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Chapter 1

Introduction



1.1 Human milk

Human milk is tailor-made nutrition for the vulnerable, newborn human. The mix-
ture of macronutrients, micronutrients, and bioactive components is particularly
suitable for the infant’s healthy development. One of the aspects that makes human
milk complex is that its composition changes drastically throughout lactation. In
the first 3-5 days postpartum, the milk can be referred to as colostrum and is low in
volume and high in both oligosaccharides and proteins. After colostrum, the milk
undergoes a drastic change in composition (transition milk). After around 30 days
postpartum, the milk is called mature milk [1]. At this stage, the composition of the
milk is relatively stable. This longitudinal change in composition adapts the milk
to the infant’s needs in terms of nutrition and the development of the immune sys-
tem, preparing the infant for the environment it is exposed to. A specific example of
this is that levels of secretory immunoglobulin A (sIgA), lactoferrin, soluble CD14
receptor (sCD14), and other immune proteins are significantly higher in colostrum
when compared to mature milk [2]. Besides a change throughout lactation, there is
also compositional variation in human milk within-feed, within a day (diurnal), and
between right and left breast [3, 4]. Furthermore, the composition differs between
individuals (interindividual). Evidence shows, for example, an influence of dietary
patterns of the mother and infant factors such as their sex on milk composition [5,
6].

Despite all the variation, the overall composition of mature human milk can
roughly be divided into water (88%) and macro- and micronutrients that make up
the remaining 12% [7]. Macronutrients are lactose (6.7-7.0%), lipids (3.5-4.8%), pro-
teins (0.8-1.1%), and human milk oligosaccharides (HMOs) (0.5-1.5%) [7]. A visual-
ization of the relative contribution of the various constituents is shown in Figure 1.1.
Micronutrients are the components found in lower concentrations, such as, vitamins,
trace elements, peptides, amino acids, metabolites, and RNA [7].

Several epidemiological studies have indicated the health effects of breastmilk
on the breastfed newborn. Examples of such effects are a reduced risk of necrotizing
enterocolitis, sepsis, and respiratory tract infections for exclusively breastfed infants
[8–11]. Other studies have tried to link specific compositional aspects or individual
components of human milk to health benefits. Some of these studies show clear
relations, as is the case for Autran et al. [12], showing the effect that specific HMOs
can have on the risk of developing necrotizing enterocolitis. The knowledge of these
health benefits has led to the recommendation of exclusive breastfeeding in the first
six months of life by most health organizations [13]. In addition, this knowledge has
also led to an increase in the number of donor human milk banks, where donated
milk is collected and distributed to vulnerable, e.g., preterm delivered, infants [14].
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There is a growing body of literature on the composition of human milk and its
effects on the infant’s healthy development, but much is still unknown. This thesis
focuses on elucidating the protein and peptide profile, its interindividual variation,
and its possible effects on the development of the infant’s immune system. This
introductory chapter describes fundamental concepts for a basic understanding of
human milk proteins and peptides, their analysis, and possible role in allergy devel-
opment.

Nutrients

(12%)

Water

(88%)

Total carbohydrate

(59%)

Total lipid

(31%)

Total protein

(10%)

Lactose
(87%)

Oligosaccharides
(13%)

Others
(3%)

Triglycerides
(97%)

Caseins
(40%)

Whey proteins
(60%)

Figure 1.1: Overall composition of mature human milk (values are taken from Monaco et al.
[7] and Donovan [15]).

1.2 Human milk proteins

Proteins provide the child with essential amino acids for growth and can have func-
tions in, for example, immune response, digestion, and the transport of minerals.
To date, 1500 proteins have been identified in human milk [16]. Despite the large
diversity in proteins in milk, most of the total protein concentration is due to about
a dozen proteins (Figure 1.2). We can distinguish 3 major classes of proteins, which
are in order of relative contribution: whey proteins, caseins, and milk fat globule
membrane (MFGM) proteins. This classification is based on differences in structure
and characteristics of the proteins.

The whey proteins are the soluble fraction and contribute around 83% to the total
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Caseins

(17%)

Whey proteins

(83%)

Alpha−casein
(18%)

Beta−casein
(53%)

Kappa−casein
(29%)

Alpha−lactalbumin
(32%)

Lactoferrin
(20%)

Lysozyme
(4%)

Osteopontin
(1%)

Others
(31%)secretory IgA

(12%)

Figure 1.2: Relative contribution of major human milk proteins to the total protein content
(values are taken from Donovan [15]) (IgA: immunoglobulin A).

protein content in mature milk [17]. The proteins that contribute the most to this
class are α-lactalbumin, lactoferrin, and sIgA. Functions of the major whey proteins
are related primarily to immune response and cell communication (see Table 1.1).
These functions are also represented the most when all whey proteins are considered
[18].

The caseins comprise β-casein, κ-casein, and αs1-casein, and account for around
17% of the total protein concentration in mature milk [17]. However, it should be
noted that the whey casein ratio shows considerable variation over lactation, ranging
from 97:3 to 45:55 [17]. In addition, significant differences can be observed between
studies due to the use of different analytical techniques or because the casein frac-
tion is used instead of solely the casein subunits [17]. Caseins are organized into
casein micelles, although in human milk, the structure of these micelles is less rigid
than in bovine milk [19]. The casein micelles form a dispersed fraction that allows
separation from the milk serum by a decrease in pH or ultracentrifugation. The
functions of this group of proteins are related to metabolism and energy pathways,
that is, nutrition and transport of calcium phosphate (Table 1.1).

MFGM proteins make up around 1-2% of the total protein content and com-
prise proteins that are part of the membrane that surrounds the lipid droplets (milk
fat globule, MFG) in milk [20]. Among these proteins are well-known MFGM pro-
teins, such as mucins, butyrophilin, butyrophilin like protein, and xanthine dehy-
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drogenase/oxidase [21]. In addition, small amounts of various other nonmembrane
proteins are also found in the MFGM protein fraction [22]. These nonmembrane
proteins may associate with the membrane or be entrapped between the different
membrane layers of the MFG [23]. Functions of MFGM proteins are diverse (Table
1.1), with the majority related to nutrition, immune response, and cell communica-
tion [22].

Table 1.1: Major human milk proteins with their functions (based on Donovan [15], Peterson
et al. [24], and Qiu et al. [25]).

Protein class Proteins Main functions

Caseins αs1-casein Nutrition
β-casein Nutrition, nutrient carrier
κ-casein Nutrition, host defense

Whey proteins α-lactalbumin Nutrition, nutrient carrier, host
defense, prebiotic

Lactoferrin Nutrient carrier, intestinal
development, host defense, prebiotic,
cognition

Secretory IgA Host defense
Osteopontin Host defense
Lysozyme Host defense

Milk fat globule membrane proteins Mucins Antimicrobial
Lactadherin Host defense
Butyrophilin Fat secretion
Bile salt activated lipase Enzyme, barrier promoting

1.2.1 Protein synthesis

Proteins end up in the milk through different mechanisms, as visualized in Figure
1.3. Two major mechanisms are (1) proteins synthesized in the mammary epithelial
cell (MEC), and (2) proteins originating from the blood.

The synthesis of proteins in the MECs starts with amino acids that originate from
the blood. In the ribosomes of the rough endoplasmic reticulum (ER), the synthesis
into proteins takes place, after which proteins are released into the ER lumen and
can undergo post-translational modification (PTM) in the Golgi apparatus. From the
Golgi lumina, proteins move in secretory vesicles to the apical plasma membrane,
where they are released in the alveolar lumen (exocytosis, pathway A). Proteins such
as caseins and α-lactalbumin are transported via this route. Other proteins, among
which transmembrane proteins, associate with the MFGM and are secreted together
with the MFG (pathway B) [23]. The MFGM consists of three membrane layers, of
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B

C

D

Figure 1.3: Schematic visualization of the mammary epithelial cell (MEC), secreting milk
proteins via four pathways. Pathway A indicates the secretion of milk proteins synthesized in
the MEC through secretory vesicles. Pathway B shows the formation and release of milk fat
globules (MFGs) with three membrane layers containing milk fat globule membrane (MFGM)
proteins. Pathway C indicates transcytosis of serum proteins through vesicles, and pathway
D shows paracellular transport of serum proteins through disrupted tight junctions. Based
on Vilotte et al. [23] and Boron et al. [26].
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which the first is formed in the cytoplasm of the MEC. The other two membrane
layers are added during secretion from the MECs, where MFGs are wrapped in the
apical plasma membrane of the MEC [23].

Proteins that originate from blood serum are, for example, serum albumin, im-
munoglobulins and possibly dietary, non-human proteins (Section 1.4) [27, 28]. It
is believed that these proteins enter the alveolar lumen through vesicular transport
from basal to apical membrane, a pathway referred to as transcytosis (pathway C)
[29]. Another mechanism for the transfer of these proteins is paracellularly (pathway
D). This paracellular transfer might be enhanced when tight junctions are disrupted
due to, for example, inflammation [30].

1.2.2 Factors affecting milk protein composition

As mentioned in Section 1.2.1, milk proteins result from protein synthesis in the
mammary epithelium or transcytosis from the blood. Therefore, any factor that can
influence cellular processes or harm the mammary epithelium, has the potential to
affect the protein profile. This could be, for example, pathological conditions, energy
balance, genetics, etc. Previous research has found several such factors. A significant
factor is the time postpartum. As discussed before, human milk varies throughout
lactation, which greatly influences the protein profile as well [31, 32]. Furthermore,
gestational age has an effect, as it was found that in the first two weeks of lactation,
milk for preterm delivered babies had higher concentrations of immune proteins IgA
and lysozyme when compared with milk for term delivered babies [33]. The same
study found an opposite effect for α-lactalbumin and β-casein, proteins important
for nutrition [33].

Besides the effects of lactation stage and gestational age, a difference in protein
profile was found between different ethnicities. In a study that compared milk from
Chinese mothers with milk from Dutch mothers, 38 out of 166 proteins differed
between these two groups, of which most differences were found in colostrum [34].
The effect of ethnicity was confirmed in a study by Zhang et al. [35], who found a
difference between different ethnic groups and geographical locations within China.

The health condition of the mother is also affecting the milk proteome. Studies
have shown, for example, that mothers with allergy or breast cancer have differences
in levels of specific proteins [36, 37]. Zhu et al. [38] showed in a thorough study
of two healthy individual mothers that protein profiles are significantly different
between individuals. This emphasizes the importance of considering interindividual
differences in future studies.
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1.2.3 Proteolytic systems in human milk

A subgroup of the whey proteins are proteins that play a role in the breakdown of
proteins. These groups of enzymes are also referred to as proteolytic systems and
comprise proteases, protease activators, protease inhibitors, and protease activator
inhibitors. Proteases are enzymes that can hydrolyze the peptide bond between two
amino acids in a target amino acid sequence. These proteases can be activated by
protease activators, but their activity can also be inhibited by protease inhibitors.
In turn, the protease activators can be hindered in their action by protease activator
inhibitors.

Proteases known to be present in human milk are plasmin, cathepsin D, elastase,
trypsin, chymotrypsin, thrombin, kallikrein, cytosol aminopeptidase, carboxypepti-
dase B2, and matrix metalloproteinase [39]. A pivotal study carried out by Nielsen et
al. [40] gave evidence that proteases are already active within the mammary gland.
On the other end, it was hypothesized by Demers-Mathieu et al. [41] that proteases
such as, for example, cathepsin D, can increase in activity upon autoactivation by
the low pH in the infants’ stomach.

Protease inhibitors or antiproteases can bind and inhibit proteases. The pro-
tease inhibitors can therefore affect the proteolytic activity. Some of the protease
inhibitors that have been identified in human milk are: α1-antitrypsin, α1-antichy-
motrypsin, α2-antiplasmin, α2-macroglobulin, plasma serine protease inhibitor and
antithrombin III [38].

Proteolytic systems occur in body tissues and bodily fluids and play essential
roles in processes like development and host defense, but also in pathological condi-
tions like inflammatory diseases [42]. However, their origin and function in human
milk are not entirely understood, as proteolytic systems can find their origin in ei-
ther blood, immune cell secretions, or synthesis within the MECs [43]. In addition, it
is known that in blood, several of these proteases and protease inhibitors participate
in the coagulation mechanisms [44].

All enzymes that are part of the proteolytic systems have a particular specificity,
i.e., proteases can have a specificity of cleavage of target proteins at specific amino
acids in the sequence, protease activators can have one specific or multiple proteases
that it activates, etc. The result is a highly complex proteolytic machinery, and con-
sequently, degradation of proteins in human milk.

1.3 Human milk peptides

The array of all protein fragments or peptides formed upon proteolytic degradation
is referred to as the peptidome or degradome. Based on their amino acid sequence,
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individual peptides can often be linked to the protein they originate from, also re-
ferred to as the precursor protein. A broad definition of the peptidome would in-
clude any protein fragment, even if only one amino acid is removed from the C- or
N-terminal of the protein. However, it is often impossible to distinguish between
large protein fragments or intact proteins in the analysis of proteins and peptides.
Therefore, a stricter definition of the peptidome is used by defining a range of pep-
tide lengths.

Protein degradation in milk is mainly due to enzymatic proteolysis. To date,
4000 unique peptides have been identified in human milk [45], and this typically
concerns peptides from only a selection of precursor proteins. The majority (85%) of
the peptides originate from the precursor proteins β-casein, polymeric immunoglob-
ulin receptor (PIGR), αs1-casein, and osteopontin [46, 47]. This typical pattern can
be linked to the high abundance of these proteins (see Figure 1.2), but also to the
association of plasminogen with casein micelles, and susceptibility of these proteins
or protein regions for proteolysis [47]. In addition, peptides from one precursor pro-
tein can overlap each other fully or partly, resulting in so-called “peptide ladders”
(see Figure 1.4).

Beta−casein
Peptide 1
Peptide 2
Peptide 3
Peptide 4
Peptide 5
Peptide 6
Peptide 7
Peptide 8

90 100 110 120 130 140
Sequence position

Figure 1.4: Typical peptide ladder from a selected region of the sequence of the human milk
precursor protein β-casein (UniProt ID: P05184). Letters represent the different amino acids
and background colors reflect their chemical characteristics: blue = positively charged, red =
negatively charged, green = polar uncharged, yellow = aromatic with hydrophobic side chain,
and orange = others.

It has been suggested that the proteolytic degradation of milk proteins might be a
predigestion, supporting the infant’s underdeveloped digestive system. In addition,
it is known that peptides can play crucial roles in biological systems. Some of the
peptides have bioactive properties which might support the healthy development of
the child. In a study by Nielsen et al., 306 out of 1100 identified human milk pep-
tides were labeled as potentially bioactive [40]. Among these bioactive properties
were, e.g., antimicrobial, cell-proliferation stimulating, and angiotensin-converting

9



enzyme (ACE)-inhibitory effects [40]. Many have suggested that this can contribute
positively to infant development and health. However, this often relies only on pre-
diction of peptide bioactivity and little is known about the actual physiological sig-
nificance of the peptides in vivo. A number of studies have begun to examine this
physiological significance, and for several peptides it is now known that they can
exert activity in vivo. One study showed, for example, the presence and activity of
an antimicrobial cathelicidin peptide (LL-37) in human milk [48]. Another study
showed that a group of β-casein peptides, also referred to as β-casomorphins and
known for their opioid activity, promote β-cell development and could have a pro-
tective effect against the development of type 1 diabetes [49]. Immunomodulatory
activity of a human milk peptide has been evidenced by Cai et al. [50], who showed
that the BCCY-1 peptide from β-casein provided protection to infections in mice.
These studies show the physiological significance of milk peptides for the infant’s
healthy development.

Whereas variation in the proteome is extensively studied, little is known about
the factors influencing the peptidome. What determines the peptide profile in hu-
man milk is first of all the proteolytic activity (see Section 1.2.3). Furthermore, since
the peptidome is a product of the proteome, levels of both proteins and peptides
might be affected by the same factors. Several studies have found, for example, sig-
nificant differences in the milk peptidome between mothers that delivered term or
preterm [46, 51, 52], and differences throughout lactation [46, 53].

1.4 Non-human proteins and peptides in human milk

Evidence shows that human milk contains non-human proteins and peptides [54–
56]. Among these are, for example, house dust mite allergen Der p 1 [57], wheat
gliadin [58], hen’s egg allergen ovomucoid [59], and bovine β-lactoglobulin (BLG)
[60]. Most of these studies were carried out using assay-based immunochemical
methods, in which antibodies can be prone to cross-reactivity with other proteins,
resulting in possible false positive identification [61]. Nevertheless, some recent
studies have confirmed the presence of these proteins and peptides with mass spec-
trometry (MS) techniques, which allow a direct analysis of a tryptic digest of the
protein sequence [62, 63]. Zhu et al. [63] found with MS that the majority of the
non-human proteins and peptides originate from the diet, especially from bovine
milk products. Particular interest in these proteins and peptides was raised due to
the allergenicity of several of them [64].
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1.5 The burden of allergic diseases

An allergy or allergic disease can be defined as “clinical conditions associated with
altered immunologic reactivity that may be either IgE mediated or non-IgE medi-
ated” [65]. In chronic allergic diseases like atopic dermatitis (eczema), hay fever
(allergic rhinitis), or allergic asthma, the immune system repeatedly responds to
antigens and causes tissue damage and inflammation. Allergic diseases can bring
dietary, social, and psychological burdens to the allergic individual. In the case of
food allergy, for example, this can manifest itself through food anxiety or social lim-
itations [66]. The prevalence of allergies is increasing worldwide, also bringing a
heavy burden for the healthcare system. This can be seen in, e.g., the steep rise in
hospital cases due to anaphylaxis, the most severe allergic reaction [67]. The overall
costs of food allergy in the US have been estimated at $4184 per child, of which the
most prominent part ($3457) is costs to families (e.g., allergen-free food products
and lost labor productivity) [68]. To alleviate this burden and improve quality of
life, there is an ongoing quest for ways to reduce the prevalence of allergic diseases,
and therefore to prevent the onset of these diseases.

1.5.1 Allergy development

It is known that susceptibility to develop allergic diseases is in part determined by
genetics [69]. This genetic part is believed to be multigenic, that is, specified by mul-
tiple genes. Bønnelykke et al. [70] combined evidence from allergy-related genome-
wide association studies and studies of monogenic diseases, pointing to several po-
tentially pathogenetic pathways for allergic diseases. Among these pathways are
Th2 initiation/amplification, innate sensing, virus receptor, barrier integrity, signal-
ing immune tolerance, mast cell responses, and interactions between T-cell receptors
and major histocompatibility complexes [70]. Nevertheless, evidence shows that de-
velopment of allergic diseases is often due to a combination of genetic susceptibility
and environmental factors, as well as interactions between these two (e.g., through
epigenetics) (see Figure 1.5) [69, 71]. Examples of the environmental factors are, nu-
trition, exposure to allergens, and factors such as pollution, which affect the function
of the mucosal barrier [72].

The mucosal barrier is of crucial importance in allergy development since it is a
vulnerable interface between the body and its environment. Consequently, an im-
paired functioning of the mucosal barrier can allow antigens to enter the systemic
circulation [73]. In addition, the timing of exposure to the environmental factors
has shown to be of crucial importance since, in the first months of life, the immune
system and organ systems are in development, and both allergic sensitization and
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tolerance induction can take place [72]. So-called windows of opportunity for toler-
ance induction are therefore especially present in the first months of life.

Prenatal & postnatal
- Nutrition, diet
- Pollution, toxins
- Microbial exposure
- Pharmaceutics

EnvironmentGenetics

Early allergic disease

Chronic allergic disease

Epigenetics

Figure 1.5: Schematic overview of factors that play a role in the development of allergic dis-
eases (adapted from Meyers et al. [74]).

1.5.2 Human milk and allergy development

One of the major ways through which the newborn is exposed to the environment
is through nutrition. Especially mucosae in the gastrointestinal tract are, through
nutrition, exposed to substances that are unknown to the infant. Since human milk
is considered the ideal nutrition for the newborn, research has investigated its effect
on allergy development. Some authors describe a reduced risk of sensitization in
exclusively breastfed infants [75–77], whereas others do not show significant effects
[78], or even an increased risk in case the mother is asthmatic [79]. Considering
these contradicting outcomes and the interindividual variation in human milk as
discussed before, specific milk constituents could play a role in the effect on allergy
development. This was also noted by Matheson et al. [80], who suggested further
study of the compositional factors of human milk that could exert immunomodula-
tory effects. Compositional factors that have received little attention yet in relation
to allergy development are proteins and peptides. There is a group of proteins, e.g.,
immunoglobulins and cytokines, that can play a role in the development of the im-
mune system. In addition, there are peptides in human milk which have immune
activity [50]. Human milk proteins and peptides could play different roles in the
development of allergies in the breastfed infant (see Figure 1.6).
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Allergens

SensitizingTolerance 
inducing

Anti-microbial

Immune active

Anti-inflammatory

Degrading epithelial 
barrier function

Figure 1.6: Schematic overview of potential effects of human milk proteins and peptides on
the development of allergic diseases.

First, proteins such as lactoferrin and growth factors, may help in the develop-
ment of the epithelial barrier in the intestines and therefore promote the barrier
function [81, 82]. On the other hand, the presence of house dust mite allergen in
milk might disrupt the epithelial barrier through its strong proteolytic activity [57].
Furthermore, both milk proteins and peptides can have antimicrobial activity and
might provide protection through alteration of the gut microbiome [83]. Inflamma-
tion of the intestinal mucosae, might be prevented by bioactive proteins and pep-
tides [84]. Examples of immune active proteins in human milk that may play a role
are the cytokine interleukin (IL) 13 and transforming growth factor (TGF)β2, associ-
ated with risk for eczema [85], and eosinophil cationic protein and IgA, which have
been associated with the occurrence of cow milk allergy [86, 87]. An immune re-
sponse could also be triggered by exposure to antigens in the milk. This could either
teach the immune system and prevent the development of allergy, or it could trig-
ger an abnormal immune response and lead to sensitization. Recently, studies found
that early introduction of allergens can induce immune tolerance [88, 89]. Neverthe-
less, this early introduction has limited effectivity and an earlier study showed that
it can even lead to immune priming instead of tolerance induction [90]. Macchi-
averni et al. [91] have suggested that early introduction of allergens via breastmilk
might result in a more effective induction of tolerance. This is supported by a co-
hort study showing that infants consuming human milk with detectable egg allergen
(ovalbumin) levels at 3 and 6 months postpartum, have a lower risk of developing
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egg allergy when compared to infants who receive milk with undetectable levels of
egg allergen [92]. Furthermore, it was found in a study with mice, that protection of
pups to bovine BLG sensitization was not provided only by provision of milk with
BLG, but that immunization of the dams was necessary to show a strong protective
effect [93]. This protective effect correlated with the levels of BLG-specific anti-
bodies and BLG-immune complexes in the milk, suggesting that the level of these
proteins and protein complexes in milk play an important role in inhibiting allergic
sensitization in the infant [93].

To date, research into a possible effect of allergens in human milk on the develop-
ment of tolerance or immune priming has mainly been carried out using assay-based
techniques. These techniques have several limitations, among which are, (i) it is a
targeted analysis, i.e., has a limited number of identifiable allergens, (ii) it is limited
to the detection of a region of an allergen, and (iii) it is prone to cross-reactivity.
From this, it results that there is a need for the confirmation of the presence of aller-
gens in human milk using direct analysis of protein sequences with techniques such
as MS. In addition, since little is known about the complete human milk proteome
and the relation with the allergy status of both mother and child, research is needed
to investigate this.

1.6 Proteomics and peptidomics analysis

For the analysis of proteins and peptides in complex biological samples like milk, MS
is a key method. MS techniques measure the mass-to-charge (m/z) ratio of ionized
analytes. Recent advances in this technology have led to a resolution that enables
the analysis of hundreds of proteins and peptides in human milk simultaneously.

The MS technique used for proteomics analysis in this thesis is a so-called bottom-
up or shotgun approach [94]. In this approach, the protein fraction of a sample is
cleaned up, reduced, and alkylated. The proteins are then digested using trypsin,
a protease with known cleavage specificity. The resulting tryptic peptides are then
separated with liquid chromatography and analyzed with MS, which provides a data
set with tryptic peptides as features. This data can be transformed into protein abun-
dances using software that employs a database comprising the protein sequences ex-
pected to be present in the samples. It should be noted that only proteins present
in this database can be identified, and it should therefore be as complete as possible
[95]. Given the specificity of the protease used in the sample preparation, the da-
tabase is subsequently (in silico) digested by the software. This results in a list with
theoretical peptides, where each peptide is linked to theoretical spectra as well as
fragmentation spectra. Experimental spectra can be matched with theoretical spec-
tra, resulting in peptide identifications. The results can then be transformed into
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protein identifications using the uniqueness of the identified peptide sequences. A
schematic overview of this proteomics approach is shown in Figure 1.7.

Sample Proteins

Clean-up Digestion

LC-MS/MS

In silico digestion

Experiment

In silico

Match = identification

Tryptic 
peptides

Experimental 
spectra

Protein 
database

Tryptic 
peptides

Theoretical 
spectra

Figure 1.7: Simplified workflow of bottom-up proteomics analysis with mass spectrometry
(MS), showing the steps taken in the experiment (top) and in the software-based processing
of the resulting data (bottom).

A similar approach can be used for peptidomics analysis [96]. However, in the
sample preparation of peptide samples, no protease is used, and thus, the in silico
digestion of the database is set to “unspecific” cleavage. This will digest the pro-
tein sequences in the database in silico into all possible peptides without regarding
cleavage specificity.

1.7 Analysis of human milk proteins and peptides: from
univariate analysis to systems biology approaches

Along with the development of MS techniques, new tools are continuously being
developed to extract and visualize relevant information from the data that these
techniques generate.

A classical approach in the data analysis of proteomics and peptidomics data
uses techniques such as univariate, multivariate, or pattern recognition methods. In
univariate analysis, only one variable is considered at a time, aiming to find differ-
ences between groups of samples, such as in t-tests. Although univariate methods
are generally favored because of the straightforward interpretation, applying them
to proteomics and peptidomics would mean that significance testing is needed for
hundreds of features. Consequentially, multiple testing correction needs to be ap-
plied to correct for the probability of false-positive results. Unfortunately, methods
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for such corrections are often too stringent, with the result that biologically relevant
differences are often found to be non-significant after correction [97].

Multivariate analysis involves more than one variable and aims to find patterns
and relations between multiple variables simultaneously. Examples of methods used
for this are, amongst others, principal component analysis (PCA), partial least squares
discriminant analysis (PLS-DA), Random Forest classification, and machine learn-
ing. Multivariate approaches can complement univariate analysis and reveal other
relevant differences. This is possible because multivariate analysis can reveal (i)
differences on how independent variables are related to each other, and (ii) subtle
effects that are consistently present in a large set of the variables. These phenomena
are explained in detail by Saccenti et al. [98].

Another way to analyze proteomics and peptidomics data is through a systems
biology approach. Systems biology integrates multiple profiles of a biological sys-
tem and uses these to elucidate the characteristics or pinpoint important parts of the
system. Such an approach can move the focus from hypothesis-driven to discovery-
driven research [99]. An example of how this can be applied to proteomics or pep-
tidomics data is through network analysis. To approach data from a network point
of view enables the consideration of individual components (nodes) together with
the connections between them (edges) and their possible function in common path-
ways. An example of a network analysis is the comparison of networks across groups
of samples through differential connectivity (Figure 1.8), which can reveal, for ex-
ample, differential regulation of biological pathways between groups of samples.

In biological processes, proteins can be part of multiple pathways and can inter-
act with other proteins within a pathway [101]. Protein synthesis itself results from
a biological process, so protein abundance is also regulated by specific pathways. In
response to conditions of the body such as stress, inflammation, etc., cellular changes
can modify the importance of pathways and the interactions between proteins [102].
When it comes to peptides, peptide-peptide relations can be due to, for example,
partly overlapping sequences (Figure 1.4), specificity of proteolytic cleavage, or bio-
logical function [103]. Furthermore, in combining proteomics and peptidomics data,
relations can be present, for example, between proteases and the peptide fragments
resulting from their proteolytic activity. Whereas regular chemometrics would not
be able to elucidate such complex systems of interrelationships, network analysis
fills this gap [104]. This gives new opportunities in the analysis of proteomics and
peptidomics data, enabling the recognition of subtle changes in biological pathways.

16



1

Connectivity of protein i in Group 1

𝜒𝑖
𝐺1 = 6

Group 1

Protein i

Connectivity of protein i in Group 2

𝜒𝑖
𝐺2 = 2

Group 2

Protein i

Difference in 
connectivity of 

protein i:

Δ𝜒𝑖= 6-2 = 4

Figure 1.8: Graphical illustration of the principle of differential connectivity in network anal-
ysis. Nodes represent features (proteins or peptides), and edges represent associations be-
tween the nodes. Two networks are shown, representing data from two different groups of
samples in which protein i is differentially connected. Adapted from Jahagirdar et al. [100].

1.8 The CHILD Cohort Study

In 2008, a prospective longitudinal birth cohort study was launched in Canada, the
CHILD Cohort Study (www.childstudy.ca) [105]. This cohort study aimed to ad-
vance knowledge about genetic and environmental determinants of atopic diseases.
More than 3500 pregnant women participated, who gave birth between 2009 and
2012. Information on the children, their parents, and their environments was gath-
ered over time through biological samples, questionnaires, home assessments, and
clinical assessments. Amongst the biological samples collected in this cohort study
was breast milk [106]. Together with the data gathered regarding allergy status of
mother and child, this provided an excellent opportunity to investigate the human
milk protein and peptide composition and their relation with allergy development.

1.9 Aim and outline of this thesis

Human milk comprises a large variety of proteins and peptides that might be ben-
eficial for the development of the infant in various ways. The milk proteome and
peptidome have been extensively studied in recent years. However, several aspects
of their nature are still unclear, such as the interindividual variation and the causal
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factors leading to the formation of the peptidome. In addition, little is known about
their relation with maternal allergy and allergy development in breastfed infants.
This thesis aimed to shed light on the detailed protein and peptide profile of human
milk and on how they relate to allergy of both mother and child.

As illustrated in Figure 1.9, the work of this thesis is divided over several exper-
imental chapters. In Chapter 2, non-human and allergenic proteins in human milk
were investigated. To determine whether the levels of such proteins are dependent
on maternal allergy, milk from allergic and non-allergic mothers was compared. In
addition, the pathways through which these proteins can end up in the milk are
discussed

The normal interindividual variation in the milk proteome and peptidome is
poorly understood. Chapter 3 provides insight into this, describing variation in
286 mature milk samples from 29 mothers (pooled per mother). The metabolome
of these samples was also analyzed, adding the low molecular weight substances as
potential indicators of the biological processes taking place in the mother’s body.

A large study, comprising 300 milk samples from the CHILD Cohort Study, is
described in Chapter 4. The samples used in this study were chosen in equal groups
of 75, with all different combinations for both mother and child allergy status. The
proteome of these samples was analyzed and compared to investigate the relation
between the milk proteome and both allergy of mother and child. Furthermore, the
peptidome was analyzed from the same samples, and relations between proteome
and peptidome were investigated in Chapter 5. This was set up to elucidate the
links between proteins and peptides and to obtain more insight into the factors that
affect the degradation of proteins into peptides.

Lastly, the results of the Chapters 2 - 5 are integrated and discussed in Chapter 6.
This chapter ends with conclusions, scientific challenges, and recommendations for
further research.
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Abstract

Human milk contains proteins and/or protein fragments that originate from non-
human organisms. These proteinaceous molecules, of which the secretion might be
related to the mother’s allergy status, could be involved in the development of the
immune system of the infant. This may lead, for example, to sensitization or the
induction of allergen-specific tolerance. The aim of this study was to investigate
the relation between maternal allergy and the levels of non-human proteinaceous
molecules in their milk. In this study, we analysed trypsin-digested human milk
serum proteins of 10 allergic mothers and 10 non-allergic mothers. A search was
carried out to identify peptide sequences originating from bovine or other allergenic
proteins. Several methods were applied to confirm the identification of these se-
quences, and the differences between both groups were investigated. Out of the 78
identified non-human peptide sequences, 62 sequences matched Bos taurus proteins.
Eight peptide sequences of bovine β-lactoglobulin had significantly higher levels in
milk from allergic mothers than in milk from non-allergic mothers. Dietary bovine
β-lactoglobulin may be absorbed through the intestinal barrier and secreted into hu-
man milk. This seems to be significantly higher in allergic mothers and might have
consequences for the development of the immune system of their breastfed infant.
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2.1 Introduction

The human milk proteome comprises more than once thought. Besides a vast num-
ber of human proteins and peptides, it also includes non-human intact proteins,
large protein fragments, and peptides (later referred to as proteinaceous molecules).
The presence of such molecules in human milk has been demonstrated decades ago
with immunochemical analysis [1] and has recently been confirmed with mass spec-
trometry [2].

According to studies using mass spectrometry, the main biological source of
the non-human proteinaceous molecules in human milk seems to be bovine milk.
A peptidomics study demonstrated the presence of two peptides originating from
bovine β-lactoglobulin (BLG) and one originating from αs1-casein [3]. In a later
study, this was extended with peptides from α-lactalbumin (ALA), κ-casein, β-casein,
and lactoferrin [4]. Evidence for the presence of intact bovine caseins and BLG has
recently been provided [2, 4, 5]. In addition to the bovine proteins and peptides, Zhu
et al. [2] also identified several peptide sequences originating from other non-human
species, which may include allergens. So far, only peanut allergen has been identi-
fied with high sequence coverage by liquid chromatography tandem mass spectrom-
etry (LC-MS/MS) [6]. The presence of egg, wheat, and house dust mite (HDM) aller-
gens in human milk, which has been demonstrated using immunochemical methods
[7–9], has not been confirmed yet with LC-MS/MS analysis.

The presence of these non-human proteinaceous molecules in human milk raises
the question how they end up there. It has been suggested that dietary proteins can
be transferred through the intestinal barrier by both paracellular and transcellular
pathways [10]. Furthermore, non-human proteins present in the mother’s blood
might also be transferred by these pathways through the mammary epithelia into
the milk [11, 12]. Nevertheless, it remains unclear which pathways are used for the
transfer of non-human proteinaceous molecules into human milk.

Several of the studies that identified non-human proteinaceous molecules in hu-
man milk report a large interindividual variation in the levels of these molecules.
An explanation for this variation has not been found yet, but it does not seem to be
related to dietary intake [13]. Maternal asthma and allergy could be an important
factor in this variation, since it is known that e.g., atopic eczema and asthma can
have an influence on intestinal barrier integrity [14–16]. This could then lead to an
increased passage of dietary proteinaceous molecules through the intestinal barrier.
Research to date has not yet considered the relation between maternal allergic dis-
eases and the levels of non-human proteinaceous molecules in human milk using
LC-MS/MS. The purpose of the present study was therefore to identify non-human
proteinaceous molecules in human milk and to investigate if the levels of these mol-
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ecules were related to maternal allergy. This could be useful for further research
into the mechanisms responsible for the transfer of these molecules and the effect of
these molecules on the infant’s immune system.

2.2 Materials and Methods

2.2.1 Milk samples

We used data from a population-based Dutch birth cohort study: the Prevention
and Incidence of Asthma and Mite Allergy (PIAMA) Study. Details of the cohort
study are described elsewhere [17, 18]. In short, pregnant women were recruited
from the general population during their first antenatal visit. Their children (n
= 3963) were born in 1996/1997. Pregnant women were identified as allergic or
non-allergic through a screening questionnaire. House dust samples and breastmilk
samples were collected in a subgroup of the population around the child’s age of
three months. Breastmilk collection was done by manual pressure or by use of a
breast pump. Samples were stored in small plastic cups at -80°C. Along with these
samples, cat ownership and the frequency of consumption of milk and milk prod-
ucts by the mother was assessed using a questionnaire (Table 2.1). Maternal blood
samples were collected at the child’s age of one year. The study was performed in
accordance with the ethical principles for medical research involving human sub-
jects outlined in the Declaration of Helsinki. Therefore, the study protocol was ap-
proved by the Medical Ethics Committees of the participating institutes (Rotterdam
MEC 132.636/1994/39 and 137.326/1994/130; Groningen MEC 94/08/92; Utrecht,
MEC-TNO oordeel 95/50). All parents gave written informed consent.

The current study is based on a data-dependent LC-MS/MS proteomics data set
that was obtained in a previous study [19]. It comprises mass spectrometry data of
human milk serum protein samples from 10 allergic mothers and 10 non-allergic
mothers from the cohort study. The number of mothers included is based on a
power calculation, aiming at finding a 5-fold difference, as detailed in Hettinga et al.
[19]. The selection of the allergic mothers was based on (a) self-reported (history of)
asthma, current hay fever, current allergy for pets, or current allergy for house dust
or house dust mite, in combination with (b) a high level of specific IgE against HDM
(≥3.50 kU/L) and (c) exposure to HDM allergen in mattress dust ((Der p 1 + Der f
1) >600 ng/m2) (see Table 2.1). The selection of non-allergic mothers did not report
any allergies or asthma. This group consisted of mothers with exposure to HDM al-
lergen in mattress dust in the same range as the allergic mothers (600–2500 ng/m2)
as well as mothers with much higher exposures (≥24,000 ng/m2). The non-allergic
mothers were not tested for specific IgE against house dust mite.
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Table 2.1: Details on the mothers included in the sample collection, with allergy status, Der
p IgE Rast-class of the allergic mothers, presence of a cat as pet and consumption of milk and
dairy products.

Characteristic Type Non-allergic Allergic

House dust mite allergy Self-report 0 7
Doctor diagnosed 0 7

House dust allergy Self-report 0 8
Doctor diagnosed 0 6

Allergic to pets Self-report 0 9
Doctor diagnosed 0 8

Asthma Self-report 0 7
Doctor diagnosed 0 7

House dust mite Der p IgE (Rast-class) Class 3 NAa 4
Class 4 NAa 5
Class 5 NAa 1

Rhinitis/hay fever Self-report 0 9
Cat as pet in the household Presence 3 3
Consumption of milk during lactation Not at all 2 3

1-3x a month 0 1
1x a week 0 0
2-4x a week 0 3
More than 4x a week 0 0
1x a day 1 1
Multiple times a day 7 2

Consumption of milk products during lactation Not at all 2 0
1-3x a month 0 0
1x a week 0 0
2-4x a week 1 0
More than 4x a week 0 1
1x a day 4 4
Multiple times a day 3 5

a NA = Data not available.

From the milk samples, milk serum was obtained, and serum proteins were pre-
pared for analysis with filter-aided sample preparation. In short, full scan FTMS
spectra were obtained (m/z 380 to 1400) in positive mode on an LTQ-Orbitrap sys-
tem (Thermo electron, San Jose, CA, USA). The four multiply-charged peaks with the
highest intensity were recorded in the linear trap in data-dependent mode (MSMS
threshold: 5000). Further details of the sample preparation and LC-MS/MS analysis
have been described before [19].

The data underlying the findings presented in this paper are available on re-
quest. Requests can be submitted to the PIAMA principal investigators. Their names
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and e-mail addresses are listed on the PIAMA website (https://piama.iras.uu.nl/in-
english/).

2.2.2 Methods

Data analysis

The raw MS/MS data was analysed using the Andromeda search engine of the Max-
Quant software v1.6.1.0 [20]. Since the use of large databases in proteomic data
analysis affects the sensitivity of the search [21], a complete but concise database
was created for this study. This database contained human milk proteins (n = 2569),
bovine milk proteins (n = 1006), and allergen proteins (n = 721). This database
is provided in the Supplementary information, the fasta database. Allergens were
added to the database because of their immunological relevance and bovine milk
proteins because the majority of the non-human proteinaceous molecules in human
milk was previously shown to originate from bovine milk [2]. The selection of hu-
man and bovine milk proteins was made based on previous data analysis of human
and bovine milk protein samples (data not published) using databases with all hu-
man or bovine proteins available in UniProtKB (both downloaded from UniProt on
16-10-2018). This was complemented with data from reviews on the bovine milk
and human milk proteome [22, 23]. Allergen protein sequences were obtained from
UniProt on 16-10-2018 by performing a search on all proteins annotated as allergen
(search term: “annotation:(type:allergen)”).

The search for peptide sequences was performed three times, in which the pro-
tein database was in silico digested with trypsin digestion, semi-specific trypsin di-
gestion, or unspecific digestion. The maximum number of missed cleavages was set
to two in the trypsin digestion mode. In all searches, a fixed modification was set
to carbamidomethylation of cysteine. Variable modifications were set to acetylation
of the peptide N-term, deamidation of the side chains of asparagine and glutamine,
and oxidation of methionine, with a maximum of five modifications per peptide.
The identified peptides were quantified using label-free quantification (LFQ). At
both peptide and protein levels, a false discovery rate of 1% was used. The peptide
length was set from 6 to 35 amino acids. The precursor mass tolerance was set to 20
ppm, and fragment mass tolerance to 0.5 Da. Recalibration was carried out using a
first search with a database containing common contaminants.

To remove all identifications that belong to sequences originating from human
proteins, the MaxQuant output was subjected to a filtering consisting of six steps.
First, all sequences originating from trypsin and keratin were removed as contami-
nants. Second, the reverse sequences from the decoy database were removed. Third,
all sequences that had a full match with the human proteome were removed. Fourth,
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we removed all MS/MS scans that had a match in a separate search using only the
whole human proteome database. Fifth, all sequences with an Andromeda score
lower than 80 were removed to exclude low quality peptide spectrum matches (PSM).
Sixth, PSMs with a second-best match to a human peptide sequence and an An-
dromeda score difference of <5 were removed.

Annotation

Protein entries containing an exact match with the identified and selected peptides
were found using the Peptide Match service of the online Protein Information Re-
source [24]. This service makes use of an up-to-date UniProtKB database. Peptides
were matched to this database without isoforms, where leucine and isoleucine were
treated as equivalent.

Protein and organism annotation was added using a frequency of occurrence. All
matching proteins and their corresponding taxonomic lineage were listed. A leading
protein was selected for each peptide sequence based on the frequency of occurrence
of this protein in the peptide match results. After this, a similar approach was used
on the level of taxonomy, leaving the organisms with the highest number of matches
to the identified peptides as leading organism or, in case of multiple organisms, the
lowest common ancestor (LCA). With this approach, Bos taurus was preferred over
e.g., Bos mutus as leading organism because of a higher number of identified peptides
that matched the Bos taurus proteins.

Statistical analysis

Data analysis was carried out, and figures were made using R version 3.6.0 [25].
Missing values of LFQ intensities for the identified and selected peptide sequences
were associated with levels below detection limit. Therefore, imputation was ap-
plied to log10 transformed LFQ intensities, with values from a normal distribution
downshifted from the sample mean with 1.8 and with a standard deviation of 0.3.

Differences between the allergic and non-allergic group were tested using a two-
sided unequal variances t-test and a Benjamini-Hochberg correction was applied on
the resulting p-values. Significantly different peptides were selected with a p-value
<0.01. An additional threshold of 0.75 was set on the difference between the means
of the sample groups (log10 transformed intensity values) in order to select only
significant sequences with a large between-group difference.

Confirmatory analysis

Bovine caseinate (prepared in-house), lactoferrin, BLG, ALA and bovine serum al-
bumin (BSA) (Sigma-Aldrich, St. Louis, MO, USA) were dissolved in a 100 mM

37



Tris solution and digested with trypsin. For confirmation of the non-human, non-
bovine peptides, 12 peptides were acquired through synthesis by Royobiotech Co.,
Ltd. (Shanghai, China). Protein digests and synthetic peptides were analysed one by
one on the same LC-MS/MS system and with the same parameters as used for the
analysis of the human milk samples [19]. A summary of the workflow and confir-
mation of MSMS spectra is visualized in Figure 2.1.
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Figure 2.1: Schematic overview of the workflow used for confirmation of the identified
non-human peptide sequences. After LC-MS/MS analysis, experimental MSMS spectra that
matched with theoretical non-human peptide sequences were selected when there was no
close peptide sequence match (PSM) with a human peptide sequence. Spectra with a PSM
score <80 or a full match with the human proteome were removed. The final remaining spec-
tra were confirmed with retention time and MSMS spectra of bovine milk, pure proteins, or
synthetically acquired peptides.

2.3 Results

In this study, data-dependent shotgun proteomics data of human milk serum from
10 allergic and 10 non-allergic mothers was analysed. In a search for non-human
proteins and protein fragments, the identified peptides were filtered and LFQ data
was used for quantification.

2.3.1 Identification of exogenous peptides

Trypsin-digested human milk serum protein data was analysed using a database
containing human milk, bovine milk, and allergen protein sequences. The identi-
fied peptide sequences were filtered to remove all human peptides and as many false
positives as possible. In total, 78 non-human peptide sequences were identified in
20 samples. From these, 62 sequences had Bos taurus as leading organism (Table
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2.2) and 16 sequences were assigned to non-bovine allergens (Table 2.3). Most of the
identified peptide sequences (n = 48) were from trypsin-digested proteins. In addi-
tion, 10 peptides were semi-trypsin digested and 20 were not digested by trypsin.

Peptide sequences of 29 different bovine proteins were identified. From these
proteins, the major bovine milk allergen, BLG, was identified with the highest se-
quence coverage (67%). To confirm the identification of the bovine sequences, tryp-
tic digests of the major bovine milk proteins, BLG, BSA, αs1-casein, and ALA were
analysed. This led to confirmation of 20 sequences based on MS/MS spectrum and
retention time. The identification of another 16 sequences was confirmed by MS/MS
spectra and retention times of these sequences in a bovine milk protein data set (data
set not published). The protein with the second highest sequence coverage is bovine
serum albumin (BSA). The identified peptide sequences (n = 14) correspond to a se-
quence coverage of (22%). In contrast to studies from other groups that removed
these peptides from their data sets because of the use of BSA as quality control in
their studies [2, 4], we did not remove these peptides from our results. No evidence
was found for carryover of BSA peptides in the LC system. Several BSA peptide
sequences identified in human milk were not found in a trypsin-digested BSA stan-
dard solution that was used in our laboratory, indicating that the BSA-derived pep-
tides are genuine. Considering these findings, it is likely that BSA or its proteolytic
fragments are present in human milk.

From the non-bovine allergen proteins or protein fragments, proteins from Felis
catus (domestic cat), Equus caballus (horse), and Triticum aestivum (common wheat)
were identified with two or more peptide sequences. To confirm the identification
of these peptide sequences, one synthesized sequence of each identified protein was
acquired and analysed. From these nine peptides, two sequences were confirmed
based on MS/MS spectrum and retention time. These sequences had cat and horse
serum albumin as leading protein. The remaining seven sequences could not be
confirmed. In several cases, the PSM of the synthesized peptide resembled the PSM
of the human milk samples, but the retention time differed significantly. These
PSMs are likely false positives, showing that the search for low abundant peptide se-
quences in shotgun proteomics is prone to finding PSMs with artefacts or co-eluted
peptides. This confirms the importance of the used method in which synthesized
peptides were used for confirmation.

In addition to the 16 sequences that were assigned to non-bovine allergens, 11
peptides were annotated with Hevea brasiliensis (Rubber tree) as leading organism.
Two of these sequences were confirmed with MS/MS spectra and retention time of
synthesized peptides. Nevertheless, data analysis of three other data sets of human
milk shotgun proteomics did not show the presence of these peptides (data not pub-
lished). Therefore, these sequences were considered as contaminant and removed
from the results.

39



Table 2.2: All identified non-human peptide sequences that were assigned to bovine proteins, with the corresponding
UniProt protein id, name of the leading protein, and in silico digestion mode. The number of samples in which the
peptide sequence was identified is listed per group of allergic and non-allergic mothers.

Sequence Leading proteins Protein names Allergic Non-allergic Digestion

ALPMHIR a B5B0D4 β-lactoglobulin 10 2 trypsin
IDALNENK a B5B0D4 β-lactoglobulin 10 5 trypsin
LIVTQTMK a B5B0D4 β-lactoglobulin 10 4 trypsin
LSFNPTQLEEQCHI b B5B0D4 β-lactoglobulin 10 6 trypsin
TKIPAVFK a B5B0D4 β-lactoglobulin 10 0 trypsin
TPEVDDEALEK a B5B0D4 β-lactoglobulin 10 2 trypsin
TPEVDDEALEKFDK a B5B0D4 β-lactoglobulin 10 5 trypsin
VLVLDTDYKK a B5B0D4 β-lactoglobulin 10 5 trypsin
VYVEELKPTPEGDLEILLQK a B5B0D4 β-lactoglobulin 9 1 trypsin
WENDECAQK b B5B0D4 β-lactoglobulin 9 1 trypsin
WENDECAQKK b B5B0D4 β-lactoglobulin 4 0 trypsin
SLAMAASDISLLDAQSAPLR b B5B0D4 β-lactoglobulin 6 0 semi-specific
HHIELRWK E1BFN5 Uncharacterized protein 9 8 trypsin
QKYGVVKENVIDLTK E1BJP1, G3MZU3 Uncharacterized proteins 0 9 semi-specific
EKESLGWQK E1BKT9 Desmoplakin 0 2 unspecific
EHLYQENQYLEQENTQ E1BMB1 Ninein 0 6 unspecific
QEELENRTSETNTPQGNQEY E1BMB1 Ninein 8 3 unspecific
HEQGMDQDKN F1MV51 APC, WNT signaling pathway

regulator
10 10 unspecific

SSLSDIDQENNNNK F1MV51 APC, WNT signaling pathway
regulator

2 3 unspecific

TLQIAEIKDNSGPRSNED F1MV51 APC, WNT signaling pathway
regulator

0 2 unspecific

QNLAFVSMLNDIAAP F1N647 Fatty acid synthase 0 1 unspecific
IQQNSSTTEKI F2FB38 Mucin-16 6 9 unspecific
KFNITDTLMQ F2FB38 Mucin-16 0 1 unspecific
LDQWLCEKL b P00711 α-lactalbumin 4 0 trypsin
NICNISCDKFLDD P00711 α-lactalbumin 0 1 unspecific
EKVNELSK a P02662 αs1-casein 7 1 trypsin
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Table 2.2: (Continued) All identified non-human peptide sequences that were assigned to bovine proteins, with the
corresponding UniProt protein id, name of the leading protein, and in silico digestion mode. The number of samples in
which the peptide sequence was identified is listed per group of allergic and non-allergic mothers.

Sequence Leading proteins Protein names Allergic Non-allergic Digestion

FFVAPFPEVFGK a P02662 αs1-casein 2 3 trypsin
HIQKEDVPSER a P02662 αs1-casein 10 8 trypsin
HQGLPQEVLNENLLR a P02662 αs1-casein 5 8 trypsin
YLGYLEQLLR a P02662 αs1-casein 2 5 trypsin
SCQAQPTTMAR b P02668 κ-casein 9 3 trypsin
AEFVEVTK a P02769 Serum albumin 7 10 trypsin
DAFLGSFLYEYSR a P02769 Serum albumin 6 4 trypsin
DLGEEHFK b P02769 Serum albumin 0 9 trypsin
DTHKSEIAHR a P02769 Serum albumin 0 10 trypsin
DVCKNYQEAK b P02769 Serum albumin 10 10 trypsin
FKDLGEEHFK a P02769 Serum albumin 10 10 trypsin
HLVDEPQNLIK a P02769 Serum albumin 4 9 trypsin
LVNELTEFAK a P02769 Serum albumin 7 10 trypsin
QNCDQFEK b P02769 Serum albumin 0 5 trypsin
RHPEYAVSVLLR a P02769 Serum albumin 7 10 trypsin
SLHTLFGDELCK b P02769 Serum albumin 1 8 trypsin
TCVADESHAGCEK b P02769 Serum albumin 2 7 trypsin
GKYLYEIAR P02769 Serum albumin 9 10 semi-specific
KQTALVELLK b P02769 Serum albumin 2 5 unspecific
IKVMNDLSPKSNLR P07353 Interferon gamma 2 1 semi-specific
DLKLVEQQNPK P08037 β-1,4-galactosyltransferase 1 0 2 semi-specific
AQFVPLPVSVSVEFAVAATDCIAK b P12763 α2-HS-glycoprotein 9 0 trypsin
VNLLVDRQWQAVRNR P15396 Ectonucleotide pyrophosphatase 10 10 trypsin
KLLNNITNDLR P21758 Macrophage scavenger receptor 4 0 unspecific
NLLFNDNTECLAK b P24627 Lactotransferrin 4 1 trypsin
NKHSNLIESQENSK P31098, P31096 Osteopontin-K, Osteopontin 9 7 trypsin
NVTRQAYWQIHMDQ P80209 Cathepsin D 0 3 unspecific
NGNNPNCCMNQK P80457 Xanthine

dehydrogenase/oxidase
1 0 semi-specific
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Table 2.2: (Continued) All identified non-human peptide sequences that were assigned to bovine proteins, with the
corresponding UniProt protein id, name of the leading protein, and in silico digestion mode. The number of samples in
which the peptide sequence was identified is listed per group of allergic and non-allergic mothers.

Sequence Leading proteins Protein names Allergic Non-allergic Digestion

EKQLPNGDWPQENISGVFNKSCA P84466 Lanosterol synthase 5 3 unspecific
VSITCSGSSSNIGR b Q1RMN8 Immunoglobulin light chain 8 5 trypsin
CASFRENVLR b Q29443 Serotransferrin 10 10 trypsin
QMERALLENE Q2HJ49 Moesin 0 3 semi-specific
NGEGQVLFETEISR Q2TBX4 Heat shock 70 kDa protein 13 3 8 trypsin
NIIKSGSDEVQ Q2UVX4 Complement C3 1 0 unspecific
VALNKLK Q58D55 β-galactosidase 2 0 trypsin
VYVEQLKPTPEGDLEILLQK Q9BDG3 β-lactoglobulin D 1 0 trypsin
a Confirmed by analysis of digested pure protein.
b Confirmed by analysis of bovine milk serum proteins.
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Table 2.3: All identified non-human peptide sequences that were assigned to non-bovine allergens, with the correspond-
ing UniProt protein id, leading organism and in silico digestion mode. The number of samples in which the peptide
sequence was identified is listed per group of allergic and non-allergic mothers.

Sequence Leading proteins Leading organisms or LCAb Allergic Non-allergic Digestion

QNWASLQPYKKL Q08169, A0A0M9A8V0, I1VC83,
A0A2A3EHG0, Q95PD7,
A0A0L7RCK4, A0A310SIY9

Apidae (family) (bees) 1 2 semi-specific

RPSHQQPR P43237, N1NEW2 Arachis (genus) (legumes) 6 4 trypsin
MQDQLDQVQK Q8MUF6, Q9BMM8, A0A1B2YLJ8 Astigmatina (cohort) (mites) 1 5 unspecific
KELKKKVEADGEND A0A2V1CGL9 Cadophora sp. DSE1049 6 4 unspecific
QIANSDEVEKI Q24702 Dictyocaulus viviparus 3 6 unspecific
KCAADESAENCDK P35747 Equus caballus 7 3 trypsin
LVNEVTEFAKK a P35747 Equus caballus 10 8 trypsin
KEPERNECFLQHK a P49064 Felis catus 5 8 trypsin
PCFSALQVDETYVPK P49064 Felis catus 1 0 trypsin
YICENQDSISTK P49064 Felis catus 0 5 trypsin
SALQVDETYVPK P49064 Felis catus 3 4 semi-specific
KEQVARFTAGTNPK A9QQ26 Lycosa singoriensis 10 10 trypsin
EQVQELR A0A1L8GUE3, A0A3Q0GE46,

A0A151P804
Tetrapoda (superclass)
(4-limbed vertebrates)

2 2 trypsin

QQQTLQQILQQQ P04723 Triticum aestivum 10 10 unspecific
QVLQQSSYQQLQQ P04723 Triticum aestivum 0 2 unspecific
QFKPEEMTNIIK P35083, A4KA55 Zea mays 8 4 semi-specific
a Confirmed by analysis of acquired synthesized peptide.
b Last common ancestor (LCA) in case of multiple leading organisms.
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Another possible source of false-positive identifications could be the presence of
unknown human protein variants due to point mutations. Out of the 78 identified
non-human peptide sequences, 26 have one amino acid different from their human
homologue. As an example, the sequence LVNELTEFAK with Bos taurus as leading
organism has LVNEVTEFAK as homologue in Homo sapiens. The V→ L could there-
fore be the result of a point mutation. Nevertheless, for all these 26 sequences, no
research was found that confirmed the occurrence of these point mutations in Homo
sapiens.

MS/MS spectra of the identified peptides and their confirmation can be found in
the Supplementary information (Supplementary Figures S2.1 - S2.38).

2.3.2 Differences between allergic and non-allergic mothers

Out of the 78 non-human peptide sequences, 15 sequences were only identified in
milk from allergic mothers, whereas in milk from non-allergic mothers, 11 unique
sequences were identified. This difference can be largely attributed to sequences
that match to bovine proteins (Table 2.2). After imputation of the LFQ data and
performing a t-test with maternal allergy as grouping variable, 16 peptide sequences
appeared to be significantly different in intensity between the two groups (Figure
2.2).

As shown in Figure 2.2, nine sequences were found to be significantly higher in
intensity in milk from allergic mothers. These sequences were annotated to BLG (n =
8) and α2-HS-glycoprotein (n = 1) as leading protein. The seven sequences that were
significantly higher in intensity in milk from non-allergic mothers were annotated
to BSA (n = 6) and to an uncharacterized protein (n = 1), with semi-specific trypsin
digestion. All the significantly different sequences were annotated to proteins that
originate from Bos taurus. As can be seen in Figure 2.3, there is a consistent dif-
ference between the two groups, indicating that the significant differences are not
caused by outliers.

2.4 Discussion

The goal of this study was to identify non-human proteinaceous molecules in hu-
man milk and to investigate differences in these molecules between milk from aller-
gic and non-allergic mothers. Out of the 78 resulting non-human peptide sequences
identified in this study, 11 sequences were reported previously in human milk stud-
ies using LC-MS/MS [2, 5]. Contrary to these studies, we focused on milk serum,
discarding the caseins by ultracentrifugation. This could explain the major differ-
ence with Zhu et al. [2] when it comes to the number of identified sequences match-
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ing with bovine caseins. The relatively high levels of BLG peptide sequences that we
found in milk from allergic mothers explains the high sequence coverage of BLG in
the current study when compared to Zhu et al. [2]. Because we removed small pep-
tides by filter-aided sample preparation (10-20 kDa cutoff), no comparison could be
made with previous peptidomics studies [3, 4]. Other qualitative differences with
these previous studies can be attributed to the stricter filtering on false positives
that we applied, the inclusion of serum albumins, the inclusion of semi-trypsin and
non-trypsin-digested sequences, and to the inclusion of milk from allergic mothers.

Figure 2.2: Volcano plot with the ratios of the group means of the log10 transformed LFQ in-
tensities of the identified peptide sequences. Significantly different peptides (false discovery
rate <0.01 and difference between groups > ± 0.75) are represented by filled red circles and
labelled with the corresponding amino acid sequence. On the right side of the plot, the pep-
tides with a higher level in allergic mothers are presented, and on the left side the peptides
with a higher level in non-allergic mothers.

The transfer of proteinaceous molecules from the mother’s intestinal tract to the
mammary gland is still poorly understood, especially when it comes to intact pro-
teins or large protein fragments. In the current study, trypsin was used to digest the
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Figure 2.3: Categorical scatterplot showing non-imputed, log10 transformed LFQ intensi-
ties of peptide sequences that were found in significantly higher levels in milk from allergic
mothers. Allergic mothers are represented by red circles and non-allergic mothers by blue
triangles.

proteins before analysis. It can be expected that the majority of the identified pep-
tides was digested by trypsin. Nevertheless, some peptide sequences were identified
that were not, or partly, digested by trypsin. This might indicate that there are also
non-human protein fragments present in human milk that were digested by other
proteases than trypsin, probably before these fragments even entered the milk.

The high sequence coverage for BLG, with all but one sequence digested by
trypsin, is an indication for the presence of intact BLG in human milk. This is sup-
ported by the findings of Zhu et al. [2], who, although with a lower sequence cover-
age, also identified BLG in human milk. In addition, several other studies reported
the identification of intact BLG in human milk using immunochemical analysis [2,
26, 27].

The presence of intact BLG may be due to its relatively small size and its high
resistance to pepsin digestion, as previously shown by the presence of intact BLG
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in jejunum samples [28]. From our results, it appears that especially proteinaceous
molecules from bovine milk end up in human milk. This might relate to the high
consumption rate of dairy products in the Netherlands, considering that 23% of the
average dietary protein intake originates from milk and dairy products [29].

In line with this, the highly abundant bovine milk serum proteins (BLG and BSA)
were identified with the highest sequence coverage. Bovine ALA, another major
milk serum protein, was identified with only two peptide sequences. This low se-
quence coverage was expected because of its high digestibility and high homology
with human ALA. This high homology reduces the number of unique peptides that
can be identified from this protein. Besides the bovine peptide sequences, peptide
sequences of cat and horse serum albumin were identified and confirmed by the
analysis of synthesized peptides. No relation was found between the presence of cat
serum albumin peptides in milk and the ownership of a cat as pet by the respective
mothers. Nevertheless, it is known that mammalian serum albumins are present in
animal dander and exposure to this is not limited to direct contact [30, 31]. The
serum albumins of cat or horse could end up in the human digestive system by in-
gestion or inhalation and could subsequently be transferred to the milk. Whether
these proteins are present as intact proteins or in large fragments remains unclear
because of the relatively low sequence coverage that was found.

Several other studies reported the detection of other dietary allergen proteins in
human milk, such as egg ovalbumin, peanut allergen, and wheat gliadin [6, 9, 13].
Peptide sequences of these three proteins were initially detected in the current study
but were filtered out due to a low PSM score or to not being confirmed by analysis of
synthesized peptides. This could still mean that these proteins are present in human
milk but in too low concentrations for positive identification.

Several previous studies have investigated a possible difference in non-human
proteins between milk from allergic (maternal history of atopic diseases) and non-
allergic mothers. Høst et al. [26] and, more recently, Matangkasombut et al. [32] did
not find a difference in BLG levels in milk between the two groups. Another study,
also investigating BLG levels, found BLG in the milk of all allergic subjects involved
and not in the milk of all non-allergic subjects [27]. Sorva et al. [33] found that BLG
levels in milk of allergic and non-allergic mothers were similar after 24 h on a milk-
free diet. Nevertheless, the levels of BLG tended to be higher in milk from allergic
mothers one hour after consumption of 400 mL bovine milk. Surprisingly, the cur-
rent study shows a significant difference concerning peptide sequences originating
from BLG and BSA. A similar finding has not been reported before.

The difference between our results and the aforementioned studies can possi-
bly be explained by the characteristics of the allergic subjects and a difference in
methodology. The current study has, for example, a strict selection on both HDM-
specific IgE and allergy symptoms, whereas previous studies did not elaborate on the
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definition they used for atopy or allergy, and in some cases, the selection of allergic
subjects was based on symptoms only.

In addition, immunochemical analyses have shown to be influenced by cross-
reactivity between human and bovine proteins, which make them less reliable than
LC-MS/MS analysis [34, 35]. For the current study, only an indication of the fre-
quency of consumption for milk and milk products was available (Table 2.1). Never-
theless, it seems that the allergic mothers even consumed less milk or milk products
when compared to the non-allergic mothers. Therefore, our findings indicate that
there is a difference between the allergic and non-allergic mothers when it comes
to the transfer of bovine proteinaceous molecules from the intestinal tract to the
mammary gland.

From the intestinal tract to the blood, proteins can be absorbed by both paracel-
lular and transcellular pathways. In reviewing the literature, Reitsma et al. [10] sug-
gested that a difference in intestinal absorption of proteins between non-sensitized
and sensitized persons can take place by both pathways. Which of these two is in-
volved in the transfer of dietary proteins into human milk is not known. One option
for a transcellular pathway concerns transport of intact antigens with specific IgE
via the CD23 receptor [36]. With regard to the current study, this would suggest an
increased level of BLG-specific IgE in HDM allergic mothers, which seems unlikely
and has not been mentioned in literature.

Another transcellular pathway is through enterocytes and involves degradation
of the protein in lysosomes [37]. A recent study using Caco-2 cell monolayers showed
that casein fragments survive transfer by this pathway but that BLG seems to be
completely degraded [38]. Therefore, this pathway seems unlikely. A third transcel-
lular pathway is via M cells, and it has been suggested that BLG can be transferred
through this pathway without degradation [39]. Nevertheless, there is no evidence
that transport through these pathways is increased in allergic mothers. A prerequi-
site for the uptake of proteinaceous molecules through the paracellular pathway is
an impaired intestinal barrier. Reitsma et al. [10] pointed out that sensitized persons
have an increased level of mast cells that release IgE-induced tryptase.

The tryptase affects the tight junctions in the intestinal barrier, leading to an
increased permeability, which could allow the passage of proteinaceous molecules.
Nevertheless, this pathway is linked to food hypersensitivity reactions where the lo-
cation of sensitization is in the intestinal tract itself. In patients with HDM allergy,
sensitization occurs primarily in the respiratory tract. However, Calderón et al. [40]
suggested that HDM sensitization can be systemic and could cause reactions in other
parts of the body. Such a lung-gut crosstalk is plausible, considering the evidence
showing that the mucosal immune system can be considered as a system-wide organ
[41]. In reviewing the literature, Zhu et al. [42] suggested, in line with this hypothe-
sis, the role of a thymic stromal lymphopoietin-mediated pathway that is induced by
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HDM allergen sensitization, which might promote the breakdown of the epithelial
barrier in the intestinal tract.

Several other factors could be involved in the disruption of the intestinal barrier.
Firstly, it has been shown that, independent of atopy, asthma can be associated with
an increased intestinal barrier permeability [14, 43]. In the current study, seven out
of 10 of the allergic mothers reported asthma (Table 2.1). Secondly, Tulic et al. [44]
showed that HDM is often present in the gut and that its cysteine protease Der p
1 causes disruption of the epithelial barrier. This disruption appeared to be simi-
lar for HDM-sensitized and HDM-non-sensitized subjects. Nevertheless, due to an
inflammatory response, it might be possible that recovery of the intestinal barrier
dysfunction is delayed or incomplete in allergic subjects. This might then explain
the permeability of the intestinal barrier in the allergic subjects in the current study,
the majority of whom have HDM allergy. It should be noted that the majority of
the in vivo studies on intestinal permeability make use of small inert molecules and
their passage through the intestine. It has been shown that an increased transfer
of these molecules through the intestinal barrier does not necessarily correlate with
the transfer of antigens [45]. In addition, a previous study showed, using ELISA,
that levels of BLG in human milk were not related to intestinal barrier permeability
[33]. Therefore, more research is needed to elucidate whether the increased barrier
permeability caused by these factors indeed leads to an increased passage of pro-
teinaceous molecules.

After passage through the intestinal barrier, it is expected that the non-human
proteinaceous molecules enter the blood stream and are subsequently transferred
through the mammary epithelium into the alveolar lumen. This transfer seems to
take place through a one-way transcytotic pathway. Monks et al. [12] showed the role
of this pathway in the transfer of extracellular serum albumin in mice and suggested
that this is the same pathway that is involved in the transfer of IgA. After transfer
to the milk, the non-human proteinaceous molecules end up in the digestive system
of the infant. Worth noting is that Hettinga et al. [19], in analyzing the same data
but focusing on human proteins, found significantly higher levels of several protease
inhibitors in human milk from allergic mothers. These protease inhibitors (cystatin
C, inter-α-trypsin inhibitors, and serine-protease inhibitors) are potentially active
against enzymes that hydrolyze BLG. Consequently, the human milk composition of
allergic mothers might reduce the hydrolysis of BLG in the infant’s intestinal tract.

Since the current study does not include absolute quantification, the exact level
of these molecules in human milk remains unclear. Regardless of their level, it is
known that bovine milk proteins in human milk can have an effect on the infant.
Several reported cases described non-IgE-mediated food protein-induced enterocol-
itis syndrome caused by bovine milk proteins in exclusively breastfed infants [46,
47]. In all these cases, the infant had a positive family history for atopy and clinical
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manifestations were resolved after the mother strictly eliminated cow’s milk from
her diet. It remains unclear whether non-human proteinaceous molecules in human
milk can have an effect on the development of the immune system of the breast-
fed infant beyond causing allergic symptoms. Verhasselt et al. [48] showed, using a
mouse model, that antigen transfer through breastmilk induced tolerance and pro-
tection from allergic asthma. Translating this to BLG, it is known that BLG-derived
peptides can be HLA-DRB1-restricting, a characteristic that might support oral tol-
erance development [49]. In line with this, Peters et al. [50] showed recently that
early introduction of cow’s milk was associated with a reduced risk of cow’s milk
allergy. The presence of higher levels of BLG or its derived peptides in human milk
of allergic mothers might therefore have a protective effect on further allergy devel-
opment. Nevertheless, evidence remains speculative, and a direct relation needs to
be investigated.

Interestingly, BSA peptide sequences were found in significantly lower levels in
milk from allergic mothers. Previous research with rats showed that intact BSA can
pass the intestinal epithelium [51]. Nevertheless, the difference found between the
two groups is difficult to interpret. The most likely but speculative explanation is a
specific pathway that is activated in healthy mothers but that is negatively regulated
in allergic mothers.

2.5 Conclusions

In conclusion, in the present study, a significant difference in levels of non-human
proteinaceous molecules in human milk of allergic and non-allergic mothers has
been observed. Sequences from BLG appeared in higher levels and sequences from
BSA in lower levels in milk from allergic mothers when compared to milk from
non-allergic mothers. These findings suggest that there is a difference in transfer of
proteinaceous molecules through the intestinal barrier of allergic mothers, allowing
dietary proteins to enter the bloodstream and ultimately the milk. This study has
raised important questions about the role that these proteinaceous molecules might
play in the development of the immune system of infants.

Supplementary information

The following supplementary information is available and can be accessed through
the QR code in Figure 2.4: Supplementary Figures S2.1-S2.38: MS/MS spectra from
all non-human peptide sequences identified and confirmed in this study. Supple-
mentary information, fasta database: fasta database containing all protein sequences
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and identifiers used for the data analysis in this study.

Figure 2.4: Scan this QR code to access the supplementary information, or visit
https://figshare.com/s/a9f79bed463de3e8157c.
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Abstract

Human milk is a dynamic biofluid, and its detailed composition receives increasing
attention. While most studies focus on changes over time or differences between
maternal characteristics, interindividual variation receives little attention. Nev-
ertheless, a comprehensive insight into this can help interpret human milk stud-
ies and help human milk banks provide targeted milk for recipients. This study
aimed to map interindividual variation in the human milk proteome, peptidome,
and metabolome and to investigate possible explanations for this variation. A set
of 286 milk samples was collected from 29 mothers in the third month postpartum.
Samples were pooled per mother, and proteins, peptides, and metabolites were an-
alyzed. A substantial coefficient of variation (>100%) was observed for 4.6% and
36.2% of the proteins and peptides, respectively. In addition, using weighted corre-
lation analysis (WGCNA), 5 protein and 11 peptide clusters were obtained, showing
distinct characteristics. With this, several associations were found between the dif-
ferent data sets and with specific sample characteristics. This study provides insight
into the dynamics of human milk protein, peptide, and metabolite composition. In
addition, it will support future studies that evaluate the effect size of a parameter of
interest by enabling a comparison with natural variability.
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3

3.1 Introduction

Human milk is a dynamic biofluid. Its composition depends on, for example, lacta-
tion stage and health status of the mother. Proteins are one of the main constituents
of human milk and have been shown to be involved in the growth and the healthy
development of the infant. To date, the composition of the human milk proteome is
well established. The most recent studies on this have reported up to 1500 proteins
in human milk [1]. Part of the proteins in human milk are synthesized in the mam-
mary gland, for instance, caseins and α-lactalbumin. Besides this, a vast number of
proteins are transferred into the alveolar lumen from the systemic circulation of the
mother [2]. Among these are for example albumin, immunoglobulin G, and even
non-human proteins [3, 4].

Already before excretion of the milk, proteolysis of proteins takes place, resulting
in the human milk peptidome. This peptidome has been shown to comprise more
than 4000 unique peptides [5]. The majority of these peptides originate from the
precursor protein β-casein. The fact that β-casein is overrepresented in the human
milk peptidome is first of all due to its abundance. Besides this, its open and flexible
structure makes it prone to proteolytic digestion. Other proteins that are abundant
in milk, such as α-lactalbumin, have a closed and globular structure, resulting in
a lower contribution of these precursor proteins to the peptidome. Within the hu-
man milk peptidome, a substantial number of peptides was found to be a bioactive
peptide itself or to be a precursor for a bioactive peptide [6, 7].

Researchers have pursued evaluation of the presence of biomarkers in the pep-
tidome or proteome, investigating the relation with factors such as breast cancer risk
or maternal allergy [8, 9]. Besides this, many recent proteomics and peptidomics
studies on human milk have focused on longitudinal variation [10–15]. These stud-
ies provide the evidence that the human milk proteome changes over lactation ac-
cording to functionality, that is, from a direct defense mechanism toward the re-
inforcement for an independent immune system. So far, however, there has been
little discussion about interindividual variation in the human milk proteome and
peptidome. In the few studies on this done so far, it was established that varia-
tion between individual mothers is greater than longitudinal variation. This was
observed to be valid for both the human milk proteome [12] and peptidome [16].
From this, the questions arise: what is the extent of this interindividual variation
and what is its origin? In addition, it emphasizes the challenge in investigating rela-
tions between composition and other parameters such as maternal characteristics. If
the interindividual variation is not considered in those investigations, the relevance
of differences found between groups of samples will be hard to interpret and can
easily be overestimated.
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Besides the importance of mapping the interindividual variation in the human
milk proteome and peptidome, it remains a challenge to understand the mechanisms
underlying this interindividual variation. Part of this variation might be explained
by biological processes in the human body, of which indicators might be found in
low molecular weight substances, that is, metabolites. An example of this could
be the relation between, for example, free amino acids and protein synthesis. Nev-
ertheless, both proteomics and peptidomics analyses result in hundreds of features,
giving rise to a challenge in turning data into biologically relevant information. Syn-
thesis and secretion of milk proteins are regulated by biological pathways, and pro-
teins can function interactively in different biological pathways. Therefore, protein
coexpression networks can provide useful information on protein relationships and
involvement in biological pathways [17].

In recent years, weighted correlation network analysis (WGCNA) has been used
to construct and analyze such coexpression networks in proteomics data [18–20].
Peptides, on the other hand, are intermediates in the proteolytic degradation of pro-
teins. In complex samples, such as human milk, peptides originate from dozens
of precursor proteins. Peptide levels can be interdependent due to, for example,
partly overlapping sequences (peptide-ladders) or specificity of proteolytic cleav-
age. Grouping peptides based on correlation in intensities can unveil patterns of
proteolytic degradation [21]. In approaching these complex data, WGCNA can be
used to identify clusters of associated proteins and peptides. In short, the goals with
this WGCNA approach were (1) to elucidate whether interindividual variation was
specific for certain biological functions or pathways, (2) to shed light on protein-
protein and peptide-peptide associations, (3) to investigate associations of proteins
and peptides with sample characteristics, and (4) to investigate whether protein and
peptide intensities were associated with metabolite levels.

In the current study, we investigated the variation in human milk proteome, pep-
tidome, and metabolome in pooled human milk samples from 29 healthy mothers
taken in the third month of lactation. Longitudinal variation in the human milk pro-
teome is the largest in the first month, where a transition takes place from colostrum
to mature milk. In the third month of lactation, it is known that longitudinal varia-
tion due to the maturation of the milk has leveled out [22, 23]. This time point was
therefore chosen as a representation of mature human milk. Samples were analyzed,
and interindividual variation for all three omics analyses were reported. Further-
more, relations between the three omics data sets were studied using WGCNA to
find underlying reasons for the interindividual variation.
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3.2 Experimental section

3.2.1 Sample material

Human milk samples were obtained from healthy mothers donating breastmilk to
the Dutch Human Milk Bank (Amsterdam, The Netherlands). Donating mothers
were subjected to a preliminary screening by the milk bank, and the milk was col-
lected according to standardized procedures (http://www.moedermelkbank.nl). In-
formed consent was provided by all mothers to use remnants of the donated milk
for scientific research.

A selection of 298 samples was made, donated by 30 different mothers, in the
third month postpartum. Latter criterion was chosen to avoid influence of the large
longitudinal variation present in milk in the first weeks postpartum. Subsequently,
samples were pooled per mother. One of these pooled samples was removed from
our selection due to its distinct peptide profile in combination with a low fat and
carbohydrate content. These observations indicate the occurrence of mastitis; con-
sequently, the sample was considered an outlier. After this removal, the sample set
comprised 29 pooled samples from a total of 286 milk samples. The number of sam-
ples included in the pooled samples ranged from 5 to 16, with a time range from 2 to
28 days. Milk was obtained by manual or pump expression at home and collected in
a polypropylene bottle. After collection, samples were stored immediately at -18°C.
Samples were picked up from homes and transported in a freezer at -20°C to the
milk bank where they were stored at the same temperature. Detailed information
on the samples included in this study can be found in Table 3.1. Fat content in the
samples was measured by the Dutch Human Milk Bank as described by De Waard
et al [24].

3.2.2 Proteomics

Sample preparation

Human milk samples were thawed at 4°C, and skimmed milk was obtained after
centrifugation at 1500g for 10 min at 10°C. Skimmed milk was then centrifuged
at 100,000g for 30 min at 30°C. Milk serum was collected, and the serum protein
concentration was determined in duplicate with the Pierce bicinchonic acid (BCA)
assay (Thermo Scientific, Waltham, MA). According to these results, milk serum
samples were diluted in 100 mM Tris to a concentration of 1 µg/µL protein. To a 100
µL diluted milk sample, a final concentration of 15 mM dithiothreitol was added and
subsequently incubated at 45°C for 30 min. After disulfide bonds were reduced,
the sample was transferred into 6 M urea, and alkylation of the reduced cysteine
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residues was obtained by addition of 20 mM acrylamide and 10 min incubation at
room temperature. From this alkylated protein sample, 180 µL, containing 36 µg
of protein, was transferred to a Pall 3K omega filter (10–20 kDa cutoff, OD003C34;
Pall, Washington, NY, USA) and the samples were centrifuged at 12,000g for 30 min.
The filter was washed with a 50 mM ammonium bicarbonate solution. Then 100 µL
of 5 ng/µL sequencing grade trypsin was added, and digestion took place overnight
under mild shaking at room temperature. The filter with the digested proteins was
centrifuged and washed with 100 µL of 1 mL/L formic acid solution. The pH of the
final peptide solution was set to around 3 using a 10% trifluoroacetic acid solution.

Table 3.1: Subject demographics and sample characteristics. Classes of body mass index (BMI)
are normal (BMI <25), overweight (BMI >25 and <30), and obese (BMI >30).

Infant
Sex (n) Female 14

Male 15

Mother
BMI classification (n) Normal 18

Overweight 7
Obese 4

Age (years) Median 32.4
Range 26-42.8

Milk samples
Samples included in pool Median 9

Range 5-16
Time (days) between first and last sample in pool Median 10

Range 2-28
Total protein concentration (mg/mL) Mean 9.4

Range 8.6-10.2

LC-MS/MS

The prepared samples were analyzed with LC-MS/MS as described before [12]. In
short, an LTQ-Orbitrap XL system (Thermo electron, San Jose, CA, USA) was used
to obtain full scan FTMS spectra in positive mode (m/z 380 to 1400). MS/MS scans
of the four multiply-charged peaks with the highest intensity were recorded in the
linear trap in data-dependent mode and with an MS/MS threshold of 5000.

Data processing (proteins)

The Andromeda search engine of the MaxQuant software v1.6.1.0 was used to ana-
lyze the raw LC-MS/MS data [25]. A database (n = 4296) was used comprising the
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major human and bovine milk proteins as well as allergen proteins. Detailed infor-
mation on the creation of this database as well as the database itself can be found in
a previous study [26]. In silico digestion was carried out with trypsin digestion with
a maximum of 2 missed cleavages per peptide sequence. Peptide length was set to a
minimum of 6 and a maximum of 35 amino acids, and a fixed modification was set
to acrylamide on cysteines to account for the alkylation. A false discovery rate (FDR)
of 1% was used at the peptide and protein level. Furthermore, a precursor mass tol-
erance was set to 20 ppm and fragment mass tolerance to 0.5 Da. Recalibration was
carried out with a first search using a database with common contaminants.

Further data analysis was carried out, and figures were made using R version
4.0.1 [27]. First, identifications were filtered to exclude matches with the decoy
database, potential contaminants, proteins only identified with modified peptides,
proteins only identified with one peptide and proteins identified in less than 10 out
of 29 samples. For each identified protein group, a leading protein was selected
based on peptide count, Swiss-Prot review status, and availability of gene ontology
annotation. Label-free quantification (LFQ) intensities were used to analyze the data
further and were imputed (described below), transformed with logarithm base 10,
and corrected for the dilution factor.

Imputation of missing values was carried out with the Gibbs sampler-based GS-
imp algorithm, designed for the imputation of left censored missing values [28]. For
annotation purposes, a leading protein was selected for protein groups with more
than one protein. If a protein group included one or more reviewed proteins, the
first reviewed protein was selected as leading protein. If no reviewed protein was
included, the protein with the most extensive GO annotation was selected as leading
protein.

The mass spectrometry proteomics data have been deposited to the ProteomeX-
change Consortium via the PRIDE [29] partner repository with the data set identifier
PXD028280.

3.2.3 Peptidomics

Sample preparation

Human milk samples were thawed at 4°C, and skimmed milk was obtained after
centrifugation at 1500g for 10 min at 10°C. Proteins were precipitated by addition
of an equal volume of 200 g/L trichloroacetic acid in milli-Q water and subsequent
centrifugation at 3000g for 10 min at 4°C. From the resulting supernatant, 50 µL
was cleaned by solid phase extraction (SPE) on C18+ Stage tip columns (prepared
in-house) [30]. Clean-up and elution of the peptides were carried out as described
before [6]. Lastly, peptides were reconstituted in 50 µL of 1 mL/L formic acid in
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LC-MS/MS

Cleaned peptide samples were analyzed using a nanoLC-MS/MS mass spectrometry
system (Thermo EASY nLC1000 connected to a Thermo Orbitrap XL) in which the
Orbitrap was used to measure both MS and MS/MS scans. A volume of 18 µL of
sample was injected onto a 0.10 × 32 mm Magic C18AQ 200A 5 µm beads (Bruker
Nederland B.V.) preconcentration column (prepared in-house) at a constant pressure
of 800 bar (normally resulting in a flow of ca. 11 µL/min). Peptides were eluted
from the preconcentration column onto a 0.10× 250 mm Magic C18AQ 200A 3 µm
beads analytical column (prepared in-house), and separation of the peptides took
place at a flow rate of 0.5 µL/minute with a gradient of acetonitrile. In 50 min, the
gradient increased from 5% to 30% acetonitrile in water with 1 mL/L formic acid,
followed by a 3-minute cleaning of the column by a fast increase to 50% acetonitrile.
Between preconcentration and analytical column, a P777 Upchurch microcross was
positioned, with a stainless-steel needle fitted into the waste line. Using this needle,
a 3.5 kV electrospray potential was applied to the eluent. Full scan positive mode
FTMS spectra were obtained with the Orbitrap at a resolution of 15,000 and within
the range of m/z 280 to 1400. For the most abundant doubly and triply charged peaks
in the FTMS scans, CID (isolation width 2 m/z, 28% normalized collision energy,
activation Q 0.25, and activation time 15 ms) MS/MS scans were recorded in data-
dependent mode at a resolution of 7500 in the Orbitrap as well (MS/MS threshold
10,000, 45 s exclusion duration).

Data processing (peptides)

Raw LC-MS/MS data files from peptidomics analysis were processed similar to the
proteomics data, with some differences. In silico digestion was carried out with un-
specific digestion settings and a peptide length set to a minimum of 8 and a maxi-
mum of 25 amino acids. Variable modifications were set to acetylation of the protein
N-term, oxidation of methionine, deamidation of asparagine and glutamine, and
phosphorylation of serine and threonine. A maximum of 5 variable modifications
were allowed per peptide sequence. LFQ intensities were used to further analyze
the data and imputed with the same algorithm as the proteomics data.

Filtering was applied on the MaxQuant output to reduce the number of false pos-
itives. Identifications that were removed matched with the decoy database, matched
with contaminants, were only identified with a modification, or were identified in
less than 10 out of 29 samples. Imputation and selection of a leading protein was
carried out using the same approach as for the proteomics data.
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The mass spectrometry peptidomics data have been deposited to the ProteomeX-
change Consortium via the PRIDE [29] partner repository with the data set identifier
PXD028294.

3.2.4 Metabolomics

Sample preparation

Human milk samples were prepared and analyzed with NMR as described in pre-
vious studies [31, 32]. In brief, samples were thawed at 4°C and centrifuged for 30
min at a speed of 12,000 rpm (Eppendorf centrifuge 5424, Eppendorf AG, Ham-
burg, Germany). Next, 500 µL of supernatant was added to 500 µL of deuterated
chloroform, and this was thoroughly mixed for 30 min. This mixture was again cen-
trifuged for 15 min at 10,000 rpm. The aqueous top layer was obtained and with
an equal volume of phosphate buffer (pH = 7) transferred to a Pall 3K omega filter
(10–20 kDa cutoff, OD003C34; Pall, Washington, NY, USA). The filtrate obtained by
centrifugation at 10,000 rpm for 30 min was transferred to a 3 mm NMR tube.

NMR analysis

NMR measurements were carried out using a Bruker Avance III NMR spectrom-
eter with a 600 MHz/54 mm UltraShielded Plus magnet. The spectrometer was
equipped with a CryoPlatform cryogenic system for cooling, a BCU-05 cooling unit,
and with an ATM automatic tuning and matching unit (Bruker Biospin, Rheinstet-
ten, Germany). Samples were measured in 1H NMR tubes of 3 mm (Bruker matching
system). One-dimensional nuclear Overhauser effect spectroscopy (NOESY) spectra
were obtained at a temperature of 300 K. All obtained spectra were corrected with
automatic baseline correction and aligned to the resonance of alanine (1.484 ppm).
The Human Metabolome Database version 4 (http://hmdb.ca) and published liter-
ature were used for the assignment of metabolites to the spectra [33]. Full details
on parameters used for NMR analysis can be found in the Supporting information
listing S1.

Data processing (metabolomics)

NMR data were aligned, and the water region was removed. To minimize overlap
in the spectra, NMR resonances were specifically integrated by careful selection of
peaks. A selection of one NMR resonance was made in case a metabolite was rep-
resented by multiple resonances in the NMR spectra. Nonoverlapping peaks were
chosen for further data analysis. In case baseline correction resulted in negative in-
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tensities, a value of 0.0001 was imposed to replace these. All NMR resonances were
scaled to unit variance before correlations were investigated.

3.2.5 Statistical analysis

All statistical analyses were performed using R version 4.0.1 [27]. Interindividual
variation was calculated as coefficient of variation (CV), which is also known as rel-
ative standard deviation and expressed as percentage.

Weighted Correlation Network Analysis (WGCNA)

To reduce dimensionality and to elucidate patterns of cross-correlation present in
the proteomics and peptidomics data, a weighted correlation network analysis was
carried out using the WGCNA package for R (version 1.70.3) [34].

With this analysis, a set of clusters was obtained for each data set, where each
cluster consists of highly correlating proteins or peptides. Details of WGCNA ap-
plied to proteomics data were described by Pei et al [20]. In brief, a correlation ma-
trix was obtained using the biweight midcorrelation measure. From this, a signed
and weighted network was created, to which a soft-thresholding power was applied.
This soft-thresholding power was chosen based on the approximation of scale-free
topology. As shown in the supporting information, a power of 5 was chosen for
the proteomics data (see Supplementary Figure S3.1) and a power of 8 for the pep-
tidomics data (Supplementary Figure S3.2). By applying this power, noise was re-
moved, and the strength of correlations was enhanced. After this, topology overlap
metrics were calculated from the network and were subjected to hierarchical cluster-
ing. Clusters were obtained from the dendrogram using the cutreeDynamic function
with a minimum cluster size of 15. The eigenvalues of the clusters (later referred to
as eigenproteins and eigenpeptides) were used to investigate relations between the
data sets.

Relationships between characteristics of the samples or mothers, eigenproteins,
eigenpeptides, and metabolites were assessed using Spearman’s rank correlation (de-
noted with ρ). To calculate statistical significance, the “corPvaluestudent” function
from the WGCNA package was used, which provides Student asymptotic p-values.

Gene overrepresentation

To investigate whether protein clusters resulting from the WGCNA were charac-
terized by specific gene ontology (GO) annotations, a GO overrepresentation anal-
ysis was carried out using the R package ClusterProfiler, version 3.16.1 [35]. The
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“enrichGO” function was used in combination with the “compareCluster” func-
tion with as background all identified proteins. GO terms were obtained from the
org.Hs.eg.db package [36]. On the output of the overrepresentation analysis, the
“simplify” function was applied to remove redundant GO annotations. For this, the
“Wang” measure, and a similarity cutoff of 0.7, was used. Overrepresentation was
visualized using dot plots in which the GO annotations with the top 3 most signifi-
cant GO terms were shown.

Sequence logos

Sequence logos were created for the P1 and P1’ positions of the peptides’ N- and
C-terminal ends. This was done based on both frequency and intensity of the amino
acid in the P1 and P1’ position using the R package ggseqlogo, version 0.1 [37].

3.3 Results and Discussion

In this study, the human milk peptidome, proteome, and metabolome of 29 mothers
were analyzed (see Figure 3.1). With the resulting data, the interindividual variation
in mature human milk was investigated.

298 samples

30 mothers

Month 3

Pooled per mother

Removal proteins

and clean-up
nanoLC-MS/MS

nanoLC-MS/MS
Trypsin digestion

1H NMR

Proteomics

Peptidomics

MetabolomicsRemoval proteins 

and fat

Sample collection Sample preparation Analysis

Milk serum

Skim milk

- 1 outlier

Figure 3.1: Schematic overview of the workflow used for the analysis of the human milk
proteome, peptidome, and metabolome.
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3.3.1 Proteomics

After analysis and subsequent filtering, 237 proteins were identified and quantified
with label-free quantification (LFQ). The number of identified proteins per sample
ranged from 110 to 228. From these 237 proteins, 84% were identified in more
than half of the 29 samples. An overview of all identified proteins can be found in
Supplementary Table S3.1.
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Figure 3.2: Distribution of the variation of proteins. The overall coefficient of variation (CV)
on the x-axis versus the mean log10 of the LFQ intensities for each identified protein on the
y-axis. Proteins with the largest variation are labeled with their respective gene code.

As shown in Figure 3.2, only 4.2% (n = 10) of the identified proteins show an
extensive overall CV >100%. From this figure, it can also be noted that high abun-
dant proteins show a relatively low variation between samples when compared with
low abundant proteins. This corresponds with previous studies in which a relatively
low variation was found for the most abundant human milk proteins [14, 38]. In
addition, it was observed that the overall variation in proteins (median CV = 42.8%)
surpasses to a great extent the technical variation (median CV = 20.4%) (see Sup-
plementary Figure S3.3A). Furthermore, it was found by Zhang et al. that the in-
terindividual variation also surpasses the intraindividual variation in the proteome
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of human milk [12]. This indicates that the major contributor to the overall variation
is interindividual variation. This is a pattern also found for the proteome of other
body fluids [39–41].

Table 3.2: Top 10 proteins with the largest interindividual coefficient of variation (CV).

Protein ID Protein name Gene Mean log10
intensity

CV (%)

P24821 Tenascin TNC 7.1 246.8
Q86YZ3 Hornerin HRNR 7.3 243.9
P27105 Stomatin STOM 6.5 205.5
P01871 Immunoglobulin heavy constant mu IGHM 7.8 198.6
P61626 Lysozyme C LYZ 8.2 132.3
P36222 Chitinase-3-like protein 1 CHI3L1 6.5 122.8
P19827 Inter-α-trypsin inhibitor heavy chain H1 ITIH1 7.1 120.2
Q6ZW64 cDNA FLJ41552 fis 7.9 117.2
P20061 Transcobalamin-1 TCN1 7.6 103.7
P15289 Arylsulfatase A ARSA 6.4 100.6

Few proteins show a remarkably large interindividual variation (Table 3.2). From
these, the first four will be discussed more in detail. Tenascin (TNC) is well-known
for its neutralizing effect on HIV [42]. Whereas the decrease of TNC over time was
shown to become stable after 30 days postpartum [43], it was found that the concen-
tration of TNC in milk from HIV negative mothers (21 to 46 days postpartum) can
range from around 0.1 to more than 100 µg/mL [44]. This is in line with the large
variation observed in the current study, where all donating mothers tested HIV neg-
ative. Although little is known about the expression of TNC in milk, it is known
that TNC synthesis is rapidly induced in many tissues in response to pathological
stress and inflammation [45]. Mills et al. showed, in line with this, that airway ep-
ithelial cells generate TNC in response to viral infection [46]. Furthermore, Sur et
al. showed recently that exosomes in plasma from COVID-19 patients contain sig-
nificantly increased levels of TNC, triggering pro-inflammatory cytokine signaling
[47]. Hence, it can be hypothesized that a higher level of TNC in milk might be
an attempt to protect the offspring against the transmission of viral infections from
the mother. Alternatively, high TNC levels could indicate an inflammatory response
in the mother (for example, mammary gland), although the donors were reported
healthy at the time of the donations. For the second protein, hornerin (HRNR), it
is known that it is expressed in regenerating and psoriatic skin [48]. Nevertheless,
none of the donating mothers mentioned psoriasis as an underlying disease in the
current study. In addition, HRNR has also been found to be differently expressed
in breast epithelial cells that are in different stages of mammary development [49].
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A significant difference was observed in HRNR staining of murine mammary tissue
during lactation and at the onset of involution [49]. This might be due to epithelial
cell turnover or apoptosis and could explain the large interindividual variation for
this protein. The third protein, stomatin (STOM), is a protein found in the plasma
membrane associated with lipid rafts. The presence of STOM in milk is dependent
on energy balance in the lactation of cows [31]. Nevertheless, little is known about
the function or expression of this protein in human milk, and a cause for its large in-
terindividual variation remains speculative. The fourth protein, immunoglobulin M
(IgM), is secreted into milk as sIgM and is secreted in the same way as secretory im-
munoglobulin A (sIgA). Whereas most other identified immunoglobulins show a CV
<100%, cDNA FLJ41552 fis (UniProt ID: Q6ZW64) is highly similar to the constant
region of IgA and has a CV >100% as well (Table 3.2). Using ELISA, two studies
showed a large interindividual variation of IgM in the first 2 weeks of lactation [50,
51]. Although there is a gradual decrease of this protein over lactation [12, 52], it
was found that its interindividual variation in mature milk is larger than the other
immunoglobulins [53].

It should be noted that in the current study, pooled samples were used from the
third month postpartum. It is known that, in this month, longitudinal variation due
to the maturation of the milk has leveled out [22, 23]. The influence of intraindivid-
ual variation is therefore expected to be minor. Nevertheless, in case of large intrain-
dividual variation due to single outliers before pooling, the effect on interindividual
variation is reduced due to the pooling of the samples [54].

To examine whether proteins with high interindividual variation relate to spe-
cific biological processes or sample characteristics, a coexpression network was con-
structed using weighted correlation network analysis (WGCNA). With this, a set of
5 protein clusters was identified (see Supplementary Figures S3.1 and S3.4).

As can be seen in Figure 3.3B, the largest interindividual variation is present in
cluster 4 with a median CV = 71.6% and containing medium abundant proteins.
This cluster includes nonmicellar caseins and milk fat globule membrane (MFGM)
related proteins such as butyrophilin, lactadherin, lipoprotein lipase, lysozyme C,
platelet glycoprotein 4, stomatin, and mucins. This suggests the coabundance of
proteins involved in the pathway of MFGM secretion by the mammary epithelial
cell. When comparing the gene annotations of the clusters (Figure 3.4), cluster 4
contains specifically proteins annotated with lipid storage and phagocytosis, bio-
logical processes typical for MFGM proteins [55]. As can be seen in Figure 3.3A, a
positive relation was found between protein cluster 4 and maternal BMI (ρ = 0.45,
p = 0.01). The strongest correlation between individual proteins in this cluster and
BMI was found with the antiadhesive protein podocalyxin (PODXL). A study by
Crujeiras et al. showed that PODXL is negatively associated with methylation lev-
els in subcutaneous adipose tissue and suggested that there may be an epigenetic
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Figure 3.3: (A) Association of eigenproteins with subject and sample characteristics using
Spearman correlation. Significant correlations are annotated with * (p <0.05). (B) Interindi-
vidual coefficient of variation (CV) in proteins per WGCNA cluster. Vertical lines indicate the
median CV of the cluster. (C) Hierarchical clustering of the eigenproteins of each cluster.
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Figure 3.4: (Caption on next page.)
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Figure 3.4: Overrepresented GO annotations in each WGCNA cluster of the proteomics data,
with (A) biological processes, (B) molecular functions, and (C) cellular components.

regulation associated with obesity [56]. Nevertheless, further research is needed to
investigate the relation between PODXL in human milk and maternal BMI.

From the other clusters, clusters 1 and 2 show a similar pattern with low abun-
dant proteins and relatively low variation (median CVs of 39.7 and 40.4%, respec-
tively). Cluster 1 comprises the majority of the proteins, with annotations showing
involvement in energy pathways and metabolism (Figure 3.4A), and has a positive
association with total fat content (ρ = 0.39, p = 0.04) (see Figure 3.3A). It has been
suggested that there might be a common regulation for lipid and protein synthesis
in milk [57]. Although the measurements of total protein and fat content in this
study do not show a correlation, the observed association might be due to a selective
pathway, concerning a selection of the proteins present in human milk.

Cluster 2 is characterized by proteins with serine-type endopeptidase inhibitor
activity (Figure 3.4B), among which are α1-antitrypsin (SERPINA1), plasma pro-
tease C1 inhibitor (SERPING1), and α2-macroglobulin (A2M), proteins also involved
in blood coagulation. In addition, this cluster contains a majority of other blood orig-
inating proteins such as albumin (ALB) and haptoglobin (HP) (Figure 3.4C). This in-
dicates a coabundance, and possibly related/shared pathways, of these proteins and
the protease systems present in milk.

Cluster 3 comprises many of the immune proteins of milk such as polymeric im-
munoglobulin receptor (PIGR), immunoglobulin A (IgA), immunoglobulin M (IgM),
J chain, and lactoferrin (LF). This cluster comprises, in general, medium and high
abundant proteins with low variation (median CV = 43%). Several lines of research
have suggested a relation between immune proteins in milk and their degradation
by proteases [14, 58]. However, such correlation was not observed in the current
study, possibly because the focus was on interindividual variation, and Elwakiel et
al. [14] studied longitudinal (intraindividual) variation, observing large variation
for these proteins over lactation.

Cluster 5 has a median CV of 43% and, in general, low abundant proteins. This
cluster is closely related to cluster 2 (see Figure 3.3C) and does not seem to be charac-
terized by large protein groups with unique biological processes or molecular func-
tions (Figure 3.4).

Overall, these results indicate that there is a high interindividual variation in
several specific proteins as well as in a cluster of coabundant proteins containing
MFGM related proteins and nonmicellar caseins.
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3.3.2 Peptidomics

For the analysis of the peptides, proteins were removed from the milk by precipi-
tation. LC-MS/MS analysis of the supernatant and subsequent filtering of the data
resulted in the identification of 740 peptides originating from 23 different precursor
proteins. The number of peptides identified per sample ranged from 440 to 637. A
major part of the identified peptides (38.4%) originated from β-casein, followed by
polymeric immunoglobulin receptor (PIGR) (16.5%) and osteopontin (8.5%). This
overrepresentation of peptides from a few proteins is probably due to the high abun-
dance of these proteins in combination with direct or indirect association with plas-
minogen and sensitivity for proteolysis [59]. This pattern is typical for human milk
peptidomics and corresponds to previous findings [6, 60]. An overview of all iden-
tified peptides can be found in Supplementary Table S3.2.

P05814_81_103

P05814_38_54
P05814_120_133

P05814_170_189

P05814_114_125

4.5

5.5

6.5

7.5

100 200 300 400
Coefficient of variation (%)

M
ea

n 
lo

g1
0 

in
te

ns
ity

Figure 3.5: Distribution of the variation of peptides. The overall coefficient of variation (CV)
on the x-axis versus the mean log10 of the LFQ intensities for each identified peptide on the
y-axis. Peptides with the largest variation are labeled with the UniProt ID of their respective
precursor protein and their range in the protein sequence.

As shown in Figure 3.5, 36.2% (n = 268) of the identified peptides show an overall
CV >100%. This figure shows that, like the proteomics data, high abundant peptides
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show a relatively low variation compared with the lower abundant peptides. In
addition, the overall variation (median CV = 85.2%) is substantially larger than the
technical variation (median CV = 21.8%) (see Supplementary Figure S3.3B). This
indicates that, also for the peptidome, the major contributor to the overall variation
is interindividual variation.

It can be noted that the overall variation in peptides is larger than the variation
in proteins. This difference is not observed in the technical replicates, where the
median and maximum CV for proteins is 20.4 and 107% and for peptides 21.8 and
101%. Therefore, it can be concluded that interindividual variation in the human
milk peptidome is substantially larger than in the proteome.

In Table 3.3, the 10 peptides with the highest interindividual variation are shown.
All but one of these peptides are from the precursor protein β-casein. Proteolysis of
human milk proteins depends on a complex system of proteases, protease inhibitors,
and other factors. Therefore, it can be hypothesized that highly variable peptides
are, for example, to a variable extent, further degraded depending on the balances
in the proteolytic systems. Most of these peptides are relatively long and originate
from a region in the protein sequence that is heavily hydrolyzed. Many possible
precursor and product peptides of these peptides were also identified, indicating
that further proteolysis of these peptides is highly variable and results in their large
interindividual variation.

Table 3.3: Top 10 peptides with the largest interindividual coefficient of variation (CV).

Sequence Protein ID Peptide range Mean log10
intensity

CV (%)

SVPQPKVLPIPQQVVPYPQR P05814 170-189 6.0 461.9
KVKHEDQQQGEDEHQDK P05814 38-54 5.0 405.8
ILPLAQPAVVLPVPQPEIMEVPK P05814 81-103 5.6 326.2
SPTIPFFDPQIPKL P05814 120-133 5.1 312.3
VMPVLKSPTIPF P05814 114-125 5.3 301.8
SVPQPKVLPIPQQVVPYPQ P05814 170-188 5.9 290.6
SDISNPTAHENYEKNNVMLQW P47710 165-185 5.7 290.3
GRVMPVLKSPTIPF P05814 112-125 6.6 289.3
LAPVHNPISV P05814 217-226 6.3 279.6
DTVYTKGRVMPVLKSPTIPF P05814 106-125 5.7 258.4

Little is known about longitudinal variation in the human milk peptide profile.
However, it is expected that there is less variation in the third month postpartum due
to the maturation of the milk. This is in line with the observation that the activity
of plasmin, the main human milk protease, decreases over time [61]. Nevertheless,
future research is needed to confirm this. In addition, the effect of single outliers
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Figure 3.6: (Caption on next page.)
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Figure 3.6: (A) Association of peptide clusters with subject and sample characteristics using
Spearman correlation. Significant correlations are annotated with * (p <0.05), ** (p <0.01), or
*** (p <0.001). (B) interindividual variation (%) in peptides per WGCNA cluster. Vertical lines
indicate the median coefficient of variation (CV) of the cluster. (C) Hierarchical clustering of
the eigenpeptides of each cluster.

before pooling, that is, large intraindividual variation, will be less reflected in the
interindividual variation due to the pooling of the samples.

Similar to the proteomics data, WGCNA was applied to the peptidomics data, re-
sulting in 11 clusters of coabundant peptides (see Supplementary Figures S3.2 and
S3.5). Although to our knowledge, this is the first time WGCNA has been applied to
peptidomics data, clustering of coabundant peptides might provide insights into the
different factors that affect the proteolytic degradation of proteins in milk. As can
be noted from Table 3.4, several of the clusters are distinctly dominated by peptides
from certain precursor proteins. Furthermore, there are several significant correla-
tions between eigenpeptides and sample characteristics (Figure 3.6).

The largest interindividual variation can be observed in clusters 1, 2, 3, and 6
(median CV = 102.4, 103.7, 88.4 and 97.6%, respectively), which are dominated by
peptides from β-casein, αs1-casein, and osteopontin (Table 3.4).

Several peptides with large variation (Table 3.3) show coabundance in the first
three clusters. For example, two of these peptides (SVPQPKVLPIPQQVVPYPQR
and SVPQPKVLPIPQQVVPYPQ) occur in cluster 1 and are only different in one
amino acid. This coabundance of peptides shows that the level of a certain peptide
can depend on the level of a larger, precursor peptide. When it comes to the respon-
sible proteases, this could mean that further digestion of precursor peptides by, for
example, nonspecific carboxypeptidases is dependent on cleavage of the proteins by
a more specific protease such as plasmin. It is known that plasmin cleaves prefer-
entially with lysine (K) or arginine (R) in the P1 position. From Figure 3.7A, it can
be seen that from the clusters dominated by casein peptides, especially clusters 3
and 6 are characterized by many peptides with K or R in the P1 position, matching
plasmin specificity. Besides clusters 1, 2, 3, and 6, cluster 7 is also dominated by
peptides from β-casein and αs1-casein. Nevertheless, this cluster has a much lower
median variation (77.7%), and the β-casein peptides in this cluster are exclusively
from the N-terminal end of the protein (sequence position 16 to 54, see Supplemen-
tary Table S3.2). This suggests that the N-terminal of β-casein is proteolyzed with
different driving factors and lower interindividual variation than the rest of the se-
quence. Since cleavage specificity of this cluster is not unique (Figure 3.7), factors
such as structure, peptidase activity, or protease inhibition might cause the differ-
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ence with the other clusters. Nevertheless, proteolysis resulting in the peptides in
cluster 7 does not seem to be influenced by total proteolytic activity (Figure 3.6A).
This was also observed for cluster 2, even though both clusters comprise several
highly abundant peptides (Figure 3.6B). This suggests that higher proteolytic ac-
tivity seems specific for certain proteins and even protein regions. Peptide clusters
dominated by β-casein and αs1-casein are associated more with each other than with
the clusters dominated by other precursor proteins (Figure 3.6C). This indicates that
the degradation of caseins is distinct from the degradation of other proteins, which
might be due to their association in micelles.

Table 3.4: Peptide clusters with their size and dominating precursor proteins.

Cluster
label

Cluster
size

Top precursor
protein ID

Top precursor protein name Number of peptides per
precursor protein

1 132 P05814 β-casein 98
P47710 αs1-casein 7

2 91 P05814 β-casein 39
P10451 Osteopontin 15

3 83 P05814 β-casein 39
P47710 αs1-casein 13

4 77 P01833 Polymeric immunoglobulin receptor 34
P05814 β-casein 23

5 74 Q99541 Perilipin-2 22
P15941 Mucin-1 19

6 62 P05814 β-casein 40
P10451 Osteopontin 6
P47710 αs1-casein 6

7 53 P05814 β-casein 33
P47710 αs1-casein 10

8 49 P01833 Polymeric immunoglobulin receptor 20
P10451 Osteopontin 14

9 47 P01833 Polymeric immunoglobulin receptor 26
P07498 κ-casein 7

10 40 Q13410 Butyrophilin subfamily 1 member A1 18
Q99541 Perilipin-2 8

11 32 P01833 Polymeric immunoglobulin receptor 13
Q13410 Butyrophilin subfamily 1 member A1 7

Clusters 4, 8, 9, and 11 are dominated by peptides from PIGR, with a median CV
= 74.9, 69.2, 86.1, and 66.1%, respectively. Clusters 5 and 10 are dominated by pep-
tides from MFGM proteins (median CV = 75.5 and 81.8%, respectively). The clus-
tering of peptides of MFGM proteins is in line with Giuffrida et al., who proposed
a specific mechanism for proteolysis of MFGM proteins by proteolytic enzymes in

80



3

the alveolar cell membranes [62]. This is further supported by the fact that most
peptides in these clusters do not match the specificity of plasmin (Figure 3.7). As
shown in Figure 3.6, several clusters dominated by peptides from PIGR or MFGM
related proteins (5, 8, 10, and 11) show a strong negative correlation with total pep-
tide intensity. As was observed before, higher proteolytic activity seems to attribute
mainly to an increase in the intensity of peptides originating from β-casein and αs1-
casein, possibly driven by plasmin activity and leading to the largest interindividual
variation.

A

B

A

B

Figure 3.7: (A) Relative frequencies, and (B) relative intensities of amino acids in P1 and P1’
position for each peptide cluster. When P1 or P1’ position is the C-terminal or N-terminal
end of the protein sequence, the empty position is annotated with “X”.

Taken together, these results show that the largest interindividual variation is
present in peptides of β-casein, αs1-casein, and osteopontin. With WGCNA, 11 dis-
tinct clusters of peptides were obtained, showing differences in characteristics re-
lated to proteolytic degradation, such as precursor proteins, cleavage patterns, and
association with total peptide intensity.
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3.3.3 Metabolomics

Metabolomics analysis with NMR resulted in the identification of 40 metabolites,
among which were fatty acids, free amino acids, oligosaccharides, and other small
molecules. A detailed list of all identified metabolites can be found in Supplemen-
tary Table S3.3.

As shown in Figure 3.8, similar to the proteome and peptidome, metabolites with
high intensity also show low interindividual variation. Overall variation between the
samples is for the majority of the metabolites larger than the technical variation (see
Supplementary Figure S3.3C).
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Figure 3.8: Distribution of the variation of metabolites. The overall coefficient of variation
(CV) on the x-axis versus the mean log10 of the intensities for each identified metabolite on
the y-axis. Metabolites with the largest variation are labeled.

All metabolites identified show a CV <100%, a low variation compared to the
proteomics and peptidomics data. The variation in metabolites is similar to the re-
sults reported by Smilowitz et al., with the notable exception of butyrate and formate
[63]. Smilowitz et al. found a CV of 77.3 and 121% for these metabolites, whereas
in the current study, these metabolites had a CV of 4.9 and 36.9%, respectively. One
explanation for this difference might be the sample collection. Whereas in the cur-
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rent study, samples were pooled, Smilowitz et al. used nonpooled samples. Larger
variation in single samples versus smaller variation in pooled samples might be due
to high intraindividual variation, that is, variation between different feedings.

It is proposed from several studies that a large part of the interindividual varia-
tion in the human milk oligosaccharide (HMO) metabolome is due to secretor status
and Lewis blood type [63–66]. On the basis of intensities of 2’-fucosyllactose (2’FL)
and lacto-n-fucopentaose I (LNFP I), 3 out of the 29 donating mothers in the current
study are proposed as nonsecretors (Se-) (see Supplementary Figure S3.6). On the
basis of intensities of 3’FL, LNFP III, and lactodifucotetraose (LDFT), 2 out of the
29 mothers are proposed to be Lewis negative (Le-), of which one was also Se- (see
Supplementary Figure S3.6). Removal of the Se- and Le- samples (n = 4) from the
calculations shows decreases in the interindividual variation of the HMO metabo-
lites (see Table 3.5 and Supplementary Table S3.3). Nevertheless, it should be noted
that there remains a substantial interindividual variation in for example, LNFP I,
3’-FL, and fucose-α-1,3-GLcNAC. This is an important finding considering the im-
portant role of HMOs in the healthy development of the infant.

Table 3.5: Metabolites with high (right) and low (left) interindividual coefficient of variation
(CV) together with the interindividual variation in samples from mothers that are proposed
to be secretors (Se(+)) as well as Lewis positive (Le(+)).

Metabolite CV (%) CV (%)
Se(+)Le(+)

Butyrate 4.9 4.8
Lactose 12.0 9.5
cis-Aconitate 13.8 11.2
Alanine 15.5 16.1
Acetate 15.9 17.0
Valine 16.2 17.1
Lactate 16.4 16.0
Urea 17.2 17.0
Lacto-N-difucohexaose II 19.4 13.8
Methionine 19.4 18.7

Metabolite CV (%) CV (%)
Se(+)Le(+)

Lysine 214.1 209.8
Aspartate 90.8 89.3
Fucose-α-1,3GLcNAC 72.2 58.1
Fumarate 67.4 64.7
LNFP I 67.2 63.0
Pantothenate 63.9 64.1
CMP 59.8 52.2
3’-FL 53.0 41.1
LDFT 52.6 44.6
2’-FL 50.6 37.2

Several metabolites show associations with subject and sample characteristics
(Figure 3.9). First, a strong negative relation between glycerophosphocholine (GPC)
and BMI (ρ = -0.52, p = 0.003) is present. It was found that in serum of patients with
metabolic abnormal obesity, GPC is significantly decreased [67]. Future research is
necessary to show whether this holds for human milk as well.

Second, cytidine monophosphate (CMP), cytidine triphosphate and diphosphate
(CTP/CDP), GPC, and phosphocholine (PC) all show a significant negative correla-
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Figure 3.9: Associations of metabolites with subject and sample characteristics (left) eigen-
proteins (middle) and eigenpeptides (right). Significant correlations are annotated with * (p
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tion with maternal age (ρ <-0.42, p <0.022). These metabolites play an important
role in the synthesis of the cellular membranes. Therefore, their negative correlation
with maternal age might be a marker of the known decrease in mammary epithelial
cell proliferation at a higher age [68, 69]. This also accords with Wei et al., who found
that PC in bovine milk is negatively correlated with energy balance and proposed a
relation with cell proliferation [70].

Third, the fatty acids butyrate (C4:0) and caprylate (C8:0), and the amino acid
methionine show a positive relation with fat content (ρ >0.53, p <0.003) and a neg-
ative relation with total peptide intensity (ρ <-0.44, p <0.018). This relation with
methionine could point to the involvement of this amino acid in fat synthesis. Qi et
al. found that methionine promotes fat synthesis through the SNAT2-PI3K signaling
pathway in bovine mammary epithelial cells [71]. If this pathway is also present in
humans, it would explain the correlations observed in the current study.

Fourth, a negative relation was found between total peptide intensity and bu-
tyrate, caprylate, CMP, fumarate, galactose, LNFP I, and methionine (ρ >-0.43, p
<0.02). A higher intensity of these metabolites might indicate a lower proteolytic
activity in the milk. Although little is known about milk metabolites and their re-
lation with proteolytic activity, it is known that butyrate can stimulate the secretion
of plasminogen activator inhibitor 1 in colonic epithelium [72]. Knowing that plas-
minogen activation needs to precede plasmin activity, this might also hold for the
mammary epithelium, causing a decrease in proteolytic activity in the secreted milk.

As can be noted from Figure 3.9, several metabolites show a positive association
with the storage time of the samples. From previous research, it is known that bu-
tyrate and acetate levels can be affected by storage time [73]. However, the strongest
associations were found with pantothenate (vitamin B5) (ρ = 0.48, p = 0.009) and
valine (ρ = 0.55, p = 0.002). An increase of pantothenate during frozen storage
contradicts the findings of Goldsmith et al., who reported a decrease [74]. On the
other hand, the association with valine could point to continued proteolysis during
storage, resulting in more FAA. Nevertheless, no strong positive associations were
found with peptide or protein clusters (Figures 3.6A and 3.3A, respectively). There-
fore, further research on the influence of storage time on the metabolome of human
milk is needed for more insight into this.

3.3.4 Relation among omics data sets

To identify associations between the proteomics and peptidomics data, eigenpro-
teins were compared with eigenpeptides (Figure 3.10). From this, several associa-
tions were found, of which the most notable will be discussed.

First, it can be observed that protein cluster 4, comprising caseins and MFGM
proteins, relates positively with the β-casein-dominated peptide clusters 1 and 6 (ρ
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>0.38, p <0.04). From this, it can be hypothesized that the interindividual variation
of part of the β-casein peptides is related to the amount of nonmicellar β-casein
present in the milk. Second, protein cluster 2, which contains most serine protease
inhibitors (SERPINs), relates positively with peptide cluster 2 (ρ = 0.47, p = 0.01).
This peptide cluster is dominated by β-casein peptides but does not relate to total
peptide intensity (Table 3.4 and Figure 3.6A). This points to SERPIN inhibition of
serine proteases, such as thrombin and plasmin, responsible for further degradation
of these peptides.
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Figure 3.10: Association of eigenproteins with eigenpeptides. Significant correlations are an-
notated with * (p <0.05) or ** (p <0.01).

In the association of eigenproteins and eigenpeptides with metabolites (Figure
3.9), it was found that butyrate, caprylate, and methionine are negatively associated
with protein cluster 3, which contains the majority of the immune-related proteins.
In addition, these metabolites associate positively with peptide cluster 5, which is
dominated by peptides from MFGM related proteins (perilipin-2 and mucin-1) and
negatively with peptide cluster 1. Qi et al. reported that methionine was not only
found to promote fat synthesis but also to promote protein synthesis and cell pro-
liferation through the same SNAT2-PI3K signaling pathway [71]. The proteolysis
of MFGM related proteins by specific enzymes in the alveolar cell membranes, as
discussed before, might therefore be related to cell proliferation. In addition, sev-
eral other metabolites relate positively with peptide cluster 5 including CMP, GPC,
fucose-GlcNac, and LNFP I. Most of these metabolites relate negatively with total
peptide intensity, suggesting that higher proteolytic activity correlates with meta-
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bolic changes and a decrease in peptides from MFGM proteins.
Therefore, it seems that changes in the metabolome can explain part of the in-

terindividual variation in the human milk proteome and peptidome. Nevertheless,
these findings raise intriguing questions regarding the nature of especially the hu-
man milk peptidome and deserve further investigation.

3.4 Conclusion

In this study, pooled human milk samples were used to investigate the interindivid-
ual variation in proteome, peptidome, and metabolome. The largest interindividual
variation was observed in the peptidome (median CV 85.2%), after which follows
the proteome (median CV 42.8%) and the metabolome (median CV 36.1%). Nev-
ertheless, the majority of proteins, peptides, and metabolites show interindividual
variation with a CV <100%. With the WGCNA algorithm, 5 protein clusters and
11 peptide clusters were obtained, each with distinct characteristics. Using these
WGCNA clusters, several associations were found between the data sets and with
sample characteristics, giving insight into the causes of interindividual variation.
Since the donating mothers in this study are generally healthy, the interindividual
variation observed in this study can be considered a normal variation. The findings
reported in this study can help in the interpretation of effect sizes in future omics
studies since these can now be compared to the natural variability.

Supplementary information

The following supplementary information is available and can be accessed through
the QR code in Figure 3.11: Additional results from technical replicates; additional
figures on WGCNA data analysis of both proteomics and peptidomics data; boxplots
showing proposed nonsecretor and Lewis negative mothers included in the study;
tables with all identified proteins, peptides, and metabolites; parameters of NMR
analysis.
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Figure 3.11: Scan this QR code to access the supplementary information, or visit
https://figshare.com/s/977aa820aa4d17e72faa.
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Abstract

Background: The human milk proteome comprises a vast amount of proteins
with immunomodulatory functions, but it is not clear how this relates to an allergy
of the mother or allergy development in the breastfed infant. This study aimed to
explore the relation between the human milk proteome and allergy of both mother
and child.

Methods: Proteins were analyzed in milk samples from a subset of 300 mother-
child dyads from the Canadian CHILD Cohort Study, selected based on maternal
and child allergy phenotypes. For this selection, the definition of "allergy" included
food allergy, eczema, allergic rhinitis, and asthma. Proteins were analyzed with
non-targeted shotgun proteomics using filter-aided sample preparation (FASP) and
nanoLC-Orbitrap-MS/MS. Protein abundances, obtained with label-free relative qu-
antification, were compared using multiple statistical approaches, including uni-
variate, multivariate, and network analyses.

Results: Using univariate analysis, we observed a trend that milk for infants
who develop an allergy by 3 years of age contains higher levels of immunoglobulin
chains, irrespective of the allergy status of the mother. This suggests a difference in
the milk’s immunological potential, which might be involved in the development of
the infant’s immune system.

Furthermore, network analysis showed overall stronger connectivity of proteins
in the milk of allergic mothers and milk for infants who would ultimately develop an
allergy. This difference in connectivity was especially noted for proteins involved in
the translation machinery and may be due to the physiological status of the mother,
which is reflected in the interconnectedness of proteins in the milk. In addition, it
was shown that network analysis complements the other methods for data analy-
sis by revealing subtler associations between the milk proteome and mother-child
allergy status.

Conclusion: Together, these findings give new insight into the human milk pro-
teome as it relates to the allergy status of mother and child, and inspire new research
directions into the complex interplay of the mother-milk-infant triad.
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4.1 Introduction

Having an allergy can strongly impact someone’s quality of life in terms of dietary,
social, and psychological factors. In addition, the burden of allergic diseases for
healthcare is increasing in western countries [1]. In the attempt to decrease these
socioeconomic burdens, a primary concern is to determine where the development
of allergic diseases is triggered (window of opportunity) and how this can be pre-
vented. This centers around the early years, as allergic diseases often begin to mani-
fest in the first years of life, and healthy development of the infant’s immune system
is crucial for later immune health [2].

The role of human milk in the development of allergies has received considerable
attention in recent years [3–5]. Breastfed babies receive a spectrum of healthy nutri-
ents through human milk, in a stage of life that is crucial for the development of the
immune system. Several components in human milk have functional properties that
could play a role in immune development, such as antioxidant, antibacterial, and
immunomodulating properties [6]. The effect of breastfeeding on the development
of allergic diseases is complex and has been the subject of several epidemiological
studies in the last decades [7–9], although meta-analyses do not show conclusive ev-
idence for an allergy preventing effect of breastfeeding [10, 11]. For example, Kull et
al. [8] showed that, exclusively breastfed (4 months or more) children in the general
population, had a reduced risk of sensitization and asthma compared to children
breastfed for less than 4 months, while Mihrshahi et al. [9] reported no significant
association between onset of atopy and duration of exclusive breastfeeding. One ex-
planation for these contradicting findings could be differences in the definition of
the outcomes. However, it could also be due to the individual-specific composition
of human milk which relates to, amongst other factors, maternal genetics, maternal
diet, maternal nutrition stores, time of gestation, and time of lactation [12, 13].

It is possible that specific components in human milk with levels determined by
individual-specific factors could influence the development of the immune system
of the breastfed child. Proteins are a particularly important group of such human
milk components with immunomodulatory potential, including immunoglobulins
(Igs), cytokines, and dietary antigens.

Thus far, several studies have demonstrated the importance of human milk pro-
teins for the development of the infant’s immune system [14–17]. In a cohort study
including 398 children, Munblit et al. [14] found that higher levels of transforming
growth factor (TGF)β2 in human milk were related to a higher occurrence of eczema
in the infant. Österlund et al. [15] showed that eosinophil cationic protein (ECP), a
marker of eosinophil degranulation, had higher levels in human milk consumed by
children that develop cow milk allergy or atopic dermatitis. In another study, Järvi-
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nen et al. [16] reported that infants who received human milk with low levels of
total immunoglobulin A (IgA) were more likely to develop cow milk allergy. A more
recent study conducted by Michel et al. [17] showed interdependencies between ma-
ternal allergy status, risk of allergy development in the infant, and IgA, TGFβ1, and
TGFβ2 levels in human milk.

In addition to these studies showing the importance of human milk proteins,
some studies show the presence of dietary allergens in human milk and their possi-
ble relation with maternal and infant allergy status. It was shown, for example, that
a bovine milk allergen is present in higher levels in milk from allergic mothers [18]
and that the presence of such allergens in the milk might result in tolerance induc-
tion [19]. In addition, it was shown by Adel-Patient et al. [20] that sensitized mice
who were exposed to bovine β-lactoglobulin (BLG) during lactation transferred pro-
tection for this allergen to their offspring at a level that correlated with BLG-specific
antibodies in the milk.

The research to date has been mostly limited to targeted, assay-based protein
analysis, with a small number of identified proteins. As a result, little is currently
known about the relation between the complete human milk proteome and the
allergy status of mother and child. We set out to investigate this, using human
milk samples from a subset of the Canadian CHILD Cohort Study, a general pop-
ulation birth cohort [21]. This subset included 300 mother-child dyads, equally
distributed across four groups representing all possible combinations of allergy of
both mother and child. The human milk proteome of these samples was analyzed
with a shotgun/bottom-up proteomics workflow, meaning that proteins are analyzed
through the identification of peptides that are released from the protein through
trypsin digestion. The resulting data was investigated using univariate analysis,
exploratory multivariate analysis, classification models, and network analysis (see
Figure 4.1).

Whereas in univariate analysis, the focus is on the abundance of the individ-
ual proteins, a systems biology approach with network analysis enables considering
interconnections between proteins. A protein network is a graphic representation
of proteins (nodes) and their associations (edges) expressed by a similarity measure
such as correlation coefficients. Edges between nodes can therefore provide informa-
tion on the interdependence of proteins in pathways and expression [22, 23]. Analy-
sis of protein networks is essential in a thorough investigation of a possible relation
between the milk proteome and a pathological condition such as allergy because
proteins are pivotal components in sometimes interconnected biological pathways
and often play a role through interaction with other proteins [24]. Comparison of
associations between proteins across conditions such as allergy status can be carried
out using differential network analysis. Such analysis of differences in protein inter-
actions can elucidate and provide a better understanding of molecular mechanisms
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than univariate analyses focusing on the abundance of individual proteins [25].
This study aimed to explore the relation between the complete human milk pro-

teome on the one hand and both maternal allergy and child allergy development on
the other, and is the first to undertake an untargeted analysis of the human milk
proteome, examining its relation with the allergy status of both mother and child.

4.2 Materials and methods

4.2.1 Study design CHILD cohort

This study included a subset of n = 300 mother-child dyads originating from the
CHILD cohort (https://www.childstudy.ca) [21]. In the CHILD Cohort Study, preg-
nant mothers were recruited from the general population from four locations in
Canada (Vancouver, Edmonton, Manitoba, and Toronto). The study was carried
out following the Declaration of Helsinki, and local Human Research Ethics Boards
approved the study protocols. All parents involved in the study provided written
informed consent at enrollment.

The selection of the 300 mother-child dyads for the current study was made
based on the allergy status of the mother and the child (Figure 4.1). Based on a 2×2
factorial design including allergy of both mother and child, four equal-sized groups
(n = 75) were created (allergic mother and child, allergic mother and non-allergic
child, non-allergic mother and allergic child, non-allergic mother and child). These
4 groups are later referred to as “mother-child allergy groups.” The groups were
matched for lactation stage, maternal age, maternal BMI, secretor status, ethnicity,
and infant sex.

4.2.2 Definition of allergy

The definition of maternal allergy included at least one self-reported diagnosis of
allergic disease, including asthma, food allergy, hay fever, or skin allergy, at the time
of enrollment during pregnancy.

The definition of child allergy included atopic sensitization (1 or 3 years of age)
with one or more of the following: atopic dermatitis (1 or 3 years of age), recurrent
wheezing (1 year of age), asthma (3 years of age), rhinitis (3 years of age), or food
allergy (3 years of age). Atopic sensitization was determined using standardized
skin prick tests, including six inhalant allergens (Alternaria alternata, cat hair, dog
epithelium, house dust mites [Dermatophagoides pteronyssinus and Dermatophagoides
farinae], and German cockroach) and four food allergens (bovine milk, egg, peanut,
and soybean). According to the criteria described by Williams et al. [26], atopic
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dermatitis was assessed by pediatricians of the CHILD study. At three years of age,
the CHILD study physician made a careful assessment of the child’s clinical history.
Diagnoses recorded as “yes” and “possible” were considered positive for the purpose
of defining whether the child had any of asthma, allergic rhinitis, food allergy, or
atopic dermatitis. A detailed description of the assessments of allergic sensitization
and diseases has been given before [27].

Mother-child dyads
n = 300

Allergy status groups
4*75

Human milk
proteomics

Network 
comparison

Univariate 
analysis

Random forest 
classification

Sample collection Sample analysis Data analysis

MS/MS

LC 

Figure 4.1: Schematic overview showing the sample set from the CHILD Cohort Study and the
approach that was used for the analysis of the data. Proteins in a selection of 300 human milk
samples from mother-child dyads with different allergy status (+ indicates allergy, - indicates
no allergy) were analyzed using mass spectrometry. The data analysis was carried out using
univariate analysis, classification models, and network comparison. Probabilistic Context
Likelihood of Relatedness on Correlation (PCLRC), differential connectivity, and Covariance
Simultaneous Component Analysis (COVSCA) were used for the network comparisons.

4.2.3 Sample collection

Milk samples were collected according to the CHILD protocol [28]. In short, foremilk
and hindmilk samples were collected from several feedings during a day and were
pooled to minimize within feed variation and diurnal variation. Samples were col-
lected between 6 and 35 weeks post-partum (median = 15.6 weeks, interquartile
range (IQR) = 4.6). Samples were stored at 4°C in the home refrigerator and within
24 hours, picked up and transported on ice to the CHILD laboratory. There, samples
were aliquoted and stored until further analysis at -80°C. Further transport of the
samples was done on dry ice.
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4.2.4 Sample preparation

Skimmed milk was obtained by centrifugation at 10,000g and 4°C for 30 minutes.
Then, skimmed milk was again centrifuged at 1,000g and 4°C for 10 minutes to re-
move any remaining lipids. Skimmed milk samples were prepared with filter-aided
sample preparation (FASP) for protein analysis in randomized order as previously
described [29].

In addition to the samples from the CHILD Cohort Study, aliquots of a pooled
human milk sample were added as a control for technical variation. This sample
comprised multiple aliquots of pooled human milk samples from the Dutch Human
Milk Bank (Amsterdam, The Netherlands).

4.2.5 LC-MS/MS analysis

Trypsin digested proteins were analyzed with LC-MS/MS as described before, with
minor adjustments [30]. In short, 1.5 - 4 µL of tryptic peptide solution was loaded
onto a 0.10 × 250 mm ReproSil-Pur 120 C18-AQ 1.9 µm beads analytical column
(prepared in-house) at 825 bar. A gradient from 9 to 34% acetonitrile in water with
0.1% formic acid in 50 min (Thermo nLC1000) was used. Full scan FTMS spectra
were obtained using a Q-Exactive HFX (Thermo electron, San Jose, CA, USA) in
positive mode between 380 and 1400 m/z.

The 25 most abundant positively charged peaks (2-5) in the MS scan were frag-
mented (HCD) with an isolation width of 1.2 m/z and 24% normalized collision
energy. MSMS scans were recorded in data-dependent mode with a threshold of
1.2 × 105 and 15 s exclusion for the selected m/z ± 10 ppm. Samples were analyzed
with a technical replicate added randomly to each 7 injections.

4.2.6 Data processing

The Andromeda search engine of the MaxQuant software v1.6.17.0 [31] was used
to analyze the raw LC-MS/MS data. For this, a database was created by an initial
MaxQuant run using the full human proteome (downloaded from UniProtKB on 20-
01-2021, n = 194,237) [32]. Protein identifiers obtained as identification from this
initial run were used to create a human milk database for a second run (n = 24,175),
in which also a cow milk protein (n = 1,006) and an allergen protein database (n =
721) were added [18].

In MaxQuant, digestion specificity was set to Trypsin/P, with maximally 2 missed
cleavages. A fixed propionamide modification was set for cysteines and variable
modifications for acetylation of the peptide N-term, deamidation of the side chains
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of asparagine and glutamine, and oxidation of methionine, with a maximum of five
modifications per peptide were set.

Label-free quantification (LFQ) was used to obtain protein abundances. Per iden-
tified protein group, a leading protein was selected as described before [18] and pro-
teins were manually annotated with keywords using the UniProt KB database [32]
(accession date: 21-02-2022).

4.2.7 Statistical methods

Missing data

In dealing with the missing values in the proteomics data, identifications were first
filtered with the requirement that proteins have a minimum of 25 valid values in at
least one of the four sample groups. In practice this resulted in a minimum of 66 and
a median of 215 valid values. This way of filtering the data prevented the removal of
proteins that had only valid values in one of the four sample groups. Following this,
the remaining missing values were imputed using the GSimp package [33]. This
Gibbs sampler-based algorithm imputes missing values with the assumption that
missing values are not at random (MNAR) and left-censored.

Univariate analysis

The Kruskal-Wallis test was applied to deduce differences in protein abundance be-
tween the milk from mothers in the different mother-child allergy groups [34]. Re-
sulting p-values were corrected for multiple testing using Benjamini-Hochberg cor-
rection [35]. After correction, an adjusted p-value <0.05 was considered significant.
Dunn’s multiple comparison test [36] was applied to determine differences between
specific groups and also these p-values were corrected for multiple hypothesis test-
ing using Benjamini-Hochberg correction.

Principal Component Analysis

For unsupervised data exploration, Principal Component Analysis (PCA) [37] was
applied on the 300 × 647 data matrix (samples × proteins), using the FactoMineR
package for R [38]. This enabled investigation of the data structure and the pos-
sible presence of patterns in protein abundance that cause differentiation between
samples from groups with different allergy status. Data was scaled to unit variance
before analysis.

104



4

Random Forest modeling

Random Forest [39] classification models were built using the R package “random-
Forest” [40] as described before [41]. Six different models were built to discriminate
between the different mother-child allergy groups, covering all pairwise compar-
isons of allergic/non-allergic mothers with allergic/non-allergic children. The sig-
nificance of the reported results was assessed with a permutation test using 1000
permutations.

Network inference and analysis

Probabilistic Context Likelihood of Relatedness on Correlation (PCLRC). Protein-
protein association networks were built using the Probabilistic Context Likelihood
of Relatedness on Correlation (PCLRC) algorithm [42]. This algorithm provides a
robust estimation of correlation, using resampling and a modified version of the
Context Likelihood of Relatedness (CLR) algorithm [43] to remove nonsignificant
background correlations.

With resampling (n iterations = 1000), 75% of each dataset was randomly se-
lected and subjected to the CLR algorithm. Resulting from this was a matrix with
a probabilistic measure pij for each correlation between proteins rij, where i and j
indicate the i-th and j-th element in the Spearman correlation matrix. Correlations
were retained if pij >0.99 and all other correlations were replaced with 0.

rij =

rij if pij ≥ 0.99
0 if pij < 0.99

Networks were built for each different mother-child allergy group, resulting in
a total of 4 protein networks. The connectivity of a protein i in network a with
mother-child allergy status S is defined according to:

χa∈S
i =

 J∑
j=1

|rij |
− 1

Whereas the differential connectivity between two networks a and b, with differ-
ent mother-child allergy statuses S1 and S2, is calculated by:

∆
a∈S1,b∈S2
i = χa∈S1

i −χb∈S2
i

All p-values for differential connectivity were adjusted for multiple testing with
Benjamini-Hochberg correction [35]. Significant differential connectivities (p <0.05)
were considered for further analysis and interpretation.
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Covariance Simultaneous Component Analysis (COVSCA). To explore compre-
hensively the (dis)similarity among the protein association networks, Covariance
Simultaneous Component Analysis (COVSCA) was used [44]. With this approach,
differences and commonalities between the different networks can be modeled.

In comparing networks with COVSCA, each network becomes a point in the com-
ponent space. Thus, the method enables a representation and visualization of mul-
tiple networks in a way that is similar to PCA. Points (protein association networks)
that are close to each other in the R-dimensional space share similar characteris-
tics, i.e., similar correlation patterns. Furthermore, the loadings of the components
give the relative contribution of each protein in shaping the observed network dif-
ferences.

COVSCA, initially developed for modeling multiple covariance matrices at the
same time, can also be used for the adjacency matrices resulting from the PCLRC.
The K matrices are modeled as a combination of low dimensional prototypes (L≪
K):

Sk =
L∑
l=1

cklZlZ
T
l

In this, ckl ≥ 0(l = 1,2, ...,L) are weight coefficients, and ZlZT
l are prototypical

symmetric matrices consisting of loading Z of size J × Rl that hold simultaneously
for all Sk .

Two rank-1 prototype matrices were used to fit the model, resulting in one set of
loadings per component. This was chosen as the best compromise between goodness
of fit (68%) and the complexity of the COVSCA model (rank and number of the
prototypical matrices). COVSCA loadings were transformed to z-scores and loadings
with z > |2| were further investigated.

Overrepresentation analysis

The GORILLA (Gene Ontology enRIchment anaLysis and visuaLizAtion tool) (http:
//cbl-gorilla.cs.technion.ac.il/) tool [45] was used for overrepresentation analysis
of gene ontology (GO) annotations in selections of proteins that were differentially
connected. The tool was used in two list mode where all proteins identified in the
current study were used as background set. All p-values reported were corrected
with Benjamini-Hochberg correction [35], and considered significant with p <0.05.
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4.3 Results

Proteomic analysis of all samples led to a total of 1629 identified proteins before
filtering on missing values. After filtering these proteins on the requirement of being
identified ≥ 25 times in at least one of the four mother-child allergy groups, 647
proteins remained for further data analysis. In this filtered dataset, the number of
identified proteins per sample ranged between 256 and 586 (median = 458). The
major milk proteins α-lactalbumin, albumin, lactoferrin, β-casein, and αs1-casein,
were in all analyzed samples among the top 15 most abundant proteins. A complete
overview of the 647 identified proteins can be found in Supplementary File S4.1.

4.3.1 Univariate analysis

Differences in protein intensities between the different mother-child allergy groups
were assessed with Kruskal-Wallis tests. After correction for multiple hypothesis
testing, no significant differences were found among the four groups (Table 4.1).
Kruskal-Wallis outcomes with uncorrected p <0.05 were further assessed with post-
hoc tests (Dunn’s) and subsequent correction for multiple testing, which resulted
in 23 proteins that showed a difference between the groups with adjusted p <0.05
(Table 4.1).

Most of these differences (n = 15) were found between the non-allergic group (M-
C-) and the group where only the child ultimately developed an allergy (M-C+). Pro-
teins that differed between these groups were primarily Ig chains (11 out of 15) and
were mostly higher in abundance in the group where the mother was non-allergic
and the child developed an allergy (Figure 4.2). Additionally, 4 of these Igs show
also higher levels in milk from allergic mothers with children who did not develop
an allergy.

Further investigation of all identified Ig proteins showed that the mean abun-
dance of these proteins is in general lower in the groups where mother, child or both
are allergic, when compared to the non-allergic group (Figure 4.3). This effect is
the clearest in the comparison of the group where only the child developed an al-
lergy with the group where both mother and child are non-allergic. Out of 81 Ig
proteins, 75 proteins have a mean abundance that is higher in the group where the
child developed an allergy.
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Figure 4.2: Violin plots visualizing the differences in abundance of the 4 most significantly
different immunoglobulin (Ig) chains between the different allergy status groups from the
CHILD Cohort Study. Differences between groups are indicated with p-values from Dunn’s
post-hoc tests, and means of each group are shown with black, horizontal lines. In the labeling
of the groups, M indicates mother, C indicates child, + indicates allergy, and - indicates no
allergy.
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Table 4.1: Results of univariate analysis (Kruskal-Wallis) with subsequent post-hoc test (Dunn’s) for the comparison of
protein abundance in milk from allergic (M+) and non-allergic (M-) mothers, with children who developed an allergy
(C+) and did not develop an allergy (C-) in the CHILD Cohort Study. The trend indicates higher (⇑) or lower (⇓) abun-
dance in the first group in the comparison. Listed are all proteins with uncorrected p-value <0.05 (Kruskal-Wallis) and
corrected p-value <0.05 (Dunn’s), sorted by the mother-child allergy groups in the comparison.

Comparison

Leading protein UniProt ID Keyword p-valuea Adjusted
p-valuea

Group 1 Group 2 Adjusted
p-valueb

Trend

Sodium-dependent phosphate
transport protein 2B

O95436 Transport 0.008 0.867 M-/C- M-/C+ 0.014 ⇑

V2-7 protein A2MYD4 Immunoglobulin 0.029 0.957 M-/C- M-/C+ 0.041 ⇓
IGL c1836-light A0A5C2G0A5 Immunoglobulin 0.014 0.957 M-/C- M-/C+ 0.019 ⇓
IGL c2315-light A0A5C2G2Y4 Immunoglobulin 0.031 0.957 M-/C- M-/C+ 0.037 ⇓
IGH + IGL c632-heavy A0A5C2GC20 Immunoglobulin 0.012 0.944 M-/C- M-/C+ 0.008 ⇓
IG c662-heavy A0A5C2GE75 Immunoglobulin 0.002 0.453 M-/C- M-/C+ 0.002 ⇓
IG c326-heavy A0A5C2GF50 Immunoglobulin 0.003 0.453 M-/C- M-/C+ 0.001 ⇓
IG c849-heavy A0A5C2GF92 Immunoglobulin 0.020 0.957 M-/C- M-/C+ 0.025 ⇓
IG c279-heavy A0A5C2GLS6 Immunoglobulin 0.011 0.944 M-/C- M-/C+ 0.008 ⇓
IG c1707-heavy A0A5C2GYK2 Immunoglobulin 0.002 0.453 M-/C- M-/C+ 0.001 ⇓
Methyltransferase-like protein 9 H3BM54 Methyltransferase 0.001 0.453 M-/C- M-/C+ 0.028 ⇓
Delta-1-pyrroline-5-carboxylate
synthase

P54886 Proline
biosynthesis

0.026 0.957 M-/C- M-/C+ 0.039 ⇓

Prosaposin variant Q53FJ5 Lipid metabolism 0.028 0.957 M-/C- M-/C+ 0.018 ⇓
Immunoglobulin heavy Q9NPP6 Immunoglobulin 0.032 0.957 M-/C- M-/C+ 0.036 ⇓
IgG L chain S6BAR0 Immunoglobulin 0.023 0.957 M-/C- M-/C+ 0.026 ⇓
N90-VRC38.07 heavy A0A1W6IYI6 Immunoglobulin 0.033 0.957 M-/C- M+/C- 0.019 ⇓
V2-7 protein A2MYD4 Immunoglobulin 0.029 0.957 M-/C- M+/C- 0.041 ⇓
IGL c1836-light A0A5C2G0A5 Immunoglobulin 0.014 0.957 M-/C- M+/C- 0.019 ⇓
IG c326-heavy A0A5C2GF50 Immunoglobulin 0.003 0.453 M-/C- M+/C- 0.043 ⇓
IG c849-heavy A0A5C2GF92 Immunoglobulin 0.020 0.957 M-/C- M+/C- 0.025 ⇓
Nephronectin Q6UXI9 Calcium binding 0.032 0.957 M-/C- M+/C- 0.021 ⇑
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Table 4.1: (Continued) Results of univariate analysis (Kruskal-Wallis) with subsequent post-hoc test (Dunn’s) for the
comparison of protein abundance in milk from allergic (M+) and non-allergic (M-) mothers, with children who developed
an allergy (C+) and did not develop an allergy (C-) in the CHILD Cohort Study. The trend indicates higher (⇑) or lower (⇓)
abundance in the first group in the comparison. Listed are all proteins with uncorrected p-value <0.05 (Kruskal-Wallis)
and corrected p-value <0.05 (Dunn’s), sorted by the mother-child allergy groups in the comparison.

Comparison

Leading protein UniProt ID Keyword p-valuea Adjusted
p-valuea

Group 1 Group 2 Adjusted
p-valueb

Trend

Phospholipid hydroperoxide
glutathione peroxidase

P36969 Peroxidase 0.028 0.957 M-/C- M+/C+ 0.021 ⇓

Sodium-dependent phosphate
transport protein 2B

O95436 Transport 0.008 0.867 M-/C- M+/C+ 0.014 ⇑

Hornerin Q86YZ3 Keratinization 0.024 0.957 M-/C- M+/C+ 0.020 ⇑
Galectin-3-binding protein Q08380 Cell adhesion 0.037 0.999 M-/C+ M+/C- 0.023 ⇑
IGL c2315-light A0A5C2G2Y4 Immunoglobulin 0.031 0.957 M-/C+ M+/C- 0.037 ⇑
IG c662-heavy A0A5C2GE75 Immunoglobulin 0.002 0.453 M-/C+ M+/C- 0.017 ⇑
Methyltransferase-like protein 9 H3BM54 Methyltransferase 0.001 0.453 M-/C+ M+/C- 0.034 ⇑
Alpha-S1-casein A0A0J9YVR3 Milk protein 0.035 0.993 M-/C+ M+/C+ 0.043 ⇓
IG c662-heavy A0A5C2GE75 Immunoglobulin 0.002 0.453 M-/C+ M+/C+ 0.017 ⇑
Methyltransferase-like protein 9 H3BM54 Methyltransferase 0.001 0.453 M-/C+ M+/C+ 0.000 ⇑
Ectonucleoside triphosphate
diphosphohydrolase 3

O75355 Hydrolase 0.022 0.957 M-/C+ M+/C+ 0.040 ⇓

Protein FAM3C Q92520 Cytokine 0.008 0.867 M-/C+ M+/C+ 0.009 ⇑
IgG L chain S6BAR0 Immunoglobulin 0.023 0.957 M-/C+ M+/C+ 0.026 ⇑
a from Kruskal-Wallis tests
b from Dunn’s post-hoc tests
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Figure 4.3: (Caption on next page.)
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Figure 4.3: Volcano plots visualizing the trend in immunoglobulin levels in milk from dif-
ferent mother-child allergy status groups from the CHILD Cohort Study. Each data point
represents one protein, with on the x-axes the ratio of the means of the log10 transformed
label-free quantification (LFQ). Immunoglobulin-related proteins are represented by red and
other proteins with grey dots. Colored labels on left and right side of x = 0 indicate in which
mother-child allergy status group the mean abundance of the respective proteins is higher. In
the labeling of the groups, M indicates mother, C indicates child, + indicates allergy, and -
indicates no allergy.

4.3.2 Non-human proteins

In the current study, several non-human proteins were identified (n = 9), among
which were albumin from dog, horse, and cat, as well as bovine αs1-casein and BLG
(Table 4.2). However, the majority of these proteins were only found with few tryptic
peptides in a low number of samples and filtered out before further data analysis.
Additional non-human proteins of potential interest that were included in the data-
base, but not identified in any samples, include allergens from, for example, peanut,
egg, and dust mite.

4.3.3 Multivariate exploratory analysis

To explore whether patterns in the abundance of proteins allow a differentiation of
the different groups of allergy status, PCA was performed. The visualization of all
samples using the first two components of the PCA shows that there is no separa-
tion between the groups of different allergy status of mother and child (Figure 4.4),
suggesting no major global differences in the protein profiles of these four groups.
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Table 4.2: Identified non-human tryptic peptides in human milk samples from the CHILD Cohort Study (n = 150 allergic
mothers and 150 non-allergic mothers).

Sequence UniProt ID Leading protein Organism Identified in n
(%) samples

from allergic
mothers

Identified in n (%)
samples from

non-allergic
mothers

Identi-
fication

scorea

KQTALVELLK P49822 Albumin Bos taurus (Bovine) 11 (7) 18 (12) 87.3
LVNELTEFAK P02769 Albumin Bos taurus (Bovine) 100 (67) 103 (69) 125.0
EKVNELSK P02662 αs1-casein Bos taurus (Bovine) 2 (1) 3 (2) 149.7
HIQKEDVPSER P02662 αs1-casein Bos taurus (Bovine) 4 (3) 1 (1) 93.6
IDALNENK P02754 β-lactoglobulin Bos taurus (Bovine) 12 (8) 11 (7) 89.8
LISVDTEHSNIYLQNGPNR F1N076 Ceruloplasmin Bos taurus (Bovine) 28 (19) 32 (21) 203.6
MFTTAPDQVDKENEDFQESNK F1N076 Ceruloplasmin Bos taurus (Bovine) 2 (1) 3 (2) 88.0
SSQDLQPR Q0P5H7 Probable

arginine–tRNA
ligase

Bos taurus (Bovine) 32 (21) 32 (21) 81.4

FPKADFAEISK P49822 Albumin Canis lupus familiaris
(Dog)

4 (3) 4 (3) 90.2

LVNEVTEFAKK Q5XLE4 Albumin Equus caballus (Horse) 147 (98) 139 (93) 124.1
AEFAEISK P49064 Albumin Felis catus (Cat) 73 (49) 82 (55) 84.9
AFKAWSVAR P49064 Albumin Felis catus (Cat) 100 (67) 109 (73) 98.3
EVCKNYQEAK P49064 Albumin Felis catus (Cat) 94 (63) 95 (63) 96.5
YICENQDSISTK P49064 Albumin Felis catus (Cat) 17 (11) 11 (7) 85.4
a Score from the MaxQuant output indicating the quality of the identification of the peptide. A higher score represents a better identification.

113



−20

0

20

−50 −25 0 25
PC1 (29.1%)

P
C

2 
(1

0.
5%

) Allergy status

M−/C−

M−/C+

M+/C−

M+/C+

Figure 4.4: Scatter plot of principal component analysis (PCA) representing the human milk
protein profile of mother-child dyads from the CHILD Cohort Study. Each point represents
one dyad.

4.3.4 Prediction of allergy status using Random Forest models

Random Forest classification was used to discriminate the samples of the different
mother-child allergy groups based on the milk protein profile. Two-group models
were built for all combinations of maternal allergy status and child allergy status.
From the results shown in Table 4.3, it can be noted that all classification models
have low discriminating power and that it was therefore not possible to discriminate
between the groups. The best accuracy (60%, considered “poor”) was obtained for
the model that discriminates between the group where only child developed an al-
lergy and the group where both mother and child were non-allergic. Together, this
indicates that differences in the human milk proteome between the four groups are
weakly reflected in protein abundances, as was also shown by the univariate analy-
sis.
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Table 4.3: Outcome of Random Forest models on human milk proteins for the discrimina-
tion of groups with different allergy statuses from the CHILD Cohort Study. Comparisons of
the groups are labelled according to allergy status, with allergic (M+) and non-allergic (M-)
mothers, and allergic (C+) and non-allergic (C-) children.

Comparison

Group 1 Group 2 Accuracy (%),
(p-value)

Specificity (%),
(p-value)

Sensitivity (%),
(p-value)

AUROC,
(p-value)

M+/C+ M+/C- 46.7 (0.62) 49.3 (0.39) 44.0 (0.76) 51.7 (0.81)
M+/C+ M-/C+ 50.7 (0.34) 45.3 (0.62) 56.0 (0.10) 53.2 (0.63)
M+/C+ M-/C- 50.0 (0.38) 53.3 (0.18) 46.7 (0.60) 51.1 (0.86)
M+/C- M-/C+ 49.3 (0.41) 50.7 (0.29) 48.0 (0.52) 51.4 (0.84)
M+/C- M-/C- 54.7 (0.14) 56.0 (0.11) 53.3 (0.23) 50.6 (0.94)
M-/C+ M-/C- 60.0 (0.01) 58.7 (0.05) 61.3 (0.01) 58.6 (0.22)

4.3.5 Network analysis

Next, differential network analysis was applied to investigate whether maternal al-
lergy status or the development of allergy in the child is reflected in the milk protein
profile in more subtle ways.

Network inference

The protein-protein association networks (Supplementary Figure S4.1) of the dif-
ferent mother-child allergy groups were used to calculate the connectivity of each
protein in each mother-child allergy group. The PCLRC algorithm retained mostly
positive associations and connectivity represents the number of associations per pro-
tein. A comparison of the protein connectivity is visualized in Figure 4.5. What can
be observed from this is a pattern that for the groups where at least one of mother
or child is allergic, there is stronger interconnectivity between milk proteins when
compared to the group where both mother and child are non-allergic.

To investigate this pattern further, proteins with differential connectivity >50
were selected as differentially connected proteins and further investigated (Supple-
mentary File S4.1). This selection was made in a trade-off between the complexity
and interpretability of the proteins with high differential connectivity. The selection
resulted in 173, 171, and 153 proteins for comparison of non-allergic mother and
child with respectively (i) allergic mother and non-allergic child, (ii) non-allergic
mother and allergic child, and (iii) allergic mother and child. From these proteins,
95 proteins occurred in all three selections, showing a similarity in differential con-
nectivity. Interestingly, GO overrepresentation analysis of these proteins showed
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Figure 4.5: Human milk protein connectivity in the different mother-child allergy groups
from the CHILD Cohort Study. Each subplot represents a pairwise comparison of protein
connectivity in two mother-child allergy groups and each dot represents a single protein.
Protein connectivity is obtained from the adjacency matrices build with the PCLRC algorithm
and all groups are compared with one another in each subplot. In the labeling of the groups,
+ indicates allergy and - indicates no allergy.
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a significant overrepresentation of proteins involved in translation initiation (p =
1.08×10-15). This overrepresentation is due to ribosomal proteins (n = 24) and trans-
lation initiation factors (EIF3A, EIF4A1, EIF5A).

None of the differentially connected proteins showed a difference in level be-
tween the different mother-child allergy groups with univariate analysis, indicating
the complementarity of these two approaches.

Network modeling

In addition to pairwise comparison of networks, a simultaneous comparison was car-
ried out using COVSCA. With COVSCA, similarities and differences in correlation
patterns can be analyzed for a set of networks. In the visualization of the results of
COVSCA, each network is a data point in the component space (see Figure 4.6).
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Figure 4.6: Score plot of the COVSCA model for the protein correlation network obtained
using PCLRC of different groups based on maternal and child allergy status in the CHILD
Cohort Study. Each point represents a protein-protein association network of one mother-
child allergy group (+ indicates allergy, and - indicates no allergy). Protein importance for
each component is shown in Figure 4.7.

In this comparison, the networks of the four different mother-child allergy groups
were compared. From this, it can first be observed that the group with both non-
allergic mothers and non-allergic children shows differences in correlation patterns
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Figure 4.7: COVSCA loadings of the COVSCA model of different groups based on maternal
and child allergy status in the CHILD Cohort Study. Loadings indicate the importance of
each protein for the differences or similarities in correlation patterns observed in the COVSCA
score plot (Figure 4.6). Proteins are labeled with gene IDs along the y-axis, and colors indicate
shared gene ontology annotations (TRiC: tailless complex polypeptide 1 ring complex).

with all other groups. These differences are present in both COVSCA components.
Second, the group where only mothers are allergic shows a difference in network
correlation patterns with the non-allergic group on Component 1. Thirdly, groups
comprising children who developed an allergy show similarities in correlation pat-
terns on both components.

To investigate these observations further, the loadings of the COVSCA model
with z > |2| were examined. These loadings represent the proteins that contributed
the most to the difference in correlation patterns between the different networks.

The loadings for Component 1 (see Figure 4.7) are overrepresented by proteins
involved in gluconeogenesis (p = 0.0003), the synthesis of glucose. This component
accounts for separation between the non-allergic group and the groups where either
mother, child, or both are allergic. The second component, which drives the sepa-
ration of the groups on allergy status of the child, shows a significant overrepresen-
tation of proteins involved in the positive regulation of DNA biosynthetic processes
(p = 0.0013). This is mainly due to 5 members of the tailless complex polypeptide
1 ring complex (TRiC or CCT). In addition, several proteins involved in translation
processes show differences in correlation patterns on this component.

4.4 Discussion

We investigated the associations of human milk proteins with maternal and child
allergy. Using univariate analysis, predictive modeling and network analysis, several
relevant differences and distinctive patterns were found between groups of different
allergy status.

4.4.1 Differences in immunoglobulin levels between groups with
different allergy statuses

Several proteins showed differences in level when the different mother-child allergy
groups were compared. Although none were statistically significant after traditional
correction for multiple testing, this does not necessarily imply they are biologically
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insignificant. It is widely acknowledged that correction methods for multiple hy-
pothesis testing can be too stringent for bottom-up proteomics data [46, 47] because
each protein is represented by multiple tryptic peptides. Therefore, we reported
both corrected and uncorrected p-values, and discuss the findings.

Most of the differences in protein abundance were found between non-allergic
mothers with non-allergic children and the group where only the child developed
an allergy. This was also reflected in the accuracy of the Random Forest classifica-
tion model for these two groups, which was the highest (60%) among all models.
The differentially abundant proteins were mainly Ig variable domains. These results
point to differences in specific Igs in milk consumed by children who ultimately
develop an allergy, and these differences did not seem to be directly linked to the
mother’s allergy status. This raises two important questions for future research: (i)
why do these mothers secrete these specific Igs in higher levels in their milk, and (ii)
could the development of allergy in the child be related to these Igs?

Regarding the first question, the findings in this study show that, regardless of
maternal allergy status, milk for children who ultimately develop an allergy con-
tained higher levels of specific Igs. Possibly, other factors that lead to allergy devel-
opment in the child, such as, health conditions, genetics, dietary patterns, or envi-
ronmental exposures, also lead to higher levels of Igs in the milk. Another possi-
bility is that infants who would develop an allergy somehow cause higher levels of
specific Igs in the milk of the mother. Further research is required to explore these
possibilities.

When it comes to the second question, there is contradicting evidence. It has
been shown that higher levels of specific Igs in human milk could help in the healthy
development of the child’s immune system. For example, a study conducted by
Ohsaki et al. [48] showed that ovalbumin-specific IgG immune complexes in human
milk fed to mice induced tolerance. A study by Lupinek et al. [49] complements this
by showing that allergen-specific IgG originating from cord blood or breast milk
seemed to protect against allergic sensitization. Nevertheless, Järvinen et al. [16]
showed that cow’s milk specific IgA levels in human milk did not correlate with the
development of cow’s milk allergy in the child.

Unfortunately, more details on the function or specificity of the identified Ig vari-
able domains are not available. A complete analysis of the sequence diversity of the
antibody repertoire could be done with targeted approaches [50–52], but was out-
side the scope of the current study.

Notably, soluble CD14, a protein in human milk that may be protective against
the development of food allergies [53, 54], was not different between the mother-
child allergy groups in our study (uncorrected p = 0.53). This and other contradic-
tions with prior studies could be related to our clinical definition of allergy. For ex-
ample, in a previous study, significant differences were observed in comparing milk
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from mothers with house dust mite allergy and non-allergic mothers [55]. These dif-
ferences concerned especially protease inhibitors and apolipoproteins. We did not
find these proteins to be different in abundance, which is possibly due to differences
in the definition of allergy. Hettinga et al. [55] used a rather strict definition of house
dust mite allergy, combined with high immunoglobulin E (IgE) levels in the blood
and high environmental exposure to house dust mite, whereas we applied a more
heterogeneous definition encompassing diagnosis of multiple allergic conditions.

Relatively few non-human proteins were identified in a low number of samples,
and no apparent differences were observed between the different mother-child al-
lergy groups (Table 4.2). Nevertheless, some studies have argued that non-human
proteins, especially allergens, play an important role in allergy development [19,
56, 57]. Data from several sources show that most of these proteins originate from
the diet and especially from cow’s milk or cow’s milk products [18, 58]. The differ-
ence between prior studies and the current study might be due to differences in, e.g.,
maternal consumption of dairy products.

4.4.2 Distinctive patterns of connectivity for groups with different
allergy statuses

A particularly novel aspect of our study was the network analyses, which demon-
strated distinctive association patterns between proteins when groups with differ-
ent allergy statuses are compared. This points to differences in pathway regula-
tions that are specific for each group. Our most striking finding is the overall lower
connectivity observed in the group where both mother and child are non-allergic.
This overall difference in connectivity might reflect maternal lifestyle, environmen-
tal exposures, or health. For example, a recent study by Yan et al. [59] showed that
disease-associated stress brought about the remodeling of protein pathways, lead-
ing to a proteome-wide increase in interaction strength and change in connections.
Although such an increase in connectivity has not been described before regarding
the human milk proteome and allergy, there is evidence showing that allergies are
linked to systemic inflammation [60, 61]. Such a state of systemic inflammation
might, in turn, result in a change in protein connectivity in the human milk pro-
teome.

Interestingly, in the COVSCA model, we observed that correlation patterns of
proteins involved in gluconeogenesis were important for separation between the
non-allergic group and the groups where either mother, child, or both are allergic.
This points to differences in the regulation of glucose synthesis in the mammary ep-
ithelial cells, which could reflect a competition between immune and epithelial cells
for glucose, as it is known that during an immune response, immune cells need more
glucose [62].
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We also detected an overrepresentation of proteins involved in the translation
machinery among the differentially connected proteins, which suggests a difference
or dysregulation in translation machinery in allergic and non-allergic mothers with
children who will develop an allergy. In addition, COVSCA loadings show different
correlation patterns between these groups for proteins from the TRiC/CCT com-
plex, which plays an essential role in protein folding and proteostasis [63]. How
these TRiC/CCT proteins and proteins from the translation machinery end up in
the milk is not known, but they might originate from cells present in the milk [64].
Their difference in connectivity among the different groups might then be due to,
for example, different types of cells or a different regulation in these cells. The latter
would be in line with Calvano et al. [65], who found that in blood leukocytes from
patients with systemic inflammation, there are dysregulations in, amongst others,
elongation initiation factors and ribosomal proteins. This could explain the stronger
connectivity of the protein synthesis machinery in milk from allergic mothers, who
possibly have a higher level of systemic inflammation. Nevertheless, stronger con-
nectivity was also observed in milk from non-allergic mothers with children who
would develop an allergy. No studies were found that could explain this observa-
tion, and further research should be undertaken to investigate and clarify this.

4.4.3 Limitations and strengths

Although bottom-up proteomics has many advantages, it also has limitations, in-
cluding the dependence on a database (that is, protein sequences not in the database
cannot be identified). This poses a challenge, for example, in the identification of the
variable regions of the Igs, of which many sequences are not available in databases.
Another limitation is the large number of identifications resulting from these tech-
niques, which requires stringent multiple hypothesis testing in classical univariate
data analysis. Finally, although a relatively large sample size was used in the cur-
rent study, it included considerable clinical heterogeneity in the definition of ‘al-
lergy.’ The distinct profile of the non-allergic group in both univariate and network
analysis suggests that this group is the most homogeneous compared to the allergy
groups. It is therefore possible that the clinical heterogeneity of allergy has obscured
the effect resulting from specific allergy phenotypes (e.g., food allergies or asthma)
if these would have distinct associations with milk proteins.

In summary, this study set out to investigate the human milk proteome and re-
lations with both maternal allergy status and child allergy development. The re-
sults show trends in differential abundances of immune-related proteins between
the mother-child allergy groups, suggesting a possible difference in the immunolog-
ical potential of the milk. However, an attempt to exploit these differences to build
Random Forest classification models resulted in low predictive power. This was con-

122



4

firmed with multivariate exploratory analysis that did not show differences in the
data structure for the different mother-child allergy groups. Interestingly, using a
network approach, that enables investigation of protein-protein associations, signif-
icant differences were found among the different mother-child allergy groups. The
major finding was an overall stronger connectivity of proteins in the milk of allergic
mothers and milk for infants who would ultimately develop an allergy, showing that
the allergy status of either mother, child, or both is reflected in the interconnected-
ness of the milk proteins. Collectively, these results show that network analysis com-
plements univariate analysis and classification models to reveal subtler relationships
between maternal-child allergy phenotypes and the human milk proteome. Specif-
ically, the network analysis points to a difference in the regulation of pathways for
translation and protein folding in these groups, possibly reflecting the physiological
state of the mother. Further research is warranted to investigate these associations
and the implicated biological pathways to understand their possible functional role
in allergy development and prevention.

Supplementary information

The following supplementary information is available and can be accessed through
the QR code in Figure 4.8: Network representations of the proteins in milk from the
different mother-child allergy status groups from the CHILD Cohort Study (Suple-
mentary Figure S4.1), and a complete overview of the identified proteins (Supple-
mentary File S4.1).

Figure 4.8: Scan this QR code to access the supplementary information, or visit
https://figshare.com/s/10a912f058a29df91f39.
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Abstract

Proteins and peptides in human milk have bioactive potential to benefit the new-
born and support healthy development. However, in ongoing investigations of the
health benefits of proteins and peptides, many questions remain unanswered about
the nature of these components, how they are formed, and how they end up in the
milk. This study aimed to explore and elucidate the complexity of the human milk
proteome and peptidome and to investigate associations between these. Proteins
and peptides were analyzed with non-targeted nanoLC-Orbitrap-MS/MS in a se-
lection of 300 milk samples from the CHILD Cohort Study. Protein and peptide
abundances were integrated, and a network was inferred using Gaussian graphical
modeling (GGM), allowing an investigation of direct associations. We showed that
signatures of (i) specific mechanisms of transport of different groups of proteins, (ii)
proteolytic degradation by proteases and aminopeptidases, and (iii) coagulation and
complement activation are present in human milk. These results show the value of
an integrated approach in evaluating large-scale omics data sets and provide valu-
able information for studies that aim to associate protein or peptide profiles from
biofluids such as milk with physiological characteristics.
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5.1 Introduction

Proteins in human milk have a wide variety of biological functions, ranging from
nutrition to immune modulation [1]. Their synthesis can occur in the mammary
epithelial cells (MECs), which is the case for the major milk proteins, such as the
caseins and α-lactalbumin (ALA) [2]. Other proteins are believed to be synthesized
in other parts of the body and are subsequently transferred towards and through the
MECs [3]. Shared mechanisms of transfer, location of synthesis, or functioning in
the same biological pathways can result in interdependencies between proteins [4].

Parts of the proteins’ amino acid sequence can, once detached from the original
sequence, exert a completely different biological and biochemical activity. This de-
tachment can occur during proteolytic degradation, resulting in peptides and free
amino acids. In human milk, proteolytic degradation starts already when milk is
secreted into the alveolar lumen [5] and is due to proteolytic systems comprising
proteases, protease activators, and protease inhibitors [6]. Active proteases, such as
plasmin (PLG) and kallikrein, hydrolyze peptide bonds between amino acids in the
protein sequence, disrupting the protein’s primary structure [7].

It is known that peptides play a significant role in many cellular processes in the
body, for example, acting as hormones, cytokines, or growth factors [8, 9]. Never-
theless, the role of peptides in human milk is not entirely understood yet. Studies
have shown that some of the peptides can exert specific bioactivities, such as im-
munomodulatory, antimicrobial, antioxidative, or angiotensin-converting enzyme
(ACE) inhibitory effects [10, 11]. This could be beneficial for the protection of the
mammary gland against infection but also have health benefits for the breastfed in-
fant [12]. Although proteolytic degradation in the digestive system could degrade
bioactive peptides, specific peptide sequences might be protected against, or resis-
tant to, further proteolytic degradation. In addition, new bioactive peptides may be
formed upon enzymatic digestion in the infants’ gastrointestinal tract from either
intact proteins or larger peptides [11].

To date, several studies have investigated the human milk peptidome from a
mechanistic perspective [13, 14], focusing on cleavage patterns and protease speci-
ficity. Although this has provided valuable insights into the human milk peptidome,
much is still unknown. Since peptides are a product of larger peptides or proteins,
and since the proteolytic systems themselves are part of the proteome, it is expected
that relationships exist between the proteome and peptidome. Analysis of these re-
lationships in an integrated approach is an important step in increasing knowledge
about the proteolytic activity in human milk.

This study aimed to investigate associations between proteins, between peptides,
and across proteins and peptides in human milk. For this, proteomics, and pep-
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tidomics data from 300 human milk samples were subjected to network analysis
using Gaussian graphic modeling (GGM), and observed associations were discussed.
The resulting pairwise partial correlations enable a distinction between indirect and
direct associations by adjusting for the contribution of all remaining variables [15].
The rationale behind this approach is that the associations observed in the GGM
network can provide information about the biological function of the proteins and
peptides and how they are formed or end up in the milk.

5.2 Materials and methods

5.2.1 Sample collection

The CHILD Cohort Study is a Canadian national population-based cohort (https:
//www.childstudy.ca) in which information was collected over time from parents,
infants, and their environment [16]. Pregnant mothers were recruited from the gen-
eral population from Vancouver, Edmonton, Manitoba, and Toronto. Local Human
Research Ethics Boards approved the study protocols, and the study was carried out
following the Declaration of Helsinki. All parents provided written informed con-
sent at the time of enrollment in the study.

Human milk samples from a selection of 300 mother-child dyads from the CHILD
Cohort Study were used. The selection of these samples was made based on the
allergy status of the mother and the infant, including equal numbers of different
combinations of mother-child allergy statuses.

Milk samples were collected according to the CHILD protocol [17]. In short,
foremilk and hindmilk samples were collected from several feedings during a day
and were pooled to minimize within feed variation and diurnal variation. Sam-
ples were collected between 6 and 35 weeks post-partum (median = 15.6 weeks,
interquartile range (IQR) = 4.6). Samples were stored at 4°C in the home refrigera-
tor and within 24 hours, picked up and transported on ice to the CHILD laboratory.
There, samples were aliquoted and stored until further analysis at -80°C. Further
transport of the samples was done on dry ice.

5.2.2 Proteomics

Sample preparation

Skimmed milk was obtained by centrifugation at 10,000g and 4°C for 30 minutes.
Then, skimmed milk was again centrifuged at 1000g and 4°C for 10 minutes to re-
move any remaining lipids. Skimmed milk samples were prepared with filter-aided
sample preparation for protein analysis as described before [18].
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5

In addition to the samples from the CHILD Cohort Study, aliquots of a pooled
human milk sample were added as a control for technical variation. This sample
comprised multiple aliquots of pooled human milk samples from the Dutch Human
Milk Bank (Amsterdam, The Netherlands).

LC-MS/MS analysis

Trypsin digested proteins were analyzed with LC-MS/MS as described before, with
minor adjustments [19]. In short, 1.5 - 4 µL of tryptic peptide solution was loaded
onto a 0.10 × 250 mm ReproSil-Pur 120 C18-AQ 1.9 µm beads analytical column
(prepared in-house) at 825 bar. A gradient from 9 to 34% acetonitrile in water with
0.1% formic acid in 50 min (Thermo nLC1000) was used. Full scan FTMS spectra
were obtained using a Q-Exactive HFX (Thermo electron, San Jose, CA, USA) in
positive mode between 380 and 1400 m/z at resolution 60,000.

The 25 most abundant positively charged peaks (2-5) in the MS scan were iso-
lated and fragmented (HCD) with an isolation width of 1.2 m/z and 24% normalized
collision energy. MSMS scans were recorded at resolution 15,000 in data-dependent
mode with a threshold of 1.2×105 and 15 s exclusion for the selected m/z ± 10 ppm.
Samples were analyzed with a technical replicate added randomly to each 7 injec-
tions.

Data processing

The Andromeda search engine of the MaxQuant software v1.6.17.0 was used to an-
alyze the raw LC-MS/MS data [20]. For this, a database was created by an initial
MaxQuant run using the full human proteome (downloaded from UniProtKB on 20-
01-2021, n = 194,237) [21]. Protein identifiers obtained as identification from this
initial run were used to create a human milk database for a second run (n = 24,175),
in which also a cow milk protein (n = 1006) and an allergen protein database (n =
721) were added [22].

In MaxQuant, digestion specificity was set to Trypsin/P, with maximally 2 missed
cleavages. A fixed propionamide modification was set for cysteines and variable
modifications for acetylation of the peptide N-term, deamidation of the side chains
of asparagine and glutamine, and oxidation of methionine, with a maximum of five
modifications per peptide were set. For each identified protein group, a leading
protein was selected as described elsewhere [22].
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5.2.3 Peptidomics

Sample preparation

Skimmed milk samples were prepared for peptide analysis as previously described
[18]. In short, proteins were removed using precipitation. For this, an equal volume
of 200 g/L trichloroacetic acid in milli-Q water was added, followed by centrifu-
gation at 3000g for 10 minutes at 4°C. From the supernatant that was obtained, 50
µL was cleaned up using solid phase extraction (SPE) on C18+ Stage tip columns
(prepared in-house), as previously described [23, 24]. Eluted peptides were recon-
stituted in 50 µL of 1 mL/L formic acid in water.

LC-MS/MS analysis

Peptides were analyzed with LC-MS/MS, using the same method as for the protein
analysis described above. For the peptidomics analysis, 4 µL of peptide solution was
loaded onto the column. Samples were analyzed with a technical replicate added
randomly to each 7 injections.

Data processing

The raw LC-MS/MS data files from the peptide analysis were processed similarly
as the proteomics data. Differences were the digestion specificity which was set to
unspecific with variable modifications for acetylation of the protein N-term, deami-
dation of the side chains of asparagine and glutamine, and oxidation of methionine,
with a maximum of five modifications per peptide. The sequence database which
was created for the processing of the proteomics data containing human milk, cow
milk and allergen proteins, was used (as described above). Peptide length was set to
a minimum of 8 and a maximum of 25 amino acids.

5.2.4 Statistical methods

Statistical analysis and visualizations were, unless specified differently, carried out
using R version 4.0.1 [25].

Missing data

MaxQuant proteinGroups (proteomics) or peptides (peptidomics) result files were
filtered so that only proteins and peptides that were identified in more than half
(>150) of the samples were retained. In this way, a selection of the most prevalent
and abundant proteins and peptides was used for further data analysis. Following
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this, 3 samples were omitted as outliers due to their distinct peptide profile. These
samples showed a total peptide abundance several magnitudes higher than the aver-
age, possibly due to the occurrence of mastitis. In the remaining data, missing values
were imputed using the GSimp package with default parameters [26]. This package
uses a Gibbs sampler-based algorithm to impute missing values with the assumption
that missing values are not at random (MNAR) and left censored.

Graphical Gaussian modelling (GGM) network analysis

To investigate associations within and between the datasets, network analysis was
applied on a combined data matrix, comprising proteins (n = 456) and peptides (n
= 1455) in 297 samples.

To build the network, partial correlations were estimated using Gaussian graph-
ical modeling (GGM). The GGMs were built with a shrinkage-based regularization
approach for which the ggm.estimator.pcor function from the GeneNet package for R
was used [27].

This function estimates the partial correlation coefficients in a pairwise manner.
Partial correlation coefficients ρij describe the pairwise correlation between protein
or peptide Xi and Xj after accounting for their correlation with all other proteins
and peptides. This approach accounts for confounders and covariates, indirect asso-
ciations that are often present in omics data sets. Therefore, this approach enabled
the study of direct associations between proteins, peptides, as well as across proteins
and peptides.

For the inference of the network, only significant edges were used. To determine
the significance of the edges, the built-in empirical Bayes local false discovery rate
(fdr) statistic was used [28]. Edges were considered significant if the probability of
their “presence” was larger than 0.9 (which is equal to a local fdr <0.1).

Network visualization and clustering

Adjacency matrices with partial correlations from the GGMs were visualized in net-
works using Cytoscape v3.9.1 [29]. In the GGM network, proteins and peptides
are presented as nodes, and GGM-estimated, significant partial correlations are the
edges between the nodes. Subsequent clustering of networks was performed using
the Leiden algorithm [30], through the clusterMaker2 plugin for Cytoscape [31]. For
this clustering, Constant Potts Model was used as quality function in combination
with a resolution parameter of 10-3, β value 0.01, and 1000 iterations. Clusters com-
prising more than 3 nodes were retained for further investigation.
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Overrepresentation analysis

To determine whether protein clusters were overrepresented with specific gene on-
tology (GO) annotations, the GORILLA tool (Gene Ontology enRIchment anaLysis
and visuaLizAtion tool) (http://cbl-gorilla.cs.technion.ac.il/) [32] was used. For this,
the two-list mode was used, with all identified proteins as background set. P-values
were corrected with Benjamini-Hochberg correction [33]. An adjusted p-value <0.05
was considered significant.

5.3 Results

The LC-MS/MS analysis resulted in the identification of 1629 proteins and 9192
peptides originating from 48 precursor proteins.

After filtering the data on the requirement of identification in more than half of
the samples, 456 proteins and 1455 peptides remained. The peptides still originated
from 48 precursor proteins. The relative contribution of the precursor proteins to
the peptidome showed that the majority of the peptides originated from β-casein
(38.5%), polymeric immunoglobulin receptor (PIGR) (10.5%), and butyrophilin sub-
family 1 member A1 (BTN1A1) (8.5%), a similar pattern found in previous studies
[18, 24].

5.3.1 Network analysis

An association network was inferred by the generation of GGMs. Edges were drawn
in the network if partial correlations were significant (local fdr <0.1). This resulted
in an initial network comprising 1861 nodes and 16609 edges (corresponding to
0.91% of all possible edges).

With the Leiden algorithm for community detection, 117 clusters were found
(Figure 5.1). From all clusters, 42 included both proteins and peptides, whereas 7
clusters only comprised proteins, and 68 clusters only comprised peptides. Most
connections (94.9%) were observed between features from the same data set, that is,
cross-associations between proteins and between peptides.

Associations between proteins

GO annotation of proteins was used to investigate the overrepresentation of anno-
tations in clusters of associated proteins. An overview of the clusters for which the
proteins showed significant overrepresentation of annotations can be found in Table
5.1.
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Figure 5.1: Network representation of associations between proteins and peptides, calculated
with Gaussian graphical models (GGMs). Purple nodes represent proteins, and orange nodes
represent peptides. The thickness of the edges is proportional to the partial correlation coef-
ficients from the GGMs. A digital version of this image can be accessed by scanning the QR
code.

A significant overrepresentation was found for Cluster 2 of proteins annotated
with pentameric immunoglobulin M (IgM) complex (adjusted p = 0.045). Neverthe-
less, it is important to note that annotation was only available for 6 out of the 46
proteins in this cluster. This is because most of these proteins are variable regions of
immunoglobulins (Igs), for which GO annotation is not available. Besides the vari-
able regions, this cluster also comprises the heavy constant regions of IgM and IgA,
as well as the Ig J chain, which links multimeric IgA and IgM. Therefore, the asso-
ciations between heavy chains, light chains, J chain, and variable regions indicate
their relation as substructures of antibodies. The associations between IgA and IgM
also indicate their common origin since IgA and IgM in milk are produced mainly in
the plasma cells in the mammary tissue [34]. Subsequent transepithelial transport
of these proteins through PIGR results in their secretion in milk.

Cluster 10 shows a significant overrepresentation (p = 4.84 × 10−9) of proteins
that are commonly located in blood microparticles, which are microvesicles found
in blood. The cluster comprises 28 proteins, of which 17 are annotated as a compo-
nent of blood microparticles. Among these are, for example, serum albumin (ALB),
the major milk protease PLG, and protease inhibitors (5 serine protease inhibitors
(SERPINs) and 2 inter-α-trypsin inhibitors (ITIs)). It is generally assumed that PLG,
which has an important role in blood coagulation, is blood-derived and transported
into the milk from the systemic circulation [35]. In addition, a recent study has
shown that one of the SERPINs in this cluster, SERPINA1 (also referred to as α1-
antitrypsin (ATA1)), is synthesized in the liver and enters the milk via direct trans-
mission from the systemic circulation [3]. Considering the overrepresentation of
proteins typically found in blood with functional characteristics in blood coagula-
tion, it can be hypothesized that this cluster represents proteins originating from the
systemic circulation, all being transported via a transcellular or paracellular path-
way through the mammary epithelium.

Proteins that are known to be part of the milk fat globule membrane (MFGM)
were jointly present in Cluster 11 [36]. Within the epithelial cell, milk fat glob-
ules (MFGs) are surrounded by a single layer membrane which comprises proteins,
such as, lactadherin (MFGE8), xanthine dehydrogenase/oxidase (XDH), fatty acid-
binding protein (FABP3), and BTN1A1. These proteins are believed to support the
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Table 5.1: Overview of significant overrepresentations of Gene Ontology (GO) annotations in
the protein clusters shown in Figure 5.1.

Cluster Categorya Annotation Adjusted
p-value

Responsible proteins

2 CC Pentameric IgM
immunoglobulin complex

4.50×10−2 IGHM, IGJ

10 CC Blood microparticle 4.84×10−9 A1BG, C9, SERPING1, HP, ORM1,
ORM2, CP, ITIH1, CFH, ITIH4, PLG,
SERPINC1, ALB, VTN, SERPINF2,
AFM, HPX

MF Serine-type endopeptidase
inhibitor activity

2.64×10−4 ITIH1, ANXA2, ITIH4, SERPINC1,
SERPING1, SERPINF1, SERPINF2,
SERPINA1

BP Acute inflammatory response 3.56×10−4 ORM2, ITIH4, SERPINC1, SERPINF2,
HP, ORM1, SERPINA1

11 CC Bounding membrane of
organelle

1.25×10−2 STOM, STX3, RAB2A, SNAP23, YKT6,
PLIN3, SAR1A, RAB11B, CNP, RAB18,
EHD4, GLIPR2, ITPR2

12 CC Lysosome 6.83×10−6 HEXB, LGMN, CTSD, CTSB, GRN,
CTSZ, FUCA1, CTSS, ARSA

13 BP Protein folding in
endoplasmic reticulum

1.93×10−3 CALR, HSP90B1, P4HB, HSPA5, PDIA3

15 CC Apical plasma membrane 9.30×10−5 CIB1, SLC9A3R1, RDX, EZR, MSN,
PODXL

BP Regulation of cytoplasmic
transport

1.29×10−2 RDX, EZR, MSN

26 MF Adenyl nucleotide binding 2.30×10−2 DYNC1H1, EPRS, CCT3, FBP16, WARS,
CIT, UBA1

63 CC Chylomicron 8.88×10−6 APOE, APOA2, APOA1, APOB, APOA4
MF Intermembrane lipid transfer

activity
2.31×10−6 APOE, APOA2, APOA1, APOB, APOA4

BP Intermembrane lipid transfer 6.33×10−6 APOE, APOA2, APOA1, APOB, APOA4
93 CC Ribonucleoprotein complex 2.29×10−7 RPSA, RPL34, RPL6, RPL5, PSMA1,

RPS16, RPL3, RPL15, RPS18
MF Structural constituent of

ribosome
2.71×10−7 RPSA, RPL34, RPL6, RPL5, RPS16,

RPL3, RPL15, RPS18
BP Protein localization to

endoplasmic reticulum
2.97×10−7 RPSA, RPL6, RPL34, RPL5, RPS16,

RPL3, RPL15, RPS18
108 CC Ribosomal subunit 1.76×10−3 RPS4X, RPS9, RPLP2, RPL13, RPL28

MF Structural constituent of
ribosome

2.44×10−3 RPS4X, RPS9, RPLP2, RPL13, RPL28

BP Protein targeting to
membrane

1.78×10−3 RPS4X, RPS9, RPLP2, RPL13, RPL28

a BP = Biological process, MF = Molecular function, and CC = Cellular component.
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MFG in moving towards and binding to the apical plasma membrane [37], which
forms the outer bilayer of the MFGM after secretion. The clustering of the typical
MFGM proteins (Cluster 11) and the GO overrepresentation of the bounding mem-
brane of organelle as a cellular component (p = 0.0125) confirms that these proteins
are related to the membrane and thus have a common origin.

Cluster 12 comprises 5 cathepsins (B, C, D, Z, and S), as well as, amongst others,
progranulin (GRN), N-acetylglucosamine-6-sulfatase (GNS), and legumain (LGMN).
These are proteins typically found in the lysosomal lumen [38], which is also re-
vealed by the GO overrepresentation of the lysosome as a cellular component for this
cluster (p = 6.83×10−6). In addition, the strong associations observed between these
proteins suggest that these proteins are released into the alveolar lumen through a
common mechanism such as lysosomal exocytosis [39].

The proteins ezrin (EZR), radixin (RDX), and moesin (MSN) form together the
ERM protein family. These ERM proteins can bind with the Na(+)/H(+) exchange
regulatory cofactor (NHERF1), and it is known that both ERM and NHERF1 can
act as a crosslinker between the actin cytoskeleton and cell membranes by inter-
action with the intracellular domain of the apical membrane protein podocalyxin
(PODXL) [40, 41]. Together, these proteins play an essential role in tissue integrity
[42]. The association of these proteins in Cluster 15 suggests a loss of apical mem-
brane from the MECs. Surprisingly, these proteins do not cluster with the typical
MFGM proteins (Cluster 11), even though the outer bilayer of the MFGM is formed
from the apical membrane. This suggests that the apical membrane found in human
milk does not originate only from the MFGM. One explanation for this is the frozen
storage of the samples, which results in damaging of cells present in the milk and
consequently a release of parts of the apical membrane. A study carried out by Qu
et al. [43] confirms this by showing that frozen storage results in increased levels of,
amongst others, EZR, MSN, and NHERF1 in milk.

Cluster 63 shows an overrepresentation of chylomicron as cellular location of
the proteins (p = 8.88 × 10−6). The cluster comprises 5 different apolipoproteins,
including apolipoproteins A1, A2, A4, B100, and E. It was shown in a study with
mice, that lipoprotein-particles can be transferred from serum, deliver cholesterol
in the MEC, and be secreted into the milk [44]. Considering the overrepresentation
of apolipoproteins, Cluster 63 might be an indicator of this mechanism.

Interestingly, this cluster also includes the major αs1-casein variant, while other
caseins and major milk proteins are found in Cluster 1. Unlike the other casein
subunits, αs1-casein does not decrease over lactation like β-casein and κ-casein [45].
In addition, it was found that this protein is not uniquely expressed in the mammary
gland but also in monocytes [46]. The level of this protein in milk might therefore
be dependent on other factors and possibly related to the transfer of lipoprotein-
particles from the systemic circulation.
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Clusters 93 and 108 both show an overrepresentation of ribosomal constituents.
Very little is known about why ribosomal proteins are present in milk. They might
originate from exosomes, apoptosis of MECs, or intact or damaged cells present in
the milk. Nevertheless, their association shows that their levels in milk depend on
similar driving factors and possibly share the same secretion mechanism or origin.

The largest protein cluster, Cluster 1, did not show a significant overrepresenta-
tion. This cluster comprises the major milk proteins, among which are, for example,
ALA, β-casein, κ-casein, lactoferrin (LF), and PIGR. It is known that these proteins
are synthesized in the mammary gland [2], a process which is regulated by lacto-
genic hormones [47]. Considering the strong associations between these proteins,
it can be assumed that their expression is related to hormonal regulation of protein
synthesis and can be distinguished from the other proteins.

Overall, results indicate that the abundance of the majority of the proteins in
human milk depends primarily on the pathway of entering the milk.

Associations between peptides

It is apparent that clusters with peptides often comprise peptide ladders, differing
only a few amino acids from the neighboring peptides (Table 5.2 and 5.3). These
peptides are presumably formed by aminopeptidases, which cleave a single amino
acid off a peptide sequence (exoproteolysis). Several proteins with aminopeptidase
activity were identified in the proteomics data of this study, which are in order of
average abundance: cytosol aminopeptidase (LAP3), dipeptidyl peptidase 2 (DPP7),
aminopeptidase B (RNPEP), leukotriene A-4 hydrolase (LTA4H), and aminopepti-
dase N (ANPEP). Although not all these aminopeptidases have been identified be-
fore in human milk, the activity of aminopeptidases in human milk has been evi-
denced [48]. The strong association observed between peptides of a peptide ladder
suggests that this type of proteolytic degradation occurs in an abundance-dependent
manner where the formation of a peptide depends on the abundance of its precursor.

Before cleavage of larger peptides by aminopeptidases is possible, initial pro-
teolytic degradation of proteins needs to occur (endoproteolysis). It has been sug-
gested that endogenous proteases, especially PLG, carry out such proteolysis [13].
PLG is a highly specific protease that hydrolyzes the peptide bond between lysine
(K) or arginine (R) in the P1 position and any other amino acid in the P1’ position.
Interestingly, this matches with several outer C-terminal or N-terminal positions of
the peptide ladders observed in the clusters (Table 5.3). Further allocation of pro-
teases to endoproteolytic cleavage sites remains speculative due to the overlapping
specificity of proteases as well as the presence of less specific proteases. Neverthe-
less, the observed associations reveal signatures of endoproteolytic and exoprote-
olytic degradation of proteins and direct future studies in further investigation of
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Table 5.2: Overview of clusters that comprise peptide ladders with more than 5 overlapping
peptides. Rows are sorted on precursor protein and sequence position.

Cluster UniProt
ID

Protein name Sequence range
covered

Number of
peptides

Average
peptide

length

3 Q13410 Butyrophilin subfamily 1 member A1 504 - 526 20 14.8
6 Q13410 Butyrophilin subfamily 1 member A1 489 - 526 29 17.3
7 P01833 Polymeric immunoglobulin receptor 605 - 647 7 17.7
8 P05814 β-casein 112* - 161 20 19.8
9 P05814 β-casein 34* - 54* 17 15.8

16 P01833 Polymeric immunoglobulin receptor 601 - 639 6 16.7
17 P07498 κ-casein 63 - 109* 22 17.3
20 P05814 β-casein 16 - 40* 23 16.0
21 P05814 β-casein 97 - 119* 8 15.6
27 P15941 Mucin-1 1207 - 1242 14 15.7
29 P01833 Polymeric immunoglobulin receptor 593* - 622* 8 17.2
30 P10451 Osteopontin 155 - 174 6 16.0
40 P01833 Polymeric immunoglobulin receptor 598* - 639 17 20.3
43 P01833 Polymeric immunoglobulin receptor 622 - 647 9 21.0
45 P05814 β-casein 199 - 226 12 16.9
48 P0C0L5 Complement C4-B 1429* - 1449 9 17.0
50 P05814 β-casein 88 - 113* 16 20.7
52 P05814 β-casein 145 - 175* 14 13.6
53 P05814 β-casein 127 - 148 6 13.7
55 P01833 Polymeric immunoglobulin receptor 604* - 643 8 15.5
57 P47710 αs1-casein 26 - 51* 15 20.2
62 P05814 β-casein 151 - 197 13 17.6
64 P01833 Polymeric immunoglobulin receptor 572* - 603* 9 20.6
66 Q13410 Butyrophilin subfamily 1 member A1 71 - 94* 10 15.1
70 P05814 β-casein 33 - 59 9 21.4
71 P10451 Osteopontin 216 - 246 6 22.0
76 P05814 β-casein 199 - 226 6 18.2
78 P05814 β-casein 34* - 57 11 17.7
83 P19835 Bile salt-activated lipase 21 - 39* 6 16.0
85 P19835 Bile salt-activated lipase 24 - 41 6 13.3
88 P05814 β-casein 16 - 40* 8 19.5
90 P10451 Osteopontin 169* - 203* 8 16.9
91 P10451 Osteopontin 173* - 192 10 14.7
95 P05814 β-casein 104* - 121 9 14.0
98 Q14512 Fibroblast growth factor-binding protein 1 27* - 51* 6 21.7

100 P05814 β-casein 19 - 38* 8 14.5
103 P05814 β-casein 100 - 120 8 15.9

* Cleavage position with the specificity matching the protease plasmin.
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the role of these two mechanisms in shaping the human milk peptidome.

Table 5.3: The 3 largest peptide clusters with peptides from a single precursor protein includ-
ing their sequence positions.

Cluster UniProt
ID

Protein name Sequence range Peptide sequence

6 Q13410 Butyrophilin 489 - 513 QDLSKEIPLSPMGEDSAPRDADTLH.............

subfamily 491 - 513 ..LSKEIPLSPMGEDSAPRDADTLH.............

1 member A1 492 - 513 ...SKEIPLSPMGEDSAPRDADTLH.............

493 - 504 ....KEIPLSPMGEDS......................

493 - 507 ....KEIPLSPMGEDSAPR...................

493 - 508 ....KEIPLSPMGEDSAPRD..................

493 - 510 ....KEIPLSPMGEDSAPRDAD................

493 - 511 ....KEIPLSPMGEDSAPRDADT...............

493 - 513 ....KEIPLSPMGEDSAPRDADTLH.............

493 - 514 ....KEIPLSPMGEDSAPRDADTLHS............

493 - 515 ....KEIPLSPMGEDSAPRDADTLHSK...........

494 - 504 .....EIPLSPMGEDS......................

494 - 507 .....EIPLSPMGEDSAPR...................

494 - 513 .....EIPLSPMGEDSAPRDADTLH.............

494 - 514 .....EIPLSPMGEDSAPRDADTLHS............

494 - 515 .....EIPLSPMGEDSAPRDADTLHSK...........

495 - 504 ......IPLSPMGEDS......................

495 - 507 ......IPLSPMGEDSAPR...................

495 - 508 ......IPLSPMGEDSAPRD..................

495 - 513 ......IPLSPMGEDSAPRDADTLH.............

495 - 515 ......IPLSPMGEDSAPRDADTLHSK...........

496 - 508 .......PLSPMGEDSAPRD..................

496 - 513 .......PLSPMGEDSAPRDADTLH.............

498 - 507 .........SPMGEDSAPR...................

498 - 508 .........SPMGEDSAPRD..................

498 - 513 .........SPMGEDSAPRDADTLH.............

499 - 513 ..........PMGEDSAPRDADTLH.............

501 - 513 ............GEDSAPRDADTLH.............

502 - 526 .............EDSAPRDADTLHSKLIPTQPSQGAP

17 P07498 κ-casein 63 - 78 YQRRPAIAINNPYVPR...............................

66 - 77 ...RPAIAINNPYVP................................

66 - 78 ...RPAIAINNPYVPR...............................

79 - 100 ................TYYANPAVVRPHAQIPQRQYLP.........

79 - 89 ................TYYANPAVVRP....................

79 - 94 ................TYYANPAVVRPHAQIP...............

79 - 96 ................TYYANPAVVRPHAQIPQR.............

81 - 96 ..................YANPAVVRPHAQIPQR.............

82 - 106 ...................ANPAVVRPHAQIPQRQYLPNSHPPT...

82 - 97 ...................ANPAVVRPHAQIPQRQ............
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Table 5.3: (Continued) The 3 largest peptide clusters with peptides from a single precursor
protein including their sequence positions.

Cluster UniProt
ID

Protein name Sequence range Peptide sequence

83 - 100 ....................NPAVVRPHAQIPQRQYLP.........

83 - 96 ....................NPAVVRPHAQIPQR.............

83 - 97 ....................NPAVVRPHAQIPQRQ............

86 - 106 .......................VVRPHAQIPQRQYLPNSHPPT...

86 - 107 .......................VVRPHAQIPQRQYLPNSHPPTV..

86 - 108 .......................VVRPHAQIPQRQYLPNSHPPTVV.

86 - 109 .......................VVRPHAQIPQRQYLPNSHPPTVVR

91 - 109 ............................AQIPQRQYLPNSHPPTVVR

93 - 107 ..............................IPQRQYLPNSHPPTV..

93 - 108 ..............................IPQRQYLPNSHPPTVV.

93 - 109 ..............................IPQRQYLPNSHPPTVVR

99 - 109 ....................................LPNSHPPTVVR

20 P05814 β-casein 16 - 32 RETIESLSSSEESITEY........

16 - 33 RETIESLSSSEESITEYK.......

16 - 34 RETIESLSSSEESITEYKQ......

16 - 37 RETIESLSSSEESITEYKQKVE...

17 - 32 .ETIESLSSSEESITEY........

17 - 33 .ETIESLSSSEESITEYK.......

17 - 34 .ETIESLSSSEESITEYKQ......

17 - 36 .ETIESLSSSEESITEYKQKV....

17 - 37 .ETIESLSSSEESITEYKQKVE...

17 - 38 .ETIESLSSSEESITEYKQKVEK..

17 - 40 .ETIESLSSSEESITEYKQKVEKVK

18 - 38 ..TIESLSSSEESITEYKQKVEK..

20 - 32 ....ESLSSSEESITEY........

21 - 32 .....SLSSSEESITEY........

21 - 33 .....SLSSSEESITEYK.......

21 - 37 .....SLSSSEESITEYKQKVE...

23 - 32 .......SSSEESITEY........

23 - 33 .......SSSEESITEYK.......

23 - 37 .......SSSEESITEYKQKVE...

24 - 37 ........SSEESITEYKQKVE...

25 - 32 .........SEESITEY........

25 - 33 .........SEESITEYK.......

26 - 37 ..........EESITEYKQKVE...

Associations between proteins and peptides

Contrary to expectations, it can be noted that from all identified proteins with po-
tential protease activity (n = 21), only 5 appear in a cluster with peptides. The most
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probable explanation for the lack of strong associations between proteases and pep-
tide clusters is the fact that the abundance of a protease is not necessarily equal to or
related to its proteolytic activity in the natural milk environment. This can be due
to, for example, the protease being present in the zymogen or inactive state, the pH
of the milk, or the inhibition of proteases through protease inhibitors.

Although most of the observed associations are associations between molecular
features of the same type, that is, between proteins and between peptides, several
interesting associations were found between proteins and peptides and will be dis-
cussed.

It was found that fibronectin (FN1) and the fibrinogen chains that make up the
fibrinogen complex (α (FGA), β (FGB), and γ (FGG)), associated strongly with fib-
rinogen peptides (Cluster 5 in Figure 5.2). Fibrinogen is a protein complex synthe-
sized in the liver, which plays, together with FN1, a central role in blood coagula-
tion. The coagulation is activated when fibrinopeptides are cleaved off enzymatically
from both FGA and FGB by thrombin, resulting in the formation of fibrin and fibrin
clots [49]. Surprisingly, the fibrinopeptide of FGA was identified in the peptide data,
suggesting that fibrinogen chains present in human milk can occur in the activated
form, that is, as fibrin. Degradation of fibrin takes place through proteolysis by PLG
[50].

Several of the degradation products can also be observed in Cluster 5, which is
an indicator of fibrinolysis to prevent clot formation [51]. This proteolysis is carried
out by activated PLG. From Cluster 5 in Figure 5.2, it can be noted that FGA is more
degraded, with 28 identified peptides, whereas FGB and FGG have 1 and 3 identified
peptides, respectively. This matches with the fact that the FGA chain is cleaved first
in the degradation of fibrin [52]. Additionally, α2-macroglobulin (A2M) appears in
Cluster 5. A2M is a protease inhibitor which is known to regulate the degradation
of fibrin, by inhibition of PLG.

Together this shows the presence and association of several components and
degradation products of blood coagulation in human milk. The origin of these
proteins and peptides remains a question. One explanation might be that they are
blood-derived, and indirectly end up in the milk through, for example, damage of
skin tissue. Nevertheless, it is more probable that they are part of the standard hu-
man milk composition, since FGA was identified in 299 of the 300 samples. This
also agrees with a study by Green et al. [53] which investigated PLG-deficient mice
and suggested that an accumulation of fibrin in the mammary gland could block
mammary ducts and ultimately induce involution. Our observation of associations
between fibrinogen chains and their degradation products, suggests that, if more
fibrinogen is present in the milk, more degradation takes place. From this, it can
be hypothesized that the fibrinolysis pathway in milk is present to prevent blocked
ducts, and therefore, to maintain lactation.
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Figure 5.2: Network representation (circular layout) of a selection of associations between
proteins and peptides, calculated with Gaussian graphical models (GGMs) and clustered with
the Leiden clustering algorithm. Purple nodes represent proteins, and orange nodes represent
peptides. The thickness of the edges is proportional to the partial correlation coefficients from
the GGMs. The selection of clusters is made from Figure 5.1 with corresponding cluster labels.
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Cluster 19 comprises, among others, parathyroid hormone-related protein (PTH-
LH or PTHrP) and 15 of its peptides. It has been suggested that PTHLH is involved
in the regulation of calcium transport through the mammary gland [54]. After syn-
thesis, PTHLH is degraded into three secretory forms, ranging from sequence posi-
tion 37-72, 74-130, 143-175, respectively (signal peptide is included in the number-
ing of the sequence positions) [55]. It can be noted from Cluster 19 in Figure 5.2,
that peptides derived from all three secretory forms of PTHLH were identified and
associated with the precursor protein. Although the functions of the different se-
cretory forms of PTHLH in human milk are not known yet, our results suggest that
they are all present in secretory form in the milk and that their abundance depends
on the abundance of intact PTHLH.

Cluster 48 (Figure 5.2) shows the association between peptides from complement
C4 and the intact C4 isotypes C4A and C4B. These proteins are part of the comple-
ment system, a set of proteins, enzymes, and receptors found in blood that plays
a key role in the innate immune system’s defense against pathogens. Several other
proteins from this complex were identified in the proteomics data, among which are
C3, C7, C9, plasma protease C1 inhibitor (SERPING1), and complement factors I
(CFI) and H (CFH). The presence of complement proteins in human milk has been
evidenced before [56] and can boost protective mechanisms of the infants’ mucosae
[57]. The identification of C4 in the current study covers regions between sequence
positions 23 and 1716 (sequence coverage = 77%), whereas the total length of C4 is
1744 amino acids. This provides evidence for the presence of intact C4 in human
milk. C4 can participate in the classical and lectin complement pathways and is
cleaved into fragments upon activation [58]. In the peptide fraction, all but one of
the C4 peptides that were identified originate from a specific region (between po-
sitions 1337 and 1449), which is the C-terminal part of the C4b fragment (position
757-1446). This C-terminal region of C4b is cleaved off in the formation of the C4d
fragment (position 957-1336). Together, this shows that the identified C4 peptides
are byproducts of the activation cascade of C4 [51]. The association of these pep-
tides with intact C4 suggests that C4 activation in human milk is dependent on the
abundance of intact C4.

Fibroblast growth factor-binding protein 1 (FGFBP1) is a protein that can bind
fibroblast growth factors (FGFs), a family of cell signaling proteins, and release them
from the extracellular matrix. All identified FGFBP1 peptides (n = 6) originate from
the N-terminal region of the protein (between positions 24 and 51), which is also
covered in the identification of the protein. Of the cleavage sites of the peptides,
15 out of 24 have lysine in position P1, suggesting that PLG is responsible for most
of the cleavages. The strong association between the peptides and their intact pro-
tein (Cluster 98 in Figure 5.2) suggests a specific proteolytic degradation which is
not related to degradation of other proteins in milk. Such degradation might be
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related to the role of FGFBP1 in protecting FGF against degradation [59], but this
remains speculative, since no previous studies were found on proteolytic degrada-
tion of FGFBP1.

Overall, the protein-peptide associations revealed several mechanisms of specific
proteolytic degradation that takes place in human milk. Specifically, degradation of
fibrin(ogen), PTHLH, complement C4, and FGFBP1, showed to be associated with
the abundance of their precursor protein and different from proteolytic degradation
from the major precursor proteins in milk.

5.4 Conclusions

This study used a network approach to assess associations between the human milk
peptide and protein profile. Strong associations were found especially between pro-
teins and between peptides, and some across proteins and peptides. Furthermore,
the used network approach revealed clusters of proteins in human milk that could
be linked to their transport mechanisms through the mammary epithelium. In addi-
tion, associations between peptides elucidated the proteolytic degradation through
aminopeptidases, which showed to be dependent on the abundance of the precursor
peptide. Lastly, associations observed between coagulation and complement activa-
tion proteins, their proteolytic enzymes, and their peptides suggests that these two
pathways are activated in milk.
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Chapter 6

Discussion



6.1 Introduction

Human milk comprises a variety of proteins that can potentially contribute to the
development of the infant’s immune system. In addition, peptides, the degradation
products of the proteins, can exert immunomodulatory effects and could therefore
also play a role in this. The levels of proteins and peptides in milk are determined
by different factors, resulting in complex compositional profiles with substantial
interindividual differences.

The account given in this thesis focuses on obtaining a better understanding of
the complexity and variation in the protein and peptide profile in human milk and
how this relates to the allergy status of both mother and child. These topics were
split up accordingly into two overarching objectives (Chapter 1 and Figure 1.9).

The first objective was to investigate the characteristics and interindividual vari-
ation of the proteins and peptides in human milk. This was achieved by:

• Investigating the presence of non-human proteins (Chapter 2).

• Exploring the interindividual variation in proteins and peptides (Chapter 3).

• Studying the associations between and across proteins and peptides (Chapter 5).

The second objective was to relate the protein and peptide profile with the allergy
status of both mother and child. This was achieved by:

• Investigating the relation between maternal allergy and non-human proteins
in the milk (Chapter 2).

• Examining the relation between maternal and child allergy and the complete
protein profile (Chapter 4).

In this chapter, the results of the previous chapters are combined, and further
data analysis is added in order to discuss the findings in relation to the objectives.
Finally, the chapter ends with conclusions, implications, and recommendations for
future studies.

6.2 Methodological considerations

6.2.1 Added value of integrative system biology approach

In this thesis, several different methods were used to analyze milk omics data. In
Chapter 2 differences were observed in, among others, the abundance of bovine β-
lactoglobulin (BLG) when comparing milk from non-allergic and allergic mothers
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using classical data analysis. This finding generated several new hypotheses that
would need validation, for example, regarding the unknown mechanisms of trans-
port of these proteins through the mother’s body. With the approach used in this
chapter, relevant differences were revealed that resulted in the generation of several
new hypotheses.

A drawback of classical methods, such as univariate analysis, is the problem of
multiple testing corrections. The number of variables in typical omics data ranges
from several hundred to thousands. Consequently, applying univariate analysis to
such data will have a higher probability of false-positive results, for which correc-
tion is needed. However, although correction methods decrease the probability of
false positives, they can also increase the probability of false negatives. In addition,
correction for multiple testing in proteomics data can be less effective due to several
specific factors, as highlighted by Pascovici et al. [1]. Together, the use of corrected
p-values as ”cookie-cutter” evidence can restrict the effectiveness of univariate anal-
ysis in revealing relevant differences between groups of samples.

In an attempt to go beyond the approach of classical data analysis, the field of
systems biology offers a deductive or top-down approach that allows contextualiza-
tion of results and can therefore guide the biological interpretation and generation
of hypotheses [2]. In this approach, patterns extracted from omics profiles are used
to generate hypotheses on the regulatory mechanisms that play a role in cellular sys-
tems [3]. Ultimately, this approach aims to understand the behavior of a system by
defining interactions among its different components [3]. Examples of typical sys-
tems biology tools used in this thesis are network inference and network analysis.
Using these tools, it was shown that the associations of proteins and peptides in net-
works help decipher the complexity of the human milk proteome and peptidome
and provide additional information on top of univariate and multivariate analysis.

In Chapter 3, weighted correlation network analysis (WGCNA) [4] was used to
investigate whether specific patterns of interindividual variation occur in subgroups
of correlating proteins and peptides. The network analysis allowed clustering of
associated proteins and peptides, showing that, for example, high interindividual
variation is especially present in clusters of associated peptides originating from
the mid and C-terminal regions of β-casein. Peptides from the N-terminal region
showed a distinct pattern of cross-correlations from the rest of the protein sequence
and showed an overall lower interindividual variation. Therefore, the application of
network analysis gave context to the observed interindividual variation of peptides
by revealing differences in proteolytic degradation between different proteins and
between different sequence regions within proteins.

The results presented in Chapter 4 show how network analysis complements
univariate analysis, multivariate analysis, and classification models. Protein connec-
tivity revealed that proteins functioning in the translation machinery are differently
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connected in the different groups of mother-child allergy status. This observation
could not be made based on the outcome of the other data analyses.

Further evidence of the added value of an integrative approach in the data analy-
sis was given in Chapter 5. Omics data were integrated using associations obtained
from Gaussian graphical models (GGMs) [5], which were used to estimate partial
correlations. Partial correlation is a measure for the degree of association corrected
for the other variables present in the data. Subsequent network inference allowed,
therefore, for the investigation of direct associations between proteins and peptides.
This method revealed, amongst others, that the abundance of proteins in the milk is
more dependent on their mechanism of transport and origin than on their function,
thereby providing relevant insights into what determines the human milk protein
and peptide composition.

Together, systems biology-based analysis of omics data provides insights into the
biological mechanisms of the secretion of proteins into milk and the proteolytic
degradation of these proteins into peptides. This shows the potential of this ap-
proach to enhance the interpretation of omics data and to generate hypotheses based
on mechanistic insights. Therefore, it is recommended to apply this in future stud-
ies so that results can be put in context and more insight is obtained into biological
mechanisms.

6.2.2 Limitations of shotgun proteomics and data processing

The use of shotgun or bottom-up proteomics in this study, in which proteins are
digested by an enzyme with strict cleavage specificity before analysis, has pros and
cons.

First of all, the untargeted shotgun proteomics and peptidomics analysis used
in this study provides great opportunities for further data investigation. Because
of the database-dependent data processing (see Section 1.6 and Figure 1.7), identi-
fication of proteins and peptides is restricted to the sequences provided in the da-
tabase. As illustrated by Knudsen et al. [6] in response to Bromenshenk et al. [7],
it is of crucial importance that this database is as complete as possible. Neverthe-
less, a compromise needs to be made between completeness and conciseness since
a database that is too large results in a very strict false discovery rate filtering and
consequently in false negative identifications. In the processing of the raw data for
this thesis, databases were used comprising human milk proteins, bovine milk pro-
teins and allergens, covering as much as possible the sequences that were expected
to be present in the samples. However, it should be noted that in the data of Chap-
ters 4 and 5, for example, the average percentage of identified MS/MS spectra was
only 7% and 2% in protein and peptide data, respectively. Although low identi-
fication rates are rather common for milk proteomics and peptidomics, in average
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MS experiments identification rates are around 25% [8]. Further development of
data processing tools, new knowledge about the protein sequences present in hu-
man milk, and knowledge about their post-translational modifications, could help
to improve the identification rate. This would only require a re-processing of the
raw data which is an advantage of the untargeted analysis. However, it is impor-
tant to note that such re-processing of the data brings challenges as well. Especially
for large-scale peptidomics data (Chapter 5), extensive data processing is needed,
for which a High Performance Computer (HPC) infrastructure is essential. Never-
theless, even with the use of an HPC, possibilities are limited. Especially, options
such as widening the range of the peptide lengths and adding variable amino acid
modifications increase the processing time exponentially.

Second, a limitation for this thesis was the reduction, alkylation, and trypsin
digestion of proteins before analysis. Although intrinsic to bottom-up proteomics,
this did not allow for the analysis of intact immunoglobulin (Ig) isotypes. Reduction
of proteins caused a breakdown of the Ig structure by disruption of the disulfide
bridges that connect the different heavy and light chains. After tryptic digestion
and LC-MS/MS analysis, peptides originating from the constant, heavy chains are
isotype-specific. However, peptides originating from the variable regions are not
isotype-specific and cannot be matched with their respective isotype. In addition,
the non-covalent antigen-antibody interactions are also disrupted during the sample
preparation [9]. The importance of these antigen-antibody complexes for immune
system development has been established by recent studies, showing that antigen-
IgG complexes in the milk can be transferred across the gut epithelial barrier by the
neonatal Fc receptor (FcRn) and might protect the child against sensitization [10–
12]. Although both antigens and antibody-chains were identified in this thesis, the
LC-MS/MS results did not allow for a distinction between free antigen and antigen
in complex. Future investigations will be needed to provide this level of information.

6.3 Characteristics of the human milk protein and pep-
tide profile

6.3.1 Presence of non-human proteins and peptides

One of the compositional characteristics of human milk, which has received little
attention, is the presence of non-human proteins and peptides. Our findings con-
firm the presence of non-human proteins in human milk and indicate that these
are present intact or as large fragments (Chapter 2). Furthermore, most of these
proteins are bovine proteins, with BLG being identified with the highest sequence
coverage (67%).
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In the analysis carried out for Chapter 3 and Chapter 4, the resolution of the
used LC-MS/MS systems increased, leading to more protein identifications. Surpris-
ingly, however, this did not lead to the identification of more non-human proteins.
Although non-human proteins were still identified, they were found in fewer sam-
ples and with lower sequence coverage. In Chapter 3, 11 non-human proteins were
identified (Table 6.1), of which 6 proteins were also identified in Chapter 2.

Table 6.1: Identified non-human proteins in the data from Chapter 3.

UniProt ID Leading protein Organism Identified with
n peptides

Identified in
n samples

Identifica-
tion scorea

A0A140T897 Albumin Bos taurus (Bovine) 31 11 183.9
E1BF59 Plectin Bos taurus (Bovine) 9 2 8.4
F1MWI1 Clusterin Bos taurus (Bovine) 2 1 2.7
P02754 β-lactoglobulin Bos taurus (Bovine) 5 4 9.7
P24627 Lactotransferrin Bos taurus (Bovine) 3 1 6.2
P49822 Albumin Canis lupus

familiaris (Dog)
6 7 8.3

P49064 Albumin Felis catus (Cat) 4 7 31.8
a Score from the MaxQuant output indicating the quality of the identification of the protein.

A higher score represents a better identification.

The number of samples in which these proteins were identified, as well as the
sequence coverage of the identified proteins, was limited. This is due to their low
abundance and might be due to the health status of the donating mothers since it
was shown in Chapter 2 that allergic mothers shed more non-human proteins in
their milk than non-allergic mothers. Because all donating mothers participating in
Chapter 3 underwent a preliminary health screening, it was expected that the ma-
jority of them were non-allergic. This is also in line with the fact that cow, dog, and
cat albumin were the most frequently identified non-human proteins in Chapter 3
since these proteins were also frequently identified in the samples of the non-allergic
mothers in Chapter 2 (Table 2.3).

However, if allergy status determined the presence of the non-human proteins
in milk, a clear difference would have been expected between the sample groups
of different maternal allergy statuses from the CHILD Cohort Study analyzed for
Chapter 4. Nevertheless, only 14 non-human tryptic peptides from 8 unique non-
human proteins were identified in that chapter, with identifications almost equally
divided over the samples of allergic and non-allergic mothers. A commonality be-
tween the different chapters is the detection of bovine and cat albumin and bovine
BLG. The lower number of identified bovine milk proteins in the milk samples from
allergic mothers in the CHILD Cohort Study might be due to lower consumption of

164



6

milk and dairy products in Canada (188 kg milk per capita in 2013) when compared
to the Netherlands (341 kg milk per capita in 2013) [13]. Another explanation might
be the fact that in Chapter 2, a strict definition of house dust mite (HDM) allergy was
used, namely (a) self-reported (history of) asthma, current hay fever, current allergy
for pets, or current allergy for house dust or HDM in combination with (b) a high
level of specific IgE against HDM (≥3.50 kU/L) and (c) high exposure to HDM aller-
gen in mattress dust ((Der p 1 + Der f 1) >600 ng/m2). Supposing that this specific
allergy and allergy definition plays a role in the observed difference in non-human
proteins in the milk, the hypothesis posed in Chapter 2 might be true, in where
it was argued that there could be a higher permeability in the epithelial barrier of
the intestinal tract of HDM-sensitized mothers. This would then allow an increased
passage of non-human proteins into the systemic circulation, possibly mediated by
a disruption of the intestinal barrier by HDM allergen Der p 1 (see Figure 6.1).

Figure 6.1: Schematic overview of the hypothesized mechanism through which non-human
proteins, such as β-lactoglobulin (BLG), could pass the intestinal epithelial barrier and enter
the systemic circulation of the mother. Epithelial junctions could be disrupted through both
proteolytic activity of Der p 1 and inflammatory response, which subsequently allows para-
cellular passage of dietary proteins.

Thus far, it has been argued that non-human proteins or large protein fragments
are present in human milk and originate especially from the diet. It can be hypothe-
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sized that the transfer of this proteinaceous material across the intestinal and mam-
mary epithelium is increased upon specific pathophysiological status of the mother,
as in the case of HDM allergy.

In Chapter 2, only the protein fraction of the milk was analyzed, discarding the
peptides during the sample preparation. However, this peptide fraction was an-
alyzed separately from the proteins in Chapters 3 and 5. Additional analysis of
the data from these chapters revealed several non-human peptides (Tables 6.2 and
6.3, respectively). Interestingly, all non-human peptides matched with bovine pro-
tein sequences, and the majority had β-casein, αs1-casein, or BLG as a precursor.
Peptides from these proteins have been identified before in the peptide fraction of
human milk [14, 15]. However, only 4 out of the 48 non-human peptides that were
identified matched those found in these previous studies. In addition, a large differ-
ence can be observed between the peptides from Chapters 3 and 5, with only 2 pep-
tides identified in both chapters. One explanation for these differences among stud-
ies might be interindividual differences. It was shown in a recent study from Caira
et al. [16] that profiles of bovine milk-derived peptides in blood plasma showed
extensive qualitative and quantitative variability between individuals, even though
prior washout and consumption of milk were the same for all subjects. The presence
of these peptides in human milk depends on many factors that can be individual-
dependent, such as intestinal digestion, transfer through the intestinal epithelium,
possible further digestion by blood proteases, transfer to the mammary gland, trans-
port through the mammary epithelium.

Another factor contributing to the differences between studies is the number
of samples combined with the ”match-between-runs” (MBR) algorithm used in the
data processing [17]. Briefly, MBR addresses the missing value problem of bottom-
up proteomics by inferring identifications of one sample to the other samples using
m/z, charge state, and retention time. Once a peptide is identified in one sample,
the application of MBR increases the likelihood of identification of this peptide in
the other samples. Therefore, an increase in sample size with interindividual differ-
ences causes an increase in the total number of identifications. This could explain
the differences between Chapters 3 and 5 (Tables 6.2 and 6.3), in which 29 and 297
samples were analyzed, respectively.
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Table 6.2: Identified non-human peptides in the peptidomics data from Chapter 3. All pep-
tides match with bovine (Bos taurus) proteins and have an identification score >80.

Sequence UniProt
ID

Leading protein Identifica-
tion scorea

Identified in
n samples

HIQKEDVPSERb P02662 αs1-casein 122.7 19
LRLKKYKVPQLc P02662 αs1-casein 121.8 1
KVPQLEIVPNc P02662 αs1-casein 96.3 21
TDAPSFSDIPNPIc P02662 αs1-casein 155.2 22
QPVNITVQESSSSGPSSMTA Q28110 Low affinity immunoglobulin

gamma Fc region receptor II
85.6 26

FQSEEQQQTEDELQDKc T1T0C1 β-casein 111.4 12
VYPFPGPIPNb T1T0C1 β-casein 108.2 22
YQEPVLGPVRGPb T1T0C1 β-casein 141.9 1
YQEPVLGPVRGPFb T1T0C1 β-casein 117.7 1
YQEPVLGPVRGPFPIIb T1T0C1 β-casein 105.2 1
YQEPVLGPVRGPFPIIVb T1T0C1 β-casein 127.4 22
a Score from the MaxQuant output indicating the quality of the identification of the peptide.

A higher score represents a better identification.
b Peptides that have been identified in blood serum by Caira et al. [16].
c Peptides of which a precursor peptide has been identified in blood serum by Caira et al. [16].

Table 6.3: Identified non-human peptides in peptide data from Chapter 5. All peptides match
with bovine (Bos taurus) proteins and have an identification score >80.

Sequence UniProt
ID

Leading protein Identifica-
tion scorea

Identified in
n samples

FLDDDLTDDIMCVK P00711 α-lactalbumin 151.2 26
DDDLTDDIMCVK P00711 α-lactalbumin 117.7 1
FQSEEQQQTEDELQDKc P02666 β-casein 190.4 1
VVPPFLQPEVc P02666 β-casein 88.9 226
TLTDVENLHLPLPLLQb P02666 β-casein 310.3 1
TDVENLHLc P02666 β-casein 86.1 8
TDVENLHLPLPLLQb P02666 β-casein 168.3 2
DVENLHLPLPLLQb P02666 β-casein 143.2 1
YQEPVLGPVRGPFPb P02666 β-casein 104.8 2
YQEPVLGPVRGPFPIIVb P02666 β-casein 124.1 31
EPVLGPVRGPFPIIVb P02666 β-casein 99.8 10
SLAMAASDISLL P02754 β-lactoglobulin 189.1 2
VYVEELKPTPEGDLEc P02754 β-lactoglobulin 92.0 1
VYVEELKPTPEGDLEIc P02754 β-lactoglobulin 160.2 2
VYVEELKPTPEGDLEILc P02754 β-lactoglobulin 170.9 2
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Table 6.3: (Continued) Identified non-human peptides in peptide data from Chapter 5. All
peptides match with bovine (Bos taurus) proteins and have an identification score >80.

Sequence UniProt
ID

Leading protein Identifica-
tion scorea

Identified in
n samples

VYVEELKPTPEGDLEILLQK P02754 β-lactoglobulin 103.1 2
YVEELKPTPEGDLEILc P02754 β-lactoglobulin 117.8 6
VEELKPTPEGDLEb P02754 β-lactoglobulin 147.4 9
VEELKPTPEGDLEIb P02754 β-lactoglobulin 194.2 1
VEELKPTPEGDLEILb P02754 β-lactoglobulin 163.8 21
VEELKPTPEGDLEILLQK P02754 β-lactoglobulin 174.8 5
EELKPTPEc P02754 β-lactoglobulin 112.4 2
EELKPTPEGDLEc P02754 β-lactoglobulin 168.8 5
EELKPTPEGDLEIc P02754 β-lactoglobulin 194.9 2
EELKPTPEGDLEILc P02754 β-lactoglobulin 133.8 10
ELKPTPEGDLEILb P02754 β-lactoglobulin 132.0 4
IDALNENKc P02754 β-lactoglobulin 110.8 6
DALNENKVLVL P02754 β-lactoglobulin 90.9 2
TPEVDDEALEKb P02754 β-lactoglobulin 232.8 16
TPEVDDEALEKFb P02754 β-lactoglobulin 213.3 2
TPEVDDEALEKFDKb P02754 β-lactoglobulin 213.7 2
EVDDEALEKFDKc P02754 β-lactoglobulin 103.9 2
EQLLDNFHLMAESSEDLP P24591 Insulin-like growth

factor-binding protein 1
81.5 34

QLLDNFHLMAESSEDLP P24591 Insulin-like growth
factor-binding protein 1

175.2 141

ISSSSSAEERREIH Q28085 Complement factor H 99.8 1
QTSLSPDLSQESLSPDL Q28107 Coagulation factor V 121.0 18
QTALSPDLSQESLSPDLGQT Q28107 Coagulation factor V 87.2 44
ETLVGYSMVGCQRAMLAN Q71SP7 Fatty acid synthase 84.7 9
ETLEYVEAHGTGTKVGDPQELNG Q71SP7 Fatty acid synthase 82.6 71
a Score from the MaxQuant output indicating the quality of the identification of the peptide.

A higher score represents a better identification.
b Peptides that have been identified in blood serum by Caira et al. [16].
c Peptides of which a precursor peptide has been identified in blood serum by Caira et al. [16].

A recent study by Caira et al. [16] showed that a wide variety of bovine milk-
derived peptides could be detected in human blood after consumption of bovine
milk. From the non-human peptides identified in Chapter 3 (Table 6.2), 6 peptides
were identified in blood, and another 4 peptides matched with a precursor peptide
identified in blood [16]. Of the non-human peptides identified in Chapter 5 (Table
6.3), 13 peptides were identified in blood, and another 14 peptides matched with a
precursor peptide identified in blood [16].

When peptide intensities from non-human peptides in Chapter 3 were summed
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into groups of precursor proteins, a strong correlation (Spearman ρ = 0.85) was ob-
served between bovine αs1-casein and β-casein peptides, suggesting that peptides
from different bovine milk proteins are transported by the same mechanism.

Together, this confirms that non-human peptides are present in the systemic cir-
culation and can cross both intestinal and mammary epithelial barriers to finally
end up in the alveolar lumen of the mammary gland. Nevertheless, the function of
these peptides in the milk remains elusive.

6.3.2 Interindividual variation in protein abundance

Protein profiles of milk are different per individual. It was shown in Chapter 3 that
the extent of these interindividual differences has a pattern in which few (<5%), low
abundant proteins show substantial interindividual variation (coefficient of varia-
tion, CV >100%). The proteome had a median interindividual CV = 42.8%. In the
attempt to relate variation in the proteome to maternal characteristics, an association
was found between one protein cluster and body mass index (BMI). Nevertheless, the
determining factors of most of the variation remained an unanswered question.

Considering also the interindividual variation in proteins identified in Chap-
ter 4, it can be noted that this is larger (median CV = 94%) and for some proteins
extreme (maximum CV = 674%) (see Figure 6.2). Several factors can explain these
differences. First, there is more diversity amongst the participating mothers in the
CHILD Cohort Study in terms of, for example, ethnicity, lifestyle, and health status.
Second, there is a difference in the pooling of the samples between the chapters. In
Chapter 3, the samples were pooled over a period ranging between 2 and 28 days
within the third month post-partum. However, the samples used for Chapter 4 were
all pooled samples from fore and hindmilk of several feedings of only a single day.
Therefore, the latter samples might represent more temporal changes than the sam-
ples from Chapter 3. Third, more proteins were identified in Chapter 4 (647 versus
286 in Chapter 3). This difference concerns especially low-abundant proteins which
show more interindividual variation in general (Figure 3.2).

To investigate whether interindividual variation was different between groups of
different maternal and child allergy statuses, the CV was also calculated for each
group separately. Comparing the CVs of the various groups revealed interesting
differences (Figure 6.3). First, it can be noted that proteins with low interindivid-
ual variation (CV <50%) are consistent among the groups, showing that low in-
terindividual variation is consistent, irrespective of mother-child allergy status. Sec-
ond, several histones, histone H3.2 (H3C15), histone H4 (H4C1), and histone H2B
(H2BC15), show large differences in interindividual variation between the groups of
different mother-child allergy statuses. Extracellular histones are damage-associated
molecular pattern molecules (DAMPs) in cellular processes and can be pathophys-
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iological indicators for several diseases [18]. Although little is known about the
presence and function of histones in human milk, it was recently shown that they
could be hydrolyzed by proteolytic activity of secretory immunoglobulin A (sIgA)
in the milk [19]. Interestingly, the heavy chain of IgA shows a high variation (CV =
361%) in the group where both mother and infant are allergic and less in the other
groups (CV <183%). A similar pattern can be observed for tenascin-C (TNC), an an-
tiviral protein. It was hypothesized in Chapter 3 that higher expression of TNC in
milk could protect the offspring against viral infections, or alternatively, indicate an
inflammatory response of the mother. The difference in variation of the aforemen-
tioned proteins within the groups of mother-child allergy status could be related to
the heterogeneous pathophysiology of allergies within a group.
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Figure 6.2: Comparison of the interindividual variation observed for proteins identified in
Chapter 3 and Chapter 4. Each point represents a protein, with on the axes the coefficients of
variation (CV) from both chapters. Proteins located near the blue diagonal line have a similar
interindividual variation in both chapters. Labeled proteins have a difference in coefficient of
variation (CV) >75%, and are labeled with gene IDs or, if not available, protein names.
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Figure 6.3: Comparison of the interindividual variation in proteins observed in the groups of
different mother-child allergy status from Chapter 4. Each dot represents a single protein.
In the labeling of the groups, + indicates allergy and - indicates no allergy. Labeled proteins
have a difference in coefficient of variation (CV) >200%, and are labeled with gene IDs or, if
not available, protein names.

171



In a further investigation of the interindividual differences observed in the data
of Chapter 4, metadata and protein intensities were used to explore which maternal
or infant characteristics contribute the most to the interindividual variation. For this
analysis, the R package “variancePartition” [20] was used, which allows the quan-
tification of multiple sources of variation in gene expression data using linear mixed
models. In this analysis, the categorical variables ethnicity (Caucasian, Asian, First
Nation, Other), study site (Vancouver, Edmonton, Manitoba, Toronto), infant sex,
and allergy status of mother and child were considered random effects. In addition,
the continuous variables maternal age, maternal BMI, lactation stage, and total pro-
tein concentration were considered fixed effects. This analysis showed that, after
correcting for the other variables, the total protein concentration explains a median
of 10.3% of the variation in the proteins, followed by ethnicity with a median of
1.4% of the variation (Figure 6.4).

Figure 6.4: Contribution of each variable to the total variance in (left) the proteomics data
from Chapter 4, and (right) the peptidomics data from Chapter 5.
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The contribution of the total protein concentration to the variation in the whole
proteome is an interesting result. It is known that a few major milk proteins are the
largest contributors to the total protein concentration of human milk (Section 1.2
and Figure 1.2). Among the top 10 proteins for which the variation is best explained
by the total protein concentration were the major milk proteins lactotransferrin (LF)
and polymeric immunoglobulin receptor (PIGR). Regarding LF, this corresponds
with Czosnykowska-Łukacka et al. [21], who reported a positive correlation between
the concentration of LF and the total protein concentration. The fact that total pro-
tein concentration contributes substantially to the variation in the whole proteome
suggests that the same factors involved in the regulation of LF synthesis could also
be involved in regulating other proteins.

Although the 1.4% contribution of ethnicity seems low, this is a significant contri-
bution. To deduce differences in protein intensity between the milk from Caucasian
(n = 177) and the milk from Asian mothers (n = 83), Mann-Whitney U tests [22]
were applied. The resulting p-values were corrected for multiple hypothesis testing
using Benjamini-Hochberg correction [23], where after correction, a p-value <0.05
was considered significant. With this analysis, 302 significantly different proteins
were found. Of these, 53 were higher in abundance in milk from Asian mothers,
and 249 were more abundant in milk from Caucasian mothers (Figure 6.5).

What is surprising is that among the proteins that were higher abundant in milk
from Asian mothers are all identified Ig heavy chains (IgA, IgM, and IgG4), as well as
16 other Ig chains. Elwakiel et al. [24] who investigated differences in milk protein
composition from Dutch and Chinese mothers, also found differences in Ig-chains,
although their levels were not consistently higher in milk from Chinese mothers.
In addition to the Ig chains, gene ontology (GO) overrepresentation analysis with
Benjamini-Hochberg correction reveals an overrepresentation of proteins from the
lysosomal lumen (p = 0.0002) and the extracellular region (p = 0.0002). This over-
representation is, amongst others, due to plasma serine protease inhibitor (SER-
PINA5), alpha-1-antichymotrypsin (SERPINA3), cathepsins C (CTSC), D (CTSD),
and S (CTSS), which were all more abundant in milk from Asian mothers.

Regarding the proteins that are more abundant in the milk of Caucasian mothers,
overrepresentation analysis points to the cytosol (p = 1.3× 10-25) and the ribosomal
subunit (p = 8.6 × 10-10). The most probable explanation for this is that more cells
are present in milk from Caucasian mothers. Cell membranes of these cells are dis-
rupted during frozen storage of the samples, resulting in a release of cell content
from the cells upon thawing. This explanation corresponds with the findings of Qu
et al. [25], who also showed a drastic increase of ribosomal proteins in milk upon
frozen storage.
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Figure 6.5: Volcano plot visualizing the differences in protein abundances in milk from Cau-
casian and Asian mothers from the CHILD Cohort Study (data from Chapter 4). Each data
point represents one protein, with on the x-axes the ratio of the means of the log10 trans-
formed label-free quantification (LFQ). Proteins with p <0.05 are represented by colored dots
and the other proteins with grey dots. Colored labels on left and right side of x = 0 indicate
in which ethnicity the mean abundance of the respective proteins is higher.

6.3.3 Interindividual variation in peptides

The interindividual variation in the peptide profile was more extensive when com-
pared to the protein profile. In Chapter 3, a CV >100% was observed for 36% of all
identified peptides and a median CV = 85%. Similar to the proteomics data, vari-
ation in peptides showed to be associated with maternal characteristics since two
peptide clusters were associated with BMI and one with gestational age. In the same
way as the protein data, a comparison was made between the interindividual varia-
tion of the peptides from Chapter 3 and Chapter 5 (Figure 6.6).
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It can be observed that also for the peptides, there is a larger interindividual vari-
ation in Chapter 5, with a median CV = 162%. The high interindividual variation in
the peptidome compared to the proteome (also observed in Chapter 3) suggests that
the factors determining the milk peptidome are more individual-dependent. Among
these factors are, for example, the presence, activation, and inhibition of proteases
and aminopeptidases.
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Figure 6.6: Comparison of the interindividual variation observed for the peptides identified in
Chapter 3 and Chapter 5. Each point represents a peptide, with on the axes the coefficients
of variation (CV) from both chapters. Peptides located close to the blue diagonal line have
a similar interindividual variation in both chapters. Labeled peptides have a difference in
coefficient of variation (CV) >500% and are labeled with the UniProt ID of their respective
precursor protein and their range in the protein sequence.

The sources of variation in the peptidomics data were quantified similarly to the
proteomics data. This shows that after correcting for the other variables, the total
protein concentration explains a median of 0.8% of the variation in the peptides,
followed by the lactation stage with a median of 0.4% of the variation (Figure 6.4).
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Interestingly, although a small part of the variation in the peptidome can be
explained by ethnicity (median = 0.02%), there are several peptides whose varia-
tion seems related to ethnicity. This is especially interesting considering the fact
that among the proteins that showed to be significantly different between milk from
Caucasian and Asian mothers were several proteases and protease inhibitors. Mann-
Whitney U tests on the peptide data with subsequent Benjamini-Hochberg correc-
tion for multiple hypothesis testing revealed 626 significantly different peptides in
the comparison of milk from Caucasian and Asian mothers (Figure 6.7).

Of these peptides, 280 were more abundant in milk from Asian mothers, mainly
derived from β-casein (n = 196) and osteopontin (n = 32). The peptides which were
more abundant in milk from Caucasian mothers (n = 346) were derived to a lesser
extent from β-casein (n = 60) and also from butyrophilin subfamily 1 member A1
(BTN1A1) (n = 78), perilipin-2 (PLIN2) (n = 54), PIGR (n = 36), and perilipin-3
(PLIN3) (n = 13). BTN1A1, PLIN2, and PLIN3 are typical milk fat globule mem-
brane (MFGM) proteins, which showed to have a different proteolytic degradation
mechanism in Chapter 3. This could point to more milk fat globules (MFGs) in milk
from Caucasian mothers, leading to more MFGM proteins, and more degradation
of these proteins into peptides. However, few MFGM proteins were more abundant
in milk from Caucasian mothers. It can thus be suggested that there is a difference
in proteolytic degradation in milk from mothers of different ethnicities, leading to
significant differences in the milk peptidome.

In line with our work, the next step would be to simultaneously map both inter-
individual and intra-individual variation in the human milk protein profile. This
has been done in a small-scale study by Zhu et al. [26], including samples from only
two mothers. However, a more extensive study population, including different eth-
nicities, is needed to create a more comprehensive map of the extent of the different
sources of variation.

6.3.4 Interactions between proteins and peptides

By integrating proteomics and peptidomics data, several strong associations were
found across proteins and peptides in Chapter 5. Associations were found espe-
cially across proteins and peptides that are part of specific pathways: coagulation
and complement activation. In addition, associations between proteins and between
peptides were investigated, revealing clusters of proteins sharing the same mecha-
nism of transport and clusters of peptides with commonalities in degradation mech-
anism.

Several of the associations observed in Chapter 5 shed light on results reported in
the other experimental chapters. First, clustering of Ig constant and variable chains
revealed their common source and probable relatedness in Ig isotype. This supports
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Figure 6.7: Volcano plot visualizing the differences in peptide abundances in milk from Cau-
casian and Asian mothers from the CHILD Cohort Study (data from Chapter 5). Each data
point represents one peptide, with on the x-axes the ratio of the means of the log10 trans-
formed label-free quantification (LFQ). Peptides with p <0.05 are represented by colored dots
and the other proteins with grey dots. Colored labels on left and right side of x = 0 indicate
in which ethnicity the mean abundance of the respective peptides is higher.

the further discussion of the Ig variable chains in Section 6.4.2 about how these pro-
teins might be related to allergy development in the child. Second, proteins from
which their association in a cluster revealed their common origin from lysosomal
exocytosis (for example, the different cathepsins) were also more abundant in milk
from Asian mothers. This suggests a different regulation of lysosomal exocytosis
in the mammary gland from Asian mothers, which possibly leads to a difference in
the peptide profile (Section 6.3.3). Third, the associations observed between com-
plement proteins and their peptides as well as the associations between coagulation
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proteins and their degradation products, suggests that these coordinated cascades,
which are common in blood, are also activated in milk.

Together, this shows that a systems biology approach in which associations are
considered, can reveal more of the complexity underlying the synthesis and mecha-
nisms of transport of proteins, and their degradation into peptides.

6.4 Human milk proteins & peptides and allergy

6.4.1 Proteins and maternal allergy

No significant relation was found between maternal allergy status and the abun-
dance of proteins in the milk (Chapter 4). Regarding protein connectivity and cor-
relation patterns, overall stronger connectivity was observed for the groups where
the mother was allergic. However, this pattern could not be distinguished from the
group where the mother was non-allergic, and the child ultimately developed an al-
lergy. In Chapter 2, however, it was found that maternal allergy status influenced
milk protein composition and showed higher levels of bovine proteins, as discussed
before. Furthermore, another study showed that cystatin C, endogenous protease
inhibitors, and apolipoproteins were more abundant in milk from allergic mothers
[27]. This was not confirmed by the findings from Chapter 4. A probable expla-
nation for this might be the difference in allergy definition (as discussed in more
detail in Section 6.3.1). In light of our findings from Chapter 5, where protease
inhibitors appear associated with other blood-derived proteins (Figure 5.1, cluster
10), and apolipoproteins with cystatin C (Figure 5.1, cluster 63), it can be hypothe-
sized that the observation of Hettinga et al. [27] was due to an increased transfer of
blood-derived proteins in HDM allergic mothers.

Taken together, these findings and the findings discussed in Section 6.3.1 support
the recommendation for future studies to investigate specific definitions of maternal
allergy in relation to both endogenous and non-human proteins in the milk.

6.4.2 Proteins and child allergy

Moving on now to consider allergy development in the infant, a trend was observed
that Ig chains are more abundant in milk for infants who would ultimately develop
an allergy (Chapter 4).

In mature milk (3 months postpartum), secretory IgA is the major Ig isotype, con-
tributing around 81% to the total Ig concentration, followed by IgG (11%) and secre-
tory IgM (8%) [28]. In the prevention of sensitization of the infant, sIgA and IgG are
the most important isotypes [29]. Igs of one isotype have differences in the sequence
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of the antigen-binding variable domain. This domain can bind with the respective
antigens and result in the formation of allergen-Ig complexes. The following part of
this section will discuss the relevance of total isotype levels, allergen-specific Ig, and
allergen-Ig complexes, respectively.

Ig isotypes

Our findings could point to a higher abundance of total Ig or Ig isotypes in the milk
for children who would develop an allergy. However, this would have resulted in sig-
nificant differences in especially the abundance of Ig isotype-specific heavy chains,
which was not observed in our data (Table 4.1). In literature, it has been suggested
that low IgA levels in milk might lead to allergy development in the offspring [30],
but a more recent study showed, in line with our observations, that total levels of
IgA in milk are not associated with allergy outcomes at 2 or 5 years of age [31].

Allergen-specific Ig

It was found that the Ig-chains that were more abundant in milk for infants who
ultimately developed an allergy were especially the variable regions of Igs (Table
4.1). Unfortunately, due to the nature of the MS analysis used in our experiments,
these variable regions could not be linked to their respective antibody (Section 6.2.2).
Nevertheless, considering the contribution of IgA to the total Ig pool, as well as the
strong associations between most of the identified variable regions and the heavy
constant regions of IgA, IgM, and J-chain (Chapter 5), it is more likely that the iden-
tified variable regions are derived from IgA than from the other isotypes. Neverthe-
less, confirmation of this is required in future studies.

The variable regions of the Igs could represent relevant differences in allergen-
specific Ig in the milk. Regarding IgG, this would contradict previous studies, which
show that higher levels of allergen-specific IgG are associated with a lower risk of
allergy [32, 33]. For allergen-specific IgA, there is conflicting evidence in the litera-
ture, showing associations with both a lower risk of allergy development [34] and a
higher risk of allergy development [31, 35].

Allergen-Ig complexes

One explanation for the contradicting results of the aforementioned studies might be
whether these allergen-specific Igs are present in a complex with an allergen or not.
Several lines of evidence showed the importance of allergen-Ig complexes in milk
for the education of the infant’s immune system [10, 12, 32]. It has been suggested
that IgA might decrease allergic sensitization through binding with free allergens,
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keeping the allergens away from the intestinal epithelium [36]. Allergen-IgG com-
plexes, on the other hand, can be transferred through the infants’ intestinal barrier
by the FcRn, which allows interaction with T cells and could ultimately lead to toler-
ance induction [37]. In mice studies, it was shown that allergen-exposed, sensitized
dams, have more ovalbumin-IgG and BLG-IgG complexes in their milk [11, 12, 32].
Evidence was provided that, through these Ig complexes, infants might be protected
against allergic sensitization at 5 years of age [10].

Given that allergen-Ig complexes in milk are important for tolerance induction in
the breastfed infant, it is recommended for further research to comprehensively map
the diversity of the Ig pool in human milk, including Ig isotypes, allergen-specific
Igs, allergen-Ig complexes, and free allergen.

Both IgA and IgM showed substantial interindividual variation in Chapter 3
(their heavy constant regions have a CV of 117% and 199%, respectively). As dis-
cussed in Section 6.3.2, the data from Chapter 4 shows a distinctive pattern in the
interindividual variation of IgA between the groups of different allergy statuses. The
variation in IgA was more prominent in the group where both mother and child were
allergic, which might be due to more clinical heterogeneity in this group.

In addition, the heavy constant regions of all human milk Ig isotypes and several
variable regions were found to be significantly higher in abundance in milk from
Asian mothers when compared with Caucasian mothers. Nevertheless, the different
mother-child allergy status groups of the CHILD Cohort Study were matched for
ethnicity. Furthermore, additional comparisons with ANOVA and adjustment for
ethnicity as a covariate did not reveal significantly different proteins between the
groups.

Protein connectivity

Lastly, higher protein connectivity was found in milk from the mother-child allergy
status groups where at least one of mother or child was allergic. This differential
connectivity concerned especially ribosomal proteins and other proteins involved
in translation processes (Chapter 4). In Section 6.3.2, it was observed that riboso-
mal proteins and proteins from the cytosol are higher abundant in milk from Cau-
casian mothers when compared to Asian mothers, most likely due to more cells being
present in their milk. The difference in connectivity of these proteins between the
groups of different mother-child allergy statuses could, therefore, possibly indicate a
difference in the cells present in the milk. However, further research will be needed
to elucidate this.
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6.4.3 Peptides and allergy

Univariate analysis was applied to the peptidomics data similarly to the proteomics
data (as described in Chapter 4) to investigate whether the milk peptide profile was
related to mother and child allergy status. Kruskal-Wallis tests with subsequent cor-
rection for multiple hypothesis testing showed no significantly different peptides
between the groups of different mother-child allergy statuses. To explore whether
the non-significant differences found were relevant, post-hoc tests were performed
on peptides with an uncorrected p <0.05. Outcomes from the post-hoc tests were
adjusted for multiple testing, and peptides with an adjusted p-value <0.05 (n = 66)
were searched for in the Milk Bioactive Peptide Database (MBPDB) [38]. Neverthe-
less, none of the 66 peptides matched with bioactive peptides in the database.

To investigate a possible relation between overall proteolytic activity and mother-
child allergy status, the intensity of all peptides was summed per sample, and groups
were compared. An ANOVA did not reveal significant differences between the groups
(p = 0.96).

In summary, this shows that, contrary to expectations, maternal allergy does not
significantly affect the milk peptide profile. Neither does the milk peptide profile
significantly affect allergy development in the child. Further investigation of the
peptidomics data with, for example, network analysis would require a better under-
standing of the meaning of peptide-peptide associations in the milk peptidome.

6.5 Conclusions

This thesis has provided a deeper insight into the human milk proteome and pep-
tidome. It can be concluded that:

• Non-human proteins and peptides are present in human milk and originate
mainly from bovine milk.

• There is substantial interindividual variation in the human milk proteome and
even more in the peptidome.

• The abundance of proteins in milk is primarily determined by the mechanism
through which the proteins are transported through the mammary epithelium.

• The abundance of peptides in the milk is, in the case of the so-called “peptide
ladders”, to a great extent determined by the level of the precursor peptides.

• There are significant differences in the human milk proteome and peptidome
between mothers from different ethnic backgrounds.
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Furthermore, insights have been obtained into the relation between human milk
proteome and peptidome and the allergy status of both mother and child. It can be
concluded that:

• House dust mite allergy, in combination with high dairy consumption, leads
to higher levels of dairy proteins in human milk when compared with non-
allergic mothers.

• There is a trend that milk for infants who ultimately developed an allergic
disease contained higher levels of variable regions of immunoglobulins.

• Milk from healthy mothers with infants who did not develop an allergy showed
lower protein connectivity than milk from mothers who were allergic or from
whom the infant developed an allergy.

• No relation was found between maternal allergy status or child allergy devel-
opment and the human milk peptidome.

6.6 Implications and future perspectives

The findings presented in this thesis have a number of practical implications. It was
shown in this thesis that human milk can contain non-human, allergenic proteins
and potentially allergenic peptides. This knowledge is of high importance for hu-
man milk banks considering the fact that the milk they collect is meant for the extra
vulnerable, the preterm infants. Although the risk of this for the newborn is un-
known, it is recommended to prevent allergic sensitization and, therefore, to pool
samples of multiple donors to dilute the allergen if present. In addition, this knowl-
edge should be transferred to medical doctors in nursing care so that well thought
out measures can be taken when exclusively breastfed infants start to show signs of
allergic sensitization or food protein-induced enterocolitis [39].

Second, considering the differences that were found in milk from mothers of
different ethnicities, I recommend further investigation of the relevance of these
differences for the infant’s healthy development. Outcomes of this will be relevant
for (i) human milk banks who can consider matching donor ethnicity with recipient
ethnicity, and (ii) producers of infant formula, who can adapt their formulation to
the ethnic background of the consumers.

As research into mother-child allergy status and the relation with proteins and
peptides will continue, a narrow definition of allergy is recommended for future
studies. In addition, a comprehensive analysis of the Ig isotypes, allergen-specific
Igs, allergen-Ig complexes, and free allergen is recommended. From our observa-
tions and recent literature findings [10, 11, 40], these components are the most
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promising to reveal relevant associations with child allergy development. Lastly,
it is recommended to investigate the possible role of the intact or damaged cells
present in the milk. The possible relations between the differential connectivity of
especially ribosomal proteins among the different allergy groups may be related to
differences in cells present in the milk.
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Summary

To provide newborns with nutrition and protection, the mother’s body produces a
complex biofluid, human milk. Among the many constituents of this milk are pro-
teins, a diverse group of molecules with a variety of functions. Such functions can be
the provision of nutrients for growth, digestion, transport of minerals, or immune
response. In addition, some proteins function as proteases and cleave other proteins
into smaller fragments, the peptides. Peptides can have bioactive functions different
from the functions of the protein they originate from, such as antimicrobial activity
or cell proliferation stimulation. Proteins and peptides in human milk have been a
topic of ongoing investigation. Still, many questions regarding their origin, biologi-
cal functions, and effect on the health of the breastfed infant remained unanswered.
In this thesis, we investigated the protein and peptide composition and their relation
with maternal and child allergy.

One aspect of the protein composition of human milk is the presence of non-
human proteins. This was the main topic of Chapter 2, where we analyzed milk
proteomics data of 10 allergic and 10 non-allergic mothers. The most striking result
that emerged from this was that mothers with house dust mite allergy shed more
β-lactoglobulin in their milk when compared to non-allergic mothers. In addition,
we identified non-human sequences from various organisms, but the primary source
was shown to be bovine milk. The identification of these sequences was confirmed
with several different methods. Together, these findings suggested a difference in
the transfer of dietary proteins or protein fragments through the intestinal barrier of
allergic mothers, allowing dietary proteins to enter the bloodstream and, ultimately,
the milk.

The normal variation in the proteome and peptidome among different individ-
uals is important information that can support the interpretation of differences be-
tween groups of samples. We mapped this interindividual variation in Chapter 3 us-
ing a set of 286 samples from 29 mothers, pooled per mother. Substantial interindi-
vidual variation was observed for a selection of proteins and peptides, whereas the
peptides showed an overall larger variation. In addition to the proteome and the
peptidome, we also analyzed the metabolome in these samples. The metabolites,
which can be seen as indicators of biological processes in the human body, were
used to investigate whether patterns of variation could be explained by biological
processes. For this investigation, we applied weighted correlation network analysis
and examined the association between clusters of proteins, clusters of peptides, and
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metabolites. The findings of this study provide insight into the dynamics of human
milk protein, peptide, and metabolite composition.

In Chapter 4, we continued the investigation of the proteome and the relation
with allergy of the mother and allergy development in the child. In a collabora-
tion with the Canadian CHILD Cohort Study, we analyzed 300 milk samples from
mother-child dyads with different allergy statuses. For the data analysis, differ-
ent methods were employed, including univariate analysis, multivariate exploratory
analysis, Random Forest classification models, and network analysis. We found a dif-
ference between the samples of the different groups of mother-child allergy status,
with a trend that immunoglobulin chains are more abundant in milk from allergic
mothers and milk meant for infants who would ultimately develop an allergy. Fur-
thermore, we also found that the protein connectivity, that is, the associations pro-
teins have with other proteins, is less in milk from non-allergic mothers with infants
who would not develop an allergy. We suggested that this might be due to a dysreg-
ulation of cellular processes or a difference in cells present in the milk. Finally, it
was noteworthy that the network analysis revealed subtle but relevant information
that was not brought to light using the classical methods for data analysis.

After studying the proteome of the samples of the CHILD Cohort Study, we inte-
grated this data with the peptidome and explored protein-protein, peptide-peptide,
and protein-peptide associations with a network approach in Chapter 5. This study
revealed that such associations give important information about the biological pro-
cesses and mechanisms involved in the synthesis and secretion of proteins into milk.
Also, we were able to differentiate between patterns of endoproteolytic and exo-
proteolytic activity using peptide-peptide associations. Regarding protein-peptide
associations, we demonstrated specific digestion of several proteins, whereas the
abundance of the peptides depends on the abundance of these proteins. This was
observed for, among others, complement proteins and coagulation proteins. To-
gether, these results confirm the value of an integrated approach in the evaluation
of large-scale omics data sets and provide valuable information with regard to the
biological factors that determine the protein and peptide profile of human milk.

In Chapter 6 we showed the results of additional data analysis and we integrated
and discussed these with the results of the preceding chapters. We derived from
this integration that the presence of non-human proteins is dependent on a specific
pathological state of the mother (house dust mite allergy), but that non-human pep-
tides are commonly found in the milk and match with dietary peptides found in
blood. Furthermore, we showed that the interindividual variation in both protein
and peptide profile is, for a significant part, due to ethnicity. We also examined the
relation between proteins in the milk and the development of allergy in the breast-
fed infant and highlighted that our findings point to differences in immunoglobulins
and cells present in the milk. Lastly, we reported a negative result, showing that no
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relation was found between the peptide profile of the milk and allergy status of
mother or allergy development in the child.

Concluding, we have demonstrated in this thesis that the human milk protein
and peptide profiles include exogenous proteinaceous components, have substantial
interindividual variation, and relate to ethnicity of the mother. Additionally, we
showed that there are differences in the milk proteome of mother-child dyads with
an allergy when compared with mother-child dyads without allergy. The analysis of
the human milk protein and peptide profile undertaken in this thesis, has extended
the current knowledge and shows the need of a systems approach to discover their
complexity.

191





Samenvatting

Om de pasgeborene voeding en bescherming te bieden, produceert het lichaam van
de moeder een complexe vloeistof, moedermelk. Eén van de vele bestanddelen van
moedermelk zijn de eiwitten, een diverse groep moleculen met uiteenlopende func-
ties. Deze functies zijn bijvoorbeeld het leveren van voedingsstoffen voor de groei,
hulp bij vertering, het transport van mineralen, of een rol in immuunrespons. Daar-
naast fungeren sommige eiwitten als proteasen en splitsen ze andere eiwitten op in
kleinere fragmenten, de peptiden. Peptiden kunnen bioactieve eigenschappen heb-
ben die verschillen van de functies van het eiwit waarvan zij afkomstig zijn. Dit kan
bijvoorbeeld antimicrobiële activiteit zijn of stimulering van de celgroei. Eiwitten en
peptiden in moedermelk zijn door de jaren heen al grondig bestudeerd. Toch blijven
er nog veel vragen onbeantwoord over hun oorsprong, biologische functies en effect
op de gezondheid van de zuigeling. In dit proefschrift onderzochten we de peptide-
en eiwitsamenstelling van moedermelk en hoe deze zich verhoudt tot allergie van
de moeder en de ontwikkeling van allergie bij het kind.

Eén aspect van de eiwitsamenstelling van moedermelk is de aanwezigheid van
niet-humane eiwitten. Dit was het belangrijkste onderwerp van Hoofdstuk 2, waar
we de eiwitsamenstelling van melk van 10 allergische en 10 niet-allergische moe-
ders analyseerden. Het meest opvallende resultaat dat hieruit naar voren kwam
was dat moeders met huisstofmijtallergie meer β-lactoglobuline in hun melk had-
den in vergelijking met niet-allergische moeders. Daarnaast vonden we nog andere
niet-humane eiwitten en eiwitfragmenten in de melk, afkomstig van verschillende
organismen. De belangrijkste bron hiervan bleek koemelk te zijn. De identificatie
van deze eiwitten en eiwitfragmenten werd op meerdere manieren bevestigd. Sa-
men doen deze bevindingen vermoeden dat er tussen allergische en niet-allergische
moeders een verschil is in het transport van eiwitten of eiwitfragmenten door de
darmbarrière, waardoor voedingseiwitten in de bloedbaan terecht kunnen komen
en uiteindelijk in de melk.

De normale variatie in de peptide- en eiwitsamenstelling tussen verschillende
individuen is belangrijke informatie die de interpretatie van verschillen tussen groe-
pen van melkmonsters kan ondersteunen. We hebben deze interindividuele varia-
tie in kaart gebracht in Hoofdstuk 3 aan de hand van een reeks van 286 monsters
afkomstig van 29 moeders, samengevoegd per moeder. Hierin werd aanzienlijke
interindividuele variatie waargenomen voor een selectie van eiwitten en peptiden,
waarbij de peptiden over het algemeen een grotere variatie vertoonden. Naast de ei-
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witten en peptiden hebben we ook de metabolieten in deze monsters geanalyseerd.
Metabolieten kunnen worden gezien als indicatoren van biologische processen in
het menselijk lichaam en werden in deze studie gebruikt om te onderzoeken of pa-
tronen in variatie konden worden verklaard door specifieke biologische processen.
Hiervoor hebben we in de data-analyse gebruik gemaakt van gewogen correlatie net-
werkanalyse, waarmee we de associatie tussen clusters van eiwitten, clusters van
peptiden, en metabolieten konden onderzoeken. De uitkomsten van deze studie ge-
ven inzicht in de dynamische samenstelling van moedermelkeiwitten, -peptiden en
-metabolieten.

In Hoofdstuk 4 zetten we het onderzoek voort naar de eiwitsamenstelling en het
mogelijke verband met allergie van de moeder en allergie-ontwikkeling bij het kind.
In samenwerking met de Canadese CHILD Cohort Studie, analyseerden we 300
melkmonsters van moeder-kind paren met verschillende allergiestatussen. Voor de
data-analyse werden verschillende methoden gebruikt, waaronder univariate ana-
lyse, multivariate verkennende analyse, Random Forest classificatiemodellen, en
netwerkanalyse. We vonden onder andere een trend dat immunoglobulinemolecu-
len meer aanwezig zijn in melk van allergische moeders gegeven aan zuigelingen die
uiteindelijk een allergie ontwikkelen. Bovendien vonden we ook dat de eiwitcon-
nectiviteit, dat wil zeggen, de mate waarin de intensiteit van eiwitten geassocieerd
kan worden met die van andere eiwitten, minder is in melk van niet-allergische
moeders met zuigelingen die geen allergie ontwikkelen op latere leeftijd. Wij sugge-
reerden dat dit zou kunnen komen door een ontregeling van cellulaire processen of
een verschil in cellen die in de melk aanwezig zijn. Ten slotte was het opmerkelijk
dat met behulp van de netwerkanalyse subtiele maar relevante informatie aan het
licht kwam die niet met de klassieke methoden voor data-analyse aan het licht was
gekomen.

Nadat we de eiwitsamenstelling van de monsters van de CHILD Cohort Studie
hadden bestudeerd, voegden we deze gegevens samen met resultaten van peptide-
analyse en onderzochten we met een netwerkbenadering de eiwit-eiwit, peptide-
peptide, en eiwit-peptide associaties in Hoofdstuk 5. Deze studie toonde aan dat
dergelijke associaties belangrijke informatie kunnen geven over de biologische pro-
cessen en mechanismen die betrokken zijn bij de synthese en secretie van eiwitten
in melk. Bovendien konden we aan de hand van peptide-peptide-associaties een
onderscheid maken tussen patronen van endoproteolytische en exoproteolytische
activiteit. Wat betreft de eiwit-peptide associaties toonden we specifieke afbraak
van enkele eiwitten aan, waarbij de hoeveelheid van de peptiden afhangt van de
hoeveelheid van deze eiwitten. Dit werd onder meer waargenomen bij eiwitten van
het complementsysteeem en stollingsfactoren. Samen bevestigen deze resultaten
de waarde van een geïntegreerde aanpak bij de evaluatie van grootschalige omics-
datasets. Daarnaast leveren ze waardevolle informatie op met betrekking tot de
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biologische factoren die het eiwit- en peptideprofiel van moedermelk bepalen.
In Hoofdstuk 6 hebben we de resultaten van aanvullende data-analyse laten

zien, en deze samengevoegd en besproken met de resultaten van de voorgaande
hoofdstukken. Uit deze integratie hebben we afgeleid dat de aanwezigheid van
niet-humane eiwitten in moedermelk afhankelijk is van een specifieke pathologi-
sche toestand van de moeder (huisstofmijtallergie). In het geval van peptiden van
niet-humane eiwitten geldt dat deze algemeen worden aangetroffen in de moeder-
melk en overeenkomen met in het bloed aangetroffen peptiden afkomstig uit voe-
ding. Daarnaast lieten we zien dat de interindividuele variatie in zowel het eiwit-
als in het peptideprofiel voor een belangrijk deel te wijten is aan etniciteit. We on-
derzochten de relatie tussen eiwitten in de melk en de ontwikkeling van allergie bij
zuigelingen nog verder, wat benadrukte dat onze bevindingen wijzen op verschillen
in immunoglobulinen en cellen die in de melk aanwezig zijn. Tenslotte hebben wij
laten zien dat er geen verband is gevonden tussen het peptideprofiel van de melk en
de allergiestatus van de moeder of de ontwikkeling van allergie bij het kind.

Concluderend hebben we in dit proefschrift aangetoond dat de eiwit- en pepti-
deprofielen van moedermelk niet-humane componenten bevatten, aanzienlijke in-
terindividuele variatie hebben, en verband houden met de etniciteit van de moe-
der. Bovendien zagen we dat er verschillen waren in de melkeiwitsamenstelling van
moeder-kind paren met een allergie in vergelijking met moeder-kind paren zonder
allergie. De analyse van het eiwit- en peptideprofiel van moedermelk in dit proef-
schrift heeft de bestaande kennis uitgebreid en toont de noodzaak aan van een sys-
teembenadering om de complexiteit ervan te ontdekken.
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