Thermographic analysis of hot-extrusion 3D printing of sodium caseinate and processed cheese

Yizhou Ma, Maarten A. I. Schutyser, Remko M. Boom, Lu Zhang Laboratory of Food Process Engineering, Wageningen University and Research

Scan to watch printing

Background

Hot-extrusion 3D food printing involves several physiochemical phenomena: heat transfer, non-Newtonian flow, solidifications, and deformations.

Experimental Approach

Objectives

To monitor heat transfer and material deformations during hotextrusion using thermographic analysis

- Deformation: change of layer height
- Heat Transfer: change of **layer** temperature

Results & Conclusions

- Material temperature increased with continuous layering
- Thermal camera can identify the critical temperature
- Printing critical temperatures are below the "gel point"

Contact: Yizhou Ma (yizhou.ma@wur.nl)