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Abstract: This paper presents a rule-based methodology for dynamic viewpoint selection for ma-
turity classification of red and yellow sweet peppers. The method makes an online decision to
capture an additional next-best viewpoint based on an economic analysis that considers potential
misclassification and robot operational costs. The next-best viewpoint is selected based on color
variations on the pepper. Peppers were classified into mature and immature using a random forest
classifier based on principle components of various color features derived from an RGB-D camera.
The method first attempts to classify maturity based on a single viewpoint. An additional viewpoint
is acquired and added to the point cloud only when it is deemed profitable. The methodology was
evaluated using leave-one-out cross-validation on datasets of 69 red and 70 yellow sweet peppers
from three different maturity stages. Classification accuracy was increased by 6% and 5% using
dynamic viewpoint selection along with 52% and 12% decrease in economic costs for red and yellow
peppers, respectively, compared to using a single viewpoint. Sensitivity analyses were performed for
misclassification and robot operational costs.

Keywords: dynamic viewpoint selection; next-best-view planning; economic analysis; sweet peppers;
maturity classification; machine vision; harvesting robot

1. Introduction

Due to high labor costs and labor scarcity, there is a growing need for robotization
in greenhouse production [1]. A particular labor-intensive operation involves selective
harvesting of high-value crops, such as cucumber, tomato, and sweet pepper [2]. Intensive
research has been conducted towards development of harvesting robots to overcome the
lack of human labor and increasing harvesting costs [1,3–5]. Most research to date has
focused on robot design, sensing, path planning, and grasping, with several reported
attempts at fully integrated systems [3,6]. An important step in selective harvesting is
determining the fruit maturity, an important factor in a fruit’s quality. For example, when a
sweet pepper fruit is harvested before it is mature, it will not develop an acceptable flavor
and will remain smaller compared to mature peppers, leading to a decrease in market
value [7]. Despite intensive research on harvesting robots, only few of these studies have
implemented maturity determination [3].

1.1. Maturity Classification

Different sensors have been employed for nondestructive maturity classification of
fruits, including electronic noses [8], radio frequencies [9], and spectral systems [10–14].
Since most robotic systems incorporate a vision system on the end effector (eye-in-hand
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configuration) for fruit detection and localization [4,15,16], using vision for maturity classi-
fication as well is preferable. Furthermore, machine vision enables to predict both internal
and external quality attributes [10].

Color is often used as a maturity indicator for several crops [3,5,17]. It has been
used, for instance, in classifying maturity of fruits such as strawberry [18,19], apples [20],
tomatoes [21–23], dates [24], plums [25], mango [26], and pineapple [27]. Many of these
fruits mature in a uniform manner, allowing to assess the maturity from a single viewpoint.
Sweet peppers, on the other hand, do not mature uniformly [7,13,28]; some parts of the
pepper can be fully colored red or yellow, while other parts are still green (see examples
in Figure 1). These heterogeneous ripening patterns hinder the possibility to determine
maturity accurately from a single viewpoint since the information from this single side-
view might be misleading. Although a single bottom-view can be used to differentiate
between mature and immature peppers [29,30], a viewpoint directly below the pepper
(facing upwards) is most likely not applicable for robotic harvesting because this viewpoint
is often occluded by leaves [31]. Furthermore, it is not efficient since it requires the robot to
move the camera from the bottom of the pepper all the way up to the peduncle to harvest
the pepper when it is mature.

Figure 1. Six different sides of the same pepper; some parts can be green while other parts are
fully colored.

Adding viewpoints for maturity classification of sweet peppers has proven to yield
improved performance [31]. Taking additional viewpoints, however, takes time, leading to
increased cycle times. To make a robotic harvester economically feasible, it is important
to limit the cycle time [32]. Therefore, an additional viewpoint should only be acquired
when deemed profitable. Consequently, it is important to dynamically select the view-
points that are expected to reveal the most information about the pepper’s maturity [31].
Harel et al. [31], however, did not deal with the dynamic viewpoint selection.

1.2. Dynamic Viewpoint Selection

Dynamic viewpoint selection, denoted also as active sensing, active perception, dy-
namic sensing, or next-best-viewpoint planning, is a well-investigated research topic in
robotics research [33–35]. Active-vision systems assume data measurements to be expen-
sive or slow, and therefore aim to predict the next viewpoint so as to learn as much as
possible [36] by controlling the camera’s pose towards an object [33]. To date, most robotics
research has focused on incorporating dynamic viewpoint selection for object grasping in
structured scenes and/or for objects that can be modeled [37,38]. Selecting the next-best
viewpoint is difficult in agricultural applications due to the complex and uncertain envi-
ronment, which limits the ability to model the scene [38]. The agriculture scene is highly
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variable and unstructured [1,38] due to variations within the crop (variability in colors,
shape, and texture inherent to the biological nature of the product) and the environment
(caused by changing illumination, layout of plants, obstructions). To apply the concept of
dynamic viewpoint selection in agricultural scenes, methods should be able to deal with
these variations to predict a next-best viewpoint.

The concept of dynamic viewpoint selection was introduced for sweet pepper detection
and has proven to improve detection by 19% with 5–10% decreased costs [38]. The decision
whether or not to take an additional viewpoint considered the economic costs for moving
the camera to the next viewpoint and the economic benefit of additional peppers revealed
from an additional viewpoint.

1.3. Contributions of This Paper

From the literature above, we can conclude that maturity classification of sweet
peppers improves by adding multiple viewpoints, and the concept of dynamic viewpoint
selection can be used to limit the number of viewpoints for detecting sweet peppers. In
this work, we combined these two insights to develop a maturity classification method that
obtains sufficient maturity information of a pepper from a minimum number of viewpoints.
Currently, to the best of our knowledge, no such method was presented.

The objective of this paper is to develop and evaluate a dynamic viewpoint selection
methodology for planning the next-best view based on economic profitability. This method
is composed of two decisions: (i) an online economic consideration to add additional
viewpoints, and (ii) if so, which viewpoint to add. The economic consideration is based
on the current uncertainty of maturity classification, the costs associated with misclassi-
fication, and the robot’s operational costs. The next viewpoint is selected based on color
variations on the pepper. We study (1) the benefit of adding a viewpoint to the maturity
classification in terms of classification accuracy and cost, (2) the sensitivity of the method to
the misclassification and robot costs, and (3) the robustness of the method towards different
initial viewpoints. The proposed method is compared to several other methods: using
a single viewpoint, adding five instead of two additional viewpoints, adding a random
viewpoint, and the upper bound indicating the highest possible classification accuracy
using two viewpoints.

2. Methods
2.1. Data Collection

A total of 69 red and 70 yellow sweet peppers were harvested in a commercial green-
house in Kmehin, Israel, on 18 November 2019. The peppers were manually classified
into maturity classes 2–4 (Table 1, Figure 2), which are defined in Harel et al. [30], by
manually observing all sides of the pepper. Peppers belonging to class 2 (50–95% green)
are considered as immature and peppers belonging to classes 3 (50–95% colored) and 4
(more than 95% colored) are considered mature. Immature peppers were purposely not
included in the analysis since they are not supposed to be detected by the robotic harvester.
Furthermore, we focused on the more challenging classification between classes 2–4.

Figure 2. The red and yellow peppers used in the experiments (classes 2, 3, and 4, from left to right).



Appl. Sci. 2022, 12, 4414 4 of 15

Table 1. Yellow and red sweet peppers used in the experiments.

Class Classification % Colored
Number of

Red Peppers
Number of

Yellow Peppers

2 Immature 5–50% 23 23
3 Mature 50–95% 24 26
4 Mature 95–100% 22 21

Total 69 70

To focus on the economic decision process instead of the image processing aspects, the
peppers were mounted on a pepper plant and photographed in a lab environment (Figure 3)
without controlled illumination. The color and depth (RGB-D) images were acquired with
an Intel RealSense D435 camera mounted on a 7-degree-of-freedom Sawyer robotic arm
(Rethink Robotics). Since 360-degree characterization of a pepper is not possible in a real
greenhouse, the viewpoints are limited to 6 different viewpoints from one side of the pepper:
3 horizontal viewpoints with different azimuth angle (Figure 4a), and 3 additional view-
points using a different tilt angle (Figure 4b). The camera has a distance of 25 cm from the
pepper which corresponds to the minimum depth distance of the camera. These viewpoints
are comparable with the viewpoints used by Hemming et al. [39], Kurtser and Edan [40],
and three of the six viewpoints of this dataset were also used in Harel et al. [31]. The
initial viewpoint is defined as the viewpoint with a 0° azimuth and 0° tilt angle. The five
remaining viewpoints were used as additional viewpoints for the maturity classification
(Section 2.2). Figure 1 shows an example of the six images of a yellow pepper.

Figure 3. Camera mounted on robotic arm acquiring images of red sweet pepper mounted on a
pepper plant.

−60°  

+60°  

25cm

−45°  

25cm

(a) (b)

Figure 4. The six viewpoints are combinations of 3 different azimuth (a) and 2 different tilt (b) angles.
Adapted from Harel et al. [31].
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A total of 834 RGB-D images of the 139 sweet peppers were acquired. For selecting the
classification model hyperparameters (Section 2.2.3), 15 peppers (5 from each class) were
used as a validation dataset. Additionally, these peppers are added to the training set in the
leave-one-out cross-classification (Section 2.3.2). In addition, a smaller repeatability dataset
was constructed with a subset of the peppers to test how the initial viewpoint influences
results (since this depends on the specific orientation of an individual pepper, which cannot
be determined in advance). This dataset included 14 peppers of class 2, 14 peppers of class
3, and 7 peppers of class 4, for both red and yellow peppers. Images of these peppers were
acquired from all the viewpoints; this was repeated three times, while twisting the pepper
120° around the z-axis each repetition. In this way, each of these peppers have 3 repetitions
with another side of the pepper facing the camera at the initial viewpoint [31].

2.2. Active Maturity Classification

Maturity classification included the following steps: (1) color- and depth-based seg-
mentation to obtain a 3D colored point-cloud representation of the bell peppers, (2) color
feature extraction, (3) dynamic viewpoint selection, and (4) maturity classification.

2.2.1. 3D Point-Cloud Representation

The sweet peppers were segmented from the background and plant using a combi-
nation of empirically chosen depth and color thresholds for each of the six viewpoints
followed by Canny edge detection on the depth image to separate the leaves from the
peppers similar to Harel et al. [31]. The resulting mask was applied on the depth image and
all pixels were projected to a 3D point cloud using the intrinsic camera parameters and the
robot pose. When a second viewpoint was acquired, the point cloud of this new viewpoint
was merged with the previous point cloud, creating a more complete representation of the
pepper. Adding an additional viewpoint increased the number of points in the point cloud
by approximately 50%.

To create a uniform point density and to limit the amount of points, the point cloud
is downsampled using a voxel-grid filter with a cell size of 5 × 5 × 5 mm. The position
and RGB color values of the points inside each occupied grid cell are averaged to form the
filtered point cloud. Next, isolated points are removed using a statistical outlier-removal
filter. The filter uses the 50 closest points and a maximum distance of one standard deviation
to the mean of these 50 closest points. An example of a segmented point cloud is given
in Figure 5.

(a) (b)
Figure 5. Example point clouds of one red pepper from one viewpoint (a) and all six viewpoints
combined (b).

2.2.2. Color Feature Extraction

Inspired by Harel et al. [13,31], three different color channels were extracted from the
point clouds; hue, red, and red minus green. From each of the three channels, the following
four features were calculated for each pepper: mean, standard deviation, median, and the
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5% trimmed mean (mean excluding lower and upper 5% of data). Principal component
analysis (PCA) was used to convert these 12 features into the five principal components
that explain the largest part of the variance within the features (>99%); these were used for
the maturity classification described in the next section.

2.2.3. Dynamic Viewpoint Selection and Maturity Classification

Figure 6 shows the developed dynamic viewpoint selection algorithm for the ma-
turity classification. The decision whether an additional viewpoint is required uses the
classification uncertainty resulting from the initial maturity classification based on the
first viewpoint (Section 2.2.3.1) and an economic analysis (Section 2.2.3.2). If an additional
viewpoint is deemed profitable, the next viewpoint is selected based on a spatial analysis
of the variability in color (Section 2.2.3.3). The maturity of the pepper is then reclassified by
combining the additional viewpoint with the original single viewpoint (Section 2.2.1) using
the same classification model as for the initial maturity classification.

Although this algorithm can be easily adapted to include more viewpoints, we considered
a single additional viewpoint. This is based on prior research that showed no significant
improvement in the classification accuracy using more than two viewpoints [31]. Furthermore,
adding more viewpoints increases cycle times, and hence this was not considered.

Initial maturity

classification

(Section 2.2.3.1)

Additional

viewpoint needed?

(Section 2.2.3.2)

Select additional

viewpoint

(Section 2.2.3.3)

Reclassify maturity

including additional

viewpoint

MaturitySingle viewpoint

Yes

No

Figure 6. Dynamic viewpoint selection process.

2.2.3.1. Initial Maturity Classification

Pepper maturity was classified into mature or immature using a random forest (RF)
classifier based on features (Section 2.2.2) from the initial viewpoint (defined as viewpoint 0).
The RF model hyperparameters were selected using the validation dataset. The selected RF
classifier was composed of 1000 trees with 1 randomly sampled variable at each node for
red peppers and 2 variables for yellow peppers.

Training was performed using the color features from different combinations of view-
points (viewpoint 0, all six viewpoints combined, and all combinations of two viewpoints—
each of the five viewpoints combined with viewpoint 0). The classification certainty, pclass,
was derived from the percentage of trees holding the same classification.

2.2.3.2. Additional Viewpoint Decision

An additional viewpoint is acquired when the expected revenue from the additional
viewpoint is higher than the costs to take the viewpoint, according to the following rule:

(padv − pclass) · cpepper > tav · crobot, (1)

where pclass is the classification certainty from the initial viewpoint, cpepper is the cost of
misclassifying one pepper, crobot is the cost of one second of robot operation time, and tav is
the time of adding an additional viewpoint (viewpoint specific, measured on forehand).

Adding a viewpoint improves the classification accuracy; however, it does not bring
the classification error to zero [31]. The lower the classification certainty in viewpoint
0, the more improvement in classification accuracy can be expected when adding an
additional viewpoint. The classification certainty when using the additional viewpoint,
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padv, is predicted using a linear regression model using pclass and is trained on the training
set. The cost of misclassifying one pepper, cpepper, is set to the market price of a single
pepper. This price is highly variable with prices for red sweet peppers in 2019, ranging
from EUR 0.048 to EUR 0.599 per piece with an average of EUR 0.196 per piece [41]. Yellow
peppers prices ranged from EUR 0.056 to EUR 0.542 per piece with an average of EUR
0.202 per piece in 2019 [41]. With an expected cost of a sweet-pepper-harvesting robot
between EUR 75,000 and EUR 100,000, an operational time of 20 h/day and payback time
of 7 years [42], the costs of one second of robot operation, crobot, is estimated between EUR
4.08× 10−4 and EUR 5.44× 10−4 with an average of EUR 4.76× 10−4.

2.2.3.3. Additional Viewpoint Selection

When an additional viewpoint is required, the point cloud from the initial viewpoint
(0° azimuth and 0° tilt angle) is split into six equally sized boxes; see Figure 7. Boxes 1–5
correspond to viewpoints that reveal additional information about that side of the pepper.
Box 1 corresponds to the viewpoint at 60° azimuth angle and 0° tilt angle (Figure 4), box 2
with the viewpoint with 60° azimuth angle and 45° tilt angle, and so on.

The principle for selecting the next viewpoint is that we want to take a new viewpoint
at the side of the bell pepper that is most heterogeneously colored, assuming that this
viewpoint will provide the most decisive information about the maturity. Inspired by
Vázquez et al. [34], we calculate the color variability using the Shannon entropy [43] of the
hue channel, Hi, for every box i ∈ {1, 2, 3, 4, 5}:

Hi = −
255

∑
k=0

pi
k log(pi

k), (2)

where pi
k is the probability of a pixel in box i to have the hue-value k, which is derived from

the hue histogram of all the pixels in the box. The viewpoint belonging to the box, j, with
the highest entropy is selected as the next-best viewpoint:

j = arg
5

max
i=1

Hi (3)

Figure 7. Point cloud from an initial viewpoint of a sweet pepper indicating the five boxes that have
a corresponding next-viewpoint. The number corresponds to the next-viewpoint number.

2.3. Evaluation
2.3.1. Performance Measures

The classification accuracy (CA), the true-positive rate (TPR), and the true-negative
rate (TNR) were calculated from the confusion matrix (Table 2):

CA =
TP + TN

TP + FP + FN + TN
, (4)
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TPR =
TP

TP + FP
, (5)

TNR =
TN

FN + TN
, (6)

where TP is the number of true positives, TN is the number of true negatives, FP is the
number of false positives, and FN is the number of false negatives.

Table 2. Confusion table defining the true positive (TP), false positive (FP), false negative (FN), and
true negative (TN).

Actual

Mature Immature

Predicted Mature TP FP
Immature FN TN

The total classification costs, ctotal , is the sum of the costs associated with misclassifica-
tion and sensing:

ctotal = (FN + FP) · cpepper +
5

∑
i=1

ni · ti · crobot, (7)

where ni is the number of classifications that used the additional viewpoint i and ti the
corresponding sensing time.

As a measure for repeatability, the consistent classification factor (CCF) is introduced.
The CCF is defined as the percentage of the peppers where all three repetitions yield
identical classification. The higher the CCF, the more consistent a classification is and the
more independent the algorithm is on the pepper’s orientation on the plant. Ideally, the
CCF would be 1, implying consistent classification independent of the side of the pepper
facing the row. The relation between the consistency and the CA is derived by the majority
classification accuracy (MCA), defined as the CA where the most common classification
from the three repetitions is derived.

2.3.2. Analyses

Three different analyses were performed: a performance analysis, a sensitivity analysis,
and a repeatability analysis. The performance and sensitivity analyses used leave-one-out
cross-validation (LOOCV) to maximally use the available data. The repeatability analysis
was performed on a specially acquired dataset (Section 2.1).

The performance analysis results are presented by comparing the results of the dy-
namic viewpoint method with classification results using (a) a single viewpoint, (b) by
adding a randomly selected additional viewpoint (instead of selecting one using the afore-
mentioned method), and (c) the combination of all six viewpoints. Additionally, the upper
bound is indicated for all analyses. The upper bound is the best result that could have been
achieved with two viewpoints and is calculated by assuming that the next viewpoint is the
viewpoint with the lowest sensing time, tav, with a correct classification (if any). Since it
is not always possible to yield a correct maturity classification based on the data of two
viewpoints, the results were compared to the upper bound instead of a perfect classification.

Sensitivity analyses were performed for pepper prices, cpepper, and robot costs, crobot
(influences cycle times), by changing the pepper prices between EUR 0.0 and EUR 1.00 per
piece and the robot costs between EUR 1× 10−4 and EUR 10× 10−4 per second.

The repeatability analysis was conducted to assess the algorithm’s dependence on the
pepper’s orientation on the plant (Section 2.1).
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3. Results
3.1. Dynamic Viewpoint Selection

For both red and yellow sweet peppers, taking multiple viewpoints improves the
performance compared to a single viewpoint by 6% and 5% (Table 3). Peppers with
maturity class 4 are classified perfectly for both red and yellow peppers. The distinction
between classes 2 and 3 was more challenging. For red peppers, all performance metrics
improved when adding one additional viewpoint, resulting in similar performance to when
all viewpoints are used. For yellow peppers, the CA and TNR increase while the TPR
decreases slightly; maturity classification of yellow peppers when using all viewpoints
yielded slightly lower performance.

Selecting the next viewpoint using the proposed dynamic viewpoint selection method
yields only a small advantage over adding a randomly selected second viewpoint for the red
peppers. For yellow peppers, randomly selecting the next-best viewpoint outperformed the
proposed method, implying that for yellow peppers, any additional viewpoint is beneficial
for maturity classification, not only the viewpoint with most variability in color.

The high performance of the upper bound shows the potential of dynamically selecting
an additional viewpoint. Respectively, 6% and 7% of the red and yellow peppers were
classified wrongly using a single viewpoint and were classified correctly using dynamic
viewpoint selection. On the other hand, 0% and 4% of the peppers were classified correctly
using one viewpoint and were classified wrongly using the dynamic viewpoint selection
method. In general, the CA for red peppers was higher than for yellow peppers. This
is likely due to the more subtle color differences for different maturity levels of yellow
peppers since color differences between yellow and green are smaller than red and green.

Table 3. Classification accuracy (CA), true positive rate (TPR), and true negative rate (TNR) for single
viewpoint, dynamic viewpoint selection, random viewpoint selection, all viewpoints, and the upper
bound. For dynamic viewpoint selection, the CA per class is also indicated.

Method Class
Red Peppers Yellow Peppers

CA TPR TNR CA TPR TNR

Single viewpoint All 0.907 0.944 0.833 0.800 0.892 0.611

Dynamic
viewpoint
selection

2 0.944 0.778
3 0.947 0.762
4 1.000 1.000

All 0.963 0.972 0.944 0.836 0.865 0.778

Random viewpoint All 0.944 0.972 0.889 0.855 0.892 0.778

All viewpoints All 0.963 0.944 1.000 0.818 0.838 0.778

Upper bound All 0.981 1.000 0.944 0.945 1.000 0.833

An additional viewpoint was acquired for 39% of the red peppers and 62% of the
yellow peppers (Table 4). This increased the robot’s cycle time by an average of 3.14
and 5.06 s for red and yellow peppers, respectively (3–21% for a harvesting cycle time of
24–94 s [4,15,16,44]), compared to the cycle time for a single viewpoint. Using dynamic
viewpoint selection decreases the total costs by 52% and 69% compared to single and all
viewpoints, respectively, for red peppers. For yellow peppers, the decrease in cost is 12%
and 38%, respectively. The upper bound costs are lower than the costs yielded using the
current method for dynamic viewpoint selection, indicating that the method we used to
determine the next-best viewpoint can be improved.

The dynamic viewpoint selection method selected the same viewpoint as the upper
bound in 29% and 18% of the cases. This partially explains the difference in performance
with the current method for dynamic viewpoint selection, but in most cases, there is more
than a single additional viewpoint that yields a correct classification. In these cases, the
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dynamic viewpoint selection is still correct but there was a viewpoint that had lower
sensing costs.

Table 4. Percentage of classifications using more than one viewpoint, the additional cycle time, the
total associated costs and associated costs per pepper for the single viewpoint, the dynamic viewpoint
selection method, all viewpoints, and upper bound.

Red Peppers Yellow Peppers

Single
Viewpoint

Dynamic
Viewpoint
Selection

All
Viewpoints

Upper
Bound

Single
Viewpoint

Dynamic
Viewpoint
Selection

All
Viewpoints

Upper
Bound

Peppers using additional viewpoint(s) (%) 0% 39% 100% 39% 0% 62% 100% 62%

Average additional cycle time (s) 0 3.14 44.08 2.75 0 5.06 44.08 4.53

Costs (EUR)
Misclassification EUR 0.98 EUR 0.39 EUR 0.39 EUR 0.20 EUR 2.22 EUR 1.82 EUR 2.02 EUR 0.61
Additional sensing EUR 0.00 EUR 0.08 EUR 1.13 EUR 0.07 EUR 0.00 EUR 0.13 EUR 1.15 EUR 0.12
Total EUR 0.98 EUR 0.47 EUR 1.53 EUR 0.27 EUR 2.22 EUR 1.95 EUR 3.17 EUR 0.73

Costs per pepper (EUR piece−1) EUR 0.018 EUR 0.009 EUR 0.028 EUR 0.005 EUR 0.040 EUR 0.035 EUR 0.058 EUR 0.013

3.2. Sensitivity Analysis

As expected, the number of times it is worthy to acquire an additional viewpoint
increases as the pepper price increases (Figure 8). For red peppers, the increasing number
of additional viewpoints resulted in an increase in CA until a maximum is reached at the
price of EUR 0.08 per pepper. After that, more viewpoints did not yield higher CA. The
upper bound showed a similar pattern.

For yellow peppers, an additional viewpoint is worthy to acquire until the price per
pepper increases to EUR 0.08. After that price, only classifications with a low certainty will
use the additional viewpoint. When using entropy for selecting the next-best viewpoint,
the pepper price does not influence the classification accuracy. However, the CA of the
upper bound increases till EUR 0.08 per pepper. At higher pepper prices, an additional
viewpoint is not added, and consequently, the CA remains constant.
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Figure 8. Influence of the pepper price on the average number of viewpoints and the classification
accuracy for the red (a) and yellow (b) peppers. The green area indicates the range of sweet pepper
market prices of 2019 as mentioned in Section 2.2.3.2.

Figure 9 shows the influence of robot costs on the average number of times it is worthy
to acquire an additional viewpoint and the related dynamic and upper bound CA for
red and yellow peppers. As expected, increasing the robot costs decreases the number of
times it is worthy to acquire an additional viewpoint, since taking an additional viewpoint
becomes more expensive. The CA of the red peppers decreased at high robot costs, but
within the range of robot costs, as defined in Section 2.2.3.2, the CA is stable. For the yellow
peppers, within the defined realistic cost range, the CA is stable. Since the upper bound
is consistently higher than the dynamic viewpoint, adding a viewpoint that reveals the
appropriate information will probably contribute to the classification. Even at robot costs
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of EUR 0.01/s, the highest examined cost, an additional viewpoint is applied for 5% of the
peppers. Apparently, the certainty from the first viewpoint of these peppers was really low,
and therefore an additional viewpoint was worthy regardless of the robot cost.
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Figure 9. Influence of robot costs on the average number of viewpoints and the classification accuracy
for the red (a) and yellow (b) peppers. The robot costs in the green area are regarded to be realistic, as
mentioned in Section 2.2.3.2.

3.3. Repeatability

Table 5 shows the CCF and MCA for the different maturity classes of the red and
yellow sweet peppers for the different methods. Maturity class 4 is always classified
correctly regardless of the pepper orientation on the plant, resulting in a CCF and MCA
of 1.00 for both red and yellow peppers. This makes sense, as class 4 refers to uniformly
colored red/yellow peppers, so the initial viewpoint does not matter. In classes 2 and 3,
the CCF is lower, implying more cases where a different orientation of the pepper leads
to different classification. The upper bound consistency is higher than using a single
viewpoint, implying that dynamically selecting the next viewpoint has the potential to
improve consistency. The implemented dynamic viewpoint method, however, does not
improve the classification consistency. This result is caused since, in some instances, the
single viewpoint correctly represents the pepper’s color level, and by adding another
viewpoint, the additional information may lead to the wrong classification, since it does
not represent the full pepper [31].

Table 5. Differences in consistent classification factor (CCF) and majority classification accuracy
(MCA) for single viewpoint, dynamic viewpoint selection, all viewpoints, and the upper bound.

Pepper
Color

Pepper
Class

Single
Viewpoint

Dynamic
Viewpoint

All
Viewpoints

Upper
Bound

CCF MCA CCF MCA CCF MCA CCF MCA

Red
2 0.42 0.71 0.57 0.86 1.00 0.86 0.86 0.86
3 0.86 1.00 0.71 0.86 0.71 0.86 0.86 1.00
4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

All 0.71 0.88 0.71 0.88 0.88 0.88 0.94 0.94

Yellow
2 0.57 0.57 0.43 0.71 0.71 0.86 1.00 1.00
3 0.71 1.00 0.43 1.00 0.57 0.86 1.00 1.00
4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

All 0.71 0.83 0.52 0.88 0.71 0.88 1.00 1.00

4. Discussion

Applying dynamic viewpoint selection to maturity classification improves the classifi-
cation while reducing the economic costs. By taking an additional viewpoint only when
profitable, performance is improved. An additional viewpoint is needed only when the first
viewpoint yields an uncertain classification. The upper bound results reveal the potential of
the viewpoint selection method. However, the currently implemented next-best viewpoint
selection method does not reach best performance (the upper bound classification accuracy).
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The similar performance of the viewpoint selection method and taking a random next
viewpoint implies that any additional viewpoint can improve maturity classification and
not only the viewpoint with the most color variation. An improved algorithm for viewpoint
selection could be to use a machine learning approach, which learns to predict the next-best
viewpoint from training data generated from the upper bound [45]. Apart from only color
features, geometric features and occlusions should be taken into account.

The CA of the red and yellow peppers were slightly higher compared to the results
presented for two viewpoints in Harel et al. [31]. This could be explained by different
parameters for the RF classifier and the availability of more viewpoints. In addition to
using the two additional viewpoints with a different azimuth angle (numbers 1 and 5 in
Figure 7), three additional viewpoints (numbers 2, 3, and 4) with a different tilt angle could
be selected as additional viewpoint. Maturity classification of red peppers was better than
yellow peppers, similar to previous results [13,31]. An explanation can be that the yellow
color is closer to the green color than red is to green in both HSV and RGB color spaces.
As a result, the features discriminating between immature and mature peppers are closer
for yellow than for red peppers, which makes selecting threshold values that separate the
immature and mature classes in the RF model more difficult. This corresponds to previous
results revealing the importance of fitting the color space to the fruit variety and applying
adaptive algorithms [46].

Adding all six viewpoints to the point cloud does not yield higher classification
accuracy of yellow peppers. This is probably due to the RF model which was trained on
data from the combination of one, two, and six viewpoints. Classification was performed
without considering the number of viewpoints used, which probably produced suboptimal
results and might explain the lower performance. Different models should be developed for
each number of viewpoints used; however, this requires a significant amount of additional
data to avoid training imbalance between the separate models. Adding more viewpoints
does not always improve the performance, as shown in the sensitivity analysis (Figure 8).
There are some cases where the classification from a single viewpoint is correct and from
two viewpoints is wrong. Especially when the maturity of the pepper is close to the decision
boundary, adding an viewpoint that contains a few green pixels can result in a different
classification. This could be solved by adding more than one additional viewpoint to obtain
a better overview of the whole pepper color; however, this will result in higher robot costs.
In most cases, adding only single additional viewpoint reveals enough information to
improve the maturity classification.

The cost of misclassifying a mature pepper as an immature pepper was not distin-
guished from misclassifying an immature pepper as a mature pepper. It can be argued that
classifying a mature pepper into immature is less costly than the other way around, since
the pepper can still be harvested at a later pass of the robotic harvester. However, when a
pepper is harvested too late and becomes overmature, it will lead to a reduced shelf life and
a lower price. Furthermore, a batch of harvested peppers with less variation in maturity
can increase the market value [3].

In this work, classification was performed only for maturity classes 2–4. Complete
green peppers (class 1, more than 95% green) were not incorporated since they may be
neglected in the detection (similar to Lehnert et al. [44]) and the fruit should stay on the
plant. Classification results for class 1 peppers are likely to be comparable with class
4 results (i.e., perfect classification) as both are homogeneously colored. Adding class
1 peppers will therefore lead to an improved overall CA. It is mainly the distinction
between class 2 and 3 which is challenging, and hence this was the focus of this work. All
classified peppers were healthy. Incorporating detection of peppers with defect spots as an
additional class is, in principle, possible; however, a reliable disease detection requires a
360-degree characterization of the pepper. At the time of maturity classification, the pepper
is still attached to the plant, which makes full characterization of the pepper not possible.

It must be noted that in this work, maturity classification was performed in lab
conditions. However, detection of peppers in real greenhouse conditions has been resolved
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using many different techniques, e.g., Kurtser and Edan [38], Arad et al. [47], Sa et al. [48],
Vitzrabin and Edan [49]. Future work should consider occlusion of peppers by leaves and
other plant parts in the next-best-viewpoint selection. These occlusions enhance the need
for multiple viewpoints and an algorithm for next-best-viewpoint selection.

When incorporating the dynamic viewpoint selection method, the average harvesting
time increases by 3–21%. Since additional viewpoints also improve the detection of the
fruit [38], a future approach should combine the viewpoints needed for the pepper detection
and the maturity classification. This will lower the cycle time, which is essential to make a
robotic harvester economically feasible [32].

5. Conclusions

The proposed dynamic viewpoint selection method improved the classification of
maturity by 6% and 5% compared to a single viewpoint, reaching a classification accuracy
of 96% and 84% for red and yellow peppers, respectively, and reducing costs by 52%
and 12%. When using all six viewpoints, an accuracy of 96% and 82% could be reached,
however, with 69% and 38% higher costs compared to the proposed method. When
using a perfect next-best-viewpoint selection method, classification results of 98% and
95% for red and yellow peppers could be reached to distinguish between mature and
immature peppers.

At higher pepper prices, the method is more likely to add an additional viewpoint.
This leads to an increased classification performance until it reaches a maximum. When
increasing the robot costs, the method is less likely to add an additional viewpoint, leading
to a decreased classification performance for extreme robot costs. However, for the range
of expected robot costs, the classification performance is stable.

The results indicate the benefit of selecting an additional viewpoint when the system
is uncertain about the maturity classification. However, although adding an additional
viewpoint improves maturity classification, the current method for selecting next-best
viewpoint does not yield the best possible results. Future research will be focused on
developing an improved viewpoint selection method to select the viewpoint that optimizes
the performance.

To conclude, we showed that it is possible to improve maturity classification of sweet
peppers while reducing the economic costs, by only taking an additional viewpoint when
profitable. This can be used in future robotic applications to improve efficiency of a
classification task that needs multiple viewpoints.
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