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Specialized metabolites (also called secondary metabolites) 
are biomolecules that are not essential for life but rather offer 
specific ecological or physiological advantages to their pro-

ducers, allowing them to thrive in particular niches. These natural 
products (NPs) are more chemically diverse than the molecules of 
primary metabolism, varying in both structure and mode of action 
among different organisms1. Historically, microbial NPs and their 
derivatives have contributed and continue to contribute a substan-
tial part of chemical entities brought to the clinic, especially as anti-
cancer compounds and antibiotics2–4. Regrettably, the emergence 
of antibiotic-resistant pathogens3 concomitant with a stagnation 
in antimicrobial discovery pipelines2,4 is leading to a global public 
health crisis3.

Nonetheless, genomics-based approaches to NP discovery5,6 have 
revealed a largely untapped and much more diverse source of bio-
synthetic potential within genomes3,7. These findings were possible 
following the discovery that bacterial genes encoding the biosynthe-
sis of secondary metabolites are usually located in close proximity to 
each other, forming recognizable biosynthetic gene clusters (BGCs). 
However, while the numbers and kinds of BGCs clearly differ across 
microbial genomes7,8 and metabolomic data indicate that some bio-
synthetic pathways are unique to specific taxa9, a systematic analysis 
of the taxonomic distribution of BGCs has not yet been performed. 
Similarly, while useful estimates of the chemical diversity of specific 
taxa have been provided8, methodical comparisons across taxa are 
lacking. Because of this, the scientific community appears unde-
cided on the best strategy for natural products discovery: should 
the established known NP producers be studied further or should 
the community be investigating underexplored taxa7,10? A rela-
tively recent question is how much chemical diversity is hidden in  

uncultured bacteria. Metagenomic assembled genomes from uncul-
tured bacteria have demonstrated a big potential of unknown 
BGCs7. It is unclear to what extent unexplored associated ecologi-
cal niches and (micro)environments are also associated with unique 
and unexplored chemistry.

Here we harnessed recent advances in computational genomic 
analysis of BGCs to survey the enormous amount of genomic data 
accumulated by the scientific community so far. Using a global 
approach based on more than 170,000 publicly available genomes, 
we created a comprehensive overview of the biosynthetic diversity 
found across the entire bacterial kingdom. We clustered 1,185,995 
BGCs into 62,449 gene cluster families (GCFs), and calibrated the 
granularity of the clustering to make it directly comparable to chem-
ical classes as defined in the NPAtlas11. This facilitated an analysis 
of the variance of diversity across major taxonomic ranks, which 
showed the genus rank to be the most appropriate level for compar-
ing biosynthetic diversity across homogeneous groups. This finding 
allowed us to conduct comparisons within the bacterial kingdom. 
Evident patterns emerged from our analysis, revealing popular 
taxa as prominent sources of both actual and potential biosynthetic 
diversity, and multiple yet uncommon taxa as promising producers.

Biosynthetic diversity of the bacterial kingdom
To assess the global number of GCFs found in sequenced bacterial 
strains, we ran AntiSMASH12 on ~170,000 genomes from the NCBI 
RefSeq database13 (Supplementary Table 1), spanning 48 bacterial 
phyla containing 464 families (according to the Genome Taxonomy 
DataBase classification, GTDB14). We also included almost 50,000 
bacterial metagenome assembled genomes (MAGs) from 6 metage-
nomic projects of various origins15–20 (Table 1 and Supplementary 
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Table 1). To accurately group similar BGCs – which probably 
encode pathways towards the production of similar compounds – 
into GCFs across such a large dataset, we used a slightly modified 
version of the BiG-SLiCE tool21, which has been calibrated to output 
GCFs that match the grouping of known compounds in the NPAtlas 
database11 (see Methods, Quantification of biosynthetic diversity 
with BiG-SLiCE). The resulting GCFs were then used to measure 
biosynthetic diversity across taxa.

The number of GCFs in RefSeq ranged from 19,152 to 51,052 
depending on the cut-off used by BiG-SLiCE (Table 1). While, as 
expected, the pure numbers of the analysis changed on the basis 
of the l2-normalized euclidean threshold, the overall tendencies 
observed remained the same (Fig. 1a and Supplementary Fig. 1). 
The effect that the chosen threshold has on these results presented 
a challenge to our investigation, as previous estimations have also 
shown great heterogeneity when different thresholds were used7,8, 
precluding direct comparisons of their predictions. As each BGC 
can be considered a proxy for its encoded pathways and their prod-
ucts, differing thresholds will result in different degrees of granu-
larity in the grouping of compound structures (Extended Data  
Fig. 1). Nevertheless, linear relationships are not always applicable, 
as shown previously22, and a specific threshold will need to be set 
anyway to make comparisons possible. For this, we sought to directly 
relate the choice of our BGC clustering threshold to the clustering of 
their compound structures. NPAtlas, a database of known microbial 
small molecules, provides hierarchical clustering of the compound 
structures via Morgan fingerprinting and Dice similarity scoring11. 
As many as 947 compounds in the NPAtlas are mapped to a known 
BGC in the MIBiG repository23, giving us the opportunity to use 
them as an anchor for choosing our clustering threshold. After map-
ping the BiG-SLiCE groupings of known BGCs from the MIBiG to 
the compound clusters in the NPAtlas (Supplementary Fig. 2), we 
chose a threshold of 0.4, as it provided the most congruent agree-
ments between the two groupings, with a v-score = 0.94 (out of 1.00) 
and ΔGCF = −17.

This calibration of thresholds of GCFs to families of chemical 
structures allowed us to perform a rarefaction analysis to assess how 
genomically encoded biochemical diversity (expressed as the num-
ber of distinct GCFs) increases with the number of sequenced and 
screened genomes (Fig. 1b). The curve appears far from saturated, 
while the slope is even steeper if the bacterial MAGs are included 
in the analysis. When compared to the number of chemical classes 
documented in the NPAtlas11 database (Fig. 1b), it appears that, to 
date, only ~3% of the kingdom’s biosynthetic diversity has been 
experimentally assessed.

In an attempt to evaluate the potential contribution of metage-
nomic data to NP discovery, we studied how many of the GCFs 
found in the MAGs datasets were unique to this dataset (Fig. 1c). 

Around 53.4% of GCFs in the MAGs were not found in the RefSeq 
strains or in the Minimum Information about a Biosynthetic Gene 
cluster database (MIBiG23). Paradoxically, in Fig. 1b, the contribu-
tion of MAGs does not reflect this finding, but this is most prob-
ably because the metagenomic dataset is of limited size and does not 
cover the full microbial diversity of the biosphere. An analysis of the 
uniqueness of GCFs found in different environments, although lim-
ited to only one20 of the MAGs datasets, suggests that a connection 
exists between the biogeography of microbiomes and the unique-
ness of their biosynthetic diversity, as the majority of GCFs (74.43 %)  
are biome-specific (Extended Data Fig. 2 and Supplementary  
Table 7). The latter finding is concordant with recent proof that 
most genes have a strong biogeography signal24.

Variation in biosynthetic diversity drops at the genus level
To identify the most promising bacterial producers, it is important to 
compare them at a specific taxonomic level. Several studies indicate 
that there is substantial discontinuity in how BGCs are distributed 
across taxa: ‘lower’ taxonomic ranks such as species within a genus 
carry more similar biosynthetic diversity, than ‘higher’ taxonomic 
ranks such as phyla within a kingdom. To assess which taxonomic 
rank is the most appropriate to evaluate biosynthetic potential, we 
aimed to determine up to which taxonomic level the biosynthetic 
diversity remains homogeneous within that taxon. For this analysis, 
from our initial dataset, we left out the MAGs and only used the 
RefSeq bacterial strains as taxonomic assignment up to species rank 
(based on GTDB14) was available only for the latter dataset(Table 1).

We first decorated the GTDB14 bacterial tree with GCF values 
from the BiG-SLiCE analysis (Fig. 2a), revealing the biosynthetic 
diversity found within currently sequenced genomes at the phylum 
rank. It immediately stood out that biosynthetic diversity was dif-
ferently dispersed among the bacterial phyla, in accordance with 
published data7,25. As expected for known NP producers, the phyla 
Proteobacteria and Actinobacteria appeared particularly diverse8,26,27. 
However, these phyla are among the most studied and therefore the 
most sequenced8,26,27—a bias that is addressed later in the study.

Next, we examined whether the diversity of each phylum con-
tributed to the domain’s total diversity, or if there was overlap 
among them. For this reason, we depicted the number of unique 
GCFs within each phylum, as well as the pairwise overlaps (Fig. 2b). 
In most phyla, the vast majority (on average 73.81 ± 20.35%) of their 
GCFs appeared to be unique to them and not found anywhere else. 
This is coherent with the fact that horizontal gene transfer events, 
although relatively frequent for BGCs28, are much more common 
among closely related taxa29.

Once we obtained information on the diversity of different phyla, 
as well as the rest of the major taxonomic ranks (classes, orders, 
families, genera, species), we proceeded to determine at which  

Table 1 | Input datasets and biosynthetic diversity with different BiG-SLiCE cut-offs

Dataset Genomes BGCs Gene cluster families

T = 0.4 T = 0.5 T = 0.6 T = 0.7

Complete dataset All RefSeq bacteria 170,549 1,060,592 51,052 37,785 28,057 19,152

Bacterial MAGsa 47,098 125,403 21,354 – – –

Total 217,647 1,185,995 62,449 – – –

RefSeq bacteria with known 
species taxonomy

Complete genomes 16,004 94,904 16,984 13,546 10,399 7,151

Draft genomes 147,265 913,642 37,123 27,748 20,638 14,016

Total 163,269 1,008,546 41,870 31,237 23,227 15,766

The ‘complete dataset’ was used for the computation of the actual and potential biosynthetic diversity found in all cultured (and some uncultured) bacteria. The dataset ‘RefSeq bacteria with known species 
taxonomy’ was used for pinpointing the emergence of biosynthetic diversity, for which accurate taxonomic information was needed, and for identifying groups of promising producers. The ‘T’s under gene 
cluster families represent different BiG-SLiCE l2-normalized euclidean thresholds; the values under T = 0.4 stand out due to it being considered the most suitable cut-off. BGC to GCF assignment for each 
threshold can be found in Supplementary Tables 2–5. aMAG sources: bovine rumen15, chicken caecum16, human gut17, ocean18, uncultivated bacteria19, various sources20.
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taxonomic rank biosynthetic diversity levels no longer show 
high variability. Therefore, we conducted a variance analysis that 
included each taxonomic rank, from phylum to species. For each 
rank, the variance value was computed on the basis of the num-
ber of GCF values of immediately lower-ranked taxa (see Methods, 
Variance analysis). The distribution of these variance values for 
each rank is visualized in Fig. 3a.

There is a noticeable drop in the range of variance values for each 
rank, while diversity becomes highly homogeneous at the species 
level (Fig. 3a,b). The plunge is most striking from the family to the 
genus level (Fig. 3a), with even the outliers all falling under the 103 
line in the genus rank. Different species within a genus are likely 
to display uniform biosynthetic diversity, while much dissimilarity 
is observed between different genera belonging to the same family 
(Fig. 3b). Additional statistical analysis confirmed the significance 
of this observation (Supplementary Fig. 3), thus pinpointing, prob-
ably for the first time, the genus rank as the most appropriate for 
comparative analyses.

Taxa that are sources of substantial biosynthetic diversity
The identification of the genus level as the most informative rank to 
measure biosynthetic diversity across taxonomy paved the way for a 
comprehensive comparative analysis of biosynthetic potential across 
the bacterial tree of life. However, to be able to systematically com-
pare diversity values among groups, said groups need to be uniform. 
In this case, a common phylogenetic metric was necessary. We chose 
relative evolutionary divergence (RED) and a specific threshold that 
was based on the GTDB’s range of RED values for the genus rank14 to 
define REDgroups: groups of bacteria analogous to genera but char-
acterized by equal evolutionary distance (see Methods, Definition 
of REDgroups). Our classification revealed the inequalities in 
within-taxon phylogenetic similarities among the genera, with some 
being divided into multiple REDgroups (for example the Streptomyces 
genus was split into 21 REDgroups: Streptomyces_RG1, Streptomyces_
RG2 etc.) and some being joined together with other genera to 
form mixed REDgroups (for example Burkholderiaceae_mixed_
RG1 includes the genera Paraburkholderia, Paraburkholderia_A, 
Paraburkholderia_B, Burkholderia, Paraburkholderia_E and 
Caballeronia). This disparity among the genera reaffirmed the impor-
tance of defining the REDgroups as a technique that allowed for fair 
comparisons among bacterial NP producers.

The resulting 3,779 REDgroups showed huge differences in bio-
synthetic diversity as measured by the numbers of GCFs found in 
genomes sequenced from these groups so far, with the maximum 

diversity at 3,339 GCFs, average at 17 GCFs and minimum at 1 
GCF. Nevertheless, the variance of diversity within the REDgroups 
was even more uniform than in the genera (Supplementary  
Fig. 4). Some of the top groups (Supplementary Table 8) included 
known rich NP producers, such as Streptomyces, Pseudomonas_E  
and Nocardia23,26,27,30.

Although very informative, this analysis is biased because of 
large differences in the number of sequenced strains among the 
groups, with economically or medically important strains hav-
ing been sequenced more systematically than others. To overcome 
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Fig. 1 | Biosynthetic diversity of the sequenced bacterial kingdom. 
a, Barplots of GCFs (as defined by BiG-SLiCE) of the nine most 
biosynthetically diverse genera using different thresholds (T). The 
absolute number of GCFs changes from threshold to threshold, but the 
general tendencies (highest to lowest GCF count) are consistent between 
them. b, Rarefaction curves of all RefSeq bacteria based on BiG-SLiCE 
(red) and clust-o-matic (orange), and rarefaction curve of the complete 
dataset, which includes bacterial MAGs (blue), based on BiG-SLiCE. 
BiG-SLiCE GCFs were calculated with T = 0.4. Clust-o-matic GCFs were 
calculated with T = 0.5. The solid lines represent interpolated and actual 
data, while the dashed lines represent extrapolated data. The number of 
chemical classes documented in the NPAtlas11, which come from bacterial 
producers (grey dashed line; 2,487), corresponds to 2.5–3.3% of the 
predicted potential of the bacterial kingdom (number of GCFs at 1.6 million 
genomes). The Y values (number of extrapolated GCFs) at the right end of 
the graph are 97,760.12 (blue), 81,748.32 (red) and 72,411.11 (orange).  
c, Venn diagram of GCFs (as defined by BiG-SLiCE, T = 0.4) of the bacterial 
RefSeq, MIBiG23 and bacterial MAGs datasets. More information on the 
MIBiG dataset can be found in Supplementary Table 6. About 53.4% of the 
GCFs of MAGs are unique (blue shape) to this dataset.
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this bias, rarefaction analyses were conducted for each REDgroup 
(Fig. 4b and Supplementary Table 8), as performed in previous 
studies31,32. Additionally, to examine how effectively this method 
overcomes the sequencing bias, a random sampling approach was 
taken (see Methods, Random sampling), which showed comparable 
results to the original analysis (Supplementary Table 9). With all the 
information on REDgroups, and to provide a global overview of the 
actual biosynthetic diversity and the potential number of GCFs, we 
modified and complemented the bacterial tree from Parks et al.14, as 
shown in Fig. 4a (Extended Data Fig. 3). The dispersion of these val-
ues across the various phyla can also be seen, with the exceptional 
outliers standing out: Streptomyces_RG1, Streptomyces_RG2, 
Amycolatopsis_RG1, Kutzneria and Micromonospora. All these are 
groups known for their NP producers8,26,27,33 and they remain at the 
top (Supplementary Table 8), seemingly having much unexplored 
biosynthetic potential.

To ensure that our conclusions are not the product of algorith-
mic artefacts, we re-ran the analysis using an alternative method of 
quantifying biosynthetic diversity, which was developed indepen-
dently, yet for the same purpose. This alternative approach, called 

clust-o-matic, is based on a sequence similarity all-versus-all dis-
tance matrix of BGCs and subsequent agglomerative hierarchical 
clustering to form GCFs (see Methods, Quantification of biosyn-
thetic diversity with clust-o-matic). Similar to BiG-SLiCE, we cali-
brated the threshold for clust-o-matic on the basis of the NPAtlas 
clusters. When comparing the results (Fig. 4c,d and Supplementary 
Table 8), the two algorithms appeared to identify very similar trends 
despite slight differences in absolute numbers.

Streptomyces, even when split into multiple REDgroups, is in the 
top groups both based on the known biosynthetic diversity and on the 
estimated potential values. A total of 5,908 (+103 Streptomyces_B, 
+39 Streptomyces_C, +16 Streptomyces_D) GCFs appear to be 
unique to the group, even among other phyla (Fig. 5a). This is in 
agreement with previous studies investigating how much overlap 
there is among the main groups of producers34. Of note, streptomy-
cetes appear to be the source of a good percentage of the biosynthetic 
diversity attributed to the Actinobacteria phylum, as seen in Fig. 5b.

However, taxa less popular for NP discovery also show prom-
ise, as was evidenced by a comparison of our results with data from 
the NPASS database of Natural Products35 (Fig. 5c). Among the  

2

3
4

5

13 …
 6

14

22 …
 15

14

15

16
 …

 2
9

30
31 …

 36

38 … 41

42

43 …
 48

1

8

13,721

Number of genomes Number of GCFs

Taxa
1 Acidobacteriota
2 Actinobacteriota
3 Aquificota
4 Armatimonadota
5 Bacteroidota
6 Bdellovibrionota
7 Bdellovibrionota_B
8 Bipolaricaulota
9 Caldisericota
10 Calditrichota
11 Campylobacterota
12 Chloroflexota
13 Chrysiogenetota
14 Cyanobacteria
15 Deferribacterota
16 Deinococcota

17 Desulfobacterota
18 Desulfobacterota_A
19 Desulfuromonadota
20 Dictyoglomota
21 Elusimicrobiota
22 Fibrobacterota
23 Firmicutes
24 Firmicutes_A
25 Firmicutes_B
26 Firmicutes_C
27 Firmicutes_D
28 Firmictues_E
29 Firmicutes_F
30 Firmicutes_I
31 Firmicutes_J
32 Firmicutes_K

33 Fusobacteriota
34 Gemmatimonadota
35 Margulisbacteria
36 Methylomirabilota
37 Myxococcota
38 Nitrospinota
39 Nitrospirota
40 Nitrospirota_A
41 Planctomycetota
42 Proteobacteria
43 Spirochaetota
44 Synergistota
45 Tectomicrobia
46 Thermotogota
47 Verrucomicrobiota
48 Verrucomicrobiota_A

3

36

9

90,330

2

4

1,425

1

21

93

18

4

63

42

64

1

1

1

16

3

49

2

2,989

300

72

20

188

25

1

1

67

140

46

8

15,857

536

242

44,482
35

4,983

113

269

9

5

34

2

650

100 101 102 103 104

164

6

6

5

80

0

27

159
32

31

829

83

214
13

5

4

52

7

30

3
2,349

97

255

34

158

17

1

1

22
128

132

10
17,532

1,867

70

3,709

24

1,364
114

153

7

11

98

7

1,363

a b
37

Elusimicrobiota

Acidobacteriota

Nitrospirota_A

Proteobacteria

Chrysiogenetota

Deferribacterota

Campylobacterota

Thermosulfidibacteraeota

Aquificota

Desulfobacterota_A

Bdellovibrionota

Bdellovibrionota_B

Myxococcota

Desulfuromonadota

Desulfobacterota

Tectomicrobia

Nitrospinota

Methylomirabilota

Nitrospirota

Gemmatimonadota

Fibrobacterota

Calditrichota

Bacteroidota

Spirochaetota

Planctomycetota

Verrucomicrobiota_A

Verrucomicrobiota

Synergistota

Dictyoglomota

Bipolaricaulota

Thermotogota

Deinococcota

Chloroflexota

Armatimonadota

Actinobacteriota

Cyanobacteria

Fusobacteriota

Firmicutes

Firmicutes_F

Firmicutes_A

Firmicutes_B

Firmicutes_C

Firmicutes_E

Firmicutes_D

Firmicutes_K

Firmicutes_J

Firmicutes_I

Fig. 2 | Comparison of biosynthetic diversity among phyla. a, The GTDB14 bacterial tree was visualized with iTOL63 v6.5.2, decorated with GCF values 
(as defined by BiG-SLiCE at T = 0.4), collapsed at the phylum rank and accompanied by barplot of GCFs in logarithmic scale (100 to 104). The number of 
genomes belonging to each phylum is displayed next to the tree’s leaf nodes. b, GCFs (as defined by BiG-SLiCE, T = 0.4) unique to phyla (solid shapes) and 
with pairwise overlaps between phyla (ribbons), visualized with circlize64. Each phylum has a distinct colour. Actinobacteriota (2) and Proteobacteria (42) 
seem particularly rich in unique GCFs.

Nature Microbiology | VOL 7 | May 2022 | 726–735 | www.nature.com/naturemicrobiology 729

http://www.nature.com/naturemicrobiology


Analysis NATurE MiCroBioLoGy

20 overall most promising REDgroups, we found at least 6 groups 
that show promise but whose members are either not catalogued in 
the database as NP sources or are connected to few (<15) known 
compounds: Amycolatopsis_RG1, Kutzneria, Xanthobacteriaceae_
mixed_RG1, Mycolicibacterium_RG1, Nonomuraea and 
Kitasatospora_RG1. The Amycolatopsis_RG1 group only includes 
three rare species: Amycolatopsis antarctica, marina and nigres-
cens. Other promising REDgroups with very few known producers 
include Cupriavidus (from Proteobacteria phylum), Weeksellaceae_
mixed_RG1 (from Bacteroidota phylum) and Pleurocapsa (from 
Cyanobacteria phylum). More information about the promising 
underexplored taxa can be found in Supplementary Table 8.

Discussion
Using two different algorithms, we mined deposited bacterial 
sequencing data to identify BGCs and grouped them into GCFs 
according to chemical families of encoded compounds. We identi-
fied maximal emergence of the highest biosynthetic diversity close to 
the genus rank and chose to further investigate analogous taxonomic 
groups (REDgroups). Rarefaction analysis identified the highest 
biosynthetic potential and the most promising bacterial taxa among 
many known diverse groups, as well as multiple promising under-
studied producers. To the best of our knowledge, this is the largest 
survey of secondary metabolite production to date, and our study 
provides a reproducible pipeline to underpin drug discovery efforts.

The biosynthetic capacity of the bacterial kingdom was previ-
ously assessed by Cimermancic et al.7, but the dataset analysed was 
only 33,000 BGCs compared with the 1,185,995 BGCs we analysed. 
Additionally, they used ClusterFinder, which is known as a more 
exploratory identification tool7,36. Projects that exploit publicly avail-
able genomic data are reliant on the quality of genomes sequenced 
as well as the efficiency of available genome mining methods, which 
have some limitations37. For instance, the study of GCF uniqueness 
among taxa may be affected by antiSMASH’s imperfect BGC bound-
ary prediction12. Although BiG-SLiCE converts BGCs into features 
only on the basis of domains related to biosynthesis21, genomic con-
text unrelated to the biosynthetic pathway of a BGC could still have 
a role in the GCF assignment; this issue cannot be fully addressed 
with currently available tools. However, antiSMASH’s ability to dis-
cern cluster limits and detect BGCs from cultured strains and MAGs 
is comparable to alternative tools, while its ability to predict differ-
ent BGC types is unparalleled38, as is apparent from its common 
use in NP research7,9,25,30,32,39. Of note, the fact that it is rule-based12 
implies the possibility of undetected types of clusters and increases 
the likelihood that our calculations have underestimated the true 
biosynthetic potential of bacterial organisms.

Furthermore, our pipeline appears to be the first to use the 
GTDB14 taxonomy for studying global bacterial biosynthetic diver-
sity. This enabled us to avoid misclassifications of NCBI taxonomic 
placement40–43. The use of rarefaction curves allowed us to infer 
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Nature Microbiology | VOL 7 | May 2022 | 726–735 | www.nature.com/naturemicrobiology 731

http://www.nature.com/naturemicrobiology


Analysis NATurE MiCroBioLoGy

the biosynthetic potential of bacterial groups, as done in some 
smaller-scale projects7,8,31,32. This method aims to enable fair com-
parisons among incomplete samples44. However, while overestima-
tion is not expected to happen, for those groups that contain very 
few genomes, there is a tendency to underestimate their potential 
capacity44. Hence, sequencing bias of popular taxa still affects our 
results. We tried to minimize the bias within the pipeline as much 
as possible while retaining high diversity of bacterial taxa; therefore, 
we decided not to exclude REDgroups with very few members from 
the dataset. We also ran an additional random sampling analysis 

using the most populated REDgroups and confirmed the reproduc-
ibility of our results. Nonetheless, the remaining bias will only be 
eliminated with the inclusion of increased biodiversity in sequenc-
ing projects17,20.

Our analysis identified a plethora of unexplored taxonomic 
groups with substantial biosynthetic potential9,10,45–47. At the 
same time, it revealed undiscovered biosynthetic diversity pres-
ent in well-characterized NP producers. For example, multiple 
Proteobacteria taxa were identified among the top producers: 
Pseudomonas, Pseudoalteromonas, Paracoccus and Serratia among 
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others. This is in accordance with the known biosynthetic poten-
tial of the Proteobacteria phylum33. Furthermore, we identified taxa 
that are less well represented in sequence databases as being poten-
tially useful sources of secondary metabolites, including myxobac-
terial genera Cystobacter, Melittangium, Archangium, Vitiosangium, 
Sorangium and Myxococcus9,30,48, and Chryseobacterium and 
Chryseobacterium_A49 from the Bacteroidota phylum. However, 
the most diverse groups of metabolites are predicted to be pro-
duced by actinobacterial strains of well-known and well-studied NP 
producers such as Actinoplanes, Amycolatopsis, Micromonospora, 
Mycobacterium, Nocardia and Streptomyces8,26,27,34. These bacteria 
produce most of known natural product antibiotics26 and our analy-
sis confirms recent analyses of biosynthetic novelty in the genomes 
of rare Actinobacteria, suggesting that there is still much more natu-
ral product diversity to be discovered in this group as more diversi-
fied strains get sequenced8,26,27,50.

Streptomyces is a genus of the Actinobacteria phylum that con-
tains some of the most complex bacteria that we know of, albeit by 
far not the most sequenced in our dataset (Supplementary Fig. 5). 
These bacteria have been known as NP producers for a long time34, 
as single strains containing a high number of BGCs have been dis-
covered, taking up to 10% of their genome51. However, members 
of other genera contain comparable absolute numbers of BGCs. 
This appears to be the first time that a systematic comparison of 
the diversity of the encoded compounds within bacterial genera 
has been conducted, revealing how diverse Streptomyces are com-
pared with all others34. The factors that cause this taxonomic group 
to stand out are not completely clear but are probably related to 
their sophisticated lifestyle. Many observations suggest that NP 
biosynthesis drives speciation within the Streptomyces genus8. The 
exploration of factors that led to the rise of biosynthetic diversity 
in Streptomyces to such an impressive degree will be the subject of 
further investigations in the future.

Having the genomic capacity for the biosynthesis of second-
ary metabolites does not always herald the discovery of a novel 
chemistry52,53. Sometimes, the bacterium in question cannot be 
grown or BGCs are not expressed in laboratory conditions26,45,47,52,53. 
This issue is related to the complexity of BGCs; we have only just 
scratched the surface of their intricate regulation and connection 
to primary metabolism5,45,52,54. However, efforts to decode biosyn-
thetic mechanisms for the activation of silent clusters need to be 
tailored to specific producer groups26,27,53, such as groups phyloge-
netically related to promising producers, for example members of 
the Pseudonocardiaceae family (REDgroups Amycolatopsis_RG1 
& Kutzneria in Fig. 4; these and more REDgroups are shown in 
Supplementary Table 8), partly because each phylum has unique 
diversity (Fig. 2b).

Original approaches to the prioritization issue of NP research 
continue to emerge, fuelled by the advances in metagenomics 
and computational tools that enable the use of the biosynthetic 
potential of unculturable bacteria from environmental samples55. 
Furthermore, apart from the few metagenomic projects whose 
MAGs we incorporated in the first part of our analysis, there are 
multiple such projects publicly available, some of which have been 
the focus of NP studies56. Although the reconstruction of genomes 
from metagenomes remains a challenge57 and the assembly will 
often miss BGCs58, which has indirectly prevented their compari-
son to the cultured bacteria in the current project, metagenomics is 
proving to be a promising source of information on NPs and their 
producers7,34,45,55,56, as made apparent in the present investigation. 
We expect the effect of this field on NP research to become more 
evident in subsequent years.

The collection of microbial data from a large variety of habitats 
points to another interesting aspect, namely the relation between 
the biome of origin of the producers and the uniqueness of their bio-
synthetic diversity. Although this connection has been investigated  

to some extent24,25,32,33,47, drawing more definitive conclusions will 
require the use of a wider-scale dataset and the availability of more 
detailed and standardized metadata of producers’ genomes.

Our analysis provides a global overview of diverse known and 
promising understudied NP-producing taxa. We expect this to 
greatly help overcome one of the main bottlenecks of natural prod-
ucts discovery: the prioritization of producers for research55.

Methods
BGC dataset. We obtained 170,585 complete and draft bacterial genomes (Table 1)  
from RefSeq13 on 27 March 2020. Furthermore, a dataset of 47,098 MAGs was 
included in the first part of the analysis (see Results, Biosynthetic diversity of the 
bacterial kingdom). For the rest of the study, we used only 161,290 RefSeq bacterial 
genomes whose taxonomic classification up to the species level was known  
(Table 1). All genomes were analysed with antiSMASH (version 5)12, which 
identified their BGCs (Supplementary Table 1). The entirety of the MIBiG23 
database (accessed on 27 March 2020) was included in parts of our analysis  
(their IDs can be found in Supplementary Table 6).

Taxonomic classification. Due to multiple indications regarding a lack of accuracy 
of NCBI’s taxonomic classification of bacterial genomes40–43, we chose to use the 
GTDB14 instead. The bacterial tree of 120 concatenated proteins (GTDB release 89),  
as well as the classifications of organisms up to the species level, were included in 
the analysis.

Quantification of biosynthetic diversity with BiG-SLiCE. For a bacterium to 
be regarded as biosynthetically diverse, we considered not the number of BGCs 
as important, but rather how different these BGCs are to each other. To quantify 
this diversity, we analysed all BGCs with the new BiG-SLiCE tool21, which groups 
similar clusters into GCFs. However, the first version of this tool has an inherent 
bias towards multi-protein family BGCs, producing uneven coverage between 
BGCs of different classes (that is, due to their lack of biosynthetic domain diversity, 
all lanthipeptide BGCs may be grouped together using the Euclidean threshold 
of T = 900, which in contrast is ideal for clustering Type-I Polyketide BGCs). 
To alleviate this issue and provide a fair measurement of biosynthetic diversity 
between the taxa, we modified the original distance measurement by normalizing 
the BGC features under L^2-norm, which produces a cosine-like distance when 
processed by the Euclidean-based BIRCH algorithm. This use of cosine-like 
distance virtually balances the measured distance between BGCs with ‘high’ and 
‘low’ feature counts (Supplementary Fig. 6a), in the end providing an improved 
clustering performance when measured using the reference data of manually 
curated MIBiG GCFs (Supplementary Fig. 6b).

The GTDB14 (release 89) bacterial tree was pruned so that it included only 
the organisms that are part of our dataset. Then, having both the taxonomic 
classification of all bacteria, as well as how many GCFs their BGCs group into, the 
pruned GTDB tree was decorated with the number of GCF values at each node. 
This allowed for the evaluation of the biosynthetic diversity of any clade, including 
the main taxonomic ranks. To pick a single threshold for subsequent taxonomic 
richness analysis, we compared BiG-SLiCE results on 947 MIBiG BGCs versus the 
compound-based clustering provided by the NPAtlas database11 (Supplementary 
Fig. 2). A final threshold of T = 0.4 was chosen on the basis of its similarity to the 
NPAtlas’s compound clusters (v-score = 0.9X, GCF counts difference = +XX).

Quantification of biosynthetic diversity with clust-o-matic. We aimed to 
repeat and evaluate the reproducibility of the BGC-to-GCF quantification 
step of BiG-SLiCE with an alternative, independently derived algorithm. For 
this, instead of grouping BGCs into GCFs on the basis of biosynthetic domain 
diversity, we developed an algorithm that considers full core biosynthetic genes. 
Biosynthetic gene clusters that were detected in the input data by antiSMASH 
5.1 were parsed to deliver core biosynthetic protein sequences. Those protein 
sequences were subjected to all-against-all multi-gene sequence similarity search 
with DIAMOND59 2.0 using default settings. Only one best hit per query core 
gene per BGC was allowed, divided by a total core protein length, resulting in the 
final pairwise BGC score always being within the range of 0 to 1. Pairwise BGC 
similarity scores were used to build a distance matrix that was later subjected to 
agglomerative hierarchical clustering in Python programming language (package 
scipy.cluster.hierarchy). The same process as described in the paragraph above 
(for BiG-SLiCE in that case) was performed for identification of the most suitable 
threshold for the clust-o-matic algorithm. The determined optimal threshold of 0.5 
was then used to generate GCFs, which were then fed into the next steps in parallel 
to the original set of GCFs obtained from BiG-SLiCE.

Biogeographic analysis. One20 of the MAGs datasets was accompanied by 
sufficient metadata that allowed for a study of a potential connection between 
biosynthetic diversity patterns and the biomes of origin of the corresponding 
MAGs. The GCFs for each ecosystem type were collected by combining 
information from Supplementary Tables 1 and 2 of this project and from 
the Nayfach paper20 Supplementary Information. This led to the creation of 
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Supplementary Table 7. Then, the largest occurring intersections were computed 
and visualized in Extended Data Fig. 2 using the UpSet60 visualization technique.

Variance analysis. To pinpoint the emergence of biosynthetic diversity, the 
within-taxon homogeneity was compared among the main taxonomic ranks. For 
each rank, the variance value was computed (with NumPy61) on the basis of the 
number of GCF values of immediately lower-ranked taxa, provided that there were 
at least two such taxa. For example, a phylum that includes only one class in our 
dataset was omitted from this computation. However, a phylum with two or more 
classes would be assigned a variance value computed from its classes’ number of 
GCF values. The distribution of these variance values was plotted for each rank 
in Fig. 3a. We noticed a significant reduction in variance from the family to the 
genus rank, which was confirmed with an additional statistical test (Supplementary 
Fig. 3 and Supplementary Methods). A similar variance analysis was performed to 
compare genera and REDgroups (Supplementary Fig. 4), but in this case variance 
was calculated on the basis of the strains’ biosynthetic diversity.

Definition of REDgroups. To study the biosynthetic diversity of genera, we 
attempted to achieve uniform taxa. For taxonomic rank normalization, the creators 
of GTDB used RED14, which is a metric that relies heavily on the branch length 
of a phylogenetic tree and is consequently dependent on the rooting. The GTDB 
developers provided us with a bacterial tree decorated with the average RED values 
of all plausible rootings at each node. Since GTDB accepts a range of RED values 
for each taxonomic rank placement14, we chose the median of GTDB genus RED 
values, namely 0.934, as a cut-off threshold. Any clade in the GTDB bacterial 
tree with an assigned RED value higher than the threshold was considered one 
group (Supplementary Fig. 7) that we named ‘REDgroup’. For REDgroup naming 
conventions, see Supplementary Fig. 7.

Rarefaction analysis. The extrapolation of potential number of GCF values was 
achieved by conducting rarefaction analyses using the iNEXT R package62. A GCF 
presence/absence table (GCF-by-strain matrix) was constructed for each group 
considered and was then used as ‘incidence-raw’ data in the iNEXT main function, 
where 500 points were inter- or extrapolated with an endpoint of 5,000 for the 
REDgroups, and an endpoint of 1.6 million (about 8 times the number of strains in 
the ‘complete dataset’) in each group for the RefSeq analyses (where 2,000 points 
were inter- or extrapolated). By default, the number of bootstrap replications is 50.

Random sampling. To test whether the above methods (creation of REDgroups 
and the subsequent rarefaction analyses) surmounted the inherent sequencing 
bias in our dataset, a random sampling technique was used. A reduced dataset that 
included only those REDgroups containing at least 20 members was tested. For 
each REDgroup, a sample of 20 genomes was randomly chosen (using the Python 
‘random’ module), while preserving the species diversity of the group. The latter 
was achieved by ensuring that genomes belonging to as many species as possible 
are included in each sample; if all species of a REDgroup were included but the 
genomes were fewer than 20, the remaining ‘spots’ were distributed evenly among 
a random sample of the REDgroup’s species. One hundred iterations of this process 
were calculated for all REDgroups in this reduced dataset and rarefaction analyses 
were conducted for the random samples in each iteration. Finally, the average 
pGCF value for each REDgroup from all iterations was calculated and values are 
reported in Supplementary Table 9.

Identification of unknown producers. We investigated the genera included in 
the most promising REDgroups to find out whether they include species that are 
producers of known compounds. Hence, the species names were cross-referenced 
with the species named as producers in the NPASS depository35 (accessed on 15 
October 2020), taking care to match the GTDB-given names to the NCBI-given 
names that the database uses.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The datasets generated and analysed during the study are available in the Zenodo 
repository: https://doi.org/10.5281/zenodo.6365726. Source data are provided with 
this paper.

Code availability
The clust-o-matic code is available at https://github.com/Helmholtz-HIPS.
The modified BiG-SLiCE script (that accepts as input a regular BiG-SLiCE output 
folder, then outputs the GCF membership in a tsv file) is available both in our 
Zenodo repository (file name: perform_l2norm_clustering.py) and at the following 
link: https://github.com/medema-group/bigslice/blob/master/misc/useful_scripts/
perform_l2norm_clustering.py.
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Extended Data Fig. 1 | Illustrating the correlation between BGC clustering thresholds and the grouping of their pathway products. a) a snippet of a 
complete-linkage hierarchical dendrogram constructed by doing a pairwise distance comparison of L2-normalized BGC features within the MIBiG dataset, 
highlighting the grouping of BGCs for the enediynes Uncialamycin (UCM) and Tiancimycin (TNM) under the threshold T = 0.5, and further grouping with 
another related enediyne BGC, Dynemicin (DNM) under the looser threshold of T = 0.7. b) Comparative genes analysis generated using the clinker tool92 
v0.0.23 shows how UCM and TNM BGCs are much more similar to each other than to DNM (same-colored genes indicate <70% amino acid similarity, 
while colored edges indicate <50% amino acid similarity), which is consistent with the structural diversity of their compounds (pictured).
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Extended Data Fig. 2 | Intersections and distribution of biosynthetic diversity values among different ecosystem types. The bar plot on the left depicts 
the number of Gene Cluster Families (GCFs as defined by BiG-SLiCE with T = 0.4) found in each biome type. The bar plot on top shows the size (number of 
GCFs) of each intersection. Which sets (biome types) are included in each intersection can be seen in the matrix below the bar plot, where the dark dots 
pinpoint included sets. If more than one set is part of an intersection, connecting lines are drawn for better visibility. The data presented in this graph come 
only from the MAGs in the GEMS dataset (see Supplementary Table 1), which was the only one with sufficient metadata. Only the top 63 most sizable 
intersections are depicted here, and only the 35 ecosystem types (with the most GCFs out of the 63) that were part of them are shown on the left. The 
data indicate that there is barely any overlap between the ecosystem types; most GCFs (74.43 %) are specific to a single biome (a complete overview of 
unique GCFs per ecosystem type can be found in Supplementary Table 7), while the largest intersection (the one including most habitats - not visible in 
this Figure) includes 50 of the 63 ecosystem types.
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Extended Data Fig. 3 | Overview of actual and potential biosynthetic diversity of bacterial kingdom, compared at REDgroup level. Extended Data Fig. 3 is 
interactive and can be accessed online on iTOL: https://itol.embl.de/shared/1B6W5n9MixSdJ. GTDB bacterial tree up to REDgroup level (for more details 
see Methods - REDgroup definition), colour-coded by phylum, decorated with barplots of actual (orange) and potential (purple) Gene Cluster Families 
(GCFs) as defined by BiG-SLiCE (T = 0.4). Potential GCFs were computed by rarefaction analyses (for more details see Results - Well known and less 
popular taxa as sources of biosynthetic diversity). REDgroups names are displayed around the tree as leaf node labels; hovering over them provides further 
taxonomic information (for full REDgroup metadata see Supplementary Table 1). Phyla known to be enriched in NP producers are immediately visible 
(Actinobacteriota, Protobacteriota), with the most promising groups coming from the Actinobacteriota phylum (the highest peak belongs to a REDgroup 
containing Streptomyces strains). Simultaneously, within the underexplored phyla, there seems to be notable biosynthetic diversity and potential. This 
Figure is meant to be explored by zooming in and out, searching for keywords and visualizing different kinds of information by switching between Tree 
Views. Any other attempt at modification (for example turning datasets on and off) may result in an unreadable graph.
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Extended Data Fig. 4 | Unique diversity in the known producer Streptomyces. Unique GCFs, as defined by BiG-SLICE (T = 0.4), of bacterial phyla and 
Streptomyces (solid shapes) and pairwise overlaps of phyla - phyla and phyla - Streptomyces (ribbons). Each taxon has a distinct colour. The genus 
Streptomyces (1) appears to have a very high amount of unique GCFs comparable to entire phyla, such as Proteobacteria (43).
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Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection All genomes used were  downloaded from the publicly available RefSeq database and from specific publications that are specified in our 
Results and their Accession numbers are included in Supplementary Table 1. Some BGCs were obtained from the MiBIG database (IDs 
included in Supplementary Table 6). Information on compound producers was obtained from NPASS, as specified in the Methods.

Data analysis Our analysis was conducted using the following software: modified BiG-SLiCE algorithm (https://github.com/medema-group/bigslice/blob/
master/misc/useful_scripts/perform_l2norm_clustering.py), clust-o-matic (https://github.com/Helmholtz-HIPS), R package iNEXT (v2.0.20),  
python library NumPy (v1.19.1),  webserver iTOL (v6.5.2), R package circlize (v0.4.13), UpSet visualisation (local version downloaded on 
17.11.2021), clinker (v0.0.23).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

The datasets generated and analyzed during the current study are available in the following zenodo repository: https://doi.org/10.5281/zenodo.5159210. 
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Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Our dataset included all publicly available bacterial genomes from RefSeq, and several thousand published bacterial Metagenome Assembled 
Genomes. 

Data exclusions No data was exlcuded from the analysis under Results section "Biosynthetic diversity of the bacterial kingdom". All genomes with missing 
species taxonomic information were excluded from the rest of the analyses, as it was important to associate them with a specific species in 
order to compare taxa.

Replication The analysis was completed with two independently developed algorithms and our results were confirmed with both. The rarefaction 
analyses of the REDgroups were replicated 100 times using random sampling, which confirmed our initial results.

Randomization This is not relevant to our analysis because we did not conduct experiments in the lab. The genomes we used were separated into taxonomic 
groups for a part of the analysis as described in the Methods section.

Blinding This is not relevant to our analysis because everything was done in silico.

Behavioural & social sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description Briefly describe the study type including whether data are quantitative, qualitative, or mixed-methods (e.g. qualitative cross-sectional, 
quantitative experimental, mixed-methods case study). 

Research sample State the research sample (e.g. Harvard university undergraduates, villagers in rural India) and provide relevant demographic 
information (e.g. age, sex) and indicate whether the sample is representative. Provide a rationale for the study sample chosen. For 
studies involving existing datasets, please describe the dataset and source.

Sampling strategy Describe the sampling procedure (e.g. random, snowball, stratified, convenience). Describe the statistical methods that were used to 
predetermine sample size OR if no sample-size calculation was performed, describe how sample sizes were chosen and provide a 
rationale for why these sample sizes are sufficient. For qualitative data, please indicate whether data saturation was considered, and 
what criteria were used to decide that no further sampling was needed.

Data collection Provide details about the data collection procedure, including the instruments or devices used to record the data (e.g. pen and paper, 
computer, eye tracker, video or audio equipment) whether anyone was present besides the participant(s) and the researcher, and 
whether the researcher was blind to experimental condition and/or the study hypothesis during data collection.

Timing Indicate the start and stop dates of data collection. If there is a gap between collection periods, state the dates for each sample 
cohort.

Data exclusions If no data were excluded from the analyses, state so OR if data were excluded, provide the exact number of exclusions and the 
rationale behind them, indicating whether exclusion criteria were pre-established.

Non-participation State how many participants dropped out/declined participation and the reason(s) given OR provide response rate OR state that no 
participants dropped out/declined participation.

Randomization If participants were not allocated into experimental groups, state so OR describe how participants were allocated to groups, and if 
allocation was not random, describe how covariates were controlled.

Ecological, evolutionary & environmental sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description Briefly describe the study. For quantitative data include treatment factors and interactions, design structure (e.g. factorial, nested, 
hierarchical), nature and number of experimental units and replicates.

Research sample Describe the research sample (e.g. a group of tagged Passer domesticus, all Stenocereus thurberi within Organ Pipe Cactus National 
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Research sample Monument), and provide a rationale for the sample choice. When relevant, describe the organism taxa, source, sex, age range and 

any manipulations. State what population the sample is meant to represent when applicable. For studies involving existing datasets, 
describe the data and its source.

Sampling strategy Note the sampling procedure. Describe the statistical methods that were used to predetermine sample size OR if no sample-size 
calculation was performed, describe how sample sizes were chosen and provide a rationale for why these sample sizes are sufficient.

Data collection Describe the data collection procedure, including who recorded the data and how.

Timing and spatial scale Indicate the start and stop dates of data collection, noting the frequency and periodicity of sampling and providing a rationale for 
these choices. If there is a gap between collection periods, state the dates for each sample cohort. Specify the spatial scale from which 
the data are taken

Data exclusions If no data were excluded from the analyses, state so OR if data were excluded, describe the exclusions and the rationale behind them, 
indicating whether exclusion criteria were pre-established.

Reproducibility Describe the measures taken to verify the reproducibility of experimental findings. For each experiment, note whether any attempts to 
repeat the experiment failed OR state that all attempts to repeat the experiment were successful.

Randomization Describe how samples/organisms/participants were allocated into groups. If allocation was not random, describe how covariates were 
controlled. If this is not relevant to your study, explain why.

Blinding Describe the extent of blinding used during data acquisition and analysis. If blinding was not possible, describe why OR explain why 
blinding was not relevant to your study.

Did the study involve field work? Yes No

Field work, collection and transport
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