organisms are frequently missed because they 
are not yet in a database. Additionally, some sequence homology-based methods, such as CAT, require accurate gene predictions, 
which paradoxically require knowledge of at least the empire (eukaryote/prokaryote) level for each contig to select the best gene 
predictor. Prokaryotic gene predictors do not consider introns, making them unsuitable for predicting eukaryotic genes. The 
eukaryotic gene predictor Augustus [13] uses models that were trained on specific organisms and can be trained on metagenomic 
bins to predict the genes in such a bin, an approach used in the EukRep pipeline [14]. However, there is no good solution for de 
novo gene prediction in unbinned contigs. MetaEuk predicts protein-coding genes on eukaryotic metagenomic contigs, but relies 
on a large and likely incomplete reference database of protein profiles [15]. Because of the limitations of current methods, many 
metagenomic studies may be missing eukaryotic genes altogether because they annotate them incorrectly. K-mer-based methods 
such as Kraken2 do not rely on gene predictions, but they require a database of closely related reference genomes. Not many 
reference genomes of eukaryotic micro-organisms are available in public databases yet, which could lead to an underestimation 
of eukaryotes in microbiomes.

In order to allow metagenomic analysis pipelines to selectively run eukaryote-specific gene finding on all contigs likely to be 
eukaryotic (whether belonging to a known taxon or not), simply classifying metagenomic contigs as either prokaryotic or 
eukaryotic (instead of comprehensively assigning taxonomy) would be a logical solution. Some efforts have recently been made 
in this direction. For example, EukDetect maps reads to a database of universal eukaryotic marker genes to detect eukaryotes in 
metagenomes [16], but this approach will not find contigs that do not contain these marker genes. The tool EukRep [14] calculates 
k-mer counts of 5 kb fragments of (meta)genomic contigs and then classifies the complete contig based on a majority vote using 
a support vector machine model. The authors show that using eukaryotic gene predictors on sequences classified as eukaryotic 
leads to more accurate annotations and downstream analyses, including higher-level taxonomic classification [14]. Despite its 
high overall accuracy, EukRep does not perform very well on several prokaryotic and eukaryotic taxa, especially parasites and 
symbionts. Moreover, it was trained and tested on relatively long contigs, while metagenome assemblies often consist of mostly 
short contigs. More recently, Tiara, a classifier that uses k-mer counts as features for deep learning models was published [17], 
which was shown to be slightly more accurate than EukRep. Tiara was developed with detecting organelle sequences in mind, 
and therefore has a more fine-grained classification, distinguishing archaea, bacteria, organelles and eukaryotes. Like EukRep, 
the performance of Tiara is less accurate on certain organisms. Because the approaches used by both tools do not allow for the 
inference of feature importance, it is very difficult, if not impossible, to determine which k-mers are important for distinguishing 
between eukaryotes and prokaryotes, and what underlying biological features these k-mers represent. This makes it difficult to 
correct for any biases. Moreover, k-mer-based approaches by their nature likely require training data from closely related taxa to 
work well, making it probable that contigs from uncultivated taxa unique to specific biomes will be misclassified.

Impact Statement

Studying the collective genomes of complete microbial communities (known as metagenomes) can provide important insights 
into microbial ecology. Most studies and, consequently, analysis pipelines, focus on the bacterial members of these communi-
ties, while ignoring eukaryotes. Because eukaryotic sequences require eukaryote-specific analysis pipelines, it is necessary to 
separate prokaryotic from eukaryotic contigs at an early stage of data processing. Homology-based tools can perform taxo-
nomic classification down to the species level, but they use databases in which eukaryotes are often underrepresented. Other 
tools use k-mer frequencies to classify sequences on the eukaryote/prokaryote level without the need of databases, but it is 
unknown what biological features these k-mers represent. With Whokaryote, we use features based on fundamental differ-
ences between prokaryotes and eukaryotes in terms of gene structure, and optionally combine these with k-mer-frequency-
based Tiara predictions to achieve highly accurate classification of metagenomic contigs. Standalone, Whokaryote is fast and 
performs almost as well as other tools. The combined classifier Whokaryote+Tiara outperforms all tested individual classifiers 
in terms of accuracy. Repredicting genes on eukaryotic contigs identified as such by Whokaryote+Tiara results in better down-
stream functional annotation, aiding the discovery of ecological functions of eukaryotes in microbiomes.
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Here, we introduce Whokaryote, a random forest classifier with comparable performance to previous k-mer-based approaches, but 
which uses manually selected features based on fundamental differences in gene structure between eukaryotes and prokaryotes. 
Whokaryote uses intergenic distance, gene density and other genomic features to predict whether a given metagenomic contig 
belongs to a eukaryote or a prokaryote. Despite the different approach, our tool performs as well and, in some cases, better than 
EukRep and Tiara on contigs with sizes often found in metagenomes. We also show that using eukaryote-specific tools to analyse 
the classified eukaryotic contigs can lead to the discovery of microbial traits that have remained undiscovered when solely using 
prokaryote-oriented tools. Finally, by using Tiara predictions as an additional feature, we constructed a highly accurate classifier 
with an F-1 score of 99.2 % on a simulated metagenomic dataset. With this enhanced classifier, which we term Whokaryote+Tiara, 
sequences can be classified reliably for a very wide range of eukaryotes and prokaryotes.

Methods and implementation
Training dataset for the random forest classifier
To train the random forest classifiers, we downloaded 73 prokaryotic (68 bacteria and 5 archaea) genome assemblies from 31 
different phyla, and 25 eukaryotic (12 fungi, 10 protists, 1 plant and 2 animals) genome assemblies from 14 different phyla from 
the National Center for Biotechnology Information (NCBI) GenBank database (see Supplementary Material S1). Despite the 
relatively small number of genomes included, we think the diversity of phyla and the fact that we split genomes into numerous 
shorter fragments provides enough data to train a sufficiently generalized model. All non-genomic DNA sequences were removed 
using the following search terms: API, MIT, mitochondrial, plastid, chloroplast, mitochondrion, non-nuclear, organelle and 
apicoplast. Next, these genomes were split into non-overlapping artificial contigs with a random length of 5000–100 000 base pairs 
according to a triangular distribution with the lower left limit at 5000, the mode at 10 000 and the upper right limit at 100 000 bp. 
For the training set, a maximum of 500 contigs per genome were used to prevent an overrepresentation of eukaryotic contigs, 
which tend to have very large genomes compared to prokaryotes. For every contig (both prokaryotic and eukaryotic), genes 
were predicted using the prokaryotic gene prediction tool Prodigal [18] (version 2.6.3) using the metagenomic setting (--meta). 
We used Prodigal because it is already commonly used in metagenomics pipelines and preparing these output files as input to 
our classifier will save time in the subsequent gene prediction step. Contigs with one predicted gene or no predicted genes were 
excluded in further steps (see below for explanation). This resulted in a dataset with a total of 11 285 eukaryotic contigs and 8403 
prokaryotic contigs that we used to train and validate the random forest classifier.

Used features
Genes in prokaryotes are often packed closely together on the genome in co-regulated operons that are transcribed to a single 
polycistronic mRNA. Therefore, we expected genes on eukaryotic contigs to generally have a higher intergenic distance and a 
lower gene density than prokaryotic contigs. Additionally, because genes in operons are under the control of a single promoter, 
we expected that adjacent pairs of bacterial genes on a given stretch of the genome would have a higher probability of being 
present on the same strand, i.e. they would have the same orientation. Because calculation of our selected features requires the 
presence of at least two genes, contigs with only one predicted gene or no predicted genes are excluded from our classification.

For each contig, the intergenic distance of each gene pair was calculated (start position gene 2 − end position gene 1=intergenic 
distance). Next, the mean, standard deviation, and the first and third quartile of the intergenic distance per contig were calculated 
and used as features for the classifier. The length of every gene was calculated by subtracting the stop position from the start posi-
tion. The gene density was calculated by dividing the sum of the length of every gene on a contig by the total length of the contig.

In the prodigal gene location output file, genes that are on the positive strand are annotated with a ‘+’ sign, and the genes on the 
negative strand are annotated with the ‘−’ sign. For every contig, the ratio of genes that are on the same strand was calculated as 
follows. We determined for every adjacent pair of genes if they are located on the same strand (++ or −−) or not. The number of 
pairs that were located on the same strand was divided by the total number of gene pairs. The outcome was used as a feature for 
the classifier. Finally, the mean gene length of every contig was calculated and used as a feature.

Prodigal also predicts whether a ribosome-binding site (RBS) motif is present upstream of a gene. Because these motifs are 
prokaryote-specific, we expected that on average, Prodigal would find such RBS motifs more frequently on prokaryotic contigs 
than on eukaryotic contigs. Therefore, we calculated the ratio of RBS motifs per gene present on each contig, and used this as a 
feature in our model.

In our enhanced classifier, we used Tiara predictions as an additional feature for training and testing. Therefore, we named this 
classifier Whokaryote+Tiara. To obtain Tiara predictions, we used Tiara (version 1.0.2), using the DNA sequence of the contigs 
as input, and setting the minimum contig length to 3000. We converted them into usable features by converting the predictions to 
a number: 0 for contigs classified as ‘eukarya’; 1 for contigs classified as ‘prokarya, ‘bacteria’ and ‘archaea’; 2 for contigs classified 
as ‘unknown’ or ‘organelle’.
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Fig. 1. Statistical overview of the features calculated for the training and validation dataset containing gene-based features of 18 708 artificial contigs 
taken from 73 prokaryotic and 25 eukaryotic reference genomes. Gene prediction was performed using Prodigal-M. The probability distribution of the 
feature values of all contigs are shown, grouped by the taxonomic group (eukaryote or prokaryote) the contig belongs to. For every contig, the mean, 
standard deviation, first quartile and third quartile of the intergenic distances between the genes was calculated [(a(–(d), respectively]. (e) The mean 
gene density of every contig, calculated by dividing the sum of the length (in base pairs) of all genes by the total length of the contig. (f) The mean 
gene length of every contig, calculated as the end position of the gene minus the start position. (g) The ratio of genes on a contig that are on the same 
strand (e.g. they have the same ‘orientation’). (h) The ratio of ribosome-binding site (RBS) motifs predicted by Prodigal to the total number of genes per 
contig. (h) The importance of each feature that was used in our random forest classifier trained on artificial contigs of 99 different organisms. (i) The 
importance of each feature that was used in our random forest classifier trained on artificial contigs of 99 different organisms.

Features were also calculated for the reference genome annotations downloaded from the NCBI and mapped to the corresponding 
artificial contigs so the values could be compared to the prodigal annotations.

Random forest classifier
Two different classifiers were trained, one without Tiara predictions as a feature, which we named Whokaryote, and one with 
Tiara predictions as a feature, which we named Whokaryote+Tiara. All features were stored in a dataframe with contigs as rows 
and features as columns. To build the random forest classifier, we used the Python package scikit-learn version 0.23.2 [19].

A random forest with 100 estimators was initialized with parameter class_weight = ‘balanced’, which applies weights to each class 
to correct for the class imbalance of the dataset. Next, fivefold cross-validation was used with the function StratifiedGroupKFold, 
with the organism names as the ‘group’ parameter to prevent contigs from the same genome/organism being present in both 
the training and test data for each fold. Additionally, for each fold, class labels are stratified to maintain the proportion of class 
labels from the original dataset. Each contig was labelled as ‘eukaryotic’ or ‘prokaryotic’. The function cross_validate was used 
to calculate the accuracy, precision and recall for each of the five folds. The final model was trained on the complete dataset and 
was tested on a separate dataset containing contigs from different organisms, including those from phyla that were not present 
in the training dataset. Feature importance was calculated using the feature_importances function.

Code availability
The standard random forest classifier and the enhanced classifier have been made available in a downloadable Python package 
that can be used on the Linux command line. The package and instructions to install it are available at https://github.com/​
LottePronk/whokaryote.

Results and discussion
First, we made a random forest classifier that determines whether a metagenomic contig (or any genomic sequence) is of eukaryotic or 
prokaryotic origin by using features based on fundamental differences between the genome structures of prokaryotes and eukaryotes. 

https://github.com/LottePronk/whokaryote
https://github.com/LottePronk/whokaryote
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Table 1. Accuracy metrics for contig_classifier, EukRep, Tiara and Whokaryote on a test dataset of 7034 artificial contigs (sizes between 5100 kbp, 
mean length 34684 bp) taken from the reference genomes of 14 eukaryotes and 25 prokaryotes

Whokaryote EukRep Tiara Whokaryote+Tiara

 �  P R F1 P R F1 P R F1 P R F1 Support

Eukaryote 0.97 0.96 0.97 0.99 0.95 0.97 1.00 0.97 0.98 0.99 1.00 0.99 4848

Prokaryote 0.92 0.93 0.93 0.91 0.99 0.95 0.98 1.00 0.99 0.99 0.99 0.99 2186

Organelle – – – – – – 0.00 0.00 0.00 – – – 0

Unknown – – – – – – 0.00 0.00 0.00 – – – 0

 �

Accuracy 0.95 0.96 0.98 0.99 7034

Macro average 0.94 0.95 0.95 0.95 0.96 0.96 0.50 0.49 0.50 0.99 0.99 0.99 7034

Weighted average 0.95 0.95 0.95 0.97 0.96 0.96 0.99 0.98 0.98 0.99 0.99 0.99 7034

F1, F1 score; P, precision; R, recall.

To train our classifier, we used a dataset of 73 prokaryotic and 25 eukaryotic reference genomes that were fragmented into shorter 
artificial contigs to resemble a metagenome assembly. Prodigal (metagenomic mode) was used to predict genes on these contigs, and 
the resulting gene coordinates file was used to calculate our chosen features. Per contig, we calculated the intergenic distance (average, 
first quartile, third quartile and standard deviation), gene length (average), gene density, the percentage of gene pairs with the same 
orientation, and the ratio of RBS motifs to total number of genes. As expected, the intergenic distance was lower on bacterial contigs 
than on eukaryotic contigs (Fig. 1a–d). The gene density was higher on prokaryotic contigs compared to eukaryotic contigs (Fig. 1e) 
and is likely linked to the intergenic distance. The gene length was higher for prokaryotes (Fig. 1f). This might be viewed as unexpected, 
since eukaryotes have introns that can make up a large part of the total gene length; however, we used Prodigal to predict genes on 
the contigs, which does not consider introns and may predict a gene for every exon, often further reduced in length because the first 
start codon of an exon may be considerably downstream of the intron/exon junction. Lastly, the percentage of gene pairs on a contig 
that are in the same orientation was only slightly higher in prokaryotes (Fig. 1g), but we still used it for training our classifier. Finally, 
because Prodigal predicts specific prokaryotic RBS motifs, we expected it to find fewer of those motifs on eukaryotic contigs. Our 
results show that Prodigal does find RBS motifs on eukaryotic contigs, but (on average) fewer than on prokaryotic contigs (Fig. 1h). 
It is likely that these motifs are not true RBSs, but just sequences that are incidentally identical to prokaryotic RBS motifs, which may 
happen because these motifs are fairly short.

The features we calculated are based on non-ideal gene predictions for eukaryotes, and we wanted to know if the values for each 
feature we observed are representative and can be used to make claims about biological differences. Therefore, we also calculated 
the same features for the reference annotations that we mapped to the artificial contigs. Indeed, all features, except for gene 
length, show (almost) the same distributions in the reference annotations for both eukaryotes and prokaryotes as in the features 
we calculated with the Prodigal annotations (Fig. S1). According to the reference annotations, eukaryotes have longer genes than 
prokaryotes, as is expected because of their introns.

After calculating the features, we initialized a random forest with 100 estimators and used fivefold cross-validation to estimate 
its performance. On average, the model had an accuracy of 95.2 %, a precision of 94.1 % and a recall of 96.0 %.

We trained our final model on the entire dataset and calculated the feature importance. The average intergenic distance, gene 
density and the third quartile of the intergenic distance were the most important features, whereas the ratio of genes in the same 
direction and the ratio of RBS motifs are less important (Fig. 1h). Prodigal annotations are thus suited for our classification 
goal, but it is important to keep in mind that the classifier is based on differences in features that arise partly from inadequately 
annotating eukaryotic contigs. Nevertheless, the differences in features we see between eukaryotes and prokaryotes (except for 
gene length) are in line with current knowledge of the gene structures of these organisms, and the importance of those features 
to our classifier supports this.

Whokaryote vs EukRep and Tiara
Because we wanted to make sure that our classifier, which we call Whokaryote, is also accurate on organisms that were not in our 
training set, we ran our classifier on another test dataset from the genomes of 14 eukaryotes from 8 different phyla and 25 prokaryotes 
from 19 different phyla (only 2 phyla of which were also present in the training dataset) (Supplementary Material S2), for which 
we prepared 7034 artificial contigs in the same way as with the training dataset. This resulted in 4848 eukaryotic contigs and 2186 
prokaryotic contigs. Most of the eukaryotic organisms in this dataset were also not used in the training data for EukRep and Tiara 
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Fig. 2. Comparison of the accuracy (depicted as relative count of incorrect and correct predictions) per organism of EukRep, Tiara, Whokaryote and 
Whokaryote+Tiara on a test dataset consisting of 7034 artificial contigs from 14 eukaryotes and 25 prokaryotes.

(Supplementary Material S2). The accuracy of Whokaryote on this dataset was 95 %, with a precision and recall of 0.97 and 0.96 
for eukaryotes, and 0.92 and 0.93 for prokaryotes, respectively (Table 1). We also wanted to know how our classifier performs in 
comparison to EukRep and Tiara, which use k-mer counts of fragmented contigs as features for a support vector machine classifier 
and a neural network-based classifier, respectively. We ran our classifier, EukRep (default model, chunk size 5000 bp) and Tiara (default 
settings) on our test dataset to compare their performance. EukRep had an overall accuracy of 96 %, and for prokaryotic contigs a 
precision of 0.91 and a recall of 0.99. For eukaryotic contigs, it had a precision and recall of 0.99 and 0.95, respectively (Table 1). Tiara 
had an overall accuracy score of 0.98, a precision and recall of 1.00 and 0.97 for eukaryotes, and a precision and recall of 0.98 and 1.00 
for prokaryotes (Table 1). It also identified sequences as ‘unknown’ or ‘organelle’, while we excluded organellar DNA from our dataset.

We then wanted to know whether all three classifiers make similar mistakes. Firstly, we calculated the accuracy per bin of contig 
lengths with bin sizes of 10 kbp. Whokaryote and EukRep are less accurate on contigs with a length between 5 and 20 kbp, 
but with at least 90 % of contigs classified correctly, the accuracy is still relatively high (Fig. S2). Tiara shows a more consistent 
performance across all contig lengths, although predictions on contigs shorter than 20 kbp also tend to be slightly less accurate. 
For our classifier, the lower accuracy may stem from the fact that shorter contigs contain fewer genes based on which the features 
are calculated. The EukRep classifier may be less accurate on shorter contigs because these can be fragmented into fewer 5 kbp 



7

Pronk and Medema, Microbial Genomics 2022;8:000823

Fig. 3. Four BGCs on beet endophyte metagenome contigs classified as eukaryotic by Whokaryote. These five BGCs were predicted by fungiSMASH, 
which uses GlimmerHMM as a gene predictor, but were not found with antiSMASH, which uses Prodigal-M as a gene predictor.

pieces than longer contigs, making a majority vote to determine the overall contig class less reliable. It is thus recommended to 
use classification tools on contigs of at least 5 kbp.

When we calculate the accuracy on contigs per organism, we see that each classifier has problems with different organisms (Fig. 2). 
Whokaryote makes the highest number of mistakes on contigs from the eukaryote Naegleria fowleri, which is an amoeba with a 
relatively high gene density (Fig. S3), within a range that is more typical for prokaryotes. Because gene density is an important feature 
of Whokaryote, contigs from organisms with many genomic regions that fall outside the normal range of gene density for their class are 
more likely to be wrongly classified. Compared to EukRep and Tiara, Whokaryote is also less accurate on Chlamydomonas reinhardtii 
contigs, which also have a relatively high gene density, with a few outliers that lie within the gene density range of most prokaryotes. 
Interestingly, EukRep performed well on Paramoeba pemaquidensis contigs, and Tiara, Whokaryote and Whokaryote+Tiara performed 
worse. This is the other way around for contigs of Paramecium bursaria, Rhizoctonia solani and Schizosaccharomyces pombe. This may 
indicate that the k-mers that EukRep picked up as important features are different than those that Tiara picked up and are also not 
related to Whokaryote features. (Fig. 2). It is remarkable that EukRep performed relatively poorly on S. pombe, because it was trained 
on this organism. The EukRep training genomes were not fragmented as much as those in our training set, however. If distinct k-mer 
frequencies are unevenly distributed across the genome, the distributions in larger contigs may be different than in shorter contigs. This 
may be a limitation of using k-mer counts as the only features. Tiara performed relatively poorly on Beta vulgaris, a higher plant. This 
may be because Tiara was not trained on higher plant nuclear genomes, but only on green algae. On the other hand, EukRep and Tiara 
performed better on Xylella taiwanensis contigs, with ~95 % of contigs classified correctly, versus only ~50 % by Whokaryote (Fig. 2). 
We expected that our model would be less accurate in predicting the class of a contig when the genome structure of the organism 
was atypical and more resemblant of the other class. Indeed, approximately half of the contigs of X. taiwanensis have an intergenic 
distance and gene density that fall within a range that is closer to that of most eukaryotes (Fig. S3). This is in line with reports of X. 
taiwanensis having many pseudogenes [20], which are relatively common in pathogenic bacteria; the likely cause of this is a reduced 
effective population size during host infection, which causes mutations to accumulate [21]. We use a limited set of features that are 
all related, which means that if the gene structure in (part of) an organism’s genome is atypical, the classifier may not recognize this 
and assign the wrong class.

All three classifiers are based on different machine learning methods and features, which have their own advantages and drawbacks. 
For both EukRep and Tiara, it is unknown which k-mers are the most important for classification and if they correspond to any known 
biological signal. Our classifier makes use of manually selected features based on prior biological knowledge and on its own performs 
(almost) equally well as the other classifiers. However, all three tools make different mistakes, indicating that the k-mers represent 
sequence motifs that do not necessarily correspond to our features. We speculate that gene structure-based features may be more 
general because of the fundamental biological differences between eukaryotes and prokaryotes. Methods that use k-mer frequencies 
may pick up on signals, such as specific sequence motifs, that are more specific to higher taxonomic ranks and may be more accurate 
on genomes that are closely related to training set sequences. A very wide training database, such as those used by Tiara and EukRep, 
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may alleviate this problem. Our relatively small training dataset and the positive results on our test dataset confirm that our features 
are also predictive for genomes more distantly related to those of the training set.

An enhanced classifier that uses Tiara predictions as an additional feature is highly accurate
Because all three classifiers make mistakes in different contigs, it is possible that the important k-mers of EukRep and Tiara contain 
information that is complementary to the features based on gene structure that we have used. Therefore, we hypothesized that if we 
included the Tiara output as a feature to retrain our own classifier, the overall accuracy should improve. Indeed, retraining the classifier 
with the Tiara output from the first step, with ‘bacteria’ and ‘archaea’, and ‘unknown’ and ‘organelle’ collated into single classes, resulted 
in a classifier with an overall accuracy of 99.2 %. The rounded F-1 scores are 0.99 for both eukaryotes and prokaryotes (Table 1).

The Tiara prediction was the most important single feature, with a score of 0.38, while gene density and intergenic distance in sum 
had a somewhat larger feature importance (with 0.21 and 0.20, respectively) (Fig. S4). The enhanced classifier improves the accuracy 
scores for the organisms that either of the individual classifiers performed weakly on, such as Xylella fastidiosa (Fig. 2). This shows 
that by combining two classifiers with different feature types, the weaknesses of each classifier can be compensated, which results in 
a highly accurate new classifier. We call the resulting classifier Whokaryote+Tiara.

The Tiara preprint reported a relatively high percentage of misclassifications in genomes from specific microbes with 
reduced genomes such as symbionts and parasites. We selected a set of such genomes to see if our initial classifier and 
Whokaryote would perform better. The genomes were divided into contigs of >5000 bp, resulting in +/− 1600 contigs in total, 
varying between 8 and 495 contigs per organism (Supplementary Material S3). On these contigs, we ran Tiara (standalone), 
Whokaryote and Whokaryote+Tiara (Fig. S5). The overall accuracy scores were 74 % for Tiara, 82 % for Whokaryote and 
87 % for Whokaryote+Tiara. Whokaryote performed better than Tiara on 7 out of 10 organisms, and similarly on the other 
three organisms. Interestingly, Whokaryote performed better than both Tiara and Whokaryote+Tiara on four organisms. 
Tiara performed the worst on the eukaryotic microbe Cafeteria roenbergensis and on the bacterium Mycoplasma haemofelis, 
with <25 % of contigs classified correctly. Whokaryote+Tiara performed better on the contigs of these genomes, with +/− 76 
and 33 % of contigs classified correctly, respectively. With 56 % correctly identified contigs, Whokaryote performed better on 
M. haemofelis than Whokaryote+Tiara, which only classified 33 % of the contigs correctly. For the Parcubacteria metagenome-
assembled genome, Whokaryote classified 100 % of the artificial contigs correctly, while Tiara and Whokaryote+Tiara clas-
sified 79 and 84% correctly, respectively. This indicates that in some cases the addition of the Tiara prediction as a feature 
leads to worse performance of Whokaryote+Tiara. When working with microbiomes that contain genomes of unusual (e.g. 
parasitic) organisms, it may therefore be advisable to (also) use the standalone Whokaryote classifier.

Comparison with a homology-based approach on a real-world dataset
To test whether our enhanced classifier also works on real-world data, we ran it on a real metagenome dataset of the endo-
phytic root microbiome of sugar beet [3]. We ran metaProdigal on the metagenomic contigs >5 kbp to use as input for our 
classifier, together with the DNA sequences of the contigs for the Tiara classification. A total of 29 512 contigs with more 
than 1 gene, totaling 487 Mbp, were classified using a single core. The Tiara classification step took 281.6 s, and the rest of 
the classification took 114.8 s, resulting in a total time of 321.9 s (~5 min). The classifier predicted 1644 eukaryotic contigs 
and 27 868 prokaryotic contigs. We wanted to know whether these classifications were reliable and compared them to the 
classification of homology-based classification tool CAT [10] (standard settings, -n 20, nr database version 2021-01-07), 
which can taxonomically classify contigs up to the species level, but which took a much longer time, approximately 6 h and 
49 min, to run (excluding gene prediction) on 20 cores. However, we only looked at the classifications on the superkingdom 
level, and we labelled the classifications ‘bacteria’ and ‘archaea’ as ‘prokaryote’, and ‘eukaryota’ as ‘eukaryote’. Out of 29 512 
contigs, 28 806 (97.55 %) were classified with the same taxonomic label by both our classifier and CAT. Of the 706 contigs 
that did not have a matching classification, 163 were classified as ‘not_assigned’ by CAT, 351 were classified as ‘no support’ 
and 6 contigs were classified as viruses. When CAT cannot find a match for an ORF in a database, it cannot assign any 
taxonomic information to the contig, and therefore classifies it as ‘no support’ or ‘not_assigned’. With our classifier, we were 
able to classify these contigs as having a prokaryotic or eukaryotic origin. Of the remaining non-matching classifications, 
CAT classified 128 contigs as prokaryote, while our classifier identified them as eukaryote, and 58 contigs were classified 
as eukaryote by CAT and as prokaryote by our classifier. All in all, these results show that our enhanced classifier is also 
very accurate on real metagenomic data, and can quickly determine the portion of eukaryotic sequences, which can then be 
processed with eukaryote-specific tools.

More fungal biosynthetic gene clusters detected on fungal contigs with repredicted genes
EukRep already showed that binning of eukaryotic contigs helps to improve gene predictions and functional annotations. 
However, there will always be contigs that cannot be binned. These may still contain interesting genes that may help explain 
the functions of the microbiome. The secondary metabolites/natural products that are produced by microbes are of special 
interest in this regard, as these molecules are often used to interact with other microbes and the environment. The biosynthetic 
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gene clusters (BGCs) encoding the production of these molecules can be predicted by tools such as antiSMASH [22], which 
uses specific parameters and models for predicting bacterial BGCs, and a different set of parameters and models to predict 
fungal BGCs. Additionally, the bacterial version uses Prodigal as a gene finder, and the fungal version (fungiSMASH) uses 
GlimmerHMM [23], an ab initio eukaryotic gene finder. Currently, many metagenomic studies do not distinguish between 
fungal and bacterial contigs and run the bacterial version of antiSMASH on all contigs. Important fungal BGCs may be 
missed because of wrong gene annotations and the use of bacteria-specific models. We wanted to know if prefiltering 
metagenomic contigs into eukaryotic and prokaryotic could be a useful approach to select contigs that should (also) be 
run using the fungal mode of antiSMASH. We ran both the bacterial version (options --genefinding-tool prodigal-m) and 
the fungal version (options --taxon fungi, --cassis, --genefinding tool glimmerhmm) of antiSMASH on the contigs of our 
test dataset and compared the results (Supplementary Material S4). The bacterial version found 141 regions, of which 66 
were located on eukaryotic contigs and 75 on prokaryotic contigs. The fungal version found 92 regions, of which 71 were 
located on eukaryotic contigs and 21 on prokaryotic contigs. Twenty eukaryotic BGCs were found by fungiSMASH that 
were not found by antiSMASH, showing that using eukaryote-specific tools on contigs classified as eukaryotic can lead to 
the discovery of functions that are missed when using prokaryote-specific pipelines to study metagenomes. Interestingly, 
bacterial antiSMASH also found BGCs on 15 eukaryotic contigs that were not found by fungiSMASH.

We also ran antiSMASH and fungiSMASH (version 5.1.2) on the sugar beet endophyte metagenome (Supplementary Mate-
rial S5). AntiSMASH found 28 BGCs on eukaryotic contigs, while fungiSMASH found 24 BGCs on eukaryotic contigs. 
FungiSMASH reported five BGCs on eukaryotic contigs that were not found by antiSMASH, namely a type one polyketide 
synthase (T1PKS) gene cluster, a terpene BGC, a non-ribosomal peptide synthetase (NRPS) gene cluster, an NRPS-like 
gene cluster, and a hybrid-type cluster classified as both 'NRPS-like' and 'terpene' (Fig. 3). Additionally, fungiSMASH found 
12 BGCs on prokaryotic contigs that were not found by antiSMASH. At the same time, there were also eight BGCs on 
eukaryotic contigs that were only predicted by antiSMASH and not by fungiSMASH. This shows that simply using a general 
eukaryote-specific gene predictor (GlimmerHMM) that was trained on a single species (as implemented in antiSMASH) on 
eukaryotic contigs does not necessarily lead to better gene predictions for BGC detection. BGC core genes, which are scanned 
for signature domains, are usually very large and may contain multiple domains. Possibly these genes are more difficult to 
predict correctly for eukaryotic gene finders. Nevertheless, some new BGCs were found that would not have been found 
with bacterial antiSMASH. Therefore, we suggest using both Prodigal and eukaryotic gene predictors (e.g. GlimmerHMM 
[23], Augustus [13], and/or MetaEuk [15]) to predict genes on standalone eukaryotic contigs and using both annotations for 
further functional analyses. Previous findings showed that using a eukaryotic gene predictor on a metagenome-recovered 
eukaryotic bin resulted in a more complete predicted gene set when compared to MetaProdigal predictions [14]. Our results 
show that repredicting genes on unbinned contigs is also worthwhile and can lead to the discovery of genes and functions that 
would not have been found otherwise. Future research should focus on more accurate ab initio eukaryotic gene prediction 
on unbinned contigs to prevent these extra steps.

Conclusions
Studying eukaryotes in metagenomes is still challenging, and tools that aid with this process are scarce and not widely used 
yet. We show that manually selected features based on fundamental differences in gene structure between eukaryotes and 
prokaryotes can be used to reliably classify metagenomic contigs as eukaryotic or prokaryotic. Using only these features leads 
to slightly worse performance compared to k-mer frequency-based approaches. With Whokaryote+Tiara, we combined our 
selected features with the output from the k-mer based deep learning classifier Tiara. The resulting classifier achieves nearly 
flawless classification of contigs from a wide range of organisms and compensates biases present in the individual classifiers. 
Contigs, including unbinned ones, predicted as eukaryotic can be included in metagenomic pipelines using eukaryote-specific 
tools, allowing new discoveries about their roles in microbiomes.
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